diff options
Diffstat (limited to 'kernel')
57 files changed, 5814 insertions, 2778 deletions
diff --git a/kernel/Makefile b/kernel/Makefile index 4ae0fbde81..58908f9d15 100644 --- a/kernel/Makefile +++ b/kernel/Makefile | |||
@@ -12,6 +12,9 @@ obj-y = sched.o fork.o exec_domain.o panic.o printk.o profile.o \ | |||
12 | 12 | ||
13 | obj-$(CONFIG_DEBUG_MUTEXES) += mutex-debug.o | 13 | obj-$(CONFIG_DEBUG_MUTEXES) += mutex-debug.o |
14 | obj-$(CONFIG_FUTEX) += futex.o | 14 | obj-$(CONFIG_FUTEX) += futex.o |
15 | ifeq ($(CONFIG_COMPAT),y) | ||
16 | obj-$(CONFIG_FUTEX) += futex_compat.o | ||
17 | endif | ||
15 | obj-$(CONFIG_GENERIC_ISA_DMA) += dma.o | 18 | obj-$(CONFIG_GENERIC_ISA_DMA) += dma.o |
16 | obj-$(CONFIG_SMP) += cpu.o spinlock.o | 19 | obj-$(CONFIG_SMP) += cpu.o spinlock.o |
17 | obj-$(CONFIG_DEBUG_SPINLOCK) += spinlock.o | 20 | obj-$(CONFIG_DEBUG_SPINLOCK) += spinlock.o |
@@ -26,7 +29,7 @@ obj-$(CONFIG_COMPAT) += compat.o | |||
26 | obj-$(CONFIG_CPUSETS) += cpuset.o | 29 | obj-$(CONFIG_CPUSETS) += cpuset.o |
27 | obj-$(CONFIG_IKCONFIG) += configs.o | 30 | obj-$(CONFIG_IKCONFIG) += configs.o |
28 | obj-$(CONFIG_STOP_MACHINE) += stop_machine.o | 31 | obj-$(CONFIG_STOP_MACHINE) += stop_machine.o |
29 | obj-$(CONFIG_AUDIT) += audit.o | 32 | obj-$(CONFIG_AUDIT) += audit.o auditfilter.o |
30 | obj-$(CONFIG_AUDITSYSCALL) += auditsc.o | 33 | obj-$(CONFIG_AUDITSYSCALL) += auditsc.o |
31 | obj-$(CONFIG_KPROBES) += kprobes.o | 34 | obj-$(CONFIG_KPROBES) += kprobes.o |
32 | obj-$(CONFIG_SYSFS) += ksysfs.o | 35 | obj-$(CONFIG_SYSFS) += ksysfs.o |
@@ -34,6 +37,7 @@ obj-$(CONFIG_DETECT_SOFTLOCKUP) += softlockup.o | |||
34 | obj-$(CONFIG_GENERIC_HARDIRQS) += irq/ | 37 | obj-$(CONFIG_GENERIC_HARDIRQS) += irq/ |
35 | obj-$(CONFIG_SECCOMP) += seccomp.o | 38 | obj-$(CONFIG_SECCOMP) += seccomp.o |
36 | obj-$(CONFIG_RCU_TORTURE_TEST) += rcutorture.o | 39 | obj-$(CONFIG_RCU_TORTURE_TEST) += rcutorture.o |
40 | obj-$(CONFIG_RELAY) += relay.o | ||
37 | 41 | ||
38 | ifneq ($(CONFIG_SCHED_NO_NO_OMIT_FRAME_POINTER),y) | 42 | ifneq ($(CONFIG_SCHED_NO_NO_OMIT_FRAME_POINTER),y) |
39 | # According to Alan Modra <alan@linuxcare.com.au>, the -fno-omit-frame-pointer is | 43 | # According to Alan Modra <alan@linuxcare.com.au>, the -fno-omit-frame-pointer is |
diff --git a/kernel/audit.c b/kernel/audit.c index 0a813d2883..04fe2e301b 100644 --- a/kernel/audit.c +++ b/kernel/audit.c | |||
@@ -52,6 +52,7 @@ | |||
52 | #include <linux/audit.h> | 52 | #include <linux/audit.h> |
53 | 53 | ||
54 | #include <net/sock.h> | 54 | #include <net/sock.h> |
55 | #include <net/netlink.h> | ||
55 | #include <linux/skbuff.h> | 56 | #include <linux/skbuff.h> |
56 | #include <linux/netlink.h> | 57 | #include <linux/netlink.h> |
57 | 58 | ||
@@ -72,7 +73,7 @@ static int audit_failure = AUDIT_FAIL_PRINTK; | |||
72 | * contains the (non-zero) pid. */ | 73 | * contains the (non-zero) pid. */ |
73 | int audit_pid; | 74 | int audit_pid; |
74 | 75 | ||
75 | /* If audit_limit is non-zero, limit the rate of sending audit records | 76 | /* If audit_rate_limit is non-zero, limit the rate of sending audit records |
76 | * to that number per second. This prevents DoS attacks, but results in | 77 | * to that number per second. This prevents DoS attacks, but results in |
77 | * audit records being dropped. */ | 78 | * audit records being dropped. */ |
78 | static int audit_rate_limit; | 79 | static int audit_rate_limit; |
@@ -102,7 +103,7 @@ static struct sock *audit_sock; | |||
102 | * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of | 103 | * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of |
103 | * being placed on the freelist). */ | 104 | * being placed on the freelist). */ |
104 | static DEFINE_SPINLOCK(audit_freelist_lock); | 105 | static DEFINE_SPINLOCK(audit_freelist_lock); |
105 | static int audit_freelist_count = 0; | 106 | static int audit_freelist_count; |
106 | static LIST_HEAD(audit_freelist); | 107 | static LIST_HEAD(audit_freelist); |
107 | 108 | ||
108 | static struct sk_buff_head audit_skb_queue; | 109 | static struct sk_buff_head audit_skb_queue; |
@@ -113,7 +114,7 @@ static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait); | |||
113 | /* The netlink socket is only to be read by 1 CPU, which lets us assume | 114 | /* The netlink socket is only to be read by 1 CPU, which lets us assume |
114 | * that list additions and deletions never happen simultaneously in | 115 | * that list additions and deletions never happen simultaneously in |
115 | * auditsc.c */ | 116 | * auditsc.c */ |
116 | DECLARE_MUTEX(audit_netlink_sem); | 117 | DEFINE_MUTEX(audit_netlink_mutex); |
117 | 118 | ||
118 | /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting | 119 | /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting |
119 | * audit records. Since printk uses a 1024 byte buffer, this buffer | 120 | * audit records. Since printk uses a 1024 byte buffer, this buffer |
@@ -142,7 +143,7 @@ static void audit_set_pid(struct audit_buffer *ab, pid_t pid) | |||
142 | nlh->nlmsg_pid = pid; | 143 | nlh->nlmsg_pid = pid; |
143 | } | 144 | } |
144 | 145 | ||
145 | static void audit_panic(const char *message) | 146 | void audit_panic(const char *message) |
146 | { | 147 | { |
147 | switch (audit_failure) | 148 | switch (audit_failure) |
148 | { | 149 | { |
@@ -186,8 +187,14 @@ static inline int audit_rate_check(void) | |||
186 | return retval; | 187 | return retval; |
187 | } | 188 | } |
188 | 189 | ||
189 | /* Emit at least 1 message per second, even if audit_rate_check is | 190 | /** |
190 | * throttling. */ | 191 | * audit_log_lost - conditionally log lost audit message event |
192 | * @message: the message stating reason for lost audit message | ||
193 | * | ||
194 | * Emit at least 1 message per second, even if audit_rate_check is | ||
195 | * throttling. | ||
196 | * Always increment the lost messages counter. | ||
197 | */ | ||
191 | void audit_log_lost(const char *message) | 198 | void audit_log_lost(const char *message) |
192 | { | 199 | { |
193 | static unsigned long last_msg = 0; | 200 | static unsigned long last_msg = 0; |
@@ -218,7 +225,6 @@ void audit_log_lost(const char *message) | |||
218 | audit_backlog_limit); | 225 | audit_backlog_limit); |
219 | audit_panic(message); | 226 | audit_panic(message); |
220 | } | 227 | } |
221 | |||
222 | } | 228 | } |
223 | 229 | ||
224 | static int audit_set_rate_limit(int limit, uid_t loginuid) | 230 | static int audit_set_rate_limit(int limit, uid_t loginuid) |
@@ -300,8 +306,22 @@ static int kauditd_thread(void *dummy) | |||
300 | remove_wait_queue(&kauditd_wait, &wait); | 306 | remove_wait_queue(&kauditd_wait, &wait); |
301 | } | 307 | } |
302 | } | 308 | } |
309 | return 0; | ||
303 | } | 310 | } |
304 | 311 | ||
312 | /** | ||
313 | * audit_send_reply - send an audit reply message via netlink | ||
314 | * @pid: process id to send reply to | ||
315 | * @seq: sequence number | ||
316 | * @type: audit message type | ||
317 | * @done: done (last) flag | ||
318 | * @multi: multi-part message flag | ||
319 | * @payload: payload data | ||
320 | * @size: payload size | ||
321 | * | ||
322 | * Allocates an skb, builds the netlink message, and sends it to the pid. | ||
323 | * No failure notifications. | ||
324 | */ | ||
305 | void audit_send_reply(int pid, int seq, int type, int done, int multi, | 325 | void audit_send_reply(int pid, int seq, int type, int done, int multi, |
306 | void *payload, int size) | 326 | void *payload, int size) |
307 | { | 327 | { |
@@ -342,15 +362,19 @@ static int audit_netlink_ok(kernel_cap_t eff_cap, u16 msg_type) | |||
342 | switch (msg_type) { | 362 | switch (msg_type) { |
343 | case AUDIT_GET: | 363 | case AUDIT_GET: |
344 | case AUDIT_LIST: | 364 | case AUDIT_LIST: |
365 | case AUDIT_LIST_RULES: | ||
345 | case AUDIT_SET: | 366 | case AUDIT_SET: |
346 | case AUDIT_ADD: | 367 | case AUDIT_ADD: |
368 | case AUDIT_ADD_RULE: | ||
347 | case AUDIT_DEL: | 369 | case AUDIT_DEL: |
370 | case AUDIT_DEL_RULE: | ||
348 | case AUDIT_SIGNAL_INFO: | 371 | case AUDIT_SIGNAL_INFO: |
349 | if (!cap_raised(eff_cap, CAP_AUDIT_CONTROL)) | 372 | if (!cap_raised(eff_cap, CAP_AUDIT_CONTROL)) |
350 | err = -EPERM; | 373 | err = -EPERM; |
351 | break; | 374 | break; |
352 | case AUDIT_USER: | 375 | case AUDIT_USER: |
353 | case AUDIT_FIRST_USER_MSG...AUDIT_LAST_USER_MSG: | 376 | case AUDIT_FIRST_USER_MSG...AUDIT_LAST_USER_MSG: |
377 | case AUDIT_FIRST_USER_MSG2...AUDIT_LAST_USER_MSG2: | ||
354 | if (!cap_raised(eff_cap, CAP_AUDIT_WRITE)) | 378 | if (!cap_raised(eff_cap, CAP_AUDIT_WRITE)) |
355 | err = -EPERM; | 379 | err = -EPERM; |
356 | break; | 380 | break; |
@@ -376,7 +400,8 @@ static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh) | |||
376 | if (err) | 400 | if (err) |
377 | return err; | 401 | return err; |
378 | 402 | ||
379 | /* As soon as there's any sign of userspace auditd, start kauditd to talk to it */ | 403 | /* As soon as there's any sign of userspace auditd, |
404 | * start kauditd to talk to it */ | ||
380 | if (!kauditd_task) | 405 | if (!kauditd_task) |
381 | kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd"); | 406 | kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd"); |
382 | if (IS_ERR(kauditd_task)) { | 407 | if (IS_ERR(kauditd_task)) { |
@@ -430,6 +455,7 @@ static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh) | |||
430 | break; | 455 | break; |
431 | case AUDIT_USER: | 456 | case AUDIT_USER: |
432 | case AUDIT_FIRST_USER_MSG...AUDIT_LAST_USER_MSG: | 457 | case AUDIT_FIRST_USER_MSG...AUDIT_LAST_USER_MSG: |
458 | case AUDIT_FIRST_USER_MSG2...AUDIT_LAST_USER_MSG2: | ||
433 | if (!audit_enabled && msg_type != AUDIT_USER_AVC) | 459 | if (!audit_enabled && msg_type != AUDIT_USER_AVC) |
434 | return 0; | 460 | return 0; |
435 | 461 | ||
@@ -448,12 +474,23 @@ static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh) | |||
448 | break; | 474 | break; |
449 | case AUDIT_ADD: | 475 | case AUDIT_ADD: |
450 | case AUDIT_DEL: | 476 | case AUDIT_DEL: |
451 | if (nlh->nlmsg_len < sizeof(struct audit_rule)) | 477 | if (nlmsg_len(nlh) < sizeof(struct audit_rule)) |
452 | return -EINVAL; | 478 | return -EINVAL; |
453 | /* fallthrough */ | 479 | /* fallthrough */ |
454 | case AUDIT_LIST: | 480 | case AUDIT_LIST: |
455 | err = audit_receive_filter(nlh->nlmsg_type, NETLINK_CB(skb).pid, | 481 | err = audit_receive_filter(nlh->nlmsg_type, NETLINK_CB(skb).pid, |
456 | uid, seq, data, loginuid); | 482 | uid, seq, data, nlmsg_len(nlh), |
483 | loginuid); | ||
484 | break; | ||
485 | case AUDIT_ADD_RULE: | ||
486 | case AUDIT_DEL_RULE: | ||
487 | if (nlmsg_len(nlh) < sizeof(struct audit_rule_data)) | ||
488 | return -EINVAL; | ||
489 | /* fallthrough */ | ||
490 | case AUDIT_LIST_RULES: | ||
491 | err = audit_receive_filter(nlh->nlmsg_type, NETLINK_CB(skb).pid, | ||
492 | uid, seq, data, nlmsg_len(nlh), | ||
493 | loginuid); | ||
457 | break; | 494 | break; |
458 | case AUDIT_SIGNAL_INFO: | 495 | case AUDIT_SIGNAL_INFO: |
459 | sig_data.uid = audit_sig_uid; | 496 | sig_data.uid = audit_sig_uid; |
@@ -469,9 +506,11 @@ static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh) | |||
469 | return err < 0 ? err : 0; | 506 | return err < 0 ? err : 0; |
470 | } | 507 | } |
471 | 508 | ||
472 | /* Get message from skb (based on rtnetlink_rcv_skb). Each message is | 509 | /* |
510 | * Get message from skb (based on rtnetlink_rcv_skb). Each message is | ||
473 | * processed by audit_receive_msg. Malformed skbs with wrong length are | 511 | * processed by audit_receive_msg. Malformed skbs with wrong length are |
474 | * discarded silently. */ | 512 | * discarded silently. |
513 | */ | ||
475 | static void audit_receive_skb(struct sk_buff *skb) | 514 | static void audit_receive_skb(struct sk_buff *skb) |
476 | { | 515 | { |
477 | int err; | 516 | int err; |
@@ -499,14 +538,14 @@ static void audit_receive(struct sock *sk, int length) | |||
499 | struct sk_buff *skb; | 538 | struct sk_buff *skb; |
500 | unsigned int qlen; | 539 | unsigned int qlen; |
501 | 540 | ||
502 | down(&audit_netlink_sem); | 541 | mutex_lock(&audit_netlink_mutex); |
503 | 542 | ||
504 | for (qlen = skb_queue_len(&sk->sk_receive_queue); qlen; qlen--) { | 543 | for (qlen = skb_queue_len(&sk->sk_receive_queue); qlen; qlen--) { |
505 | skb = skb_dequeue(&sk->sk_receive_queue); | 544 | skb = skb_dequeue(&sk->sk_receive_queue); |
506 | audit_receive_skb(skb); | 545 | audit_receive_skb(skb); |
507 | kfree_skb(skb); | 546 | kfree_skb(skb); |
508 | } | 547 | } |
509 | up(&audit_netlink_sem); | 548 | mutex_unlock(&audit_netlink_mutex); |
510 | } | 549 | } |
511 | 550 | ||
512 | 551 | ||
@@ -519,8 +558,9 @@ static int __init audit_init(void) | |||
519 | THIS_MODULE); | 558 | THIS_MODULE); |
520 | if (!audit_sock) | 559 | if (!audit_sock) |
521 | audit_panic("cannot initialize netlink socket"); | 560 | audit_panic("cannot initialize netlink socket"); |
561 | else | ||
562 | audit_sock->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; | ||
522 | 563 | ||
523 | audit_sock->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; | ||
524 | skb_queue_head_init(&audit_skb_queue); | 564 | skb_queue_head_init(&audit_skb_queue); |
525 | audit_initialized = 1; | 565 | audit_initialized = 1; |
526 | audit_enabled = audit_default; | 566 | audit_enabled = audit_default; |
@@ -600,7 +640,10 @@ err: | |||
600 | return NULL; | 640 | return NULL; |
601 | } | 641 | } |
602 | 642 | ||
603 | /* Compute a serial number for the audit record. Audit records are | 643 | /** |
644 | * audit_serial - compute a serial number for the audit record | ||
645 | * | ||
646 | * Compute a serial number for the audit record. Audit records are | ||
604 | * written to user-space as soon as they are generated, so a complete | 647 | * written to user-space as soon as they are generated, so a complete |
605 | * audit record may be written in several pieces. The timestamp of the | 648 | * audit record may be written in several pieces. The timestamp of the |
606 | * record and this serial number are used by the user-space tools to | 649 | * record and this serial number are used by the user-space tools to |
@@ -612,8 +655,8 @@ err: | |||
612 | * audit context (for those records that have a context), and emit them | 655 | * audit context (for those records that have a context), and emit them |
613 | * all at syscall exit. However, this could delay the reporting of | 656 | * all at syscall exit. However, this could delay the reporting of |
614 | * significant errors until syscall exit (or never, if the system | 657 | * significant errors until syscall exit (or never, if the system |
615 | * halts). */ | 658 | * halts). |
616 | 659 | */ | |
617 | unsigned int audit_serial(void) | 660 | unsigned int audit_serial(void) |
618 | { | 661 | { |
619 | static spinlock_t serial_lock = SPIN_LOCK_UNLOCKED; | 662 | static spinlock_t serial_lock = SPIN_LOCK_UNLOCKED; |
@@ -649,6 +692,21 @@ static inline void audit_get_stamp(struct audit_context *ctx, | |||
649 | * will be written at syscall exit. If there is no associated task, tsk | 692 | * will be written at syscall exit. If there is no associated task, tsk |
650 | * should be NULL. */ | 693 | * should be NULL. */ |
651 | 694 | ||
695 | /** | ||
696 | * audit_log_start - obtain an audit buffer | ||
697 | * @ctx: audit_context (may be NULL) | ||
698 | * @gfp_mask: type of allocation | ||
699 | * @type: audit message type | ||
700 | * | ||
701 | * Returns audit_buffer pointer on success or NULL on error. | ||
702 | * | ||
703 | * Obtain an audit buffer. This routine does locking to obtain the | ||
704 | * audit buffer, but then no locking is required for calls to | ||
705 | * audit_log_*format. If the task (ctx) is a task that is currently in a | ||
706 | * syscall, then the syscall is marked as auditable and an audit record | ||
707 | * will be written at syscall exit. If there is no associated task, then | ||
708 | * task context (ctx) should be NULL. | ||
709 | */ | ||
652 | struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask, | 710 | struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask, |
653 | int type) | 711 | int type) |
654 | { | 712 | { |
@@ -661,6 +719,9 @@ struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask, | |||
661 | if (!audit_initialized) | 719 | if (!audit_initialized) |
662 | return NULL; | 720 | return NULL; |
663 | 721 | ||
722 | if (unlikely(audit_filter_type(type))) | ||
723 | return NULL; | ||
724 | |||
664 | if (gfp_mask & __GFP_WAIT) | 725 | if (gfp_mask & __GFP_WAIT) |
665 | reserve = 0; | 726 | reserve = 0; |
666 | else | 727 | else |
@@ -713,6 +774,7 @@ struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask, | |||
713 | /** | 774 | /** |
714 | * audit_expand - expand skb in the audit buffer | 775 | * audit_expand - expand skb in the audit buffer |
715 | * @ab: audit_buffer | 776 | * @ab: audit_buffer |
777 | * @extra: space to add at tail of the skb | ||
716 | * | 778 | * |
717 | * Returns 0 (no space) on failed expansion, or available space if | 779 | * Returns 0 (no space) on failed expansion, or available space if |
718 | * successful. | 780 | * successful. |
@@ -729,10 +791,12 @@ static inline int audit_expand(struct audit_buffer *ab, int extra) | |||
729 | return skb_tailroom(skb); | 791 | return skb_tailroom(skb); |
730 | } | 792 | } |
731 | 793 | ||
732 | /* Format an audit message into the audit buffer. If there isn't enough | 794 | /* |
795 | * Format an audit message into the audit buffer. If there isn't enough | ||
733 | * room in the audit buffer, more room will be allocated and vsnprint | 796 | * room in the audit buffer, more room will be allocated and vsnprint |
734 | * will be called a second time. Currently, we assume that a printk | 797 | * will be called a second time. Currently, we assume that a printk |
735 | * can't format message larger than 1024 bytes, so we don't either. */ | 798 | * can't format message larger than 1024 bytes, so we don't either. |
799 | */ | ||
736 | static void audit_log_vformat(struct audit_buffer *ab, const char *fmt, | 800 | static void audit_log_vformat(struct audit_buffer *ab, const char *fmt, |
737 | va_list args) | 801 | va_list args) |
738 | { | 802 | { |
@@ -757,7 +821,8 @@ static void audit_log_vformat(struct audit_buffer *ab, const char *fmt, | |||
757 | /* The printk buffer is 1024 bytes long, so if we get | 821 | /* The printk buffer is 1024 bytes long, so if we get |
758 | * here and AUDIT_BUFSIZ is at least 1024, then we can | 822 | * here and AUDIT_BUFSIZ is at least 1024, then we can |
759 | * log everything that printk could have logged. */ | 823 | * log everything that printk could have logged. */ |
760 | avail = audit_expand(ab, max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail)); | 824 | avail = audit_expand(ab, |
825 | max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail)); | ||
761 | if (!avail) | 826 | if (!avail) |
762 | goto out; | 827 | goto out; |
763 | len = vsnprintf(skb->tail, avail, fmt, args2); | 828 | len = vsnprintf(skb->tail, avail, fmt, args2); |
@@ -768,8 +833,14 @@ out: | |||
768 | return; | 833 | return; |
769 | } | 834 | } |
770 | 835 | ||
771 | /* Format a message into the audit buffer. All the work is done in | 836 | /** |
772 | * audit_log_vformat. */ | 837 | * audit_log_format - format a message into the audit buffer. |
838 | * @ab: audit_buffer | ||
839 | * @fmt: format string | ||
840 | * @...: optional parameters matching @fmt string | ||
841 | * | ||
842 | * All the work is done in audit_log_vformat. | ||
843 | */ | ||
773 | void audit_log_format(struct audit_buffer *ab, const char *fmt, ...) | 844 | void audit_log_format(struct audit_buffer *ab, const char *fmt, ...) |
774 | { | 845 | { |
775 | va_list args; | 846 | va_list args; |
@@ -781,9 +852,18 @@ void audit_log_format(struct audit_buffer *ab, const char *fmt, ...) | |||
781 | va_end(args); | 852 | va_end(args); |
782 | } | 853 | } |
783 | 854 | ||
784 | /* This function will take the passed buf and convert it into a string of | 855 | /** |
785 | * ascii hex digits. The new string is placed onto the skb. */ | 856 | * audit_log_hex - convert a buffer to hex and append it to the audit skb |
786 | void audit_log_hex(struct audit_buffer *ab, const unsigned char *buf, | 857 | * @ab: the audit_buffer |
858 | * @buf: buffer to convert to hex | ||
859 | * @len: length of @buf to be converted | ||
860 | * | ||
861 | * No return value; failure to expand is silently ignored. | ||
862 | * | ||
863 | * This function will take the passed buf and convert it into a string of | ||
864 | * ascii hex digits. The new string is placed onto the skb. | ||
865 | */ | ||
866 | void audit_log_hex(struct audit_buffer *ab, const unsigned char *buf, | ||
787 | size_t len) | 867 | size_t len) |
788 | { | 868 | { |
789 | int i, avail, new_len; | 869 | int i, avail, new_len; |
@@ -812,10 +892,16 @@ void audit_log_hex(struct audit_buffer *ab, const unsigned char *buf, | |||
812 | skb_put(skb, len << 1); /* new string is twice the old string */ | 892 | skb_put(skb, len << 1); /* new string is twice the old string */ |
813 | } | 893 | } |
814 | 894 | ||
815 | /* This code will escape a string that is passed to it if the string | 895 | /** |
816 | * contains a control character, unprintable character, double quote mark, | 896 | * audit_log_unstrustedstring - log a string that may contain random characters |
897 | * @ab: audit_buffer | ||
898 | * @string: string to be logged | ||
899 | * | ||
900 | * This code will escape a string that is passed to it if the string | ||
901 | * contains a control character, unprintable character, double quote mark, | ||
817 | * or a space. Unescaped strings will start and end with a double quote mark. | 902 | * or a space. Unescaped strings will start and end with a double quote mark. |
818 | * Strings that are escaped are printed in hex (2 digits per char). */ | 903 | * Strings that are escaped are printed in hex (2 digits per char). |
904 | */ | ||
819 | void audit_log_untrustedstring(struct audit_buffer *ab, const char *string) | 905 | void audit_log_untrustedstring(struct audit_buffer *ab, const char *string) |
820 | { | 906 | { |
821 | const unsigned char *p = string; | 907 | const unsigned char *p = string; |
@@ -854,10 +940,15 @@ void audit_log_d_path(struct audit_buffer *ab, const char *prefix, | |||
854 | kfree(path); | 940 | kfree(path); |
855 | } | 941 | } |
856 | 942 | ||
857 | /* The netlink_* functions cannot be called inside an irq context, so | 943 | /** |
858 | * the audit buffer is places on a queue and a tasklet is scheduled to | 944 | * audit_log_end - end one audit record |
945 | * @ab: the audit_buffer | ||
946 | * | ||
947 | * The netlink_* functions cannot be called inside an irq context, so | ||
948 | * the audit buffer is placed on a queue and a tasklet is scheduled to | ||
859 | * remove them from the queue outside the irq context. May be called in | 949 | * remove them from the queue outside the irq context. May be called in |
860 | * any context. */ | 950 | * any context. |
951 | */ | ||
861 | void audit_log_end(struct audit_buffer *ab) | 952 | void audit_log_end(struct audit_buffer *ab) |
862 | { | 953 | { |
863 | if (!ab) | 954 | if (!ab) |
@@ -878,9 +969,18 @@ void audit_log_end(struct audit_buffer *ab) | |||
878 | audit_buffer_free(ab); | 969 | audit_buffer_free(ab); |
879 | } | 970 | } |
880 | 971 | ||
881 | /* Log an audit record. This is a convenience function that calls | 972 | /** |
882 | * audit_log_start, audit_log_vformat, and audit_log_end. It may be | 973 | * audit_log - Log an audit record |
883 | * called in any context. */ | 974 | * @ctx: audit context |
975 | * @gfp_mask: type of allocation | ||
976 | * @type: audit message type | ||
977 | * @fmt: format string to use | ||
978 | * @...: variable parameters matching the format string | ||
979 | * | ||
980 | * This is a convenience function that calls audit_log_start, | ||
981 | * audit_log_vformat, and audit_log_end. It may be called | ||
982 | * in any context. | ||
983 | */ | ||
884 | void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type, | 984 | void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type, |
885 | const char *fmt, ...) | 985 | const char *fmt, ...) |
886 | { | 986 | { |
@@ -895,3 +995,8 @@ void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type, | |||
895 | audit_log_end(ab); | 995 | audit_log_end(ab); |
896 | } | 996 | } |
897 | } | 997 | } |
998 | |||
999 | EXPORT_SYMBOL(audit_log_start); | ||
1000 | EXPORT_SYMBOL(audit_log_end); | ||
1001 | EXPORT_SYMBOL(audit_log_format); | ||
1002 | EXPORT_SYMBOL(audit_log); | ||
diff --git a/kernel/audit.h b/kernel/audit.h new file mode 100644 index 0000000000..bc5392076e --- /dev/null +++ b/kernel/audit.h | |||
@@ -0,0 +1,88 @@ | |||
1 | /* audit -- definition of audit_context structure and supporting types | ||
2 | * | ||
3 | * Copyright 2003-2004 Red Hat, Inc. | ||
4 | * Copyright 2005 Hewlett-Packard Development Company, L.P. | ||
5 | * Copyright 2005 IBM Corporation | ||
6 | * | ||
7 | * This program is free software; you can redistribute it and/or modify | ||
8 | * it under the terms of the GNU General Public License as published by | ||
9 | * the Free Software Foundation; either version 2 of the License, or | ||
10 | * (at your option) any later version. | ||
11 | * | ||
12 | * This program is distributed in the hope that it will be useful, | ||
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
15 | * GNU General Public License for more details. | ||
16 | * | ||
17 | * You should have received a copy of the GNU General Public License | ||
18 | * along with this program; if not, write to the Free Software | ||
19 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | ||
20 | */ | ||
21 | |||
22 | #include <linux/mutex.h> | ||
23 | #include <linux/fs.h> | ||
24 | #include <linux/audit.h> | ||
25 | |||
26 | /* 0 = no checking | ||
27 | 1 = put_count checking | ||
28 | 2 = verbose put_count checking | ||
29 | */ | ||
30 | #define AUDIT_DEBUG 0 | ||
31 | |||
32 | /* At task start time, the audit_state is set in the audit_context using | ||
33 | a per-task filter. At syscall entry, the audit_state is augmented by | ||
34 | the syscall filter. */ | ||
35 | enum audit_state { | ||
36 | AUDIT_DISABLED, /* Do not create per-task audit_context. | ||
37 | * No syscall-specific audit records can | ||
38 | * be generated. */ | ||
39 | AUDIT_SETUP_CONTEXT, /* Create the per-task audit_context, | ||
40 | * but don't necessarily fill it in at | ||
41 | * syscall entry time (i.e., filter | ||
42 | * instead). */ | ||
43 | AUDIT_BUILD_CONTEXT, /* Create the per-task audit_context, | ||
44 | * and always fill it in at syscall | ||
45 | * entry time. This makes a full | ||
46 | * syscall record available if some | ||
47 | * other part of the kernel decides it | ||
48 | * should be recorded. */ | ||
49 | AUDIT_RECORD_CONTEXT /* Create the per-task audit_context, | ||
50 | * always fill it in at syscall entry | ||
51 | * time, and always write out the audit | ||
52 | * record at syscall exit time. */ | ||
53 | }; | ||
54 | |||
55 | /* Rule lists */ | ||
56 | struct audit_field { | ||
57 | u32 type; | ||
58 | u32 val; | ||
59 | u32 op; | ||
60 | }; | ||
61 | |||
62 | struct audit_krule { | ||
63 | int vers_ops; | ||
64 | u32 flags; | ||
65 | u32 listnr; | ||
66 | u32 action; | ||
67 | u32 mask[AUDIT_BITMASK_SIZE]; | ||
68 | u32 buflen; /* for data alloc on list rules */ | ||
69 | u32 field_count; | ||
70 | struct audit_field *fields; | ||
71 | }; | ||
72 | |||
73 | struct audit_entry { | ||
74 | struct list_head list; | ||
75 | struct rcu_head rcu; | ||
76 | struct audit_krule rule; | ||
77 | }; | ||
78 | |||
79 | |||
80 | extern int audit_pid; | ||
81 | extern int audit_comparator(const u32 left, const u32 op, const u32 right); | ||
82 | |||
83 | extern void audit_send_reply(int pid, int seq, int type, | ||
84 | int done, int multi, | ||
85 | void *payload, int size); | ||
86 | extern void audit_log_lost(const char *message); | ||
87 | extern void audit_panic(const char *message); | ||
88 | extern struct mutex audit_netlink_mutex; | ||
diff --git a/kernel/auditfilter.c b/kernel/auditfilter.c new file mode 100644 index 0000000000..d3a8539f3a --- /dev/null +++ b/kernel/auditfilter.c | |||
@@ -0,0 +1,630 @@ | |||
1 | /* auditfilter.c -- filtering of audit events | ||
2 | * | ||
3 | * Copyright 2003-2004 Red Hat, Inc. | ||
4 | * Copyright 2005 Hewlett-Packard Development Company, L.P. | ||
5 | * Copyright 2005 IBM Corporation | ||
6 | * | ||
7 | * This program is free software; you can redistribute it and/or modify | ||
8 | * it under the terms of the GNU General Public License as published by | ||
9 | * the Free Software Foundation; either version 2 of the License, or | ||
10 | * (at your option) any later version. | ||
11 | * | ||
12 | * This program is distributed in the hope that it will be useful, | ||
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
15 | * GNU General Public License for more details. | ||
16 | * | ||
17 | * You should have received a copy of the GNU General Public License | ||
18 | * along with this program; if not, write to the Free Software | ||
19 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | ||
20 | */ | ||
21 | |||
22 | #include <linux/kernel.h> | ||
23 | #include <linux/audit.h> | ||
24 | #include <linux/kthread.h> | ||
25 | #include <linux/netlink.h> | ||
26 | #include "audit.h" | ||
27 | |||
28 | /* There are three lists of rules -- one to search at task creation | ||
29 | * time, one to search at syscall entry time, and another to search at | ||
30 | * syscall exit time. */ | ||
31 | struct list_head audit_filter_list[AUDIT_NR_FILTERS] = { | ||
32 | LIST_HEAD_INIT(audit_filter_list[0]), | ||
33 | LIST_HEAD_INIT(audit_filter_list[1]), | ||
34 | LIST_HEAD_INIT(audit_filter_list[2]), | ||
35 | LIST_HEAD_INIT(audit_filter_list[3]), | ||
36 | LIST_HEAD_INIT(audit_filter_list[4]), | ||
37 | LIST_HEAD_INIT(audit_filter_list[5]), | ||
38 | #if AUDIT_NR_FILTERS != 6 | ||
39 | #error Fix audit_filter_list initialiser | ||
40 | #endif | ||
41 | }; | ||
42 | |||
43 | static inline void audit_free_rule(struct audit_entry *e) | ||
44 | { | ||
45 | kfree(e->rule.fields); | ||
46 | kfree(e); | ||
47 | } | ||
48 | |||
49 | static inline void audit_free_rule_rcu(struct rcu_head *head) | ||
50 | { | ||
51 | struct audit_entry *e = container_of(head, struct audit_entry, rcu); | ||
52 | audit_free_rule(e); | ||
53 | } | ||
54 | |||
55 | /* Unpack a filter field's string representation from user-space | ||
56 | * buffer. */ | ||
57 | static __attribute__((unused)) char *audit_unpack_string(void **bufp, size_t *remain, size_t len) | ||
58 | { | ||
59 | char *str; | ||
60 | |||
61 | if (!*bufp || (len == 0) || (len > *remain)) | ||
62 | return ERR_PTR(-EINVAL); | ||
63 | |||
64 | /* Of the currently implemented string fields, PATH_MAX | ||
65 | * defines the longest valid length. | ||
66 | */ | ||
67 | if (len > PATH_MAX) | ||
68 | return ERR_PTR(-ENAMETOOLONG); | ||
69 | |||
70 | str = kmalloc(len + 1, GFP_KERNEL); | ||
71 | if (unlikely(!str)) | ||
72 | return ERR_PTR(-ENOMEM); | ||
73 | |||
74 | memcpy(str, *bufp, len); | ||
75 | str[len] = 0; | ||
76 | *bufp += len; | ||
77 | *remain -= len; | ||
78 | |||
79 | return str; | ||
80 | } | ||
81 | |||
82 | /* Common user-space to kernel rule translation. */ | ||
83 | static inline struct audit_entry *audit_to_entry_common(struct audit_rule *rule) | ||
84 | { | ||
85 | unsigned listnr; | ||
86 | struct audit_entry *entry; | ||
87 | struct audit_field *fields; | ||
88 | int i, err; | ||
89 | |||
90 | err = -EINVAL; | ||
91 | listnr = rule->flags & ~AUDIT_FILTER_PREPEND; | ||
92 | switch(listnr) { | ||
93 | default: | ||
94 | goto exit_err; | ||
95 | case AUDIT_FILTER_USER: | ||
96 | case AUDIT_FILTER_TYPE: | ||
97 | #ifdef CONFIG_AUDITSYSCALL | ||
98 | case AUDIT_FILTER_ENTRY: | ||
99 | case AUDIT_FILTER_EXIT: | ||
100 | case AUDIT_FILTER_TASK: | ||
101 | #endif | ||
102 | ; | ||
103 | } | ||
104 | if (rule->action != AUDIT_NEVER && rule->action != AUDIT_POSSIBLE && | ||
105 | rule->action != AUDIT_ALWAYS) | ||
106 | goto exit_err; | ||
107 | if (rule->field_count > AUDIT_MAX_FIELDS) | ||
108 | goto exit_err; | ||
109 | |||
110 | err = -ENOMEM; | ||
111 | entry = kmalloc(sizeof(*entry), GFP_KERNEL); | ||
112 | if (unlikely(!entry)) | ||
113 | goto exit_err; | ||
114 | fields = kmalloc(sizeof(*fields) * rule->field_count, GFP_KERNEL); | ||
115 | if (unlikely(!fields)) { | ||
116 | kfree(entry); | ||
117 | goto exit_err; | ||
118 | } | ||
119 | |||
120 | memset(&entry->rule, 0, sizeof(struct audit_krule)); | ||
121 | memset(fields, 0, sizeof(struct audit_field)); | ||
122 | |||
123 | entry->rule.flags = rule->flags & AUDIT_FILTER_PREPEND; | ||
124 | entry->rule.listnr = listnr; | ||
125 | entry->rule.action = rule->action; | ||
126 | entry->rule.field_count = rule->field_count; | ||
127 | entry->rule.fields = fields; | ||
128 | |||
129 | for (i = 0; i < AUDIT_BITMASK_SIZE; i++) | ||
130 | entry->rule.mask[i] = rule->mask[i]; | ||
131 | |||
132 | return entry; | ||
133 | |||
134 | exit_err: | ||
135 | return ERR_PTR(err); | ||
136 | } | ||
137 | |||
138 | /* Translate struct audit_rule to kernel's rule respresentation. | ||
139 | * Exists for backward compatibility with userspace. */ | ||
140 | static struct audit_entry *audit_rule_to_entry(struct audit_rule *rule) | ||
141 | { | ||
142 | struct audit_entry *entry; | ||
143 | int err = 0; | ||
144 | int i; | ||
145 | |||
146 | entry = audit_to_entry_common(rule); | ||
147 | if (IS_ERR(entry)) | ||
148 | goto exit_nofree; | ||
149 | |||
150 | for (i = 0; i < rule->field_count; i++) { | ||
151 | struct audit_field *f = &entry->rule.fields[i]; | ||
152 | |||
153 | if (rule->fields[i] & AUDIT_UNUSED_BITS) { | ||
154 | err = -EINVAL; | ||
155 | goto exit_free; | ||
156 | } | ||
157 | |||
158 | f->op = rule->fields[i] & (AUDIT_NEGATE|AUDIT_OPERATORS); | ||
159 | f->type = rule->fields[i] & ~(AUDIT_NEGATE|AUDIT_OPERATORS); | ||
160 | f->val = rule->values[i]; | ||
161 | |||
162 | entry->rule.vers_ops = (f->op & AUDIT_OPERATORS) ? 2 : 1; | ||
163 | |||
164 | /* Support for legacy operators where | ||
165 | * AUDIT_NEGATE bit signifies != and otherwise assumes == */ | ||
166 | if (f->op & AUDIT_NEGATE) | ||
167 | f->op = AUDIT_NOT_EQUAL; | ||
168 | else if (!f->op) | ||
169 | f->op = AUDIT_EQUAL; | ||
170 | else if (f->op == AUDIT_OPERATORS) { | ||
171 | err = -EINVAL; | ||
172 | goto exit_free; | ||
173 | } | ||
174 | } | ||
175 | |||
176 | exit_nofree: | ||
177 | return entry; | ||
178 | |||
179 | exit_free: | ||
180 | audit_free_rule(entry); | ||
181 | return ERR_PTR(err); | ||
182 | } | ||
183 | |||
184 | /* Translate struct audit_rule_data to kernel's rule respresentation. */ | ||
185 | static struct audit_entry *audit_data_to_entry(struct audit_rule_data *data, | ||
186 | size_t datasz) | ||
187 | { | ||
188 | int err = 0; | ||
189 | struct audit_entry *entry; | ||
190 | void *bufp; | ||
191 | /* size_t remain = datasz - sizeof(struct audit_rule_data); */ | ||
192 | int i; | ||
193 | |||
194 | entry = audit_to_entry_common((struct audit_rule *)data); | ||
195 | if (IS_ERR(entry)) | ||
196 | goto exit_nofree; | ||
197 | |||
198 | bufp = data->buf; | ||
199 | entry->rule.vers_ops = 2; | ||
200 | for (i = 0; i < data->field_count; i++) { | ||
201 | struct audit_field *f = &entry->rule.fields[i]; | ||
202 | |||
203 | err = -EINVAL; | ||
204 | if (!(data->fieldflags[i] & AUDIT_OPERATORS) || | ||
205 | data->fieldflags[i] & ~AUDIT_OPERATORS) | ||
206 | goto exit_free; | ||
207 | |||
208 | f->op = data->fieldflags[i] & AUDIT_OPERATORS; | ||
209 | f->type = data->fields[i]; | ||
210 | switch(f->type) { | ||
211 | /* call type-specific conversion routines here */ | ||
212 | default: | ||
213 | f->val = data->values[i]; | ||
214 | } | ||
215 | } | ||
216 | |||
217 | exit_nofree: | ||
218 | return entry; | ||
219 | |||
220 | exit_free: | ||
221 | audit_free_rule(entry); | ||
222 | return ERR_PTR(err); | ||
223 | } | ||
224 | |||
225 | /* Pack a filter field's string representation into data block. */ | ||
226 | static inline size_t audit_pack_string(void **bufp, char *str) | ||
227 | { | ||
228 | size_t len = strlen(str); | ||
229 | |||
230 | memcpy(*bufp, str, len); | ||
231 | *bufp += len; | ||
232 | |||
233 | return len; | ||
234 | } | ||
235 | |||
236 | /* Translate kernel rule respresentation to struct audit_rule. | ||
237 | * Exists for backward compatibility with userspace. */ | ||
238 | static struct audit_rule *audit_krule_to_rule(struct audit_krule *krule) | ||
239 | { | ||
240 | struct audit_rule *rule; | ||
241 | int i; | ||
242 | |||
243 | rule = kmalloc(sizeof(*rule), GFP_KERNEL); | ||
244 | if (unlikely(!rule)) | ||
245 | return ERR_PTR(-ENOMEM); | ||
246 | memset(rule, 0, sizeof(*rule)); | ||
247 | |||
248 | rule->flags = krule->flags | krule->listnr; | ||
249 | rule->action = krule->action; | ||
250 | rule->field_count = krule->field_count; | ||
251 | for (i = 0; i < rule->field_count; i++) { | ||
252 | rule->values[i] = krule->fields[i].val; | ||
253 | rule->fields[i] = krule->fields[i].type; | ||
254 | |||
255 | if (krule->vers_ops == 1) { | ||
256 | if (krule->fields[i].op & AUDIT_NOT_EQUAL) | ||
257 | rule->fields[i] |= AUDIT_NEGATE; | ||
258 | } else { | ||
259 | rule->fields[i] |= krule->fields[i].op; | ||
260 | } | ||
261 | } | ||
262 | for (i = 0; i < AUDIT_BITMASK_SIZE; i++) rule->mask[i] = krule->mask[i]; | ||
263 | |||
264 | return rule; | ||
265 | } | ||
266 | |||
267 | /* Translate kernel rule respresentation to struct audit_rule_data. */ | ||
268 | static struct audit_rule_data *audit_krule_to_data(struct audit_krule *krule) | ||
269 | { | ||
270 | struct audit_rule_data *data; | ||
271 | void *bufp; | ||
272 | int i; | ||
273 | |||
274 | data = kmalloc(sizeof(*data) + krule->buflen, GFP_KERNEL); | ||
275 | if (unlikely(!data)) | ||
276 | return ERR_PTR(-ENOMEM); | ||
277 | memset(data, 0, sizeof(*data)); | ||
278 | |||
279 | data->flags = krule->flags | krule->listnr; | ||
280 | data->action = krule->action; | ||
281 | data->field_count = krule->field_count; | ||
282 | bufp = data->buf; | ||
283 | for (i = 0; i < data->field_count; i++) { | ||
284 | struct audit_field *f = &krule->fields[i]; | ||
285 | |||
286 | data->fields[i] = f->type; | ||
287 | data->fieldflags[i] = f->op; | ||
288 | switch(f->type) { | ||
289 | /* call type-specific conversion routines here */ | ||
290 | default: | ||
291 | data->values[i] = f->val; | ||
292 | } | ||
293 | } | ||
294 | for (i = 0; i < AUDIT_BITMASK_SIZE; i++) data->mask[i] = krule->mask[i]; | ||
295 | |||
296 | return data; | ||
297 | } | ||
298 | |||
299 | /* Compare two rules in kernel format. Considered success if rules | ||
300 | * don't match. */ | ||
301 | static int audit_compare_rule(struct audit_krule *a, struct audit_krule *b) | ||
302 | { | ||
303 | int i; | ||
304 | |||
305 | if (a->flags != b->flags || | ||
306 | a->listnr != b->listnr || | ||
307 | a->action != b->action || | ||
308 | a->field_count != b->field_count) | ||
309 | return 1; | ||
310 | |||
311 | for (i = 0; i < a->field_count; i++) { | ||
312 | if (a->fields[i].type != b->fields[i].type || | ||
313 | a->fields[i].op != b->fields[i].op) | ||
314 | return 1; | ||
315 | |||
316 | switch(a->fields[i].type) { | ||
317 | /* call type-specific comparison routines here */ | ||
318 | default: | ||
319 | if (a->fields[i].val != b->fields[i].val) | ||
320 | return 1; | ||
321 | } | ||
322 | } | ||
323 | |||
324 | for (i = 0; i < AUDIT_BITMASK_SIZE; i++) | ||
