aboutsummaryrefslogtreecommitdiffstats
path: root/mm/slab.c
diff options
context:
space:
mode:
Diffstat (limited to 'mm/slab.c')
-rw-r--r--mm/slab.c1233
1 files changed, 760 insertions, 473 deletions
diff --git a/mm/slab.c b/mm/slab.c
index d0bd7f07ab..4cbf8bb135 100644
--- a/mm/slab.c
+++ b/mm/slab.c
@@ -50,7 +50,7 @@
50 * The head array is strictly LIFO and should improve the cache hit rates. 50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations. 51 * On SMP, it additionally reduces the spinlock operations.
52 * 52 *
53 * The c_cpuarray may not be read with enabled local interrupts - 53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function(). 54 * it's changed with a smp_call_function().
55 * 55 *
56 * SMP synchronization: 56 * SMP synchronization:
@@ -94,6 +94,7 @@
94#include <linux/interrupt.h> 94#include <linux/interrupt.h>
95#include <linux/init.h> 95#include <linux/init.h>
96#include <linux/compiler.h> 96#include <linux/compiler.h>
97#include <linux/cpuset.h>
97#include <linux/seq_file.h> 98#include <linux/seq_file.h>
98#include <linux/notifier.h> 99#include <linux/notifier.h>
99#include <linux/kallsyms.h> 100#include <linux/kallsyms.h>
@@ -170,15 +171,15 @@
170#if DEBUG 171#if DEBUG
171# define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \ 172# define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
172 SLAB_POISON | SLAB_HWCACHE_ALIGN | \ 173 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
173 SLAB_NO_REAP | SLAB_CACHE_DMA | \ 174 SLAB_CACHE_DMA | \
174 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \ 175 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
175 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \ 176 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
176 SLAB_DESTROY_BY_RCU) 177 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
177#else 178#else
178# define CREATE_MASK (SLAB_HWCACHE_ALIGN | SLAB_NO_REAP | \ 179# define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
179 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \ 180 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
180 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \ 181 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
181 SLAB_DESTROY_BY_RCU) 182 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
182#endif 183#endif
183 184
184/* 185/*
@@ -203,7 +204,8 @@
203typedef unsigned int kmem_bufctl_t; 204typedef unsigned int kmem_bufctl_t;
204#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0) 205#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
205#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1) 206#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
206#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-2) 207#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
208#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
207 209
208/* Max number of objs-per-slab for caches which use off-slab slabs. 210/* Max number of objs-per-slab for caches which use off-slab slabs.
209 * Needed to avoid a possible looping condition in cache_grow(). 211 * Needed to avoid a possible looping condition in cache_grow().
@@ -266,16 +268,17 @@ struct array_cache {
266 unsigned int batchcount; 268 unsigned int batchcount;
267 unsigned int touched; 269 unsigned int touched;
268 spinlock_t lock; 270 spinlock_t lock;
269 void *entry[0]; /* 271 void *entry[0]; /*
270 * Must have this definition in here for the proper 272 * Must have this definition in here for the proper
271 * alignment of array_cache. Also simplifies accessing 273 * alignment of array_cache. Also simplifies accessing
272 * the entries. 274 * the entries.
273 * [0] is for gcc 2.95. It should really be []. 275 * [0] is for gcc 2.95. It should really be [].
274 */ 276 */
275}; 277};
276 278
277/* bootstrap: The caches do not work without cpuarrays anymore, 279/*
278 * but the cpuarrays are allocated from the generic caches... 280 * bootstrap: The caches do not work without cpuarrays anymore, but the
281 * cpuarrays are allocated from the generic caches...
279 */ 282 */
280#define BOOT_CPUCACHE_ENTRIES 1 283#define BOOT_CPUCACHE_ENTRIES 1
281struct arraycache_init { 284struct arraycache_init {
@@ -291,13 +294,13 @@ struct kmem_list3 {
291 struct list_head slabs_full; 294 struct list_head slabs_full;
292 struct list_head slabs_free; 295 struct list_head slabs_free;
293 unsigned long free_objects; 296 unsigned long free_objects;
294 unsigned long next_reap;
295 int free_touched;
296 unsigned int free_limit; 297 unsigned int free_limit;
297 unsigned int colour_next; /* Per-node cache coloring */ 298 unsigned int colour_next; /* Per-node cache coloring */
298 spinlock_t list_lock; 299 spinlock_t list_lock;
299 struct array_cache *shared; /* shared per node */ 300 struct array_cache *shared; /* shared per node */
300 struct array_cache **alien; /* on other nodes */ 301 struct array_cache **alien; /* on other nodes */
302 unsigned long next_reap; /* updated without locking */
303 int free_touched; /* updated without locking */
301}; 304};
302 305
303/* 306/*
@@ -310,10 +313,8 @@ struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
310#define SIZE_L3 (1 + MAX_NUMNODES) 313#define SIZE_L3 (1 + MAX_NUMNODES)
311 314
312/* 315/*
313 * This function must be completely optimized away if 316 * This function must be completely optimized away if a constant is passed to
314 * a constant is passed to it. Mostly the same as 317 * it. Mostly the same as what is in linux/slab.h except it returns an index.
315 * what is in linux/slab.h except it returns an
316 * index.
317 */ 318 */
318static __always_inline int index_of(const size_t size) 319static __always_inline int index_of(const size_t size)
319{ 320{
@@ -351,14 +352,14 @@ static void kmem_list3_init(struct kmem_list3 *parent)
351 parent->free_touched = 0; 352 parent->free_touched = 0;
352} 353}
353 354
354#define MAKE_LIST(cachep, listp, slab, nodeid) \ 355#define MAKE_LIST(cachep, listp, slab, nodeid) \
355 do { \ 356 do { \
356 INIT_LIST_HEAD(listp); \ 357 INIT_LIST_HEAD(listp); \
357 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \ 358 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
358 } while (0) 359 } while (0)
359 360
360#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \ 361#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
361 do { \ 362 do { \
362 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \ 363 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
363 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \ 364 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
364 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \ 365 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
@@ -373,28 +374,30 @@ static void kmem_list3_init(struct kmem_list3 *parent)
373struct kmem_cache { 374struct kmem_cache {
374/* 1) per-cpu data, touched during every alloc/free */ 375/* 1) per-cpu data, touched during every alloc/free */
375 struct array_cache *array[NR_CPUS]; 376 struct array_cache *array[NR_CPUS];
377/* 2) Cache tunables. Protected by cache_chain_mutex */
376 unsigned int batchcount; 378 unsigned int batchcount;
377 unsigned int limit; 379 unsigned int limit;
378 unsigned int shared; 380 unsigned int shared;
381
379 unsigned int buffer_size; 382 unsigned int buffer_size;
380/* 2) touched by every alloc & free from the backend */ 383/* 3) touched by every alloc & free from the backend */
381 struct kmem_list3 *nodelists[MAX_NUMNODES]; 384 struct kmem_list3 *nodelists[MAX_NUMNODES];
382 unsigned int flags; /* constant flags */
383 unsigned int num; /* # of objs per slab */
384 spinlock_t spinlock;
385 385
386/* 3) cache_grow/shrink */ 386 unsigned int flags; /* constant flags */
387 unsigned int num; /* # of objs per slab */
388
389/* 4) cache_grow/shrink */
387 /* order of pgs per slab (2^n) */ 390 /* order of pgs per slab (2^n) */
388 unsigned int gfporder; 391 unsigned int gfporder;
389 392
390 /* force GFP flags, e.g. GFP_DMA */ 393 /* force GFP flags, e.g. GFP_DMA */
391 gfp_t gfpflags; 394 gfp_t gfpflags;
392 395
393 size_t colour; /* cache colouring range */ 396 size_t colour; /* cache colouring range */
394 unsigned int colour_off; /* colour offset */ 397 unsigned int colour_off; /* colour offset */
395 struct kmem_cache *slabp_cache; 398 struct kmem_cache *slabp_cache;
396 unsigned int slab_size; 399 unsigned int slab_size;
397 unsigned int dflags; /* dynamic flags */ 400 unsigned int dflags; /* dynamic flags */
398 401
399 /* constructor func */ 402 /* constructor func */
400 void (*ctor) (void *, struct kmem_cache *, unsigned long); 403 void (*ctor) (void *, struct kmem_cache *, unsigned long);
@@ -402,11 +405,11 @@ struct kmem_cache {
402 /* de-constructor func */ 405 /* de-constructor func */
403 void (*dtor) (void *, struct kmem_cache *, unsigned long); 406 void (*dtor) (void *, struct kmem_cache *, unsigned long);
404 407
405/* 4) cache creation/removal */ 408/* 5) cache creation/removal */
406 const char *name; 409 const char *name;
407 struct list_head next; 410 struct list_head next;
408 411
409/* 5) statistics */ 412/* 6) statistics */
410#if STATS 413#if STATS
411 unsigned long num_active; 414 unsigned long num_active;
412 unsigned long num_allocations; 415 unsigned long num_allocations;
@@ -438,8 +441,9 @@ struct kmem_cache {
438#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB) 441#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
439 442
440#define BATCHREFILL_LIMIT 16 443#define BATCHREFILL_LIMIT 16
441/* Optimization question: fewer reaps means less 444/*
442 * probability for unnessary cpucache drain/refill cycles. 445 * Optimization question: fewer reaps means less probability for unnessary
446 * cpucache drain/refill cycles.
443 * 447 *
444 * OTOH the cpuarrays can contain lots of objects, 448 * OTOH the cpuarrays can contain lots of objects,
445 * which could lock up otherwise freeable slabs. 449 * which could lock up otherwise freeable slabs.
@@ -453,17 +457,19 @@ struct kmem_cache {
453#define STATS_INC_ALLOCED(x) ((x)->num_allocations++) 457#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
454#define STATS_INC_GROWN(x) ((x)->grown++) 458#define STATS_INC_GROWN(x) ((x)->grown++)
455#define STATS_INC_REAPED(x) ((x)->reaped++) 459#define STATS_INC_REAPED(x) ((x)->reaped++)
456#define STATS_SET_HIGH(x) do { if ((x)->num_active > (x)->high_mark) \ 460#define STATS_SET_HIGH(x) \
457 (x)->high_mark = (x)->num_active; \ 461 do { \
458 } while (0) 462 if ((x)->num_active > (x)->high_mark) \
463 (x)->high_mark = (x)->num_active; \
464 } while (0)
459#define STATS_INC_ERR(x) ((x)->errors++) 465#define STATS_INC_ERR(x) ((x)->errors++)
460#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++) 466#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
461#define STATS_INC_NODEFREES(x) ((x)->node_frees++) 467#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
462#define STATS_SET_FREEABLE(x, i) \ 468#define STATS_SET_FREEABLE(x, i) \
463 do { if ((x)->max_freeable < i) \ 469 do { \
464 (x)->max_freeable = i; \ 470 if ((x)->max_freeable < i) \
465 } while (0) 471 (x)->max_freeable = i; \
466 472 } while (0)
467#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit) 473#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
468#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss) 474#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
469#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit) 475#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
@@ -478,9 +484,7 @@ struct kmem_cache {
478#define STATS_INC_ERR(x) do { } while (0) 484#define STATS_INC_ERR(x) do { } while (0)
479#define STATS_INC_NODEALLOCS(x) do { } while (0) 485#define STATS_INC_NODEALLOCS(x) do { } while (0)
480#define STATS_INC_NODEFREES(x) do { } while (0) 486#define STATS_INC_NODEFREES(x) do { } while (0)
481#define STATS_SET_FREEABLE(x, i) \ 487#define STATS_SET_FREEABLE(x, i) do { } while (0)
482 do { } while (0)
483
484#define STATS_INC_ALLOCHIT(x) do { } while (0) 488#define STATS_INC_ALLOCHIT(x) do { } while (0)
485#define STATS_INC_ALLOCMISS(x) do { } while (0) 489#define STATS_INC_ALLOCMISS(x) do { } while (0)
486#define STATS_INC_FREEHIT(x) do { } while (0) 490#define STATS_INC_FREEHIT(x) do { } while (0)
@@ -488,7 +492,8 @@ struct kmem_cache {
488#endif 492#endif
489 493
490#if DEBUG 494#if DEBUG
491/* Magic nums for obj red zoning. 495/*
496 * Magic nums for obj red zoning.
492 * Placed in the first word before and the first word after an obj. 497 * Placed in the first word before and the first word after an obj.
493 */ 498 */
494#define RED_INACTIVE 0x5A2CF071UL /* when obj is inactive */ 499#define RED_INACTIVE 0x5A2CF071UL /* when obj is inactive */
@@ -499,7 +504,8 @@ struct kmem_cache {
499#define POISON_FREE 0x6b /* for use-after-free poisoning */ 504#define POISON_FREE 0x6b /* for use-after-free poisoning */
500#define POISON_END 0xa5 /* end-byte of poisoning */ 505#define POISON_END 0xa5 /* end-byte of poisoning */
501 506
502/* memory layout of objects: 507/*
508 * memory layout of objects:
503 * 0 : objp 509 * 0 : objp
504 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that 510 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
505 * the end of an object is aligned with the end of the real 511 * the end of an object is aligned with the end of the real
@@ -508,7 +514,8 @@ struct kmem_cache {
508 * redzone word. 514 * redzone word.
509 * cachep->obj_offset: The real object. 515 * cachep->obj_offset: The real object.
510 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long] 516 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
511 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address [BYTES_PER_WORD long] 517 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
518 * [BYTES_PER_WORD long]
512 */ 519 */
513static int obj_offset(struct kmem_cache *cachep) 520static int obj_offset(struct kmem_cache *cachep)
514{ 521{
@@ -552,8 +559,8 @@ static void **dbg_userword(struct kmem_cache *cachep, void *objp)
552#endif 559#endif
553 560
554/* 561/*
555 * Maximum size of an obj (in 2^order pages) 562 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
556 * and absolute limit for the gfp order. 563 * order.
557 */ 564 */
558#if defined(CONFIG_LARGE_ALLOCS) 565#if defined(CONFIG_LARGE_ALLOCS)
559#define MAX_OBJ_ORDER 13 /* up to 32Mb */ 566#define MAX_OBJ_ORDER 13 /* up to 32Mb */
@@ -573,9 +580,10 @@ static void **dbg_userword(struct kmem_cache *cachep, void *objp)
573#define BREAK_GFP_ORDER_LO 0 580#define BREAK_GFP_ORDER_LO 0
574static int slab_break_gfp_order = BREAK_GFP_ORDER_LO; 581static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
575 582
576/* Functions for storing/retrieving the cachep and or slab from the 583/*
577 * global 'mem_map'. These are used to find the slab an obj belongs to. 584 * Functions for storing/retrieving the cachep and or slab from the page
578 * With kfree(), these are used to find the cache which an obj belongs to. 585 * allocator. These are used to find the slab an obj belongs to. With kfree(),
586 * these are used to find the cache which an obj belongs to.
