diff options
Diffstat (limited to 'SD-VBS/common/toolbox/MultiNcut/cimgnbmap.c')
-rwxr-xr-x | SD-VBS/common/toolbox/MultiNcut/cimgnbmap.c | 198 |
1 files changed, 198 insertions, 0 deletions
diff --git a/SD-VBS/common/toolbox/MultiNcut/cimgnbmap.c b/SD-VBS/common/toolbox/MultiNcut/cimgnbmap.c new file mode 100755 index 0000000..44af715 --- /dev/null +++ b/SD-VBS/common/toolbox/MultiNcut/cimgnbmap.c | |||
@@ -0,0 +1,198 @@ | |||
1 | /*================================================================ | ||
2 | * function [i,j] = cimgnbmap([nr,nc], nb_r, sample_rate) | ||
3 | * computes the neighbourhood index matrix of an image, | ||
4 | * with each neighbourhood sampled. | ||
5 | * Input: | ||
6 | * [nr,nc] = image size | ||
7 | * nb_r = neighbourhood radius, could be [r_i,r_j] for i,j | ||
8 | * sample_rate = sampling rate, default = 1 | ||
9 | * Output: | ||
10 | * [i,j] = each is a column vector, give indices of neighbour pairs | ||
11 | * UINT32 type | ||
12 | * i is of total length of valid elements, 0 for first row | ||
13 | * j is of length nr * nc + 1 | ||
14 | * | ||
15 | * See also: imgnbmap.c, id2cind.m | ||
16 | * | ||
17 | * Examples: | ||
18 | * [i,j] = imgnbmap(10, 20); % [10,10] are assumed | ||
19 | * | ||
20 | * Stella X. Yu, Nov 12, 2001. | ||
21 | |||
22 | % test sequence: | ||
23 | nr = 15; | ||
24 | nc = 15; | ||
25 | nbr = 1; | ||
26 | [i,j] = cimgnbmap([nr,nc], nbr); | ||
27 | mask = csparse(i,j,ones(length(i),1),nr*nc); | ||
28 | show_dist_w(rand(nr,nc),mask) | ||
29 | |||
30 | *=================================================================*/ | ||
31 | |||
32 | # include "mex.h" | ||
33 | # include "math.h" | ||
34 | |||
35 | void mexFunction( | ||
36 | int nargout, | ||
37 | mxArray *out[], | ||
38 | int nargin, | ||
39 | const mxArray *in[] | ||
40 | ) | ||
41 | { | ||
42 | /* declare variables */ | ||
43 | int nr, nc, np, nb, total; | ||
44 | double *dim, sample_rate; | ||
45 | int r_i, r_j, a1, a2, b1, b2, self, neighbor; | ||
46 | int i, j, k, s, t, nsamp, th_rand, no_sample; | ||
47 | /* unsigned long *p, *qi, *qj; */ | ||
48 | unsigned int *p, *qi, *qj; | ||
49 | |||
50 | /* check argument */ | ||
51 | if (nargin < 2) { | ||
52 | mexErrMsgTxt("Two input arguments required"); | ||
53 | } | ||
54 | if (nargout> 2) { | ||
55 | mexErrMsgTxt("Too many output arguments."); | ||
56 | } | ||
57 | |||
58 | /* get image size */ | ||
59 | i = mxGetM(in[0]); | ||
60 | j = mxGetN(in[0]); | ||
61 | dim = mxGetData(in[0]); | ||
62 | nr = (int)dim[0]; | ||
63 | if (j>1 || i>1) { | ||
64 | nc = (int)dim[1]; | ||
65 | } else { | ||
66 | nc = nr; | ||
67 | } | ||
68 | np = nr * nc; | ||
69 | |||
70 | /* get neighbourhood size */ | ||
71 | i = mxGetM(in[1]); | ||
72 | j = mxGetN(in[1]); | ||
73 | dim = mxGetData(in[1]); | ||
74 | r_i = (int)dim[0]; | ||
75 | if (j>1 || i>1) { | ||
76 | r_j = (int)dim[1]; | ||
77 | } else { | ||
78 | r_j = r_i; | ||
79 | } | ||
80 | if (r_i<0) { r_i = 0; } | ||
81 | if (r_j<0) { r_j = 0; } | ||
82 | |||
83 | /* get sample rate */ | ||
84 | if (nargin==3) { | ||
85 | sample_rate = (mxGetM(in[2])==0) ? 1: mxGetScalar(in[2]); | ||
86 | } else { | ||
