diff options
| author | Joshua Bakita <jbakita@cs.unc.edu> | 2020-10-16 16:55:14 -0400 |
|---|---|---|
| committer | Joshua Bakita <jbakita@cs.unc.edu> | 2020-10-16 16:55:14 -0400 |
| commit | 6ea9939e0610a809f6f47d13ec68df00d1ca0afc (patch) | |
| tree | fe4a2eee3ddcf77e2367309dcd75a232b76dcd62 /dis/Matrix/ver2/matrix.c | |
| parent | e9285d0cdea756a2830f0ace378e4197b36869aa (diff) | |
Move the DIS benchmarks up a directory and update hardcoded paths
Note that this repo does not attempt to keep a copy of the original
DIS benchmark distributions. UNC real-time has another repo for that.
Diffstat (limited to 'dis/Matrix/ver2/matrix.c')
| -rwxr-xr-x | dis/Matrix/ver2/matrix.c | 594 |
1 files changed, 594 insertions, 0 deletions
diff --git a/dis/Matrix/ver2/matrix.c b/dis/Matrix/ver2/matrix.c new file mode 100755 index 0000000..957d7c5 --- /dev/null +++ b/dis/Matrix/ver2/matrix.c | |||
| @@ -0,0 +1,594 @@ | |||
| 1 | /* Please note: | ||
| 2 | * This code is the optimized version of the first version of Matrix | ||
| 3 | * Stressmark. It uses less temporary vectors and vsariables, thus reduce | ||
| 4 | * memory allocation/deallocation overhead. the simulation is faster | ||
| 5 | */ | ||
| 6 | /* | ||
| 7 | * Sample code for the DIS Matrix Stressmark | ||
| 8 | * | ||
| 9 | * This source code is the completely correct source code based on | ||
| 10 | * the example codes provided by Atlantic Aerospace Division, Titan | ||
| 11 | * Systems Corporation, 2000. | ||
| 12 | * | ||
| 13 | * If you just compile and generate the executables from this source | ||
| 14 | * code, this code would be enough. However, if you wish to get a complete | ||
| 15 | * understanding of this stressmark, it is strongly suggested that you | ||
| 16 | * read the Benchmark Analysis and Specifications Document Version 1.0 | ||
| 17 | * before going on since the detailed comments are given in this documents. | ||
| 18 | * the comments are not repeated here. | ||
| 19 | */ | ||
| 20 | |||
| 21 | /* | ||
| 22 | * The Sparse Matrix Storage is implemented by Compact Row Storage Scheme | ||
| 23 | * In the code, the data is first generated by randomNonzeroFloat() | ||
| 24 | * the data is first stored in a full-space matrix with size of dim*dim | ||
| 25 | * then the data is transfered to the Compact Row Matrix, | ||
| 26 | * the data value is kept in *value, | ||
| 27 | * the columns corresponding to the value are stored in *col_ind, | ||
| 28 | * the start element of each row is stored in *row_start. | ||
| 29 | */ | ||
| 30 | |||
| 31 | /* | ||
| 32 | * Please note: | ||
| 33 | * the total number of data is numberNonzero +dim | ||
| 34 | * among which, NumberNonzero because this is symmetric matrix | ||
| 35 | * dim because the diagonal elements | ||
| 36 | */ | ||
| 37 | |||
| 38 | #include <stdio.h> | ||
| 39 | #include <math.h> | ||
| 40 | #include <stdlib.h> | ||
| 41 | #include <time.h> | ||
| 42 | #include <assert.h> | ||
| 43 | #include "DISstressmarkRNG.h" | ||
| 44 | #include "extra.h" | ||
| 45 | |||
| 46 | #define MIN_SEED -2147483647 | ||
| 47 | #define MAX_SEED -1 | ||
| 48 | #define MIN_DIM 1 | ||