325 | if (a->mask[i] != b->mask[i]) | ||
326 | return 1; | ||
327 | |||
328 | return 0; | ||
329 | } | ||
330 | |||
331 | /* Add rule to given filterlist if not a duplicate. Protected by | ||
332 | * audit_netlink_mutex. */ | ||
333 | static inline int audit_add_rule(struct audit_entry *entry, | ||
334 | struct list_head *list) | ||
335 | { | ||
336 | struct audit_entry *e; | ||
337 | |||
338 | /* Do not use the _rcu iterator here, since this is the only | ||
339 | * addition routine. */ | ||
340 | list_for_each_entry(e, list, list) { | ||
341 | if (!audit_compare_rule(&entry->rule, &e->rule)) | ||
342 | return -EEXIST; | ||
343 | } | ||
344 | |||
345 | if (entry->rule.flags & AUDIT_FILTER_PREPEND) { | ||
346 | list_add_rcu(&entry->list, list); | ||
347 | } else { | ||
348 | list_add_tail_rcu(&entry->list, list); | ||
349 | } | ||
350 | |||
351 | return 0; | ||
352 | } | ||
353 | |||
354 | /* Remove an existing rule from filterlist. Protected by | ||
355 | * audit_netlink_mutex. */ | ||
356 | static inline int audit_del_rule(struct audit_entry *entry, | ||
357 | struct list_head *list) | ||
358 | { | ||
359 | struct audit_entry *e; | ||
360 | |||
361 | /* Do not use the _rcu iterator here, since this is the only | ||
362 | * deletion routine. */ | ||
363 | list_for_each_entry(e, list, list) { | ||
364 | if (!audit_compare_rule(&entry->rule, &e->rule)) { | ||
365 | list_del_rcu(&e->list); | ||
366 | call_rcu(&e->rcu, audit_free_rule_rcu); | ||
367 | return 0; | ||
368 | } | ||
369 | } | ||
370 | return -ENOENT; /* No matching rule */ | ||
371 | } | ||
372 | |||
373 | /* List rules using struct audit_rule. Exists for backward | ||
374 | * compatibility with userspace. */ | ||
375 | static int audit_list(void *_dest) | ||
376 | { | ||
377 | int pid, seq; | ||
378 | int *dest = _dest; | ||
379 | struct audit_entry *entry; | ||
380 | int i; | ||
381 | |||
382 | pid = dest[0]; | ||
383 | seq = dest[1]; | ||
384 | kfree(dest); | ||
385 | |||
386 | mutex_lock(&audit_netlink_mutex); | ||
387 | |||
388 | /* The *_rcu iterators not needed here because we are | ||
389 | always called with audit_netlink_mutex held. */ | ||
390 | for (i=0; i<AUDIT_NR_FILTERS; i++) { | ||
391 | list_for_each_entry(entry, &audit_filter_list[i], list) { | ||
392 | struct audit_rule *rule; | ||
393 | |||
394 | rule = audit_krule_to_rule(&entry->rule); | ||
395 | if (unlikely(!rule)) | ||
396 | break; | ||
397 | audit_send_reply(pid, seq, AUDIT_LIST, 0, 1, | ||
398 | rule, sizeof(*rule)); | ||
399 | kfree(rule); | ||
400 | } | ||
401 | } | ||
402 | audit_send_reply(pid, seq, AUDIT_LIST, 1, 1, NULL, 0); | ||
403 | |||
404 | mutex_unlock(&audit_netlink_mutex); | ||
405 | return 0; | ||
406 | } | ||
407 | |||
408 | /* List rules using struct audit_rule_data. */ | ||
409 | static int audit_list_rules(void *_dest) | ||
410 | { | ||
411 | int pid, seq; | ||
412 | int *dest = _dest; | ||
413 | struct audit_entry *e; | ||
414 | int i; | ||
415 | |||
416 | pid = dest[0]; | ||
417 | seq = dest[1]; | ||
418 | kfree(dest); | ||
419 | |||
420 | mutex_lock(&audit_netlink_mutex); | ||
421 | |||
422 | /* The *_rcu iterators not needed here because we are | ||
423 | always called with audit_netlink_mutex held. */ | ||
424 | for (i=0; i<AUDIT_NR_FILTERS; i++) { | ||
425 | list_for_each_entry(e, &audit_filter_list[i], list) { | ||
426 | struct audit_rule_data *data; | ||
427 | |||
428 | data = audit_krule_to_data(&e->rule); | ||
429 | if (unlikely(!data)) | ||
430 | break; | ||
431 | audit_send_reply(pid, seq, AUDIT_LIST_RULES, 0, 1, | ||
432 | data, sizeof(*data)); | ||
433 | kfree(data); | ||
434 | } | ||
435 | } | ||
436 | audit_send_reply(pid, seq, AUDIT_LIST_RULES, 1, 1, NULL, 0); | ||
437 | |||
438 | mutex_unlock(&audit_netlink_mutex); | ||
439 | return 0; | ||
440 | } | ||
441 | |||
442 | /** | ||
443 | * audit_receive_filter - apply all rules to the specified message type | ||
444 | * @type: audit message type | ||
445 | * @pid: target pid for netlink audit messages | ||
446 | * @uid: target uid for netlink audit messages | ||
447 | * @seq: netlink audit message sequence (serial) number | ||
448 | * @data: payload data | ||
449 | * @datasz: size of payload data | ||
450 | * @loginuid: loginuid of sender | ||
451 | */ | ||
452 | int audit_receive_filter(int type, int pid, int uid, int seq, void *data, | ||
453 | size_t datasz, uid_t loginuid) | ||
454 | { | ||
455 | struct task_struct *tsk; | ||
456 | int *dest; | ||
457 | int err = 0; | ||
458 | struct audit_entry *entry; | ||
459 | |||
460 | switch (type) { | ||
461 | case AUDIT_LIST: | ||
462 | case AUDIT_LIST_RULES: | ||
463 | /* We can't just spew out the rules here because we might fill | ||
464 | * the available socket buffer space and deadlock waiting for | ||
465 | * auditctl to read from it... which isn't ever going to | ||
466 | * happen if we're actually running in the context of auditctl | ||
467 | * trying to _send_ the stuff */ | ||
468 | |||
469 | dest = kmalloc(2 * sizeof(int), GFP_KERNEL); | ||
470 | if (!dest) | ||
471 | return -ENOMEM; | ||
472 | dest[0] = pid; | ||
473 | dest[1] = seq; | ||
474 | |||
475 | if (type == AUDIT_LIST) | ||
476 | tsk = kthread_run(audit_list, dest, "audit_list"); | ||
477 | else | ||
478 | tsk = kthread_run(audit_list_rules, dest, | ||
479 | "audit_list_rules"); | ||
480 | if (IS_ERR(tsk)) { | ||
481 | kfree(dest); | ||
482 | err = PTR_ERR(tsk); | ||
483 | } | ||
484 | break; | ||
485 | case AUDIT_ADD: | ||
486 | case AUDIT_ADD_RULE: | ||
487 | if (type == AUDIT_ADD) | ||
488 | entry = audit_rule_to_entry(data); | ||
489 | else | ||
490 | entry = audit_data_to_entry(data, datasz); | ||
491 | if (IS_ERR(entry)) | ||
492 | return PTR_ERR(entry); | ||
493 | |||
494 | err = audit_add_rule(entry, | ||
495 | &audit_filter_list[entry->rule.listnr]); | ||
496 | audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE, | ||
497 | "auid=%u add rule to list=%d res=%d\n", | ||
498 | loginuid, entry->rule.listnr, !err); | ||
499 | |||
500 | if (err) | ||
501 | audit_free_rule(entry); | ||
502 | break; | ||
503 | case AUDIT_DEL: | ||
504 | case AUDIT_DEL_RULE: | ||
505 | if (type == AUDIT_DEL) | ||
506 | entry = audit_rule_to_entry(data); | ||
507 | else | ||
508 | entry = audit_data_to_entry(data, datasz); | ||
509 | if (IS_ERR(entry)) | ||
510 | return PTR_ERR(entry); | ||
511 | |||
512 | err = audit_del_rule(entry, | ||
513 | &audit_filter_list[entry->rule.listnr]); | ||
514 | audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE, | ||
515 | "auid=%u remove rule from list=%d res=%d\n", | ||
516 | loginuid, entry->rule.listnr, !err); | ||
517 | |||
518 | audit_free_rule(entry); | ||
519 | break; | ||
520 | default: | ||
521 | return -EINVAL; | ||
522 | } | ||
523 | |||
524 | return err; | ||
525 | } | ||
526 | |||
527 | int audit_comparator(const u32 left, const u32 op, const u32 right) | ||
528 | { | ||
529 | switch (op) { | ||
530 | case AUDIT_EQUAL: | ||
531 | return (left == right); | ||
532 | case AUDIT_NOT_EQUAL: | ||
533 | return (left != right); | ||
534 | case AUDIT_LESS_THAN: | ||
535 | return (left < right); | ||
536 | case AUDIT_LESS_THAN_OR_EQUAL: | ||
537 | return (left <= right); | ||
538 | case AUDIT_GREATER_THAN: | ||
539 | return (left > right); | ||
540 | case AUDIT_GREATER_THAN_OR_EQUAL: | ||
541 | return (left >= right); | ||
542 | } | ||
543 | BUG(); | ||
544 | return 0; | ||
545 | } | ||
546 | |||
547 | |||
548 | |||
549 | static int audit_filter_user_rules(struct netlink_skb_parms *cb, | ||
550 | struct audit_krule *rule, | ||
551 | enum audit_state *state) | ||
552 | { | ||
553 | int i; | ||
554 | |||
555 | for (i = 0; i < rule->field_count; i++) { | ||
556 | struct audit_field *f = &rule->fields[i]; | ||
557 | int result = 0; | ||
558 | |||
559 | switch (f->type) { | ||
560 | case AUDIT_PID: | ||
561 | result = audit_comparator(cb->creds.pid, f->op, f->val); | ||
562 | break; | ||
563 | case AUDIT_UID: | ||
564 | result = audit_comparator(cb->creds.uid, f->op, f->val); | ||
565 | break; | ||
566 | case AUDIT_GID: | ||
567 | result = audit_comparator(cb->creds.gid, f->op, f->val); | ||
568 | break; | ||
569 | case AUDIT_LOGINUID: | ||
570 | result = audit_comparator(cb->loginuid, f->op, f->val); | ||
571 | break; | ||
572 | } | ||
573 | |||
574 | if (!result) | ||
575 | return 0; | ||
576 | } | ||
577 | switch (rule->action) { | ||
578 | case AUDIT_NEVER: *state = AUDIT_DISABLED; break; | ||
579 | case AUDIT_POSSIBLE: *state = AUDIT_BUILD_CONTEXT; break; | ||
580 | case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break; | ||
581 | } | ||
582 | return 1; | ||
583 | } | ||
584 | |||
585 | int audit_filter_user(struct netlink_skb_parms *cb, int type) | ||
586 | { | ||
587 | struct audit_entry *e; | ||
588 | enum audit_state state; | ||
589 | int ret = 1; | ||
590 | |||
591 | rcu_read_lock(); | ||
592 | list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_USER], list) { | ||
593 | if (audit_filter_user_rules(cb, &e->rule, &state)) { | ||
594 | if (state == AUDIT_DISABLED) | ||
595 | ret = 0; | ||
596 | break; | ||
597 | } | ||
598 | } | ||
599 | rcu_read_unlock(); | ||
600 | |||
601 | return ret; /* Audit by default */ | ||
602 | } | ||
603 | |||
604 | int audit_filter_type(int type) | ||
605 | { | ||
606 | struct audit_entry *e; | ||
607 | int result = 0; | ||
608 | |||
609 | rcu_read_lock(); | ||
610 | if (list_empty(&audit_filter_list[AUDIT_FILTER_TYPE])) | ||
611 | goto unlock_and_return; | ||
612 | |||
613 | list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TYPE], | ||
614 | list) { | ||
615 | int i; | ||
616 | for (i = 0; i < e->rule.field_count; i++) { | ||
617 | struct audit_field *f = &e->rule.fields[i]; | ||
618 | if (f->type == AUDIT_MSGTYPE) { | ||
619 | result = audit_comparator(type, f->op, f->val); | ||
620 | if (!result) | ||
621 | break; | ||
622 | } | ||
623 | } | ||
624 | if (result) | ||
625 | goto unlock_and_return; | ||
626 | } | ||
627 | unlock_and_return: | ||
628 | rcu_read_unlock(); | ||
629 | return result; | ||
630 | } | ||
diff --git a/kernel/auditsc.c b/kernel/auditsc.c index d7e7e637b9..7f160df21a 100644 --- a/kernel/auditsc.c +++ b/kernel/auditsc.c | |||
@@ -2,6 +2,8 @@ | |||
2 | * Handles all system-call specific auditing features. | 2 | * Handles all system-call specific auditing features. |
3 | * | 3 | * |
4 | * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina. | 4 | * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina. |
5 | * Copyright 2005 Hewlett-Packard Development Company, L.P. | ||
6 | * Copyright (C) 2005 IBM Corporation | ||
5 | * All Rights Reserved. | 7 | * All Rights Reserved. |
6 | * | 8 | * |
7 | * This program is free software; you can redistribute it and/or modify | 9 | * This program is free software; you can redistribute it and/or modify |
@@ -27,11 +29,22 @@ | |||
27 | * this file -- see entry.S) is based on a GPL'd patch written by | 29 | * this file -- see entry.S) is based on a GPL'd patch written by |
28 | * okir@suse.de and Copyright 2003 SuSE Linux AG. | 30 | * okir@suse.de and Copyright 2003 SuSE Linux AG. |
29 | * | 31 | * |
32 | * The support of additional filter rules compares (>, <, >=, <=) was | ||
33 | * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005. | ||
34 | * | ||
35 | * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional | ||
36 | * filesystem information. | ||
37 | * | ||
38 | * Subject and object context labeling support added by <danjones@us.ibm.com> | ||
39 | * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance. | ||
30 | */ | 40 | */ |
31 | 41 | ||
32 | #include <linux/init.h> | 42 | #include <linux/init.h> |
33 | #include <asm/types.h> | 43 | #include <asm/types.h> |
34 | #include <asm/atomic.h> | 44 | #include <asm/atomic.h> |
45 | #include <asm/types.h> | ||
46 | #include <linux/fs.h> | ||
47 | #include <linux/namei.h> | ||
35 | #include <linux/mm.h> | 48 | #include <linux/mm.h> |
36 | #include <linux/module.h> | 49 | #include <linux/module.h> |
37 | #include <linux/mount.h> | 50 | #include <linux/mount.h> |
@@ -39,16 +52,16 @@ | |||
39 | #include <linux/audit.h> | 52 | #include <linux/audit.h> |
40 | #include <linux/personality.h> | 53 | #include <linux/personality.h> |
41 | #include <linux/time.h> | 54 | #include <linux/time.h> |
42 | #include <linux/kthread.h> | ||
43 | #include <linux/netlink.h> | 55 | #include <linux/netlink.h> |
44 | #include <linux/compiler.h> | 56 | #include <linux/compiler.h> |
45 | #include <asm/unistd.h> | 57 | #include <asm/unistd.h> |
58 | #include <linux/security.h> | ||
59 | #include <linux/list.h> | ||
60 | #include <linux/tty.h> | ||
61 | |||
62 | #include "audit.h" | ||
46 | 63 | ||
47 | /* 0 = no checking | 64 | extern struct list_head audit_filter_list[]; |
48 | 1 = put_count checking | ||
49 | 2 = verbose put_count checking | ||
50 | */ | ||
51 | #define AUDIT_DEBUG 0 | ||
52 | 65 | ||
53 | /* No syscall auditing will take place unless audit_enabled != 0. */ | 66 | /* No syscall auditing will take place unless audit_enabled != 0. */ |
54 | extern int audit_enabled; | 67 | extern int audit_enabled; |
@@ -62,29 +75,6 @@ extern int audit_enabled; | |||
62 | * path_lookup. */ | 75 | * path_lookup. */ |
63 | #define AUDIT_NAMES_RESERVED 7 | 76 | #define AUDIT_NAMES_RESERVED 7 |
64 | 77 | ||
65 | /* At task start time, the audit_state is set in the audit_context using | ||
66 | a per-task filter. At syscall entry, the audit_state is augmented by | ||
67 | the syscall filter. */ | ||
68 | enum audit_state { | ||
69 | AUDIT_DISABLED, /* Do not create per-task audit_context. | ||
70 | * No syscall-specific audit records can | ||
71 | * be generated. */ | ||
72 | AUDIT_SETUP_CONTEXT, /* Create the per-task audit_context, | ||
73 | * but don't necessarily fill it in at | ||
74 | * syscall entry time (i.e., filter | ||
75 | * instead). */ | ||
76 | AUDIT_BUILD_CONTEXT, /* Create the per-task audit_context, | ||
77 | * and always fill it in at syscall | ||
78 | * entry time. This makes a full | ||
79 | * syscall record available if some | ||
80 | * other part of the kernel decides it | ||
81 | * should be recorded. */ | ||
82 | AUDIT_RECORD_CONTEXT /* Create the per-task audit_context, | ||
83 | * always fill it in at syscall entry | ||
84 | * time, and always write out the audit | ||
85 | * record at syscall exit time. */ | ||
86 | }; | ||
87 | |||
88 | /* When fs/namei.c:getname() is called, we store the pointer in name and | 78 | /* When fs/namei.c:getname() is called, we store the pointer in name and |
89 | * we don't let putname() free it (instead we free all of the saved | 79 | * we don't let putname() free it (instead we free all of the saved |
90 | * pointers at syscall exit time). | 80 | * pointers at syscall exit time). |
@@ -93,12 +83,13 @@ enum audit_state { | |||
93 | struct audit_names { | 83 | struct audit_names { |
94 | const char *name; | 84 | const char *name; |
95 | unsigned long ino; | 85 | unsigned long ino; |
86 | unsigned long pino; | ||
96 | dev_t dev; | 87 | dev_t dev; |
97 | umode_t mode; | 88 | umode_t mode; |
98 | uid_t uid; | 89 | uid_t uid; |
99 | gid_t gid; | 90 | gid_t gid; |
100 | dev_t rdev; | 91 | dev_t rdev; |
101 | unsigned flags; | 92 | char *ctx; |
102 | }; | 93 | }; |
103 | 94 | ||
104 | struct audit_aux_data { | 95 | struct audit_aux_data { |
@@ -115,6 +106,7 @@ struct audit_aux_data_ipcctl { | |||
115 | uid_t uid; | 106 | uid_t uid; |
116 | gid_t gid; | 107 | gid_t gid; |
117 | mode_t mode; | 108 | mode_t mode; |
109 | char *ctx; | ||
118 | }; | 110 | }; |
119 | 111 | ||
120 | struct audit_aux_data_socketcall { | 112 | struct audit_aux_data_socketcall { |
@@ -167,290 +159,72 @@ struct audit_context { | |||
167 | #endif | 159 | #endif |
168 | }; | 160 | }; |
169 | 161 | ||
170 | /* Public API */ | ||
171 | /* There are three lists of rules -- one to search at task creation | ||
172 | * time, one to search at syscall entry time, and another to search at | ||
173 | * syscall exit time. */ | ||
174 | static struct list_head audit_filter_list[AUDIT_NR_FILTERS] = { | ||
175 | LIST_HEAD_INIT(audit_filter_list[0]), | ||
176 | LIST_HEAD_INIT(audit_filter_list[1]), | ||
177 | LIST_HEAD_INIT(audit_filter_list[2]), | ||
178 | LIST_HEAD_INIT(audit_filter_list[3]), | ||
179 | LIST_HEAD_INIT(audit_filter_list[4]), | ||
180 | #if AUDIT_NR_FILTERS != 5 | ||
181 | #error Fix audit_filter_list initialiser | ||
182 | #endif | ||
183 | }; | ||
184 | |||
185 | struct audit_entry { | ||
186 | struct list_head list; | ||
187 | struct rcu_head rcu; | ||
188 | struct audit_rule rule; | ||
189 | }; | ||
190 | |||
191 | extern int audit_pid; | ||
192 | |||
193 | /* Copy rule from user-space to kernel-space. Called from | ||
194 | * audit_add_rule during AUDIT_ADD. */ | ||
195 | static inline int audit_copy_rule(struct audit_rule *d, struct audit_rule *s) | ||
196 | { | ||
197 | int i; | ||
198 | |||
199 | if (s->action != AUDIT_NEVER | ||
200 | && s->action != AUDIT_POSSIBLE | ||
201 | && s->action != AUDIT_ALWAYS) | ||
202 | return -1; | ||
203 | if (s->field_count < 0 || s->field_count > AUDIT_MAX_FIELDS) | ||
204 | return -1; | ||
205 | if ((s->flags & ~AUDIT_FILTER_PREPEND) >= AUDIT_NR_FILTERS) | ||
206 | return -1; | ||
207 | |||
208 | d->flags = s->flags; | ||
209 | d->action = s->action; | ||
210 | d->field_count = s->field_count; | ||
211 | for (i = 0; i < d->field_count; i++) { | ||
212 | d->fields[i] = s->fields[i]; | ||
213 | d->values[i] = s->values[i]; | ||
214 | } | ||
215 | for (i = 0; i < AUDIT_BITMASK_SIZE; i++) d->mask[i] = s->mask[i]; | ||
216 | return 0; | ||
217 | } | ||
218 | |||
219 | /* Check to see if two rules are identical. It is called from | ||
220 | * audit_add_rule during AUDIT_ADD and | ||
221 | * audit_del_rule during AUDIT_DEL. */ | ||
222 | static inline int audit_compare_rule(struct audit_rule *a, struct audit_rule *b) | ||
223 | { | ||
224 | int i; | ||
225 | |||
226 | if (a->flags != b->flags) | ||
227 | return 1; | ||
228 | |||
229 | if (a->action != b->action) | ||
230 | return 1; | ||
231 | |||
232 | if (a->field_count != b->field_count) | ||
233 | return 1; | ||
234 | |||
235 | for (i = 0; i < a->field_count; i++) { | ||
236 | if (a->fields[i] != b->fields[i] | ||
237 | || a->values[i] != b->values[i]) | ||
238 | return 1; | ||
239 | } | ||
240 | |||
241 | for (i = 0; i < AUDIT_BITMASK_SIZE; i++) | ||
242 | if (a->mask[i] != b->mask[i]) | ||
243 | return 1; | ||
244 | |||
245 | return 0; | ||
246 | } | ||
247 | |||
248 | /* Note that audit_add_rule and audit_del_rule are called via | ||
249 | * audit_receive() in audit.c, and are protected by | ||
250 | * audit_netlink_sem. */ | ||
251 | static inline int audit_add_rule(struct audit_rule *rule, | ||
252 | struct list_head *list) | ||
253 | { | ||
254 | struct audit_entry *entry; | ||
255 | |||
256 | /* Do not use the _rcu iterator here, since this is the only | ||
257 | * addition routine. */ | ||
258 | list_for_each_entry(entry, list, list) { | ||
259 | if (!audit_compare_rule(rule, &entry->rule)) { | ||
260 | return -EEXIST; | ||
261 | } | ||
262 | } | ||
263 | |||
264 | if (!(entry = kmalloc(sizeof(*entry), GFP_KERNEL))) | ||
265 | return -ENOMEM; | ||
266 | if (audit_copy_rule(&entry->rule, rule)) { | ||
267 | kfree(entry); | ||
268 | return -EINVAL; | ||
269 | } | ||
270 | |||
271 | if (entry->rule.flags & AUDIT_FILTER_PREPEND) { | ||
272 | entry->rule.flags &= ~AUDIT_FILTER_PREPEND; | ||
273 | list_add_rcu(&entry->list, list); | ||
274 | } else { | ||
275 | list_add_tail_rcu(&entry->list, list); | ||
276 | } | ||
277 | |||
278 | return 0; | ||
279 | } | ||
280 | |||
281 | static inline void audit_free_rule(struct rcu_head *head) | ||
282 | { | ||
283 | struct audit_entry *e = container_of(head, struct audit_entry, rcu); | ||
284 | kfree(e); | ||
285 | } | ||
286 | |||
287 | /* Note that audit_add_rule and audit_del_rule are called via | ||
288 | * audit_receive() in audit.c, and are protected by | ||
289 | * audit_netlink_sem. */ | ||
290 | static inline int audit_del_rule(struct audit_rule *rule, | ||
291 | struct list_head *list) | ||
292 | { | ||
293 | struct audit_entry *e; | ||
294 | |||
295 | /* Do not use the _rcu iterator here, since this is the only | ||
296 | * deletion routine. */ | ||
297 | list_for_each_entry(e, list, list) { | ||
298 | if (!audit_compare_rule(rule, &e->rule)) { | ||
299 | list_del_rcu(&e->list); | ||
300 | call_rcu(&e->rcu, audit_free_rule); | ||
301 | return 0; | ||
302 | } | ||
303 | } | ||
304 | return -ENOENT; /* No matching rule */ | ||
305 | } | ||
306 | |||
307 | static int audit_list_rules(void *_dest) | ||
308 | { | ||
309 | int pid, seq; | ||
310 | int *dest = _dest; | ||
311 | struct audit_entry *entry; | ||
312 | int i; | ||
313 | |||
314 | pid = dest[0]; | ||
315 | seq = dest[1]; | ||
316 | kfree(dest); | ||
317 | |||
318 | down(&audit_netlink_sem); | ||
319 | |||
320 | /* The *_rcu iterators not needed here because we are | ||
321 | always called with audit_netlink_sem held. */ | ||
322 | for (i=0; i<AUDIT_NR_FILTERS; i++) { | ||
323 | list_for_each_entry(entry, &audit_filter_list[i], list) | ||
324 | audit_send_reply(pid, seq, AUDIT_LIST, 0, 1, | ||
325 | &entry->rule, sizeof(entry->rule)); | ||
326 | } | ||
327 | audit_send_reply(pid, seq, AUDIT_LIST, 1, 1, NULL, 0); | ||
328 | |||
329 | up(&audit_netlink_sem); | ||
330 | return 0; | ||
331 | } | ||
332 | |||
333 | int audit_receive_filter(int type, int pid, int uid, int seq, void *data, | ||
334 | uid_t loginuid) | ||
335 | { | ||
336 | struct task_struct *tsk; | ||
337 | int *dest; | ||
338 | int err = 0; | ||
339 | unsigned listnr; | ||
340 | |||
341 | switch (type) { | ||
342 | case AUDIT_LIST: | ||
343 | /* We can't just spew out the rules here because we might fill | ||
344 | * the available socket buffer space and deadlock waiting for | ||
345 | * auditctl to read from it... which isn't ever going to | ||
346 | * happen if we're actually running in the context of auditctl | ||
347 | * trying to _send_ the stuff */ | ||
348 | |||
349 | dest = kmalloc(2 * sizeof(int), GFP_KERNEL); | ||
350 | if (!dest) | ||
351 | return -ENOMEM; | ||
352 | dest[0] = pid; | ||
353 | dest[1] = seq; | ||
354 | |||
355 | tsk = kthread_run(audit_list_rules, dest, "audit_list_rules"); | ||
356 | if (IS_ERR(tsk)) { | ||
357 | kfree(dest); | ||
358 | err = PTR_ERR(tsk); | ||
359 | } | ||
360 | break; | ||
361 | case AUDIT_ADD: | ||
362 | listnr =((struct audit_rule *)data)->flags & ~AUDIT_FILTER_PREPEND; | ||
363 | if (listnr >= AUDIT_NR_FILTERS) | ||
364 | return -EINVAL; | ||
365 | |||
366 | err = audit_add_rule(data, &audit_filter_list[listnr]); | ||
367 | if (!err) | ||
368 | audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE, | ||
369 | "auid=%u added an audit rule\n", loginuid); | ||
370 | break; | ||
371 | case AUDIT_DEL: | ||
372 | listnr =((struct audit_rule *)data)->flags & ~AUDIT_FILTER_PREPEND; | ||
373 | if (listnr >= AUDIT_NR_FILTERS) | ||
374 | return -EINVAL; | ||
375 | |||
376 | err = audit_del_rule(data, &audit_filter_list[listnr]); | ||
377 | if (!err) | ||
378 | audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE, | ||
379 | "auid=%u removed an audit rule\n", loginuid); | ||
380 | break; | ||
381 | default: | ||
382 | return -EINVAL; | ||
383 | } | ||
384 | |||
385 | return err; | ||
386 | } | ||
387 | 162 | ||
388 | /* Compare a task_struct with an audit_rule. Return 1 on match, 0 | 163 | /* Compare a task_struct with an audit_rule. Return 1 on match, 0 |
389 | * otherwise. */ | 164 | * otherwise. */ |
390 | static int audit_filter_rules(struct task_struct *tsk, | 165 | static int audit_filter_rules(struct task_struct *tsk, |
391 | struct audit_rule *rule, | 166 | struct audit_krule *rule, |
392 | struct audit_context *ctx, | 167 | struct audit_context *ctx, |
393 | enum audit_state *state) | 168 | enum audit_state *state) |
394 | { | 169 | { |
395 | int i, j; | 170 | int i, j; |
396 | 171 | ||
397 | for (i = 0; i < rule->field_count; i++) { | 172 | for (i = 0; i < rule->field_count; i++) { |
398 | u32 field = rule->fields[i] & ~AUDIT_NEGATE; | 173 | struct audit_field *f = &rule->fields[i]; |
399 | u32 value = rule->values[i]; | ||
400 | int result = 0; | 174 | int result = 0; |
401 | 175 | ||
402 | switch (field) { | 176 | switch (f->type) { |
403 | case AUDIT_PID: | 177 | case AUDIT_PID: |
404 | result = (tsk->pid == value); | 178 | result = audit_comparator(tsk->pid, f->op, f->val); |
405 | break; | 179 | break; |
406 | case AUDIT_UID: | 180 | case AUDIT_UID: |
407 | result = (tsk->uid == value); | 181 | result = audit_comparator(tsk->uid, f->op, f->val); |
408 | break; | 182 | break; |
409 | case AUDIT_EUID: | 183 | case AUDIT_EUID: |
410 | result = (tsk->euid == value); | 184 | result = audit_comparator(tsk->euid, f->op, f->val); |
411 | break; | 185 | break; |
412 | case AUDIT_SUID: | 186 | case AUDIT_SUID: |
413 | result = (tsk->suid == value); | 187 | result = audit_comparator(tsk->suid, f->op, f->val); |
414 | break; | 188 | break; |
415 | case AUDIT_FSUID: | 189 | case AUDIT_FSUID: |
416 | result = (tsk->fsuid == value); | 190 | result = audit_comparator(tsk->fsuid, f->op, f->val); |
417 | break; | 191 | break; |
418 | case AUDIT_GID: | 192 | case AUDIT_GID: |
419 | result = (tsk->gid == value); | 193 | result = audit_comparator(tsk->gid, f->op, f->val); |
420 | break; | 194 | break; |
421 | case AUDIT_EGID: | 195 | case AUDIT_EGID: |
422 | result = (tsk->egid == value); | 196 | result = audit_comparator(tsk->egid, f->op, f->val); |
423 | break; | 197 | break; |
424 | case AUDIT_SGID: | 198 | case AUDIT_SGID: |
425 | result = (tsk->sgid == value); | 199 | result = audit_comparator(tsk->sgid, f->op, f->val); |
426 | break; | 200 | break; |
427 | case AUDIT_FSGID: | 201 | case AUDIT_FSGID: |
428 | result = (tsk->fsgid == value); | 202 | result = audit_comparator(tsk->fsgid, f->op, f->val); |
429 | break; | 203 | break; |
430 | case AUDIT_PERS: | 204 | case AUDIT_PERS: |
431 | result = (tsk->personality == value); | 205 | result = audit_comparator(tsk->personality, f->op, f->val); |
432 | break; | 206 | break; |
433 | case AUDIT_ARCH: | 207 | case AUDIT_ARCH: |
434 | if (ctx) | 208 | if (ctx) |
435 | result = (ctx->arch == value); | 209 | result = audit_comparator(ctx->arch, f->op, f->val); |
436 | break; | 210 | break; |
437 | 211 | ||
438 | case AUDIT_EXIT: | 212 | case AUDIT_EXIT: |
439 | if (ctx && ctx->return_valid) | 213 | if (ctx && ctx->return_valid) |
440 | result = (ctx->return_code == value); | 214 | result = audit_comparator(ctx->return_code, f->op, f->val); |
441 | break; | 215 | break; |
442 | case AUDIT_SUCCESS: | 216 | case AUDIT_SUCCESS: |
443 | if (ctx && ctx->return_valid) { | 217 | if (ctx && ctx->return_valid) { |
444 | if (value) | 218 | if (f->val) |
445 | result = (ctx->return_valid == AUDITSC_SUCCESS); | 219 | result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS); |
446 | else | 220 | else |
447 | result = (ctx->return_valid == AUDITSC_FAILURE); | 221 | result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE); |
448 | } | 222 | } |
449 | break; | 223 | break; |
450 | case AUDIT_DEVMAJOR: | 224 | case AUDIT_DEVMAJOR: |
451 | if (ctx) { | 225 | if (ctx) { |
452 | for (j = 0; j < ctx->name_count; j++) { | 226 | for (j = 0; j < ctx->name_count; j++) { |
453 | if (MAJOR(ctx->names[j].dev)==value) { | 227 | if (audit_comparator(MAJOR(ctx->names[j].dev), f->op, f->val)) { |
454 | ++result; | 228 | ++result; |
455 | break; | 229 | break; |
456 | } | 230 | } |
@@ -460,7 +234,7 @@ static int audit_filter_rules(struct task_struct *tsk, | |||
460 | case AUDIT_DEVMINOR: | 234 | case AUDIT_DEVMINOR: |
461 | if (ctx) { | 235 | if (ctx) { |
462 | for (j = 0; j < ctx->name_count; j++) { | 236 | for (j = 0; j < ctx->name_count; j++) { |
463 | if (MINOR(ctx->names[j].dev)==value) { | 237 | if (audit_comparator(MINOR(ctx->names[j].dev), f->op, f->val)) { |
464 | ++result; | 238 | ++result; |
465 | break; | 239 | break; |
466 | } | 240 | } |
@@ -470,7 +244,8 @@ static int audit_filter_rules(struct task_struct *tsk, | |||
470 | case AUDIT_INODE: | 244 | case AUDIT_INODE: |
471 | if (ctx) { | 245 | if (ctx) { |
472 | for (j = 0; j < ctx->name_count; j++) { | 246 | for (j = 0; j < ctx->name_count; j++) { |
473 | if (ctx->names[j].ino == value) { | 247 | if (audit_comparator(ctx->names[j].ino, f->op, f->val) || |
248 | audit_comparator(ctx->names[j].pino, f->op, f->val)) { | ||
474 | ++result; | 249 | ++result; |
475 | break; | 250 | break; |
476 | } | 251 | } |
@@ -480,19 +255,17 @@ static int audit_filter_rules(struct task_struct *tsk, | |||
480 | case AUDIT_LOGINUID: | 255 | case AUDIT_LOGINUID: |
481 | result = 0; | 256 | result = 0; |
482 | if (ctx) | 257 | if (ctx) |
483 | result = (ctx->loginuid == value); | 258 | result = audit_comparator(ctx->loginuid, f->op, f->val); |
484 | break; | 259 | break; |
485 | case AUDIT_ARG0: | 260 | case AUDIT_ARG0: |
486 | case AUDIT_ARG1: | 261 | case AUDIT_ARG1: |
487 | case AUDIT_ARG2: | 262 | case AUDIT_ARG2: |
488 | case AUDIT_ARG3: | 263 | case AUDIT_ARG3: |
489 | if (ctx) | 264 | if (ctx) |
490 | result = (ctx->argv[field-AUDIT_ARG0]==value); | 265 | result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val); |
491 | break; | 266 | break; |
492 | } | 267 | } |
493 | 268 | ||
494 | if (rule->fields[i] & AUDIT_NEGATE) | ||
495 | result = !result; | ||
496 | if (!result) | 269 | if (!result) |
497 | return 0; | 270 | return 0; |
498 | } | 271 | } |
@@ -527,7 +300,7 @@ static enum audit_state audit_filter_task(struct task_struct *tsk) | |||
527 | /* At syscall entry and exit time, this filter is called if the | 300 | /* At syscall entry and exit time, this filter is called if the |
528 | * audit_state is not low enough that auditing cannot take place, but is | 301 | * audit_state is not low enough that auditing cannot take place, but is |
529 | * also not high enough that we already know we have to write an audit | 302 | * also not high enough that we already know we have to write an audit |
530 | * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT). | 303 | * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT). |
531 | */ | 304 | */ |
532 | static enum audit_state audit_filter_syscall(struct task_struct *tsk, | 305 | static enum audit_state audit_filter_syscall(struct task_struct *tsk, |
533 | struct audit_context *ctx, | 306 | struct audit_context *ctx, |
@@ -541,77 +314,19 @@ static enum audit_state audit_filter_syscall(struct task_struct *tsk, | |||
541 | 314 | ||
542 | rcu_read_lock(); | 315 | rcu_read_lock(); |
543 | if (!list_empty(list)) { | 316 | if (!list_empty(list)) { |
544 | int word = AUDIT_WORD(ctx->major); | 317 | int word = AUDIT_WORD(ctx->major); |
545 | int bit = AUDIT_BIT(ctx->major); | 318 | int bit = AUDIT_BIT(ctx->major); |
546 | 319 | ||
547 | list_for_each_entry_rcu(e, list, list) { | 320 | list_for_each_entry_rcu(e, list, list) { |
548 | if ((e->rule.mask[word] & bit) == bit | 321 | if ((e->rule.mask[word] & bit) == bit |
549 | && audit_filter_rules(tsk, &e->rule, ctx, &state)) { | 322 | && audit_filter_rules(tsk, &e->rule, ctx, &state)) { |
550 | rcu_read_unlock(); | 323 | rcu_read_unlock(); |
551 | return state; | 324 | return state; |
552 | } | 325 | } |
553 | } | ||
554 | } | ||
555 | rcu_read_unlock(); | ||
556 | return AUDIT_BUILD_CONTEXT; | ||
557 | } | ||
558 | |||
559 | static int audit_filter_user_rules(struct netlink_skb_parms *cb, | ||
560 | struct audit_rule *rule, | ||
561 | enum audit_state *state) | ||
562 | { | ||
563 | int i; | ||
564 | |||
565 | for (i = 0; i < rule->field_count; i++) { | ||
566 | u32 field = rule->fields[i] & ~AUDIT_NEGATE; | ||
567 | u32 value = rule->values[i]; | ||
568 | int result = 0; | ||
569 | |||
570 | switch (field) { | ||
571 | case AUDIT_PID: | ||
572 | result = (cb->creds.pid == value); | ||
573 | break; | ||
574 | case AUDIT_UID: | ||
575 | result = (cb->creds.uid == value); | ||
576 | break; | ||
577 | case AUDIT_GID: | ||
578 | result = (cb->creds.gid == value); | ||
579 | break; | ||
580 | case AUDIT_LOGINUID: | ||
581 | result = (cb->loginuid == value); | ||
582 | break; | ||
583 | } | ||
584 | |||
585 | if (rule->fields[i] & AUDIT_NEGATE) | ||
586 | result = !result; | ||
587 | if (!result) | ||
588 | return 0; | ||
589 | } | ||
590 | switch (rule->action) { | ||
591 | case AUDIT_NEVER: *state = AUDIT_DISABLED; break; | ||
592 | case AUDIT_POSSIBLE: *state = AUDIT_BUILD_CONTEXT; break; | ||
593 | case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break; | ||
594 | } | ||
595 | return 1; | ||
596 | } | ||
597 | |||
598 | int audit_filter_user(struct netlink_skb_parms *cb, int type) | ||
599 | { | ||
600 | struct audit_entry *e; | ||
601 | enum audit_state state; | ||
602 | int ret = 1; | ||
603 | |||
604 | rcu_read_lock(); | ||
605 | list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_USER], list) { | ||
606 | if (audit_filter_user_rules(cb, &e->rule, &state)) { | ||
607 | if (state == AUDIT_DISABLED) | ||
608 | ret = 0; | ||
609 | break; | ||
610 | } | 326 | } |
611 | } | 327 | } |
612 | rcu_read_unlock(); | 328 | rcu_read_unlock(); |
613 | 329 | return AUDIT_BUILD_CONTEXT; | |
614 | return ret; /* Audit by default */ | ||
615 | } | 330 | } |
616 | 331 | ||
617 | /* This should be called with task_lock() held. */ | 332 | /* This should be called with task_lock() held. */ |
@@ -654,17 +369,18 @@ static inline void audit_free_names(struct audit_context *context) | |||
654 | #if AUDIT_DEBUG == 2 | 369 | #if AUDIT_DEBUG == 2 |
655 | if (context->auditable | 370 | if (context->auditable |
656 | ||context->put_count + context->ino_count != context->name_count) { | 371 | ||context->put_count + context->ino_count != context->name_count) { |
657 | printk(KERN_ERR "audit.c:%d(:%d): major=%d in_syscall=%d" | 372 | printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d" |
658 | " name_count=%d put_count=%d" | 373 | " name_count=%d put_count=%d" |
659 | " ino_count=%d [NOT freeing]\n", | 374 | " ino_count=%d [NOT freeing]\n", |
660 | __LINE__, | 375 | __FILE__, __LINE__, |
661 | context->serial, context->major, context->in_syscall, | 376 | context->serial, context->major, context->in_syscall, |
662 | context->name_count, context->put_count, | 377 | context->name_count, context->put_count, |
663 | context->ino_count); | 378 | context->ino_count); |
664 | for (i = 0; i < context->name_count; i++) | 379 | for (i = 0; i < context->name_count; i++) { |
665 | printk(KERN_ERR "names[%d] = %p = %s\n", i, | 380 | printk(KERN_ERR "names[%d] = %p = %s\n", i, |
666 | context->names[i].name, | 381 | context->names[i].name, |
667 | context->names[i].name); | 382 | context->names[i].name ?: "(null)"); |
383 | } | ||
668 | dump_stack(); | 384 | dump_stack(); |
669 | return; | 385 | return; |
670 | } | 386 | } |
@@ -674,9 +390,13 @@ static inline void audit_free_names(struct audit_context *context) | |||
674 | context->ino_count = 0; | 390 | context->ino_count = 0; |
675 | #endif | 391 | #endif |
676 | 392 | ||
677 | for (i = 0; i < context->name_count; i++) | 393 | for (i = 0; i < context->name_count; i++) { |
394 | char *p = context->names[i].ctx; | ||
395 | context->names[i].ctx = NULL; | ||
396 | kfree(p); | ||
678 | if (context->names[i].name) | 397 | if (context->names[i].name) |
679 | __putname(context->names[i].name); | 398 | __putname(context->names[i].name); |
399 | } | ||
680 | context->name_count = 0; | 400 | context->name_count = 0; |
681 | if (context->pwd) | 401 | if (context->pwd) |
682 | dput(context->pwd); | 402 | dput(context->pwd); |
@@ -696,6 +416,12 @@ static inline void audit_free_aux(struct audit_context *context) | |||
696 | dput(axi->dentry); | 416 | dput(axi->dentry); |
697 | mntput(axi->mnt); | 417 | mntput(axi->mnt); |
698 | } | 418 | } |
419 | if ( aux->type == AUDIT_IPC ) { | ||
420 | struct audit_aux_data_ipcctl *axi = (void *)aux; | ||
421 | if (axi->ctx) | ||
422 | kfree(axi->ctx); | ||
423 | } | ||
424 | |||
699 | context->aux = aux->next; | 425 | context->aux = aux->next; |
700 | kfree(aux); | 426 | kfree(aux); |
701 | } | 427 | } |
@@ -721,10 +447,15 @@ static inline struct audit_context *audit_alloc_context(enum audit_state state) | |||
721 | return context; | 447 | return context; |
722 | } | 448 | } |
723 | 449 | ||
724 | /* Filter on the task information and allocate a per-task audit context | 450 | /** |
451 | * audit_alloc - allocate an audit context block for a task | ||
452 | * @tsk: task | ||
453 | * | ||
454 | * Filter on the task information and allocate a per-task audit context | ||
725 | * if necessary. Doing so turns on system call auditing for the | 455 | * if necessary. Doing so turns on system call auditing for the |
726 | * specified task. This is called from copy_process, so no lock is | 456 | * specified task. This is called from copy_process, so no lock is |
727 | * needed. */ | 457 | * needed. |
458 | */ | ||
728 | int audit_alloc(struct task_struct *tsk) | 459 | int audit_alloc(struct task_struct *tsk) |
729 | { | 460 | { |
730 | struct audit_context *context; | 461 | struct audit_context *context; |
@@ -775,7 +506,37 @@ static inline void audit_free_context(struct audit_context *context) | |||
775 | printk(KERN_ERR "audit: freed %d contexts\n", count); | 506 | printk(KERN_ERR "audit: freed %d contexts\n", count); |
776 | } | 507 | } |
777 | 508 | ||
778 | static void audit_log_task_info(struct audit_buffer *ab) | 509 | static void audit_log_task_context(struct audit_buffer *ab, gfp_t gfp_mask) |
510 | { | ||
511 | char *ctx = NULL; | ||
512 | ssize_t len = 0; | ||
513 | |||
514 | len = security_getprocattr(current, "current", NULL, 0); | ||
515 | if (len < 0) { | ||
516 | if (len != -EINVAL) | ||
517 | goto error_path; | ||
518 | return; | ||
519 | } | ||
520 | |||
521 | ctx = kmalloc(len, gfp_mask); | ||
522 | if (!ctx) | ||
523 | goto error_path; | ||
524 | |||
525 | len = security_getprocattr(current, "current", ctx, len); | ||
526 | if (len < 0 ) | ||
527 | goto error_path; | ||
528 | |||
529 | audit_log_format(ab, " subj=%s", ctx); | ||
530 | return; | ||
531 | |||
532 | error_path: | ||
533 | if (ctx) | ||
534 | kfree(ctx); | ||
535 | audit_panic("error in audit_log_task_context"); | ||
536 | return; | ||
537 | } | ||
538 | |||
539 | static void audit_log_task_info(struct audit_buffer *ab, gfp_t gfp_mask) | ||
779 | { | 540 | { |
780 | char name[sizeof(current->comm)]; | 541 | char name[sizeof(current->comm)]; |
781 | struct mm_struct *mm = current->mm; | 542 | struct mm_struct *mm = current->mm; |
@@ -788,6 +549,10 @@ static void audit_log_task_info(struct audit_buffer *ab) | |||
788 | if (!mm) | 549 | if (!mm) |
789 | return; | 550 | return; |
790 | 551 | ||
552 | /* | ||
553 | * this is brittle; all callers that pass GFP_ATOMIC will have | ||
554 | * NULL current->mm and we won't get here. | ||
555 | */ | ||
791 | down_read(&mm->mmap_sem); | 556 | down_read(&mm->mmap_sem); |
792 | vma = mm->mmap; | 557 | vma = mm->mmap; |
793 | while (vma) { | 558 | while (vma) { |
@@ -801,6 +566,7 @@ static void audit_log_task_info(struct audit_buffer *ab) | |||
801 | vma = vma->vm_next; | 566 | vma = vma->vm_next; |
802 | } | 567 | } |
803 | up_read(&mm->mmap_sem); | 568 | up_read(&mm->mmap_sem); |
569 | audit_log_task_context(ab, gfp_mask); | ||
804 | } | 570 | } |
805 | 571 | ||
806 | static void audit_log_exit(struct audit_context *context, gfp_t gfp_mask) | 572 | static void audit_log_exit(struct audit_context *context, gfp_t gfp_mask) |
@@ -808,6 +574,7 @@ static void audit_log_exit(struct audit_context *context, gfp_t gfp_mask) | |||
808 | int i; | 574 | int i; |
809 | struct audit_buffer *ab; | 575 | struct audit_buffer *ab; |