579 */ 587 */
580static inline void page_set_cache(struct page *page, struct kmem_cache *cache) 588static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
581{ 589{
@@ -584,6 +592,8 @@ static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
584 592
585static inline struct kmem_cache *page_get_cache(struct page *page) 593static inline struct kmem_cache *page_get_cache(struct page *page)
586{ 594{
595 if (unlikely(PageCompound(page)))
596 page = (struct page *)page_private(page);
587 return (struct kmem_cache *)page->lru.next; 597 return (struct kmem_cache *)page->lru.next;
588} 598}
589 599
@@ -594,6 +604,8 @@ static inline void page_set_slab(struct page *page, struct slab *slab)
594 604
595static inline struct slab *page_get_slab(struct page *page) 605static inline struct slab *page_get_slab(struct page *page)
596{ 606{
607 if (unlikely(PageCompound(page)))
608 page = (struct page *)page_private(page);
597 return (struct slab *)page->lru.prev; 609 return (struct slab *)page->lru.prev;
598} 610}
599 611
@@ -609,7 +621,21 @@ static inline struct slab *virt_to_slab(const void *obj)
609 return page_get_slab(page); 621 return page_get_slab(page);
610} 622}
611 623
612/* These are the default caches for kmalloc. Custom caches can have other sizes. */ 624static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
625 unsigned int idx)
626{
627 return slab->s_mem + cache->buffer_size * idx;
628}
629
630static inline unsigned int obj_to_index(struct kmem_cache *cache,
631 struct slab *slab, void *obj)
632{
633 return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
634}
635
636/*
637 * These are the default caches for kmalloc. Custom caches can have other sizes.
638 */
613struct cache_sizes malloc_sizes[] = { 639struct cache_sizes malloc_sizes[] = {
614#define CACHE(x) { .cs_size = (x) }, 640#define CACHE(x) { .cs_size = (x) },
615#include <linux/kmalloc_sizes.h> 641#include <linux/kmalloc_sizes.h>
@@ -642,8 +668,6 @@ static struct kmem_cache cache_cache = {
642 .limit = BOOT_CPUCACHE_ENTRIES, 668 .limit = BOOT_CPUCACHE_ENTRIES,
643 .shared = 1, 669 .shared = 1,
644 .buffer_size = sizeof(struct kmem_cache), 670 .buffer_size = sizeof(struct kmem_cache),
645 .flags = SLAB_NO_REAP,
646 .spinlock = SPIN_LOCK_UNLOCKED,
647 .name = "kmem_cache", 671 .name = "kmem_cache",
648#if DEBUG 672#if DEBUG
649 .obj_size = sizeof(struct kmem_cache), 673 .obj_size = sizeof(struct kmem_cache),
@@ -655,8 +679,8 @@ static DEFINE_MUTEX(cache_chain_mutex);
655static struct list_head cache_chain; 679static struct list_head cache_chain;
656 680
657/* 681/*
658 * vm_enough_memory() looks at this to determine how many 682 * vm_enough_memory() looks at this to determine how many slab-allocated pages
659 * slab-allocated pages are possibly freeable under pressure 683 * are possibly freeable under pressure
660 * 684 *
661 * SLAB_RECLAIM_ACCOUNT turns this on per-slab 685 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
662 */ 686 */
@@ -675,7 +699,8 @@ static enum {
675 699
676static DEFINE_PER_CPU(struct work_struct, reap_work); 700static DEFINE_PER_CPU(struct work_struct, reap_work);
677 701
678static void free_block(struct kmem_cache *cachep, void **objpp, int len, int node); 702static void free_block(struct kmem_cache *cachep, void **objpp, int len,
703 int node);
679static void enable_cpucache(struct kmem_cache *cachep); 704static void enable_cpucache(struct kmem_cache *cachep);
680static void cache_reap(void *unused); 705static void cache_reap(void *unused);
681static int __node_shrink(struct kmem_cache *cachep, int node); 706static int __node_shrink(struct kmem_cache *cachep, int node);
@@ -685,7 +710,8 @@ static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
685 return cachep->array[smp_processor_id()]; 710 return cachep->array[smp_processor_id()];
686} 711}
687 712
688static inline struct kmem_cache *__find_general_cachep(size_t size, gfp_t gfpflags) 713static inline struct kmem_cache *__find_general_cachep(size_t size,
714 gfp_t gfpflags)
689{ 715{
690 struct cache_sizes *csizep = malloc_sizes; 716 struct cache_sizes *csizep = malloc_sizes;
691 717
@@ -720,8 +746,9 @@ static size_t slab_mgmt_size(size_t nr_objs, size_t align)
720 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align); 746 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
721} 747}
722 748
723/* Calculate the number of objects and left-over bytes for a given 749/*
724 buffer size. */ 750 * Calculate the number of objects and left-over bytes for a given buffer size.
751 */
725static void cache_estimate(unsigned long gfporder, size_t buffer_size, 752static void cache_estimate(unsigned long gfporder, size_t buffer_size,
726 size_t align, int flags, size_t *left_over, 753 size_t align, int flags, size_t *left_over,
727 unsigned int *num) 754 unsigned int *num)
@@ -782,7 +809,8 @@ static void cache_estimate(unsigned long gfporder, size_t buffer_size,
782 809
783#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg) 810#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
784 811
785static void __slab_error(const char *function, struct kmem_cache *cachep, char *msg) 812static void __slab_error(const char *function, struct kmem_cache *cachep,
813 char *msg)
786{ 814{
787 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n", 815 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
788 function, cachep->name, msg); 816 function, cachep->name, msg);
@@ -804,7 +832,7 @@ static void init_reap_node(int cpu)
804 832
805 node = next_node(cpu_to_node(cpu), node_online_map); 833 node = next_node(cpu_to_node(cpu), node_online_map);
806 if (node == MAX_NUMNODES) 834 if (node == MAX_NUMNODES)
807 node = 0; 835 node = first_node(node_online_map);
808 836
809 __get_cpu_var(reap_node) = node; 837 __get_cpu_var(reap_node) = node;
810} 838}
@@ -870,8 +898,33 @@ static struct array_cache *alloc_arraycache(int node, int entries,
870 return nc; 898 return nc;
871} 899}
872 900
901/*
902 * Transfer objects in one arraycache to another.
903 * Locking must be handled by the caller.
904 *
905 * Return the number of entries transferred.
906 */
907static int transfer_objects(struct array_cache *to,
908 struct array_cache *from, unsigned int max)
909{
910 /* Figure out how many entries to transfer */
911 int nr = min(min(from->avail, max), to->limit - to->avail);
912
913 if (!nr)
914 return 0;
915
916 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
917 sizeof(void *) *nr);
918
919 from->avail -= nr;
920 to->avail += nr;
921 to->touched = 1;
922 return nr;
923}
924
873#ifdef CONFIG_NUMA 925#ifdef CONFIG_NUMA
874static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int); 926static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
927static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
875 928
876static struct array_cache **alloc_alien_cache(int node, int limit) 929static struct array_cache **alloc_alien_cache(int node, int limit)
877{ 930{
@@ -906,10 +959,8 @@ static void free_alien_cache(struct array_cache **ac_ptr)
906 959
907 if (!ac_ptr) 960 if (!ac_ptr)
908 return; 961 return;
909
910 for_each_node(i) 962 for_each_node(i)
911 kfree(ac_ptr[i]); 963 kfree(ac_ptr[i]);
912
913 kfree(ac_ptr); 964 kfree(ac_ptr);
914} 965}
915 966
@@ -920,6 +971,13 @@ static void __drain_alien_cache(struct kmem_cache *cachep,
920 971
921 if (ac->avail) { 972 if (ac->avail) {
922 spin_lock(&rl3->list_lock); 973 spin_lock(&rl3->list_lock);
974 /*
975 * Stuff objects into the remote nodes shared array first.
976 * That way we could avoid the overhead of putting the objects
977 * into the free lists and getting them back later.
978 */
979 transfer_objects(rl3->shared, ac, ac->limit);
980
923 free_block(cachep, ac->entry, ac->avail, node); 981 free_block(cachep, ac->entry, ac->avail, node);
924 ac->avail = 0; 982 ac->avail = 0;
925 spin_unlock(&rl3->list_lock); 983 spin_unlock(&rl3->list_lock);
@@ -935,15 +993,16 @@ static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
935 993
936 if (l3->alien) { 994 if (l3->alien) {
937 struct array_cache *ac = l3->alien[node]; 995 struct array_cache *ac = l3->alien[node];
938 if (ac && ac->avail) { 996
939 spin_lock_irq(&ac->lock); 997 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
940 __drain_alien_cache(cachep, ac, node); 998 __drain_alien_cache(cachep, ac, node);
941 spin_unlock_irq(&ac->lock); 999 spin_unlock_irq(&ac->lock);
942 } 1000 }
943 } 1001 }
944} 1002}
945 1003
946static void drain_alien_cache(struct kmem_cache *cachep, struct array_cache **alien) 1004static void drain_alien_cache(struct kmem_cache *cachep,
1005 struct array_cache **alien)
947{ 1006{
948 int i = 0; 1007 int i = 0;
949 struct array_cache *ac; 1008 struct array_cache *ac;
@@ -986,20 +1045,22 @@ static int __devinit cpuup_callback(struct notifier_block *nfb,
986 switch (action) { 1045 switch (action) {
987 case CPU_UP_PREPARE: 1046 case CPU_UP_PREPARE:
988 mutex_lock(&cache_chain_mutex); 1047 mutex_lock(&cache_chain_mutex);
989 /* we need to do this right in the beginning since 1048 /*
1049 * We need to do this right in the beginning since
990 * alloc_arraycache's are going to use this list. 1050 * alloc_arraycache's are going to use this list.
991 * kmalloc_node allows us to add the slab to the right 1051 * kmalloc_node allows us to add the slab to the right
992 * kmem_list3 and not this cpu's kmem_list3 1052 * kmem_list3 and not this cpu's kmem_list3
993 */ 1053 */
994 1054
995 list_for_each_entry(cachep, &cache_chain, next) { 1055 list_for_each_entry(cachep, &cache_chain, next) {
996 /* setup the size64 kmemlist for cpu before we can 1056 /*
1057 * Set up the size64 kmemlist for cpu before we can
997 * begin anything. Make sure some other cpu on this 1058 * begin anything. Make sure some other cpu on this
998 * node has not already allocated this 1059 * node has not already allocated this
999 */ 1060 */
1000 if (!cachep->nodelists[node]) { 1061 if (!cachep->nodelists[node]) {
1001 if (!(l3 = kmalloc_node(memsize, 1062 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1002 GFP_KERNEL, node))) 1063 if (!l3)
1003 goto bad; 1064 goto bad;
1004 kmem_list3_init(l3); 1065 kmem_list3_init(l3);
1005 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 + 1066 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
@@ -1015,13 +1076,15 @@ static int __devinit cpuup_callback(struct notifier_block *nfb,
1015 1076
1016 spin_lock_irq(&cachep->nodelists[node]->list_lock); 1077 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1017 cachep->nodelists[node]->free_limit = 1078 cachep->nodelists[node]->free_limit =
1018 (1 + nr_cpus_node(node)) * 1079 (1 + nr_cpus_node(node)) *
1019 cachep->batchcount + cachep->num; 1080 cachep->batchcount + cachep->num;
1020 spin_unlock_irq(&cachep->nodelists[node]->list_lock); 1081 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1021 } 1082 }
1022 1083
1023 /* Now we can go ahead with allocating the shared array's 1084 /*
1024 & array cache's */ 1085 * Now we can go ahead with allocating the shared arrays and
1086 * array caches
1087 */
1025 list_for_each_entry(cachep, &cache_chain, next) { 1088 list_for_each_entry(cachep, &cache_chain, next) {
1026 struct array_cache *nc; 1089 struct array_cache *nc;
1027 struct array_cache *shared; 1090 struct array_cache *shared;
@@ -1041,7 +1104,6 @@ static int __devinit cpuup_callback(struct notifier_block *nfb,
1041 if (!alien) 1104 if (!alien)
1042 goto bad; 1105 goto bad;
1043 cachep->array[cpu] = nc; 1106 cachep->array[cpu] = nc;
1044
1045 l3 = cachep->nodelists[node]; 1107 l3 = cachep->nodelists[node];
1046 BUG_ON(!l3); 1108 BUG_ON(!l3);
1047 1109
@@ -1061,7 +1123,6 @@ static int __devinit cpuup_callback(struct notifier_block *nfb,
1061 } 1123 }
1062#endif 1124#endif
1063 spin_unlock_irq(&l3->list_lock); 1125 spin_unlock_irq(&l3->list_lock);
1064
1065 kfree(shared); 1126 kfree(shared);
1066 free_alien_cache(alien); 1127 free_alien_cache(alien);
1067 } 1128 }
@@ -1083,7 +1144,6 @@ static int __devinit cpuup_callback(struct notifier_block *nfb,
1083 /* fall thru */ 1144 /* fall thru */
1084 case CPU_UP_CANCELED: 1145 case CPU_UP_CANCELED:
1085 mutex_lock(&cache_chain_mutex); 1146 mutex_lock(&cache_chain_mutex);
1086
1087 list_for_each_entry(cachep, &cache_chain, next) { 1147 list_for_each_entry(cachep, &cache_chain, next) {
1088 struct array_cache *nc; 1148 struct array_cache *nc;
1089 struct array_cache *shared; 1149 struct array_cache *shared;
@@ -1150,7 +1210,7 @@ free_array_cache:
1150#endif 1210#endif
1151 } 1211 }
1152 return NOTIFY_OK; 1212 return NOTIFY_OK;
1153 bad: 1213bad:
1154 mutex_unlock(&cache_chain_mutex); 1214 mutex_unlock(&cache_chain_mutex);
1155 return NOTIFY_BAD; 1215 return NOTIFY_BAD;
1156} 1216}
@@ -1160,7 +1220,8 @@ static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };
1160/* 1220/*
1161 * swap the static kmem_list3 with kmalloced memory 1221 * swap the static kmem_list3 with kmalloced memory
1162 */ 1222 */
1163static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list, int nodeid) 1223static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1224 int nodeid)
1164{ 1225{
1165 struct kmem_list3 *ptr; 1226 struct kmem_list3 *ptr;
1166 1227
@@ -1175,8 +1236,9 @@ static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list, int no
1175 local_irq_enable(); 1236 local_irq_enable();
1176} 1237}
1177 1238
1178/* Initialisation. 1239/*
1179 * Called after the gfp() functions have been enabled, and before smp_init(). 1240 * Initialisation. Called after the page allocator have been initialised and
1241 * before smp_init().