87 | sample_rate = 1; | ||
88 | } | ||
89 | /* prepare for random number generator */ | ||
90 | if (sample_rate<1) { | ||
91 | srand( (unsigned)time( NULL ) ); | ||
92 | th_rand = (int)ceil((double)RAND_MAX * sample_rate); | ||
93 | no_sample = 0; | ||
94 | } else { | ||
95 | sample_rate = 1; | ||
96 | th_rand = RAND_MAX; | ||
97 | no_sample = 1; | ||
98 | } | ||
99 | |||
100 | /* figure out neighbourhood size */ | ||
101 | |||
102 | nb = (r_i + r_i + 1) * (r_j + r_j + 1); | ||
103 | if (nb>np) { | ||
104 | nb = np; | ||
105 | } | ||
106 | nb = (int)ceil((double)nb * sample_rate); | ||
107 | /*printf("nb=%d\n",nb);*/ | ||
108 | /* intermediate data structure */ | ||
109 | /* p = mxCalloc(np * (nb+1), sizeof(unsigned long)); */ | ||
110 | p = mxCalloc(np * (nb+1), sizeof(unsigned int)); | ||
111 | if (p==NULL) { | ||
112 | mexErrMsgTxt("Not enough space for my computation."); | ||
113 | } | ||
114 | |||
115 | /* computation */ | ||
116 | total = 0; | ||
117 | for (j=0; j<nc; j++) { | ||
118 | /*printf("j=%d\n",j);*/ | ||
119 | for (i=0; i<nr; i++) { | ||
120 | |||
121 | self = i + j * nr; | ||
122 | |||
123 | /* put self in, otherwise the index is not ordered */ | ||
124 | p[self] = p[self] + 1; | ||
125 | p[self+p[self]*np] = self; | ||
126 | |||
127 | /* j range */ | ||
128 | b1 = j; | ||
129 | b2 = j + r_j; | ||
130 | if (b2>=nc) { b2 = nc-1; } | ||
131 | |||
132 | /* i range */ | ||
133 | a1 = i - r_i; | ||
134 | if (a1<0) { a1 = 0; } | ||
135 | a2 = i + r_i; | ||
136 | if (a2>=nr) { a2 = nr-1; } | ||
137 | |||
138 | /* number of more samples needed */ | ||
139 | nsamp = nb - p[self]; | ||
140 | /*if (nsamp<0) | ||
141 | {printf("nsamp=%d\n",nsamp);}*/ | ||
142 | k = 0; | ||
143 | t = b1; | ||
144 | s = i + 1; | ||
145 | if (s>a2) { | ||
146 | s = a1; | ||
147 | t = t + 1; | ||
148 | } | ||
149 | |||
150 | |||
151 | while (k<nsamp && t<=b2) { | ||
152 | |||
153 | if (no_sample || (rand()<th_rand)) { | ||
154 | k = k + 1; | ||
155 | neighbor = s + t * nr; | ||
156 | p[self] = p[self] + 1; | ||
157 | p[self+p[self]*np] = neighbor; | ||
158 | p[neighbor] = p[neighbor] + 1; | ||
159 | p[neighbor+p[neighbor]*np] = self; | ||
160 | } | ||
161 | |||
162 | s = s + 1; | ||
163 | if (s>a2) { | ||
164 | s = a1; | ||
165 | t = t + 1; | ||
166 | } | ||
167 | } /* k */ | ||
168 | total = total + p[self]; | ||
169 | } /* i */ | ||
170 | |||
171 | } /* j */ | ||
172 | |||
173 | /* i, j */ | ||
174 | |||
175 | out[0] = mxCreateNumericMatrix(total, 1, mxUINT32_CLASS, mxREAL); | ||
176 | out[1] = mxCreateNumericMatrix(np+1, 1, mxUINT32_CLASS, mxREAL); | ||
177 | qi = mxGetData(out[0]); | ||
178 | qj = mxGetData(out[1]); | ||
179 | |||
180 | if (out[0]==NULL || out[1]==NULL) { | ||
181 | mexErrMsgTxt("Not enough space for the output matrix."); | ||
182 | } | ||
183 | |||
184 | total = 0; | ||
185 | for (j=0; j<np; j++) { | ||
186 | qj[j] = total; | ||
187 | s = j + np; | ||
188 | for (t=0; t<p[j]; t++) { | ||
189 | qi[total] = p[s]; | ||
190 | total = total + 1; | ||
191 | s = s + np; | ||
192 | } | ||
193 | } | ||
194 | qj[np] = total; | ||
195 | |||
196 | mxFree(p); | ||
197 | |||
198 | } | ||