diff options
Diffstat (limited to 'SD-VBS/common/toolbox/MultiNcut/MNcut.m')
-rwxr-xr-x | SD-VBS/common/toolbox/MultiNcut/MNcut.m | 93 |
1 files changed, 93 insertions, 0 deletions
diff --git a/SD-VBS/common/toolbox/MultiNcut/MNcut.m b/SD-VBS/common/toolbox/MultiNcut/MNcut.m new file mode 100755 index 0000000..5486080 --- /dev/null +++ b/SD-VBS/common/toolbox/MultiNcut/MNcut.m | |||
@@ -0,0 +1,93 @@ | |||
1 | function [NcutDiscretes,eigenVectors,eigenValues] = MNcut(I,nsegs); | ||
2 | % | ||
3 | % [NcutDiscrete,eigenVectors,eigenValues] = MNcut(I,nsegs); | ||
4 | % | ||
5 | % | ||
6 | |||
7 | [nr,nc,nb] = size(I); | ||
8 | |||
9 | max_image_size = max(nr,nc); | ||
10 | |||
11 | % modified by song, 06/13/2005 | ||
12 | % test parameters | ||
13 | if (1) % original settings | ||
14 | if (max_image_size>120) & (max_image_size<=500), | ||
15 | % use 3 levels, | ||
16 | data.layers.number=3; | ||
17 | data.layers.dist=3; | ||
18 | data.layers.weight=[3000,4000,10000]; | ||
19 | data.W.scales=[1,2,3];%[1,2,3]; | ||
20 | data.W.radius=[2,3,7];%[2,3,7]; | ||
21 | elseif (max_image_size >500), | ||
22 | % use 4 levels, | ||
23 | data.layers.number=4; | ||
24 | data.layers.dist=3; | ||
25 | data.layers.weight=[3000,4000,10000,20000]; | ||
26 | data.W.scales=[1,2,3,3]; | ||
27 | data.W.radius=[2,3,4,6]; | ||
28 | elseif (max_image_size <=120) | ||
29 | data.layers.number=2; | ||
30 | data.layers.dist=3; | ||
31 | data.layers.weight=[3000,10000]; | ||
32 | data.W.scales=[1,2]; | ||
33 | data.W.radius=[2,6]; | ||
34 | end | ||
35 | else % test setting | ||
36 | if (max_image_size>200) & (max_image_size<=500), | ||
37 | % use 3 levels, | ||
38 | data.layers.number=3; | ||
39 | data.layers.dist=3; | ||
40 | data.layers.weight=[3000,4000,10000]; | ||
41 | data.W.scales=[1,2,3];%[1,2,3]; | ||
42 | data.W.radius=[2,3,7];%[2,3,7]; | ||
43 | elseif (max_image_size >500), | ||
44 | % use 4 levels, | ||
45 | data.layers.number=4; | ||
46 | data.layers.dist=3; | ||
47 | data.layers.weight=[3000,4000,10000,20000]; | ||
48 | data.W.scales=[1,2,3,3]; | ||
49 | data.W.radius=[2,3,4,6]; | ||
50 | elseif (max_image_size <=200) | ||
51 | data.layers.number=2; | ||
52 | data.layers.dist=3; | ||
53 | data.layers.weight=[3000,10000]; | ||
54 | data.W.scales=[1,2]; | ||
55 | data.W.radius=[2,4]; | ||
56 | end | ||
57 | |||
58 | end; | ||
59 | |||
60 | |||
61 | data.W.edgeVariance=0.1; %0.1 | ||
62 | data.W.gridtype='square'; | ||
63 | data.W.sigmaI=0.12;%0.12 | ||
64 | data.W.sigmaX=1000; | ||
65 | data.W.mode='mixed'; | ||
66 | data.W.p=0; | ||
67 | data.W.q=0; | ||
68 | |||
69 | %eigensolver | ||
70 | data.dataGraphCut.offset = 100;% 10; %valeur sur diagonale de W (mieux vaut 10 pour valeurs negatives de W) | ||
71 | data.dataGraphCut.maxiterations=50;% voir | ||
72 | data.dataGraphCut.eigsErrorTolerance=1e-2;%1e-6; | ||
73 | data.dataGraphCut.valeurMin=1e-6;%1e-5;% utilise pour tronquer des valeurs et sparsifier des matrices | ||
74 | data.dataGraphCut.verbose = 0; | ||
75 | |||
76 | data.dataGraphCut.nbEigenValues=max(nsegs); | ||
77 | |||
78 | disp('computeEdge'); | ||
79 | [multiWpp,ConstraintMat, Wind,data,emag,ephase]= computeMultiW (I,data); | ||
80 | |||
81 | disp('Ncut'); | ||
82 | [eigenVectors,eigenValues]= eigSolve (multiWpp,ConstraintMat,data); | ||
83 | |||
84 | %NcutDiscretes = zeros(nr,nc,length(nsegs)); | ||
85 | NcutDiscretes = zeros(nr,nc,(nsegs)); | ||
86 | |||
87 | for j=1:length(nsegs), | ||
88 | nseg = nsegs(j); | ||
89 | [nr,nc,nb] = size(eigenVectors(:,:,1:nseg)); | ||
90 | [NcutDiscrete,evrotated] =discretisation(reshape(eigenVectors(:,:,1:nb),nr*nc,nb),nr,nc); | ||
91 | NcutDiscretes(:,:,j) = NcutDiscrete; | ||
92 | end | ||
93 | |||