810 | struct audit_aux_data *aux; | 576 | struct audit_aux_data *aux; |
577 | const char *tty; | ||
811 | 578 | ||
812 | ab = audit_log_start(context, gfp_mask, AUDIT_SYSCALL); | 579 | ab = audit_log_start(context, gfp_mask, AUDIT_SYSCALL); |
813 | if (!ab) | 580 | if (!ab) |
@@ -820,11 +587,15 @@ static void audit_log_exit(struct audit_context *context, gfp_t gfp_mask) | |||
820 | audit_log_format(ab, " success=%s exit=%ld", | 587 | audit_log_format(ab, " success=%s exit=%ld", |
821 | (context->return_valid==AUDITSC_SUCCESS)?"yes":"no", | 588 | (context->return_valid==AUDITSC_SUCCESS)?"yes":"no", |
822 | context->return_code); | 589 | context->return_code); |
590 | if (current->signal->tty && current->signal->tty->name) | ||
591 | tty = current->signal->tty->name; | ||
592 | else | ||
593 | tty = "(none)"; | ||
823 | audit_log_format(ab, | 594 | audit_log_format(ab, |
824 | " a0=%lx a1=%lx a2=%lx a3=%lx items=%d" | 595 | " a0=%lx a1=%lx a2=%lx a3=%lx items=%d" |
825 | " pid=%d auid=%u uid=%u gid=%u" | 596 | " pid=%d auid=%u uid=%u gid=%u" |
826 | " euid=%u suid=%u fsuid=%u" | 597 | " euid=%u suid=%u fsuid=%u" |
827 | " egid=%u sgid=%u fsgid=%u", | 598 | " egid=%u sgid=%u fsgid=%u tty=%s", |
828 | context->argv[0], | 599 | context->argv[0], |
829 | context->argv[1], | 600 | context->argv[1], |
830 | context->argv[2], | 601 | context->argv[2], |
@@ -835,8 +606,8 @@ static void audit_log_exit(struct audit_context *context, gfp_t gfp_mask) | |||
835 | context->uid, | 606 | context->uid, |
836 | context->gid, | 607 | context->gid, |
837 | context->euid, context->suid, context->fsuid, | 608 | context->euid, context->suid, context->fsuid, |
838 | context->egid, context->sgid, context->fsgid); | 609 | context->egid, context->sgid, context->fsgid, tty); |
839 | audit_log_task_info(ab); | 610 | audit_log_task_info(ab, gfp_mask); |
840 | audit_log_end(ab); | 611 | audit_log_end(ab); |
841 | 612 | ||
842 | for (aux = context->aux; aux; aux = aux->next) { | 613 | for (aux = context->aux; aux; aux = aux->next) { |
@@ -849,8 +620,8 @@ static void audit_log_exit(struct audit_context *context, gfp_t gfp_mask) | |||
849 | case AUDIT_IPC: { | 620 | case AUDIT_IPC: { |
850 | struct audit_aux_data_ipcctl *axi = (void *)aux; | 621 | struct audit_aux_data_ipcctl *axi = (void *)aux; |
851 | audit_log_format(ab, | 622 | audit_log_format(ab, |
852 | " qbytes=%lx iuid=%u igid=%u mode=%x", | 623 | " qbytes=%lx iuid=%u igid=%u mode=%x obj=%s", |
853 | axi->qbytes, axi->uid, axi->gid, axi->mode); | 624 | axi->qbytes, axi->uid, axi->gid, axi->mode, axi->ctx); |
854 | break; } | 625 | break; } |
855 | 626 | ||
856 | case AUDIT_SOCKETCALL: { | 627 | case AUDIT_SOCKETCALL: { |
@@ -885,42 +656,62 @@ static void audit_log_exit(struct audit_context *context, gfp_t gfp_mask) | |||
885 | } | 656 | } |
886 | } | 657 | } |
887 | for (i = 0; i < context->name_count; i++) { | 658 | for (i = 0; i < context->name_count; i++) { |
659 | unsigned long ino = context->names[i].ino; | ||
660 | unsigned long pino = context->names[i].pino; | ||
661 | |||
888 | ab = audit_log_start(context, gfp_mask, AUDIT_PATH); | 662 | ab = audit_log_start(context, gfp_mask, AUDIT_PATH); |
889 | if (!ab) | 663 | if (!ab) |
890 | continue; /* audit_panic has been called */ | 664 | continue; /* audit_panic has been called */ |
891 | 665 | ||
892 | audit_log_format(ab, "item=%d", i); | 666 | audit_log_format(ab, "item=%d", i); |
893 | if (context->names[i].name) { | 667 | |
894 | audit_log_format(ab, " name="); | 668 | audit_log_format(ab, " name="); |
669 | if (context->names[i].name) | ||
895 | audit_log_untrustedstring(ab, context->names[i].name); | 670 | audit_log_untrustedstring(ab, context->names[i].name); |
896 | } | 671 | else |
897 | audit_log_format(ab, " flags=%x\n", context->names[i].flags); | 672 | audit_log_format(ab, "(null)"); |
898 | 673 | ||
899 | if (context->names[i].ino != (unsigned long)-1) | 674 | if (pino != (unsigned long)-1) |
900 | audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#o" | 675 | audit_log_format(ab, " parent=%lu", pino); |
901 | " ouid=%u ogid=%u rdev=%02x:%02x", | 676 | if (ino != (unsigned long)-1) |
902 | context->names[i].ino, | 677 | audit_log_format(ab, " inode=%lu", ino); |
903 | MAJOR(context->names[i].dev), | 678 | if ((pino != (unsigned long)-1) || (ino != (unsigned long)-1)) |
904 | MINOR(context->names[i].dev), | 679 | audit_log_format(ab, " dev=%02x:%02x mode=%#o" |
905 | context->names[i].mode, | 680 | " ouid=%u ogid=%u rdev=%02x:%02x", |
906 | context->names[i].uid, | 681 | MAJOR(context->names[i].dev), |
907 | context->names[i].gid, | 682 | MINOR(context->names[i].dev), |
908 | MAJOR(context->names[i].rdev), | 683 | context->names[i].mode, |
684 | context->names[i].uid, | ||
685 | context->names[i].gid, | ||
686 | MAJOR(context->names[i].rdev), | ||
909 | MINOR(context->names[i].rdev)); | 687 | MINOR(context->names[i].rdev)); |
688 | if (context->names[i].ctx) { | ||
689 | audit_log_format(ab, " obj=%s", | ||
690 | context->names[i].ctx); | ||
691 | } | ||
692 | |||
910 | audit_log_end(ab); | 693 | audit_log_end(ab); |
911 | } | 694 | } |
912 | } | 695 | } |
913 | 696 | ||
914 | /* Free a per-task audit context. Called from copy_process and | 697 | /** |
915 | * __put_task_struct. */ | 698 | * audit_free - free a per-task audit context |
699 | * @tsk: task whose audit context block to free | ||
700 | * | ||
701 | * Called from copy_process and __put_task_struct. | ||
702 | */ | ||
916 | void audit_free(struct task_struct *tsk) | 703 | void audit_free(struct task_struct *tsk) |
917 | { | 704 | { |
918 | struct audit_context *context; | 705 | struct audit_context *context; |
919 | 706 | ||
920 | task_lock(tsk); | 707 | /* |
708 | * No need to lock the task - when we execute audit_free() | ||
709 | * then the task has no external references anymore, and | ||
710 | * we are tearing it down. (The locking also confuses | ||
711 | * DEBUG_LOCKDEP - this freeing may occur in softirq | ||
712 | * contexts as well, via RCU.) | ||
713 | */ | ||
921 | context = audit_get_context(tsk, 0, 0); | 714 | context = audit_get_context(tsk, 0, 0); |
922 | task_unlock(tsk); | ||
923 | |||
924 | if (likely(!context)) | 715 | if (likely(!context)) |
925 | return; | 716 | return; |
926 | 717 | ||
@@ -934,13 +725,24 @@ void audit_free(struct task_struct *tsk) | |||
934 | audit_free_context(context); | 725 | audit_free_context(context); |
935 | } | 726 | } |
936 | 727 | ||
937 | /* Fill in audit context at syscall entry. This only happens if the | 728 | /** |
729 | * audit_syscall_entry - fill in an audit record at syscall entry | ||
730 | * @tsk: task being audited | ||
731 | * @arch: architecture type | ||
732 | * @major: major syscall type (function) | ||
733 | * @a1: additional syscall register 1 | ||
734 | * @a2: additional syscall register 2 | ||
735 | * @a3: additional syscall register 3 | ||
736 | * @a4: additional syscall register 4 | ||
737 | * | ||
738 | * Fill in audit context at syscall entry. This only happens if the | ||
938 | * audit context was created when the task was created and the state or | 739 | * audit context was created when the task was created and the state or |
939 | * filters demand the audit context be built. If the state from the | 740 | * filters demand the audit context be built. If the state from the |
940 | * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT, | 741 | * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT, |
941 | * then the record will be written at syscall exit time (otherwise, it | 742 | * then the record will be written at syscall exit time (otherwise, it |
942 | * will only be written if another part of the kernel requests that it | 743 | * will only be written if another part of the kernel requests that it |
943 | * be written). */ | 744 | * be written). |
745 | */ | ||
944 | void audit_syscall_entry(struct task_struct *tsk, int arch, int major, | 746 | void audit_syscall_entry(struct task_struct *tsk, int arch, int major, |
945 | unsigned long a1, unsigned long a2, | 747 | unsigned long a1, unsigned long a2, |
946 | unsigned long a3, unsigned long a4) | 748 | unsigned long a3, unsigned long a4) |
@@ -950,7 +752,8 @@ void audit_syscall_entry(struct task_struct *tsk, int arch, int major, | |||
950 | 752 | ||
951 | BUG_ON(!context); | 753 | BUG_ON(!context); |
952 | 754 | ||
953 | /* This happens only on certain architectures that make system | 755 | /* |
756 | * This happens only on certain architectures that make system | ||
954 | * calls in kernel_thread via the entry.S interface, instead of | 757 | * calls in kernel_thread via the entry.S interface, instead of |
955 | * with direct calls. (If you are porting to a new | 758 | * with direct calls. (If you are porting to a new |
956 | * architecture, hitting this condition can indicate that you | 759 | * architecture, hitting this condition can indicate that you |
@@ -958,7 +761,7 @@ void audit_syscall_entry(struct task_struct *tsk, int arch, int major, | |||
958 | * | 761 | * |
959 | * i386 no | 762 | * i386 no |
960 | * x86_64 no | 763 | * x86_64 no |
961 | * ppc64 yes (see arch/ppc64/kernel/misc.S) | 764 | * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S) |
962 | * | 765 | * |
963 | * This also happens with vm86 emulation in a non-nested manner | 766 | * This also happens with vm86 emulation in a non-nested manner |
964 | * (entries without exits), so this case must be caught. | 767 | * (entries without exits), so this case must be caught. |
@@ -966,11 +769,6 @@ void audit_syscall_entry(struct task_struct *tsk, int arch, int major, | |||
966 | if (context->in_syscall) { | 769 | if (context->in_syscall) { |
967 | struct audit_context *newctx; | 770 | struct audit_context *newctx; |
968 | 771 | ||
969 | #if defined(__NR_vm86) && defined(__NR_vm86old) | ||
970 | /* vm86 mode should only be entered once */ | ||
971 | if (major == __NR_vm86 || major == __NR_vm86old) | ||
972 | return; | ||
973 | #endif | ||
974 | #if AUDIT_DEBUG | 772 | #if AUDIT_DEBUG |
975 | printk(KERN_ERR | 773 | printk(KERN_ERR |
976 | "audit(:%d) pid=%d in syscall=%d;" | 774 | "audit(:%d) pid=%d in syscall=%d;" |
@@ -1014,11 +812,18 @@ void audit_syscall_entry(struct task_struct *tsk, int arch, int major, | |||
1014 | context->auditable = !!(state == AUDIT_RECORD_CONTEXT); | 812 | context->auditable = !!(state == AUDIT_RECORD_CONTEXT); |
1015 | } | 813 | } |
1016 | 814 | ||
1017 | /* Tear down after system call. If the audit context has been marked as | 815 | /** |
816 | * audit_syscall_exit - deallocate audit context after a system call | ||
817 | * @tsk: task being audited | ||
818 | * @valid: success/failure flag | ||
819 | * @return_code: syscall return value | ||
820 | * | ||
821 | * Tear down after system call. If the audit context has been marked as | ||
1018 | * auditable (either because of the AUDIT_RECORD_CONTEXT state from | 822 | * auditable (either because of the AUDIT_RECORD_CONTEXT state from |
1019 | * filtering, or because some other part of the kernel write an audit | 823 | * filtering, or because some other part of the kernel write an audit |
1020 | * message), then write out the syscall information. In call cases, | 824 | * message), then write out the syscall information. In call cases, |
1021 | * free the names stored from getname(). */ | 825 | * free the names stored from getname(). |
826 | */ | ||
1022 | void audit_syscall_exit(struct task_struct *tsk, int valid, long return_code) | 827 | void audit_syscall_exit(struct task_struct *tsk, int valid, long return_code) |
1023 | { | 828 | { |
1024 | struct audit_context *context; | 829 | struct audit_context *context; |
@@ -1053,7 +858,13 @@ void audit_syscall_exit(struct task_struct *tsk, int valid, long return_code) | |||
1053 | put_task_struct(tsk); | 858 | put_task_struct(tsk); |
1054 | } | 859 | } |
1055 | 860 | ||
1056 | /* Add a name to the list. Called from fs/namei.c:getname(). */ | 861 | /** |
862 | * audit_getname - add a name to the list | ||
863 | * @name: name to add | ||
864 | * | ||
865 | * Add a name to the list of audit names for this context. | ||
866 | * Called from fs/namei.c:getname(). | ||
867 | */ | ||
1057 | void audit_getname(const char *name) | 868 | void audit_getname(const char *name) |
1058 | { | 869 | { |
1059 | struct audit_context *context = current->audit_context; | 870 | struct audit_context *context = current->audit_context; |
@@ -1082,10 +893,13 @@ void audit_getname(const char *name) | |||
1082 | 893 | ||
1083 | } | 894 | } |
1084 | 895 | ||
1085 | /* Intercept a putname request. Called from | 896 | /* audit_putname - intercept a putname request |
1086 | * include/linux/fs.h:putname(). If we have stored the name from | 897 | * @name: name to intercept and delay for putname |
1087 | * getname in the audit context, then we delay the putname until syscall | 898 | * |
1088 | * exit. */ | 899 | * If we have stored the name from getname in the audit context, |
900 | * then we delay the putname until syscall exit. | ||
901 | * Called from include/linux/fs.h:putname(). | ||
902 | */ | ||
1089 | void audit_putname(const char *name) | 903 | void audit_putname(const char *name) |
1090 | { | 904 | { |
1091 | struct audit_context *context = current->audit_context; | 905 | struct audit_context *context = current->audit_context; |
@@ -1100,7 +914,7 @@ void audit_putname(const char *name) | |||
1100 | for (i = 0; i < context->name_count; i++) | 914 | for (i = 0; i < context->name_count; i++) |
1101 | printk(KERN_ERR "name[%d] = %p = %s\n", i, | 915 | printk(KERN_ERR "name[%d] = %p = %s\n", i, |
1102 | context->names[i].name, | 916 | context->names[i].name, |
1103 | context->names[i].name); | 917 | context->names[i].name ?: "(null)"); |
1104 | } | 918 | } |
1105 | #endif | 919 | #endif |
1106 | __putname(name); | 920 | __putname(name); |
@@ -1122,9 +936,52 @@ void audit_putname(const char *name) | |||
1122 | #endif | 936 | #endif |
1123 | } | 937 | } |
1124 | 938 | ||
1125 | /* Store the inode and device from a lookup. Called from | 939 | void audit_inode_context(int idx, const struct inode *inode) |
1126 | * fs/namei.c:path_lookup(). */ | 940 | { |
1127 | void audit_inode(const char *name, const struct inode *inode, unsigned flags) | 941 | struct audit_context *context = current->audit_context; |
942 | const char *suffix = security_inode_xattr_getsuffix(); | ||
943 | char *ctx = NULL; | ||
944 | int len = 0; | ||
945 | |||
946 | if (!suffix) | ||
947 | goto ret; | ||
948 | |||
949 | len = security_inode_getsecurity(inode, suffix, NULL, 0, 0); | ||
950 | if (len == -EOPNOTSUPP) | ||
951 | goto ret; | ||
952 | if (len < 0) | ||
953 | goto error_path; | ||
954 | |||
955 | ctx = kmalloc(len, GFP_KERNEL); | ||
956 | if (!ctx) | ||
957 | goto error_path; | ||
958 | |||
959 | len = security_inode_getsecurity(inode, suffix, ctx, len, 0); | ||
960 | if (len < 0) | ||
961 | goto error_path; | ||
962 | |||
963 | kfree(context->names[idx].ctx); | ||
964 | context->names[idx].ctx = ctx; | ||
965 | goto ret; | ||
966 | |||
967 | error_path: | ||
968 | if (ctx) | ||
969 | kfree(ctx); | ||
970 | audit_panic("error in audit_inode_context"); | ||
971 | ret: | ||
972 | return; | ||
973 | } | ||
974 | |||
975 | |||
976 | /** | ||
977 | * audit_inode - store the inode and device from a lookup | ||
978 | * @name: name being audited | ||
979 | * @inode: inode being audited | ||
980 | * @flags: lookup flags (as used in path_lookup()) | ||
981 | * | ||
982 | * Called from fs/namei.c:path_lookup(). | ||
983 | */ | ||
984 | void __audit_inode(const char *name, const struct inode *inode, unsigned flags) | ||
1128 | { | 985 | { |
1129 | int idx; | 986 | int idx; |
1130 | struct audit_context *context = current->audit_context; | 987 | struct audit_context *context = current->audit_context; |
@@ -1150,15 +1007,105 @@ void audit_inode(const char *name, const struct inode *inode, unsigned flags) | |||
1150 | ++context->ino_count; | 1007 | ++context->ino_count; |
1151 | #endif | 1008 | #endif |
1152 | } | 1009 | } |
1153 | context->names[idx].flags = flags; | ||
1154 | context->names[idx].ino = inode->i_ino; | ||
1155 | context->names[idx].dev = inode->i_sb->s_dev; | 1010 | context->names[idx].dev = inode->i_sb->s_dev; |
1156 | context->names[idx].mode = inode->i_mode; | 1011 | context->names[idx].mode = inode->i_mode; |
1157 | context->names[idx].uid = inode->i_uid; | 1012 | context->names[idx].uid = inode->i_uid; |
1158 | context->names[idx].gid = inode->i_gid; | 1013 | context->names[idx].gid = inode->i_gid; |
1159 | context->names[idx].rdev = inode->i_rdev; | 1014 | context->names[idx].rdev = inode->i_rdev; |
1015 | audit_inode_context(idx, inode); | ||
1016 | if ((flags & LOOKUP_PARENT) && (strcmp(name, "/") != 0) && | ||
1017 | (strcmp(name, ".") != 0)) { | ||
1018 | context->names[idx].ino = (unsigned long)-1; | ||
1019 | context->names[idx].pino = inode->i_ino; | ||
1020 | } else { | ||
1021 | context->names[idx].ino = inode->i_ino; | ||
1022 | context->names[idx].pino = (unsigned long)-1; | ||
1023 | } | ||
1024 | } | ||
1025 | |||
1026 | /** | ||
1027 | * audit_inode_child - collect inode info for created/removed objects | ||
1028 | * @dname: inode's dentry name | ||
1029 | * @inode: inode being audited | ||
1030 | * @pino: inode number of dentry parent | ||
1031 | * | ||
1032 | * For syscalls that create or remove filesystem objects, audit_inode | ||
1033 | * can only collect information for the filesystem object's parent. | ||
1034 | * This call updates the audit context with the child's information. | ||
1035 | * Syscalls that create a new filesystem object must be hooked after | ||
1036 | * the object is created. Syscalls that remove a filesystem object | ||
1037 | * must be hooked prior, in order to capture the target inode during | ||
1038 | * unsuccessful attempts. | ||
1039 | */ | ||
1040 | void __audit_inode_child(const char *dname, const struct inode *inode, | ||
1041 | unsigned long pino) | ||
1042 | { | ||
1043 | int idx; | ||
1044 | struct audit_context *context = current->audit_context; | ||
1045 | |||
1046 | if (!context->in_syscall) | ||
1047 | return; | ||
1048 | |||
1049 | /* determine matching parent */ | ||
1050 | if (dname) | ||
1051 | for (idx = 0; idx < context->name_count; idx++) | ||
1052 | if (context->names[idx].pino == pino) { | ||
1053 | const char *n; | ||
1054 | const char *name = context->names[idx].name; | ||
1055 | int dlen = strlen(dname); | ||
1056 | int nlen = name ? strlen(name) : 0; | ||
1057 | |||
1058 | if (nlen < dlen) | ||
1059 | continue; | ||
1060 | |||
1061 | /* disregard trailing slashes */ | ||
1062 | n = name + nlen - 1; | ||
1063 | while ((*n == '/') && (n > name)) | ||
1064 | n--; | ||
1065 | |||
1066 | /* find last path component */ | ||
1067 | n = n - dlen + 1; | ||
1068 | if (n < name) | ||
1069 | continue; | ||
1070 | else if (n > name) { | ||
1071 | if (*--n != '/') | ||
1072 | continue; | ||
1073 | else | ||
1074 | n++; | ||
1075 | } | ||
1076 | |||
1077 | if (strncmp(n, dname, dlen) == 0) | ||
1078 | goto update_context; | ||
1079 | } | ||
1080 | |||
1081 | /* catch-all in case match not found */ | ||
1082 | idx = context->name_count++; | ||
1083 | context->names[idx].name = NULL; | ||
1084 | context->names[idx].pino = pino; | ||
1085 | #if AUDIT_DEBUG | ||
1086 | context->ino_count++; | ||
1087 | #endif | ||
1088 | |||
1089 | update_context: | ||
1090 | if (inode) { | ||
1091 | context->names[idx].ino = inode->i_ino; | ||
1092 | context->names[idx].dev = inode->i_sb->s_dev; | ||
1093 | context->names[idx].mode = inode->i_mode; | ||
1094 | context->names[idx].uid = inode->i_uid; | ||
1095 | context->names[idx].gid = inode->i_gid; | ||
1096 | context->names[idx].rdev = inode->i_rdev; | ||
1097 | audit_inode_context(idx, inode); | ||
1098 | } | ||
1160 | } | 1099 | } |
1161 | 1100 | ||
1101 | /** | ||
1102 | * auditsc_get_stamp - get local copies of audit_context values | ||
1103 | * @ctx: audit_context for the task | ||
1104 | * @t: timespec to store time recorded in the audit_context | ||
1105 | * @serial: serial value that is recorded in the audit_context | ||
1106 | * | ||
1107 | * Also sets the context as auditable. | ||
1108 | */ | ||
1162 | void auditsc_get_stamp(struct audit_context *ctx, | 1109 | void auditsc_get_stamp(struct audit_context *ctx, |
1163 | struct timespec *t, unsigned int *serial) | 1110 | struct timespec *t, unsigned int *serial) |
1164 | { | 1111 | { |
@@ -1170,6 +1117,15 @@ void auditsc_get_stamp(struct audit_context *ctx, | |||
1170 | ctx->auditable = 1; | 1117 | ctx->auditable = 1; |
1171 | } | 1118 | } |
1172 | 1119 | ||
1120 | /** | ||
1121 | * audit_set_loginuid - set a task's audit_context loginuid | ||
1122 | * @task: task whose audit context is being modified | ||
1123 | * @loginuid: loginuid value | ||
1124 | * | ||
1125 | * Returns 0. | ||
1126 | * | ||
1127 | * Called (set) from fs/proc/base.c::proc_loginuid_write(). | ||
1128 | */ | ||
1173 | int audit_set_loginuid(struct task_struct *task, uid_t loginuid) | 1129 | int audit_set_loginuid(struct task_struct *task, uid_t loginuid) |
1174 | { | 1130 | { |
1175 | if (task->audit_context) { | 1131 | if (task->audit_context) { |
@@ -1188,12 +1144,59 @@ int audit_set_loginuid(struct task_struct *task, uid_t loginuid) | |||
1188 | return 0; | 1144 | return 0; |
1189 | } | 1145 | } |
1190 | 1146 | ||
1147 | /** | ||
1148 | * audit_get_loginuid - get the loginuid for an audit_context | ||
1149 | * @ctx: the audit_context | ||
1150 | * | ||
1151 | * Returns the context's loginuid or -1 if @ctx is NULL. | ||
1152 | */ | ||
1191 | uid_t audit_get_loginuid(struct audit_context *ctx) | 1153 | uid_t audit_get_loginuid(struct audit_context *ctx) |
1192 | { | 1154 | { |
1193 | return ctx ? ctx->loginuid : -1; | 1155 | return ctx ? ctx->loginuid : -1; |
1194 | } | 1156 | } |
1195 | 1157 | ||
1196 | int audit_ipc_perms(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode) | 1158 | static char *audit_ipc_context(struct kern_ipc_perm *ipcp) |
1159 | { | ||
1160 | struct audit_context *context = current->audit_context; | ||
1161 | char *ctx = NULL; | ||
1162 | int len = 0; | ||
1163 | |||
1164 | if (likely(!context)) | ||
1165 | return NULL; | ||
1166 | |||
1167 | len = security_ipc_getsecurity(ipcp, NULL, 0); | ||
1168 | if (len == -EOPNOTSUPP) | ||
1169 | goto ret; | ||
1170 | if (len < 0) | ||
1171 | goto error_path; | ||
1172 | |||
1173 | ctx = kmalloc(len, GFP_ATOMIC); | ||
1174 | if (!ctx) | ||
1175 | goto error_path; | ||
1176 | |||
1177 | len = security_ipc_getsecurity(ipcp, ctx, len); | ||
1178 | if (len < 0) | ||
1179 | goto error_path; | ||
1180 | |||
1181 | return ctx; | ||
1182 | |||
1183 | error_path: | ||
1184 | kfree(ctx); | ||
1185 | audit_panic("error in audit_ipc_context"); | ||
1186 | ret: | ||
1187 | return NULL; | ||
1188 | } | ||
1189 | |||
1190 | /** | ||
1191 | * audit_ipc_perms - record audit data for ipc | ||
1192 | * @qbytes: msgq bytes | ||
1193 | * @uid: msgq user id | ||
1194 | * @gid: msgq group id | ||
1195 | * @mode: msgq mode (permissions) | ||
1196 | * | ||
1197 | * Returns 0 for success or NULL context or < 0 on error. | ||
1198 | */ | ||
1199 | int audit_ipc_perms(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode, struct kern_ipc_perm *ipcp) | ||
1197 | { | 1200 | { |
1198 | struct audit_aux_data_ipcctl *ax; | 1201 | struct audit_aux_data_ipcctl *ax; |
1199 | struct audit_context *context = current->audit_context; | 1202 | struct audit_context *context = current->audit_context; |
@@ -1201,7 +1204,7 @@ int audit_ipc_perms(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode) | |||
1201 | if (likely(!context)) | 1204 | if (likely(!context)) |
1202 | return 0; | 1205 | return 0; |
1203 | 1206 | ||
1204 | ax = kmalloc(sizeof(*ax), GFP_KERNEL); | 1207 | ax = kmalloc(sizeof(*ax), GFP_ATOMIC); |
1205 | if (!ax) | 1208 | if (!ax) |
1206 | return -ENOMEM; | 1209 | return -ENOMEM; |
1207 | 1210 | ||
@@ -1209,6 +1212,7 @@ int audit_ipc_perms(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode) | |||
1209 | ax->uid = uid; | 1212 | ax->uid = uid; |
1210 | ax->gid = gid; | 1213 | ax->gid = gid; |
1211 | ax->mode = mode; | 1214 | ax->mode = mode; |
1215 | ax->ctx = audit_ipc_context(ipcp); | ||
1212 | 1216 | ||
1213 | ax->d.type = AUDIT_IPC; | 1217 | ax->d.type = AUDIT_IPC; |
1214 | ax->d.next = context->aux; | 1218 | ax->d.next = context->aux; |
@@ -1216,6 +1220,13 @@ int audit_ipc_perms(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode) | |||
1216 | return 0; | 1220 | return 0; |
1217 | } | 1221 | } |
1218 | 1222 | ||
1223 | /** | ||
1224 | * audit_socketcall - record audit data for sys_socketcall | ||
1225 | * @nargs: number of args | ||
1226 | * @args: args array | ||
1227 | * | ||
1228 | * Returns 0 for success or NULL context or < 0 on error. | ||
1229 | */ | ||
1219 | int audit_socketcall(int nargs, unsigned long *args) | 1230 | int audit_socketcall(int nargs, unsigned long *args) |
1220 | { | 1231 | { |
1221 | struct audit_aux_data_socketcall *ax; | 1232 | struct audit_aux_data_socketcall *ax; |
@@ -1237,6 +1248,13 @@ int audit_socketcall(int nargs, unsigned long *args) | |||
1237 | return 0; | 1248 | return 0; |
1238 | } | 1249 | } |
1239 | 1250 | ||
1251 | /** | ||
1252 | * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto | ||
1253 | * @len: data length in user space | ||
1254 | * @a: data address in kernel space | ||
1255 | * | ||
1256 | * Returns 0 for success or NULL context or < 0 on error. | ||
1257 | */ | ||
1240 | int audit_sockaddr(int len, void *a) | 1258 | int audit_sockaddr(int len, void *a) |
1241 | { | 1259 | { |
1242 | struct audit_aux_data_sockaddr *ax; | 1260 | struct audit_aux_data_sockaddr *ax; |
@@ -1258,6 +1276,15 @@ int audit_sockaddr(int len, void *a) | |||
1258 | return 0; | 1276 | return 0; |
1259 | } | 1277 | } |
1260 | 1278 | ||
1279 | /** | ||
1280 | * audit_avc_path - record the granting or denial of permissions | ||
1281 | * @dentry: dentry to record | ||
1282 | * @mnt: mnt to record | ||
1283 | * | ||
1284 | * Returns 0 for success or NULL context or < 0 on error. | ||
1285 | * | ||
1286 | * Called from security/selinux/avc.c::avc_audit() | ||
1287 | */ | ||
1261 | int audit_avc_path(struct dentry *dentry, struct vfsmount *mnt) | 1288 | int audit_avc_path(struct dentry *dentry, struct vfsmount *mnt) |
1262 | { | 1289 | { |
1263 | struct audit_aux_data_path *ax; | 1290 | struct audit_aux_data_path *ax; |
@@ -1279,6 +1306,14 @@ int audit_avc_path(struct dentry *dentry, struct vfsmount *mnt) | |||
1279 | return 0; | 1306 | return 0; |
1280 | } | 1307 | } |
1281 | 1308 | ||
1309 | /** | ||
1310 | * audit_signal_info - record signal info for shutting down audit subsystem | ||
1311 | * @sig: signal value | ||
1312 | * @t: task being signaled | ||
1313 | * | ||
1314 | * If the audit subsystem is being terminated, record the task (pid) | ||
1315 | * and uid that is doing that. | ||
1316 | */ | ||
1282 | void audit_signal_info(int sig, struct task_struct *t) | 1317 | void audit_signal_info(int sig, struct task_struct *t) |
1283 | { | 1318 | { |
1284 | extern pid_t audit_sig_pid; | 1319 | extern pid_t audit_sig_pid; |
@@ -1295,4 +1330,3 @@ void audit_signal_info(int sig, struct task_struct *t) | |||
1295 | } | 1330 | } |
1296 | } | 1331 | } |
1297 | } | 1332 | } |
1298 | |||
diff --git a/kernel/capability.c b/kernel/capability.c index bfa3c92e16..1a4d8a40d3 100644 --- a/kernel/capability.c +++ b/kernel/capability.c | |||
@@ -233,3 +233,19 @@ out: | |||
233 | 233 | ||
234 | return ret; | 234 | return ret; |
235 | } | 235 | } |
236 | |||
237 | int __capable(struct task_struct *t, int cap) | ||
238 | { | ||
239 | if (security_capable(t, cap) == 0) { | ||
240 | t->flags |= PF_SUPERPRIV; | ||
241 | return 1; | ||
242 | } | ||
243 | return 0; | ||
244 | } | ||
245 | EXPORT_SYMBOL(__capable); | ||
246 | |||
247 | int capable(int cap) | ||
248 | { | ||
249 | return __capable(current, cap); | ||
250 | } | ||
251 | EXPORT_SYMBOL(capable); | ||
diff --git a/kernel/compat.c b/kernel/compat.c index 8c9cd88b67..c1601a84f8 100644 --- a/kernel/compat.c +++ b/kernel/compat.c | |||
@@ -17,10 +17,10 @@ | |||
17 | #include <linux/time.h> | 17 | #include <linux/time.h> |
18 | #include <linux/signal.h> | 18 | #include <linux/signal.h> |
19 | #include <linux/sched.h> /* for MAX_SCHEDULE_TIMEOUT */ | 19 | #include <linux/sched.h> /* for MAX_SCHEDULE_TIMEOUT */ |
20 | #include <linux/futex.h> /* for FUTEX_WAIT */ | ||
21 | #include <linux/syscalls.h> | 20 | #include <linux/syscalls.h> |
22 | #include <linux/unistd.h> | 21 | #include <linux/unistd.h> |
23 | #include <linux/security.h> | 22 | #include <linux/security.h> |
23 | #include <linux/timex.h> | ||
24 | 24 | ||
25 | #include <asm/uaccess.h> | 25 | #include <asm/uaccess.h> |
26 | 26 | ||
@@ -238,28 +238,6 @@ asmlinkage long compat_sys_sigprocmask(int how, compat_old_sigset_t __user *set, | |||
238 | return ret; | 238 | return ret; |
239 | } | 239 | } |
240 | 240 | ||
241 | #ifdef CONFIG_FUTEX | ||
242 | asmlinkage long compat_sys_futex(u32 __user *uaddr, int op, int val, | ||
243 | struct compat_timespec __user *utime, u32 __user *uaddr2, | ||
244 | int val3) | ||
245 | { | ||
246 | struct timespec t; | ||
247 | unsigned long timeout = MAX_SCHEDULE_TIMEOUT; | ||
248 | int val2 = 0; | ||
249 | |||
250 | if ((op == FUTEX_WAIT) && utime) { | ||
251 | if (get_compat_timespec(&t, utime)) | ||
252 | return -EFAULT; | ||
253 | timeout = timespec_to_jiffies(&t) + 1; | ||
254 | } | ||
255 | if (op >= FUTEX_REQUEUE) | ||
256 | val2 = (int) (unsigned long) utime; | ||
257 | |||
258 | return do_futex((unsigned long)uaddr, op, val, timeout, | ||
259 | (unsigned long)uaddr2, val2, val3); | ||
260 | } | ||
261 | #endif | ||
262 | |||
263 | asmlinkage long compat_sys_setrlimit(unsigned int resource, | 241 | asmlinkage long compat_sys_setrlimit(unsigned int resource, |
264 | struct compat_rlimit __user *rlim) | 242 | struct compat_rlimit __user *rlim) |
265 | { | 243 | { |
@@ -898,3 +876,61 @@ asmlinkage long compat_sys_rt_sigsuspend(compat_sigset_t __user *unewset, compat | |||
898 | return -ERESTARTNOHAND; | 876 | return -ERESTARTNOHAND; |
899 | } | 877 | } |
900 | #endif /* __ARCH_WANT_COMPAT_SYS_RT_SIGSUSPEND */ | 878 | #endif /* __ARCH_WANT_COMPAT_SYS_RT_SIGSUSPEND */ |
879 | |||
880 | asmlinkage long compat_sys_adjtimex(struct compat_timex __user *utp) | ||
881 | { | ||
882 | struct timex txc; | ||
883 | int ret; | ||
884 | |||
885 | memset(&txc, 0, sizeof(struct timex)); | ||
886 | |||
887 | if (!access_ok(VERIFY_READ, utp, sizeof(struct compat_timex)) || | ||
888 | __get_user(txc.modes, &utp->modes) || | ||
889 | __get_user(txc.offset, &utp->offset) || | ||
890 | __get_user(txc.freq, &utp->freq) || | ||
891 | __get_user(txc.maxerror, &utp->maxerror) || | ||
892 | __get_user(txc.esterror, &utp->esterror) || | ||
893 | __get_user(txc.status, &utp->status) || | ||
894 | __get_user(txc.constant, &utp->constant) || | ||
895 | __get_user(txc.precision, &utp->precision) || | ||
896 | __get_user(txc.tolerance, &utp->tolerance) || | ||
897 | __get_user(txc.time.tv_sec, &utp->time.tv_sec) || | ||
898 | __get_user(txc.time.tv_usec, &utp->time.tv_usec) || | ||
899 | __get_user(txc.tick, &utp->tick) || | ||
900 | __get_user(txc.ppsfreq, &utp->ppsfreq) || | ||
901 | __get_user(txc.jitter, &utp->jitter) || | ||
902 | __get_user(txc.shift, &utp->shift) || | ||
903 | __get_user(txc.stabil, &utp->stabil) || | ||
904 | __get_user(txc.jitcnt, &utp->jitcnt) || | ||
905 | __get_user(txc.calcnt, &utp->calcnt) || | ||
906 | __get_user(txc.errcnt, &utp->errcnt) || | ||
907 | __get_user(txc.stbcnt, &utp->stbcnt)) | ||
908 | return -EFAULT; | ||
909 | |||
910 | ret = do_adjtimex(&txc); | ||
911 | |||
912 | if (!access_ok(VERIFY_WRITE, utp, sizeof(struct compat_timex)) || | ||
913 | __put_user(txc.modes, &utp->modes) || | ||
914 | __put_user(txc.offset, &utp->offset) || | ||
915 | __put_user(txc.freq, &utp->freq) || | ||
916 | __put_user(txc.maxerror, &utp->maxerror) || | ||
917 | __put_user(txc.esterror, &utp->esterror) || | ||
918 | __put_user(txc.status, &utp->status) || | ||
919 | __put_user(txc.constant, &utp->constant) || | ||
920 | __put_user(txc.precision, &utp->precision) || | ||
921 | __put_user(txc.tolerance, &utp->tolerance) || | ||
922 | __put_user(txc.time.tv_sec, &utp->time.tv_sec) || | ||
923 | __put_user(txc.time.tv_usec, &utp->time.tv_usec) || | ||
924 | __put_user(txc.tick, &utp->tick) || | ||
925 | __put_user(txc.ppsfreq, &utp->ppsfreq) || | ||
926 | __put_user(txc.jitter, &utp->jitter) || | ||
927 | __put_user(txc.shift, &utp->shift) || | ||
928 | __put_user(txc.stabil, &utp->stabil) || | ||
929 | __put_user(txc.jitcnt, &utp->jitcnt) || | ||
930 | __put_user(txc.calcnt, &utp->calcnt) || | ||
931 | __put_user(txc.errcnt, &utp->errcnt) || | ||
932 | __put_user(txc.stbcnt, &utp->stbcnt)) | ||
933 | ret = -EFAULT; | ||
934 | |||
935 | return ret; | ||
936 | } | ||
diff --git a/kernel/cpu.c b/kernel/cpu.c index e882c6babf..fe2b8d0bfe 100644 --- a/kernel/cpu.c +++ b/kernel/cpu.c | |||
@@ -18,7 +18,7 @@ | |||
18 | /* This protects CPUs going up and down... */ | 18 | /* This protects CPUs going up and down... */ |
19 | static DECLARE_MUTEX(cpucontrol); | 19 | static DECLARE_MUTEX(cpucontrol); |
20 | 20 | ||
21 | static struct notifier_block *cpu_chain; | 21 | static BLOCKING_NOTIFIER_HEAD(cpu_chain); |
22 | 22 | ||
23 | #ifdef CONFIG_HOTPLUG_CPU | 23 | #ifdef CONFIG_HOTPLUG_CPU |
24 | static struct task_struct *lock_cpu_hotplug_owner; | 24 | static struct task_struct *lock_cpu_hotplug_owner; |
@@ -71,21 +71,13 @@ EXPORT_SYMBOL_GPL(lock_cpu_hotplug_interruptible); | |||
71 | /* Need to know about CPUs going up/down? */ | 71 | /* Need to know about CPUs going up/down? */ |
72 | int register_cpu_notifier(struct notifier_block *nb) | 72 | int register_cpu_notifier(struct notifier_block *nb) |
73 | { | 73 | { |
74 | int ret; | 74 | return blocking_notifier_chain_register(&cpu_chain, nb); |
75 | |||
76 | if ((ret = lock_cpu_hotplug_interruptible()) != 0) | ||
77 | return ret; | ||
78 | ret = notifier_chain_register(&cpu_chain, nb); | ||
79 | unlock_cpu_hotplug(); | ||
80 | return ret; | ||
81 | } | 75 | } |
82 | EXPORT_SYMBOL(register_cpu_notifier); | 76 | EXPORT_SYMBOL(register_cpu_notifier); |
83 | 77 | ||
84 | void unregister_cpu_notifier(struct notifier_block *nb) | 78 | void unregister_cpu_notifier(struct notifier_block *nb) |
85 | { | 79 | { |
86 | lock_cpu_hotplug(); | 80 | blocking_notifier_chain_unregister(&cpu_chain, nb); |
87 | notifier_chain_unregister(&cpu_chain, nb); | ||
88 | unlock_cpu_hotplug(); | ||
89 | } | 81 | } |
90 | EXPORT_SYMBOL(unregister_cpu_notifier); | 82 | EXPORT_SYMBOL(unregister_cpu_notifier); |
91 | 83 | ||
@@ -141,7 +133,7 @@ int cpu_down(unsigned int cpu) | |||
141 | goto out; | 133 | goto out; |
142 | } | 134 | } |
143 | 135 | ||
144 | err = notifier_call_chain(&cpu_chain, CPU_DOWN_PREPARE, | 136 | err = blocking_notifier_call_chain(&cpu_chain, CPU_DOWN_PREPARE, |
145 | (void *)(long)cpu); | 137 | (void *)(long)cpu); |
146 | if (err == NOTIFY_BAD) { | 138 | if (err == NOTIFY_BAD) { |
147 | printk("%s: attempt to take down CPU %u failed\n", | 139 | printk("%s: attempt to take down CPU %u failed\n", |
@@ -159,7 +151,7 @@ int cpu_down(unsigned int cpu) | |||
159 | p = __stop_machine_run(take_cpu_down, NULL, cpu); | 151 | p = __stop_machine_run(take_cpu_down, NULL, cpu); |
160 | if (IS_ERR(p)) { | 152 | if (IS_ERR(p)) { |
161 | /* CPU didn't die: tell everyone. Can't complain. */ | 153 | /* CPU didn't die: tell everyone. Can't complain. */ |
162 | if (notifier_call_chain(&cpu_chain, CPU_DOWN_FAILED, | 154 | if (blocking_notifier_call_chain(&cpu_chain, CPU_DOWN_FAILED, |
163 | (void *)(long)cpu) == NOTIFY_BAD) | 155 | (void *)(long)cpu) == NOTIFY_BAD) |
164 | BUG(); | 156 | BUG(); |
165 | 157 | ||
@@ -182,8 +174,8 @@ int cpu_down(unsigned int cpu) | |||
182 | put_cpu(); | 174 | put_cpu(); |
183 | 175 | ||
184 | /* CPU is completely dead: tell everyone. Too late to complain. */ | 176 | /* CPU is completely dead: tell everyone. Too late to complain. */ |
185 | if (notifier_call_chain(&cpu_chain, CPU_DEAD, (void *)(long)cpu) | 177 | if (blocking_notifier_call_chain(&cpu_chain, CPU_DEAD, |
186 | == NOTIFY_BAD) | 178 | (void *)(long)cpu) == NOTIFY_BAD) |
187 | BUG(); | 179 | BUG(); |
188 | 180 | ||
189 | check_for_tasks(cpu); | 181 | check_for_tasks(cpu); |
@@ -211,7 +203,7 @@ int __devinit cpu_up(unsigned int cpu) | |||
211 | goto out; | 203 | goto out; |
212 | } | 204 | } |
213 | 205 | ||
214 | ret = notifier_call_chain(&cpu_chain, CPU_UP_PREPARE, hcpu); | 206 | ret = blocking_notifier_call_chain(&cpu_chain, CPU_UP_PREPARE, hcpu); |
215 | if (ret == NOTIFY_BAD) { | 207 | if (ret == NOTIFY_BAD) { |
216 | printk("%s: attempt to bring up CPU %u failed\n", | 208 | printk("%s: attempt to bring up CPU %u failed\n", |
217 | __FUNCTION__, cpu); | 209 | __FUNCTION__, cpu); |
@@ -223,15 +215,15 @@ int __devinit cpu_up(unsigned int cpu) | |||
223 | ret = __cpu_up(cpu); | 215 | ret = __cpu_up(cpu); |
224 | if (ret != 0) | 216 | if (ret != 0) |
225 | goto out_notify; | 217 | goto out_notify; |
226 | if (!cpu_online(cpu)) | 218 | BUG_ON(!cpu_online(cpu)); |
227 | BUG(); | ||
228 | 219 | ||
229 | /* Now call notifier in preparation. */ | 220 | /* Now call notifier in preparation. */ |
230 | notifier_call_chain(&cpu_chain, CPU_ONLINE, hcpu); | 221 | blocking_notifier_call_chain(&cpu_chain, CPU_ONLINE, hcpu); |
231 | 222 | ||
232 | out_notify: | 223 | out_notify: |
233 | if (ret != 0) | 224 | if (ret != 0) |
234 | notifier_call_chain(&cpu_chain, CPU_UP_CANCELED, hcpu); | 225 | blocking_notifier_call_chain(&cpu_chain, |
226 | CPU_UP_CANCELED, hcpu); | ||
235 | out: | 227 | out: |
236 | unlock_cpu_hotplug(); | 228 | unlock_cpu_hotplug(); |
237 | return ret; | 229 | return ret; |
diff --git a/kernel/cpuset.c b/kernel/cpuset.c index 12815d3f1a..18aea1bd12 100644 --- a/kernel/cpuset.c +++ b/kernel/cpuset.c | |||
@@ -4,15 +4,14 @@ | |||
4 | * Processor and Memory placement constraints for sets of tasks. | 4 | * Processor and Memory placement constraints for sets of tasks. |
5 | * | 5 | * |
6 | * Copyright (C) 2003 BULL SA. | 6 | * Copyright (C) 2003 BULL SA. |
7 | * Copyright (C) 2004 Silicon Graphics, Inc. | 7 | * Copyright (C) 2004-2006 Silicon Graphics, Inc. |
8 | * | 8 | * |
9 | * Portions derived from Patrick Mochel's sysfs code. | 9 | * Portions derived from Patrick Mochel's sysfs code. |
10 | * sysfs is Copyright (c) 2001-3 Patrick Mochel | 10 | * sysfs is Copyright (c) 2001-3 Patrick Mochel |
11 | * Portions Copyright (c) 2004 Silicon Graphics, Inc. | ||
12 | * | 11 | * |
13 | * 2003-10-10 Written by Simon Derr <simon.derr@bull.net> | 12 | * 2003-10-10 Written by Simon Derr. |
14 | * 2003-10-22 Updates by Stephen Hemminger. | 13 | * 2003-10-22 Updates by Stephen Hemminger. |
15 | * 2004 May-July Rework by Paul Jackson <pj@sgi.com> | 14 | * 2004 May-July Rework by Paul Jackson. |
16 | * | 15 | * |
17 | * This file is subject to the terms and conditions of the GNU General Public | 16 | * This file is subject to the terms and conditions of the GNU General Public |
18 | * License. See the file COPYING in the main directory of the Linux | 17 | * License. See the file COPYING in the main directory of the Linux |
@@ -53,7 +52,7 @@ | |||
53 | 52 | ||
54 | #include <asm/uaccess.h> | 53 | #include <asm/uaccess.h> |
55 | #include <asm/atomic.h> | 54 | #include <asm/atomic.h> |
56 | #include <asm/semaphore.h> | 55 | #include <linux/mutex.h> |
57 | 56 | ||
58 | #define CPUSET_SUPER_MAGIC 0x27e0eb | 57 | #define CPUSET_SUPER_MAGIC 0x27e0eb |