1180 */ 1242 */
1181void __init kmem_cache_init(void) 1243void __init kmem_cache_init(void)
1182{ 1244{
@@ -1201,9 +1263,9 @@ void __init kmem_cache_init(void)
1201 1263
1202 /* Bootstrap is tricky, because several objects are allocated 1264 /* Bootstrap is tricky, because several objects are allocated
1203 * from caches that do not exist yet: 1265 * from caches that do not exist yet:
1204 * 1) initialize the cache_cache cache: it contains the struct kmem_cache 1266 * 1) initialize the cache_cache cache: it contains the struct
1205 * structures of all caches, except cache_cache itself: cache_cache 1267 * kmem_cache structures of all caches, except cache_cache itself:
1206 * is statically allocated. 1268 * cache_cache is statically allocated.
1207 * Initially an __init data area is used for the head array and the 1269 * Initially an __init data area is used for the head array and the
1208 * kmem_list3 structures, it's replaced with a kmalloc allocated 1270 * kmem_list3 structures, it's replaced with a kmalloc allocated
1209 * array at the end of the bootstrap. 1271 * array at the end of the bootstrap.
@@ -1226,7 +1288,8 @@ void __init kmem_cache_init(void)
1226 cache_cache.array[smp_processor_id()] = &initarray_cache.cache; 1288 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1227 cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE]; 1289 cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
1228 1290
1229 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size, cache_line_size()); 1291 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1292 cache_line_size());
1230 1293
1231 for (order = 0; order < MAX_ORDER; order++) { 1294 for (order = 0; order < MAX_ORDER; order++) {
1232 cache_estimate(order, cache_cache.buffer_size, 1295 cache_estimate(order, cache_cache.buffer_size,
@@ -1245,24 +1308,26 @@ void __init kmem_cache_init(void)
1245 sizes = malloc_sizes; 1308 sizes = malloc_sizes;
1246 names = cache_names; 1309 names = cache_names;
1247 1310
1248 /* Initialize the caches that provide memory for the array cache 1311 /*
1249 * and the kmem_list3 structures first. 1312 * Initialize the caches that provide memory for the array cache and the
1250 * Without this, further allocations will bug 1313 * kmem_list3 structures first. Without this, further allocations will
1314 * bug.
1251 */ 1315 */
1252 1316
1253 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name, 1317 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1254 sizes[INDEX_AC].cs_size, 1318 sizes[INDEX_AC].cs_size,
1255 ARCH_KMALLOC_MINALIGN, 1319 ARCH_KMALLOC_MINALIGN,
1256 (ARCH_KMALLOC_FLAGS | 1320 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1257 SLAB_PANIC), NULL, NULL); 1321 NULL, NULL);
1258 1322
1259 if (INDEX_AC != INDEX_L3) 1323 if (INDEX_AC != INDEX_L3) {
1260 sizes[INDEX_L3].cs_cachep = 1324 sizes[INDEX_L3].cs_cachep =
1261 kmem_cache_create(names[INDEX_L3].name, 1325 kmem_cache_create(names[INDEX_L3].name,
1262 sizes[INDEX_L3].cs_size, 1326 sizes[INDEX_L3].cs_size,
1263 ARCH_KMALLOC_MINALIGN, 1327 ARCH_KMALLOC_MINALIGN,
1264 (ARCH_KMALLOC_FLAGS | SLAB_PANIC), NULL, 1328 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1265 NULL); 1329 NULL, NULL);
1330 }
1266 1331
1267 while (sizes->cs_size != ULONG_MAX) { 1332 while (sizes->cs_size != ULONG_MAX) {
1268 /* 1333 /*
@@ -1272,13 +1337,13 @@ void __init kmem_cache_init(void)
1272 * Note for systems short on memory removing the alignment will 1337 * Note for systems short on memory removing the alignment will
1273 * allow tighter packing of the smaller caches. 1338 * allow tighter packing of the smaller caches.
1274 */ 1339 */
1275 if (!sizes->cs_cachep) 1340 if (!sizes->cs_cachep) {
1276 sizes->cs_cachep = kmem_cache_create(names->name, 1341 sizes->cs_cachep = kmem_cache_create(names->name,
1277 sizes->cs_size, 1342 sizes->cs_size,
1278 ARCH_KMALLOC_MINALIGN, 1343 ARCH_KMALLOC_MINALIGN,
1279 (ARCH_KMALLOC_FLAGS 1344 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1280 | SLAB_PANIC), 1345 NULL, NULL);
1281 NULL, NULL); 1346 }
1282 1347
1283 /* Inc off-slab bufctl limit until the ceiling is hit. */ 1348 /* Inc off-slab bufctl limit until the ceiling is hit. */
1284 if (!(OFF_SLAB(sizes->cs_cachep))) { 1349 if (!(OFF_SLAB(sizes->cs_cachep))) {
@@ -1287,13 +1352,11 @@ void __init kmem_cache_init(void)
1287 } 1352 }
1288 1353
1289 sizes->cs_dmacachep = kmem_cache_create(names->name_dma, 1354 sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
1290 sizes->cs_size, 1355 sizes->cs_size,
1291 ARCH_KMALLOC_MINALIGN, 1356 ARCH_KMALLOC_MINALIGN,
1292 (ARCH_KMALLOC_FLAGS | 1357 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1293 SLAB_CACHE_DMA | 1358 SLAB_PANIC,
1294 SLAB_PANIC), NULL, 1359 NULL, NULL);
1295 NULL);
1296
1297 sizes++; 1360 sizes++;
1298 names++; 1361 names++;
1299 } 1362 }
@@ -1345,20 +1408,22 @@ void __init kmem_cache_init(void)
1345 struct kmem_cache *cachep; 1408 struct kmem_cache *cachep;
1346 mutex_lock(&cache_chain_mutex); 1409 mutex_lock(&cache_chain_mutex);
1347 list_for_each_entry(cachep, &cache_chain, next) 1410 list_for_each_entry(cachep, &cache_chain, next)
1348 enable_cpucache(cachep); 1411 enable_cpucache(cachep);
1349 mutex_unlock(&cache_chain_mutex); 1412 mutex_unlock(&cache_chain_mutex);
1350 } 1413 }
1351 1414
1352 /* Done! */ 1415 /* Done! */
1353 g_cpucache_up = FULL; 1416 g_cpucache_up = FULL;
1354 1417
1355 /* Register a cpu startup notifier callback 1418 /*
1356 * that initializes cpu_cache_get for all new cpus 1419 * Register a cpu startup notifier callback that initializes
1420 * cpu_cache_get for all new cpus
1357 */ 1421 */
1358 register_cpu_notifier(&cpucache_notifier); 1422 register_cpu_notifier(&cpucache_notifier);
1359 1423
1360 /* The reap timers are started later, with a module init call: 1424 /*
1361 * That part of the kernel is not yet operational. 1425 * The reap timers are started later, with a module init call: That part
1426 * of the kernel is not yet operational.
1362 */ 1427 */
1363} 1428}
1364 1429
@@ -1366,16 +1431,13 @@ static int __init cpucache_init(void)
1366{ 1431{
1367 int cpu; 1432 int cpu;
1368 1433
1369 /* 1434 /*
1370 * Register the timers that return unneeded 1435 * Register the timers that return unneeded pages to the page allocator
1371 * pages to gfp.
1372 */ 1436 */
1373 for_each_online_cpu(cpu) 1437 for_each_online_cpu(cpu)
1374 start_cpu_timer(cpu); 1438 start_cpu_timer(cpu);
1375
1376 return 0; 1439 return 0;
1377} 1440}
1378
1379__initcall(cpucache_init); 1441__initcall(cpucache_init);
1380 1442
1381/* 1443/*
@@ -1402,7 +1464,7 @@ static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1402 atomic_add(i, &slab_reclaim_pages); 1464 atomic_add(i, &slab_reclaim_pages);
1403 add_page_state(nr_slab, i); 1465 add_page_state(nr_slab, i);
1404 while (i--) { 1466 while (i--) {
1405 SetPageSlab(page); 1467 __SetPageSlab(page);
1406 page++; 1468 page++;
1407 } 1469 }
1408 return addr; 1470 return addr;
@@ -1418,8 +1480,8 @@ static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1418 const unsigned long nr_freed = i; 1480 const unsigned long nr_freed = i;
1419 1481
1420 while (i--) { 1482 while (i--) {
1421 if (!TestClearPageSlab(page)) 1483 BUG_ON(!PageSlab(page));
1422 BUG(); 1484 __ClearPageSlab(page);
1423 page++; 1485 page++;
1424 } 1486 }
1425 sub_page_state(nr_slab, nr_freed); 1487 sub_page_state(nr_slab, nr_freed);
@@ -1489,9 +1551,8 @@ static void dump_line(char *data, int offset, int limit)
1489{ 1551{
1490 int i; 1552 int i;
1491 printk(KERN_ERR "%03x:", offset); 1553 printk(KERN_ERR "%03x:", offset);
1492 for (i = 0; i < limit; i++) { 1554 for (i = 0; i < limit; i++)
1493 printk(" %02x", (unsigned char)data[offset + i]); 1555 printk(" %02x", (unsigned char)data[offset + i]);
1494 }
1495 printk("\n"); 1556 printk("\n");
1496} 1557}
1497#endif 1558#endif
@@ -1505,15 +1566,15 @@ static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1505 1566
1506 if (cachep->flags & SLAB_RED_ZONE) { 1567 if (cachep->flags & SLAB_RED_ZONE) {
1507 printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n", 1568 printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
1508 *dbg_redzone1(cachep, objp), 1569 *dbg_redzone1(cachep, objp),
1509 *dbg_redzone2(cachep, objp)); 1570 *dbg_redzone2(cachep, objp));
1510 } 1571 }
1511 1572
1512 if (cachep->flags & SLAB_STORE_USER) { 1573 if (cachep->flags & SLAB_STORE_USER) {
1513 printk(KERN_ERR "Last user: [<%p>]", 1574 printk(KERN_ERR "Last user: [<%p>]",
1514 *dbg_userword(cachep, objp)); 1575 *dbg_userword(cachep, objp));
1515 print_symbol("(%s)", 1576 print_symbol("(%s)",
1516 (unsigned long)*dbg_userword(cachep, objp)); 1577 (unsigned long)*dbg_userword(cachep, objp));
1517 printk("\n"); 1578 printk("\n");
1518 } 1579 }
1519 realobj = (char *)objp + obj_offset(cachep); 1580 realobj = (char *)objp + obj_offset(cachep);
@@ -1546,8 +1607,8 @@ static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1546 /* Print header */ 1607 /* Print header */
1547 if (lines == 0) { 1608 if (lines == 0) {
1548 printk(KERN_ERR 1609 printk(KERN_ERR
1549 "Slab corruption: start=%p, len=%d\n", 1610 "Slab corruption: start=%p, len=%d\n",
1550 realobj, size); 1611 realobj, size);
1551 print_objinfo(cachep, objp, 0); 1612 print_objinfo(cachep, objp, 0);
1552 } 1613 }
1553 /* Hexdump the affected line */ 1614 /* Hexdump the affected line */
@@ -1568,18 +1629,18 @@ static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1568 * exist: 1629 * exist:
1569 */ 1630 */
1570 struct slab *slabp = virt_to_slab(objp); 1631 struct slab *slabp = virt_to_slab(objp);
1571 int objnr; 1632 unsigned int objnr;
1572 1633
1573 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size; 1634 objnr = obj_to_index(cachep, slabp, objp);
1574 if (objnr) { 1635 if (objnr) {
1575 objp = slabp->s_mem + (objnr - 1) * cachep->buffer_size; 1636 objp = index_to_obj(cachep, slabp, objnr - 1);
1576 realobj = (char *)objp + obj_offset(cachep); 1637 realobj = (char *)objp + obj_offset(cachep);
1577 printk(KERN_ERR "Prev obj: start=%p, len=%d\n", 1638 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1578 realobj, size); 1639 realobj, size);
1579 print_objinfo(cachep, objp, 2); 1640 print_objinfo(cachep, objp, 2);
1580 } 1641 }
1581 if (objnr + 1 < cachep->num) { 1642 if (objnr + 1 < cachep->num) {
1582 objp = slabp->s_mem + (objnr + 1) * cachep->buffer_size; 1643 objp = index_to_obj(cachep, slabp, objnr + 1);
1583 realobj = (char *)objp + obj_offset(cachep); 1644 realobj = (char *)objp + obj_offset(cachep);
1584 printk(KERN_ERR "Next obj: start=%p, len=%d\n", 1645 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1585 realobj, size); 1646 realobj, size);
@@ -1591,22 +1652,25 @@ static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1591 1652
1592#if DEBUG 1653#if DEBUG
1593/** 1654/**
1594 * slab_destroy_objs - call the registered destructor for each object in 1655 * slab_destroy_objs - destroy a slab and its objects
1595 * a slab that is to be destroyed. 1656 * @cachep: cache pointer being destroyed
1657 * @slabp: slab pointer being destroyed
1658 *
1659 * Call the registered destructor for each object in a slab that is being
1660 * destroyed.
1596 */ 1661 */
1597static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp) 1662static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1598{ 1663{
1599 int i; 1664 int i;
1600 for (i = 0; i < cachep->num; i++) { 1665 for (i = 0; i < cachep->num; i++) {
1601 void *objp = slabp->s_mem + cachep->buffer_size * i; 1666 void *objp = index_to_obj(cachep, slabp, i);
1602 1667
1603 if (cachep->flags & SLAB_POISON) { 1668 if (cachep->flags & SLAB_POISON) {
1604#ifdef CONFIG_DEBUG_PAGEALLOC 1669#ifdef CONFIG_DEBUG_PAGEALLOC
1605 if ((cachep->buffer_size % PAGE_SIZE) == 0 1670 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1606 && OFF_SLAB(cachep)) 1671 OFF_SLAB(cachep))
1607 kernel_map_pages(virt_to_page(objp), 1672 kernel_map_pages(virt_to_page(objp),
1608 cachep->buffer_size / PAGE_SIZE, 1673 cachep->buffer_size / PAGE_SIZE, 1);
1609 1);
1610 else 1674 else
1611 check_poison_obj(cachep, objp); 1675 check_poison_obj(cachep, objp);
1612#else 1676#else
@@ -1631,7 +1695,7 @@ static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1631 if (cachep->dtor) { 1695 if (cachep->dtor) {
1632 int i; 1696 int i;
1633 for (i = 0; i < cachep->num; i++) { 1697 for (i = 0; i < cachep->num; i++) {
1634 void *objp = slabp->s_mem + cachep->buffer_size * i; 1698 void *objp = index_to_obj(cachep, slabp, i);
1635 (cachep->dtor) (objp, cachep, 0); 1699 (cachep->dtor) (objp, cachep, 0);
1636 } 1700 }
1637 } 1701 }
@@ -1639,9 +1703,13 @@ static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1639#endif 1703#endif
1640 1704
1641/** 1705/**
1706 * slab_destroy - destroy and release all objects in a slab
1707 * @cachep: cache pointer being destroyed
1708 * @slabp: slab pointer being destroyed
1709 *
1642 * Destroy all the objs in a slab, and release the mem back to the system. 1710 * Destroy all the objs in a slab, and release the mem back to the system.