| 49 | #define MAX_DIM 32768 | ||
| 50 | #define MAX_ITERATIONS 65536 | ||
| 51 | #define MIN_TOLERANCE 0.000007 | ||
| 52 | #define MAX_TOLERANCE 0.5 | ||
| 53 | #define MIN_NUMBER -3.4e10/dim | ||
| 54 | #define MAX_NUMBER 3.4e10/dim | ||
| 55 | #define EPSI 1.0e-10 | ||
| 56 | #define MIN_DIG_NUMBER 1.0e-10 | ||
| 57 | #define MAX_DIG_NUMBER 3.4e10 | ||
| 58 | |||
| 59 | /* | ||
| 60 | * External variable, dimension | ||
| 61 | */ | ||
| 62 | |||
| 63 | static int dim; | ||
| 64 | int argc; | ||
| 65 | char** argv; | ||
| 66 | |||
| 67 | /* | ||
| 68 | * matrix * vector | ||
| 69 | */ | ||
| 70 | |||
| 71 | void matrixMulvector(double *value, | ||
| 72 | int *col_ind, | ||
| 73 | int *row_start, | ||
| 74 | double *vector, | ||
| 75 | double *out) | ||
| 76 | { | ||
| 77 | int l, ll; | ||
| 78 | double sum; | ||
| 79 | int tmp_rs, tmp_re; | ||
| 80 | |||
| 81 | for (l=0; l<dim; l++){ | ||
| 82 | *(out + l) = 0; | ||
| 83 | tmp_rs = row_start[l]; | ||
| 84 | |||
| 85 | if (tmp_rs != -1){ | ||
| 86 | tmp_re = row_start[l+1]; /* | ||
| 87 | *get the start and ending elements of | ||
| 88 | * each row | ||
| 89 | */ | ||
| 90 | for (ll=tmp_rs; ll<tmp_re; ll++){ | ||
| 91 | *(out + l) += value[ll]*vector[col_ind[ll]]; | ||
| 92 | } | ||
| 93 | } | ||
| 94 | } | ||
| 95 | return; | ||
| 96 | } | ||
| 97 | |||
| 98 | |||
| 99 | /* | ||
| 100 | * vector1 - vector2 | ||
| 101 | */ | ||
| 102 | |||
| 103 | void vectorSub(double *vector1, double *vector2, double *vector){ | ||
| 104 | |||
| 105 | int l; | ||
| 106 | |||
| 107 | for (l=0; l<dim; l++){ | ||
| 108 | *(vector + l) = *(vector1 + l) - *(vector2 + l); | ||
| 109 | } | ||
| 110 | return; | ||
| 111 | } | ||
| 112 | |||
| 113 | |||
| 114 | /* | ||
| 115 | * vector1 + vector2 | ||
| 116 | */ | ||
| 117 | |||
| 118 | void vectorAdd(double *vector1, double *vector2, double *vector){ | ||
| 119 | |||
| 120 | int l; | ||
| 121 | |||
| 122 | for (l=0; l<dim; l++){ | ||
| 123 | *(vector + l) = *(vector1 + l) + *(vector2 + l); | ||
| 124 | } | ||
| 125 | return; | ||
| 126 | } | ||
| 127 | |||
| 128 | /* | ||
| 129 | * vector1 * vector2 | ||
| 130 | */ | ||
| 131 | |||
| 132 | double vectorMul(double *vector1, double *vector2){ | ||
| 133 | |||
| 134 | int l; | ||
| 135 | double product; | ||
| 136 | |||
| 137 | product = 0; | ||
| 138 | |||
| 139 | for (l=0; l<dim; l++){ | ||
| 140 | product += (*(vector1 + l))*(*(vector2 + l)); | ||
| 141 | |||
| 142 | } | ||
| 143 | return product; | ||
| 144 | } | ||
| 145 | |||
| 146 | /* | ||
| 147 | * /vector/ | ||
| 148 | */ | ||
| 149 | |||
| 150 | double vectorValue(double *vector){ | ||
| 151 | |||
| 152 | double value; | ||
| 153 | int l; | ||
| 154 | |||
| 155 | value = 0; | ||
| 156 | |||
| 157 | for (l=0; l<dim; l++){ | ||
| 158 | value += (*(vector + l)) * (*(vector + l)); | ||
| 159 | } | ||
| 160 | |||
| 161 | return (sqrt(value)); | ||
| 162 | } | ||
| 163 | |||
| 164 | /* | ||
| 165 | * transpose(vector) | ||
| 166 | * In fact, we return the original vector here | ||
| 167 | */ | ||
| 168 | |||
| 169 | void transpose(double *vector, double *vect){ | ||
| 170 | |||
| 171 | int l; | ||
| 172 | |||