59 | 58 | ||
@@ -108,37 +107,49 @@ typedef enum { | |||
108 | CS_MEM_EXCLUSIVE, | 107 | CS_MEM_EXCLUSIVE, |
109 | CS_MEMORY_MIGRATE, | 108 | CS_MEMORY_MIGRATE, |
110 | CS_REMOVED, | 109 | CS_REMOVED, |
111 | CS_NOTIFY_ON_RELEASE | 110 | CS_NOTIFY_ON_RELEASE, |
111 | CS_SPREAD_PAGE, | ||
112 | CS_SPREAD_SLAB, | ||
112 | } cpuset_flagbits_t; | 113 | } cpuset_flagbits_t; |
113 | 114 | ||
114 | /* convenient tests for these bits */ | 115 | /* convenient tests for these bits */ |
115 | static inline int is_cpu_exclusive(const struct cpuset *cs) | 116 | static inline int is_cpu_exclusive(const struct cpuset *cs) |
116 | { | 117 | { |
117 | return !!test_bit(CS_CPU_EXCLUSIVE, &cs->flags); | 118 | return test_bit(CS_CPU_EXCLUSIVE, &cs->flags); |
118 | } | 119 | } |
119 | 120 | ||
120 | static inline int is_mem_exclusive(const struct cpuset *cs) | 121 | static inline int is_mem_exclusive(const struct cpuset *cs) |
121 | { | 122 | { |
122 | return !!test_bit(CS_MEM_EXCLUSIVE, &cs->flags); | 123 | return test_bit(CS_MEM_EXCLUSIVE, &cs->flags); |
123 | } | 124 | } |
124 | 125 | ||
125 | static inline int is_removed(const struct cpuset *cs) | 126 | static inline int is_removed(const struct cpuset *cs) |
126 | { | 127 | { |
127 | return !!test_bit(CS_REMOVED, &cs->flags); | 128 | return test_bit(CS_REMOVED, &cs->flags); |
128 | } | 129 | } |
129 | 130 | ||
130 | static inline int notify_on_release(const struct cpuset *cs) | 131 | static inline int notify_on_release(const struct cpuset *cs) |
131 | { | 132 | { |
132 | return !!test_bit(CS_NOTIFY_ON_RELEASE, &cs->flags); | 133 | return test_bit(CS_NOTIFY_ON_RELEASE, &cs->flags); |
133 | } | 134 | } |
134 | 135 | ||
135 | static inline int is_memory_migrate(const struct cpuset *cs) | 136 | static inline int is_memory_migrate(const struct cpuset *cs) |
136 | { | 137 | { |
137 | return !!test_bit(CS_MEMORY_MIGRATE, &cs->flags); | 138 | return test_bit(CS_MEMORY_MIGRATE, &cs->flags); |
139 | } | ||
140 | |||
141 | static inline int is_spread_page(const struct cpuset *cs) | ||
142 | { | ||
143 | return test_bit(CS_SPREAD_PAGE, &cs->flags); | ||
144 | } | ||
145 | |||
146 | static inline int is_spread_slab(const struct cpuset *cs) | ||
147 | { | ||
148 | return test_bit(CS_SPREAD_SLAB, &cs->flags); | ||
138 | } | 149 | } |
139 | 150 | ||
140 | /* | 151 | /* |
141 | * Increment this atomic integer everytime any cpuset changes its | 152 | * Increment this integer everytime any cpuset changes its |
142 | * mems_allowed value. Users of cpusets can track this generation | 153 | * mems_allowed value. Users of cpusets can track this generation |
143 | * number, and avoid having to lock and reload mems_allowed unless | 154 | * number, and avoid having to lock and reload mems_allowed unless |
144 | * the cpuset they're using changes generation. | 155 | * the cpuset they're using changes generation. |
@@ -152,8 +163,11 @@ static inline int is_memory_migrate(const struct cpuset *cs) | |||
152 | * on every visit to __alloc_pages(), to efficiently check whether | 163 | * on every visit to __alloc_pages(), to efficiently check whether |
153 | * its current->cpuset->mems_allowed has changed, requiring an update | 164 | * its current->cpuset->mems_allowed has changed, requiring an update |
154 | * of its current->mems_allowed. | 165 | * of its current->mems_allowed. |
166 | * | ||
167 | * Since cpuset_mems_generation is guarded by manage_mutex, | ||
168 | * there is no need to mark it atomic. | ||
155 | */ | 169 | */ |
156 | static atomic_t cpuset_mems_generation = ATOMIC_INIT(1); | 170 | static int cpuset_mems_generation; |
157 | 171 | ||
158 | static struct cpuset top_cpuset = { | 172 | static struct cpuset top_cpuset = { |
159 | .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)), | 173 | .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)), |
@@ -168,63 +182,57 @@ static struct vfsmount *cpuset_mount; | |||
168 | static struct super_block *cpuset_sb; | 182 | static struct super_block *cpuset_sb; |
169 | 183 | ||
170 | /* | 184 | /* |
171 | * We have two global cpuset semaphores below. They can nest. | 185 | * We have two global cpuset mutexes below. They can nest. |
172 | * It is ok to first take manage_sem, then nest callback_sem. We also | 186 | * It is ok to first take manage_mutex, then nest callback_mutex. We also |
173 | * require taking task_lock() when dereferencing a tasks cpuset pointer. | 187 | * require taking task_lock() when dereferencing a tasks cpuset pointer. |
174 | * See "The task_lock() exception", at the end of this comment. | 188 | * See "The task_lock() exception", at the end of this comment. |
175 | * | 189 | * |
176 | * A task must hold both semaphores to modify cpusets. If a task | 190 | * A task must hold both mutexes to modify cpusets. If a task |
177 | * holds manage_sem, then it blocks others wanting that semaphore, | 191 | * holds manage_mutex, then it blocks others wanting that mutex, |
178 | * ensuring that it is the only task able to also acquire callback_sem | 192 | * ensuring that it is the only task able to also acquire callback_mutex |
179 | * and be able to modify cpusets. It can perform various checks on | 193 | * and be able to modify cpusets. It can perform various checks on |
180 | * the cpuset structure first, knowing nothing will change. It can | 194 | * the cpuset structure first, knowing nothing will change. It can |
181 | * also allocate memory while just holding manage_sem. While it is | 195 | * also allocate memory while just holding manage_mutex. While it is |
182 | * performing these checks, various callback routines can briefly | 196 | * performing these checks, various callback routines can briefly |
183 | * acquire callback_sem to query cpusets. Once it is ready to make | 197 | * acquire callback_mutex to query cpusets. Once it is ready to make |
184 | * the changes, it takes callback_sem, blocking everyone else. | 198 | * the changes, it takes callback_mutex, blocking everyone else. |
185 | * | 199 | * |
186 | * Calls to the kernel memory allocator can not be made while holding | 200 | * Calls to the kernel memory allocator can not be made while holding |
187 | * callback_sem, as that would risk double tripping on callback_sem | 201 | * callback_mutex, as that would risk double tripping on callback_mutex |
188 | * from one of the callbacks into the cpuset code from within | 202 | * from one of the callbacks into the cpuset code from within |
189 | * __alloc_pages(). | 203 | * __alloc_pages(). |
190 | * | 204 | * |
191 | * If a task is only holding callback_sem, then it has read-only | 205 | * If a task is only holding callback_mutex, then it has read-only |
192 | * access to cpusets. | 206 | * access to cpusets. |
193 | * | 207 | * |
194 | * The task_struct fields mems_allowed and mems_generation may only | 208 | * The task_struct fields mems_allowed and mems_generation may only |
195 | * be accessed in the context of that task, so require no locks. | 209 | * be accessed in the context of that task, so require no locks. |
196 | * | 210 | * |
197 | * Any task can increment and decrement the count field without lock. | 211 | * Any task can increment and decrement the count field without lock. |
198 | * So in general, code holding manage_sem or callback_sem can't rely | 212 | * So in general, code holding manage_mutex or callback_mutex can't rely |
199 | * on the count field not changing. However, if the count goes to | 213 | * on the count field not changing. However, if the count goes to |
200 | * zero, then only attach_task(), which holds both semaphores, can | 214 | * zero, then only attach_task(), which holds both mutexes, can |
201 | * increment it again. Because a count of zero means that no tasks | 215 | * increment it again. Because a count of zero means that no tasks |
202 | * are currently attached, therefore there is no way a task attached | 216 | * are currently attached, therefore there is no way a task attached |
203 | * to that cpuset can fork (the other way to increment the count). | 217 | * to that cpuset can fork (the other way to increment the count). |
204 | * So code holding manage_sem or callback_sem can safely assume that | 218 | * So code holding manage_mutex or callback_mutex can safely assume that |
205 | * if the count is zero, it will stay zero. Similarly, if a task | 219 | * if the count is zero, it will stay zero. Similarly, if a task |
206 | * holds manage_sem or callback_sem on a cpuset with zero count, it | 220 | * holds manage_mutex or callback_mutex on a cpuset with zero count, it |
207 | * knows that the cpuset won't be removed, as cpuset_rmdir() needs | 221 | * knows that the cpuset won't be removed, as cpuset_rmdir() needs |
208 | * both of those semaphores. | 222 | * both of those mutexes. |
209 | * | ||
210 | * A possible optimization to improve parallelism would be to make | ||
211 | * callback_sem a R/W semaphore (rwsem), allowing the callback routines | ||
212 | * to proceed in parallel, with read access, until the holder of | ||
213 | * manage_sem needed to take this rwsem for exclusive write access | ||
214 | * and modify some cpusets. | ||
215 | * | 223 | * |
216 | * The cpuset_common_file_write handler for operations that modify | 224 | * The cpuset_common_file_write handler for operations that modify |
217 | * the cpuset hierarchy holds manage_sem across the entire operation, | 225 | * the cpuset hierarchy holds manage_mutex across the entire operation, |
218 | * single threading all such cpuset modifications across the system. | 226 | * single threading all such cpuset modifications across the system. |
219 | * | 227 | * |
220 | * The cpuset_common_file_read() handlers only hold callback_sem across | 228 | * The cpuset_common_file_read() handlers only hold callback_mutex across |
221 | * small pieces of code, such as when reading out possibly multi-word | 229 | * small pieces of code, such as when reading out possibly multi-word |
222 | * cpumasks and nodemasks. | 230 | * cpumasks and nodemasks. |
223 | * | 231 | * |
224 | * The fork and exit callbacks cpuset_fork() and cpuset_exit(), don't | 232 | * The fork and exit callbacks cpuset_fork() and cpuset_exit(), don't |
225 | * (usually) take either semaphore. These are the two most performance | 233 | * (usually) take either mutex. These are the two most performance |
226 | * critical pieces of code here. The exception occurs on cpuset_exit(), | 234 | * critical pieces of code here. The exception occurs on cpuset_exit(), |
227 | * when a task in a notify_on_release cpuset exits. Then manage_sem | 235 | * when a task in a notify_on_release cpuset exits. Then manage_mutex |
228 | * is taken, and if the cpuset count is zero, a usermode call made | 236 | * is taken, and if the cpuset count is zero, a usermode call made |
229 | * to /sbin/cpuset_release_agent with the name of the cpuset (path | 237 | * to /sbin/cpuset_release_agent with the name of the cpuset (path |
230 | * relative to the root of cpuset file system) as the argument. | 238 | * relative to the root of cpuset file system) as the argument. |
@@ -242,9 +250,9 @@ static struct super_block *cpuset_sb; | |||
242 | * | 250 | * |
243 | * The need for this exception arises from the action of attach_task(), | 251 | * The need for this exception arises from the action of attach_task(), |
244 | * which overwrites one tasks cpuset pointer with another. It does | 252 | * which overwrites one tasks cpuset pointer with another. It does |
245 | * so using both semaphores, however there are several performance | 253 | * so using both mutexes, however there are several performance |
246 | * critical places that need to reference task->cpuset without the | 254 | * critical places that need to reference task->cpuset without the |
247 | * expense of grabbing a system global semaphore. Therefore except as | 255 | * expense of grabbing a system global mutex. Therefore except as |
248 | * noted below, when dereferencing or, as in attach_task(), modifying | 256 | * noted below, when dereferencing or, as in attach_task(), modifying |
249 | * a tasks cpuset pointer we use task_lock(), which acts on a spinlock | 257 | * a tasks cpuset pointer we use task_lock(), which acts on a spinlock |
250 | * (task->alloc_lock) already in the task_struct routinely used for | 258 | * (task->alloc_lock) already in the task_struct routinely used for |
@@ -256,8 +264,8 @@ static struct super_block *cpuset_sb; | |||
256 | * the routine cpuset_update_task_memory_state(). | 264 | * the routine cpuset_update_task_memory_state(). |
257 | */ | 265 | */ |
258 | 266 | ||
259 | static DECLARE_MUTEX(manage_sem); | 267 | static DEFINE_MUTEX(manage_mutex); |
260 | static DECLARE_MUTEX(callback_sem); | 268 | static DEFINE_MUTEX(callback_mutex); |
261 | 269 | ||
262 | /* | 270 | /* |
263 | * A couple of forward declarations required, due to cyclic reference loop: | 271 | * A couple of forward declarations required, due to cyclic reference loop: |
@@ -432,7 +440,7 @@ static inline struct cftype *__d_cft(struct dentry *dentry) | |||
432 | } | 440 | } |
433 | 441 | ||
434 | /* | 442 | /* |
435 | * Call with manage_sem held. Writes path of cpuset into buf. | 443 | * Call with manage_mutex held. Writes path of cpuset into buf. |
436 | * Returns 0 on success, -errno on error. | 444 | * Returns 0 on success, -errno on error. |
437 | */ | 445 | */ |
438 | 446 | ||
@@ -484,11 +492,11 @@ static int cpuset_path(const struct cpuset *cs, char *buf, int buflen) | |||
484 | * status of the /sbin/cpuset_release_agent task, so no sense holding | 492 | * status of the /sbin/cpuset_release_agent task, so no sense holding |
485 | * our caller up for that. | 493 | * our caller up for that. |
486 | * | 494 | * |
487 | * When we had only one cpuset semaphore, we had to call this | 495 | * When we had only one cpuset mutex, we had to call this |
488 | * without holding it, to avoid deadlock when call_usermodehelper() | 496 | * without holding it, to avoid deadlock when call_usermodehelper() |
489 | * allocated memory. With two locks, we could now call this while | 497 | * allocated memory. With two locks, we could now call this while |
490 | * holding manage_sem, but we still don't, so as to minimize | 498 | * holding manage_mutex, but we still don't, so as to minimize |
491 | * the time manage_sem is held. | 499 | * the time manage_mutex is held. |
492 | */ | 500 | */ |
493 | 501 | ||
494 | static void cpuset_release_agent(const char *pathbuf) | 502 | static void cpuset_release_agent(const char *pathbuf) |
@@ -520,15 +528,15 @@ static void cpuset_release_agent(const char *pathbuf) | |||
520 | * cs is notify_on_release() and now both the user count is zero and | 528 | * cs is notify_on_release() and now both the user count is zero and |
521 | * the list of children is empty, prepare cpuset path in a kmalloc'd | 529 | * the list of children is empty, prepare cpuset path in a kmalloc'd |
522 | * buffer, to be returned via ppathbuf, so that the caller can invoke | 530 | * buffer, to be returned via ppathbuf, so that the caller can invoke |
523 | * cpuset_release_agent() with it later on, once manage_sem is dropped. | 531 | * cpuset_release_agent() with it later on, once manage_mutex is dropped. |
524 | * Call here with manage_sem held. | 532 | * Call here with manage_mutex held. |
525 | * | 533 | * |
526 | * This check_for_release() routine is responsible for kmalloc'ing | 534 | * This check_for_release() routine is responsible for kmalloc'ing |
527 | * pathbuf. The above cpuset_release_agent() is responsible for | 535 | * pathbuf. The above cpuset_release_agent() is responsible for |
528 | * kfree'ing pathbuf. The caller of these routines is responsible | 536 | * kfree'ing pathbuf. The caller of these routines is responsible |
529 | * for providing a pathbuf pointer, initialized to NULL, then | 537 | * for providing a pathbuf pointer, initialized to NULL, then |
530 | * calling check_for_release() with manage_sem held and the address | 538 | * calling check_for_release() with manage_mutex held and the address |
531 | * of the pathbuf pointer, then dropping manage_sem, then calling | 539 | * of the pathbuf pointer, then dropping manage_mutex, then calling |
532 | * cpuset_release_agent() with pathbuf, as set by check_for_release(). | 540 | * cpuset_release_agent() with pathbuf, as set by check_for_release(). |
533 | */ | 541 | */ |
534 | 542 | ||
@@ -559,7 +567,7 @@ static void check_for_release(struct cpuset *cs, char **ppathbuf) | |||
559 | * One way or another, we guarantee to return some non-empty subset | 567 | * One way or another, we guarantee to return some non-empty subset |
560 | * of cpu_online_map. | 568 | * of cpu_online_map. |
561 | * | 569 | * |
562 | * Call with callback_sem held. | 570 | * Call with callback_mutex held. |
563 | */ | 571 | */ |
564 | 572 | ||
565 | static void guarantee_online_cpus(const struct cpuset *cs, cpumask_t *pmask) | 573 | static void guarantee_online_cpus(const struct cpuset *cs, cpumask_t *pmask) |
@@ -583,7 +591,7 @@ static void guarantee_online_cpus(const struct cpuset *cs, cpumask_t *pmask) | |||
583 | * One way or another, we guarantee to return some non-empty subset | 591 | * One way or another, we guarantee to return some non-empty subset |
584 | * of node_online_map. | 592 | * of node_online_map. |
585 | * | 593 | * |
586 | * Call with callback_sem held. | 594 | * Call with callback_mutex held. |
587 | */ | 595 | */ |
588 | 596 | ||
589 | static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask) | 597 | static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask) |
@@ -608,12 +616,12 @@ static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask) | |||
608 | * current->cpuset if a task has its memory placement changed. | 616 | * current->cpuset if a task has its memory placement changed. |
609 | * Do not call this routine if in_interrupt(). | 617 | * Do not call this routine if in_interrupt(). |
610 | * | 618 | * |
611 | * Call without callback_sem or task_lock() held. May be called | 619 | * Call without callback_mutex or task_lock() held. May be called |
612 | * with or without manage_sem held. Doesn't need task_lock to guard | 620 | * with or without manage_mutex held. Doesn't need task_lock to guard |
613 | * against another task changing a non-NULL cpuset pointer to NULL, | 621 | * against another task changing a non-NULL cpuset pointer to NULL, |
614 | * as that is only done by a task on itself, and if the current task | 622 | * as that is only done by a task on itself, and if the current task |
615 | * is here, it is not simultaneously in the exit code NULL'ing its | 623 | * is here, it is not simultaneously in the exit code NULL'ing its |
616 | * cpuset pointer. This routine also might acquire callback_sem and | 624 | * cpuset pointer. This routine also might acquire callback_mutex and |
617 | * current->mm->mmap_sem during call. | 625 | * current->mm->mmap_sem during call. |
618 | * | 626 | * |
619 | * Reading current->cpuset->mems_generation doesn't need task_lock | 627 | * Reading current->cpuset->mems_generation doesn't need task_lock |
@@ -658,13 +666,21 @@ void cpuset_update_task_memory_state(void) | |||
658 | } | 666 | } |
659 | 667 | ||
660 | if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) { | 668 | if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) { |
661 | down(&callback_sem); | 669 | mutex_lock(&callback_mutex); |
662 | task_lock(tsk); | 670 | task_lock(tsk); |
663 | cs = tsk->cpuset; /* Maybe changed when task not locked */ | 671 | cs = tsk->cpuset; /* Maybe changed when task not locked */ |
664 | guarantee_online_mems(cs, &tsk->mems_allowed); | 672 | guarantee_online_mems(cs, &tsk->mems_allowed); |
665 | tsk->cpuset_mems_generation = cs->mems_generation; | 673 | tsk->cpuset_mems_generation = cs->mems_generation; |
674 | if (is_spread_page(cs)) | ||
675 | tsk->flags |= PF_SPREAD_PAGE; | ||
676 | else | ||
677 | tsk->flags &= ~PF_SPREAD_PAGE; | ||
678 | if (is_spread_slab(cs)) | ||
679 | tsk->flags |= PF_SPREAD_SLAB; | ||
680 | else | ||
681 | tsk->flags &= ~PF_SPREAD_SLAB; | ||
666 | task_unlock(tsk); | 682 | task_unlock(tsk); |
667 | up(&callback_sem); | 683 | mutex_unlock(&callback_mutex); |
668 | mpol_rebind_task(tsk, &tsk->mems_allowed); | 684 | mpol_rebind_task(tsk, &tsk->mems_allowed); |
669 | } | 685 | } |
670 | } | 686 | } |
@@ -674,7 +690,7 @@ void cpuset_update_task_memory_state(void) | |||
674 | * | 690 | * |
675 | * One cpuset is a subset of another if all its allowed CPUs and | 691 | * One cpuset is a subset of another if all its allowed CPUs and |
676 | * Memory Nodes are a subset of the other, and its exclusive flags | 692 | * Memory Nodes are a subset of the other, and its exclusive flags |
677 | * are only set if the other's are set. Call holding manage_sem. | 693 | * are only set if the other's are set. Call holding manage_mutex. |
678 | */ | 694 | */ |
679 | 695 | ||
680 | static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q) | 696 | static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q) |
@@ -692,7 +708,7 @@ static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q) | |||
692 | * If we replaced the flag and mask values of the current cpuset | 708 | * If we replaced the flag and mask values of the current cpuset |
693 | * (cur) with those values in the trial cpuset (trial), would | 709 | * (cur) with those values in the trial cpuset (trial), would |
694 | * our various subset and exclusive rules still be valid? Presumes | 710 | * our various subset and exclusive rules still be valid? Presumes |
695 | * manage_sem held. | 711 | * manage_mutex held. |
696 | * | 712 | * |
697 | * 'cur' is the address of an actual, in-use cpuset. Operations | 713 | * 'cur' is the address of an actual, in-use cpuset. Operations |
698 | * such as list traversal that depend on the actual address of the | 714 | * such as list traversal that depend on the actual address of the |
@@ -746,7 +762,7 @@ static int validate_change(const struct cpuset *cur, const struct cpuset *trial) | |||
746 | * exclusive child cpusets | 762 | * exclusive child cpusets |
747 | * Build these two partitions by calling partition_sched_domains | 763 | * Build these two partitions by calling partition_sched_domains |
748 | * | 764 | * |
749 | * Call with manage_sem held. May nest a call to the | 765 | * Call with manage_mutex held. May nest a call to the |
750 | * lock_cpu_hotplug()/unlock_cpu_hotplug() pair. | 766 | * lock_cpu_hotplug()/unlock_cpu_hotplug() pair. |
751 | */ | 767 | */ |
752 | 768 | ||
@@ -792,7 +808,7 @@ static void update_cpu_domains(struct cpuset *cur) | |||
792 | } | 808 | } |
793 | 809 | ||
794 | /* | 810 | /* |
795 | * Call with manage_sem held. May take callback_sem during call. | 811 | * Call with manage_mutex held. May take callback_mutex during call. |
796 | */ | 812 | */ |
797 | 813 | ||
798 | static int update_cpumask(struct cpuset *cs, char *buf) | 814 | static int update_cpumask(struct cpuset *cs, char *buf) |
@@ -811,9 +827,9 @@ static int update_cpumask(struct cpuset *cs, char *buf) | |||
811 | if (retval < 0) | 827 | if (retval < 0) |
812 | return retval; | 828 | return retval; |
813 | cpus_unchanged = cpus_equal(cs->cpus_allowed, trialcs.cpus_allowed); | 829 | cpus_unchanged = cpus_equal(cs->cpus_allowed, trialcs.cpus_allowed); |
814 | down(&callback_sem); | 830 | mutex_lock(&callback_mutex); |
815 | cs->cpus_allowed = trialcs.cpus_allowed; | 831 | cs->cpus_allowed = trialcs.cpus_allowed; |
816 | up(&callback_sem); | 832 | mutex_unlock(&callback_mutex); |
817 | if (is_cpu_exclusive(cs) && !cpus_unchanged) | 833 | if (is_cpu_exclusive(cs) && !cpus_unchanged) |
818 | update_cpu_domains(cs); | 834 | update_cpu_domains(cs); |
819 | return 0; | 835 | return 0; |
@@ -827,7 +843,7 @@ static int update_cpumask(struct cpuset *cs, char *buf) | |||
827 | * the cpuset is marked 'memory_migrate', migrate the tasks | 843 | * the cpuset is marked 'memory_migrate', migrate the tasks |
828 | * pages to the new memory. | 844 | * pages to the new memory. |
829 | * | 845 | * |
830 | * Call with manage_sem held. May take callback_sem during call. | 846 | * Call with manage_mutex held. May take callback_mutex during call. |
831 | * Will take tasklist_lock, scan tasklist for tasks in cpuset cs, | 847 | * Will take tasklist_lock, scan tasklist for tasks in cpuset cs, |
832 | * lock each such tasks mm->mmap_sem, scan its vma's and rebind | 848 | * lock each such tasks mm->mmap_sem, scan its vma's and rebind |
833 | * their mempolicies to the cpusets new mems_allowed. | 849 | * their mempolicies to the cpusets new mems_allowed. |
@@ -862,11 +878,10 @@ static int update_nodemask(struct cpuset *cs, char *buf) | |||
862 | if (retval < 0) | 878 | if (retval < 0) |
863 | goto done; | 879 | goto done; |
864 | 880 | ||
865 | down(&callback_sem); | 881 | mutex_lock(&callback_mutex); |
866 | cs->mems_allowed = trialcs.mems_allowed; | 882 | cs->mems_allowed = trialcs.mems_allowed; |
867 | atomic_inc(&cpuset_mems_generation); | 883 | cs->mems_generation = cpuset_mems_generation++; |
868 | cs->mems_generation = atomic_read(&cpuset_mems_generation); | 884 | mutex_unlock(&callback_mutex); |
869 | up(&callback_sem); | ||
870 | 885 | ||
871 | set_cpuset_being_rebound(cs); /* causes mpol_copy() rebind */ | 886 | set_cpuset_being_rebound(cs); /* causes mpol_copy() rebind */ |
872 | 887 | ||
@@ -922,7 +937,7 @@ static int update_nodemask(struct cpuset *cs, char *buf) | |||
922 | * tasklist_lock. Forks can happen again now - the mpol_copy() | 937 | * tasklist_lock. Forks can happen again now - the mpol_copy() |
923 | * cpuset_being_rebound check will catch such forks, and rebind | 938 | * cpuset_being_rebound check will catch such forks, and rebind |
924 | * their vma mempolicies too. Because we still hold the global | 939 | * their vma mempolicies too. Because we still hold the global |
925 | * cpuset manage_sem, we know that no other rebind effort will | 940 | * cpuset manage_mutex, we know that no other rebind effort will |
926 | * be contending for the global variable cpuset_being_rebound. | 941 | * be contending for the global variable cpuset_being_rebound. |
927 | * It's ok if we rebind the same mm twice; mpol_rebind_mm() | 942 | * It's ok if we rebind the same mm twice; mpol_rebind_mm() |
928 | * is idempotent. Also migrate pages in each mm to new nodes. | 943 | * is idempotent. Also migrate pages in each mm to new nodes. |
@@ -948,7 +963,7 @@ done: | |||
948 | } | 963 | } |
949 | 964 | ||
950 | /* | 965 | /* |
951 | * Call with manage_sem held. | 966 | * Call with manage_mutex held. |
952 | */ | 967 | */ |
953 | 968 | ||
954 | static int update_memory_pressure_enabled(struct cpuset *cs, char *buf) | 969 | static int update_memory_pressure_enabled(struct cpuset *cs, char *buf) |
@@ -963,11 +978,12 @@ static int update_memory_pressure_enabled(struct cpuset *cs, char *buf) | |||
963 | /* | 978 | /* |
964 | * update_flag - read a 0 or a 1 in a file and update associated flag | 979 | * update_flag - read a 0 or a 1 in a file and update associated flag |
965 | * bit: the bit to update (CS_CPU_EXCLUSIVE, CS_MEM_EXCLUSIVE, | 980 | * bit: the bit to update (CS_CPU_EXCLUSIVE, CS_MEM_EXCLUSIVE, |
966 | * CS_NOTIFY_ON_RELEASE, CS_MEMORY_MIGRATE) | 981 | * CS_NOTIFY_ON_RELEASE, CS_MEMORY_MIGRATE, |
982 | * CS_SPREAD_PAGE, CS_SPREAD_SLAB) | ||
967 | * cs: the cpuset to update | 983 | * cs: the cpuset to update |
968 | * buf: the buffer where we read the 0 or 1 | 984 | * buf: the buffer where we read the 0 or 1 |
969 | * | 985 | * |
970 | * Call with manage_sem held. | 986 | * Call with manage_mutex held. |
971 | */ | 987 | */ |
972 | 988 | ||
973 | static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, char *buf) | 989 | static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, char *buf) |
@@ -989,12 +1005,12 @@ static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, char *buf) | |||
989 | return err; | 1005 | return err; |
990 | cpu_exclusive_changed = | 1006 | cpu_exclusive_changed = |
991 | (is_cpu_exclusive(cs) != is_cpu_exclusive(&trialcs)); | 1007 | (is_cpu_exclusive(cs) != is_cpu_exclusive(&trialcs)); |
992 | down(&callback_sem); | 1008 | mutex_lock(&callback_mutex); |
993 | if (turning_on) | 1009 | if (turning_on) |
994 | set_bit(bit, &cs->flags); | 1010 | set_bit(bit, &cs->flags); |
995 | else | 1011 | else |
996 | clear_bit(bit, &cs->flags); | 1012 | clear_bit(bit, &cs->flags); |
997 | up(&callback_sem); | 1013 | mutex_unlock(&callback_mutex); |
998 | 1014 | ||
999 | if (cpu_exclusive_changed) | 1015 | if (cpu_exclusive_changed) |
1000 | update_cpu_domains(cs); | 1016 | update_cpu_domains(cs); |
@@ -1104,7 +1120,7 @@ static int fmeter_getrate(struct fmeter *fmp) | |||
1104 | * writing the path of the old cpuset in 'ppathbuf' if it needs to be | 1120 | * writing the path of the old cpuset in 'ppathbuf' if it needs to be |
1105 | * notified on release. | 1121 | * notified on release. |
1106 | * | 1122 | * |
1107 | * Call holding manage_sem. May take callback_sem and task_lock of | 1123 | * Call holding manage_mutex. May take callback_mutex and task_lock of |
1108 | * the task 'pid' during call. | 1124 | * the task 'pid' during call. |
1109 | */ | 1125 | */ |
1110 | 1126 | ||
@@ -1144,13 +1160,13 @@ static int attach_task(struct cpuset *cs, char *pidbuf, char **ppathbuf) | |||
1144 | get_task_struct(tsk); | 1160 | get_task_struct(tsk); |
1145 | } | 1161 | } |
1146 | 1162 | ||
1147 | down(&callback_sem); | 1163 | mutex_lock(&callback_mutex); |
1148 | 1164 | ||
1149 | task_lock(tsk); | 1165 | task_lock(tsk); |
1150 | oldcs = tsk->cpuset; | 1166 | oldcs = tsk->cpuset; |
1151 | if (!oldcs) { | 1167 | if (!oldcs) { |
1152 | task_unlock(tsk); | 1168 | task_unlock(tsk); |
1153 | up(&callback_sem); | 1169 | mutex_unlock(&callback_mutex); |
1154 | put_task_struct(tsk); | 1170 | put_task_struct(tsk); |
1155 | return -ESRCH; | 1171 | return -ESRCH; |
1156 | } | 1172 | } |
@@ -1164,7 +1180,7 @@ static int attach_task(struct cpuset *cs, char *pidbuf, char **ppathbuf) | |||
1164 | from = oldcs->mems_allowed; | 1180 | from = oldcs->mems_allowed; |
1165 | to = cs->mems_allowed; | 1181 | to = cs->mems_allowed; |
1166 | 1182 | ||
1167 | up(&callback_sem); | 1183 | mutex_unlock(&callback_mutex); |
1168 | 1184 | ||
1169 | mm = get_task_mm(tsk); | 1185 | mm = get_task_mm(tsk); |
1170 | if (mm) { | 1186 | if (mm) { |
@@ -1194,6 +1210,8 @@ typedef enum { | |||
1194 | FILE_NOTIFY_ON_RELEASE, | 1210 | FILE_NOTIFY_ON_RELEASE, |
1195 | FILE_MEMORY_PRESSURE_ENABLED, | 1211 | FILE_MEMORY_PRESSURE_ENABLED, |
1196 | FILE_MEMORY_PRESSURE, | 1212 | FILE_MEMORY_PRESSURE, |
1213 | FILE_SPREAD_PAGE, | ||
1214 | FILE_SPREAD_SLAB, | ||
1197 | FILE_TASKLIST, | 1215 | FILE_TASKLIST, |
1198 | } cpuset_filetype_t; | 1216 | } cpuset_filetype_t; |
1199 | 1217 | ||
@@ -1221,7 +1239,7 @@ static ssize_t cpuset_common_file_write(struct file *file, const char __user *us | |||
1221 | } | 1239 | } |
1222 | buffer[nbytes] = 0; /* nul-terminate */ | 1240 | buffer[nbytes] = 0; /* nul-terminate */ |
1223 | 1241 | ||
1224 | down(&manage_sem); | 1242 | mutex_lock(&manage_mutex); |
1225 | 1243 | ||
1226 | if (is_removed(cs)) { | 1244 | if (is_removed(cs)) { |
1227 | retval = -ENODEV; | 1245 | retval = -ENODEV; |
@@ -1253,6 +1271,14 @@ static ssize_t cpuset_common_file_write(struct file *file, const char __user *us | |||
1253 | case FILE_MEMORY_PRESSURE: | 1271 | case FILE_MEMORY_PRESSURE: |
1254 | retval = -EACCES; | 1272 | retval = -EACCES; |
1255 | break; | 1273 | break; |
1274 | case FILE_SPREAD_PAGE: | ||
1275 | retval = update_flag(CS_SPREAD_PAGE, cs, buffer); | ||
1276 | cs->mems_generation = cpuset_mems_generation++; | ||
1277 | break; | ||
1278 | case FILE_SPREAD_SLAB: | ||
1279 | retval = update_flag(CS_SPREAD_SLAB, cs, buffer); | ||
1280 | cs->mems_generation = cpuset_mems_generation++; | ||
1281 | break; | ||
1256 | case FILE_TASKLIST: | 1282 | case FILE_TASKLIST: |
1257 | retval = attach_task(cs, buffer, &pathbuf); | 1283 | retval = attach_task(cs, buffer, &pathbuf); |
1258 | break; | 1284 | break; |
@@ -1264,7 +1290,7 @@ static ssize_t cpuset_common_file_write(struct file *file, const char __user *us | |||
1264 | if (retval == 0) | 1290 | if (retval == 0) |
1265 | retval = nbytes; | 1291 | retval = nbytes; |
1266 | out2: | 1292 | out2: |
1267 | up(&manage_sem); | 1293 | mutex_unlock(&manage_mutex); |
1268 | cpuset_release_agent(pathbuf); | 1294 | cpuset_release_agent(pathbuf); |
1269 | out1: | 1295 | out1: |
1270 | kfree(buffer); | 1296 | kfree(buffer); |
@@ -1304,9 +1330,9 @@ static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs) | |||
1304 | { | 1330 | { |
1305 | cpumask_t mask; | 1331 | cpumask_t mask; |
1306 | 1332 | ||
1307 | down(&callback_sem); | 1333 | mutex_lock(&callback_mutex); |
1308 | mask = cs->cpus_allowed; | 1334 | mask = cs->cpus_allowed; |
1309 | up(&callback_sem); | 1335 | mutex_unlock(&callback_mutex); |
1310 | 1336 | ||
1311 | return cpulist_scnprintf(page, PAGE_SIZE, mask); | 1337 | return cpulist_scnprintf(page, PAGE_SIZE, mask); |
1312 | } | 1338 | } |
@@ -1315,9 +1341,9 @@ static int cpuset_sprintf_memlist(char *page, struct cpuset *cs) | |||
1315 | { | 1341 | { |
1316 | nodemask_t mask; | 1342 | nodemask_t mask; |
1317 | 1343 | ||
1318 | down(&callback_sem); | 1344 | mutex_lock(&callback_mutex); |
1319 | mask = cs->mems_allowed; | 1345 | mask = cs->mems_allowed; |
1320 | up(&callback_sem); | 1346 | mutex_unlock(&callback_mutex); |
1321 | 1347 | ||
1322 | return nodelist_scnprintf(page, PAGE_SIZE, mask); | 1348 | return nodelist_scnprintf(page, PAGE_SIZE, mask); |
1323 | } | 1349 | } |
@@ -1362,6 +1388,12 @@ static ssize_t cpuset_common_file_read(struct file *file, char __user *buf, | |||
1362 | case FILE_MEMORY_PRESSURE: | 1388 | case FILE_MEMORY_PRESSURE: |
1363 | s += sprintf(s, "%d", fmeter_getrate(&cs->fmeter)); | 1389 | s += sprintf(s, "%d", fmeter_getrate(&cs->fmeter)); |
1364 | break; | 1390 | break; |
1391 | case FILE_SPREAD_PAGE: | ||
1392 | *s++ = is_spread_page(cs) ? '1' : '0'; | ||
1393 | break; | ||
1394 | case FILE_SPREAD_SLAB: | ||
1395 | *s++ = is_spread_slab(cs) ? '1' : '0'; | ||
1396 | break; | ||
1365 | default: | 1397 | default: |
1366 | retval = -EINVAL; | 1398 | retval = -EINVAL; |
1367 | goto out; | 1399 | goto out; |
@@ -1598,7 +1630,7 @@ static int pid_array_to_buf(char *buf, int sz, pid_t *a, int npids) | |||
1598 | * Handle an open on 'tasks' file. Prepare a buffer listing the | 1630 | * Handle an open on 'tasks' file. Prepare a buffer listing the |
1599 | * process id's of tasks currently attached to the cpuset being opened. | 1631 | * process id's of tasks currently attached to the cpuset being opened. |
1600 | * | 1632 | * |
1601 | * Does not require any specific cpuset semaphores, and does not take any. | 1633 | * Does not require any specific cpuset mutexes, and does not take any. |
1602 | */ | 1634 | */ |
1603 | static int cpuset_tasks_open(struct inode *unused, struct file *file) | 1635 | static int cpuset_tasks_open(struct inode *unused, struct file *file) |
1604 | { | 1636 | { |
@@ -1725,6 +1757,16 @@ static struct cftype cft_memory_pressure = { | |||
1725 | .private = FILE_MEMORY_PRESSURE, | 1757 | .private = FILE_MEMORY_PRESSURE, |
1726 | }; | 1758 | }; |
1727 | 1759 | ||
1760 | static struct cftype cft_spread_page = { | ||
1761 | .name = "memory_spread_page", | ||
1762 | .private = FILE_SPREAD_PAGE, | ||
1763 | }; | ||
1764 | |||
1765 | static struct cftype cft_spread_slab = { | ||
1766 | .name = "memory_spread_slab", | ||
1767 | .private = FILE_SPREAD_SLAB, | ||
1768 | }; | ||
1769 | |||
1728 | static int cpuset_populate_dir(struct dentry *cs_dentry) | 1770 | static int cpuset_populate_dir(struct dentry *cs_dentry) |
1729 | { | 1771 | { |
1730 | int err; | 1772 | int err; |
@@ -1743,6 +1785,10 @@ static int cpuset_populate_dir(struct dentry *cs_dentry) | |||
1743 | return err; | 1785 | return err; |
1744 | if ((err = cpuset_add_file(cs_dentry, &cft_memory_pressure)) < 0) | 1786 | if ((err = cpuset_add_file(cs_dentry, &cft_memory_pressure)) < 0) |
1745 | return err; | 1787 | return err; |
1788 | if ((err = cpuset_add_file(cs_dentry, &cft_spread_page)) < 0) | ||
1789 | return err; | ||
1790 | if ((err = cpuset_add_file(cs_dentry, &cft_spread_slab)) < 0) | ||
1791 | return err; | ||
1746 | if ((err = cpuset_add_file(cs_dentry, &cft_tasks)) < 0) | 1792 | if ((err = cpuset_add_file(cs_dentry, &cft_tasks)) < 0) |
1747 | return err; | 1793 | return err; |
1748 | return 0; | 1794 | return 0; |
@@ -1754,7 +1800,7 @@ static int cpuset_populate_dir(struct dentry *cs_dentry) | |||
1754 | * name: name of the new cpuset. Will be strcpy'ed. | 1800 | * name: name of the new cpuset. Will be strcpy'ed. |
1755 | * mode: mode to set on new inode | 1801 | * mode: mode to set on new inode |
1756 | * | 1802 | * |
1757 | * Must be called with the semaphore on the parent inode held | 1803 | * Must be called with the mutex on the parent inode held |
1758 | */ | 1804 | */ |
1759 | 1805 | ||
1760 | static long cpuset_create(struct cpuset *parent, const char *name, int mode) | 1806 | static long cpuset_create(struct cpuset *parent, const char *name, int mode) |
@@ -1766,44 +1812,47 @@ static long cpuset_create(struct cpuset *parent, const char *name, int mode) | |||
1766 | if (!cs) | 1812 | if (!cs) |
1767 | return -ENOMEM; | 1813 | return -ENOMEM; |
1768 | 1814 | ||
1769 | down(&manage_sem); | 1815 | mutex_lock(&manage_mutex); |
1770 | cpuset_update_task_memory_state(); | 1816 | cpuset_update_task_memory_state(); |
1771 | cs->flags = 0; | 1817 | cs->flags = 0; |
1772 | if (notify_on_release(parent)) | 1818 | if (notify_on_release(parent)) |
1773 | set_bit(CS_NOTIFY_ON_RELEASE, &cs->flags); | 1819 | set_bit(CS_NOTIFY_ON_RELEASE, &cs->flags); |
1820 | if (is_spread_page(parent)) | ||
1821 | set_bit(CS_SPREAD_PAGE, &cs->flags); | ||
1822 | if (is_spread_slab(parent)) | ||
1823 | set_bit(CS_SPREAD_SLAB, &cs->flags); | ||
1774 | cs->cpus_allowed = CPU_MASK_NONE; | 1824 | cs->cpus_allowed = CPU_MASK_NONE; |
1775 | cs->mems_allowed = NODE_MASK_NONE; | 1825 | cs->mems_allowed = NODE_MASK_NONE; |
1776 | atomic_set(&cs->count, 0); | 1826 | atomic_set(&cs->count, 0); |
1777 | INIT_LIST_HEAD(&cs->sibling); | 1827 | INIT_LIST_HEAD(&cs->sibling); |
1778 | INIT_LIST_HEAD(&cs->children); | 1828 | INIT_LIST_HEAD(&cs->children); |
1779 | atomic_inc(&cpuset_mems_generation); | 1829 | cs->mems_generation = cpuset_mems_generation++; |
1780 | cs->mems_generation = atomic_read(&cpuset_mems_generation); | ||
1781 | fmeter_init(&cs->fmeter); | 1830 | fmeter_init(&cs->fmeter); |
1782 | 1831 | ||
1783 | cs->parent = parent; | 1832 | cs->parent = parent; |
1784 | 1833 | ||
1785 | down(&callback_sem); | 1834 | mutex_lock(&callback_mutex); |
1786 | list_add(&cs->sibling, &cs->parent->children); | 1835 | list_add(&cs->sibling, &cs->parent->children); |
1787 | number_of_cpusets++; | 1836 | number_of_cpusets++; |
1788 | up(&callback_sem); | 1837 | mutex_unlock(&callback_mutex); |
1789 | 1838 | ||
1790 | err = cpuset_create_dir(cs, name, mode); | 1839 | err = cpuset_create_dir(cs, name, mode); |
1791 | if (err < 0) | 1840 | if (err < 0) |
1792 | goto err; | 1841 | goto err; |
1793 | 1842 | ||
1794 | /* | 1843 | /* |
1795 | * Release manage_sem before cpuset_populate_dir() because it | 1844 | * Release manage_mutex before cpuset_populate_dir() because it |
1796 | * will down() this new directory's i_mutex and if we race with | 1845 | * will down() this new directory's i_mutex and if we race with |
