summaryrefslogtreecommitdiffstats
path: root/SD-VBS/benchmarks/tracking/src/c/calcGoodFeature.c
diff options
context:
space:
mode:
authorLeo Chan <leochanj@live.unc.edu>2020-10-22 01:53:21 -0400
committerJoshua Bakita <jbakita@cs.unc.edu>2020-10-22 01:56:35 -0400
commitd17b33131c14864bd1eae275f49a3f148e21cf29 (patch)
tree0d8f77922e8d193cb0f6edab83018f057aad64a0 /SD-VBS/benchmarks/tracking/src/c/calcGoodFeature.c
parent601ed25a4c5b66cb75315832c15613a727db2c26 (diff)
Squashed commit of the sb-vbs branch.
Includes the SD-VBS benchmarks modified to: - Use libextra to loop as realtime jobs - Preallocate memory before starting their main computation - Accept input via stdin instead of via argc Does not include the SD-VBS matlab code. Fixes libextra execution in LITMUS^RT.
Diffstat (limited to 'SD-VBS/benchmarks/tracking/src/c/calcGoodFeature.c')
-rw-r--r--SD-VBS/benchmarks/tracking/src/c/calcGoodFeature.c78
1 files changed, 78 insertions, 0 deletions
diff --git a/SD-VBS/benchmarks/tracking/src/c/calcGoodFeature.c b/SD-VBS/benchmarks/tracking/src/c/calcGoodFeature.c
new file mode 100644
index 0000000..0ef1862
--- /dev/null
+++ b/SD-VBS/benchmarks/tracking/src/c/calcGoodFeature.c
@@ -0,0 +1,78 @@
1/********************************
2Author: Sravanthi Kota Venkata
3********************************/
4
5#include "tracking.h"
6
7/** Computes lambda matrix, strength at each pixel
8
9 det = determinant( [ IverticalEdgeSq IhorzVertEdge; IhorzVertEdge IhorizontalEdgeSq] ) ;
10 tr = IverticalEdgeSq + IhorizontalEdgeSq;
11 lamdba = det/tr;
12
13 Lambda is the measure of the strength of pixel
14 neighborhood. By strength we mean the amount of
15 edge information it has, which translates to
16 sharp features in the image.
17
18 Input: Edge images - vertical and horizontal
19 Window size (neighborhood size)
20 Output: Lambda, strength of pixel neighborhood
21
22 Given the edge images, we compute strength based
23 on how strong the edges are within each neighborhood.
24
25**/
26
27F2D* calcGoodFeature(F2D* verticalEdgeImage, F2D* horizontalEdgeImage, int cols, int rows, int winSize)
28{
29 int i, j, k, ind;
30 F2D *verticalEdgeSq, *horizontalEdgeSq, *horzVertEdge;
31 F2D *tr, *det, *lambda;
32 F2D *cummulative_verticalEdgeSq, *cummulative_horzVertEdge, *cummulative_horizontalEdgeSq;
33
34 verticalEdgeSq = fMallocHandle(rows, cols);
35 horzVertEdge = fMallocHandle(rows, cols);
36 horizontalEdgeSq = fMallocHandle(rows, cols);
37
38 for( i=0; i<rows; i++)
39 {
40 for( j=0; j<cols; j++)
41 {
42 subsref(verticalEdgeSq,i,j) = subsref(verticalEdgeImage,i,j) * subsref(verticalEdgeImage,i,j);
43 subsref(horzVertEdge,i,j) = subsref(verticalEdgeImage,i,j) * subsref(horizontalEdgeImage,i,j);
44 subsref(horizontalEdgeSq,i,j) = subsref(horizontalEdgeImage,i,j) * subsref(horizontalEdgeImage,i,j);
45 }
46 }
47
48 cummulative_verticalEdgeSq = calcAreaSum(verticalEdgeSq, cols, rows, winSize);
49 cummulative_horzVertEdge = calcAreaSum(horzVertEdge, cols, rows, winSize);
50 cummulative_horizontalEdgeSq = calcAreaSum(horizontalEdgeSq, cols, rows, winSize);
51
52 tr = fMallocHandle(rows, cols);
53 det = fMallocHandle(rows, cols);
54 lambda = fMallocHandle(rows, cols);
55
56 for( i=0; i<rows; i++)
57 {
58 for( j=0; j<cols; j++)
59 {
60 subsref(tr,i,j) = subsref(cummulative_verticalEdgeSq,i,j) + subsref(cummulative_horizontalEdgeSq,i,j);
61 subsref(det,i,j) = subsref(cummulative_verticalEdgeSq,i,j) * subsref(cummulative_horizontalEdgeSq,i,j) - subsref(cummulative_horzVertEdge,i,j) * subsref(cummulative_horzVertEdge,i,j);
62 subsref(lambda,i,j) = ( subsref(det,i,j) / (subsref(tr,i,j)+0.00001) ) ;
63 }
64 }
65
66 fFreeHandle(verticalEdgeSq);
67 fFreeHandle(horzVertEdge);
68 fFreeHandle(horizontalEdgeSq);
69
70 fFreeHandle(cummulative_verticalEdgeSq);
71 fFreeHandle(cummulative_horzVertEdge);
72 fFreeHandle(cummulative_horizontalEdgeSq);
73
74 fFreeHandle(tr);
75 fFreeHandle(det);
76
77 return lambda;
78}