| 173 | for (l=0; l<dim; l++){ | ||
| 174 | *(vect+l) = *(vector+l); | ||
| 175 | } | ||
| 176 | return; | ||
| 177 | } | ||
| 178 | |||
| 179 | /* | ||
| 180 | * value * <vector> | ||
| 181 | */ | ||
| 182 | void valueMulvector(double value, double *vector, double *vect){ | ||
| 183 | |||
| 184 | int l; | ||
| 185 | int lll, i; | ||
| 186 | double tmp; | ||
| 187 | |||
| 188 | for (l=0; l<dim; l++){ | ||
| 189 | *(vect + l) = *(vector + l) * value; | ||
| 190 | } | ||
| 191 | return; | ||
| 192 | } | ||
| 193 | |||
| 194 | /* | ||
| 195 | * generate the data distributed sparsely in matrix | ||
| 196 | */ | ||
| 197 | |||
| 198 | void initMatrix(double *matrix, int dim, int numberNonzero){ | ||
| 199 | |||
| 200 | int k, l, ll; | ||
| 201 | int i, j; | ||
| 202 | |||
| 203 | int lll; | ||
| 204 | double sum; | ||
| 205 | |||
| 206 | for (k=0; k< dim*dim; k++){ | ||
| 207 | *(matrix + k) = 0; | ||
| 208 | } | ||
| 209 | |||
| 210 | for (l=0; l<numberNonzero/2; l++){ | ||
| 211 | |||
| 212 | i = randomUInt(1, dim-1); | ||
| 213 | j = randomUInt(0, i-1); | ||
| 214 | |||
| 215 | while (*(matrix + i*dim + j) != 0){ | ||
| 216 | |||
| 217 | i++; | ||
| 218 | if (i == dim){ | ||
| 219 | j++; | ||
| 220 | if (j == dim-1){ | ||
| 221 | j = 0; | ||
| 222 | i = 1; | ||
| 223 | } | ||
| 224 | else{ | ||
| 225 | i = j+1; | ||
| 226 | } | ||
| 227 | } | ||
| 228 | } | ||
| 229 | |||
| 230 | if (*(matrix + i*dim + j) == 0){ | ||
| 231 | *(matrix + i*dim + j) = (double )randomNonZeroFloat(MIN_NUMBER, | ||
| 232 | MAX_NUMBER, | ||
| 233 | EPSI); | ||
| 234 | *(matrix + j*dim + i) = *(matrix + i*dim + j); | ||
| 235 | } | ||
| 236 | } | ||
| 237 | |||
| 238 | for (ll=0; ll<dim; ll++){ | ||
| 239 | |||
| 240 | |||
| 241 | |||
| 242 | *(matrix + ll*dim + ll) = (double )randomNonZeroFloat(-MAX_DIG_NUMBER, | ||
| 243 | MAX_DIG_NUMBER, | ||
| 244 | MIN_DIG_NUMBER); | ||
| 245 | |||
| 246 | sum = 0; | ||
| 247 | |||
| 248 | for (lll=0; lll<dim; lll++){ | ||
| 249 | if (lll != ll){ | ||
| 250 | sum += *(matrix + lll*dim + ll); | ||
| 251 | } | ||
| 252 | } | ||
| 253 | |||
| 254 | if (*(matrix + ll*dim + ll) < sum ){ | ||
| 255 | *(matrix + ll*dim + ll) += sum; | ||
| 256 | } | ||
| 257 | } | ||
| 258 | |||
| 259 | return; | ||
| 260 | } | ||
| 261 | |||
| 262 | /* | ||
| 263 | * generate the data value in the vectors | ||
| 264 | */ | ||
| 265 | |||
| 266 | void initVector(double *vector, int dim){ | ||
| 267 | |||
| 268 | int l; | ||
| 269 | |||
| 270 | for (l=0; l<dim; l++){ | ||
| 271 | *(vector + l) = (double )randomFloat (MIN_NUMBER, MAX_NUMBER); | ||
| 272 | } | ||
| 273 | |||
| 274 | return; | ||
| 275 | } | ||
| 276 | |||
| 277 | /* | ||
| 278 | * make a vector contains value of zero | ||
| 279 | */ | ||
| 280 | |||
| 281 | void zeroVector(double *vector, int dim){ | ||
| 282 | int l; | ||
| 283 | |||
| 284 | for (l=0; l<dim; l++){ | ||
| 285 | *(vector + l) = 0; | ||
| 286 | } | ||
| 287 | return; | ||
| 288 | } | ||
| 289 | |||
| 290 | /* | ||
| 291 | * return a vector which is the copy of the vect | ||
| 292 | */ | ||
| 293 | |||
| 294 | void equalVector(double *vect, double *vect1){ | ||
| 295 | |||