1797 | * another mkdir, we might deadlock. | 1846 | * another mkdir, we might deadlock. |
1798 | */ | 1847 | */ |
1799 | up(&manage_sem); | 1848 | mutex_unlock(&manage_mutex); |
1800 | 1849 | ||
1801 | err = cpuset_populate_dir(cs->dentry); | 1850 | err = cpuset_populate_dir(cs->dentry); |
1802 | /* If err < 0, we have a half-filled directory - oh well ;) */ | 1851 | /* If err < 0, we have a half-filled directory - oh well ;) */ |
1803 | return 0; | 1852 | return 0; |
1804 | err: | 1853 | err: |
1805 | list_del(&cs->sibling); | 1854 | list_del(&cs->sibling); |
1806 | up(&manage_sem); | 1855 | mutex_unlock(&manage_mutex); |
1807 | kfree(cs); | 1856 | kfree(cs); |
1808 | return err; | 1857 | return err; |
1809 | } | 1858 | } |
@@ -1825,18 +1874,18 @@ static int cpuset_rmdir(struct inode *unused_dir, struct dentry *dentry) | |||
1825 | 1874 | ||
1826 | /* the vfs holds both inode->i_mutex already */ | 1875 | /* the vfs holds both inode->i_mutex already */ |
1827 | 1876 | ||
1828 | down(&manage_sem); | 1877 | mutex_lock(&manage_mutex); |
1829 | cpuset_update_task_memory_state(); | 1878 | cpuset_update_task_memory_state(); |
1830 | if (atomic_read(&cs->count) > 0) { | 1879 | if (atomic_read(&cs->count) > 0) { |
1831 | up(&manage_sem); | 1880 | mutex_unlock(&manage_mutex); |
1832 | return -EBUSY; | 1881 | return -EBUSY; |
1833 | } | 1882 | } |
1834 | if (!list_empty(&cs->children)) { | 1883 | if (!list_empty(&cs->children)) { |
1835 | up(&manage_sem); | 1884 | mutex_unlock(&manage_mutex); |
1836 | return -EBUSY; | 1885 | return -EBUSY; |
1837 | } | 1886 | } |
1838 | parent = cs->parent; | 1887 | parent = cs->parent; |
1839 | down(&callback_sem); | 1888 | mutex_lock(&callback_mutex); |
1840 | set_bit(CS_REMOVED, &cs->flags); | 1889 | set_bit(CS_REMOVED, &cs->flags); |
1841 | if (is_cpu_exclusive(cs)) | 1890 | if (is_cpu_exclusive(cs)) |
1842 | update_cpu_domains(cs); | 1891 | update_cpu_domains(cs); |
@@ -1848,10 +1897,10 @@ static int cpuset_rmdir(struct inode *unused_dir, struct dentry *dentry) | |||
1848 | cpuset_d_remove_dir(d); | 1897 | cpuset_d_remove_dir(d); |
1849 | dput(d); | 1898 | dput(d); |
1850 | number_of_cpusets--; | 1899 | number_of_cpusets--; |
1851 | up(&callback_sem); | 1900 | mutex_unlock(&callback_mutex); |
1852 | if (list_empty(&parent->children)) | 1901 | if (list_empty(&parent->children)) |
1853 | check_for_release(parent, &pathbuf); | 1902 | check_for_release(parent, &pathbuf); |
1854 | up(&manage_sem); | 1903 | mutex_unlock(&manage_mutex); |
1855 | cpuset_release_agent(pathbuf); | 1904 | cpuset_release_agent(pathbuf); |
1856 | return 0; | 1905 | return 0; |
1857 | } | 1906 | } |
@@ -1867,7 +1916,7 @@ int __init cpuset_init_early(void) | |||
1867 | struct task_struct *tsk = current; | 1916 | struct task_struct *tsk = current; |
1868 | 1917 | ||
1869 | tsk->cpuset = &top_cpuset; | 1918 | tsk->cpuset = &top_cpuset; |
1870 | tsk->cpuset->mems_generation = atomic_read(&cpuset_mems_generation); | 1919 | tsk->cpuset->mems_generation = cpuset_mems_generation++; |
1871 | return 0; | 1920 | return 0; |
1872 | } | 1921 | } |
1873 | 1922 | ||
@@ -1886,8 +1935,7 @@ int __init cpuset_init(void) | |||
1886 | top_cpuset.mems_allowed = NODE_MASK_ALL; | 1935 | top_cpuset.mems_allowed = NODE_MASK_ALL; |
1887 | 1936 | ||
1888 | fmeter_init(&top_cpuset.fmeter); | 1937 | fmeter_init(&top_cpuset.fmeter); |
1889 | atomic_inc(&cpuset_mems_generation); | 1938 | top_cpuset.mems_generation = cpuset_mems_generation++; |
1890 | top_cpuset.mems_generation = atomic_read(&cpuset_mems_generation); | ||
1891 | 1939 | ||
1892 | init_task.cpuset = &top_cpuset; | 1940 | init_task.cpuset = &top_cpuset; |
1893 | 1941 | ||
@@ -1960,25 +2008,25 @@ void cpuset_fork(struct task_struct *child) | |||
1960 | * Description: Detach cpuset from @tsk and release it. | 2008 | * Description: Detach cpuset from @tsk and release it. |
1961 | * | 2009 | * |
1962 | * Note that cpusets marked notify_on_release force every task in | 2010 | * Note that cpusets marked notify_on_release force every task in |
1963 | * them to take the global manage_sem semaphore when exiting. | 2011 | * them to take the global manage_mutex mutex when exiting. |
1964 | * This could impact scaling on very large systems. Be reluctant to | 2012 | * This could impact scaling on very large systems. Be reluctant to |
1965 | * use notify_on_release cpusets where very high task exit scaling | 2013 | * use notify_on_release cpusets where very high task exit scaling |
1966 | * is required on large systems. | 2014 | * is required on large systems. |
1967 | * | 2015 | * |
1968 | * Don't even think about derefencing 'cs' after the cpuset use count | 2016 | * Don't even think about derefencing 'cs' after the cpuset use count |
1969 | * goes to zero, except inside a critical section guarded by manage_sem | 2017 | * goes to zero, except inside a critical section guarded by manage_mutex |
1970 | * or callback_sem. Otherwise a zero cpuset use count is a license to | 2018 | * or callback_mutex. Otherwise a zero cpuset use count is a license to |
1971 | * any other task to nuke the cpuset immediately, via cpuset_rmdir(). | 2019 | * any other task to nuke the cpuset immediately, via cpuset_rmdir(). |
1972 | * | 2020 | * |
1973 | * This routine has to take manage_sem, not callback_sem, because | 2021 | * This routine has to take manage_mutex, not callback_mutex, because |
1974 | * it is holding that semaphore while calling check_for_release(), | 2022 | * it is holding that mutex while calling check_for_release(), |
1975 | * which calls kmalloc(), so can't be called holding callback__sem(). | 2023 | * which calls kmalloc(), so can't be called holding callback_mutex(). |
1976 | * | 2024 | * |
1977 | * We don't need to task_lock() this reference to tsk->cpuset, | 2025 | * We don't need to task_lock() this reference to tsk->cpuset, |
1978 | * because tsk is already marked PF_EXITING, so attach_task() won't | 2026 | * because tsk is already marked PF_EXITING, so attach_task() won't |
1979 | * mess with it, or task is a failed fork, never visible to attach_task. | 2027 | * mess with it, or task is a failed fork, never visible to attach_task. |
1980 | * | 2028 | * |
1981 | * Hack: | 2029 | * the_top_cpuset_hack: |
1982 | * | 2030 | * |
1983 | * Set the exiting tasks cpuset to the root cpuset (top_cpuset). | 2031 | * Set the exiting tasks cpuset to the root cpuset (top_cpuset). |
1984 | * | 2032 | * |
@@ -2017,15 +2065,15 @@ void cpuset_exit(struct task_struct *tsk) | |||
2017 | struct cpuset *cs; | 2065 | struct cpuset *cs; |
2018 | 2066 | ||
2019 | cs = tsk->cpuset; | 2067 | cs = tsk->cpuset; |
2020 | tsk->cpuset = &top_cpuset; /* Hack - see comment above */ | 2068 | tsk->cpuset = &top_cpuset; /* the_top_cpuset_hack - see above */ |
2021 | 2069 | ||
2022 | if (notify_on_release(cs)) { | 2070 | if (notify_on_release(cs)) { |
2023 | char *pathbuf = NULL; | 2071 | char *pathbuf = NULL; |
2024 | 2072 | ||
2025 | down(&manage_sem); | 2073 | mutex_lock(&manage_mutex); |
2026 | if (atomic_dec_and_test(&cs->count)) | 2074 | if (atomic_dec_and_test(&cs->count)) |
2027 | check_for_release(cs, &pathbuf); | 2075 | check_for_release(cs, &pathbuf); |
2028 | up(&manage_sem); | 2076 | mutex_unlock(&manage_mutex); |
2029 | cpuset_release_agent(pathbuf); | 2077 | cpuset_release_agent(pathbuf); |
2030 | } else { | 2078 | } else { |
2031 | atomic_dec(&cs->count); | 2079 | atomic_dec(&cs->count); |
@@ -2046,11 +2094,11 @@ cpumask_t cpuset_cpus_allowed(struct task_struct *tsk) | |||
2046 | { | 2094 | { |
2047 | cpumask_t mask; | 2095 | cpumask_t mask; |
2048 | 2096 | ||
2049 | down(&callback_sem); | 2097 | mutex_lock(&callback_mutex); |
2050 | task_lock(tsk); | 2098 | task_lock(tsk); |
2051 | guarantee_online_cpus(tsk->cpuset, &mask); | 2099 | guarantee_online_cpus(tsk->cpuset, &mask); |
2052 | task_unlock(tsk); | 2100 | task_unlock(tsk); |
2053 | up(&callback_sem); | 2101 | mutex_unlock(&callback_mutex); |
2054 | 2102 | ||
2055 | return mask; | 2103 | return mask; |
2056 | } | 2104 | } |
@@ -2074,11 +2122,11 @@ nodemask_t cpuset_mems_allowed(struct task_struct *tsk) | |||
2074 | { | 2122 | { |
2075 | nodemask_t mask; | 2123 | nodemask_t mask; |
2076 | 2124 | ||
2077 | down(&callback_sem); | 2125 | mutex_lock(&callback_mutex); |
2078 | task_lock(tsk); | 2126 | task_lock(tsk); |
2079 | guarantee_online_mems(tsk->cpuset, &mask); | 2127 | guarantee_online_mems(tsk->cpuset, &mask); |
2080 | task_unlock(tsk); | 2128 | task_unlock(tsk); |
2081 | up(&callback_sem); | 2129 | mutex_unlock(&callback_mutex); |
2082 | 2130 | ||
2083 | return mask; | 2131 | return mask; |
2084 | } | 2132 | } |
@@ -2104,7 +2152,7 @@ int cpuset_zonelist_valid_mems_allowed(struct zonelist *zl) | |||
2104 | 2152 | ||
2105 | /* | 2153 | /* |
2106 | * nearest_exclusive_ancestor() - Returns the nearest mem_exclusive | 2154 | * nearest_exclusive_ancestor() - Returns the nearest mem_exclusive |
2107 | * ancestor to the specified cpuset. Call holding callback_sem. | 2155 | * ancestor to the specified cpuset. Call holding callback_mutex. |
2108 | * If no ancestor is mem_exclusive (an unusual configuration), then | 2156 | * If no ancestor is mem_exclusive (an unusual configuration), then |
2109 | * returns the root cpuset. | 2157 | * returns the root cpuset. |
2110 | */ | 2158 | */ |
@@ -2131,12 +2179,12 @@ static const struct cpuset *nearest_exclusive_ancestor(const struct cpuset *cs) | |||
2131 | * GFP_KERNEL allocations are not so marked, so can escape to the | 2179 | * GFP_KERNEL allocations are not so marked, so can escape to the |
2132 | * nearest mem_exclusive ancestor cpuset. | 2180 | * nearest mem_exclusive ancestor cpuset. |
2133 | * | 2181 | * |
2134 | * Scanning up parent cpusets requires callback_sem. The __alloc_pages() | 2182 | * Scanning up parent cpusets requires callback_mutex. The __alloc_pages() |
2135 | * routine only calls here with __GFP_HARDWALL bit _not_ set if | 2183 | * routine only calls here with __GFP_HARDWALL bit _not_ set if |
2136 | * it's a GFP_KERNEL allocation, and all nodes in the current tasks | 2184 | * it's a GFP_KERNEL allocation, and all nodes in the current tasks |
2137 | * mems_allowed came up empty on the first pass over the zonelist. | 2185 | * mems_allowed came up empty on the first pass over the zonelist. |
2138 | * So only GFP_KERNEL allocations, if all nodes in the cpuset are | 2186 | * So only GFP_KERNEL allocations, if all nodes in the cpuset are |
2139 | * short of memory, might require taking the callback_sem semaphore. | 2187 | * short of memory, might require taking the callback_mutex mutex. |
2140 | * | 2188 | * |
2141 | * The first loop over the zonelist in mm/page_alloc.c:__alloc_pages() | 2189 | * The first loop over the zonelist in mm/page_alloc.c:__alloc_pages() |
2142 | * calls here with __GFP_HARDWALL always set in gfp_mask, enforcing | 2190 | * calls here with __GFP_HARDWALL always set in gfp_mask, enforcing |
@@ -2157,7 +2205,7 @@ int __cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask) | |||
2157 | { | 2205 | { |
2158 | int node; /* node that zone z is on */ | 2206 | int node; /* node that zone z is on */ |
2159 | const struct cpuset *cs; /* current cpuset ancestors */ | 2207 | const struct cpuset *cs; /* current cpuset ancestors */ |
2160 | int allowed = 1; /* is allocation in zone z allowed? */ | 2208 | int allowed; /* is allocation in zone z allowed? */ |
2161 | 2209 | ||
2162 | if (in_interrupt()) | 2210 | if (in_interrupt()) |
2163 | return 1; | 2211 | return 1; |
@@ -2171,31 +2219,31 @@ int __cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask) | |||
2171 | return 1; | 2219 | return 1; |
2172 | 2220 | ||
2173 | /* Not hardwall and node outside mems_allowed: scan up cpusets */ | 2221 | /* Not hardwall and node outside mems_allowed: scan up cpusets */ |
2174 | down(&callback_sem); | 2222 | mutex_lock(&callback_mutex); |
2175 | 2223 | ||
2176 | task_lock(current); | 2224 | task_lock(current); |
2177 | cs = nearest_exclusive_ancestor(current->cpuset); | 2225 | cs = nearest_exclusive_ancestor(current->cpuset); |
2178 | task_unlock(current); | 2226 | task_unlock(current); |
2179 | 2227 | ||
2180 | allowed = node_isset(node, cs->mems_allowed); | 2228 | allowed = node_isset(node, cs->mems_allowed); |
2181 | up(&callback_sem); | 2229 | mutex_unlock(&callback_mutex); |
2182 | return allowed; | 2230 | return allowed; |
2183 | } | 2231 | } |
2184 | 2232 | ||
2185 | /** | 2233 | /** |
2186 | * cpuset_lock - lock out any changes to cpuset structures | 2234 | * cpuset_lock - lock out any changes to cpuset structures |
2187 | * | 2235 | * |
2188 | * The out of memory (oom) code needs to lock down cpusets | 2236 | * The out of memory (oom) code needs to mutex_lock cpusets |
2189 | * from being changed while it scans the tasklist looking for a | 2237 | * from being changed while it scans the tasklist looking for a |
2190 | * task in an overlapping cpuset. Expose callback_sem via this | 2238 | * task in an overlapping cpuset. Expose callback_mutex via this |
2191 | * cpuset_lock() routine, so the oom code can lock it, before | 2239 | * cpuset_lock() routine, so the oom code can lock it, before |
2192 | * locking the task list. The tasklist_lock is a spinlock, so | 2240 | * locking the task list. The tasklist_lock is a spinlock, so |
2193 | * must be taken inside callback_sem. | 2241 | * must be taken inside callback_mutex. |
2194 | */ | 2242 | */ |
2195 | 2243 | ||
2196 | void cpuset_lock(void) | 2244 | void cpuset_lock(void) |
2197 | { | 2245 | { |
2198 | down(&callback_sem); | 2246 | mutex_lock(&callback_mutex); |
2199 | } | 2247 | } |
2200 | 2248 | ||
2201 | /** | 2249 | /** |
@@ -2206,10 +2254,48 @@ void cpuset_lock(void) | |||
2206 | 2254 | ||
2207 | void cpuset_unlock(void) | 2255 | void cpuset_unlock(void) |
2208 | { | 2256 | { |
2209 | up(&callback_sem); | 2257 | mutex_unlock(&callback_mutex); |
2210 | } | 2258 | } |
2211 | 2259 | ||
2212 | /** | 2260 | /** |
2261 | * cpuset_mem_spread_node() - On which node to begin search for a page | ||
2262 | * | ||
2263 | * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for | ||
2264 | * tasks in a cpuset with is_spread_page or is_spread_slab set), | ||
2265 | * and if the memory allocation used cpuset_mem_spread_node() | ||
2266 | * to determine on which node to start looking, as it will for | ||
2267 | * certain page cache or slab cache pages such as used for file | ||
2268 | * system buffers and inode caches, then instead of starting on the | ||
2269 | * local node to look for a free page, rather spread the starting | ||
2270 | * node around the tasks mems_allowed nodes. | ||
2271 | * | ||
2272 | * We don't have to worry about the returned node being offline | ||
2273 | * because "it can't happen", and even if it did, it would be ok. | ||
2274 | * | ||
2275 | * The routines calling guarantee_online_mems() are careful to | ||
2276 | * only set nodes in task->mems_allowed that are online. So it | ||
2277 | * should not be possible for the following code to return an | ||
2278 | * offline node. But if it did, that would be ok, as this routine | ||
2279 | * is not returning the node where the allocation must be, only | ||
2280 | * the node where the search should start. The zonelist passed to | ||
2281 | * __alloc_pages() will include all nodes. If the slab allocator | ||
2282 | * is passed an offline node, it will fall back to the local node. | ||
2283 | * See kmem_cache_alloc_node(). | ||
2284 | */ | ||
2285 | |||
2286 | int cpuset_mem_spread_node(void) | ||
2287 | { | ||
2288 | int node; | ||
2289 | |||
2290 | node = next_node(current->cpuset_mem_spread_rotor, current->mems_allowed); | ||
2291 | if (node == MAX_NUMNODES) | ||
2292 | node = first_node(current->mems_allowed); | ||
2293 | current->cpuset_mem_spread_rotor = node; | ||
2294 | return node; | ||
2295 | } | ||
2296 | EXPORT_SYMBOL_GPL(cpuset_mem_spread_node); | ||
2297 | |||
2298 | /** | ||
2213 | * cpuset_excl_nodes_overlap - Do we overlap @p's mem_exclusive ancestors? | 2299 | * cpuset_excl_nodes_overlap - Do we overlap @p's mem_exclusive ancestors? |
2214 | * @p: pointer to task_struct of some other task. | 2300 | * @p: pointer to task_struct of some other task. |
2215 | * | 2301 | * |
@@ -2218,7 +2304,7 @@ void cpuset_unlock(void) | |||
2218 | * determine if task @p's memory usage might impact the memory | 2304 | * determine if task @p's memory usage might impact the memory |
2219 | * available to the current task. | 2305 | * available to the current task. |
2220 | * | 2306 | * |
2221 | * Call while holding callback_sem. | 2307 | * Call while holding callback_mutex. |
2222 | **/ | 2308 | **/ |
2223 | 2309 | ||
2224 | int cpuset_excl_nodes_overlap(const struct task_struct *p) | 2310 | int cpuset_excl_nodes_overlap(const struct task_struct *p) |
@@ -2289,13 +2375,13 @@ void __cpuset_memory_pressure_bump(void) | |||
2289 | * - Used for /proc/<pid>/cpuset. | 2375 | * - Used for /proc/<pid>/cpuset. |
2290 | * - No need to task_lock(tsk) on this tsk->cpuset reference, as it | 2376 | * - No need to task_lock(tsk) on this tsk->cpuset reference, as it |
2291 | * doesn't really matter if tsk->cpuset changes after we read it, | 2377 | * doesn't really matter if tsk->cpuset changes after we read it, |
2292 | * and we take manage_sem, keeping attach_task() from changing it | 2378 | * and we take manage_mutex, keeping attach_task() from changing it |
2293 | * anyway. | 2379 | * anyway. No need to check that tsk->cpuset != NULL, thanks to |
2380 | * the_top_cpuset_hack in cpuset_exit(), which sets an exiting tasks | ||
2381 | * cpuset to top_cpuset. | ||
2294 | */ | 2382 | */ |
2295 | |||
2296 | static int proc_cpuset_show(struct seq_file *m, void *v) | 2383 | static int proc_cpuset_show(struct seq_file *m, void *v) |
2297 | { | 2384 | { |
2298 | struct cpuset *cs; | ||
2299 | struct task_struct *tsk; | 2385 | struct task_struct *tsk; |
2300 | char *buf; | 2386 | char *buf; |
2301 | int retval = 0; | 2387 | int retval = 0; |
@@ -2305,20 +2391,14 @@ static int proc_cpuset_show(struct seq_file *m, void *v) | |||
2305 | return -ENOMEM; | 2391 | return -ENOMEM; |
2306 | 2392 | ||
2307 | tsk = m->private; | 2393 | tsk = m->private; |
2308 | down(&manage_sem); | 2394 | mutex_lock(&manage_mutex); |
2309 | cs = tsk->cpuset; | 2395 | retval = cpuset_path(tsk->cpuset, buf, PAGE_SIZE); |
2310 | if (!cs) { | ||
2311 | retval = -EINVAL; | ||
2312 | goto out; | ||
2313 | } | ||
2314 | |||
2315 | retval = cpuset_path(cs, buf, PAGE_SIZE); | ||
2316 | if (retval < 0) | 2396 | if (retval < 0) |
2317 | goto out; | 2397 | goto out; |
2318 | seq_puts(m, buf); | 2398 | seq_puts(m, buf); |
2319 | seq_putc(m, '\n'); | 2399 | seq_putc(m, '\n'); |
2320 | out: | 2400 | out: |
2321 | up(&manage_sem); | 2401 | mutex_unlock(&manage_mutex); |
2322 | kfree(buf); | 2402 | kfree(buf); |
2323 | return retval; | 2403 | return retval; |
2324 | } | 2404 | } |
diff --git a/kernel/exec_domain.c b/kernel/exec_domain.c index 867d6dbeb5..c01cead2cf 100644 --- a/kernel/exec_domain.c +++ b/kernel/exec_domain.c | |||
@@ -140,6 +140,7 @@ __set_personality(u_long personality) | |||
140 | ep = lookup_exec_domain(personality); | 140 | ep = lookup_exec_domain(personality); |
141 | if (ep == current_thread_info()->exec_domain) { | 141 | if (ep == current_thread_info()->exec_domain) { |
142 | current->personality = personality; | 142 | current->personality = personality; |
143 | module_put(ep->module); | ||
143 | return 0; | 144 | return 0; |
144 | } | 145 | } |
145 | 146 | ||
diff --git a/kernel/exit.c b/kernel/exit.c index d1e8d500a7..bc0ec674d3 100644 --- a/kernel/exit.c +++ b/kernel/exit.c | |||
@@ -29,8 +29,11 @@ | |||
29 | #include <linux/cpuset.h> | 29 | #include <linux/cpuset.h> |
30 | #include <linux/syscalls.h> | 30 | #include <linux/syscalls.h> |
31 | #include <linux/signal.h> | 31 | #include <linux/signal.h> |
32 | #include <linux/posix-timers.h> | ||
32 | #include <linux/cn_proc.h> | 33 | #include <linux/cn_proc.h> |
33 | #include <linux/mutex.h> | 34 | #include <linux/mutex.h> |
35 | #include <linux/futex.h> | ||
36 | #include <linux/compat.h> | ||
34 | 37 | ||
35 | #include <asm/uaccess.h> | 38 | #include <asm/uaccess.h> |
36 | #include <asm/unistd.h> | 39 | #include <asm/unistd.h> |
@@ -48,15 +51,80 @@ static void __unhash_process(struct task_struct *p) | |||
48 | { | 51 | { |
49 | nr_threads--; | 52 | nr_threads--; |
50 | detach_pid(p, PIDTYPE_PID); | 53 | detach_pid(p, PIDTYPE_PID); |
51 | detach_pid(p, PIDTYPE_TGID); | ||
52 | if (thread_group_leader(p)) { | 54 | if (thread_group_leader(p)) { |
53 | detach_pid(p, PIDTYPE_PGID); | 55 | detach_pid(p, PIDTYPE_PGID); |
54 | detach_pid(p, PIDTYPE_SID); | 56 | detach_pid(p, PIDTYPE_SID); |
55 | if (p->pid) | 57 | |
56 | __get_cpu_var(process_counts)--; | 58 | list_del_init(&p->tasks); |
59 | __get_cpu_var(process_counts)--; | ||
57 | } | 60 | } |
61 | list_del_rcu(&p->thread_group); | ||
62 | remove_parent(p); | ||
63 | } | ||
58 | 64 | ||
59 | REMOVE_LINKS(p); | 65 | /* |
66 | * This function expects the tasklist_lock write-locked. | ||
67 | */ | ||
68 | static void __exit_signal(struct task_struct *tsk) | ||
69 | { | ||
70 | struct signal_struct *sig = tsk->signal; | ||
71 | struct sighand_struct *sighand; | ||
72 | |||
73 | BUG_ON(!sig); | ||
74 | BUG_ON(!atomic_read(&sig->count)); | ||
75 | |||
76 | rcu_read_lock(); | ||
77 | sighand = rcu_dereference(tsk->sighand); | ||
78 | spin_lock(&sighand->siglock); | ||
79 | |||
80 | posix_cpu_timers_exit(tsk); | ||
81 | if (atomic_dec_and_test(&sig->count)) | ||
82 | posix_cpu_timers_exit_group(tsk); | ||
83 | else { | ||
84 | /* | ||
85 | * If there is any task waiting for the group exit | ||
86 | * then notify it: | ||
87 | */ | ||
88 | if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) { | ||
89 | wake_up_process(sig->group_exit_task); | ||
90 | sig->group_exit_task = NULL; | ||
91 | } | ||
92 | if (tsk == sig->curr_target) | ||
93 | sig->curr_target = next_thread(tsk); | ||
94 | /* | ||
95 | * Accumulate here the counters for all threads but the | ||
96 | * group leader as they die, so they can be added into | ||
97 | * the process-wide totals when those are taken. | ||
98 | * The group leader stays around as a zombie as long | ||
99 | * as there are other threads. When it gets reaped, | ||
100 | * the exit.c code will add its counts into these totals. | ||
101 | * We won't ever get here for the group leader, since it | ||
102 | * will have been the last reference on the signal_struct. | ||
103 | */ | ||
104 | sig->utime = cputime_add(sig->utime, tsk->utime); | ||
105 | sig->stime = cputime_add(sig->stime, tsk->stime); | ||
106 | sig->min_flt += tsk->min_flt; | ||
107 | sig->maj_flt += tsk->maj_flt; | ||
108 | sig->nvcsw += tsk->nvcsw; | ||
109 | sig->nivcsw += tsk->nivcsw; | ||
110 | sig->sched_time += tsk->sched_time; | ||
111 | sig = NULL; /* Marker for below. */ | ||
112 | } | ||
113 | |||
114 | __unhash_process(tsk); | ||
115 | |||
116 | tsk->signal = NULL; | ||
117 | tsk->sighand = NULL; | ||
118 | spin_unlock(&sighand->siglock); | ||
119 | rcu_read_unlock(); | ||
120 | |||
121 | __cleanup_sighand(sighand); | ||
122 | clear_tsk_thread_flag(tsk,TIF_SIGPENDING); | ||
123 | flush_sigqueue(&tsk->pending); | ||
124 | if (sig) { | ||
125 | flush_sigqueue(&sig->shared_pending); | ||
126 | __cleanup_signal(sig); | ||
127 | } | ||
60 | } | 128 | } |
61 | 129 | ||
62 | void release_task(struct task_struct * p) | 130 | void release_task(struct task_struct * p) |
@@ -65,21 +133,14 @@ void release_task(struct task_struct * p) | |||
65 | task_t *leader; | 133 | task_t *leader; |
66 | struct dentry *proc_dentry; | 134 | struct dentry *proc_dentry; |
67 | 135 | ||
68 | repeat: | 136 | repeat: |
69 | atomic_dec(&p->user->processes); | 137 | atomic_dec(&p->user->processes); |
70 | spin_lock(&p->proc_lock); | 138 | spin_lock(&p->proc_lock); |
71 | proc_dentry = proc_pid_unhash(p); | 139 | proc_dentry = proc_pid_unhash(p); |
72 | write_lock_irq(&tasklist_lock); | 140 | write_lock_irq(&tasklist_lock); |
73 | if (unlikely(p->ptrace)) | 141 | ptrace_unlink(p); |
74 | __ptrace_unlink(p); | ||
75 | BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children)); | 142 | BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children)); |
76 | __exit_signal(p); | 143 | __exit_signal(p); |
77 | /* | ||
78 | * Note that the fastpath in sys_times depends on __exit_signal having | ||
79 | * updated the counters before a task is removed from the tasklist of | ||
80 | * the process by __unhash_process. | ||
81 | */ | ||
82 | __unhash_process(p); | ||
83 | 144 | ||
84 | /* | 145 | /* |
85 | * If we are the last non-leader member of the thread | 146 | * If we are the last non-leader member of the thread |
@@ -114,21 +175,6 @@ repeat: | |||
114 | goto repeat; | 175 | goto repeat; |
115 | } | 176 | } |
116 | 177 | ||
117 | /* we are using it only for SMP init */ | ||
118 | |||
119 | void unhash_process(struct task_struct *p) | ||
120 | { | ||
121 | struct dentry *proc_dentry; | ||
122 | |||
123 | spin_lock(&p->proc_lock); | ||
124 | proc_dentry = proc_pid_unhash(p); | ||
125 | write_lock_irq(&tasklist_lock); | ||
126 | __unhash_process(p); | ||
127 | write_unlock_irq(&tasklist_lock); | ||
128 | spin_unlock(&p->proc_lock); | ||
129 | proc_pid_flush(proc_dentry); | ||
130 | } | ||
131 | |||
132 | /* | 178 | /* |
133 | * This checks not only the pgrp, but falls back on the pid if no | 179 | * This checks not only the pgrp, but falls back on the pid if no |
134 | * satisfactory pgrp is found. I dunno - gdb doesn't work correctly | 180 | * satisfactory pgrp is found. I dunno - gdb doesn't work correctly |
@@ -236,10 +282,10 @@ static void reparent_to_init(void) | |||
236 | 282 | ||
237 | ptrace_unlink(current); | 283 | ptrace_unlink(current); |
238 | /* Reparent to init */ | 284 | /* Reparent to init */ |
239 | REMOVE_LINKS(current); | 285 | remove_parent(current); |
240 | current->parent = child_reaper; | 286 | current->parent = child_reaper; |
241 | current->real_parent = child_reaper; | 287 | current->real_parent = child_reaper; |
242 | SET_LINKS(current); | 288 | add_parent(current); |
243 | 289 | ||
244 | /* Set the exit signal to SIGCHLD so we signal init on exit */ | 290 | /* Set the exit signal to SIGCHLD so we signal init on exit */ |
245 | current->exit_signal = SIGCHLD; | 291 | current->exit_signal = SIGCHLD; |
@@ -345,9 +391,9 @@ void daemonize(const char *name, ...) | |||
345 | exit_mm(current); | 391 | exit_mm(current); |
346 | 392 | ||
347 | set_special_pids(1, 1); | 393 | set_special_pids(1, 1); |
348 | down(&tty_sem); | 394 | mutex_lock(&tty_mutex); |
349 | current->signal->tty = NULL; | 395 | current->signal->tty = NULL; |
350 | up(&tty_sem); | 396 | mutex_unlock(&tty_mutex); |
351 | 397 | ||
352 | /* Block and flush all signals */ | 398 | /* Block and flush all signals */ |
353 | sigfillset(&blocked); | 399 | sigfillset(&blocked); |
@@ -536,13 +582,13 @@ static void exit_mm(struct task_struct * tsk) | |||
536 | mmput(mm); | 582 | mmput(mm); |
537 | } | 583 | } |
538 | 584 | ||
539 | static inline void choose_new_parent(task_t *p, task_t *reaper, task_t *child_reaper) | 585 | static inline void choose_new_parent(task_t *p, task_t *reaper) |
540 | { | 586 | { |
541 | /* | 587 | /* |
542 | * Make sure we're not reparenting to ourselves and that | 588 | * Make sure we're not reparenting to ourselves and that |
543 | * the parent is not a zombie. | 589 | * the parent is not a zombie. |
544 | */ | 590 | */ |
545 | BUG_ON(p == reaper || reaper->exit_state >= EXIT_ZOMBIE); | 591 | BUG_ON(p == reaper || reaper->exit_state); |
546 | p->real_parent = reaper; | 592 | p->real_parent = reaper; |
547 | } | 593 | } |
548 | 594 | ||
@@ -567,9 +613,9 @@ static void reparent_thread(task_t *p, task_t *father, int traced) | |||
567 | * anyway, so let go of it. | 613 | * anyway, so let go of it. |
568 | */ | 614 | */ |
569 | p->ptrace = 0; | 615 | p->ptrace = 0; |
570 | list_del_init(&p->sibling); | 616 | remove_parent(p); |
571 | p->parent = p->real_parent; | 617 | p->parent = p->real_parent; |
572 | list_add_tail(&p->sibling, &p->parent->children); | 618 | add_parent(p); |
573 | 619 | ||
574 | /* If we'd notified the old parent about this child's death, | 620 | /* If we'd notified the old parent about this child's death, |
575 | * also notify the new parent. | 621 | * also notify the new parent. |
@@ -643,7 +689,7 @@ static void forget_original_parent(struct task_struct * father, | |||
643 | 689 | ||
644 | if (father == p->real_parent) { | 690 | if (father == p->real_parent) { |
645 | /* reparent with a reaper, real father it's us */ | 691 | /* reparent with a reaper, real father it's us */ |
646 | choose_new_parent(p, reaper, child_reaper); | 692 | choose_new_parent(p, reaper); |
647 | reparent_thread(p, father, 0); | 693 | reparent_thread(p, father, 0); |
648 | } else { | 694 | } else { |
649 | /* reparent ptraced task to its real parent */ | 695 | /* reparent ptraced task to its real parent */ |
@@ -664,7 +710,7 @@ static void forget_original_parent(struct task_struct * father, | |||
664 | } | 710 | } |
665 | list_for_each_safe(_p, _n, &father->ptrace_children) { | 711 | list_for_each_safe(_p, _n, &father->ptrace_children) { |
666 | p = list_entry(_p,struct task_struct,ptrace_list); | 712 | p = list_entry(_p,struct task_struct,ptrace_list); |
667 | choose_new_parent(p, reaper, child_reaper); | 713 | choose_new_parent(p, reaper); |
668 | reparent_thread(p, father, 1); | 714 | reparent_thread(p, father, 1); |
669 | } | 715 | } |
670 | } | 716 | } |
@@ -805,7 +851,7 @@ fastcall NORET_TYPE void do_exit(long code) | |||
805 | panic("Aiee, killing interrupt handler!"); | 851 | panic("Aiee, killing interrupt handler!"); |
806 | if (unlikely(!tsk->pid)) | 852 | if (unlikely(!tsk->pid)) |
807 | panic("Attempted to kill the idle task!"); | 853 | panic("Attempted to kill the idle task!"); |
808 | if (unlikely(tsk->pid == 1)) | 854 | if (unlikely(tsk == child_reaper)) |
809 | panic("Attempted to kill init!"); | 855 | panic("Attempted to kill init!"); |
810 | 856 | ||
811 | if (unlikely(current->ptrace & PT_TRACE_EXIT)) { | 857 | if (unlikely(current->ptrace & PT_TRACE_EXIT)) { |
@@ -852,6 +898,12 @@ fastcall NORET_TYPE void do_exit(long code) | |||
852 | exit_itimers(tsk->signal); | 898 | exit_itimers(tsk->signal); |
853 | acct_process(code); | 899 | acct_process(code); |
854 | } | 900 | } |
901 | if (unlikely(tsk->robust_list)) | ||
902 | exit_robust_list(tsk); | ||
903 | #ifdef CONFIG_COMPAT | ||
904 | if (unlikely(tsk->compat_robust_list)) | ||
905 | compat_exit_robust_list(tsk); | ||
906 | #endif | ||
855 | exit_mm(tsk); | 907 | exit_mm(tsk); |
856 | 908 | ||
857 | exit_sem(tsk); | 909 | exit_sem(tsk); |
@@ -912,13 +964,6 @@ asmlinkage long sys_exit(int error_code) | |||
912 | do_exit((error_code&0xff)<<8); | 964 | do_exit((error_code&0xff)<<8); |
913 | } | 965 | } |
914 | 966 | ||
915 | task_t fastcall *next_thread(const task_t *p) | ||
916 | { | ||
917 | return pid_task(p->pids[PIDTYPE_TGID].pid_list.next, PIDTYPE_TGID); | ||
918 | } | ||
919 | |||
920 | EXPORT_SYMBOL(next_thread); | ||
921 | |||
922 | /* | 967 | /* |
923 | * Take down every thread in the group. This is called by fatal signals | 968 | * Take down every thread in the group. This is called by fatal signals |
924 | * as well as by sys_exit_group (below). | 969 | * as well as by sys_exit_group (below). |
@@ -933,7 +978,6 @@ do_group_exit(int exit_code) | |||
933 | else if (!thread_group_empty(current)) { | 978 | else if (!thread_group_empty(current)) { |
934 | struct signal_struct *const sig = current->signal; | 979 | struct signal_struct *const sig = current->signal; |
935 | struct sighand_struct *const sighand = current->sighand; | 980 | struct sighand_struct *const sighand = current->sighand; |
936 | read_lock(&tasklist_lock); | ||
937 | spin_lock_irq(&sighand->siglock); | 981 | spin_lock_irq(&sighand->siglock); |
938 | if (sig->flags & SIGNAL_GROUP_EXIT) | 982 | if (sig->flags & SIGNAL_GROUP_EXIT) |
939 | /* Another thread got here before we took the lock. */ | 983 | /* Another thread got here before we took the lock. */ |
@@ -943,7 +987,6 @@ do_group_exit(int exit_code) | |||
943 | zap_other_threads(current); | 987 | zap_other_threads(current); |
944 | } | 988 | } |
945 | spin_unlock_irq(&sighand->siglock); | 989 | spin_unlock_irq(&sighand->siglock); |
946 | read_unlock(&tasklist_lock); | ||
947 | } | 990 | } |
948 | 991 | ||
949 | do_exit(exit_code); | 992 | do_exit(exit_code); |
@@ -1273,7 +1316,7 @@ bail_ref: | |||
1273 | 1316 | ||
1274 | /* move to end of parent's list to avoid starvation */ | 1317 | /* move to end of parent's list to avoid starvation */ |
1275 | remove_parent(p); | 1318 | remove_parent(p); |
1276 | add_parent(p, p->parent); | 1319 | add_parent(p); |
1277 | 1320 | ||
1278 | write_unlock_irq(&tasklist_lock); | 1321 | write_unlock_irq(&tasklist_lock); |
1279 | 1322 | ||
diff --git a/kernel/fork.c b/kernel/fork.c index b373322ca4..b3f7a1bb5e 100644 --- a/kernel/fork.c +++ b/kernel/fork.c | |||
@@ -84,7 +84,7 @@ static kmem_cache_t *task_struct_cachep; | |||
84 | #endif | 84 | #endif |
85 | 85 | ||
86 | /* SLAB cache for signal_struct structures (tsk->signal) */ | 86 | /* SLAB cache for signal_struct structures (tsk->signal) */ |
87 | kmem_cache_t *signal_cachep; | 87 | static kmem_cache_t *signal_cachep; |
88 | 88 | ||
89 | /* SLAB cache for sighand_struct structures (tsk->sighand) */ | 89 | /* SLAB cache for sighand_struct structures (tsk->sighand) */ |
90 | kmem_cache_t *sighand_cachep; | 90 | kmem_cache_t *sighand_cachep; |
@@ -181,6 +181,7 @@ static struct task_struct *dup_task_struct(struct task_struct *orig) | |||
181 | /* One for us, one for whoever does the "release_task()" (usually parent) */ | 181 | /* One for us, one for whoever does the "release_task()" (usually parent) */ |
182 | atomic_set(&tsk->usage,2); | 182 | atomic_set(&tsk->usage,2); |
183 | atomic_set(&tsk->fs_excl, 0); | 183 | atomic_set(&tsk->fs_excl, 0); |
184 | tsk->btrace_seq = 0; | ||
184 | return tsk; | 185 | return tsk; |
185 | } | 186 | } |
186 | 187 | ||
@@ -607,12 +608,12 @@ static struct files_struct *alloc_files(void) | |||
607 | atomic_set(&newf->count, 1); | 608 | atomic_set(&newf->count, 1); |
608 | 609 | ||
609 | spin_lock_init(&newf->file_lock); | 610 | spin_lock_init(&newf->file_lock); |
611 | newf->next_fd = 0; | ||
610 | fdt = &newf->fdtab; | 612 | fdt = &newf->fdtab; |
611 | fdt->next_fd = 0; | ||
612 | fdt->max_fds = NR_OPEN_DEFAULT; | 613 | fdt->max_fds = NR_OPEN_DEFAULT; |
613 | fdt->max_fdset = __FD_SETSIZE; | 614 | fdt->max_fdset = EMBEDDED_FD_SET_SIZE; |
614 | fdt->close_on_exec = &newf->close_on_exec_init; | 615 | fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init; |
615 | fdt->open_fds = &newf->open_fds_init; | 616 | fdt->open_fds = (fd_set *)&newf->open_fds_init; |
616 | fdt->fd = &newf->fd_array[0]; | 617 | fdt->fd = &newf->fd_array[0]; |
617 | INIT_RCU_HEAD(&fdt->rcu); | 618 | INIT_RCU_HEAD(&fdt->rcu); |
618 | fdt->free_files = NULL; | 619 | fdt->free_files = NULL; |
@@ -768,8 +769,7 @@ int unshare_files(void) | |||
768 | struct files_struct *files = current->files; | 769 | struct files_struct *files = current->files; |
769 | int rc; | 770 | int rc; |
770 | 771 | ||
771 | if(!files) | 772 | BUG_ON(!files); |
772 | BUG(); | ||
773 | 773 | ||
774 | /* This can race but the race causes us to copy when we don't | 774 | /* This can race but the race causes us to copy when we don't |
775 | need to and drop the copy */ | 775 | need to and drop the copy */ |
@@ -786,14 +786,6 @@ int unshare_files(void) | |||
786 | 786 | ||
787 | EXPORT_SYMBOL(unshare_files); | 787 | EXPORT_SYMBOL(unshare_files); |
788 | 788 | ||
789 | void sighand_free_cb(struct rcu_head *rhp) | ||
790 | { | ||
791 | struct sighand_struct *sp; | ||
792 | |||
793 | sp = container_of(rhp, struct sighand_struct, rcu); | ||
794 | kmem_cache_free(sighand_cachep, sp); | ||
795 | } | ||
796 | |||
797 | static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk) | 789 | static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk) |
798 | { | 790 | { |
799 | struct sighand_struct *sig; | 791 | struct sighand_struct *sig; |
@@ -806,12 +798,17 @@ static inline int copy_sighand(unsigned long clone_flags, struct task_struct * t | |||
806 | rcu_assign_pointer(tsk->sighand, sig); | 798 | rcu_assign_pointer(tsk->sighand, sig); |
807 | if (!sig) | 799 | if (!sig) |
808 | return -ENOMEM; | 800 | return -ENOMEM; |
809 | spin_lock_init(&sig->siglock); | ||
810 | atomic_set(&sig->count, 1); | 801 | atomic_set(&sig->count, 1); |
811 | memcpy(sig->action, current->sighand->action, sizeof(sig->action)); | 802 | memcpy(sig->action, current->sighand->action, sizeof(sig->action)); |
812 | return 0; | 803 | return 0; |
813 | } | 804 | } |
814 | 805 | ||
806 | void __cleanup_sighand(struct sighand_struct *sighand) | ||
807 | { | ||
808 | if (atomic_dec_and_test(&sighand->count)) | ||
809 | kmem_cache_free(sighand_cachep, sighand); | ||
810 | } | ||
811 | |||
815 | static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk) | 812 | static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk) |
816 | { | 813 | { |
817 | struct signal_struct *sig; | 814 | struct signal_struct *sig; |
@@ -847,7 +844,7 @@ static inline int copy_signal(unsigned long clone_flags, struct task_struct * ts | |||
847 | hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_REL); | 844 | hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_REL); |
848 | sig->it_real_incr.tv64 = 0; | 845 | sig->it_real_incr.tv64 = 0; |
849 | sig->real_timer.function = it_real_fn; | 846 | sig->real_timer.function = it_real_fn; |
850 | sig->real_timer.data = tsk; | 847 | sig->tsk = tsk; |
851 | 848 | ||
852 | sig->it_virt_expires = cputime_zero; | 849 | sig->it_virt_expires = cputime_zero; |
853 | sig->it_virt_incr = cputime_zero; | 850 | sig->it_virt_incr = cputime_zero; |
@@ -881,6 +878,22 @@ static inline int copy_signal(unsigned long clone_flags, struct task_struct * ts | |||
881 | return 0; | 878 | return 0; |
882 | } | 879 | } |
883 | 880 | ||
881 | void __cleanup_signal(struct signal_struct *sig) | ||
882 | { | ||
883 | exit_thread_group_keys(sig); | ||
884 | kmem_cache_free(signal_cachep, sig); | ||
885 | } | ||
886 | |||
887 | static inline void cleanup_signal(struct task_struct *tsk) | ||
888 | { | ||
889 | struct signal_struct *sig = tsk->signal; | ||
890 | |||
891 | atomic_dec(&sig->live); | ||
892 | |||
893 | if (atomic_dec_and_test(&sig->count)) | ||
894 | __cleanup_signal(sig); | ||
895 | } | ||
896 | |||
884 | static inline void copy_flags(unsigned long clone_flags, struct task_struct *p) | 897 | static inline void copy_flags(unsigned long clone_flags, struct task_struct *p) |
885 | { | 898 | { |
886 | unsigned long new_flags = p->flags; | 899 | unsigned long new_flags = p->flags; |
@@ -1020,6 +1033,7 @@ static task_t *copy_process(unsigned long clone_flags, | |||
1020 | p->mempolicy = NULL; | 1033 | p->mempolicy = NULL; |
1021 | goto bad_fork_cleanup_cpuset; | 1034 | goto bad_fork_cleanup_cpuset; |
1022 | } | 1035 | } |
1036 | mpol_fix_fork_child_flag(p); | ||
1023 | #endif | 1037 | #endif |
1024 | 1038 | ||
1025 | #ifdef CONFIG_DEBUG_MUTEXES | 1039 | #ifdef CONFIG_DEBUG_MUTEXES |
@@ -1060,7 +1074,10 @@ static task_t *copy_process(unsigned long clone_flags, | |||
1060 | * Clear TID on mm_release()? | 1074 | * Clear TID on mm_release()? |
1061 | */ | 1075 | */ |
1062 | p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL; | 1076 | p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL; |
1063 | 1077 | p->robust_list = NULL; | |
