summaryrefslogtreecommitdiffstats
path: root/SD-VBS/benchmarks/sift/src/matlab/sift_overview.m
diff options
context:
space:
mode:
authorleochanj105 <leochanj@live.unc.edu>2020-10-20 03:47:33 -0400
committerleochanj105 <leochanj@live.unc.edu>2020-10-20 03:47:33 -0400
commita32f220f06cc463e5b56e7fa0b1b1334d94d08f3 (patch)
tree4af4caa60074465d85fc2ef5cc1b23e74c064329 /SD-VBS/benchmarks/sift/src/matlab/sift_overview.m
parent79f30887129145e15e5172e36a7d7602859fc932 (diff)
matlab removed
Diffstat (limited to 'SD-VBS/benchmarks/sift/src/matlab/sift_overview.m')
-rw-r--r--SD-VBS/benchmarks/sift/src/matlab/sift_overview.m33
1 files changed, 0 insertions, 33 deletions
diff --git a/SD-VBS/benchmarks/sift/src/matlab/sift_overview.m b/SD-VBS/benchmarks/sift/src/matlab/sift_overview.m
deleted file mode 100644
index 71557e4..0000000
--- a/SD-VBS/benchmarks/sift/src/matlab/sift_overview.m
+++ /dev/null
@@ -1,33 +0,0 @@
1% SIFT_OVERVIEW Scale-Invariant Feature Transfrom
2%
3% This is a MATLAB/C implementation of SIFT detector and descriptor
4% [1]. You can:
5%
6% * Use SIFT() to detect the SIFT frames (keypoints) of a given image
7% and compute their descriptors. Then you can use SIFTMATCH() to
8% match the descriptors.
9%
10% * Use PLOTSS(), PLOTSIFTDESCRIPTOR(), PLOTSIFTFRAME(),
11% PLOTMATCHES() to visualize the results.
12%
13% As SIFT is implemented by several reusable M and MEX files, you can
14% also run portions of the algorithm, or change them. Specifically,
15% you can:
16%
17% * Use SIFTDESCRIPTOR() to compute the SIFT descriptor from a list
18% of frames and a scale space or plain image.
19%
20% * Use GAUSSIANSS() and DIFFSS() to compute the Gaussian and DOG
21% scale spaces.
22%
23% * Use SIFTLOCALMAX(), SIFTREFINEMX(), SIFTORMX() to manually
24% extract the SIFT frames from the DOG scale space. More in
25% general, you can use SIFTLOCALMAX() to find maximizers of any
26% multi-dimensional arrays.
27%
28% REFERENCES
29% [1] D. G. Lowe, "Distinctive image features from scale-invariant
30% keypoints," IJCV, vol. 2, no. 60, pp. 91 110, 2004.
31%
32% See also PDF:SIFT.INTRODUCTION.
33