| 296 | int l; | ||
| 297 | |||
| 298 | for (l=0; l<dim; l++){ | ||
| 299 | *(vect1+l) = *(vect+l); | ||
| 300 | } | ||
| 301 | return; | ||
| 302 | } | ||
| 303 | |||
| 304 | |||
| 305 | |||
| 306 | void biConjugateGradient(double *value, | ||
| 307 | int *col_ind, | ||
| 308 | int *row_start, | ||
| 309 | double *vectorB, | ||
| 310 | double *vectorX, | ||
| 311 | double errorTolerance, | ||
| 312 | int maxIterations, | ||
| 313 | double *actualError, | ||
| 314 | int *actualIteration, | ||
| 315 | int dim) | ||
| 316 | /* | ||
| 317 | * in the code, we use a lot of temparary vectors and variables | ||
| 318 | * this is just for simple and clear | ||
| 319 | * you can optimize these temporary variables and vectors | ||
| 320 | * based on your need | ||
| 321 | * | ||
| 322 | */ | ||
| 323 | { | ||
| 324 | double *vectorR; | ||
| 325 | double *vectorP, *matrixAvectorP, *nextVectorR; | ||
| 326 | double error; | ||
| 327 | int iteration; | ||
| 328 | double alpha, beta; | ||
| 329 | |||
| 330 | double *tmpVector1, *tmpVector2, *tmpVector3; | ||
| 331 | double tmpValue1, tmpValue2; | ||
| 332 | int i; | ||
| 333 | int l; | ||
| 334 | int ll; | ||
| 335 | SET_UP | ||
| 336 | |||
| 337 | alpha = 0; | ||
| 338 | beta = 0; | ||
| 339 | |||
| 340 | vectorP = (double *)malloc(dim*sizeof(double)); | ||
| 341 | vectorR = (double *)malloc(dim*sizeof(double)); | ||
| 342 | nextVectorR = (double *)malloc(dim*sizeof(double)); | ||
| 343 | vectorX = (double *)malloc(dim*sizeof(double)); | ||
| 344 | |||
| 345 | tmpVector1 = (double *)malloc(dim*sizeof(double)); | ||
| 346 | tmpVector2 = (double *)malloc(dim*sizeof(double)); | ||
| 347 | tmpVector3 = (double *)malloc(dim*sizeof(double)); | ||
| 348 | |||
| 349 | /* | ||
| 350 | * vectorR = vectorB - matrixA*vectorX | ||
| 351 | */ | ||
| 352 | matrixMulvector(value,col_ind, row_start, vectorX, tmpVector1); | ||
| 353 | |||
| 354 | vectorSub(vectorB, tmpVector1, vectorR); | ||
| 355 | |||
| 356 | /* | ||
| 357 | * vectorP = vectorR | ||
| 358 | */ | ||
| 359 | |||
| 360 | equalVector(vectorR, vectorP); | ||
| 361 | |||
| 362 | /* | ||
| 363 | * error = |matrixA * vectorX - vectorB| / |vectorB| | ||
| 364 | */ | ||
| 365 | vectorSub(tmpVector1, vectorB, tmpVector1); | ||
| 366 | |||
| 367 | error = vectorValue(tmpVector1)/vectorValue(vectorB); | ||
| 368 | |||
| 369 | iteration = 0; | ||
| 370 | |||
| 371 | while ((iteration < maxIterations) && (error > errorTolerance)){ | ||
| 372 | START_LOOP | ||
| 373 | |||
| 374 | /* | ||
| 375 | * alpha = (transpose(vectorR) * vectorR) / | ||
| 376 | * (transpose(vectorP) * (matrixA * vectorP) | ||
| 377 | */ | ||
| 378 | |||
| 379 | matrixMulvector(value, col_ind, row_start, vectorP, tmpVector1); | ||
| 380 | transpose(vectorR, tmpVector2); | ||
| 381 | transpose(vectorP, tmpVector3); | ||
| 382 | tmpValue1 = vectorMul(tmpVector3, tmpVector1); | ||
| 383 | tmpValue2 = vectorMul(tmpVector2, vectorR); | ||
| 384 | alpha = tmpValue2/tmpValue1; | ||
| 385 | |||
| 386 | /* | ||
| 387 | * nextVectorR = vectorR - alpha*(matrixA * vectorP) | ||
| 388 | */ | ||
| 389 | |||
| 390 | valueMulvector(alpha, tmpVector1, tmpVector2); | ||