1078 | #ifdef CONFIG_COMPAT | ||
1079 | p->compat_robust_list = NULL; | ||
1080 | #endif | ||
1064 | /* | 1081 | /* |
1065 | * sigaltstack should be cleared when sharing the same VM | 1082 | * sigaltstack should be cleared when sharing the same VM |
1066 | */ | 1083 | */ |
@@ -1091,6 +1108,7 @@ static task_t *copy_process(unsigned long clone_flags, | |||
1091 | * We dont wake it up yet. | 1108 | * We dont wake it up yet. |
1092 | */ | 1109 | */ |
1093 | p->group_leader = p; | 1110 | p->group_leader = p; |
1111 | INIT_LIST_HEAD(&p->thread_group); | ||
1094 | INIT_LIST_HEAD(&p->ptrace_children); | 1112 | INIT_LIST_HEAD(&p->ptrace_children); |
1095 | INIT_LIST_HEAD(&p->ptrace_list); | 1113 | INIT_LIST_HEAD(&p->ptrace_list); |
1096 | 1114 | ||
@@ -1114,16 +1132,6 @@ static task_t *copy_process(unsigned long clone_flags, | |||
1114 | !cpu_online(task_cpu(p)))) | 1132 | !cpu_online(task_cpu(p)))) |
1115 | set_task_cpu(p, smp_processor_id()); | 1133 | set_task_cpu(p, smp_processor_id()); |
1116 | 1134 | ||
1117 | /* | ||
1118 | * Check for pending SIGKILL! The new thread should not be allowed | ||
1119 | * to slip out of an OOM kill. (or normal SIGKILL.) | ||
1120 | */ | ||
1121 | if (sigismember(¤t->pending.signal, SIGKILL)) { | ||
1122 | write_unlock_irq(&tasklist_lock); | ||
1123 | retval = -EINTR; | ||
1124 | goto bad_fork_cleanup_namespace; | ||
1125 | } | ||
1126 | |||
1127 | /* CLONE_PARENT re-uses the old parent */ | 1135 | /* CLONE_PARENT re-uses the old parent */ |
1128 | if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) | 1136 | if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) |
1129 | p->real_parent = current->real_parent; | 1137 | p->real_parent = current->real_parent; |
@@ -1132,6 +1140,23 @@ static task_t *copy_process(unsigned long clone_flags, | |||
1132 | p->parent = p->real_parent; | 1140 | p->parent = p->real_parent; |
1133 | 1141 | ||
1134 | spin_lock(¤t->sighand->siglock); | 1142 | spin_lock(¤t->sighand->siglock); |
1143 | |||
1144 | /* | ||
1145 | * Process group and session signals need to be delivered to just the | ||
1146 | * parent before the fork or both the parent and the child after the | ||
1147 | * fork. Restart if a signal comes in before we add the new process to | ||
1148 | * it's process group. | ||
1149 | * A fatal signal pending means that current will exit, so the new | ||
1150 | * thread can't slip out of an OOM kill (or normal SIGKILL). | ||
1151 | */ | ||
1152 | recalc_sigpending(); | ||
1153 | if (signal_pending(current)) { | ||
1154 | spin_unlock(¤t->sighand->siglock); | ||
1155 | write_unlock_irq(&tasklist_lock); | ||
1156 | retval = -ERESTARTNOINTR; | ||
1157 | goto bad_fork_cleanup_namespace; | ||
1158 | } | ||
1159 | |||
1135 | if (clone_flags & CLONE_THREAD) { | 1160 | if (clone_flags & CLONE_THREAD) { |
1136 | /* | 1161 | /* |
1137 | * Important: if an exit-all has been started then | 1162 | * Important: if an exit-all has been started then |
@@ -1144,17 +1169,9 @@ static task_t *copy_process(unsigned long clone_flags, | |||
1144 | retval = -EAGAIN; | 1169 | retval = -EAGAIN; |
1145 | goto bad_fork_cleanup_namespace; | 1170 | goto bad_fork_cleanup_namespace; |
1146 | } | 1171 | } |
1147 | p->group_leader = current->group_leader; | ||
1148 | 1172 | ||
1149 | if (current->signal->group_stop_count > 0) { | 1173 | p->group_leader = current->group_leader; |
1150 | /* | 1174 | list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group); |
1151 | * There is an all-stop in progress for the group. | ||
1152 | * We ourselves will stop as soon as we check signals. | ||
1153 | * Make the new thread part of that group stop too. | ||
1154 | */ | ||
1155 | current->signal->group_stop_count++; | ||
1156 | set_tsk_thread_flag(p, TIF_SIGPENDING); | ||
1157 | } | ||
1158 | 1175 | ||
1159 | if (!cputime_eq(current->signal->it_virt_expires, | 1176 | if (!cputime_eq(current->signal->it_virt_expires, |
1160 | cputime_zero) || | 1177 | cputime_zero) || |
@@ -1177,23 +1194,25 @@ static task_t *copy_process(unsigned long clone_flags, | |||
1177 | */ | 1194 | */ |
1178 | p->ioprio = current->ioprio; | 1195 | p->ioprio = current->ioprio; |
1179 | 1196 | ||
1180 | SET_LINKS(p); | 1197 | if (likely(p->pid)) { |
1181 | if (unlikely(p->ptrace & PT_PTRACED)) | 1198 | add_parent(p); |
1182 | __ptrace_link(p, current->parent); | 1199 | if (unlikely(p->ptrace & PT_PTRACED)) |
1183 | 1200 | __ptrace_link(p, current->parent); | |
1184 | if (thread_group_leader(p)) { | 1201 | |
1185 | p->signal->tty = current->signal->tty; | 1202 | if (thread_group_leader(p)) { |
1186 | p->signal->pgrp = process_group(current); | 1203 | p->signal->tty = current->signal->tty; |
1187 | p->signal->session = current->signal->session; | 1204 | p->signal->pgrp = process_group(current); |
1188 | attach_pid(p, PIDTYPE_PGID, process_group(p)); | 1205 | p->signal->session = current->signal->session; |
1189 | attach_pid(p, PIDTYPE_SID, p->signal->session); | 1206 | attach_pid(p, PIDTYPE_PGID, process_group(p)); |
1190 | if (p->pid) | 1207 | attach_pid(p, PIDTYPE_SID, p->signal->session); |
1208 | |||
1209 | list_add_tail(&p->tasks, &init_task.tasks); | ||
1191 | __get_cpu_var(process_counts)++; | 1210 | __get_cpu_var(process_counts)++; |
1211 | } | ||
1212 | attach_pid(p, PIDTYPE_PID, p->pid); | ||
1213 | nr_threads++; | ||
1192 | } | 1214 | } |
1193 | attach_pid(p, PIDTYPE_TGID, p->tgid); | ||
1194 | attach_pid(p, PIDTYPE_PID, p->pid); | ||
1195 | 1215 | ||
1196 | nr_threads++; | ||
1197 | total_forks++; | 1216 | total_forks++; |
1198 | spin_unlock(¤t->sighand->siglock); | 1217 | spin_unlock(¤t->sighand->siglock); |
1199 | write_unlock_irq(&tasklist_lock); | 1218 | write_unlock_irq(&tasklist_lock); |
@@ -1208,9 +1227,9 @@ bad_fork_cleanup_mm: | |||
1208 | if (p->mm) | 1227 | if (p->mm) |
1209 | mmput(p->mm); | 1228 | mmput(p->mm); |
1210 | bad_fork_cleanup_signal: | 1229 | bad_fork_cleanup_signal: |
1211 | exit_signal(p); | 1230 | cleanup_signal(p); |
1212 | bad_fork_cleanup_sighand: | 1231 | bad_fork_cleanup_sighand: |
1213 | exit_sighand(p); | 1232 | __cleanup_sighand(p->sighand); |
1214 | bad_fork_cleanup_fs: | 1233 | bad_fork_cleanup_fs: |
1215 | exit_fs(p); /* blocking */ | 1234 | exit_fs(p); /* blocking */ |
1216 | bad_fork_cleanup_files: | 1235 | bad_fork_cleanup_files: |
@@ -1257,7 +1276,7 @@ task_t * __devinit fork_idle(int cpu) | |||
1257 | if (!task) | 1276 | if (!task) |
1258 | return ERR_PTR(-ENOMEM); | 1277 | return ERR_PTR(-ENOMEM); |
1259 | init_idle(task, cpu); | 1278 | init_idle(task, cpu); |
1260 | unhash_process(task); | 1279 | |
1261 | return task; | 1280 | return task; |
1262 | } | 1281 | } |
1263 | 1282 | ||
@@ -1349,11 +1368,21 @@ long do_fork(unsigned long clone_flags, | |||
1349 | #define ARCH_MIN_MMSTRUCT_ALIGN 0 | 1368 | #define ARCH_MIN_MMSTRUCT_ALIGN 0 |
1350 | #endif | 1369 | #endif |
1351 | 1370 | ||
1371 | static void sighand_ctor(void *data, kmem_cache_t *cachep, unsigned long flags) | ||
1372 | { | ||
1373 | struct sighand_struct *sighand = data; | ||
1374 | |||
1375 | if ((flags & (SLAB_CTOR_VERIFY | SLAB_CTOR_CONSTRUCTOR)) == | ||
1376 | SLAB_CTOR_CONSTRUCTOR) | ||
1377 | spin_lock_init(&sighand->siglock); | ||
1378 | } | ||
1379 | |||
1352 | void __init proc_caches_init(void) | 1380 | void __init proc_caches_init(void) |
1353 | { | 1381 | { |
1354 | sighand_cachep = kmem_cache_create("sighand_cache", | 1382 | sighand_cachep = kmem_cache_create("sighand_cache", |
1355 | sizeof(struct sighand_struct), 0, | 1383 | sizeof(struct sighand_struct), 0, |
1356 | SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL); | 1384 | SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU, |
1385 | sighand_ctor, NULL); | ||
1357 | signal_cachep = kmem_cache_create("signal_cache", | 1386 | signal_cachep = kmem_cache_create("signal_cache", |
1358 | sizeof(struct signal_struct), 0, | 1387 | sizeof(struct signal_struct), 0, |
1359 | SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL); | 1388 | SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL); |
@@ -1534,6 +1563,12 @@ asmlinkage long sys_unshare(unsigned long unshare_flags) | |||
1534 | 1563 | ||
1535 | check_unshare_flags(&unshare_flags); | 1564 | check_unshare_flags(&unshare_flags); |
1536 | 1565 | ||
1566 | /* Return -EINVAL for all unsupported flags */ | ||
1567 | err = -EINVAL; | ||
1568 | if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| | ||
1569 | CLONE_VM|CLONE_FILES|CLONE_SYSVSEM)) | ||
1570 | goto bad_unshare_out; | ||
1571 | |||
1537 | if ((err = unshare_thread(unshare_flags))) | 1572 | if ((err = unshare_thread(unshare_flags))) |
1538 | goto bad_unshare_out; | 1573 | goto bad_unshare_out; |
1539 | if ((err = unshare_fs(unshare_flags, &new_fs))) | 1574 | if ((err = unshare_fs(unshare_flags, &new_fs))) |
diff --git a/kernel/futex.c b/kernel/futex.c index 5efa2f9780..9c9b2b6b22 100644 --- a/kernel/futex.c +++ b/kernel/futex.c | |||
@@ -8,6 +8,10 @@ | |||
8 | * Removed page pinning, fix privately mapped COW pages and other cleanups | 8 | * Removed page pinning, fix privately mapped COW pages and other cleanups |
9 | * (C) Copyright 2003, 2004 Jamie Lokier | 9 | * (C) Copyright 2003, 2004 Jamie Lokier |
10 | * | 10 | * |
11 | * Robust futex support started by Ingo Molnar | ||
12 | * (C) Copyright 2006 Red Hat Inc, All Rights Reserved | ||
13 | * Thanks to Thomas Gleixner for suggestions, analysis and fixes. | ||
14 | * | ||
11 | * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly | 15 | * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly |
12 | * enough at me, Linus for the original (flawed) idea, Matthew | 16 | * enough at me, Linus for the original (flawed) idea, Matthew |
13 | * Kirkwood for proof-of-concept implementation. | 17 | * Kirkwood for proof-of-concept implementation. |
@@ -829,6 +833,172 @@ error: | |||
829 | goto out; | 833 | goto out; |
830 | } | 834 | } |
831 | 835 | ||
836 | /* | ||
837 | * Support for robust futexes: the kernel cleans up held futexes at | ||
838 | * thread exit time. | ||
839 | * | ||
840 | * Implementation: user-space maintains a per-thread list of locks it | ||
841 | * is holding. Upon do_exit(), the kernel carefully walks this list, | ||
842 | * and marks all locks that are owned by this thread with the | ||
843 | * FUTEX_OWNER_DEAD bit, and wakes up a waiter (if any). The list is | ||
844 | * always manipulated with the lock held, so the list is private and | ||
845 | * per-thread. Userspace also maintains a per-thread 'list_op_pending' | ||
846 | * field, to allow the kernel to clean up if the thread dies after | ||
847 | * acquiring the lock, but just before it could have added itself to | ||
848 | * the list. There can only be one such pending lock. | ||
849 | */ | ||
850 | |||
851 | /** | ||
852 | * sys_set_robust_list - set the robust-futex list head of a task | ||
853 | * @head: pointer to the list-head | ||
854 | * @len: length of the list-head, as userspace expects | ||
855 | */ | ||
856 | asmlinkage long | ||
857 | sys_set_robust_list(struct robust_list_head __user *head, | ||
858 | size_t len) | ||
859 | { | ||
860 | /* | ||
861 | * The kernel knows only one size for now: | ||
862 | */ | ||
863 | if (unlikely(len != sizeof(*head))) | ||
864 | return -EINVAL; | ||
865 | |||
866 | current->robust_list = head; | ||
867 | |||
868 | return 0; | ||
869 | } | ||
870 | |||
871 | /** | ||
872 | * sys_get_robust_list - get the robust-futex list head of a task | ||
873 | * @pid: pid of the process [zero for current task] | ||
874 | * @head_ptr: pointer to a list-head pointer, the kernel fills it in | ||
875 | * @len_ptr: pointer to a length field, the kernel fills in the header size | ||
876 | */ | ||
877 | asmlinkage long | ||
878 | sys_get_robust_list(int pid, struct robust_list_head __user **head_ptr, | ||
879 | size_t __user *len_ptr) | ||
880 | { | ||
881 | struct robust_list_head *head; | ||
882 | unsigned long ret; | ||
883 | |||
884 | if (!pid) | ||
885 | head = current->robust_list; | ||
886 | else { | ||
887 | struct task_struct *p; | ||
888 | |||
889 | ret = -ESRCH; | ||
890 | read_lock(&tasklist_lock); | ||
891 | p = find_task_by_pid(pid); | ||
892 | if (!p) | ||
893 | goto err_unlock; | ||
894 | ret = -EPERM; | ||
895 | if ((current->euid != p->euid) && (current->euid != p->uid) && | ||
896 | !capable(CAP_SYS_PTRACE)) | ||
897 | goto err_unlock; | ||
898 | head = p->robust_list; | ||
899 | read_unlock(&tasklist_lock); | ||
900 | } | ||
901 | |||
902 | if (put_user(sizeof(*head), len_ptr)) | ||
903 | return -EFAULT; | ||
904 | return put_user(head, head_ptr); | ||
905 | |||
906 | err_unlock: | ||
907 | read_unlock(&tasklist_lock); | ||
908 | |||
909 | return ret; | ||
910 | } | ||
911 | |||
912 | /* | ||
913 | * Process a futex-list entry, check whether it's owned by the | ||
914 | * dying task, and do notification if so: | ||
915 | */ | ||
916 | int handle_futex_death(u32 __user *uaddr, struct task_struct *curr) | ||
917 | { | ||
918 | u32 uval; | ||
919 | |||
920 | retry: | ||
921 | if (get_user(uval, uaddr)) | ||
922 | return -1; | ||
923 | |||
924 | if ((uval & FUTEX_TID_MASK) == curr->pid) { | ||
925 | /* | ||
926 | * Ok, this dying thread is truly holding a futex | ||
927 | * of interest. Set the OWNER_DIED bit atomically | ||
928 | * via cmpxchg, and if the value had FUTEX_WAITERS | ||
929 | * set, wake up a waiter (if any). (We have to do a | ||
930 | * futex_wake() even if OWNER_DIED is already set - | ||
931 | * to handle the rare but possible case of recursive | ||
932 | * thread-death.) The rest of the cleanup is done in | ||
933 | * userspace. | ||
934 | */ | ||
935 | if (futex_atomic_cmpxchg_inatomic(uaddr, uval, | ||
936 | uval | FUTEX_OWNER_DIED) != uval) | ||
937 | goto retry; | ||
938 | |||
939 | if (uval & FUTEX_WAITERS) | ||
940 | futex_wake((unsigned long)uaddr, 1); | ||
941 | } | ||
942 | return 0; | ||
943 | } | ||
944 | |||
945 | /* | ||
946 | * Walk curr->robust_list (very carefully, it's a userspace list!) | ||
947 | * and mark any locks found there dead, and notify any waiters. | ||
948 | * | ||
949 | * We silently return on any sign of list-walking problem. | ||
950 | */ | ||
951 | void exit_robust_list(struct task_struct *curr) | ||
952 | { | ||
953 | struct robust_list_head __user *head = curr->robust_list; | ||
954 | struct robust_list __user *entry, *pending; | ||
955 | unsigned int limit = ROBUST_LIST_LIMIT; | ||
956 | unsigned long futex_offset; | ||
957 | |||
958 | /* | ||
959 | * Fetch the list head (which was registered earlier, via | ||
960 | * sys_set_robust_list()): | ||
961 | */ | ||
962 | if (get_user(entry, &head->list.next)) | ||
963 | return; | ||
964 | /* | ||
965 | * Fetch the relative futex offset: | ||
966 | */ | ||
967 | if (get_user(futex_offset, &head->futex_offset)) | ||
968 | return; | ||
969 | /* | ||
970 | * Fetch any possibly pending lock-add first, and handle it | ||
971 | * if it exists: | ||
972 | */ | ||
973 | if (get_user(pending, &head->list_op_pending)) | ||
974 | return; | ||
975 | if (pending) | ||
976 | handle_futex_death((void *)pending + futex_offset, curr); | ||
977 | |||
978 | while (entry != &head->list) { | ||
979 | /* | ||
980 | * A pending lock might already be on the list, so | ||
981 | * dont process it twice: | ||
982 | */ | ||
983 | if (entry != pending) | ||
984 | if (handle_futex_death((void *)entry + futex_offset, | ||
985 | curr)) | ||
986 | return; | ||
987 | /* | ||
988 | * Fetch the next entry in the list: | ||
989 | */ | ||
990 | if (get_user(entry, &entry->next)) | ||
991 | return; | ||
992 | /* | ||
993 | * Avoid excessively long or circular lists: | ||
994 | */ | ||
995 | if (!--limit) | ||
996 | break; | ||
997 | |||
998 | cond_resched(); | ||
999 | } | ||
1000 | } | ||
1001 | |||
832 | long do_futex(unsigned long uaddr, int op, int val, unsigned long timeout, | 1002 | long do_futex(unsigned long uaddr, int op, int val, unsigned long timeout, |
833 | unsigned long uaddr2, int val2, int val3) | 1003 | unsigned long uaddr2, int val2, int val3) |
834 | { | 1004 | { |
diff --git a/kernel/futex_compat.c b/kernel/futex_compat.c new file mode 100644 index 0000000000..54274fc853 --- /dev/null +++ b/kernel/futex_compat.c | |||
@@ -0,0 +1,142 @@ | |||
1 | /* | ||
2 | * linux/kernel/futex_compat.c | ||
3 | * | ||
4 | * Futex compatibililty routines. | ||
5 | * | ||
6 | * Copyright 2006, Red Hat, Inc., Ingo Molnar | ||
7 | */ | ||
8 | |||
9 | #include <linux/linkage.h> | ||
10 | #include <linux/compat.h> | ||
11 | #include <linux/futex.h> | ||
12 | |||
13 | #include <asm/uaccess.h> | ||
14 | |||
15 | /* | ||
16 | * Walk curr->robust_list (very carefully, it's a userspace list!) | ||
17 | * and mark any locks found there dead, and notify any waiters. | ||
18 | * | ||
19 | * We silently return on any sign of list-walking problem. | ||
20 | */ | ||
21 | void compat_exit_robust_list(struct task_struct *curr) | ||
22 | { | ||
23 | struct compat_robust_list_head __user *head = curr->compat_robust_list; | ||
24 | struct robust_list __user *entry, *pending; | ||
25 | compat_uptr_t uentry, upending; | ||
26 | unsigned int limit = ROBUST_LIST_LIMIT; | ||
27 | compat_long_t futex_offset; | ||
28 | |||
29 | /* | ||
30 | * Fetch the list head (which was registered earlier, via | ||
31 | * sys_set_robust_list()): | ||
32 | */ | ||
33 | if (get_user(uentry, &head->list.next)) | ||
34 | return; | ||
35 | entry = compat_ptr(uentry); | ||
36 | /* | ||
37 | * Fetch the relative futex offset: | ||
38 | */ | ||
39 | if (get_user(futex_offset, &head->futex_offset)) | ||
40 | return; | ||
41 | /* | ||
42 | * Fetch any possibly pending lock-add first, and handle it | ||
43 | * if it exists: | ||
44 | */ | ||
45 | if (get_user(upending, &head->list_op_pending)) | ||
46 | return; | ||
47 | pending = compat_ptr(upending); | ||
48 | if (upending) | ||
49 | handle_futex_death((void *)pending + futex_offset, curr); | ||
50 | |||
51 | while (compat_ptr(uentry) != &head->list) { | ||
52 | /* | ||
53 | * A pending lock might already be on the list, so | ||
54 | * dont process it twice: | ||
55 | */ | ||
56 | if (entry != pending) | ||
57 | if (handle_futex_death((void *)entry + futex_offset, | ||
58 | curr)) | ||
59 | return; | ||
60 | |||
61 | /* | ||
62 | * Fetch the next entry in the list: | ||
63 | */ | ||
64 | if (get_user(uentry, (compat_uptr_t *)&entry->next)) | ||
65 | return; | ||
66 | entry = compat_ptr(uentry); | ||
67 | /* | ||
68 | * Avoid excessively long or circular lists: | ||
69 | */ | ||
70 | if (!--limit) | ||
71 | break; | ||
72 | |||
73 | cond_resched(); | ||
74 | } | ||
75 | } | ||
76 | |||
77 | asmlinkage long | ||
78 | compat_sys_set_robust_list(struct compat_robust_list_head __user *head, | ||
79 | compat_size_t len) | ||
80 | { | ||
81 | if (unlikely(len != sizeof(*head))) | ||
82 | return -EINVAL; | ||
83 | |||
84 | current->compat_robust_list = head; | ||
85 | |||
86 | return 0; | ||
87 | } | ||
88 | |||
89 | asmlinkage long | ||
90 | compat_sys_get_robust_list(int pid, compat_uptr_t *head_ptr, | ||
91 | compat_size_t __user *len_ptr) | ||
92 | { | ||
93 | struct compat_robust_list_head *head; | ||
94 | unsigned long ret; | ||
95 | |||
96 | if (!pid) | ||
97 | head = current->compat_robust_list; | ||
98 | else { | ||
99 | struct task_struct *p; | ||
100 | |||
101 | ret = -ESRCH; | ||
102 | read_lock(&tasklist_lock); | ||
103 | p = find_task_by_pid(pid); | ||
104 | if (!p) | ||
105 | goto err_unlock; | ||
106 | ret = -EPERM; | ||
107 | if ((current->euid != p->euid) && (current->euid != p->uid) && | ||
108 | !capable(CAP_SYS_PTRACE)) | ||
109 | goto err_unlock; | ||
110 | head = p->compat_robust_list; | ||
111 | read_unlock(&tasklist_lock); | ||
112 | } | ||
113 | |||
114 | if (put_user(sizeof(*head), len_ptr)) | ||
115 | return -EFAULT; | ||
116 | return put_user(ptr_to_compat(head), head_ptr); | ||
117 | |||
118 | err_unlock: | ||
119 | read_unlock(&tasklist_lock); | ||
120 | |||
121 | return ret; | ||
122 | } | ||
123 | |||
124 | asmlinkage long compat_sys_futex(u32 __user *uaddr, int op, u32 val, | ||
125 | struct compat_timespec __user *utime, u32 __user *uaddr2, | ||
126 | u32 val3) | ||
127 | { | ||
128 | struct timespec t; | ||
129 | unsigned long timeout = MAX_SCHEDULE_TIMEOUT; | ||
130 | int val2 = 0; | ||
131 | |||
132 | if ((op == FUTEX_WAIT) && utime) { | ||
133 | if (get_compat_timespec(&t, utime)) | ||
134 | return -EFAULT; | ||
135 | timeout = timespec_to_jiffies(&t) + 1; | ||
136 | } | ||
137 | if (op >= FUTEX_REQUEUE) | ||
138 | val2 = (int) (unsigned long) utime; | ||
139 | |||
140 | return do_futex((unsigned long)uaddr, op, val, timeout, | ||
141 | (unsigned long)uaddr2, val2, val3); | ||
142 | } | ||
diff --git a/kernel/hrtimer.c b/kernel/hrtimer.c index 14bc9cfa63..0237a556eb 100644 --- a/kernel/hrtimer.c +++ b/kernel/hrtimer.c | |||
@@ -123,6 +123,26 @@ void ktime_get_ts(struct timespec *ts) | |||
123 | EXPORT_SYMBOL_GPL(ktime_get_ts); | 123 | EXPORT_SYMBOL_GPL(ktime_get_ts); |
124 | 124 | ||
125 | /* | 125 | /* |
126 | * Get the coarse grained time at the softirq based on xtime and | ||
127 | * wall_to_monotonic. | ||
128 | */ | ||
129 | static void hrtimer_get_softirq_time(struct hrtimer_base *base) | ||
130 | { | ||
131 | ktime_t xtim, tomono; | ||
132 | unsigned long seq; | ||
133 | |||
134 | do { | ||
135 | seq = read_seqbegin(&xtime_lock); | ||
136 | xtim = timespec_to_ktime(xtime); | ||
137 | tomono = timespec_to_ktime(wall_to_monotonic); | ||
138 | |||
139 | } while (read_seqretry(&xtime_lock, seq)); | ||
140 | |||
141 | base[CLOCK_REALTIME].softirq_time = xtim; | ||
142 | base[CLOCK_MONOTONIC].softirq_time = ktime_add(xtim, tomono); | ||
143 | } | ||
144 | |||
145 | /* | ||
126 | * Functions and macros which are different for UP/SMP systems are kept in a | 146 | * Functions and macros which are different for UP/SMP systems are kept in a |
127 | * single place | 147 | * single place |
128 | */ | 148 | */ |
@@ -246,7 +266,7 @@ ktime_t ktime_add_ns(const ktime_t kt, u64 nsec) | |||
246 | /* | 266 | /* |
247 | * Divide a ktime value by a nanosecond value | 267 | * Divide a ktime value by a nanosecond value |
248 | */ | 268 | */ |
249 | static unsigned long ktime_divns(const ktime_t kt, nsec_t div) | 269 | static unsigned long ktime_divns(const ktime_t kt, s64 div) |
250 | { | 270 | { |
251 | u64 dclc, inc, dns; | 271 | u64 dclc, inc, dns; |
252 | int sft = 0; | 272 | int sft = 0; |
@@ -281,18 +301,17 @@ void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) | |||
281 | * hrtimer_forward - forward the timer expiry | 301 | * hrtimer_forward - forward the timer expiry |
282 | * | 302 | * |
283 | * @timer: hrtimer to forward | 303 | * @timer: hrtimer to forward |
304 | * @now: forward past this time | ||
284 | * @interval: the interval to forward | 305 | * @interval: the interval to forward |
285 | * | 306 | * |
286 | * Forward the timer expiry so it will expire in the future. | 307 | * Forward the timer expiry so it will expire in the future. |
287 | * Returns the number of overruns. | 308 | * Returns the number of overruns. |
288 | */ | 309 | */ |
289 | unsigned long | 310 | unsigned long |
290 | hrtimer_forward(struct hrtimer *timer, ktime_t interval) | 311 | hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval) |
291 | { | 312 | { |
292 | unsigned long orun = 1; | 313 | unsigned long orun = 1; |
293 | ktime_t delta, now; | 314 | ktime_t delta; |
294 | |||
295 | now = timer->base->get_time(); | ||
296 | 315 | ||
297 | delta = ktime_sub(now, timer->expires); | 316 | delta = ktime_sub(now, timer->expires); |
298 | 317 | ||
@@ -303,7 +322,7 @@ hrtimer_forward(struct hrtimer *timer, ktime_t interval) | |||
303 | interval.tv64 = timer->base->resolution.tv64; | 322 | interval.tv64 = timer->base->resolution.tv64; |
304 | 323 | ||
305 | if (unlikely(delta.tv64 >= interval.tv64)) { | 324 | if (unlikely(delta.tv64 >= interval.tv64)) { |
306 | nsec_t incr = ktime_to_ns(interval); | 325 | s64 incr = ktime_to_ns(interval); |
307 | 326 | ||
308 | orun = ktime_divns(delta, incr); | 327 | orun = ktime_divns(delta, incr); |
309 | timer->expires = ktime_add_ns(timer->expires, incr * orun); | 328 | timer->expires = ktime_add_ns(timer->expires, incr * orun); |
@@ -355,8 +374,6 @@ static void enqueue_hrtimer(struct hrtimer *timer, struct hrtimer_base *base) | |||
355 | rb_link_node(&timer->node, parent, link); | 374 | rb_link_node(&timer->node, parent, link); |
356 | rb_insert_color(&timer->node, &base->active); | 375 | rb_insert_color(&timer->node, &base->active); |
357 | 376 | ||
358 | timer->state = HRTIMER_PENDING; | ||
359 | |||
360 | if (!base->first || timer->expires.tv64 < | 377 | if (!base->first || timer->expires.tv64 < |
361 | rb_entry(base->first, struct hrtimer, node)->expires.tv64) | 378 | rb_entry(base->first, struct hrtimer, node)->expires.tv64) |
362 | base->first = &timer->node; | 379 | base->first = &timer->node; |
@@ -376,6 +393,7 @@ static void __remove_hrtimer(struct hrtimer *timer, struct hrtimer_base *base) | |||
376 | if (base->first == &timer->node) | 393 | if (base->first == &timer->node) |
377 | base->first = rb_next(&timer->node); | 394 | base->first = rb_next(&timer->node); |
378 | rb_erase(&timer->node, &base->active); | 395 | rb_erase(&timer->node, &base->active); |
396 | timer->node.rb_parent = HRTIMER_INACTIVE; | ||
379 | } | 397 | } |
380 | 398 | ||
381 | /* | 399 | /* |
@@ -386,7 +404,6 @@ remove_hrtimer(struct hrtimer *timer, struct hrtimer_base *base) | |||
386 | { | 404 | { |
387 | if (hrtimer_active(timer)) { | 405 | if (hrtimer_active(timer)) { |
388 | __remove_hrtimer(timer, base); | 406 | __remove_hrtimer(timer, base); |
389 | timer->state = HRTIMER_INACTIVE; | ||
390 | return 1; | 407 | return 1; |
391 | } | 408 | } |
392 | return 0; | 409 | return 0; |
@@ -560,6 +577,7 @@ void hrtimer_init(struct hrtimer *timer, clockid_t clock_id, | |||
560 | clock_id = CLOCK_MONOTONIC; | 577 | clock_id = CLOCK_MONOTONIC; |
561 | 578 | ||
562 | timer->base = &bases[clock_id]; | 579 | timer->base = &bases[clock_id]; |
580 | timer->node.rb_parent = HRTIMER_INACTIVE; | ||
563 | } | 581 | } |
564 | 582 | ||
565 | /** | 583 | /** |
@@ -586,48 +604,35 @@ int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp) | |||
586 | */ | 604 | */ |
587 | static inline void run_hrtimer_queue(struct hrtimer_base *base) | 605 | static inline void run_hrtimer_queue(struct hrtimer_base *base) |
588 | { | 606 | { |
589 | ktime_t now = base->get_time(); | ||
590 | struct rb_node *node; | 607 | struct rb_node *node; |
591 | 608 | ||
609 | if (base->get_softirq_time) | ||
610 | base->softirq_time = base->get_softirq_time(); | ||
611 | |||
592 | spin_lock_irq(&base->lock); | 612 | spin_lock_irq(&base->lock); |
593 | 613 | ||
594 | while ((node = base->first)) { | 614 | while ((node = base->first)) { |
595 | struct hrtimer *timer; | 615 | struct hrtimer *timer; |
596 | int (*fn)(void *); | 616 | int (*fn)(struct hrtimer *); |
597 | int restart; | 617 | int restart; |
598 | void *data; | ||
599 | 618 | ||
600 | timer = rb_entry(node, struct hrtimer, node); | 619 | timer = rb_entry(node, struct hrtimer, node); |
601 | if (now.tv64 <= timer->expires.tv64) | 620 | if (base->softirq_time.tv64 <= timer->expires.tv64) |
602 | break; | 621 | break; |
603 | 622 | ||
604 | fn = timer->function; | 623 | fn = timer->function; |
605 | data = timer->data; | ||
606 | set_curr_timer(base, timer); | 624 | set_curr_timer(base, timer); |
607 | timer->state = HRTIMER_RUNNING; | ||
608 | __remove_hrtimer(timer, base); | 625 | __remove_hrtimer(timer, base); |
609 | spin_unlock_irq(&base->lock); | 626 | spin_unlock_irq(&base->lock); |
610 | 627 | ||
611 | /* | 628 | restart = fn(timer); |
612 | * fn == NULL is special case for the simplest timer | ||
613 | * variant - wake up process and do not restart: | ||
614 | */ | ||
615 | if (!fn) { | ||
616 | wake_up_process(data); | ||
617 | restart = HRTIMER_NORESTART; | ||
618 | } else | ||
619 | restart = fn(data); | ||
620 | 629 | ||
621 | spin_lock_irq(&base->lock); | 630 | spin_lock_irq(&base->lock); |
622 | 631 | ||
623 | /* Another CPU has added back the timer */ | 632 | if (restart != HRTIMER_NORESTART) { |
624 | if (timer->state != HRTIMER_RUNNING) | 633 | BUG_ON(hrtimer_active(timer)); |
625 | continue; | ||
626 | |||
627 | if (restart == HRTIMER_RESTART) | ||
628 | enqueue_hrtimer(timer, base); | 634 | enqueue_hrtimer(timer, base); |
629 | else | 635 | } |
630 | timer->state = HRTIMER_EXPIRED; | ||
631 | } | 636 | } |
632 | set_curr_timer(base, NULL); | 637 | set_curr_timer(base, NULL); |
633 | spin_unlock_irq(&base->lock); | 638 | spin_unlock_irq(&base->lock); |
@@ -641,6 +646,8 @@ void hrtimer_run_queues(void) | |||
641 | struct hrtimer_base *base = __get_cpu_var(hrtimer_bases); | 646 | struct hrtimer_base *base = __get_cpu_var(hrtimer_bases); |
642 | int i; | 647 | int i; |
643 | 648 | ||
649 | hrtimer_get_softirq_time(base); | ||
650 | |||
644 | for (i = 0; i < MAX_HRTIMER_BASES; i++) | 651 | for (i = 0; i < MAX_HRTIMER_BASES; i++) |
645 | run_hrtimer_queue(&base[i]); | 652 | run_hrtimer_queue(&base[i]); |
646 | } | 653 | } |
@@ -649,79 +656,70 @@ void hrtimer_run_queues(void) | |||
649 | * Sleep related functions: | 656 | * Sleep related functions: |
650 | */ | 657 | */ |
651 | 658 | ||
652 | /** | 659 | struct sleep_hrtimer { |
653 | * schedule_hrtimer - sleep until timeout | 660 | struct hrtimer timer; |
654 | * | 661 | struct task_struct *task; |
655 | * @timer: hrtimer variable initialized with the correct clock base | 662 | int expired; |
656 | * @mode: timeout value is abs/rel | 663 | }; |
657 | * | ||
658 | * Make the current task sleep until @timeout is | ||
659 | * elapsed. | ||
660 | * | ||
661 | * You can set the task state as follows - | ||
662 | * | ||
663 | * %TASK_UNINTERRUPTIBLE - at least @timeout is guaranteed to | ||
664 | * pass before the routine returns. The routine will return 0 | ||
665 | * | ||
666 | * %TASK_INTERRUPTIBLE - the routine may return early if a signal is | ||
667 | * delivered to the current task. In this case the remaining time | ||
668 | * will be returned | ||
669 | * | ||
670 | * The current task state is guaranteed to be TASK_RUNNING when this | ||
671 | * routine returns. | ||
672 | */ | ||
673 | static ktime_t __sched | ||
674 | schedule_hrtimer(struct hrtimer *timer, const enum hrtimer_mode mode) | ||
675 | { | ||
676 | /* fn stays NULL, meaning single-shot wakeup: */ | ||
677 | timer->data = current; | ||
678 | 664 | ||
679 | hrtimer_start(timer, timer->expires, mode); | 665 | static int nanosleep_wakeup(struct hrtimer *timer) |
666 | { | ||
667 | struct sleep_hrtimer *t = | ||
668 | container_of(timer, struct sleep_hrtimer, timer); | ||
680 | 669 | ||
681 | schedule(); | 670 | t->expired = 1; |
682 | hrtimer_cancel(timer); | 671 | wake_up_process(t->task); |
683 | 672 | ||
684 | /* Return the remaining time: */ | 673 | return HRTIMER_NORESTART; |
685 | if (timer->state != HRTIMER_EXPIRED) | ||
686 | return ktime_sub(timer->expires, timer->base->get_time()); | ||
687 | else | ||
688 | return (ktime_t) {.tv64 = 0 }; | ||
689 | } | 674 | } |
690 | 675 | ||
691 | static inline ktime_t __sched | 676 | static int __sched do_nanosleep(struct sleep_hrtimer *t, enum hrtimer_mode mode) |
692 | schedule_hrtimer_interruptible(struct hrtimer *timer, | ||
693 | const enum hrtimer_mode mode) | ||
694 | { | 677 | { |
695 | set_current_state(TASK_INTERRUPTIBLE); | 678 | t->timer.function = nanosleep_wakeup; |
679 | t->task = current; | ||
680 | t->expired = 0; | ||
681 | |||
682 | do { | ||
683 | set_current_state(TASK_INTERRUPTIBLE); | ||
684 | hrtimer_start(&t->timer, t->timer.expires, mode); | ||
685 | |||
686 | schedule(); | ||
687 | |||
688 | if (unlikely(!t->expired)) { | ||
689 | hrtimer_cancel(&t->timer); | ||
690 | mode = HRTIMER_ABS; | ||
691 | } | ||
692 | } while (!t->expired && !signal_pending(current)); | ||
696 | 693 | ||
697 | return schedule_hrtimer(timer, mode); | 694 | return t->expired; |
698 | } | 695 | } |
699 | 696 | ||
700 | static long __sched nanosleep_restart(struct restart_block *restart) | 697 | static long __sched nanosleep_restart(struct restart_block *restart) |
701 | { | 698 | { |
699 | struct sleep_hrtimer t; | ||
702 | struct timespec __user *rmtp; | 700 | struct timespec __user *rmtp; |
703 | struct timespec tu; | 701 | struct timespec tu; |
704 | void *rfn_save = restart->fn; | 702 | ktime_t time; |
705 | struct hrtimer timer; | ||
706 | ktime_t rem; | ||
707 | 703 | ||
708 | restart->fn = do_no_restart_syscall; | 704 | restart->fn = do_no_restart_syscall; |
709 | 705 | ||
710 | hrtimer_init(&timer, (clockid_t) restart->arg3, HRTIMER_ABS); | 706 | hrtimer_init(&t.timer, restart->arg3, HRTIMER_ABS); |
711 | 707 | t.timer.expires.tv64 = ((u64)restart->arg1 << 32) | (u64) restart->arg0; | |
712 | timer.expires.tv64 = ((u64)restart->arg1 << 32) | (u64) restart->arg0; | ||
713 | |||
714 | rem = schedule_hrtimer_interruptible(&timer, HRTIMER_ABS); | ||
715 | 708 | ||
716 | if (rem.tv64 <= 0) | 709 | if (do_nanosleep(&t, HRTIMER_ABS)) |
717 | return 0; | 710 | return 0; |
718 | 711 | ||
719 | rmtp = (struct timespec __user *) restart->arg2; | 712 | rmtp = (struct timespec __user *) restart->arg2; |
720 | tu = ktime_to_timespec(rem); | 713 | if (rmtp) { |
721 | if (rmtp && copy_to_user(rmtp, &tu, sizeof(tu))) | 714 | time = ktime_sub(t.timer.expires, t.timer.base->get_time()); |
722 | return -EFAULT; | 715 | if (time.tv64 <= 0) |
716 | return 0; | ||
717 | tu = ktime_to_timespec(time); | ||
718 | if (copy_to_user(rmtp, &tu, sizeof(tu))) | ||
719 | return -EFAULT; | ||
720 | } | ||
723 | 721 | ||
724 | restart->fn = rfn_save; | 722 | restart->fn = nanosleep_restart; |
725 | 723 | ||
726 | /* The other values in restart are already filled in */ | 724 | /* The other values in restart are already filled in */ |
727 | return -ERESTART_RESTARTBLOCK; | 725 | return -ERESTART_RESTARTBLOCK; |
@@ -731,33 +729,34 @@ long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp, | |||
731 | const enum hrtimer_mode mode, const clockid_t clockid) | 729 | const enum hrtimer_mode mode, const clockid_t clockid) |
732 | { | 730 | { |
733 | struct restart_block *restart; | 731 | struct restart_block *restart; |
734 | struct hrtimer timer; | 732 | struct sleep_hrtimer t; |
735 | struct timespec tu; | 733 | struct timespec tu; |
736 | ktime_t rem; | 734 | ktime_t rem; |
737 | 735 | ||
738 | hrtimer_init(&timer, clockid, mode); | 736 | hrtimer_init(&t.timer, clockid, mode); |
739 | 737 | t.timer.expires = timespec_to_ktime(*rqtp); | |
740 | timer.expires = timespec_to_ktime(*rqtp); | 738 | if (do_nanosleep(&t, mode)) |
741 | |||
742 | rem = schedule_hrtimer_interruptible(&timer, mode); | ||
743 | if (rem.tv64 <= 0) | ||
744 | return 0; | 739 | return 0; |
745 | 740 | ||
746 | /* Absolute timers do not update the rmtp value and restart: */ | 741 | /* Absolute timers do not update the rmtp value and restart: */ |
747 | if (mode == HRTIMER_ABS) | 742 | if (mode == HRTIMER_ABS) |
748 | return -ERESTARTNOHAND; | 743 | return -ERESTARTNOHAND; |
749 | 744 | ||
750 | tu = ktime_to_timespec(rem); | 745 | if (rmtp) { |
751 | 746 | rem = ktime_sub(t.timer.expires, t.timer.base->get_time()); | |
752 | if (rmtp && copy_to_user(rmtp, &tu, sizeof(tu))) | 747 | if (rem.tv64 <= 0) |
753 | return -EFAULT; | 748 | return 0; |
749 | tu = ktime_to_timespec(rem); | ||
750 | if (copy_to_user(rmtp, &tu, sizeof(tu))) | ||
751 | return -EFAULT; | ||
752 | } | ||
754 | 753 | ||
755 | restart = ¤t_thread_info()->restart_block; | 754 | restart = ¤t_thread_info()->restart_block; |
756 | restart->fn = nanosleep_restart; | 755 | restart->fn = nanosleep_restart; |
757 | restart->arg0 = timer.expires.tv64 & 0xFFFFFFFF; | 756 | restart->arg0 = t.timer.expires.tv64 & 0xFFFFFFFF; |
758 | restart->arg1 = timer.expires.tv64 >> 32; | 757 | restart->arg1 = t.timer.expires.tv64 >> 32; |
759 | restart->arg2 = (unsigned long) rmtp; | 758 | restart->arg2 = (unsigned long) rmtp; |
760 | restart->arg3 = (unsigned long) timer.base->index; | 759 | restart->arg3 = (unsigned long) t.timer.base->index; |
761 | 760 | ||
762 | return -ERESTART_RESTARTBLOCK; | 761 | return -ERESTART_RESTARTBLOCK; |
763 | } | 762 | } |
diff --git a/kernel/irq/Makefile b/kernel/irq/Makefile index 49378738ff..2b33f852be 100644 --- a/kernel/irq/Makefile +++ b/kernel/irq/Makefile | |||
@@ -1,5 +1,4 @@ | |||
1 | 1 | ||
2 | obj-y := handle.o manage.o spurious.o | 2 | obj-y := handle.o manage.o spurious.o migration.o |
3 | obj-$(CONFIG_GENERIC_IRQ_PROBE) += autoprobe.o | 3 | obj-$(CONFIG_GENERIC_IRQ_PROBE) += autoprobe.o |
4 | obj-$(CONFIG_PROC_FS) += proc.o | 4 | obj-$(CONFIG_PROC_FS) += proc.o |
5 | |||
diff --git a/kernel/irq/manage.c b/kernel/irq/manage.c index 97d5559997..ac766ad573 100644 --- a/kernel/irq/manage.c +++ b/kernel/irq/manage.c | |||
@@ -204,10 +204,14 @@ int setup_irq(unsigned int irq, struct irqaction * new) | |||
204 | p = &desc->action; | 204 | p = &desc->action; |
205 | if ((old = *p) != NULL) { | 205 | if ((old = *p) != NULL) { |
206 | /* Can't share interrupts unless both agree to */ | 206 | /* Can't share interrupts unless both agree to */ |
207 | if (!(old->flags & new->flags & SA_SHIRQ)) { | 207 | if (!(old->flags & new->flags & SA_SHIRQ)) |
208 | spin_unlock_irqrestore(&desc->lock,flags); | 208 | goto mismatch; |
209 | return -EBUSY; | 209 | |
210 | } | 210 | #if defined(ARCH_HAS_IRQ_PER_CPU) && defined(SA_PERCPU_IRQ) |
211 | /* All handlers must agree on per-cpuness */ | ||
212 | if ((old->flags & IRQ_PER_CPU) != (new->flags & IRQ_PER_CPU)) | ||
213 | goto mismatch; | ||
214 | #endif | ||
211 | 215 | ||
212 | /* add new interrupt at end of irq queue */ | 216 | /* add new interrupt at end of irq queue */ |
213 | do { | 217 | do { |
@@ -218,7 +222,10 @@ int setup_irq(unsigned int irq, struct irqaction * new) | |||
218 | } | 222 | } |
219 | 223 | ||
220 | *p = new; | 224 | *p = new; |
221 | 225 | #if defined(ARCH_HAS_IRQ_PER_CPU) && defined(SA_PERCPU_IRQ) | |
226 | if (new->flags & SA_PERCPU_IRQ) | ||
227 | desc->status |= IRQ_PER_CPU; | ||
228 | #endif | ||
222 | if (!shared) { | 229 | if (!shared) { |
223 | desc->depth = 0; | 230 | desc->depth = 0; |
224 | desc->status &= ~(IRQ_DISABLED | IRQ_AUTODETECT | | 231 | desc->status &= ~(IRQ_DISABLED | IRQ_AUTODETECT | |
@@ -236,6 +243,12 @@ int setup_irq(unsigned int irq, struct irqaction * new) | |||
236 | register_handler_proc(irq, new); | 243 | register_handler_proc(irq, new); |
237 | 244 | ||
238 | return 0; | 245 | return 0; |
246 | |||
247 | mismatch: | ||
248 | spin_unlock_irqrestore(&desc->lock, flags); | ||
249 | printk(KERN_ERR "%s: irq handler mismatch\n", __FUNCTION__); | ||
250 | dump_stack(); | ||
251 | return -EBUSY; | ||
239 | } | 252 | } |
240 | 253 | ||
241 | /** | 254 | /** |
@@ -258,6 +271,7 @@ void free_irq(unsigned int irq, void *dev_id) | |||
258 | struct irqaction **p; | 271 | struct irqaction **p; |
259 | unsigned long flags; | 272 | unsigned long flags; |
260 | 273 | ||
274 | WARN_ON(in_interrupt()); | ||
261 | if (irq >= NR_IRQS) | 275 | if (irq >= NR_IRQS) |
262 | return; | 276 | return; |
263 | 277 | ||
diff --git a/kernel/irq/migration.c b/kernel/irq/migration.c new file mode 100644 index 0000000000..52a8655fa0 --- /dev/null +++ b/kernel/irq/migration.c | |||
@@ -0,0 +1,65 @@ | |||
1 | #include <linux/irq.h> | ||
2 | |||
3 | #if defined(CONFIG_GENERIC_PENDING_IRQ) | ||
4 | |||
5 | void set_pending_irq(unsigned int irq, cpumask_t mask) | ||
6 | { | ||
7 | irq_desc_t *desc = irq_desc + irq; | ||
8 | unsigned long flags; | ||
9 | |||
10 | spin_lock_irqsave(&desc->lock, flags); | ||
11 | desc->move_irq = 1; | ||