1643 * Before calling the slab must have been unlinked from the cache. 1711 * Before calling the slab must have been unlinked from the cache. The
1644 * The cache-lock is not held/needed. 1712 * cache-lock is not held/needed.
1645 */ 1713 */
1646static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp) 1714static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1647{ 1715{
@@ -1662,8 +1730,10 @@ static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1662 } 1730 }
1663} 1731}
1664 1732
1665/* For setting up all the kmem_list3s for cache whose buffer_size is same 1733/*
1666 as size of kmem_list3. */ 1734 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1735 * size of kmem_list3.
1736 */
1667static void set_up_list3s(struct kmem_cache *cachep, int index) 1737static void set_up_list3s(struct kmem_cache *cachep, int index)
1668{ 1738{
1669 int node; 1739 int node;
@@ -1689,13 +1759,13 @@ static void set_up_list3s(struct kmem_cache *cachep, int index)
1689 * high order pages for slabs. When the gfp() functions are more friendly 1759 * high order pages for slabs. When the gfp() functions are more friendly
1690 * towards high-order requests, this should be changed. 1760 * towards high-order requests, this should be changed.
1691 */ 1761 */
1692static inline size_t calculate_slab_order(struct kmem_cache *cachep, 1762static size_t calculate_slab_order(struct kmem_cache *cachep,
1693 size_t size, size_t align, unsigned long flags) 1763 size_t size, size_t align, unsigned long flags)
1694{ 1764{
1695 size_t left_over = 0; 1765 size_t left_over = 0;
1696 int gfporder; 1766 int gfporder;
1697 1767
1698 for (gfporder = 0 ; gfporder <= MAX_GFP_ORDER; gfporder++) { 1768 for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
1699 unsigned int num; 1769 unsigned int num;
1700 size_t remainder; 1770 size_t remainder;
1701 1771
@@ -1730,12 +1800,66 @@ static inline size_t calculate_slab_order(struct kmem_cache *cachep,
1730 /* 1800 /*
1731 * Acceptable internal fragmentation? 1801 * Acceptable internal fragmentation?
1732 */ 1802 */
1733 if ((left_over * 8) <= (PAGE_SIZE << gfporder)) 1803 if (left_over * 8 <= (PAGE_SIZE << gfporder))
1734 break; 1804 break;
1735 } 1805 }
1736 return left_over; 1806 return left_over;
1737} 1807}
1738 1808
1809static void setup_cpu_cache(struct kmem_cache *cachep)
1810{
1811 if (g_cpucache_up == FULL) {
1812 enable_cpucache(cachep);
1813 return;
1814 }
1815 if (g_cpucache_up == NONE) {
1816 /*
1817 * Note: the first kmem_cache_create must create the cache
1818 * that's used by kmalloc(24), otherwise the creation of
1819 * further caches will BUG().
1820 */
1821 cachep->array[smp_processor_id()] = &initarray_generic.cache;
1822
1823 /*
1824 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
1825 * the first cache, then we need to set up all its list3s,
1826 * otherwise the creation of further caches will BUG().
1827 */
1828 set_up_list3s(cachep, SIZE_AC);
1829 if (INDEX_AC == INDEX_L3)
1830 g_cpucache_up = PARTIAL_L3;
1831 else
1832 g_cpucache_up = PARTIAL_AC;
1833 } else {
1834 cachep->array[smp_processor_id()] =
1835 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1836
1837 if (g_cpucache_up == PARTIAL_AC) {
1838 set_up_list3s(cachep, SIZE_L3);
1839 g_cpucache_up = PARTIAL_L3;
1840 } else {
1841 int node;
1842 for_each_online_node(node) {
1843 cachep->nodelists[node] =
1844 kmalloc_node(sizeof(struct kmem_list3),
1845 GFP_KERNEL, node);
1846 BUG_ON(!cachep->nodelists[node]);
1847 kmem_list3_init(cachep->nodelists[node]);
1848 }
1849 }
1850 }
1851 cachep->nodelists[numa_node_id()]->next_reap =
1852 jiffies + REAPTIMEOUT_LIST3 +
1853 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1854
1855 cpu_cache_get(cachep)->avail = 0;
1856 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1857 cpu_cache_get(cachep)->batchcount = 1;
1858 cpu_cache_get(cachep)->touched = 0;
1859 cachep->batchcount = 1;
1860 cachep->limit = BOOT_CPUCACHE_ENTRIES;
1861}
1862
1739/** 1863/**
1740 * kmem_cache_create - Create a cache. 1864 * kmem_cache_create - Create a cache.
1741 * @name: A string which is used in /proc/slabinfo to identify this cache. 1865 * @name: A string which is used in /proc/slabinfo to identify this cache.
@@ -1751,9 +1875,8 @@ static inline size_t calculate_slab_order(struct kmem_cache *cachep,
1751 * and the @dtor is run before the pages are handed back. 1875 * and the @dtor is run before the pages are handed back.
1752 * 1876 *
1753 * @name must be valid until the cache is destroyed. This implies that 1877 * @name must be valid until the cache is destroyed. This implies that
1754 * the module calling this has to destroy the cache before getting 1878 * the module calling this has to destroy the cache before getting unloaded.
1755 * unloaded. 1879 *
1756 *
1757 * The flags are 1880 * The flags are
1758 * 1881 *
1759 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) 1882 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
@@ -1762,16 +1885,14 @@ static inline size_t calculate_slab_order(struct kmem_cache *cachep,
1762 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check 1885 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1763 * for buffer overruns. 1886 * for buffer overruns.
1764 * 1887 *
1765 * %SLAB_NO_REAP - Don't automatically reap this cache when we're under
1766 * memory pressure.
1767 *
1768 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware 1888 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1769 * cacheline. This can be beneficial if you're counting cycles as closely 1889 * cacheline. This can be beneficial if you're counting cycles as closely
1770 * as davem. 1890 * as davem.
1771 */ 1891 */
1772struct kmem_cache * 1892struct kmem_cache *
1773kmem_cache_create (const char *name, size_t size, size_t align, 1893kmem_cache_create (const char *name, size_t size, size_t align,
1774 unsigned long flags, void (*ctor)(void*, struct kmem_cache *, unsigned long), 1894 unsigned long flags,
1895 void (*ctor)(void*, struct kmem_cache *, unsigned long),
1775 void (*dtor)(void*, struct kmem_cache *, unsigned long)) 1896 void (*dtor)(void*, struct kmem_cache *, unsigned long))
1776{ 1897{
1777 size_t left_over, slab_size, ralign; 1898 size_t left_over, slab_size, ralign;
@@ -1781,12 +1902,10 @@ kmem_cache_create (const char *name, size_t size, size_t align,
1781 /* 1902 /*
1782 * Sanity checks... these are all serious usage bugs. 1903 * Sanity checks... these are all serious usage bugs.
1783 */ 1904 */
1784 if ((!name) || 1905 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
1785 in_interrupt() ||
1786 (size < BYTES_PER_WORD) ||
1787 (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) { 1906 (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
1788 printk(KERN_ERR "%s: Early error in slab %s\n", 1907 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
1789 __FUNCTION__, name); 1908 name);
1790 BUG(); 1909 BUG();
1791 } 1910 }
1792 1911
@@ -1840,8 +1959,7 @@ kmem_cache_create (const char *name, size_t size, size_t align,
1840 * above the next power of two: caches with object sizes just above a 1959 * above the next power of two: caches with object sizes just above a
1841 * power of two have a significant amount of internal fragmentation. 1960 * power of two have a significant amount of internal fragmentation.
1842 */ 1961 */
1843 if ((size < 4096 1962 if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
1844 || fls(size - 1) == fls(size - 1 + 3 * BYTES_PER_WORD)))
1845 flags |= SLAB_RED_ZONE | SLAB_STORE_USER; 1963 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1846 if (!(flags & SLAB_DESTROY_BY_RCU)) 1964 if (!(flags & SLAB_DESTROY_BY_RCU))
1847 flags |= SLAB_POISON; 1965 flags |= SLAB_POISON;
@@ -1853,13 +1971,14 @@ kmem_cache_create (const char *name, size_t size, size_t align,
1853 BUG_ON(dtor); 1971 BUG_ON(dtor);
1854 1972
1855 /* 1973 /*
1856 * Always checks flags, a caller might be expecting debug 1974 * Always checks flags, a caller might be expecting debug support which
1857 * support which isn't available. 1975 * isn't available.
1858 */ 1976 */
1859 if (flags & ~CREATE_MASK) 1977 if (flags & ~CREATE_MASK)
1860 BUG(); 1978 BUG();
1861 1979
1862 /* Check that size is in terms of words. This is needed to avoid 1980 /*
1981 * Check that size is in terms of words. This is needed to avoid
1863 * unaligned accesses for some archs when redzoning is used, and makes 1982 * unaligned accesses for some archs when redzoning is used, and makes
1864 * sure any on-slab bufctl's are also correctly aligned. 1983 * sure any on-slab bufctl's are also correctly aligned.
1865 */ 1984 */
@@ -1868,12 +1987,14 @@ kmem_cache_create (const char *name, size_t size, size_t align,
1868 size &= ~(BYTES_PER_WORD - 1); 1987 size &= ~(BYTES_PER_WORD - 1);
1869 } 1988 }
1870 1989
1871 /* calculate out the final buffer alignment: */ 1990 /* calculate the final buffer alignment: */
1991
1872 /* 1) arch recommendation: can be overridden for debug */ 1992 /* 1) arch recommendation: can be overridden for debug */
1873 if (flags & SLAB_HWCACHE_ALIGN) { 1993 if (flags & SLAB_HWCACHE_ALIGN) {
1874 /* Default alignment: as specified by the arch code. 1994 /*
1875 * Except if an object is really small, then squeeze multiple 1995 * Default alignment: as specified by the arch code. Except if
1876 * objects into one cacheline. 1996 * an object is really small, then squeeze multiple objects into
1997 * one cacheline.
1877 */ 1998 */
1878 ralign = cache_line_size(); 1999 ralign = cache_line_size();
1879 while (size <= ralign / 2) 2000 while (size <= ralign / 2)
@@ -1893,16 +2014,16 @@ kmem_cache_create (const char *name, size_t size, size_t align,
1893 if (ralign > BYTES_PER_WORD) 2014 if (ralign > BYTES_PER_WORD)
1894 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); 2015 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1895 } 2016 }
1896 /* 4) Store it. Note that the debug code below can reduce 2017 /*
2018 * 4) Store it. Note that the debug code below can reduce
1897 * the alignment to BYTES_PER_WORD. 2019 * the alignment to BYTES_PER_WORD.
1898 */ 2020 */
1899 align = ralign; 2021 align = ralign;
1900 2022
1901 /* Get cache's description obj. */ 2023 /* Get cache's description obj. */
1902 cachep = kmem_cache_alloc(&cache_cache, SLAB_KERNEL); 2024 cachep = kmem_cache_zalloc(&cache_cache, SLAB_KERNEL);
1903 if (!cachep) 2025 if (!cachep)
1904 goto oops; 2026 goto oops;
1905 memset(cachep, 0, sizeof(struct kmem_cache));
1906 2027
1907#if DEBUG 2028#if DEBUG
1908 cachep->obj_size = size; 2029 cachep->obj_size = size;
@@ -1978,7 +2099,6 @@ kmem_cache_create (const char *name, size_t size, size_t align,
1978 cachep->gfpflags = 0; 2099 cachep->gfpflags = 0;
1979 if (flags & SLAB_CACHE_DMA) 2100 if (flags & SLAB_CACHE_DMA)
1980 cachep->gfpflags |= GFP_DMA; 2101 cachep->gfpflags |= GFP_DMA;
1981 spin_lock_init(&cachep->spinlock);
1982 cachep->buffer_size = size; 2102 cachep->buffer_size = size;
1983 2103
1984 if (flags & CFLGS_OFF_SLAB) 2104 if (flags & CFLGS_OFF_SLAB)
@@ -1988,64 +2108,11 @@ kmem_cache_create (const char *name, size_t size, size_t align,
1988 cachep->name = name; 2108 cachep->name = name;
1989 2109
1990 2110
1991 if (g_cpucache_up == FULL) { 2111 setup_cpu_cache(cachep);
1992 enable_cpucache(cachep);
1993 } else {
1994 if (g_cpucache_up == NONE) {
1995 /* Note: the first kmem_cache_create must create
1996 * the cache that's used by kmalloc(24), otherwise
1997 * the creation of further caches will BUG().
1998 */
1999 cachep->array[smp_processor_id()] =
2000 &initarray_generic.cache;
2001
2002 /* If the cache that's used by
2003 * kmalloc(sizeof(kmem_list3)) is the first cache,
2004 * then we need to set up all its list3s, otherwise
2005 * the creation of further caches will BUG().