| 391 | vectorSub(vectorR, tmpVector2, tmpVector1); | ||
| 392 | equalVector(tmpVector1, nextVectorR); | ||
| 393 | |||
| 394 | /* | ||
| 395 | * beta = (transpose(nextVectorR) * nextVectorR) / | ||
| 396 | * (transpose(vectorR) * vectorR) | ||
| 397 | */ | ||
| 398 | |||
| 399 | transpose(nextVectorR, tmpVector3); | ||
| 400 | tmpValue1 = vectorMul(tmpVector3, nextVectorR); | ||
| 401 | transpose(vectorR, tmpVector2); | ||
| 402 | tmpValue2 = vectorMul(tmpVector2, vectorR); | ||
| 403 | beta = tmpValue1/tmpValue2; | ||
| 404 | |||
| 405 | /* | ||
| 406 | * vectorX = vectorX + alpha * vectorP | ||
| 407 | */ | ||
| 408 | valueMulvector(alpha, vectorP, tmpVector1); | ||
| 409 | vectorAdd(vectorX,tmpVector1, vectorX); | ||
| 410 | |||
| 411 | /* | ||
| 412 | *vectorP = nextVectorR + beta*vectorP | ||
| 413 | */ | ||
| 414 | valueMulvector(beta, vectorP, tmpVector1); | ||
| 415 | vectorAdd(nextVectorR, tmpVector1, tmpVector1); | ||
| 416 | |||
| 417 | for (ll=0; ll<dim; ll++){ | ||
| 418 | *(vectorP + ll) = *(tmpVector1 + ll); | ||
| 419 | } | ||
| 420 | |||
| 421 | /* | ||
| 422 | * vectorR = nextVectorR | ||
| 423 | */ | ||
| 424 | |||
| 425 | for (l=0; l<dim; l++){ | ||
| 426 | *(vectorR+l) = *(nextVectorR+l); | ||
| 427 | } | ||
| 428 | |||
| 429 | /* | ||
| 430 | * error = |matrixA * vectorX - vectorB| / |vectorB| | ||
| 431 | */ | ||
| 432 | matrixMulvector(value, col_ind,row_start, vectorX, tmpVector1); | ||
| 433 | vectorSub(tmpVector1,vectorB,tmpVector1); | ||
| 434 | error = vectorValue(tmpVector1)/vectorValue(vectorB); | ||
| 435 | |||
| 436 | iteration++; | ||
| 437 | STOP_LOOP | ||
| 438 | } | ||
| 439 | |||
| 440 | *actualError = error; | ||
| 441 | *actualIteration = iteration; | ||
| 442 | |||
| 443 | free(tmpVector1); | ||
| 444 | free(tmpVector2); | ||
| 445 | free(tmpVector3); | ||
| 446 | |||
| 447 | free(vectorR); | ||
| 448 | free(vectorP); | ||
| 449 | WRITE_TO_FILE | ||
| 450 | |||
| 451 | return; | ||
| 452 | } | ||
| 453 | |||
| 454 | /* | ||
| 455 | * This is the function to transfer the data from the matrix of dense storage | ||
| 456 | * to Compact Row Storage | ||
| 457 | */ | ||
| 458 | void create_CRS(double *matrixA, | ||
| 459 | double *value, | ||
| 460 | int *col_ind, | ||
| 461 | int *row_start, | ||
| 462 | int dim, | ||
| 463 | int numberNonzero) | ||
| 464 | { | ||
| 465 | |||
| 466 | int i, j, k; | ||
| 467 | int cnt; | ||
| 468 | double tmp; | ||
| 469 | |||
| 470 | /* | ||
| 471 | *initialize the row_start | ||
| 472 | */ | ||
| 473 | |||
| 474 | for(k=0; k<dim; k++){ | ||
| 475 | row_start[k] = -1; | ||
| 476 | } | ||
| 477 | |||
| 478 | /* | ||
| 479 | * make the end of the last row to be numberNonzero + dim. | ||
| 480 | */ | ||
| 481 | |||
| 482 | row_start[dim] = numberNonzero+dim; | ||
| 483 | |||
| 484 | /* | ||
| 485 | * initialize the col_ind | ||
| 486 | */ | ||
| 487 | |||
| 488 | for (k=0; k<numberNonzero+dim; k++){ | ||
| 489 | col_ind[k] = -1; | ||
| 490 | } | ||
| 491 | |||
| 492 | |||
| 493 | cnt = 0; | ||
| 494 | |||
| 495 | for (i=0; (cnt<numberNonzero+dim)&&(i<dim); i++){ | ||
| 496 | for (j=0; (cnt<numberNonzero+dim)&&(j<dim); j++){ | ||