12 | pending_irq_cpumask[irq] = mask; | ||
13 | spin_unlock_irqrestore(&desc->lock, flags); | ||
14 | } | ||
15 | |||
16 | void move_native_irq(int irq) | ||
17 | { | ||
18 | cpumask_t tmp; | ||
19 | irq_desc_t *desc = irq_descp(irq); | ||
20 | |||
21 | if (likely(!desc->move_irq)) | ||
22 | return; | ||
23 | |||
24 | /* | ||
25 | * Paranoia: cpu-local interrupts shouldn't be calling in here anyway. | ||
26 | */ | ||
27 | if (CHECK_IRQ_PER_CPU(desc->status)) { | ||
28 | WARN_ON(1); | ||
29 | return; | ||
30 | } | ||
31 | |||
32 | desc->move_irq = 0; | ||
33 | |||
34 | if (likely(cpus_empty(pending_irq_cpumask[irq]))) | ||
35 | return; | ||
36 | |||
37 | if (!desc->handler->set_affinity) | ||
38 | return; | ||
39 | |||
40 | assert_spin_locked(&desc->lock); | ||
41 | |||
42 | cpus_and(tmp, pending_irq_cpumask[irq], cpu_online_map); | ||
43 | |||
44 | /* | ||
45 | * If there was a valid mask to work with, please | ||
46 | * do the disable, re-program, enable sequence. | ||
47 | * This is *not* particularly important for level triggered | ||
48 | * but in a edge trigger case, we might be setting rte | ||
49 | * when an active trigger is comming in. This could | ||
50 | * cause some ioapics to mal-function. | ||
51 | * Being paranoid i guess! | ||
52 | */ | ||
53 | if (unlikely(!cpus_empty(tmp))) { | ||
54 | if (likely(!(desc->status & IRQ_DISABLED))) | ||
55 | desc->handler->disable(irq); | ||
56 | |||
57 | desc->handler->set_affinity(irq,tmp); | ||
58 | |||
59 | if (likely(!(desc->status & IRQ_DISABLED))) | ||
60 | desc->handler->enable(irq); | ||
61 | } | ||
62 | cpus_clear(pending_irq_cpumask[irq]); | ||
63 | } | ||
64 | |||
65 | #endif | ||
diff --git a/kernel/itimer.c b/kernel/itimer.c index 379be2f8c8..204ed7939e 100644 --- a/kernel/itimer.c +++ b/kernel/itimer.c | |||
@@ -128,21 +128,75 @@ asmlinkage long sys_getitimer(int which, struct itimerval __user *value) | |||
128 | /* | 128 | /* |
129 | * The timer is automagically restarted, when interval != 0 | 129 | * The timer is automagically restarted, when interval != 0 |
130 | */ | 130 | */ |
131 | int it_real_fn(void *data) | 131 | int it_real_fn(struct hrtimer *timer) |
132 | { | 132 | { |
133 | struct task_struct *tsk = (struct task_struct *) data; | 133 | struct signal_struct *sig = |
134 | container_of(timer, struct signal_struct, real_timer); | ||
134 | 135 | ||
135 | send_group_sig_info(SIGALRM, SEND_SIG_PRIV, tsk); | 136 | send_group_sig_info(SIGALRM, SEND_SIG_PRIV, sig->tsk); |
136 | |||
137 | if (tsk->signal->it_real_incr.tv64 != 0) { | ||
138 | hrtimer_forward(&tsk->signal->real_timer, | ||
139 | tsk->signal->it_real_incr); | ||
140 | 137 | ||
138 | if (sig->it_real_incr.tv64 != 0) { | ||
139 | hrtimer_forward(timer, timer->base->softirq_time, | ||
140 | sig->it_real_incr); | ||
141 | return HRTIMER_RESTART; | 141 | return HRTIMER_RESTART; |
142 | } | 142 | } |
143 | return HRTIMER_NORESTART; | 143 | return HRTIMER_NORESTART; |
144 | } | 144 | } |
145 | 145 | ||
146 | /* | ||
147 | * We do not care about correctness. We just sanitize the values so | ||
148 | * the ktime_t operations which expect normalized values do not | ||
149 | * break. This converts negative values to long timeouts similar to | ||
150 | * the code in kernel versions < 2.6.16 | ||
151 | * | ||
152 | * Print a limited number of warning messages when an invalid timeval | ||
153 | * is detected. | ||
154 | */ | ||
155 | static void fixup_timeval(struct timeval *tv, int interval) | ||
156 | { | ||
157 | static int warnlimit = 10; | ||
158 | unsigned long tmp; | ||
159 | |||
160 | if (warnlimit > 0) { | ||
161 | warnlimit--; | ||
162 | printk(KERN_WARNING | ||
163 | "setitimer: %s (pid = %d) provided " | ||
164 | "invalid timeval %s: tv_sec = %ld tv_usec = %ld\n", | ||
165 | current->comm, current->pid, | ||
166 | interval ? "it_interval" : "it_value", | ||
167 | tv->tv_sec, (long) tv->tv_usec); | ||
168 | } | ||
169 | |||
170 | tmp = tv->tv_usec; | ||
171 | if (tmp >= USEC_PER_SEC) { | ||
172 | tv->tv_usec = tmp % USEC_PER_SEC; | ||
173 | tv->tv_sec += tmp / USEC_PER_SEC; | ||
174 | } | ||
175 | |||
176 | tmp = tv->tv_sec; | ||
177 | if (tmp > LONG_MAX) | ||
178 | tv->tv_sec = LONG_MAX; | ||
179 | } | ||
180 | |||
181 | /* | ||
182 | * Returns true if the timeval is in canonical form | ||
183 | */ | ||
184 | #define timeval_valid(t) \ | ||
185 | (((t)->tv_sec >= 0) && (((unsigned long) (t)->tv_usec) < USEC_PER_SEC)) | ||
186 | |||
187 | /* | ||
188 | * Check for invalid timevals, sanitize them and print a limited | ||
189 | * number of warnings. | ||
190 | */ | ||
191 | static void check_itimerval(struct itimerval *value) { | ||
192 | |||
193 | if (unlikely(!timeval_valid(&value->it_value))) | ||
194 | fixup_timeval(&value->it_value, 0); | ||
195 | |||
196 | if (unlikely(!timeval_valid(&value->it_interval))) | ||
197 | fixup_timeval(&value->it_interval, 1); | ||
198 | } | ||
199 | |||
146 | int do_setitimer(int which, struct itimerval *value, struct itimerval *ovalue) | 200 | int do_setitimer(int which, struct itimerval *value, struct itimerval *ovalue) |
147 | { | 201 | { |
148 | struct task_struct *tsk = current; | 202 | struct task_struct *tsk = current; |
@@ -150,6 +204,18 @@ int do_setitimer(int which, struct itimerval *value, struct itimerval *ovalue) | |||
150 | ktime_t expires; | 204 | ktime_t expires; |
151 | cputime_t cval, cinterval, nval, ninterval; | 205 | cputime_t cval, cinterval, nval, ninterval; |
152 | 206 | ||
207 | /* | ||
208 | * Validate the timevals in value. | ||
209 | * | ||
210 | * Note: Although the spec requires that invalid values shall | ||
211 | * return -EINVAL, we just fixup the value and print a limited | ||
212 | * number of warnings in order not to break users of this | ||
213 | * historical misfeature. | ||
214 | * | ||
215 | * Scheduled for replacement in March 2007 | ||
216 | */ | ||
217 | check_itimerval(value); | ||
218 | |||
153 | switch (which) { | 219 | switch (which) { |
154 | case ITIMER_REAL: | 220 | case ITIMER_REAL: |
155 | again: | 221 | again: |
@@ -226,6 +292,43 @@ again: | |||
226 | return 0; | 292 | return 0; |
227 | } | 293 | } |
228 | 294 | ||
295 | /** | ||
296 | * alarm_setitimer - set alarm in seconds | ||
297 | * | ||
298 | * @seconds: number of seconds until alarm | ||
299 | * 0 disables the alarm | ||
300 | * | ||
301 | * Returns the remaining time in seconds of a pending timer or 0 when | ||
302 | * the timer is not active. | ||
303 | * | ||
304 | * On 32 bit machines the seconds value is limited to (INT_MAX/2) to avoid | ||
305 | * negative timeval settings which would cause immediate expiry. | ||
306 | */ | ||
307 | unsigned int alarm_setitimer(unsigned int seconds) | ||
308 | { | ||
309 | struct itimerval it_new, it_old; | ||
310 | |||
311 | #if BITS_PER_LONG < 64 | ||
312 | if (seconds > INT_MAX) | ||
313 | seconds = INT_MAX; | ||
314 | #endif | ||
315 | it_new.it_value.tv_sec = seconds; | ||
316 | it_new.it_value.tv_usec = 0; | ||
317 | it_new.it_interval.tv_sec = it_new.it_interval.tv_usec = 0; | ||
318 | |||
319 | do_setitimer(ITIMER_REAL, &it_new, &it_old); | ||
320 | |||
321 | /* | ||
322 | * We can't return 0 if we have an alarm pending ... And we'd | ||
323 | * better return too much than too little anyway | ||
324 | */ | ||
325 | if ((!it_old.it_value.tv_sec && it_old.it_value.tv_usec) || | ||
326 | it_old.it_value.tv_usec >= 500000) | ||
327 | it_old.it_value.tv_sec++; | ||
328 | |||
329 | return it_old.it_value.tv_sec; | ||
330 | } | ||
331 | |||
229 | asmlinkage long sys_setitimer(int which, | 332 | asmlinkage long sys_setitimer(int which, |
230 | struct itimerval __user *value, | 333 | struct itimerval __user *value, |
231 | struct itimerval __user *ovalue) | 334 | struct itimerval __user *ovalue) |
diff --git a/kernel/kmod.c b/kernel/kmod.c index 51a892063a..20a997c73c 100644 --- a/kernel/kmod.c +++ b/kernel/kmod.c | |||
@@ -170,7 +170,7 @@ static int wait_for_helper(void *data) | |||
170 | sa.sa.sa_handler = SIG_IGN; | 170 | sa.sa.sa_handler = SIG_IGN; |
171 | sa.sa.sa_flags = 0; | 171 | sa.sa.sa_flags = 0; |
172 | siginitset(&sa.sa.sa_mask, sigmask(SIGCHLD)); | 172 | siginitset(&sa.sa.sa_mask, sigmask(SIGCHLD)); |
173 | do_sigaction(SIGCHLD, &sa, (struct k_sigaction *)0); | 173 | do_sigaction(SIGCHLD, &sa, NULL); |
174 | allow_signal(SIGCHLD); | 174 | allow_signal(SIGCHLD); |
175 | 175 | ||
176 | pid = kernel_thread(____call_usermodehelper, sub_info, SIGCHLD); | 176 | pid = kernel_thread(____call_usermodehelper, sub_info, SIGCHLD); |
diff --git a/kernel/kprobes.c b/kernel/kprobes.c index fef1af8a73..1156eb0977 100644 --- a/kernel/kprobes.c +++ b/kernel/kprobes.c | |||
@@ -48,7 +48,7 @@ | |||
48 | static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE]; | 48 | static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE]; |
49 | static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE]; | 49 | static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE]; |
50 | 50 | ||
51 | DECLARE_MUTEX(kprobe_mutex); /* Protects kprobe_table */ | 51 | DEFINE_MUTEX(kprobe_mutex); /* Protects kprobe_table */ |
52 | DEFINE_SPINLOCK(kretprobe_lock); /* Protects kretprobe_inst_table */ | 52 | DEFINE_SPINLOCK(kretprobe_lock); /* Protects kretprobe_inst_table */ |
53 | static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL; | 53 | static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL; |
54 | 54 | ||
@@ -323,10 +323,10 @@ struct hlist_head __kprobes *kretprobe_inst_table_head(struct task_struct *tsk) | |||
323 | } | 323 | } |
324 | 324 | ||
325 | /* | 325 | /* |
326 | * This function is called from exit_thread or flush_thread when task tk's | 326 | * This function is called from finish_task_switch when task tk becomes dead, |
327 | * stack is being recycled so that we can recycle any function-return probe | 327 | * so that we can recycle any function-return probe instances associated |
328 | * instances associated with this task. These left over instances represent | 328 | * with this task. These left over instances represent probed functions |
329 | * probed functions that have been called but will never return. | 329 | * that have been called but will never return. |
330 | */ | 330 | */ |
331 | void __kprobes kprobe_flush_task(struct task_struct *tk) | 331 | void __kprobes kprobe_flush_task(struct task_struct *tk) |
332 | { | 332 | { |
@@ -336,7 +336,7 @@ void __kprobes kprobe_flush_task(struct task_struct *tk) | |||
336 | unsigned long flags = 0; | 336 | unsigned long flags = 0; |
337 | 337 | ||
338 | spin_lock_irqsave(&kretprobe_lock, flags); | 338 | spin_lock_irqsave(&kretprobe_lock, flags); |
339 | head = kretprobe_inst_table_head(current); | 339 | head = kretprobe_inst_table_head(tk); |
340 | hlist_for_each_entry_safe(ri, node, tmp, head, hlist) { | 340 | hlist_for_each_entry_safe(ri, node, tmp, head, hlist) { |
341 | if (ri->task == tk) | 341 | if (ri->task == tk) |
342 | recycle_rp_inst(ri); | 342 | recycle_rp_inst(ri); |
@@ -460,7 +460,7 @@ static int __kprobes __register_kprobe(struct kprobe *p, | |||
460 | } | 460 | } |
461 | 461 | ||
462 | p->nmissed = 0; | 462 | p->nmissed = 0; |
463 | down(&kprobe_mutex); | 463 | mutex_lock(&kprobe_mutex); |
464 | old_p = get_kprobe(p->addr); | 464 | old_p = get_kprobe(p->addr); |
465 | if (old_p) { | 465 | if (old_p) { |
466 | ret = register_aggr_kprobe(old_p, p); | 466 | ret = register_aggr_kprobe(old_p, p); |
@@ -477,7 +477,7 @@ static int __kprobes __register_kprobe(struct kprobe *p, | |||
477 | arch_arm_kprobe(p); | 477 | arch_arm_kprobe(p); |
478 | 478 | ||
479 | out: | 479 | out: |
480 | up(&kprobe_mutex); | 480 | mutex_unlock(&kprobe_mutex); |
481 | 481 | ||
482 | if (ret && probed_mod) | 482 | if (ret && probed_mod) |
483 | module_put(probed_mod); | 483 | module_put(probed_mod); |
@@ -496,10 +496,10 @@ void __kprobes unregister_kprobe(struct kprobe *p) | |||
496 | struct kprobe *old_p, *list_p; | 496 | struct kprobe *old_p, *list_p; |
497 | int cleanup_p; | 497 | int cleanup_p; |
498 | 498 | ||
499 | down(&kprobe_mutex); | 499 | mutex_lock(&kprobe_mutex); |
500 | old_p = get_kprobe(p->addr); | 500 | old_p = get_kprobe(p->addr); |
501 | if (unlikely(!old_p)) { | 501 | if (unlikely(!old_p)) { |
502 | up(&kprobe_mutex); | 502 | mutex_unlock(&kprobe_mutex); |
503 | return; | 503 | return; |
504 | } | 504 | } |
505 | if (p != old_p) { | 505 | if (p != old_p) { |
@@ -507,7 +507,7 @@ void __kprobes unregister_kprobe(struct kprobe *p) | |||
507 | if (list_p == p) | 507 | if (list_p == p) |
508 | /* kprobe p is a valid probe */ | 508 | /* kprobe p is a valid probe */ |
509 | goto valid_p; | 509 | goto valid_p; |
510 | up(&kprobe_mutex); | 510 | mutex_unlock(&kprobe_mutex); |
511 | return; | 511 | return; |
512 | } | 512 | } |
513 | valid_p: | 513 | valid_p: |
@@ -523,7 +523,7 @@ valid_p: | |||
523 | cleanup_p = 0; | 523 | cleanup_p = 0; |
524 | } | 524 | } |
525 | 525 | ||
526 | up(&kprobe_mutex); | 526 | mutex_unlock(&kprobe_mutex); |
527 | 527 | ||
528 | synchronize_sched(); | 528 | synchronize_sched(); |
529 | if (p->mod_refcounted && | 529 | if (p->mod_refcounted && |
diff --git a/kernel/ksysfs.c b/kernel/ksysfs.c index f2690ed745..f119e098e6 100644 --- a/kernel/ksysfs.c +++ b/kernel/ksysfs.c | |||
@@ -22,7 +22,7 @@ static struct subsys_attribute _name##_attr = __ATTR_RO(_name) | |||
22 | static struct subsys_attribute _name##_attr = \ | 22 | static struct subsys_attribute _name##_attr = \ |
23 | __ATTR(_name, 0644, _name##_show, _name##_store) | 23 | __ATTR(_name, 0644, _name##_show, _name##_store) |
24 | 24 | ||
25 | #ifdef CONFIG_HOTPLUG | 25 | #if defined(CONFIG_HOTPLUG) && defined(CONFIG_NET) |
26 | /* current uevent sequence number */ | 26 | /* current uevent sequence number */ |
27 | static ssize_t uevent_seqnum_show(struct subsystem *subsys, char *page) | 27 | static ssize_t uevent_seqnum_show(struct subsystem *subsys, char *page) |
28 | { | 28 | { |
@@ -52,7 +52,7 @@ decl_subsys(kernel, NULL, NULL); | |||
52 | EXPORT_SYMBOL_GPL(kernel_subsys); | 52 | EXPORT_SYMBOL_GPL(kernel_subsys); |
53 | 53 | ||
54 | static struct attribute * kernel_attrs[] = { | 54 | static struct attribute * kernel_attrs[] = { |
55 | #ifdef CONFIG_HOTPLUG | 55 | #if defined(CONFIG_HOTPLUG) && defined(CONFIG_NET) |
56 | &uevent_seqnum_attr.attr, | 56 | &uevent_seqnum_attr.attr, |
57 | &uevent_helper_attr.attr, | 57 | &uevent_helper_attr.attr, |
58 | #endif | 58 | #endif |
diff --git a/kernel/kthread.c b/kernel/kthread.c index e75950a109..c5f3c6613b 100644 --- a/kernel/kthread.c +++ b/kernel/kthread.c | |||
@@ -12,6 +12,7 @@ | |||
12 | #include <linux/unistd.h> | 12 | #include <linux/unistd.h> |
13 | #include <linux/file.h> | 13 | #include <linux/file.h> |
14 | #include <linux/module.h> | 14 | #include <linux/module.h> |
15 | #include <linux/mutex.h> | ||
15 | #include <asm/semaphore.h> | 16 | #include <asm/semaphore.h> |
16 | 17 | ||
17 | /* | 18 | /* |
@@ -41,7 +42,7 @@ struct kthread_stop_info | |||
41 | 42 | ||
42 | /* Thread stopping is done by setthing this var: lock serializes | 43 | /* Thread stopping is done by setthing this var: lock serializes |
43 | * multiple kthread_stop calls. */ | 44 | * multiple kthread_stop calls. */ |
44 | static DECLARE_MUTEX(kthread_stop_lock); | 45 | static DEFINE_MUTEX(kthread_stop_lock); |
45 | static struct kthread_stop_info kthread_stop_info; | 46 | static struct kthread_stop_info kthread_stop_info; |
46 | 47 | ||
47 | int kthread_should_stop(void) | 48 | int kthread_should_stop(void) |
@@ -114,7 +115,9 @@ static void keventd_create_kthread(void *_create) | |||
114 | create->result = ERR_PTR(pid); | 115 | create->result = ERR_PTR(pid); |
115 | } else { | 116 | } else { |
116 | wait_for_completion(&create->started); | 117 | wait_for_completion(&create->started); |
118 | read_lock(&tasklist_lock); | ||
117 | create->result = find_task_by_pid(pid); | 119 | create->result = find_task_by_pid(pid); |
120 | read_unlock(&tasklist_lock); | ||
118 | } | 121 | } |
119 | complete(&create->done); | 122 | complete(&create->done); |
120 | } | 123 | } |
@@ -173,7 +176,7 @@ int kthread_stop_sem(struct task_struct *k, struct semaphore *s) | |||
173 | { | 176 | { |
174 | int ret; | 177 | int ret; |
175 | 178 | ||
176 | down(&kthread_stop_lock); | 179 | mutex_lock(&kthread_stop_lock); |
177 | 180 | ||
178 | /* It could exit after stop_info.k set, but before wake_up_process. */ | 181 | /* It could exit after stop_info.k set, but before wake_up_process. */ |
179 | get_task_struct(k); | 182 | get_task_struct(k); |
@@ -194,7 +197,7 @@ int kthread_stop_sem(struct task_struct *k, struct semaphore *s) | |||
194 | wait_for_completion(&kthread_stop_info.done); | 197 | wait_for_completion(&kthread_stop_info.done); |
195 | kthread_stop_info.k = NULL; | 198 | kthread_stop_info.k = NULL; |
196 | ret = kthread_stop_info.err; | 199 | ret = kthread_stop_info.err; |
197 | up(&kthread_stop_lock); | 200 | mutex_unlock(&kthread_stop_lock); |
198 | 201 | ||
199 | return ret; | 202 | return ret; |
200 | } | 203 | } |
diff --git a/kernel/module.c b/kernel/module.c index 77764f22f0..bd088a7c14 100644 --- a/kernel/module.c +++ b/kernel/module.c | |||
@@ -39,6 +39,7 @@ | |||
39 | #include <linux/device.h> | 39 | #include <linux/device.h> |
40 | #include <linux/string.h> | 40 | #include <linux/string.h> |
41 | #include <linux/sched.h> | 41 | #include <linux/sched.h> |
42 | #include <linux/mutex.h> | ||
42 | #include <asm/uaccess.h> | 43 | #include <asm/uaccess.h> |
43 | #include <asm/semaphore.h> | 44 | #include <asm/semaphore.h> |
44 | #include <asm/cacheflush.h> | 45 | #include <asm/cacheflush.h> |
@@ -60,29 +61,20 @@ | |||
60 | static DEFINE_SPINLOCK(modlist_lock); | 61 | static DEFINE_SPINLOCK(modlist_lock); |
61 | 62 | ||
62 | /* List of modules, protected by module_mutex AND modlist_lock */ | 63 | /* List of modules, protected by module_mutex AND modlist_lock */ |
63 | static DECLARE_MUTEX(module_mutex); | 64 | static DEFINE_MUTEX(module_mutex); |
64 | static LIST_HEAD(modules); | 65 | static LIST_HEAD(modules); |
65 | 66 | ||
66 | static DECLARE_MUTEX(notify_mutex); | 67 | static BLOCKING_NOTIFIER_HEAD(module_notify_list); |
67 | static struct notifier_block * module_notify_list; | ||
68 | 68 | ||
69 | int register_module_notifier(struct notifier_block * nb) | 69 | int register_module_notifier(struct notifier_block * nb) |
70 | { | 70 | { |
71 | int err; | 71 | return blocking_notifier_chain_register(&module_notify_list, nb); |
72 | down(¬ify_mutex); | ||
73 | err = notifier_chain_register(&module_notify_list, nb); | ||
74 | up(¬ify_mutex); | ||
75 | return err; | ||
76 | } | 72 | } |
77 | EXPORT_SYMBOL(register_module_notifier); | 73 | EXPORT_SYMBOL(register_module_notifier); |
78 | 74 | ||
79 | int unregister_module_notifier(struct notifier_block * nb) | 75 | int unregister_module_notifier(struct notifier_block * nb) |
80 | { | 76 | { |
81 | int err; | 77 | return blocking_notifier_chain_unregister(&module_notify_list, nb); |
82 | down(¬ify_mutex); | ||
83 | err = notifier_chain_unregister(&module_notify_list, nb); | ||
84 | up(¬ify_mutex); | ||
85 | return err; | ||
86 | } | 78 | } |
87 | EXPORT_SYMBOL(unregister_module_notifier); | 79 | EXPORT_SYMBOL(unregister_module_notifier); |
88 | 80 | ||
@@ -135,7 +127,7 @@ extern const unsigned long __start___kcrctab_gpl_future[]; | |||
135 | #ifndef CONFIG_MODVERSIONS | 127 | #ifndef CONFIG_MODVERSIONS |
136 | #define symversion(base, idx) NULL | 128 | #define symversion(base, idx) NULL |
137 | #else | 129 | #else |
138 | #define symversion(base, idx) ((base) ? ((base) + (idx)) : NULL) | 130 | #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL) |
139 | #endif | 131 | #endif |
140 | 132 | ||
141 | /* lookup symbol in given range of kernel_symbols */ | 133 | /* lookup symbol in given range of kernel_symbols */ |
@@ -232,24 +224,6 @@ static unsigned long __find_symbol(const char *name, | |||
232 | return 0; | 224 | return 0; |
233 | } | 225 | } |
234 | 226 | ||
235 | /* Find a symbol in this elf symbol table */ | ||
236 | static unsigned long find_local_symbol(Elf_Shdr *sechdrs, | ||
237 | unsigned int symindex, | ||
238 | const char *strtab, | ||
239 | const char *name) | ||
240 | { | ||
241 | unsigned int i; | ||
242 | Elf_Sym *sym = (void *)sechdrs[symindex].sh_addr; | ||
243 | |||
244 | /* Search (defined) internal symbols first. */ | ||
245 | for (i = 1; i < sechdrs[symindex].sh_size/sizeof(*sym); i++) { | ||
246 | if (sym[i].st_shndx != SHN_UNDEF | ||
247 | && strcmp(name, strtab + sym[i].st_name) == 0) | ||
248 | return sym[i].st_value; | ||
249 | } | ||
250 | return 0; | ||
251 | } | ||
252 | |||
253 | /* Search for module by name: must hold module_mutex. */ | 227 | /* Search for module by name: must hold module_mutex. */ |
254 | static struct module *find_module(const char *name) | 228 | static struct module *find_module(const char *name) |
255 | { | 229 | { |
@@ -601,7 +575,7 @@ static void free_module(struct module *mod); | |||
601 | static void wait_for_zero_refcount(struct module *mod) | 575 | static void wait_for_zero_refcount(struct module *mod) |
602 | { | 576 | { |
603 | /* Since we might sleep for some time, drop the semaphore first */ | 577 | /* Since we might sleep for some time, drop the semaphore first */ |
604 | up(&module_mutex); | 578 | mutex_unlock(&module_mutex); |
605 | for (;;) { | 579 | for (;;) { |
606 | DEBUGP("Looking at refcount...\n"); | 580 | DEBUGP("Looking at refcount...\n"); |
607 | set_current_state(TASK_UNINTERRUPTIBLE); | 581 | set_current_state(TASK_UNINTERRUPTIBLE); |
@@ -610,7 +584,7 @@ static void wait_for_zero_refcount(struct module *mod) | |||
610 | schedule(); | 584 | schedule(); |
611 | } | 585 | } |
612 | current->state = TASK_RUNNING; | 586 | current->state = TASK_RUNNING; |
613 | down(&module_mutex); | 587 | mutex_lock(&module_mutex); |
614 | } | 588 | } |
615 | 589 | ||
616 | asmlinkage long | 590 | asmlinkage long |
@@ -627,7 +601,7 @@ sys_delete_module(const char __user *name_user, unsigned int flags) | |||
627 | return -EFAULT; | 601 | return -EFAULT; |
628 | name[MODULE_NAME_LEN-1] = '\0'; | 602 | name[MODULE_NAME_LEN-1] = '\0'; |
629 | 603 | ||
630 | if (down_interruptible(&module_mutex) != 0) | 604 | if (mutex_lock_interruptible(&module_mutex) != 0) |
631 | return -EINTR; | 605 | return -EINTR; |
632 | 606 | ||
633 | mod = find_module(name); | 607 | mod = find_module(name); |
@@ -676,14 +650,14 @@ sys_delete_module(const char __user *name_user, unsigned int flags) | |||
676 | 650 | ||
677 | /* Final destruction now noone is using it. */ | 651 | /* Final destruction now noone is using it. */ |
678 | if (mod->exit != NULL) { | 652 | if (mod->exit != NULL) { |
679 | up(&module_mutex); | 653 | mutex_unlock(&module_mutex); |
680 | mod->exit(); | 654 | mod->exit(); |
681 | down(&module_mutex); | 655 | mutex_lock(&module_mutex); |
682 | } | 656 | } |
683 | free_module(mod); | 657 | free_module(mod); |
684 | 658 | ||
685 | out: | 659 | out: |
686 | up(&module_mutex); | 660 | mutex_unlock(&module_mutex); |
687 | return ret; | 661 | return ret; |
688 | } | 662 | } |
689 | 663 | ||
@@ -784,139 +758,6 @@ static struct module_attribute *modinfo_attrs[] = { | |||
784 | NULL, | 758 | NULL, |
785 | }; | 759 | }; |
786 | 760 | ||
787 | #ifdef CONFIG_OBSOLETE_MODPARM | ||
788 | /* Bounds checking done below */ | ||
789 | static int obsparm_copy_string(const char *val, struct kernel_param *kp) | ||
790 | { | ||
791 | strcpy(kp->arg, val); | ||
792 | return 0; | ||
793 | } | ||
794 | |||
795 | static int set_obsolete(const char *val, struct kernel_param *kp) | ||
796 | { | ||
797 | unsigned int min, max; | ||
798 | unsigned int size, maxsize; | ||
799 | int dummy; | ||
800 | char *endp; | ||
801 | const char *p; | ||
802 | struct obsolete_modparm *obsparm = kp->arg; | ||
803 | |||
804 | if (!val) { | ||
805 | printk(KERN_ERR "Parameter %s needs an argument\n", kp->name); | ||
806 | return -EINVAL; | ||
807 | } | ||
808 | |||
809 | /* type is: [min[-max]]{b,h,i,l,s} */ | ||
810 | p = obsparm->type; | ||
811 | min = simple_strtol(p, &endp, 10); | ||
812 | if (endp == obsparm->type) | ||
813 | min = max = 1; | ||
814 | else if (*endp == '-') { | ||
815 | p = endp+1; | ||
816 | max = simple_strtol(p, &endp, 10); | ||
817 | } else | ||
818 | max = min; | ||
819 | switch (*endp) { | ||
820 | case 'b': | ||
821 | return param_array(kp->name, val, min, max, obsparm->addr, | ||
822 | 1, param_set_byte, &dummy); | ||
823 | case 'h': | ||
824 | return param_array(kp->name, val, min, max, obsparm->addr, | ||
825 | sizeof(short), param_set_short, &dummy); | ||
826 | case 'i': | ||
827 | return param_array(kp->name, val, min, max, obsparm->addr, | ||
828 | sizeof(int), param_set_int, &dummy); | ||
829 | case 'l': | ||
830 | return param_array(kp->name, val, min, max, obsparm->addr, | ||
831 | sizeof(long), param_set_long, &dummy); | ||
832 | case 's': | ||
833 | return param_array(kp->name, val, min, max, obsparm->addr, | ||
834 | sizeof(char *), param_set_charp, &dummy); | ||
835 | |||
836 | case 'c': | ||
837 | /* Undocumented: 1-5c50 means 1-5 strings of up to 49 chars, | ||
838 | and the decl is "char xxx[5][50];" */ | ||
839 | p = endp+1; | ||
840 | maxsize = simple_strtol(p, &endp, 10); | ||
841 | /* We check lengths here (yes, this is a hack). */ | ||
842 | p = val; | ||
843 | while (p[size = strcspn(p, ",")]) { | ||
844 | if (size >= maxsize) | ||
845 | goto oversize; | ||
846 | p += size+1; | ||
847 | } | ||
848 | if (size >= maxsize) | ||
849 | goto oversize; | ||
850 | return param_array(kp->name, val, min, max, obsparm->addr, | ||
851 | maxsize, obsparm_copy_string, &dummy); | ||
852 | } | ||
853 | printk(KERN_ERR "Unknown obsolete parameter type %s\n", obsparm->type); | ||
854 | return -EINVAL; | ||
855 | oversize: | ||
856 | printk(KERN_ERR | ||
857 | "Parameter %s doesn't fit in %u chars.\n", kp->name, maxsize); | ||
858 | return -EINVAL; | ||
859 | } | ||
860 | |||
861 | static int obsolete_params(const char *name, | ||
862 | char *args, | ||
863 | struct obsolete_modparm obsparm[], | ||
864 | unsigned int num, | ||
865 | Elf_Shdr *sechdrs, | ||
866 | unsigned int symindex, | ||
867 | const char *strtab) | ||
868 | { | ||
869 | struct kernel_param *kp; | ||
870 | unsigned int i; | ||
871 | int ret; | ||
872 | |||
873 | kp = kmalloc(sizeof(kp[0]) * num, GFP_KERNEL); | ||
874 | if (!kp) | ||
875 | return -ENOMEM; | ||
876 | |||
877 | for (i = 0; i < num; i++) { | ||
878 | char sym_name[128 + sizeof(MODULE_SYMBOL_PREFIX)]; | ||
879 | |||
880 | snprintf(sym_name, sizeof(sym_name), "%s%s", | ||
881 | MODULE_SYMBOL_PREFIX, obsparm[i].name); | ||
882 | |||
883 | kp[i].name = obsparm[i].name; | ||
884 | kp[i].perm = 000; | ||
885 | kp[i].set = set_obsolete; | ||
886 | kp[i].get = NULL; | ||
887 | obsparm[i].addr | ||
888 | = (void *)find_local_symbol(sechdrs, symindex, strtab, | ||
889 | sym_name); | ||
890 | if (!obsparm[i].addr) { | ||
891 | printk("%s: falsely claims to have parameter %s\n", | ||
892 | name, obsparm[i].name); | ||
893 | ret = -EINVAL; | ||
894 | goto out; | ||
895 | } | ||
896 | kp[i].arg = &obsparm[i]; | ||
897 | } | ||
898 | |||
899 | ret = parse_args(name, args, kp, num, NULL); | ||
900 | out: | ||
901 | kfree(kp); | ||
902 | return ret; | ||
903 | } | ||
904 | #else | ||
905 | static int obsolete_params(const char *name, | ||
906 | char *args, | ||
907 | struct obsolete_modparm obsparm[], | ||
908 | unsigned int num, | ||
909 | Elf_Shdr *sechdrs, | ||
910 | unsigned int symindex, | ||
911 | const char *strtab) | ||
912 | { | ||
913 | if (num != 0) | ||
914 | printk(KERN_WARNING "%s: Ignoring obsolete parameters\n", | ||
915 | name); | ||
916 | return 0; | ||
917 | } | ||
918 | #endif /* CONFIG_OBSOLETE_MODPARM */ | ||
919 | |||
920 | static const char vermagic[] = VERMAGIC_STRING; | 761 | static const char vermagic[] = VERMAGIC_STRING; |
921 | 762 | ||
922 | #ifdef CONFIG_MODVERSIONS | 763 | #ifdef CONFIG_MODVERSIONS |
@@ -1571,7 +1412,6 @@ static struct module *load_module(void __user *umod, | |||
1571 | exportindex, modindex, obsparmindex, infoindex, gplindex, | 1412 | exportindex, modindex, obsparmindex, infoindex, gplindex, |
1572 | crcindex, gplcrcindex, versindex, pcpuindex, gplfutureindex, | 1413 | crcindex, gplcrcindex, versindex, pcpuindex, gplfutureindex, |
1573 | gplfuturecrcindex; | 1414 | gplfuturecrcindex; |
1574 | long arglen; | ||
1575 | struct module *mod; | 1415 | struct module *mod; |
1576 | long err = 0; | 1416 | long err = 0; |
1577 | void *percpu = NULL, *ptr = NULL; /* Stops spurious gcc warning */ | 1417 | void *percpu = NULL, *ptr = NULL; /* Stops spurious gcc warning */ |
@@ -1690,23 +1530,11 @@ static struct module *load_module(void __user *umod, | |||
1690 | } | 1530 | } |
1691 | 1531 | ||
1692 | /* Now copy in args */ | 1532 | /* Now copy in args */ |
1693 | arglen = strlen_user(uargs); | 1533 | args = strndup_user(uargs, ~0UL >> 1); |
1694 | if (!arglen) { | 1534 | if (IS_ERR(args)) { |
1695 | err = -EFAULT; | 1535 | err = PTR_ERR(args); |
1696 | goto free_hdr; | 1536 | goto free_hdr; |
1697 | } | 1537 | } |
1698 | args = kmalloc(arglen, GFP_KERNEL); | ||
1699 | if (!args) { | ||
1700 | err = -ENOMEM; | ||
1701 | goto free_hdr; | ||
1702 | } | ||
1703 | if (copy_from_user(args, uargs, arglen) != 0) { | ||
1704 | err = -EFAULT; | ||
1705 | goto free_mod; | ||
1706 | } | ||
1707 | |||
1708 | /* Userspace could have altered the string after the strlen_user() */ | ||
1709 | args[arglen - 1] = '\0'; | ||
1710 | 1538 | ||
1711 | if (find_module(mod->name)) { | 1539 | if (find_module(mod->name)) { |
1712 | err = -EEXIST; | 1540 | err = -EEXIST; |
@@ -1886,27 +1714,17 @@ static struct module *load_module(void __user *umod, | |||
1886 | set_fs(old_fs); | 1714 | set_fs(old_fs); |
1887 | 1715 | ||
1888 | mod->args = args; | 1716 | mod->args = args; |
1889 | if (obsparmindex) { | 1717 | if (obsparmindex) |
1890 | err = obsolete_params(mod->name, mod->args, | 1718 | printk(KERN_WARNING "%s: Ignoring obsolete parameters\n", |
1891 | (struct obsolete_modparm *) | 1719 | mod->name); |
1892 | sechdrs[obsparmindex].sh_addr, | 1720 | |
1893 | sechdrs[obsparmindex].sh_size | 1721 | /* Size of section 0 is 0, so this works well if no params */ |
1894 | / sizeof(struct obsolete_modparm), | 1722 | err = parse_args(mod->name, mod->args, |
1895 | sechdrs, symindex, | 1723 | (struct kernel_param *) |
1896 | (char *)sechdrs[strindex].sh_addr); | 1724 | sechdrs[setupindex].sh_addr, |
1897 | if (setupindex) | 1725 | sechdrs[setupindex].sh_size |
1898 | printk(KERN_WARNING "%s: Ignoring new-style " | 1726 | / sizeof(struct kernel_param), |
1899 | "parameters in presence of obsolete ones\n", | 1727 | NULL); |
1900 | mod->name); | ||
1901 | } else { | ||
1902 | /* Size of section 0 is 0, so this works well if no params */ | ||
1903 | err = parse_args(mod->name, mod->args, | ||
1904 | (struct kernel_param *) | ||
1905 | sechdrs[setupindex].sh_addr, | ||
1906 | sechdrs[setupindex].sh_size | ||
1907 | / sizeof(struct kernel_param), | ||
1908 | NULL); | ||
1909 | } | ||
1910 | if (err < 0) | 1728 | if (err < 0) |
1911 | goto arch_cleanup; | 1729 | goto arch_cleanup; |
1912 | 1730 | ||
@@ -1972,13 +1790,13 @@ sys_init_module(void __user *umod, | |||
1972 | return -EPERM; | 1790 | return -EPERM; |
1973 | 1791 | ||
1974 | /* Only one module load at a time, please */ | 1792 | /* Only one module load at a time, please */ |
1975 | if (down_interruptible(&module_mutex) != 0) | 1793 | if (mutex_lock_interruptible(&module_mutex) != 0) |
1976 | return -EINTR; | 1794 | return -EINTR; |
1977 | 1795 | ||
1978 | /* Do all the hard work */ | 1796 | /* Do all the hard work */ |
1979 | mod = load_module(umod, len, uargs); | 1797 | mod = load_module(umod, len, uargs); |
1980 | if (IS_ERR(mod)) { | 1798 | if (IS_ERR(mod)) { |
1981 | up(&module_mutex); | 1799 | mutex_unlock(&module_mutex); |
1982 | return PTR_ERR(mod); | 1800 | return PTR_ERR(mod); |
1983 | } | 1801 | } |
1984 | 1802 | ||
@@ -1987,11 +1805,10 @@ sys_init_module(void __user *umod, | |||
1987 | stop_machine_run(__link_module, mod, NR_CPUS); | 1805 | stop_machine_run(__link_module, mod, NR_CPUS); |
1988 | 1806 | ||
1989 | /* Drop lock so they can recurse */ | 1807 | /* Drop lock so they can recurse */ |
1990 | up(&module_mutex); | 1808 | mutex_unlock(&module_mutex); |
1991 | 1809 | ||
1992 | down(¬ify_mutex); | 1810 | blocking_notifier_call_chain(&module_notify_list, |
1993 | notifier_call_chain(&module_notify_list, MODULE_STATE_COMING, mod); | 1811 | MODULE_STATE_COMING, mod); |
1994 | up(¬ify_mutex); | ||
1995 | 1812 | ||
1996 | /* Start the module */ | 1813 | /* Start the module */ |
1997 | if (mod->init != NULL) | 1814 | if (mod->init != NULL) |
@@ -2006,15 +1823,15 @@ sys_init_module(void __user *umod, | |||
2006 | mod->name); | 1823 | mod->name); |
2007 | else { | 1824 | else { |
2008 | module_put(mod); | 1825 | module_put(mod); |
2009 | down(&module_mutex); | 1826 | mutex_lock(&module_mutex); |
2010 | free_module(mod); | 1827 | free_module(mod); |
2011 | up(&module_mutex); | 1828 | mutex_unlock(&module_mutex); |
2012 | } | 1829 | } |
2013 | return ret; | 1830 | return ret; |
2014 | } | 1831 | } |
2015 | 1832 | ||
2016 | /* Now it's a first class citizen! */ | 1833 | /* Now it's a first class citizen! */ |
2017 | down(&module_mutex); | 1834 | mutex_lock(&module_mutex); |
2018 | mod->state = MODULE_STATE_LIVE; | 1835 | mod->state = MODULE_STATE_LIVE; |
2019 | /* Drop initial reference. */ | 1836 | /* Drop initial reference. */ |
2020 | module_put(mod); | 1837 | module_put(mod); |
@@ -2022,7 +1839,7 @@ sys_init_module(void __user *umod, | |||
2022 | mod->module_init = NULL; | 1839 | mod->module_init = NULL; |
2023 | mod->init_size = 0; | 1840 | mod->init_size = 0; |
2024 | mod->init_text_size = 0; | 1841 | mod->init_text_size = 0; |
2025 | up(&module_mutex); | 1842 | mutex_unlock(&module_mutex); |
2026 | 1843 | ||
2027 | return 0; | 1844 | return 0; |
2028 | } | 1845 | } |
@@ -2112,7 +1929,7 @@ struct module *module_get_kallsym(unsigned int symnum, | |||
2112 | { | 1929 | { |
2113 | struct module *mod; | 1930 | struct module *mod; |
2114 | 1931 | ||
2115 | down(&module_mutex); | 1932 | mutex_lock(&module_mutex); |
2116 | list_for_each_entry(mod, &modules, list) { | 1933 | list_for_each_entry(mod, &modules, list) { |
2117 | if (symnum < mod->num_symtab) { | 1934 | if (symnum < mod->num_symtab) { |
2118 | *value = mod->symtab[symnum].st_value; | 1935 | *value = mod->symtab[symnum].st_value; |
@@ -2120,12 +1937,12 @@ struct module *module_get_kallsym(unsigned int symnum, | |||
2120 | strncpy(namebuf, | 1937 | strncpy(namebuf, |
2121 | mod->strtab + mod->symtab[symnum].st_name, | 1938 | mod->strtab + mod->symtab[symnum].st_name, |
2122 | 127); | 1939 | 127); |
2123 | up(&module_mutex); | 1940 | mutex_unlock(&module_mutex); |
2124 | return mod; | 1941 | return mod; |
2125 | } | 1942 | } |
2126 | symnum -= mod->num_symtab; | 1943 | symnum -= mod->num_symtab; |
2127 | } | 1944 | } |
2128 | up(&module_mutex); | 1945 | mutex_unlock(&module_mutex); |
2129 | return NULL; | 1946 | return NULL; |
2130 | } | 1947 | } |
2131 | 1948 | ||
@@ -2168,7 +1985,7 @@ static void *m_start(struct seq_file *m, loff_t *pos) | |||
2168 | struct list_head *i; | 1985 | struct list_head *i; |
2169 | loff_t n = 0; | 1986 | loff_t n = 0; |
2170 | 1987 | ||
2171 | down(&module_mutex); | 1988 | mutex_lock(&module_mutex); |
2172 | list_for_each(i, &modules) { | 1989 | list_for_each(i, &modules) { |
2173 | if (n++ == *pos) | 1990 | if (n++ == *pos) |
2174 | break; | 1991 | break; |
@@ -2189,7 +2006,7 @@ static void *m_next(struct seq_file *m, void *p, loff_t *pos) | |||
2189 | 2006 | ||
2190 | static void m_stop(struct seq_file *m, void *p) | 2007 | static void m_stop(struct seq_file *m, void *p) |
2191 | { | 2008 | { |
2192 | up(&module_mutex); | 2009 | mutex_unlock(&module_mutex); |
2193 | } | 2010 | } |
2194 | 2011 | ||
2195 | static int m_show(struct seq_file *m, void *p) | 2012 | static int m_show(struct seq_file *m, void *p) |
diff --git a/kernel/panic.c b/kernel/panic.c index 126dc43f1c..f895c7c01d 100644 --- a/kernel/panic.c +++ b/kernel/panic.c | |||
@@ -20,13 +20,16 @@ | |||
20 | #include <linux/nmi.h> | 20 | #include <linux/nmi.h> |
21 | #include <linux/kexec.h> | 21 | #include <linux/kexec.h> |
22 | 22 | ||
23 | int panic_timeout; | ||
24 | int panic_on_oops; | 23 | int panic_on_oops; |
25 | int tainted; | 24 | int tainted; |
25 | static int pause_on_oops; | ||
26 | static int pause_on_oops_flag; | ||
27 | static DEFINE_SPINLOCK(pause_on_oops_lock); | ||
26 | 28 | ||
29 | int panic_timeout; | ||
27 | EXPORT_SYMBOL(panic_timeout); | 30 | EXPORT_SYMBOL(panic_timeout); |
28 | 31 | ||
29 | struct notifier_block *panic_notifier_list; | 32 | ATOMIC_NOTIFIER_HEAD(panic_notifier_list); |
30 | 33 | ||
31 | EXPORT_SYMBOL(panic_notifier_list); | 34 | EXPORT_SYMBOL(panic_notifier_list); |
32 | 35 | ||
@@ -94,7 +97,7 @@ NORET_TYPE void panic(const char * fmt, ...) | |||
94 | smp_send_stop(); | 97 | smp_send_stop(); |
95 | #endif | 98 | #endif |
96 | 99 | ||
97 | notifier_call_chain(&panic_notifier_list, 0, buf); | 100 | atomic_notifier_call_chain(&panic_notifier_list, 0, buf); |
98 | 101 | ||
99 | if (!panic_blink) | 102 | if (!panic_blink) |
100 | panic_blink = no_blink; | 103 | panic_blink = no_blink; |
@@ -174,3 +177,95 @@ void add_taint(unsigned flag) | |||
174 | tainted |= flag; | 177 | tainted |= flag; |
175 | } | 178 | } |
176 | EXPORT_SYMBOL(add_taint); | 179 | EXPORT_SYMBOL(add_taint); |
180 | |||
181 | static int __init pause_on_oops_setup(char *str) | ||
182 | { | ||
183 | pause_on_oops = simple_strtoul(str, NULL, 0); | ||
184 | return 1; | ||
185 | } | ||
186 | __setup("pause_on_oops=", pause_on_oops_setup); | ||
187 | |||
188 | static void spin_msec(int msecs) | ||
189 | { | ||
190 | int i; | ||
191 | |||
192 | for (i = 0; i < msecs; i++) { | ||
193 | touch_nmi_watchdog(); | ||
194 | mdelay(1); | ||
195 | } | ||
196 | } | ||
197 | |||
198 | /* | ||
199 | * It just happens that oops_enter() and oops_exit() are identically | ||
200 | * implemented... | ||
201 | */ | ||
202 | static void do_oops_enter_exit(void) | ||
203 | { | ||
204 | unsigned long flags; | ||
205 | static int spin_counter; | ||
206 | |||
207 | if (!pause_on_oops) | ||
208 | return; | ||
209 | |||
210 | spin_lock_irqsave(&pause_on_oops_lock, flags); | ||
211 | if (pause_on_oops_flag == 0) { | ||
212 | /* This CPU may now print the oops message */ | ||
213 | pause_on_oops_flag = 1; | ||
214 | } else { | ||
215 | /* We need to stall this CPU */ | ||
216 | if (!spin_counter) { | ||
217 | /* This CPU gets to do the counting */ | ||
218 | spin_counter = pause_on_oops; | ||
219 | do { | ||
220 | spin_unlock(&pause_on_oops_lock); | ||
221 | spin_msec(MSEC_PER_SEC); | ||
222 | spin_lock(&pause_on_oops_lock); | ||
223 | } while (--spin_counter); | ||
224 | pause_on_oops_flag = 0; | ||
225 | } else { | ||
226 | /* This CPU waits for a different one */ | ||
227 | while (spin_counter) { | ||
228 | spin_unlock(&pause_on_oops_lock); | ||
229 | spin_msec(1); | ||
230 | spin_lock(&pause_on_oops_lock); | ||
231 | } | ||
232 | } | ||
233 | } | ||
234 | spin_unlock_irqrestore(&pause_on_oops_lock, flags); | ||
235 | } | ||
236 | |||
237 | /* | ||
238 | * Return true if the calling CPU is allowed to print oops-related info. This | ||
239 | * is a bit racy.. | ||
240 | */ | ||
241 | int oops_may_print(void) | ||
242 | { | ||
243 | return pause_on_oops_flag == 0; | ||
244 | } | ||
245 | |||
246 | /* | ||
247 | * Called when the architecture enters its oops handler, before it prints | ||
248 | * anything. If this is the first CPU to oops, and it's oopsing the first time | ||