2006 */
2007 set_up_list3s(cachep, SIZE_AC);
2008 if (INDEX_AC == INDEX_L3)
2009 g_cpucache_up = PARTIAL_L3;
2010 else
2011 g_cpucache_up = PARTIAL_AC;
2012 } else {
2013 cachep->array[smp_processor_id()] =
2014 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
2015
2016 if (g_cpucache_up == PARTIAL_AC) {
2017 set_up_list3s(cachep, SIZE_L3);
2018 g_cpucache_up = PARTIAL_L3;
2019 } else {
2020 int node;
2021 for_each_online_node(node) {
2022
2023 cachep->nodelists[node] =
2024 kmalloc_node(sizeof
2025 (struct kmem_list3),
2026 GFP_KERNEL, node);
2027 BUG_ON(!cachep->nodelists[node]);
2028 kmem_list3_init(cachep->
2029 nodelists[node]);
2030 }
2031 }
2032 }
2033 cachep->nodelists[numa_node_id()]->next_reap =
2034 jiffies + REAPTIMEOUT_LIST3 +
2035 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2036
2037 BUG_ON(!cpu_cache_get(cachep));
2038 cpu_cache_get(cachep)->avail = 0;
2039 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2040 cpu_cache_get(cachep)->batchcount = 1;
2041 cpu_cache_get(cachep)->touched = 0;
2042 cachep->batchcount = 1;
2043 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2044 }
2045 2112
2046 /* cache setup completed, link it into the list */ 2113 /* cache setup completed, link it into the list */
2047 list_add(&cachep->next, &cache_chain); 2114 list_add(&cachep->next, &cache_chain);
2048 oops: 2115oops:
2049 if (!cachep && (flags & SLAB_PANIC)) 2116 if (!cachep && (flags & SLAB_PANIC))
2050 panic("kmem_cache_create(): failed to create slab `%s'\n", 2117 panic("kmem_cache_create(): failed to create slab `%s'\n",
2051 name); 2118 name);
@@ -2089,30 +2156,13 @@ static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2089#define check_spinlock_acquired_node(x, y) do { } while(0) 2156#define check_spinlock_acquired_node(x, y) do { } while(0)
2090#endif 2157#endif
2091 2158
2092/* 2159static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2093 * Waits for all CPUs to execute func(). 2160 struct array_cache *ac,
2094 */ 2161 int force, int node);
2095static void smp_call_function_all_cpus(void (*func)(void *arg), void *arg)
2096{
2097 check_irq_on();
2098 preempt_disable();
2099
2100 local_irq_disable();
2101 func(arg);
2102 local_irq_enable();
2103
2104 if (smp_call_function(func, arg, 1, 1))
2105 BUG();
2106
2107 preempt_enable();
2108}
2109
2110static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2111 int force, int node);
2112 2162
2113static void do_drain(void *arg) 2163static void do_drain(void *arg)
2114{ 2164{
2115 struct kmem_cache *cachep = (struct kmem_cache *) arg; 2165 struct kmem_cache *cachep = arg;
2116 struct array_cache *ac; 2166 struct array_cache *ac;
2117 int node = numa_node_id(); 2167 int node = numa_node_id();
2118 2168
@@ -2129,14 +2179,12 @@ static void drain_cpu_caches(struct kmem_cache *cachep)
2129 struct kmem_list3 *l3; 2179 struct kmem_list3 *l3;
2130 int node; 2180 int node;
2131 2181
2132 smp_call_function_all_cpus(do_drain, cachep); 2182 on_each_cpu(do_drain, cachep, 1, 1);
2133 check_irq_on(); 2183 check_irq_on();
2134 for_each_online_node(node) { 2184 for_each_online_node(node) {
2135 l3 = cachep->nodelists[node]; 2185 l3 = cachep->nodelists[node];
2136 if (l3) { 2186 if (l3) {
2137 spin_lock_irq(&l3->list_lock); 2187 drain_array(cachep, l3, l3->shared, 1, node);
2138 drain_array_locked(cachep, l3->shared, 1, node);
2139 spin_unlock_irq(&l3->list_lock);
2140 if (l3->alien) 2188 if (l3->alien)
2141 drain_alien_cache(cachep, l3->alien); 2189 drain_alien_cache(cachep, l3->alien);
2142 } 2190 }
@@ -2260,16 +2308,15 @@ int kmem_cache_destroy(struct kmem_cache *cachep)
2260 2308
2261 /* NUMA: free the list3 structures */ 2309 /* NUMA: free the list3 structures */
2262 for_each_online_node(i) { 2310 for_each_online_node(i) {
2263 if ((l3 = cachep->nodelists[i])) { 2311 l3 = cachep->nodelists[i];
2312 if (l3) {
2264 kfree(l3->shared); 2313 kfree(l3->shared);
2265 free_alien_cache(l3->alien); 2314 free_alien_cache(l3->alien);
2266 kfree(l3); 2315 kfree(l3);
2267 } 2316 }
2268 } 2317 }
2269 kmem_cache_free(&cache_cache, cachep); 2318 kmem_cache_free(&cache_cache, cachep);
2270
2271 unlock_cpu_hotplug(); 2319 unlock_cpu_hotplug();
2272
2273 return 0; 2320 return 0;
2274} 2321}
2275EXPORT_SYMBOL(kmem_cache_destroy); 2322EXPORT_SYMBOL(kmem_cache_destroy);
@@ -2292,7 +2339,6 @@ static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2292 slabp->inuse = 0; 2339 slabp->inuse = 0;
2293 slabp->colouroff = colour_off; 2340 slabp->colouroff = colour_off;
2294 slabp->s_mem = objp + colour_off; 2341 slabp->s_mem = objp + colour_off;
2295
2296 return slabp; 2342 return slabp;
2297} 2343}
2298 2344
@@ -2307,7 +2353,7 @@ static void cache_init_objs(struct kmem_cache *cachep,
2307 int i; 2353 int i;
2308 2354
2309 for (i = 0; i < cachep->num; i++) { 2355 for (i = 0; i < cachep->num; i++) {
2310 void *objp = slabp->s_mem + cachep->buffer_size * i; 2356 void *objp = index_to_obj(cachep, slabp, i);
2311#if DEBUG 2357#if DEBUG
2312 /* need to poison the objs? */ 2358 /* need to poison the objs? */
2313 if (cachep->flags & SLAB_POISON) 2359 if (cachep->flags & SLAB_POISON)
@@ -2320,9 +2366,9 @@ static void cache_init_objs(struct kmem_cache *cachep,
2320 *dbg_redzone2(cachep, objp) = RED_INACTIVE; 2366 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2321 } 2367 }
2322 /* 2368 /*
2323 * Constructors are not allowed to allocate memory from 2369 * Constructors are not allowed to allocate memory from the same
2324 * the same cache which they are a constructor for. 2370 * cache which they are a constructor for. Otherwise, deadlock.
2325 * Otherwise, deadlock. They must also be threaded. 2371 * They must also be threaded.
2326 */ 2372 */
2327 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) 2373 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2328 cachep->ctor(objp + obj_offset(cachep), cachep, 2374 cachep->ctor(objp + obj_offset(cachep), cachep,
@@ -2336,8 +2382,8 @@ static void cache_init_objs(struct kmem_cache *cachep,
2336 slab_error(cachep, "constructor overwrote the" 2382 slab_error(cachep, "constructor overwrote the"
2337 " start of an object"); 2383 " start of an object");
2338 } 2384 }
2339 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep) 2385 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2340 && cachep->flags & SLAB_POISON) 2386 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2341 kernel_map_pages(virt_to_page(objp), 2387 kernel_map_pages(virt_to_page(objp),
2342 cachep->buffer_size / PAGE_SIZE, 0); 2388 cachep->buffer_size / PAGE_SIZE, 0);
2343#else 2389#else
@@ -2352,18 +2398,16 @@ static void cache_init_objs(struct kmem_cache *cachep,
2352 2398
2353static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags) 2399static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2354{ 2400{
2355 if (flags & SLAB_DMA) { 2401 if (flags & SLAB_DMA)
2356 if (!(cachep->gfpflags & GFP_DMA)) 2402 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2357 BUG(); 2403 else
2358 } else { 2404 BUG_ON(cachep->gfpflags & GFP_DMA);
2359 if (cachep->gfpflags & GFP_DMA)
2360 BUG();
2361 }
2362} 2405}
2363 2406
2364static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp, int nodeid) 2407static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2408 int nodeid)
2365{ 2409{
2366 void *objp = slabp->s_mem + (slabp->free * cachep->buffer_size); 2410 void *objp = index_to_obj(cachep, slabp, slabp->free);
2367 kmem_bufctl_t next; 2411 kmem_bufctl_t next;
2368 2412
2369 slabp->inuse++; 2413 slabp->inuse++;
@@ -2377,18 +2421,18 @@ static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp, int nod
2377 return objp; 2421 return objp;
2378} 2422}
2379 2423
2380static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp, void *objp, 2424static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2381 int nodeid) 2425 void *objp, int nodeid)
2382{ 2426{
2383 unsigned int objnr = (unsigned)(objp-slabp->s_mem) / cachep->buffer_size; 2427 unsigned int objnr = obj_to_index(cachep, slabp, objp);
2384 2428
2385#if DEBUG 2429#if DEBUG
2386 /* Verify that the slab belongs to the intended node */ 2430 /* Verify that the slab belongs to the intended node */
2387 WARN_ON(slabp->nodeid != nodeid); 2431 WARN_ON(slabp->nodeid != nodeid);
2388 2432
2389 if (slab_bufctl(slabp)[objnr] != BUFCTL_FREE) { 2433 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2390 printk(KERN_ERR "slab: double free detected in cache " 2434 printk(KERN_ERR "slab: double free detected in cache "
2391 "'%s', objp %p\n", cachep->name, objp); 2435 "'%s', objp %p\n", cachep->name, objp);
2392 BUG(); 2436 BUG();
2393 } 2437 }
2394#endif 2438#endif
@@ -2397,14 +2441,18 @@ static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp, void *ob
2397 slabp->inuse--; 2441 slabp->inuse--;
2398} 2442}
2399 2443
2400static void set_slab_attr(struct kmem_cache *cachep, struct slab *slabp, void *objp) 2444static void set_slab_attr(struct kmem_cache *cachep, struct slab *slabp,
2445 void *objp)
2401{ 2446{
2402 int i; 2447 int i;
2403 struct page *page; 2448 struct page *page;
2404 2449
2405 /* Nasty!!!!!! I hope this is OK. */ 2450 /* Nasty!!!!!! I hope this is OK. */
2406 i = 1 << cachep->gfporder;
2407 page = virt_to_page(objp); 2451 page = virt_to_page(objp);
2452
2453 i = 1;
2454 if (likely(!PageCompound(page)))
2455 i <<= cachep->gfporder;
2408 do { 2456 do {
2409 page_set_cache(page, cachep); 2457 page_set_cache(page, cachep);
2410 page_set_slab(page, slabp); 2458 page_set_slab(page, slabp);
@@ -2425,8 +2473,9 @@ static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
2425 unsigned long ctor_flags; 2473 unsigned long ctor_flags;
2426 struct kmem_list3 *l3; 2474 struct kmem_list3 *l3;
2427 2475
2428 /* Be lazy and only check for valid flags here, 2476 /*
2429 * keeping it out of the critical path in kmem_cache_alloc(). 2477 * Be lazy and only check for valid flags here, keeping it out of the
2478 * critical path in kmem_cache_alloc().
2430 */ 2479 */
2431 if (flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW)) 2480 if (flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW))
2432 BUG(); 2481 BUG();
@@ -2467,14 +2516,17 @@ static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
2467 */ 2516 */
2468 kmem_flagcheck(cachep, flags); 2517 kmem_flagcheck(cachep, flags);
2469 2518
2470 /* Get mem for the objs. 2519 /*
2471 * Attempt to allocate a physical page from 'nodeid', 2520 * Get mem for the objs. Attempt to allocate a physical page from
2521 * 'nodeid'.
2472 */ 2522 */
2473 if (!(objp = kmem_getpages(cachep, flags, nodeid))) 2523 objp = kmem_getpages(cachep, flags, nodeid);
2524 if (!objp)
2474 goto failed; 2525 goto failed;
2475 2526
2476 /* Get slab management. */ 2527 /* Get slab management. */
2477 if (!(slabp = alloc_slabmgmt(cachep, objp, offset, local_flags))) 2528 slabp = alloc_slabmgmt(cachep, objp, offset, local_flags);
2529 if (!slabp)
2478 goto opps1; 2530 goto opps1;
2479 2531
2480 slabp->nodeid = nodeid; 2532 slabp->nodeid = nodeid;
@@ -2493,9 +2545,9 @@ static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
2493 l3->free_objects += cachep->num; 2545 l3->free_objects += cachep->num;
2494 spin_unlock(&l3->list_lock); 2546 spin_unlock(&l3->list_lock);
2495 return 1; 2547 return 1;
2496 opps1: 2548opps1:
2497 kmem_freepages(cachep, objp); 2549 kmem_freepages(cachep, objp);
2498 failed: 2550failed:
2499 if (local_flags & __GFP_WAIT) 2551 if (local_flags & __GFP_WAIT)
2500 local_irq_disable(); 2552 local_irq_disable();
2501 return 0; 2553 return 0;
@@ -2538,8 +2590,8 @@ static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2538 page = virt_to_page(objp); 2590 page = virt_to_page(objp);
2539 2591
2540 if (page_get_cache(page) != cachep) { 2592 if (page_get_cache(page) != cachep) {
2541 printk(KERN_ERR 2593 printk(KERN_ERR "mismatch in kmem_cache_free: expected "
2542 "mismatch in kmem_cache_free: expected cache %p, got %p\n", 2594 "cache %p, got %p\n",
2543 page_get_cache(page), cachep); 2595 page_get_cache(page), cachep);
2544 printk(KERN_ERR "%p is %s.\n", cachep, cachep->name); 2596 printk(KERN_ERR "%p is %s.\n", cachep, cachep->name);
2545 printk(KERN_ERR "%p is %s.\n", page_get_cache(page), 2597 printk(KERN_ERR "%p is %s.\n", page_get_cache(page),
@@ -2549,13 +2601,12 @@ static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2549 slabp = page_get_slab(page); 2601 slabp = page_get_slab(page);
2550 2602
2551 if (cachep->flags & SLAB_RED_ZONE) { 2603 if (cachep->flags & SLAB_RED_ZONE) {
2552 if (*dbg_redzone1(cachep, objp) != RED_ACTIVE 2604 if (*dbg_redzone1(cachep, objp) != RED_ACTIVE ||
2553 || *dbg_redzone2(cachep, objp) != RED_ACTIVE) { 2605 *dbg_redzone2(cachep, objp) != RED_ACTIVE) {
2554 slab_error(cachep, 2606 slab_error(cachep, "double free, or memory outside"
2555 "double free, or memory outside" 2607 " object was overwritten");
2556 " object was overwritten"); 2608 printk(KERN_ERR "%p: redzone 1:0x%lx, "
2557 printk(KERN_ERR 2609 "redzone 2:0x%lx.\n",
2558 "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
2559 objp, *dbg_redzone1(cachep, objp), 2610 objp, *dbg_redzone1(cachep, objp),
2560 *dbg_redzone2(cachep, objp)); 2611 *dbg_redzone2(cachep, objp));
2561 } 2612 }
@@ -2565,15 +2616,16 @@ static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2565 if (cachep->flags & SLAB_STORE_USER) 2616 if (cachep->flags & SLAB_STORE_USER)
2566 *dbg_userword(cachep, objp) = caller; 2617 *dbg_userword(cachep, objp) = caller;
2567 2618
2568 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size; 2619 objnr = obj_to_index(cachep, slabp, objp);
2569 2620
2570 BUG_ON(objnr >= cachep->num); 2621 BUG_ON(objnr >= cachep->num);
2571 BUG_ON(objp != slabp->s_mem + objnr * cachep->buffer_size); 2622 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
2572 2623
2573 if (cachep->flags & SLAB_DEBUG_INITIAL) { 2624 if (cachep->flags & SLAB_DEBUG_INITIAL) {
2574 /* Need to call the slab's constructor so the 2625 /*
2575 * caller can perform a verify of its state (debugging). 2626 * Need to call the slab's constructor so the caller can
2576 * Called without the cache-lock held. 2627 * perform a verify of its state (debugging). Called without
2628 * the cache-lock held.