| 497 | |||
| 498 | tmp = *(matrixA + i*dim + j); | ||
| 499 | |||
| 500 | if (tmp!=0){ | ||
| 501 | |||
| 502 | value[cnt] = tmp; | ||
| 503 | col_ind[cnt] = j; | ||
| 504 | |||
| 505 | if (row_start[i] == -1) | ||
| 506 | row_start[i] = cnt; | ||
| 507 | |||
| 508 | cnt += 1; | ||
| 509 | } | ||
| 510 | } | ||
| 511 | } | ||
| 512 | row_start[i] = cnt; | ||
| 513 | |||
| 514 | return; | ||
| 515 | } | ||
| 516 | |||
| 517 | |||
| 518 | int main(int _argc, char** _argv) | ||
| 519 | { | ||
| 520 | argc = _argc; | ||
| 521 | argv = _argv; | ||
| 522 | int seed; | ||
| 523 | int numberNonzero; | ||
| 524 | int maxIterations; | ||
| 525 | float errorTolerance; | ||
| 526 | double actualError; | ||
| 527 | int actualIteration; | ||
| 528 | |||
| 529 | time_t beginTime; | ||
| 530 | time_t endTime; | ||
| 531 | |||
| 532 | double *matrixA; | ||
| 533 | double *vectorB; | ||
| 534 | double *vectorX; | ||
| 535 | |||
| 536 | double *value; | ||
| 537 | int *col_ind; | ||
| 538 | int *row_start; | ||
| 539 | int sum; | ||
| 540 | int k; | ||
| 541 | |||
| 542 | fscanf(stdin, "%d %d %d %d %f", | ||
| 543 | &seed, &dim, &numberNonzero,&maxIterations,&errorTolerance); | ||
| 544 | assert((seed > MIN_SEED) && (seed < MAX_SEED)); | ||
| 545 | assert((dim > MIN_DIM) && (dim < MAX_DIM)); | ||
| 546 | assert((numberNonzero > dim) && (numberNonzero < dim*dim)); | ||
| 547 | assert((maxIterations > 0) && (maxIterations < MAX_ITERATIONS)); | ||
| 548 | assert((errorTolerance > MIN_TOLERANCE) && (errorTolerance < MAX_TOLERANCE)); | ||
| 549 | |||
| 550 | matrixA = (double *)malloc(dim*dim*sizeof(double )); | ||
| 551 | vectorB = (double *)malloc(dim*sizeof(double)); | ||
| 552 | vectorX = (double *)malloc(dim*sizeof(double)); | ||
| 553 | |||
| 554 | value = (double *)malloc((numberNonzero+dim)*sizeof(double)); | ||
| 555 | col_ind = (int *)malloc((numberNonzero+dim)*sizeof(int)); | ||
| 556 | row_start = (int *)malloc((dim+1)*sizeof(int)); | ||
| 557 | |||
| 558 | randInit(seed); | ||
| 559 | |||
| 560 | initMatrix(matrixA, dim, numberNonzero); | ||
| 561 | |||
| 562 | create_CRS(matrixA, value, col_ind, row_start, dim, numberNonzero); | ||
| 563 | |||
| 564 | initVector(vectorB, dim); | ||
| 565 | zeroVector(vectorX, dim); | ||
| 566 | printf(" after init\n"); | ||
| 567 | |||
| 568 | beginTime = time(NULL); | ||
| 569 | |||
| 570 | actualError = 0; | ||
| 571 | actualIteration = 0; | ||
| 572 | |||
| 573 | biConjugateGradient(value, col_ind, row_start, vectorB, vectorX, errorTolerance, | ||
| 574 | maxIterations, | ||
| 575 | &actualError, &actualIteration, dim); | ||
| 576 | |||
| 577 | |||
| 578 | |||
| 579 | endTime = time(NULL) - beginTime; | ||
| 580 | |||
| 581 | |||
| 582 | |||
| 583 | sum = 0; | ||
| 584 | for (k=1; k<dim; k++){ | ||
| 585 | sum += sum + *(vectorX + k); | ||
| 586 | } | ||
| 587 | |||
| 588 | fprintf(stdout, "sum = %d, actualError = %e, actualIteration = %d\n", sum, actualError, actualIteration); | ||
| 589 | fprintf(stdout, "total time = %u sec. \n", (unsigned int)endTime); | ||
| 590 | |||
| 591 | return(0); | ||
| 592 | } | ||
| 593 | |||
| 594 | |||
