diff options
author | leochanj105 <leochanj@live.unc.edu> | 2020-10-19 23:09:30 -0400 |
---|---|---|
committer | leochanj105 <leochanj@live.unc.edu> | 2020-10-20 02:40:39 -0400 |
commit | f618466c25d43f3bae9e40920273bf77de1e1149 (patch) | |
tree | 460e739e2165b8a9c37a9c7ab1b60f5874903543 /SD-VBS/common/toolbox/toolbox_basic/stella/afromncut.m | |
parent | 47ced4e96bbb782b9e780e8f2cfc637b2c21ff44 (diff) |
initial sd-vbs
initial sd-vbs
add sd-vbs
sd-vbs
Diffstat (limited to 'SD-VBS/common/toolbox/toolbox_basic/stella/afromncut.m')
-rwxr-xr-x | SD-VBS/common/toolbox/toolbox_basic/stella/afromncut.m | 73 |
1 files changed, 73 insertions, 0 deletions
diff --git a/SD-VBS/common/toolbox/toolbox_basic/stella/afromncut.m b/SD-VBS/common/toolbox/toolbox_basic/stella/afromncut.m new file mode 100755 index 0000000..ec014d0 --- /dev/null +++ b/SD-VBS/common/toolbox/toolbox_basic/stella/afromncut.m | |||
@@ -0,0 +1,73 @@ | |||
1 | % function a = afromncut(v,s,d,visimg,no_rep,pixel_loc) | ||
2 | % Input: | ||
3 | % v = eigenvectors of d*a*d, starting from the second. | ||
4 | % (the first is all one over some constant determined by d) | ||
5 | % s = eigenvalues | ||
6 | % d = normalization matrix 1/sqrt(rowsum(abs(a))) | ||
7 | % visimg = 1/0 if each eigenvector is/not 2D (so v is 3D) | ||
8 | % no_rep = 1 (default), affinity has attraction only | ||
9 | % if 1, the first column of v is the second eigenvector | ||
10 | % if 0, the first column of v is the first eigenvector. | ||
11 | % pixel_loc = nx1 matrix, each is a pixel location | ||
12 | % Output: | ||
13 | % a = diag(1/d) * na * diag(1/d); | ||
14 | % If pixel_loc = []; a is returned, if not out of memory | ||
15 | % otherwise, only rows of a at pixel_loc are returned. | ||
16 | % | ||
17 | % This routine is used to estimate the original affinity matrix | ||
18 | % through the first few eigenvectors and its normalization matrix. | ||
19 | |||
20 | % A test sequence includes: | ||
21 | % a = randsym(5); | ||
22 | % [na,d] = normalize(a); | ||
23 | % [v,s] = ncut(a,5); | ||
24 | % v = v(:,2:end); s = s(2:end); | ||
25 | % aa = afromncut(v,s,d); | ||
26 | % max(abs(aa(:) - a(:))) | ||
27 | |||
28 | % Stella X. Yu, 2000. | ||
29 | |||
30 | function a = afromncut(v,s,d,visimg,no_rep,pixel_loc) | ||
31 | |||
32 | [nr,nc,nv] = size(v); | ||
33 | if nargin<4 | isempty(visimg), | ||
34 | visimg = (nv>1); | ||
35 | end | ||
36 | |||
37 | if nargin<5 | isempty(no_rep), | ||
38 | no_rep = 1; | ||
39 | end | ||
40 | |||
41 | if visimg, | ||
42 | nr = nr * nc; | ||
43 | else | ||
44 | nv = nc; | ||
45 | end | ||
46 | |||
47 | if nargin<6 | isempty(pixel_loc), | ||
48 | pixel_loc = 1:nr; | ||
49 | end | ||
50 | |||
51 | % D^(1/2) | ||
52 | d = 1./(d(:)+eps); | ||
53 | |||
54 | % first recover the first eigenvector | ||
55 | if no_rep, | ||
56 | u = (1/norm(d)) + zeros(nr,1); | ||
57 | s = [1;s(:)]; | ||
58 | nv = nv + 1; | ||
59 | else | ||
60 | u = []; | ||
61 | end | ||
62 | |||
63 | % the full set of generalized eigenvectors | ||
64 | v = [u, reshape(v,[nr,nv-no_rep])]; | ||
65 | |||
66 | % This is the real D, row sum | ||
67 | d = d.^2; | ||
68 | |||
69 | % an equivalent way to compute v = diag(d) * v; | ||
70 | v = v .* d(:,ones(nv,1)); % to avoid using a big matrix diag(d) | ||
71 | |||
72 | % synthesis | ||
73 | a = v(pixel_loc,:)*diag(s)*v'; | ||