2577 */ 2629 */
2578 cachep->ctor(objp + obj_offset(cachep), 2630 cachep->ctor(objp + obj_offset(cachep),
2579 cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY); 2631 cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
@@ -2584,9 +2636,12 @@ static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2584 */ 2636 */
2585 cachep->dtor(objp + obj_offset(cachep), cachep, 0); 2637 cachep->dtor(objp + obj_offset(cachep), cachep, 0);
2586 } 2638 }
2639#ifdef CONFIG_DEBUG_SLAB_LEAK
2640 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2641#endif
2587 if (cachep->flags & SLAB_POISON) { 2642 if (cachep->flags & SLAB_POISON) {
2588#ifdef CONFIG_DEBUG_PAGEALLOC 2643#ifdef CONFIG_DEBUG_PAGEALLOC
2589 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) { 2644 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2590 store_stackinfo(cachep, objp, (unsigned long)caller); 2645 store_stackinfo(cachep, objp, (unsigned long)caller);
2591 kernel_map_pages(virt_to_page(objp), 2646 kernel_map_pages(virt_to_page(objp),
2592 cachep->buffer_size / PAGE_SIZE, 0); 2647 cachep->buffer_size / PAGE_SIZE, 0);
@@ -2612,14 +2667,14 @@ static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
2612 goto bad; 2667 goto bad;
2613 } 2668 }
2614 if (entries != cachep->num - slabp->inuse) { 2669 if (entries != cachep->num - slabp->inuse) {
2615 bad: 2670bad:
2616 printk(KERN_ERR 2671 printk(KERN_ERR "slab: Internal list corruption detected in "
2617 "slab: Internal list corruption detected in cache '%s'(%d), slabp %p(%d). Hexdump:\n", 2672 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2618 cachep->name, cachep->num, slabp, slabp->inuse); 2673 cachep->name, cachep->num, slabp, slabp->inuse);
2619 for (i = 0; 2674 for (i = 0;
2620 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t); 2675 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
2621 i++) { 2676 i++) {
2622 if ((i % 16) == 0) 2677 if (i % 16 == 0)
2623 printk("\n%03x:", i); 2678 printk("\n%03x:", i);
2624 printk(" %02x", ((unsigned char *)slabp)[i]); 2679 printk(" %02x", ((unsigned char *)slabp)[i]);
2625 } 2680 }
@@ -2641,12 +2696,13 @@ static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2641 2696
2642 check_irq_off(); 2697 check_irq_off();
2643 ac = cpu_cache_get(cachep); 2698 ac = cpu_cache_get(cachep);
2644 retry: 2699retry:
2645 batchcount = ac->batchcount; 2700 batchcount = ac->batchcount;
2646 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) { 2701 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2647 /* if there was little recent activity on this 2702 /*
2648 * cache, then perform only a partial refill. 2703 * If there was little recent activity on this cache, then
2649 * Otherwise we could generate refill bouncing. 2704 * perform only a partial refill. Otherwise we could generate
2705 * refill bouncing.
2650 */ 2706 */
2651 batchcount = BATCHREFILL_LIMIT; 2707 batchcount = BATCHREFILL_LIMIT;
2652 } 2708 }
@@ -2655,20 +2711,10 @@ static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2655 BUG_ON(ac->avail > 0 || !l3); 2711 BUG_ON(ac->avail > 0 || !l3);
2656 spin_lock(&l3->list_lock); 2712 spin_lock(&l3->list_lock);
2657 2713
2658 if (l3->shared) { 2714 /* See if we can refill from the shared array */
2659 struct array_cache *shared_array = l3->shared; 2715 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2660 if (shared_array->avail) { 2716 goto alloc_done;
2661 if (batchcount > shared_array->avail) 2717
2662 batchcount = shared_array->avail;
2663 shared_array->avail -= batchcount;
2664 ac->avail = batchcount;
2665 memcpy(ac->entry,
2666 &(shared_array->entry[shared_array->avail]),
2667 sizeof(void *) * batchcount);
2668 shared_array->touched = 1;
2669 goto alloc_done;
2670 }
2671 }
2672 while (batchcount > 0) { 2718 while (batchcount > 0) {
2673 struct list_head *entry; 2719 struct list_head *entry;
2674 struct slab *slabp; 2720 struct slab *slabp;
@@ -2702,29 +2748,29 @@ static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2702 list_add(&slabp->list, &l3->slabs_partial); 2748 list_add(&slabp->list, &l3->slabs_partial);
2703 } 2749 }
2704 2750
2705 must_grow: 2751must_grow:
2706 l3->free_objects -= ac->avail; 2752 l3->free_objects -= ac->avail;
2707 alloc_done: 2753alloc_done:
2708 spin_unlock(&l3->list_lock); 2754 spin_unlock(&l3->list_lock);
2709 2755
2710 if (unlikely(!ac->avail)) { 2756 if (unlikely(!ac->avail)) {
2711 int x; 2757 int x;
2712 x = cache_grow(cachep, flags, numa_node_id()); 2758 x = cache_grow(cachep, flags, numa_node_id());
2713 2759
2714 // cache_grow can reenable interrupts, then ac could change. 2760 /* cache_grow can reenable interrupts, then ac could change. */
2715 ac = cpu_cache_get(cachep); 2761 ac = cpu_cache_get(cachep);
2716 if (!x && ac->avail == 0) // no objects in sight? abort 2762 if (!x && ac->avail == 0) /* no objects in sight? abort */
2717 return NULL; 2763 return NULL;
2718 2764
2719 if (!ac->avail) // objects refilled by interrupt? 2765 if (!ac->avail) /* objects refilled by interrupt? */
2720 goto retry; 2766 goto retry;
2721 } 2767 }
2722 ac->touched = 1; 2768 ac->touched = 1;
2723 return ac->entry[--ac->avail]; 2769 return ac->entry[--ac->avail];
2724} 2770}
2725 2771
2726static inline void 2772static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2727cache_alloc_debugcheck_before(struct kmem_cache *cachep, gfp_t flags) 2773 gfp_t flags)
2728{ 2774{
2729 might_sleep_if(flags & __GFP_WAIT); 2775 might_sleep_if(flags & __GFP_WAIT);
2730#if DEBUG 2776#if DEBUG
@@ -2733,8 +2779,8 @@ cache_alloc_debugcheck_before(struct kmem_cache *cachep, gfp_t flags)
2733} 2779}
2734 2780
2735#if DEBUG 2781#if DEBUG
2736static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, gfp_t flags, 2782static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2737 void *objp, void *caller) 2783 gfp_t flags, void *objp, void *caller)
2738{ 2784{
2739 if (!objp) 2785 if (!objp)
2740 return objp; 2786 return objp;
@@ -2754,19 +2800,28 @@ static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, gfp_t flags
2754 *dbg_userword(cachep, objp) = caller; 2800 *dbg_userword(cachep, objp) = caller;
2755 2801
2756 if (cachep->flags & SLAB_RED_ZONE) { 2802 if (cachep->flags & SLAB_RED_ZONE) {
2757 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE 2803 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2758 || *dbg_redzone2(cachep, objp) != RED_INACTIVE) { 2804 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2759 slab_error(cachep, 2805 slab_error(cachep, "double free, or memory outside"
2760 "double free, or memory outside" 2806 " object was overwritten");
2761 " object was overwritten");
2762 printk(KERN_ERR 2807 printk(KERN_ERR
2763 "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n", 2808 "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
2764 objp, *dbg_redzone1(cachep, objp), 2809 objp, *dbg_redzone1(cachep, objp),
2765 *dbg_redzone2(cachep, objp)); 2810 *dbg_redzone2(cachep, objp));
2766 } 2811 }
2767 *dbg_redzone1(cachep, objp) = RED_ACTIVE; 2812 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2768 *dbg_redzone2(cachep, objp) = RED_ACTIVE; 2813 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2769 } 2814 }
2815#ifdef CONFIG_DEBUG_SLAB_LEAK
2816 {
2817 struct slab *slabp;
2818 unsigned objnr;
2819
2820 slabp = page_get_slab(virt_to_page(objp));
2821 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
2822 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
2823 }
2824#endif
2770 objp += obj_offset(cachep); 2825 objp += obj_offset(cachep);
2771 if (cachep->ctor && cachep->flags & SLAB_POISON) { 2826 if (cachep->ctor && cachep->flags & SLAB_POISON) {
2772 unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR; 2827 unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
@@ -2788,11 +2843,10 @@ static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
2788 struct array_cache *ac; 2843 struct array_cache *ac;
2789 2844
2790#ifdef CONFIG_NUMA 2845#ifdef CONFIG_NUMA
2791 if (unlikely(current->mempolicy && !in_interrupt())) { 2846 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
2792 int nid = slab_node(current->mempolicy); 2847 objp = alternate_node_alloc(cachep, flags);
2793 2848 if (objp != NULL)
2794 if (nid != numa_node_id()) 2849 return objp;
2795 return __cache_alloc_node(cachep, flags, nid);
2796 } 2850 }
2797#endif 2851#endif
2798 2852
@@ -2809,8 +2863,8 @@ static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
2809 return objp; 2863 return objp;
2810} 2864}
2811 2865
2812static __always_inline void * 2866static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
2813__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller) 2867 gfp_t flags, void *caller)
2814{ 2868{
2815 unsigned long save_flags; 2869 unsigned long save_flags;
2816 void *objp; 2870 void *objp;
@@ -2828,9 +2882,32 @@ __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
2828 2882
2829#ifdef CONFIG_NUMA 2883#ifdef CONFIG_NUMA
2830/* 2884/*
2885 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
2886 *
2887 * If we are in_interrupt, then process context, including cpusets and
2888 * mempolicy, may not apply and should not be used for allocation policy.
2889 */
2890static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
2891{
2892 int nid_alloc, nid_here;
2893
2894 if (in_interrupt())
2895 return NULL;
2896 nid_alloc = nid_here = numa_node_id();
2897 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
2898 nid_alloc = cpuset_mem_spread_node();
2899 else if (current->mempolicy)
2900 nid_alloc = slab_node(current->mempolicy);
2901 if (nid_alloc != nid_here)
2902 return __cache_alloc_node(cachep, flags, nid_alloc);
2903 return NULL;
2904}
2905
2906/*
2831 * A interface to enable slab creation on nodeid 2907 * A interface to enable slab creation on nodeid
2832 */ 2908 */
2833static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid) 2909static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
2910 int nodeid)
2834{ 2911{
2835 struct list_head *entry; 2912 struct list_head *entry;
2836 struct slab *slabp; 2913 struct slab *slabp;
@@ -2841,7 +2918,7 @@ static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int node
2841 l3 = cachep->nodelists[nodeid]; 2918 l3 = cachep->nodelists[nodeid];
2842 BUG_ON(!l3); 2919 BUG_ON(!l3);
2843 2920
2844 retry: 2921retry:
2845 check_irq_off(); 2922 check_irq_off();
2846 spin_lock(&l3->list_lock); 2923 spin_lock(&l3->list_lock);
2847 entry = l3->slabs_partial.next; 2924 entry = l3->slabs_partial.next;
@@ -2868,16 +2945,15 @@ static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int node
2868 /* move slabp to correct slabp list: */ 2945 /* move slabp to correct slabp list: */
2869 list_del(&slabp->list); 2946 list_del(&slabp->list);
2870 2947
2871 if (slabp->free == BUFCTL_END) { 2948 if (slabp->free == BUFCTL_END)
2872 list_add(&slabp->list, &l3->slabs_full); 2949 list_add(&slabp->list, &l3->slabs_full);
2873 } else { 2950 else
2874 list_add(&slabp->list, &l3->slabs_partial); 2951 list_add(&slabp->list, &l3->slabs_partial);
2875 }
2876 2952
2877 spin_unlock(&l3->list_lock); 2953 spin_unlock(&l3->list_lock);
2878 goto done; 2954 goto done;
2879 2955
2880 must_grow: 2956must_grow:
2881 spin_unlock(&l3->list_lock); 2957 spin_unlock(&l3->list_lock);
2882 x = cache_grow(cachep, flags, nodeid); 2958 x = cache_grow(cachep, flags, nodeid);
2883 2959
@@ -2885,7 +2961,7 @@ static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int node
2885 return NULL; 2961 return NULL;
2886 2962
2887 goto retry; 2963 goto retry;
2888 done: 2964done:
2889 return obj; 2965 return obj;
2890} 2966}
2891#endif 2967#endif
@@ -2958,7 +3034,7 @@ static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
2958 } 3034 }
2959 3035
2960 free_block(cachep, ac->entry, batchcount, node); 3036 free_block(cachep, ac->entry, batchcount, node);
2961 free_done: 3037free_done:
2962#if STATS 3038#if STATS
2963 { 3039 {
2964 int i = 0; 3040 int i = 0;
@@ -2979,16 +3055,12 @@ static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
2979#endif 3055#endif
2980 spin_unlock(&l3->list_lock); 3056 spin_unlock(&l3->list_lock);
2981 ac->avail -= batchcount; 3057 ac->avail -= batchcount;
2982 memmove(ac->entry, &(ac->entry[batchcount]), 3058 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
2983 sizeof(void *) * ac->avail);
2984} 3059}
2985 3060
2986/* 3061/*
2987 * __cache_free 3062 * Release an obj back to its cache. If the obj has a constructed state, it must
2988 * Release an obj back to its cache. If the obj has a constructed 3063 * be in this state _before_ it is released. Called with disabled ints.
2989 * state, it must be in this state _before_ it is released.
2990 *
2991 * Called with disabled ints.
2992 */ 3064 */
2993static inline void __cache_free(struct kmem_cache *cachep, void *objp) 3065static inline void __cache_free(struct kmem_cache *cachep, void *objp)
2994{ 3066{
@@ -3007,9 +3079,9 @@ static inline void __cache_free(struct kmem_cache *cachep, void *objp)
3007 if (unlikely(slabp->nodeid != numa_node_id())) { 3079 if (unlikely(slabp->nodeid != numa_node_id())) {
3008 struct array_cache *alien = NULL; 3080 struct array_cache *alien = NULL;
3009 int nodeid = slabp->nodeid; 3081 int nodeid = slabp->nodeid;
3010 struct kmem_list3 *l3 = 3082 struct kmem_list3 *l3;
3011 cachep->nodelists[numa_node_id()];
3012 3083
3084 l3 = cachep->nodelists[numa_node_id()];
3013 STATS_INC_NODEFREES(cachep); 3085 STATS_INC_NODEFREES(cachep);
3014 if (l3->alien && l3->alien[nodeid]) { 3086 if (l3->alien && l3->alien[nodeid]) {
3015 alien = l3->alien[nodeid]; 3087 alien = l3->alien[nodeid];
@@ -3056,6 +3128,23 @@ void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3056EXPORT_SYMBOL(kmem_cache_alloc); 3128EXPORT_SYMBOL(kmem_cache_alloc);
3057 3129
3058/** 3130/**
3131 * kmem_cache_alloc - Allocate an object. The memory is set to zero.
3132 * @cache: The cache to allocate from.
3133 * @flags: See kmalloc().
3134 *
3135 * Allocate an object from this cache and set the allocated memory to zero.
3136 * The flags are only relevant if the cache has no available objects.
3137 */
3138void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
3139{
3140 void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
3141 if (ret)
3142 memset(ret, 0, obj_size(cache));
3143 return ret;
3144}
3145EXPORT_SYMBOL(kmem_cache_zalloc);
3146
3147/**
3059 * kmem_ptr_validate - check if an untrusted pointer might 3148 * kmem_ptr_validate - check if an untrusted pointer might
3060 * be a slab entry. 3149 * be a slab entry.
3061 * @cachep: the cache we're checking against 3150 * @cachep: the cache we're checking against
@@ -3093,7 +3182,7 @@ int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
3093 if (unlikely(page_get_cache(page) != cachep)) 3182 if (unlikely(page_get_cache(page) != cachep))
3094 goto out; 3183 goto out;
3095 return 1; 3184 return 1;
3096 out: 3185out:
3097 return 0; 3186 return 0;
3098} 3187}
3099 3188
@@ -3119,7 +3208,7 @@ void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3119 local_irq_save(save_flags); 3208 local_irq_save(save_flags);
3120 3209
3121 if (nodeid == -1 || nodeid == numa_node_id() || 3210 if (nodeid == -1 || nodeid == numa_node_id() ||
3122 !cachep->nodelists[nodeid]) 3211 !cachep->nodelists[nodeid])
3123 ptr = ____cache_alloc(cachep, flags); 3212 ptr = ____cache_alloc(cachep, flags);
3124 else 3213 else
3125 ptr = __cache_alloc_node(cachep, flags, nodeid); 3214 ptr = __cache_alloc_node(cachep, flags, nodeid);
@@ -3148,6 +3237,7 @@ EXPORT_SYMBOL(kmalloc_node);
3148 * kmalloc - allocate memory 3237 * kmalloc - allocate memory
3149 * @size: how many bytes of memory are required. 3238 * @size: how many bytes of memory are required.
3150 * @flags: the type of memory to allocate. 3239 * @flags: the type of memory to allocate.
3240 * @caller: function caller for debug tracking of the caller
3151 * 3241 *
3152 * kmalloc is the normal method of allocating memory 3242 * kmalloc is the normal method of allocating memory
3153 * in the kernel. 3243 * in the kernel.
@@ -3181,22 +3271,23 @@ static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3181 return __cache_alloc(cachep, flags, caller); 3271 return __cache_alloc(cachep, flags, caller);
3182} 3272}
3183 3273
3184#ifndef CONFIG_DEBUG_SLAB
3185 3274
3186void *__kmalloc(size_t size, gfp_t flags) 3275void *__kmalloc(size_t size, gfp_t flags)
3187{ 3276{
3277#ifndef CONFIG_DEBUG_SLAB
3188 return __do_kmalloc(size, flags, NULL); 3278 return __do_kmalloc(size, flags, NULL);
3279#else
3280 return __do_kmalloc(size, flags, __builtin_return_address(0));
3281#endif
3189} 3282}
3190EXPORT_SYMBOL(__kmalloc); 3283EXPORT_SYMBOL(__kmalloc);
3191 3284
3192#else 3285#ifdef CONFIG_DEBUG_SLAB
3193
3194void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller) 3286void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3195{ 3287{
3196 return __do_kmalloc(size, flags, caller); 3288 return __do_kmalloc(size, flags, caller);
3197} 3289}
3198EXPORT_SYMBOL(__kmalloc_track_caller); 3290EXPORT_SYMBOL(__kmalloc_track_caller);
3199
3200#endif 3291#endif
3201 3292
3202#ifdef CONFIG_SMP 3293#ifdef CONFIG_SMP
@@ -3220,7 +3311,7 @@ void *__alloc_percpu(size_t size)
3220 * and we have no way of figuring out how to fix the array 3311 * and we have no way of figuring out how to fix the array
3221 * that we have allocated then.... 3312 * that we have allocated then....
3222 */ 3313 */
3223 for_each_cpu(i) { 3314 for_each_possible_cpu(i) {
3224 int node = cpu_to_node(i); 3315 int node = cpu_to_node(i);
3225 3316
3226 if (node_online(node)) 3317 if (node_online(node))
@@ -3236,7 +3327,7 @@ void *__alloc_percpu(size_t size)
3236 /* Catch derefs w/o wrappers */ 3327 /* Catch derefs w/o wrappers */
3237 return (void *)(~(unsigned long)pdata); 3328 return (void *)(~(unsigned long)pdata);
3238 3329
3239 unwind_oom: 3330unwind_oom:
3240 while (--i >= 0) { 3331 while (--i >= 0) {
3241 if (!cpu_possible(i)) 3332 if (!cpu_possible(i))
3242 continue; 3333 continue;
@@ -3307,7 +3398,7 @@ void free_percpu(const void *objp)
3307 /* 3398 /*
3308 * We allocate for all cpus so we cannot use for online cpu here. 3399 * We allocate for all cpus so we cannot use for online cpu here.
3309 */ 3400 */
3310 for_each_cpu(i) 3401 for_each_possible_cpu(i)
3311 kfree(p->ptrs[i]); 3402 kfree(p->ptrs[i]);
3312 kfree(p); 3403 kfree(p);
3313} 3404}
@@ -3327,61 +3418,86 @@ const char *kmem_cache_name(struct kmem_cache *cachep)
3327EXPORT_SYMBOL_GPL(kmem_cache_name); 3418EXPORT_SYMBOL_GPL(kmem_cache_name);
3328 3419
3329/* 3420/*
3330 * This initializes kmem_list3 for all nodes. 3421 * This initializes kmem_list3 or resizes varioius caches for all nodes.
3331 */ 3422 */
3332static int alloc_kmemlist(struct kmem_cache *cachep) 3423static int alloc_kmemlist(struct kmem_cache *cachep)
3333{ 3424{
3334 int node; 3425 int node;
3335 struct kmem_list3 *l3; 3426 struct kmem_list3 *l3;
3336 int err = 0; 3427 struct array_cache *new_shared;
3428 struct array_cache **new_alien;
3337 3429
3338 for_each_online_node(node) { 3430 for_each_online_node(node) {
3339 struct array_cache *nc = NULL, *new; 3431
3340 struct array_cache **new_alien = NULL; 3432 new_alien = alloc_alien_cache(node, cachep->limit);
3341#ifdef CONFIG_NUMA 3433 if (!new_alien)
3342 if (!(new_alien = alloc_alien_cache(node, cachep->limit)))
3343 goto fail; 3434 goto fail;
3344#endif 3435
3345 if (!(new = alloc_arraycache(node, (cachep->shared * 3436 new_shared = alloc_arraycache(node,
3346 cachep->batchcount), 3437 cachep->shared*cachep->batchcount,
3347 0xbaadf00d))) 3438 0xbaadf00d);
3439 if (!new_shared) {
3440 free_alien_cache(new_alien);
3348 goto fail; 3441 goto fail;
3349 if ((l3 = cachep->nodelists[node])) { 3442 }
3443
3444 l3 = cachep->nodelists[node];
3445 if (l3) {
3446 struct array_cache *shared = l3->shared;
3350 3447
3351 spin_lock_irq(&l3->list_lock); 3448 spin_lock_irq(&l3->list_lock);
3352 3449
3353 if ((nc = cachep->nodelists[node]->shared)) 3450 if (shared)
3354 free_block(cachep, nc->entry, nc->avail, node); 3451 free_block(cachep, shared->entry,
3452 shared->avail, node);
3355 3453
3356 l3->shared = new; 3454 l3->shared = new_shared;
3357 if (!cachep->nodelists[node]->alien) { 3455 if (!l3->alien) {
3358 l3->alien = new_alien; 3456 l3->alien = new_alien;
3359 new_alien = NULL; 3457 new_alien = NULL;
3360 } 3458 }
3361 l3->free_limit = (1 + nr_cpus_node(node)) * 3459 l3->free_limit = (1 + nr_cpus_node(node)) *
3362 cachep->batchcount + cachep->num; 3460 cachep->batchcount + cachep->num;
3363 spin_unlock_irq(&l3->list_lock); 3461 spin_unlock_irq(&l3->list_lock);
3364 kfree(nc); 3462 kfree(shared);
3365 free_alien_cache(new_alien); 3463 free_alien_cache(new_alien);
3366 continue; 3464 continue;
3367 } 3465 }
3368 if (!(l3 = kmalloc_node(sizeof(struct kmem_list3), 3466 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3369 GFP_KERNEL, node))) 3467 if (!l3) {
3468 free_alien_cache(new_alien);
3469 kfree(new_shared);
3370 goto fail; 3470 goto fail;
3471 }
3371 3472
3372 kmem_list3_init(l3); 3473 kmem_list3_init(l3);
3373 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 + 3474 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3374 ((unsigned long)cachep) % REAPTIMEOUT_LIST3; 3475 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3375 l3->shared = new; 3476 l3->shared = new_shared;
3376 l3->alien = new_alien; 3477 l3->alien = new_alien;
3377 l3->free_limit = (1 + nr_cpus_node(node)) * 3478 l3->free_limit = (1 + nr_cpus_node(node)) *
3378 cachep->batchcount + cachep->num; 3479 cachep->batchcount + cachep->num;
3379 cachep->nodelists[node] = l3; 3480 cachep->nodelists[node] = l3;
3380 } 3481 }
3381 return err; 3482 return 0;
3382 fail: 3483
3383 err = -ENOMEM; 3484fail:
3384 return err; 3485 if (!cachep->next.next) {
3486 /* Cache is not active yet. Roll back what we did */
3487 node--;
3488 while (node >= 0) {
3489 if (cachep->nodelists[node]) {
3490 l3 = cachep->nodelists[node];
3491
3492 kfree(l3->shared);
3493 free_alien_cache(l3->alien);
3494 kfree(l3);
3495 cachep->nodelists[node] = NULL;
3496 }
3497 node--;
3498 }
3499 }
3500 return -ENOMEM;
3385} 3501}
3386 3502
3387struct ccupdate_struct { 3503struct ccupdate_struct {
@@ -3391,7 +3507,7 @@ struct ccupdate_struct {
3391 3507
3392static void do_ccupdate_local(void *info) 3508static void do_ccupdate_local(void *info)
3393{ 3509{
3394 struct ccupdate_struct *new = (struct ccupdate_struct *)info; 3510 struct ccupdate_struct *new = info;
3395 struct array_cache *old; 3511 struct array_cache *old;
3396 3512
3397 check_irq_off(); 3513 check_irq_off();
@@ -3401,16 +3517,17 @@ static void do_ccupdate_local(void *info)
3401 new->new[smp_processor_id()] = old; 3517 new->new[smp_processor_id()] = old;
3402} 3518}
3403 3519
3404static int do_tune_cpucache(struct kmem_cache *cachep, int limit, int batchcount, 3520/* Always called with the cache_chain_mutex held */
3405 int shared) 3521static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3522 int batchcount, int shared)
3406{ 3523{
3407 struct ccupdate_struct new; 3524 struct ccupdate_struct new;
3408 int i, err; 3525 int i, err;
3409 3526
3410 memset(&new.new, 0, sizeof(new.new)); 3527 memset(&new.new, 0, sizeof(new.new));
3411 for_each_online_cpu(i) { 3528 for_each_online_cpu(i) {
3412 new.new[i] = 3529 new.new[i] = alloc_arraycache(cpu_to_node(i), limit,
3413 alloc_arraycache(cpu_to_node(i), limit, batchcount); 3530 batchcount);
3414 if (!new.new[i]) { 3531 if (!new.new[i]) {
3415 for (i--; i >= 0; i--) 3532 for (i--; i >= 0; i--)
3416 kfree(new.new[i]); 3533 kfree(new.new[i]);
@@ -3419,14 +3536,12 @@ static int do_tune_cpucache(struct kmem_cache *cachep, int limit, int batchcount
3419 } 3536 }
3420 new.cachep = cachep; 3537 new.cachep = cachep;
3421 3538
3422 smp_call_function_all_cpus(do_ccupdate_local, (void *)&new); 3539 on_each_cpu(do_ccupdate_local, (void *)&new, 1, 1);
3423 3540
3424 check_irq_on(); 3541 check_irq_on();
3425 spin_lock(&cachep->spinlock);
3426 cachep->batchcount = batchcount; 3542 cachep->batchcount = batchcount;
3427 cachep->limit = limit; 3543 cachep->limit = limit;
3428 cachep->shared = shared; 3544 cachep->shared = shared;
3429 spin_unlock(&cachep->spinlock);
3430 3545
3431 for_each_online_cpu(i) { 3546 for_each_online_cpu(i) {
3432 struct array_cache *ccold = new.new[i]; 3547 struct array_cache *ccold = new.new[i];
@@ -3447,15 +3562,17 @@ static int do_tune_cpucache(struct kmem_cache *cachep, int limit, int batchcount
3447 return 0; 3562 return 0;
3448} 3563}
3449 3564
3565/* Called with cache_chain_mutex held always */
3450static void enable_cpucache(struct kmem_cache *cachep) 3566static void enable_cpucache(struct kmem_cache *cachep)
3451{ 3567{
3452 int err; 3568 int err;
3453 int limit, shared; 3569 int limit, shared;
3454 3570
3455 /* The head array serves three purposes: 3571 /*
3572 * The head array serves three purposes:
3456 * - create a LIFO ordering, i.e. return objects that are cache-warm 3573 * - create a LIFO ordering, i.e. return objects that are cache-warm
3457 * - reduce the number of spinlock operations. 3574 * - reduce the number of spinlock operations.
3458 * - reduce the number of linked list operations on the slab and 3575 * - reduce the number of linked list operations on the slab and
3459 * bufctl chains: array operations are cheaper. 3576 * bufctl chains: array operations are cheaper.
3460 * The numbers are guessed, we should auto-tune as described by 3577 * The numbers are guessed, we should auto-tune as described by
3461 * Bonwick. 3578 * Bonwick.
@@ -3471,7 +3588,8 @@ static void enable_cpucache(struct kmem_cache *cachep)
3471 else 3588 else
3472 limit = 120; 3589 limit = 120;
3473 3590
3474 /* Cpu bound tasks (e.g. network routing) can exhibit cpu bound 3591 /*
3592 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3475 * allocation behaviour: Most allocs on one cpu, most free operations 3593 * allocation behaviour: Most allocs on one cpu, most free operations
3476 * on another cpu. For these cases, an efficient object passing between 3594 * on another cpu. For these cases, an efficient object passing between
3477 * cpus is necessary. This is provided by a shared array. The array 3595 * cpus is necessary. This is provided by a shared array. The array
@@ -3486,9 +3604,9 @@ static void enable_cpucache(struct kmem_cache *cachep)
3486#endif 3604#endif
3487 3605
3488#if DEBUG 3606#if DEBUG
3489 /* With debugging enabled, large batchcount lead to excessively 3607 /*
3490 * long periods with disabled local interrupts. Limit the 3608 * With debugging enabled, large batchcount lead to excessively long
3491 * batchcount 3609 * periods with disabled local interrupts. Limit the batchcount
3492 */ 3610 */
3493 if (limit > 32) 3611 if (limit > 32)
3494 limit = 32; 3612 limit = 32;
@@ -3499,23 +3617,32 @@ static void enable_cpucache(struct kmem_cache *cachep)
3499 cachep->name, -err); 3617 cachep->name, -err);
3500} 3618}
3501 3619
3502static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac, 3620/*
3503 int force, int node) 3621 * Drain an array if it contains any elements taking the l3 lock only if
3622 * necessary. Note that the l3 listlock also protects the array_cache
3623 * if drain_array() is used on the shared array.
3624 */
3625void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
3626 struct array_cache *ac, int force, int node)
3504{ 3627{
3505 int tofree; 3628 int tofree;
3506 3629
3507 check_spinlock_acquired_node(cachep, node); 3630 if (!ac || !ac->avail)
3631 return;
3508 if (ac->touched && !force) { 3632 if (ac->touched && !force) {
3509 ac->touched = 0; 3633 ac->touched = 0;
3510 } else if (ac->avail) { 3634 } else {
3511 tofree = force ? ac->avail : (ac->limit + 4) / 5; 3635 spin_lock_irq(&l3->list_lock);
3512 if (tofree > ac->avail) { 3636 if (ac->avail) {
3513 tofree = (ac->avail + 1) / 2; 3637 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3638 if (tofree > ac->avail)
3639 tofree = (ac->avail + 1) / 2;
3640 free_block(cachep, ac->entry, tofree, node);
3641 ac->avail -= tofree;
3642 memmove(ac->entry, &(ac->entry[tofree]),
3643 sizeof(void *) * ac->avail);
3514 } 3644 }
3515 free_block(cachep, ac->entry, tofree, node); 3645 spin_unlock_irq(&l3->list_lock);
3516 ac->avail -= tofree;
3517 memmove(ac->entry, &(ac->entry[tofree]),
3518 sizeof(void *) * ac->avail);
3519 } 3646 }
3520} 3647}
3521 3648
@@ -3528,13 +3655,14 @@ static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac
3528 * - clear the per-cpu caches for this CPU. 3655 * - clear the per-cpu caches for this CPU.
3529 * - return freeable pages to the main free memory pool. 3656 * - return freeable pages to the main free memory pool.
3530 * 3657 *
3531 * If we cannot acquire the cache chain mutex then just give up - we'll 3658 * If we cannot acquire the cache chain mutex then just give up - we'll try
3532 * try again on the next iteration. 3659 * again on the next iteration.
3533 */ 3660 */
3534static void cache_reap(void *unused) 3661static void cache_reap(void *unused)
3535{ 3662{
3536 struct list_head *walk; 3663 struct list_head *walk;
3537 struct kmem_list3 *l3; 3664 struct kmem_list3 *l3;
3665 int node = numa_node_id();
3538 3666
3539 if (!mutex_trylock(&cache_chain_mutex)) { 3667 if (!mutex_trylock(&cache_chain_mutex)) {
3540 /* Give up. Setup the next iteration. */ 3668 /* Give up. Setup the next iteration. */
@@ -3550,65 +3678,72 @@ static void cache_reap(void *unused)
3550 struct slab *slabp; 3678 struct slab *slabp;
3551 3679
3552 searchp = list_entry(walk, struct kmem_cache, next); 3680 searchp = list_entry(walk, struct kmem_cache, next);
3553
3554 if (searchp->flags & SLAB_NO_REAP)
3555 goto next;
3556
3557 check_irq_on(); 3681 check_irq_on();
3558 3682
3559 l3 = searchp->nodelists[numa_node_id()]; 3683 /*
3684 * We only take the l3 lock if absolutely necessary and we
3685 * have established with reasonable certainty that
3686 * we can do some work if the lock was obtained.
3687 */
3688 l3 = searchp->nodelists[node];
3689
3560 reap_alien(searchp, l3); 3690 reap_alien(searchp, l3);
3561 spin_lock_irq(&l3->list_lock);
3562 3691
3563 drain_array_locked(searchp, cpu_cache_get(searchp), 0, 3692 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
3564 numa_node_id());
3565 3693
3694 /*
3695 * These are racy checks but it does not matter
3696 * if we skip one check or scan twice.
3697 */
3566 if (time_after(l3->next_reap, jiffies)) 3698 if (time_after(l3->next_reap, jiffies))
3567 goto next_unlock; 3699 goto next;
3568 3700
3569 l3->next_reap = jiffies + REAPTIMEOUT_LIST3; 3701 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
3570 3702
3571 if (l3->shared) 3703 drain_array(searchp, l3, l3->shared, 0, node);
3572 drain_array_locked(searchp, l3->shared, 0,
3573 numa_node_id());
3574 3704
3575 if (l3->free_touched) { 3705 if (l3->free_touched) {
3576 l3->free_touched = 0; 3706 l3->free_touched = 0;
3577 goto next_unlock; 3707 goto next;
3578 } 3708 }
3579 3709
3580 tofree = 3710 tofree = (l3->free_limit + 5 * searchp->num - 1) /
3581 (l3->free_limit + 5 * searchp->num - 3711 (5 * searchp->num);
3582 1) / (5 * searchp->num);
3583 do { 3712 do {
3713 /*
3714 * Do not lock if there are no free blocks.
3715 */
3716 if (list_empty(&l3->slabs_free))
3717 break;
3718
3719 spin_lock_irq(&l3->list_lock);
3584 p = l3->slabs_free.next; 3720 p = l3->slabs_free.next;
3585 if (p == &(l3->slabs_free)) 3721 if (p == &(l3->slabs_free)) {
3722 spin_unlock_irq(&l3->list_lock);
3586 break; 3723 break;
3724 }
3587 3725
3588 slabp = list_entry(p, struct slab, list); 3726 slabp = list_entry(p, struct slab, list);
3589 BUG_ON(slabp->inuse); 3727 BUG_ON(slabp->inuse);
3590 list_del(&slabp->list); 3728 list_del(&slabp->list);
3591 STATS_INC_REAPED(searchp); 3729 STATS_INC_REAPED(searchp);
3592 3730
3593 /* Safe to drop the lock. The slab is no longer 3731 /*
3594 * linked to the cache. 3732 * Safe to drop the lock. The slab is no longer linked
3595 * searchp cannot disappear, we hold 3733 * to the cache. searchp cannot disappear, we hold
3596 * cache_chain_lock 3734 * cache_chain_lock
3597 */ 3735 */
3598 l3->free_objects -= searchp->num; 3736 l3->free_objects -= searchp->num;
3599 spin_unlock_irq(&l3->list_lock); 3737 spin_unlock_irq(&l3->list_lock);
3600 slab_destroy(searchp, slabp); 3738 slab_destroy(searchp, slabp);
3601 spin_lock_irq(&l3->list_lock);
3602 } while (--tofree > 0); 3739 } while (--tofree > 0);
3603 next_unlock: 3740next:
3604 spin_unlock_irq(&l3->list_lock);
3605 next:
3606 cond_resched(); 3741 cond_resched();
3607 } 3742 }
3608 check_irq_on(); 3743 check_irq_on();
3609 mutex_unlock(&cache_chain_mutex); 3744 mutex_unlock(&cache_chain_mutex);
3610 next_reap_node(); 3745 next_reap_node();
3611 /* Setup the next iteration */ 3746 /* Set up the next iteration */
3612 schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC); 3747 schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
3613} 3748}
3614 3749
@@ -3658,8 +3793,8 @@ static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3658{ 3793{
3659 struct kmem_cache *cachep = p; 3794 struct kmem_cache *cachep = p;
3660 ++*pos; 3795 ++*pos;
3661 return cachep->next.next == &cache_chain ? NULL 3796 return cachep->next.next == &cache_chain ?
3662 : list_entry(cachep->next.next, struct kmem_cache, next); 3797 NULL : list_entry(cachep->next.next, struct kmem_cache, next);
3663} 3798}
3664 3799
3665static void s_stop(struct seq_file *m, void *p) 3800static void s_stop(struct seq_file *m, void *p)
@@ -3681,7 +3816,6 @@ static int s_show(struct seq_file *m, void *p)
3681 int node; 3816 int node;
3682 struct kmem_list3 *l3; 3817 struct kmem_list3 *l3;
3683 3818
3684 spin_lock(&cachep->spinlock);
3685 active_objs = 0; 3819 active_objs = 0;
3686 num_slabs = 0; 3820 num_slabs = 0;
3687 for_each_online_node(node) { 3821 for_each_online_node(node) {
@@ -3748,7 +3882,9 @@ static int s_show(struct seq_file *m, void *p)
3748 unsigned long node_frees = cachep->node_frees; 3882 unsigned long node_frees = cachep->node_frees;
3749 3883
3750 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \ 3884 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
3751 %4lu %4lu %4lu %4lu", allocs, high, grown, reaped, errors, max_freeable, node_allocs, node_frees); 3885 %4lu %4lu %4lu %4lu", allocs, high, grown,
3886 reaped, errors, max_freeable, node_allocs,
3887 node_frees);
3752 } 3888 }
3753 /* cpu stats */ 3889 /* cpu stats */
3754 { 3890 {
@@ -3762,7 +3898,6 @@ static int s_show(struct seq_file *m, void *p)
3762 } 3898 }
3763#endif 3899#endif
3764 seq_putc(m, '\n'); 3900 seq_putc(m, '\n');
3765 spin_unlock(&cachep->spinlock);
3766 return 0; 3901 return 0;
3767} 3902}
3768 3903
@@ -3820,13 +3955,12 @@ ssize_t slabinfo_write(struct file *file, const char __user * buffer,
3820 mutex_lock(&cache_chain_mutex); 3955 mutex_lock(&cache_chain_mutex);
3821 res = -EINVAL; 3956 res = -EINVAL;
3822 list_for_each(p, &cache_chain) { 3957 list_for_each(p, &cache_chain) {
3823 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, 3958 struct kmem_cache *cachep;
3824 next);
3825 3959
3960 cachep = list_entry(p, struct kmem_cache, next);
3826 if (!strcmp(cachep->name, kbuf)) { 3961 if (!strcmp(cachep->name, kbuf)) {
3827 if (limit < 1 || 3962 if (limit < 1 || batchcount < 1 ||
3828 batchcount < 1 || 3963 batchcount > limit || shared < 0) {
3829 batchcount > limit || shared < 0) {
3830 res = 0; 3964 res = 0;
3831 } else { 3965 } else {
3832 res = do_tune_cpucache(cachep, limit, 3966 res = do_tune_cpucache(cachep, limit,
@@ -3840,6 +3974,159 @@ ssize_t slabinfo_write(struct file *file, const char __user * buffer,
3840 res = count; 3974 res = count;
3841 return res; 3975 return res;
3842} 3976}
3977
3978#ifdef CONFIG_DEBUG_SLAB_LEAK
3979
3980static void *leaks_start(struct seq_file *m, loff_t *pos)
3981{
3982 loff_t n = *pos;
3983 struct list_head *p;
3984
3985 mutex_lock(&cache_chain_mutex);
3986 p = cache_chain.next;
3987 while (n--) {
3988 p = p->next;
3989 if (p == &cache_chain)
3990 return NULL;
3991 }
3992 return list_entry(p, struct kmem_cache, next);
3993}
3994
3995static inline int add_caller(unsigned long *n, unsigned long v)
3996{
3997 unsigned long *p;
3998 int l;
3999 if (!v)
4000 return 1;
4001 l = n[1];
4002 p = n + 2;
4003 while (l) {
4004 int i = l/2;
4005 unsigned long *q = p + 2 * i;
4006 if (*q == v) {
4007 q[1]++;
4008 return 1;
4009 }
4010 if (*q > v) {
4011 l = i;
4012 } else {
4013 p = q + 2;
4014 l -= i + 1;
4015 }
4016 }
4017 if (++n[1] == n[0])
4018 return 0;
4019 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4020 p[0] = v;
4021 p[1] = 1;
4022 return 1;
4023}
4024
4025static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4026{
4027 void *p;
4028 int i;
4029 if (n[0] == n[1])
4030 return;
4031 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4032 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4033 continue;
4034 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4035 return;
4036 }
4037}
4038
4039static void show_symbol(struct seq_file *m, unsigned long address)
4040{
4041#ifdef CONFIG_KALLSYMS
4042 char *modname;
4043 const char *name;
4044 unsigned long offset, size;
4045 char namebuf[KSYM_NAME_LEN+1];
4046
4047 name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);
4048
4049 if (name) {
4050 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4051 if (modname)
4052 seq_printf(m, " [%s]", modname);
4053 return;
4054 }
4055#endif
4056 seq_printf(m, "%p", (void *)address);
4057}
4058
4059static int leaks_show(struct seq_file *m, void *p)
4060{
4061 struct kmem_cache *cachep = p;
4062 struct list_head *q;
4063 struct slab *slabp;
4064 struct kmem_list3 *l3;
4065 const char *name;
4066 unsigned long *n = m->private;
4067 int node;
4068 int i;
4069
4070 if (!(cachep->flags & SLAB_STORE_USER))
4071 return 0;
4072 if (!(cachep->flags & SLAB_RED_ZONE))
4073 return 0;
4074
4075 /* OK, we can do it */
4076
4077 n[1] = 0;
4078
4079 for_each_online_node(node) {
4080 l3 = cachep->nodelists[node];
4081 if (!l3)
4082 continue;
4083
4084 check_irq_on();
4085 spin_lock_irq(&l3->list_lock);
4086
4087 list_for_each(q, &l3->slabs_full) {
4088 slabp = list_entry(q, struct slab, list);
4089 handle_slab(n, cachep, slabp);
4090 }
4091 list_for_each(q, &l3->slabs_partial) {
4092 slabp = list_entry(q, struct slab, list);
4093 handle_slab(n, cachep, slabp);
4094 }
4095 spin_unlock_irq(&l3->list_lock);
4096 }
4097 name = cachep->name;
4098 if (n[0] == n[1]) {
4099 /* Increase the buffer size */
4100 mutex_unlock(&cache_chain_mutex);
4101 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4102 if (!m->private) {
4103 /* Too bad, we are really out */
4104 m->private = n;
4105 mutex_lock(&cache_chain_mutex);
4106 return -ENOMEM;
4107 }
4108 *(unsigned long *)m->private = n[0] * 2;
4109 kfree(n);
4110 mutex_lock(&cache_chain_mutex);
4111 /* Now make sure this entry will be retried */
4112 m->count = m->size;
4113 return 0;
4114 }
4115 for (i = 0; i < n[1]; i++) {
4116 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4117 show_symbol(m, n[2*i+2]);
4118 seq_putc(m, '\n');
4119 }
4120 return 0;
4121}
4122
4123struct seq_operations slabstats_op = {
4124 .start = leaks_start,
4125 .next = s_next,
4126 .stop = s_stop,
4127 .show = leaks_show,
4128};
4129#endif
3843#endif 4130#endif
3844 4131
3845/** 4132/**