249 | * then let it proceed. | ||
250 | * | ||
251 | * This is all enabled by the pause_on_oops kernel boot option. We do all this | ||
252 | * to ensure that oopses don't scroll off the screen. It has the side-effect | ||
253 | * of preventing later-oopsing CPUs from mucking up the display, too. | ||
254 | * | ||
255 | * It turns out that the CPU which is allowed to print ends up pausing for the | ||
256 | * right duration, whereas all the other CPUs pause for twice as long: once in | ||
257 | * oops_enter(), once in oops_exit(). | ||
258 | */ | ||
259 | void oops_enter(void) | ||
260 | { | ||
261 | do_oops_enter_exit(); | ||
262 | } | ||
263 | |||
264 | /* | ||
265 | * Called when the architecture exits its oops handler, after printing | ||
266 | * everything. | ||
267 | */ | ||
268 | void oops_exit(void) | ||
269 | { | ||
270 | do_oops_enter_exit(); | ||
271 | } | ||
diff --git a/kernel/params.c b/kernel/params.c index a291505823..af43ecdc8d 100644 --- a/kernel/params.c +++ b/kernel/params.c | |||
@@ -31,7 +31,7 @@ | |||
31 | #define DEBUGP(fmt, a...) | 31 | #define DEBUGP(fmt, a...) |
32 | #endif | 32 | #endif |
33 | 33 | ||
34 | static inline int dash2underscore(char c) | 34 | static inline char dash2underscore(char c) |
35 | { | 35 | { |
36 | if (c == '-') | 36 | if (c == '-') |
37 | return '_'; | 37 | return '_'; |
@@ -265,12 +265,12 @@ int param_get_invbool(char *buffer, struct kernel_param *kp) | |||
265 | } | 265 | } |
266 | 266 | ||
267 | /* We cheat here and temporarily mangle the string. */ | 267 | /* We cheat here and temporarily mangle the string. */ |
268 | int param_array(const char *name, | 268 | static int param_array(const char *name, |
269 | const char *val, | 269 | const char *val, |
270 | unsigned int min, unsigned int max, | 270 | unsigned int min, unsigned int max, |
271 | void *elem, int elemsize, | 271 | void *elem, int elemsize, |
272 | int (*set)(const char *, struct kernel_param *kp), | 272 | int (*set)(const char *, struct kernel_param *kp), |
273 | int *num) | 273 | int *num) |
274 | { | 274 | { |
275 | int ret; | 275 | int ret; |
276 | struct kernel_param kp; | 276 | struct kernel_param kp; |
diff --git a/kernel/pid.c b/kernel/pid.c index 1acc072469..a9f2dfd006 100644 --- a/kernel/pid.c +++ b/kernel/pid.c | |||
@@ -218,36 +218,6 @@ task_t *find_task_by_pid_type(int type, int nr) | |||
218 | EXPORT_SYMBOL(find_task_by_pid_type); | 218 | EXPORT_SYMBOL(find_task_by_pid_type); |
219 | 219 | ||
220 | /* | 220 | /* |
221 | * This function switches the PIDs if a non-leader thread calls | ||
222 | * sys_execve() - this must be done without releasing the PID. | ||
223 | * (which a detach_pid() would eventually do.) | ||
224 | */ | ||
225 | void switch_exec_pids(task_t *leader, task_t *thread) | ||
226 | { | ||
227 | __detach_pid(leader, PIDTYPE_PID); | ||
228 | __detach_pid(leader, PIDTYPE_TGID); | ||
229 | __detach_pid(leader, PIDTYPE_PGID); | ||
230 | __detach_pid(leader, PIDTYPE_SID); | ||
231 | |||
232 | __detach_pid(thread, PIDTYPE_PID); | ||
233 | __detach_pid(thread, PIDTYPE_TGID); | ||
234 | |||
235 | leader->pid = leader->tgid = thread->pid; | ||
236 | thread->pid = thread->tgid; | ||
237 | |||
238 | attach_pid(thread, PIDTYPE_PID, thread->pid); | ||
239 | attach_pid(thread, PIDTYPE_TGID, thread->tgid); | ||
240 | attach_pid(thread, PIDTYPE_PGID, thread->signal->pgrp); | ||
241 | attach_pid(thread, PIDTYPE_SID, thread->signal->session); | ||
242 | list_add_tail(&thread->tasks, &init_task.tasks); | ||
243 | |||
244 | attach_pid(leader, PIDTYPE_PID, leader->pid); | ||
245 | attach_pid(leader, PIDTYPE_TGID, leader->tgid); | ||
246 | attach_pid(leader, PIDTYPE_PGID, leader->signal->pgrp); | ||
247 | attach_pid(leader, PIDTYPE_SID, leader->signal->session); | ||
248 | } | ||
249 | |||
250 | /* | ||
251 | * The pid hash table is scaled according to the amount of memory in the | 221 | * The pid hash table is scaled according to the amount of memory in the |
252 | * machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or | 222 | * machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or |
253 | * more. | 223 | * more. |
@@ -277,16 +247,8 @@ void __init pidhash_init(void) | |||
277 | 247 | ||
278 | void __init pidmap_init(void) | 248 | void __init pidmap_init(void) |
279 | { | 249 | { |
280 | int i; | ||
281 | |||
282 | pidmap_array->page = (void *)get_zeroed_page(GFP_KERNEL); | 250 | pidmap_array->page = (void *)get_zeroed_page(GFP_KERNEL); |
251 | /* Reserve PID 0. We never call free_pidmap(0) */ | ||
283 | set_bit(0, pidmap_array->page); | 252 | set_bit(0, pidmap_array->page); |
284 | atomic_dec(&pidmap_array->nr_free); | 253 | atomic_dec(&pidmap_array->nr_free); |
285 | |||
286 | /* | ||
287 | * Allocate PID 0, and hash it via all PID types: | ||
288 | */ | ||
289 | |||
290 | for (i = 0; i < PIDTYPE_MAX; i++) | ||
291 | attach_pid(current, i, 0); | ||
292 | } | 254 | } |
diff --git a/kernel/posix-timers.c b/kernel/posix-timers.c index fa895fc2ec..ac6dc87444 100644 --- a/kernel/posix-timers.c +++ b/kernel/posix-timers.c | |||
@@ -35,6 +35,7 @@ | |||
35 | #include <linux/interrupt.h> | 35 | #include <linux/interrupt.h> |
36 | #include <linux/slab.h> | 36 | #include <linux/slab.h> |
37 | #include <linux/time.h> | 37 | #include <linux/time.h> |
38 | #include <linux/mutex.h> | ||
38 | 39 | ||
39 | #include <asm/uaccess.h> | 40 | #include <asm/uaccess.h> |
40 | #include <asm/semaphore.h> | 41 | #include <asm/semaphore.h> |
@@ -144,7 +145,7 @@ static int common_timer_set(struct k_itimer *, int, | |||
144 | struct itimerspec *, struct itimerspec *); | 145 | struct itimerspec *, struct itimerspec *); |
145 | static int common_timer_del(struct k_itimer *timer); | 146 | static int common_timer_del(struct k_itimer *timer); |
146 | 147 | ||
147 | static int posix_timer_fn(void *data); | 148 | static int posix_timer_fn(struct hrtimer *data); |
148 | 149 | ||
149 | static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags); | 150 | static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags); |
150 | 151 | ||
@@ -250,15 +251,18 @@ __initcall(init_posix_timers); | |||
250 | 251 | ||
251 | static void schedule_next_timer(struct k_itimer *timr) | 252 | static void schedule_next_timer(struct k_itimer *timr) |
252 | { | 253 | { |
254 | struct hrtimer *timer = &timr->it.real.timer; | ||
255 | |||
253 | if (timr->it.real.interval.tv64 == 0) | 256 | if (timr->it.real.interval.tv64 == 0) |
254 | return; | 257 | return; |
255 | 258 | ||
256 | timr->it_overrun += hrtimer_forward(&timr->it.real.timer, | 259 | timr->it_overrun += hrtimer_forward(timer, timer->base->get_time(), |
257 | timr->it.real.interval); | 260 | timr->it.real.interval); |
261 | |||
258 | timr->it_overrun_last = timr->it_overrun; | 262 | timr->it_overrun_last = timr->it_overrun; |
259 | timr->it_overrun = -1; | 263 | timr->it_overrun = -1; |
260 | ++timr->it_requeue_pending; | 264 | ++timr->it_requeue_pending; |
261 | hrtimer_restart(&timr->it.real.timer); | 265 | hrtimer_restart(timer); |
262 | } | 266 | } |
263 | 267 | ||
264 | /* | 268 | /* |
@@ -330,13 +334,14 @@ EXPORT_SYMBOL_GPL(posix_timer_event); | |||
330 | 334 | ||
331 | * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers. | 335 | * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers. |
332 | */ | 336 | */ |
333 | static int posix_timer_fn(void *data) | 337 | static int posix_timer_fn(struct hrtimer *timer) |
334 | { | 338 | { |
335 | struct k_itimer *timr = data; | 339 | struct k_itimer *timr; |
336 | unsigned long flags; | 340 | unsigned long flags; |
337 | int si_private = 0; | 341 | int si_private = 0; |
338 | int ret = HRTIMER_NORESTART; | 342 | int ret = HRTIMER_NORESTART; |
339 | 343 | ||
344 | timr = container_of(timer, struct k_itimer, it.real.timer); | ||
340 | spin_lock_irqsave(&timr->it_lock, flags); | 345 | spin_lock_irqsave(&timr->it_lock, flags); |
341 | 346 | ||
342 | if (timr->it.real.interval.tv64 != 0) | 347 | if (timr->it.real.interval.tv64 != 0) |
@@ -350,7 +355,8 @@ static int posix_timer_fn(void *data) | |||
350 | */ | 355 | */ |
351 | if (timr->it.real.interval.tv64 != 0) { | 356 | if (timr->it.real.interval.tv64 != 0) { |
352 | timr->it_overrun += | 357 | timr->it_overrun += |
353 | hrtimer_forward(&timr->it.real.timer, | 358 | hrtimer_forward(timer, |
359 | timer->base->softirq_time, | ||
354 | timr->it.real.interval); | 360 | timr->it.real.interval); |
355 | ret = HRTIMER_RESTART; | 361 | ret = HRTIMER_RESTART; |
356 | ++timr->it_requeue_pending; | 362 | ++timr->it_requeue_pending; |
@@ -602,38 +608,41 @@ static struct k_itimer * lock_timer(timer_t timer_id, unsigned long *flags) | |||
602 | static void | 608 | static void |
603 | common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting) | 609 | common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting) |
604 | { | 610 | { |
605 | ktime_t remaining; | 611 | ktime_t now, remaining, iv; |
606 | struct hrtimer *timer = &timr->it.real.timer; | 612 | struct hrtimer *timer = &timr->it.real.timer; |
607 | 613 | ||
608 | memset(cur_setting, 0, sizeof(struct itimerspec)); | 614 | memset(cur_setting, 0, sizeof(struct itimerspec)); |
609 | remaining = hrtimer_get_remaining(timer); | ||
610 | 615 | ||
611 | /* Time left ? or timer pending */ | 616 | iv = timr->it.real.interval; |
612 | if (remaining.tv64 > 0 || hrtimer_active(timer)) | 617 | |
613 | goto calci; | ||
614 | /* interval timer ? */ | 618 | /* interval timer ? */ |
615 | if (timr->it.real.interval.tv64 == 0) | 619 | if (iv.tv64) |
620 | cur_setting->it_interval = ktime_to_timespec(iv); | ||
621 | else if (!hrtimer_active(timer) && | ||
622 | (timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) | ||
616 | return; | 623 | return; |
624 | |||
625 | now = timer->base->get_time(); | ||
626 | |||
617 | /* | 627 | /* |
618 | * When a requeue is pending or this is a SIGEV_NONE timer | 628 | * When a requeue is pending or this is a SIGEV_NONE |
619 | * move the expiry time forward by intervals, so expiry is > | 629 | * timer move the expiry time forward by intervals, so |
620 | * now. | 630 | * expiry is > now. |
621 | */ | 631 | */ |
622 | if (timr->it_requeue_pending & REQUEUE_PENDING || | 632 | if (iv.tv64 && (timr->it_requeue_pending & REQUEUE_PENDING || |
623 | (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) { | 633 | (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) |
624 | timr->it_overrun += | 634 | timr->it_overrun += hrtimer_forward(timer, now, iv); |
625 | hrtimer_forward(timer, timr->it.real.interval); | 635 | |
626 | remaining = hrtimer_get_remaining(timer); | 636 | remaining = ktime_sub(timer->expires, now); |
627 | } | ||
628 | calci: | ||
629 | /* interval timer ? */ | ||
630 | if (timr->it.real.interval.tv64 != 0) | ||
631 | cur_setting->it_interval = | ||
632 | ktime_to_timespec(timr->it.real.interval); | ||
633 | /* Return 0 only, when the timer is expired and not pending */ | 637 | /* Return 0 only, when the timer is expired and not pending */ |
634 | if (remaining.tv64 <= 0) | 638 | if (remaining.tv64 <= 0) { |
635 | cur_setting->it_value.tv_nsec = 1; | 639 | /* |
636 | else | 640 | * A single shot SIGEV_NONE timer must return 0, when |
641 | * it is expired ! | ||
642 | */ | ||
643 | if ((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) | ||
644 | cur_setting->it_value.tv_nsec = 1; | ||
645 | } else | ||
637 | cur_setting->it_value = ktime_to_timespec(remaining); | 646 | cur_setting->it_value = ktime_to_timespec(remaining); |
638 | } | 647 | } |
639 | 648 | ||
@@ -716,7 +725,6 @@ common_timer_set(struct k_itimer *timr, int flags, | |||
716 | 725 | ||
717 | mode = flags & TIMER_ABSTIME ? HRTIMER_ABS : HRTIMER_REL; | 726 | mode = flags & TIMER_ABSTIME ? HRTIMER_ABS : HRTIMER_REL; |
718 | hrtimer_init(&timr->it.real.timer, timr->it_clock, mode); | 727 | hrtimer_init(&timr->it.real.timer, timr->it_clock, mode); |
719 | timr->it.real.timer.data = timr; | ||
720 | timr->it.real.timer.function = posix_timer_fn; | 728 | timr->it.real.timer.function = posix_timer_fn; |
721 | 729 | ||
722 | timer->expires = timespec_to_ktime(new_setting->it_value); | 730 | timer->expires = timespec_to_ktime(new_setting->it_value); |
diff --git a/kernel/power/Makefile b/kernel/power/Makefile index 04be7d0d96..8d0af3d37a 100644 --- a/kernel/power/Makefile +++ b/kernel/power/Makefile | |||
@@ -5,7 +5,7 @@ endif | |||
5 | 5 | ||
6 | obj-y := main.o process.o console.o | 6 | obj-y := main.o process.o console.o |
7 | obj-$(CONFIG_PM_LEGACY) += pm.o | 7 | obj-$(CONFIG_PM_LEGACY) += pm.o |
8 | obj-$(CONFIG_SOFTWARE_SUSPEND) += swsusp.o disk.o snapshot.o | 8 | obj-$(CONFIG_SOFTWARE_SUSPEND) += swsusp.o disk.o snapshot.o swap.o user.o |
9 | 9 | ||
10 | obj-$(CONFIG_SUSPEND_SMP) += smp.o | 10 | obj-$(CONFIG_SUSPEND_SMP) += smp.o |
11 | 11 | ||
diff --git a/kernel/power/disk.c b/kernel/power/disk.c index 0b43847dc9..81d4d982f3 100644 --- a/kernel/power/disk.c +++ b/kernel/power/disk.c | |||
@@ -22,17 +22,6 @@ | |||
22 | #include "power.h" | 22 | #include "power.h" |
23 | 23 | ||
24 | 24 | ||
25 | extern suspend_disk_method_t pm_disk_mode; | ||
26 | |||
27 | extern int swsusp_shrink_memory(void); | ||
28 | extern int swsusp_suspend(void); | ||
29 | extern int swsusp_write(struct pbe *pblist, unsigned int nr_pages); | ||
30 | extern int swsusp_check(void); | ||
31 | extern int swsusp_read(struct pbe **pblist_ptr); | ||
32 | extern void swsusp_close(void); | ||
33 | extern int swsusp_resume(void); | ||
34 | |||
35 | |||
36 | static int noresume = 0; | 25 | static int noresume = 0; |
37 | char resume_file[256] = CONFIG_PM_STD_PARTITION; | 26 | char resume_file[256] = CONFIG_PM_STD_PARTITION; |
38 | dev_t swsusp_resume_device; | 27 | dev_t swsusp_resume_device; |
@@ -70,10 +59,6 @@ static void power_down(suspend_disk_method_t mode) | |||
70 | while(1); | 59 | while(1); |
71 | } | 60 | } |
72 | 61 | ||
73 | |||
74 | static int in_suspend __nosavedata = 0; | ||
75 | |||
76 | |||
77 | static inline void platform_finish(void) | 62 | static inline void platform_finish(void) |
78 | { | 63 | { |
79 | if (pm_disk_mode == PM_DISK_PLATFORM) { | 64 | if (pm_disk_mode == PM_DISK_PLATFORM) { |
@@ -87,7 +72,6 @@ static int prepare_processes(void) | |||
87 | int error; | 72 | int error; |
88 | 73 | ||
89 | pm_prepare_console(); | 74 | pm_prepare_console(); |
90 | sys_sync(); | ||
91 | disable_nonboot_cpus(); | 75 | disable_nonboot_cpus(); |
92 | 76 | ||
93 | if (freeze_processes()) { | 77 | if (freeze_processes()) { |
@@ -145,7 +129,7 @@ int pm_suspend_disk(void) | |||
145 | if (in_suspend) { | 129 | if (in_suspend) { |
146 | device_resume(); | 130 | device_resume(); |
147 | pr_debug("PM: writing image.\n"); | 131 | pr_debug("PM: writing image.\n"); |
148 | error = swsusp_write(pagedir_nosave, nr_copy_pages); | 132 | error = swsusp_write(); |
149 | if (!error) | 133 | if (!error) |
150 | power_down(pm_disk_mode); | 134 | power_down(pm_disk_mode); |
151 | else { | 135 | else { |
@@ -216,7 +200,7 @@ static int software_resume(void) | |||
216 | 200 | ||
217 | pr_debug("PM: Reading swsusp image.\n"); | 201 | pr_debug("PM: Reading swsusp image.\n"); |
218 | 202 | ||
219 | if ((error = swsusp_read(&pagedir_nosave))) { | 203 | if ((error = swsusp_read())) { |
220 | swsusp_free(); | 204 | swsusp_free(); |
221 | goto Thaw; | 205 | goto Thaw; |
222 | } | 206 | } |
diff --git a/kernel/power/main.c b/kernel/power/main.c index 9cb235cba4..ee371f50cc 100644 --- a/kernel/power/main.c +++ b/kernel/power/main.c | |||
@@ -103,7 +103,7 @@ static int suspend_prepare(suspend_state_t state) | |||
103 | } | 103 | } |
104 | 104 | ||
105 | 105 | ||
106 | static int suspend_enter(suspend_state_t state) | 106 | int suspend_enter(suspend_state_t state) |
107 | { | 107 | { |
108 | int error = 0; | 108 | int error = 0; |
109 | unsigned long flags; | 109 | unsigned long flags; |
diff --git a/kernel/power/pm.c b/kernel/power/pm.c index 33c508e857..0f6908cce1 100644 --- a/kernel/power/pm.c +++ b/kernel/power/pm.c | |||
@@ -25,6 +25,7 @@ | |||
25 | #include <linux/pm.h> | 25 | #include <linux/pm.h> |
26 | #include <linux/pm_legacy.h> | 26 | #include <linux/pm_legacy.h> |
27 | #include <linux/interrupt.h> | 27 | #include <linux/interrupt.h> |
28 | #include <linux/mutex.h> | ||
28 | 29 | ||
29 | int pm_active; | 30 | int pm_active; |
30 | 31 | ||
@@ -40,7 +41,7 @@ int pm_active; | |||
40 | * until a resume but that will be fine. | 41 | * until a resume but that will be fine. |
41 | */ | 42 | */ |
42 | 43 | ||
43 | static DECLARE_MUTEX(pm_devs_lock); | 44 | static DEFINE_MUTEX(pm_devs_lock); |
44 | static LIST_HEAD(pm_devs); | 45 | static LIST_HEAD(pm_devs); |
45 | 46 | ||
46 | /** | 47 | /** |
@@ -67,9 +68,9 @@ struct pm_dev *pm_register(pm_dev_t type, | |||
67 | dev->id = id; | 68 | dev->id = id; |
68 | dev->callback = callback; | 69 | dev->callback = callback; |
69 | 70 | ||
70 | down(&pm_devs_lock); | 71 | mutex_lock(&pm_devs_lock); |
71 | list_add(&dev->entry, &pm_devs); | 72 | list_add(&dev->entry, &pm_devs); |
72 | up(&pm_devs_lock); | 73 | mutex_unlock(&pm_devs_lock); |
73 | } | 74 | } |
74 | return dev; | 75 | return dev; |
75 | } | 76 | } |
@@ -85,9 +86,9 @@ struct pm_dev *pm_register(pm_dev_t type, | |||
85 | void pm_unregister(struct pm_dev *dev) | 86 | void pm_unregister(struct pm_dev *dev) |
86 | { | 87 | { |
87 | if (dev) { | 88 | if (dev) { |
88 | down(&pm_devs_lock); | 89 | mutex_lock(&pm_devs_lock); |
89 | list_del(&dev->entry); | 90 | list_del(&dev->entry); |
90 | up(&pm_devs_lock); | 91 | mutex_unlock(&pm_devs_lock); |
91 | 92 | ||
92 | kfree(dev); | 93 | kfree(dev); |
93 | } | 94 | } |
@@ -118,7 +119,7 @@ void pm_unregister_all(pm_callback callback) | |||
118 | if (!callback) | 119 | if (!callback) |
119 | return; | 120 | return; |
120 | 121 | ||
121 | down(&pm_devs_lock); | 122 | mutex_lock(&pm_devs_lock); |
122 | entry = pm_devs.next; | 123 | entry = pm_devs.next; |
123 | while (entry != &pm_devs) { | 124 | while (entry != &pm_devs) { |
124 | struct pm_dev *dev = list_entry(entry, struct pm_dev, entry); | 125 | struct pm_dev *dev = list_entry(entry, struct pm_dev, entry); |
@@ -126,7 +127,7 @@ void pm_unregister_all(pm_callback callback) | |||
126 | if (dev->callback == callback) | 127 | if (dev->callback == callback) |
127 | __pm_unregister(dev); | 128 | __pm_unregister(dev); |
128 | } | 129 | } |
129 | up(&pm_devs_lock); | 130 | mutex_unlock(&pm_devs_lock); |
130 | } | 131 | } |
131 | 132 | ||
132 | /** | 133 | /** |
@@ -234,7 +235,7 @@ int pm_send_all(pm_request_t rqst, void *data) | |||
234 | { | 235 | { |
235 | struct list_head *entry; | 236 | struct list_head *entry; |
236 | 237 | ||
237 | down(&pm_devs_lock); | 238 | mutex_lock(&pm_devs_lock); |
238 | entry = pm_devs.next; | 239 | entry = pm_devs.next; |
239 | while (entry != &pm_devs) { | 240 | while (entry != &pm_devs) { |
240 | struct pm_dev *dev = list_entry(entry, struct pm_dev, entry); | 241 | struct pm_dev *dev = list_entry(entry, struct pm_dev, entry); |
@@ -246,13 +247,13 @@ int pm_send_all(pm_request_t rqst, void *data) | |||
246 | */ | 247 | */ |
247 | if (rqst == PM_SUSPEND) | 248 | if (rqst == PM_SUSPEND) |
248 | pm_undo_all(dev); | 249 | pm_undo_all(dev); |
249 | up(&pm_devs_lock); | 250 | mutex_unlock(&pm_devs_lock); |
250 | return status; | 251 | return status; |
251 | } | 252 | } |
252 | } | 253 | } |
253 | entry = entry->next; | 254 | entry = entry->next; |
254 | } | 255 | } |
255 | up(&pm_devs_lock); | 256 | mutex_unlock(&pm_devs_lock); |
256 | return 0; | 257 | return 0; |
257 | } | 258 | } |
258 | 259 | ||
diff --git a/kernel/power/power.h b/kernel/power/power.h index 388dba6808..f06f12f217 100644 --- a/kernel/power/power.h +++ b/kernel/power/power.h | |||
@@ -8,6 +8,7 @@ struct swsusp_info { | |||
8 | int cpus; | 8 | int cpus; |
9 | unsigned long image_pages; | 9 | unsigned long image_pages; |
10 | unsigned long pages; | 10 | unsigned long pages; |
11 | unsigned long size; | ||
11 | } __attribute__((aligned(PAGE_SIZE))); | 12 | } __attribute__((aligned(PAGE_SIZE))); |
12 | 13 | ||
13 | 14 | ||
@@ -37,21 +38,79 @@ extern struct subsystem power_subsys; | |||
37 | /* References to section boundaries */ | 38 | /* References to section boundaries */ |
38 | extern const void __nosave_begin, __nosave_end; | 39 | extern const void __nosave_begin, __nosave_end; |
39 | 40 | ||
40 | extern unsigned int nr_copy_pages; | ||
41 | extern struct pbe *pagedir_nosave; | 41 | extern struct pbe *pagedir_nosave; |
42 | 42 | ||
43 | /* Preferred image size in bytes (default 500 MB) */ | 43 | /* Preferred image size in bytes (default 500 MB) */ |
44 | extern unsigned long image_size; | 44 | extern unsigned long image_size; |
45 | extern int in_suspend; | ||
46 | extern dev_t swsusp_resume_device; | ||
45 | 47 | ||
46 | extern asmlinkage int swsusp_arch_suspend(void); | 48 | extern asmlinkage int swsusp_arch_suspend(void); |
47 | extern asmlinkage int swsusp_arch_resume(void); | 49 | extern asmlinkage int swsusp_arch_resume(void); |
48 | 50 | ||
49 | extern unsigned int count_data_pages(void); | 51 | extern unsigned int count_data_pages(void); |
50 | extern void free_pagedir(struct pbe *pblist); | 52 | |
51 | extern void release_eaten_pages(void); | 53 | struct snapshot_handle { |
52 | extern struct pbe *alloc_pagedir(unsigned nr_pages, gfp_t gfp_mask, int safe_needed); | 54 | loff_t offset; |
55 | unsigned int page; | ||
56 | unsigned int page_offset; | ||
57 | unsigned int prev; | ||
58 | struct pbe *pbe; | ||
59 | void *buffer; | ||
60 | unsigned int buf_offset; | ||
61 | }; | ||
62 | |||
63 | #define data_of(handle) ((handle).buffer + (handle).buf_offset) | ||
64 | |||
65 | extern int snapshot_read_next(struct snapshot_handle *handle, size_t count); | ||
66 | extern int snapshot_write_next(struct snapshot_handle *handle, size_t count); | ||
67 | int snapshot_image_loaded(struct snapshot_handle *handle); | ||
68 | |||
69 | #define SNAPSHOT_IOC_MAGIC '3' | ||
70 | #define SNAPSHOT_FREEZE _IO(SNAPSHOT_IOC_MAGIC, 1) | ||
71 | #define SNAPSHOT_UNFREEZE _IO(SNAPSHOT_IOC_MAGIC, 2) | ||
72 | #define SNAPSHOT_ATOMIC_SNAPSHOT _IOW(SNAPSHOT_IOC_MAGIC, 3, void *) | ||
73 | #define SNAPSHOT_ATOMIC_RESTORE _IO(SNAPSHOT_IOC_MAGIC, 4) | ||
74 | #define SNAPSHOT_FREE _IO(SNAPSHOT_IOC_MAGIC, 5) | ||
75 | #define SNAPSHOT_SET_IMAGE_SIZE _IOW(SNAPSHOT_IOC_MAGIC, 6, unsigned long) | ||
76 | #define SNAPSHOT_AVAIL_SWAP _IOR(SNAPSHOT_IOC_MAGIC, 7, void *) | ||
77 | #define SNAPSHOT_GET_SWAP_PAGE _IOR(SNAPSHOT_IOC_MAGIC, 8, void *) | ||
78 | #define SNAPSHOT_FREE_SWAP_PAGES _IO(SNAPSHOT_IOC_MAGIC, 9) | ||
79 | #define SNAPSHOT_SET_SWAP_FILE _IOW(SNAPSHOT_IOC_MAGIC, 10, unsigned int) | ||
80 | #define SNAPSHOT_S2RAM _IO(SNAPSHOT_IOC_MAGIC, 11) | ||
81 | #define SNAPSHOT_IOC_MAXNR 11 | ||
82 | |||
83 | /** | ||
84 | * The bitmap is used for tracing allocated swap pages | ||
85 | * | ||
86 | * The entire bitmap consists of a number of bitmap_page | ||
87 | * structures linked with the help of the .next member. | ||
88 | * Thus each page can be allocated individually, so we only | ||
89 | * need to make 0-order memory allocations to create | ||
90 | * the bitmap. | ||
91 | */ | ||
92 | |||
93 | #define BITMAP_PAGE_SIZE (PAGE_SIZE - sizeof(void *)) | ||
94 | #define BITMAP_PAGE_CHUNKS (BITMAP_PAGE_SIZE / sizeof(long)) | ||
95 | #define BITS_PER_CHUNK (sizeof(long) * 8) | ||
96 | #define BITMAP_PAGE_BITS (BITMAP_PAGE_CHUNKS * BITS_PER_CHUNK) | ||
97 | |||
98 | struct bitmap_page { | ||
99 | unsigned long chunks[BITMAP_PAGE_CHUNKS]; | ||
100 | struct bitmap_page *next; | ||
101 | }; | ||
102 | |||
103 | extern void free_bitmap(struct bitmap_page *bitmap); | ||
104 | extern struct bitmap_page *alloc_bitmap(unsigned int nr_bits); | ||
105 | extern unsigned long alloc_swap_page(int swap, struct bitmap_page *bitmap); | ||
106 | extern void free_all_swap_pages(int swap, struct bitmap_page *bitmap); | ||
107 | |||
108 | extern int swsusp_check(void); | ||
109 | extern int swsusp_shrink_memory(void); | ||
53 | extern void swsusp_free(void); | 110 | extern void swsusp_free(void); |
54 | extern int alloc_data_pages(struct pbe *pblist, gfp_t gfp_mask, int safe_needed); | 111 | extern int swsusp_suspend(void); |
55 | extern unsigned int snapshot_nr_pages(void); | 112 | extern int swsusp_resume(void); |
56 | extern struct pbe *snapshot_pblist(void); | 113 | extern int swsusp_read(void); |
57 | extern void snapshot_pblist_set(struct pbe *pblist); | 114 | extern int swsusp_write(void); |
115 | extern void swsusp_close(void); | ||
116 | extern int suspend_enter(suspend_state_t state); | ||
diff --git a/kernel/power/process.c b/kernel/power/process.c index 28de118f7a..8ac7c35fad 100644 --- a/kernel/power/process.c +++ b/kernel/power/process.c | |||
@@ -12,11 +12,12 @@ | |||
12 | #include <linux/interrupt.h> | 12 | #include <linux/interrupt.h> |
13 | #include <linux/suspend.h> | 13 | #include <linux/suspend.h> |
14 | #include <linux/module.h> | 14 | #include <linux/module.h> |
15 | #include <linux/syscalls.h> | ||
15 | 16 | ||
16 | /* | 17 | /* |
17 | * Timeout for stopping processes | 18 | * Timeout for stopping processes |
18 | */ | 19 | */ |
19 | #define TIMEOUT (6 * HZ) | 20 | #define TIMEOUT (20 * HZ) |
20 | 21 | ||
21 | 22 | ||
22 | static inline int freezeable(struct task_struct * p) | 23 | static inline int freezeable(struct task_struct * p) |
@@ -54,38 +55,62 @@ void refrigerator(void) | |||
54 | current->state = save; | 55 | current->state = save; |
55 | } | 56 | } |
56 | 57 | ||
58 | static inline void freeze_process(struct task_struct *p) | ||
59 | { | ||
60 | unsigned long flags; | ||
61 | |||
62 | if (!freezing(p)) { | ||
63 | freeze(p); | ||
64 | spin_lock_irqsave(&p->sighand->siglock, flags); | ||
65 | signal_wake_up(p, 0); | ||
66 | spin_unlock_irqrestore(&p->sighand->siglock, flags); | ||
67 | } | ||
68 | } | ||
69 | |||
57 | /* 0 = success, else # of processes that we failed to stop */ | 70 | /* 0 = success, else # of processes that we failed to stop */ |
58 | int freeze_processes(void) | 71 | int freeze_processes(void) |
59 | { | 72 | { |
60 | int todo; | 73 | int todo, nr_user, user_frozen; |
61 | unsigned long start_time; | 74 | unsigned long start_time; |
62 | struct task_struct *g, *p; | 75 | struct task_struct *g, *p; |
63 | unsigned long flags; | 76 | unsigned long flags; |
64 | 77 | ||
65 | printk( "Stopping tasks: " ); | 78 | printk( "Stopping tasks: " ); |
66 | start_time = jiffies; | 79 | start_time = jiffies; |
80 | user_frozen = 0; | ||
67 | do { | 81 | do { |
68 | todo = 0; | 82 | nr_user = todo = 0; |
69 | read_lock(&tasklist_lock); | 83 | read_lock(&tasklist_lock); |
70 | do_each_thread(g, p) { | 84 | do_each_thread(g, p) { |
71 | if (!freezeable(p)) | 85 | if (!freezeable(p)) |
72 | continue; | 86 | continue; |
73 | if (frozen(p)) | 87 | if (frozen(p)) |
74 | continue; | 88 | continue; |
75 | 89 | if (p->mm && !(p->flags & PF_BORROWED_MM)) { | |
76 | freeze(p); | 90 | /* The task is a user-space one. |
77 | spin_lock_irqsave(&p->sighand->siglock, flags); | 91 | * Freeze it unless there's a vfork completion |
78 | signal_wake_up(p, 0); | 92 | * pending |
79 | spin_unlock_irqrestore(&p->sighand->siglock, flags); | 93 | */ |
80 | todo++; | 94 | if (!p->vfork_done) |
95 | freeze_process(p); | ||
96 | nr_user++; | ||
97 | } else { | ||
98 | /* Freeze only if the user space is frozen */ | ||
99 | if (user_frozen) | ||
100 | freeze_process(p); | ||
101 | todo++; | ||
102 | } | ||
81 | } while_each_thread(g, p); | 103 | } while_each_thread(g, p); |
82 | read_unlock(&tasklist_lock); | 104 | read_unlock(&tasklist_lock); |
105 | todo += nr_user; | ||
106 | if (!user_frozen && !nr_user) { | ||
107 | sys_sync(); | ||
108 | start_time = jiffies; | ||
109 | } | ||
110 | user_frozen = !nr_user; | ||
83 | yield(); /* Yield is okay here */ | 111 | yield(); /* Yield is okay here */ |
84 | if (todo && time_after(jiffies, start_time + TIMEOUT)) { | 112 | if (todo && time_after(jiffies, start_time + TIMEOUT)) |
85 | printk( "\n" ); | ||
86 | printk(KERN_ERR " stopping tasks failed (%d tasks remaining)\n", todo ); | ||
87 | break; | 113 | break; |
88 | } | ||
89 | } while(todo); | 114 | } while(todo); |
90 | 115 | ||
91 | /* This does not unfreeze processes that are already frozen | 116 | /* This does not unfreeze processes that are already frozen |
@@ -94,8 +119,14 @@ int freeze_processes(void) | |||
94 | * but it cleans up leftover PF_FREEZE requests. | 119 | * but it cleans up leftover PF_FREEZE requests. |
95 | */ | 120 | */ |
96 | if (todo) { | 121 | if (todo) { |
122 | printk( "\n" ); | ||
123 | printk(KERN_ERR " stopping tasks timed out " | ||
124 | "after %d seconds (%d tasks remaining):\n", | ||
125 | TIMEOUT / HZ, todo); | ||
97 | read_lock(&tasklist_lock); | 126 | read_lock(&tasklist_lock); |
98 | do_each_thread(g, p) | 127 | do_each_thread(g, p) { |
128 | if (freezeable(p) && !frozen(p)) | ||
129 | printk(KERN_ERR " %s\n", p->comm); | ||
99 | if (freezing(p)) { | 130 | if (freezing(p)) { |
100 | pr_debug(" clean up: %s\n", p->comm); | 131 | pr_debug(" clean up: %s\n", p->comm); |
101 | p->flags &= ~PF_FREEZE; | 132 | p->flags &= ~PF_FREEZE; |
@@ -103,7 +134,7 @@ int freeze_processes(void) | |||
103 | recalc_sigpending_tsk(p); | 134 | recalc_sigpending_tsk(p); |
104 | spin_unlock_irqrestore(&p->sighand->siglock, flags); | 135 | spin_unlock_irqrestore(&p->sighand->siglock, flags); |
105 | } | 136 | } |
106 | while_each_thread(g, p); | 137 | } while_each_thread(g, p); |
107 | read_unlock(&tasklist_lock); | 138 | read_unlock(&tasklist_lock); |
108 | return todo; | 139 | return todo; |
109 | } | 140 | } |
diff --git a/kernel/power/smp.c b/kernel/power/smp.c index 911fc62b82..5957312b2d 100644 --- a/kernel/power/smp.c +++ b/kernel/power/smp.c | |||
@@ -49,9 +49,7 @@ void enable_nonboot_cpus(void) | |||
49 | 49 | ||
50 | printk("Thawing cpus ...\n"); | 50 | printk("Thawing cpus ...\n"); |
51 | for_each_cpu_mask(cpu, frozen_cpus) { | 51 | for_each_cpu_mask(cpu, frozen_cpus) { |
52 | error = smp_prepare_cpu(cpu); | 52 | error = cpu_up(cpu); |
53 | if (!error) | ||
54 | error = cpu_up(cpu); | ||
55 | if (!error) { | 53 | if (!error) { |
56 | printk("CPU%d is up\n", cpu); | 54 | printk("CPU%d is up\n", cpu); |
57 | continue; | 55 | continue; |
diff --git a/kernel/power/snapshot.c b/kernel/power/snapshot.c index 8d5a5986d6..c5863d02c8 100644 --- a/kernel/power/snapshot.c +++ b/kernel/power/snapshot.c | |||
@@ -10,6 +10,7 @@ | |||
10 | */ | 10 | */ |
11 | 11 | ||
12 | 12 | ||
13 | #include <linux/version.h> | ||
13 | #include <linux/module.h> | 14 | #include <linux/module.h> |
14 | #include <linux/mm.h> | 15 | #include <linux/mm.h> |
15 | #include <linux/suspend.h> | 16 | #include <linux/suspend.h> |
@@ -34,7 +35,9 @@ | |||
34 | #include "power.h" | 35 | #include "power.h" |
35 | 36 | ||
36 | struct pbe *pagedir_nosave; | 37 | struct pbe *pagedir_nosave; |
37 | unsigned int nr_copy_pages; | 38 | static unsigned int nr_copy_pages; |
39 | static unsigned int nr_meta_pages; | ||
40 | static unsigned long *buffer; | ||
38 | 41 | ||
39 | #ifdef CONFIG_HIGHMEM | 42 | #ifdef CONFIG_HIGHMEM |
40 | unsigned int count_highmem_pages(void) | 43 | unsigned int count_highmem_pages(void) |
@@ -80,7 +83,7 @@ static int save_highmem_zone(struct zone *zone) | |||
80 | void *kaddr; | 83 | void *kaddr; |
81 | unsigned long pfn = zone_pfn + zone->zone_start_pfn; | 84 | unsigned long pfn = zone_pfn + zone->zone_start_pfn; |
82 | 85 | ||
83 | if (!(pfn%1000)) | 86 | if (!(pfn%10000)) |
84 | printk("."); | 87 | printk("."); |
85 | if (!pfn_valid(pfn)) | 88 | if (!pfn_valid(pfn)) |
86 | continue; | 89 | continue; |
@@ -119,13 +122,15 @@ int save_highmem(void) | |||
119 | struct zone *zone; | 122 | struct zone *zone; |
120 | int res = 0; | 123 | int res = 0; |
121 | 124 | ||
122 | pr_debug("swsusp: Saving Highmem\n"); | 125 | pr_debug("swsusp: Saving Highmem"); |
126 | drain_local_pages(); | ||
123 | for_each_zone (zone) { | 127 | for_each_zone (zone) { |
124 | if (is_highmem(zone)) | 128 | if (is_highmem(zone)) |
125 | res = save_highmem_zone(zone); | 129 | res = save_highmem_zone(zone); |
126 | if (res) | 130 | if (res) |
127 | return res; | 131 | return res; |
128 | } | 132 | } |
133 | printk("\n"); | ||
129 | return 0; | 134 | return 0; |
130 | } | 135 | } |
131 | 136 | ||
@@ -235,7 +240,7 @@ static void copy_data_pages(struct pbe *pblist) | |||
235 | * free_pagedir - free pages allocated with alloc_pagedir() | 240 | * free_pagedir - free pages allocated with alloc_pagedir() |
236 | */ | 241 | */ |
237 | 242 | ||
238 | void free_pagedir(struct pbe *pblist) | 243 | static void free_pagedir(struct pbe *pblist) |
239 | { | 244 | { |
240 | struct pbe *pbe; | 245 | struct pbe *pbe; |
241 | 246 | ||
@@ -301,7 +306,7 @@ struct eaten_page { | |||
301 | 306 | ||
302 | static struct eaten_page *eaten_pages = NULL; | 307 | static struct eaten_page *eaten_pages = NULL; |
303 | 308 | ||
304 | void release_eaten_pages(void) | 309 | static void release_eaten_pages(void) |
305 | { | 310 | { |
306 | struct eaten_page *p, *q; | 311 | struct eaten_page *p, *q; |
307 | 312 | ||
@@ -376,7 +381,6 @@ struct pbe *alloc_pagedir(unsigned int nr_pages, gfp_t gfp_mask, int safe_needed | |||
376 | if (!nr_pages) | 381 | if (!nr_pages) |
377 | return NULL; | 382 | return NULL; |
378 | 383 | ||
379 | pr_debug("alloc_pagedir(): nr_pages = %d\n", nr_pages); | ||
380 | pblist = alloc_image_page(gfp_mask, safe_needed); | 384 | pblist = alloc_image_page(gfp_mask, safe_needed); |
381 | /* FIXME: rewrite this ugly loop */ | 385 | /* FIXME: rewrite this ugly loop */ |
382 | for (pbe = pblist, num = PBES_PER_PAGE; pbe && num < nr_pages; | 386 | for (pbe = pblist, num = PBES_PER_PAGE; pbe && num < nr_pages; |
@@ -388,7 +392,7 @@ struct pbe *alloc_pagedir(unsigned int nr_pages, gfp_t gfp_mask, int safe_needed | |||
388 | free_pagedir(pblist); | 392 | free_pagedir(pblist); |
389 | pblist = NULL; | 393 | pblist = NULL; |
390 | } else | 394 | } else |
391 | create_pbe_list(pblist, nr_pages); | 395 | create_pbe_list(pblist, nr_pages); |
392 | return pblist; | 396 | return pblist; |
393 | } | 397 | } |
394 | 398 | ||
@@ -414,6 +418,10 @@ void swsusp_free(void) | |||
414 | } | 418 | } |
415 | } | 419 | } |
416 | } | 420 | } |
421 | nr_copy_pages = 0; | ||
422 | nr_meta_pages = 0; | ||
423 | pagedir_nosave = NULL; | ||
424 | buffer = NULL; | ||
417 | } | 425 | } |
418 | 426 | ||
419 | 427 | ||
@@ -437,7 +445,7 @@ static int enough_free_mem(unsigned int nr_pages) | |||
437 | (nr_pages + PBES_PER_PAGE - 1) / PBES_PER_PAGE); | 445 | (nr_pages + PBES_PER_PAGE - 1) / PBES_PER_PAGE); |
438 | } | 446 | } |
439 | 447 | ||
440 | int alloc_data_pages(struct pbe *pblist, gfp_t gfp_mask, int safe_needed) | 448 | static int alloc_data_pages(struct pbe *pblist, gfp_t gfp_mask, int safe_needed) |
441 | { | 449 | { |
442 | struct pbe *p; | 450 | struct pbe *p; |
443 | 451 | ||
@@ -504,7 +512,318 @@ asmlinkage int swsusp_save(void) | |||
504 | */ | 512 | */ |
505 | 513 | ||
506 | nr_copy_pages = nr_pages; | 514 | nr_copy_pages = nr_pages; |
515 | nr_meta_pages = (nr_pages * sizeof(long) + PAGE_SIZE - 1) >> PAGE_SHIFT; | ||
507 | 516 | ||
508 | printk("swsusp: critical section/: done (%d pages copied)\n", nr_pages); | 517 | printk("swsusp: critical section/: done (%d pages copied)\n", nr_pages); |
509 | return 0; | 518 | return 0; |
510 | } | 519 | } |
520 | |||
521 | static void init_header(struct swsusp_info *info) | ||
522 | { | ||
523 | memset(info, 0, sizeof(struct swsusp_info)); | ||
524 | info->version_code = LINUX_VERSION_CODE; | ||
525 | info->num_physpages = num_physpages; | ||
526 | memcpy(&info->uts, &system_utsname, sizeof(system_utsname)); | ||
527 | info->cpus = num_online_cpus(); | ||
528 | info->image_pages = nr_copy_pages; | ||
529 | info->pages = nr_copy_pages + nr_meta_pages + 1; | ||
530 | info->size = info->pages; | ||
531 | info->size <<= PAGE_SHIFT; | ||
532 | } | ||
533 | |||
534 | /** | ||
535 | * pack_orig_addresses - the .orig_address fields of the PBEs from the | ||
536 | * list starting at @pbe are stored in the array @buf[] (1 page) | ||
537 | */ | ||
538 | |||
539 | static inline struct pbe *pack_orig_addresses(unsigned long *buf, struct pbe *pbe) | ||
540 | { | ||
541 | int j; | ||
542 | |||
543 | for (j = 0; j < PAGE_SIZE / sizeof(long) && pbe; j++) { | ||
544 | buf[j] = pbe->orig_address; | ||
545 | pbe = pbe->next; | ||
546 | } | ||
547 | if (!pbe) | ||
548 | for (; j < PAGE_SIZE / sizeof(long); j++) | ||
549 | buf[j] = 0; | ||
550 | return pbe; | ||
551 | } | ||
552 | |||
553 | /** | ||
554 | * snapshot_read_next - used for reading the system memory snapshot. | ||
555 | * | ||
556 | * On the first call to it @handle should point to a zeroed | ||
557 | * snapshot_handle structure. The structure gets updated and a pointer | ||
558 | * to it should be passed to this function every next time. | ||
559 | * | ||
560 | * The @count parameter should contain the number of bytes the caller | ||
561 | * wants to read from the snapshot. It must not be zero. | ||
562 | * | ||
563 | * On success the function returns a positive number. Then, the caller | ||
564 | * is allowed to read up to the returned number of bytes from the memory | ||
565 | * location computed by the data_of() macro. The number returned | ||
566 | * may be smaller than @count, but this only happens if the read would | ||
567 | * cross a page boundary otherwise. | ||
568 | * | ||
569 | * The function returns 0 to indicate the end of data stream condition, | ||
570 | * and a negative number is returned on error. In such cases the | ||
571 | * structure pointed to by @handle is not updated and should not be used | ||
572 | * any more. | ||
573 | */ | ||
574 | |||
575 | int snapshot_read_next(struct snapshot_handle *handle, size_t count) | ||
576 | { | ||
577 | if (handle->page > nr_meta_pages + nr_copy_pages) | ||
578 | return 0; | ||
579 | if (!buffer) { | ||
580 | /* This makes the buffer be freed by swsusp_free() */ | ||
581 | buffer = alloc_image_page(GFP_ATOMIC, 0); | ||
582 | if (!buffer) | ||
583 | return -ENOMEM; | ||
584 | } | ||
585 | if (!handle->offset) { | ||
586 | init_header((struct swsusp_info *)buffer); | ||
587 | handle->buffer = buffer; | ||
588 | handle->pbe = pagedir_nosave; | ||
589 | } | ||
590 | if (handle->prev < handle->page) { | ||
591 | if (handle->page <= nr_meta_pages) { | ||
592 | handle->pbe = pack_orig_addresses(buffer, handle->pbe); | ||
593 | if (!handle->pbe) | ||
594 | handle->pbe = pagedir_nosave; | ||
595 | } else { | ||
596 | handle->buffer = (void *)handle->pbe->address; | ||
597 | handle->pbe = handle->pbe->next; | ||
598 | } | ||
599 | handle->prev = handle->page; | ||
600 | } | ||
601 | handle->buf_offset = handle->page_offset; | ||
602 | if (handle->page_offset + count >= PAGE_SIZE) { | ||
603 | count = PAGE_SIZE - handle->page_offset; | ||
604 | handle->page_offset = 0; | ||
605 | handle->page++; | ||
606 | } else { | ||
607 | handle->page_offset += count; | ||
608 | } | ||
609 | handle->offset += count; | ||
610 | return count; | ||
611 | } | ||
612 | |||
613 | /** | ||
614 | * mark_unsafe_pages - mark the pages that cannot be used for storing | ||
615 | * the image during resume, because they conflict with the pages that | ||
616 | * had been used before suspend | ||
617 | */ | ||
618 | |||
619 | static int mark_unsafe_pages(struct pbe *pblist) | ||
620 | { | ||
621 | struct zone *zone; | ||
622 | unsigned long zone_pfn; | ||
623 | struct pbe *p; | ||
624 | |||
625 | if (!pblist) /* a sanity check */ | ||
626 | return -EINVAL; | ||
627 | |||
628 | /* Clear page flags */ | ||
629 | for_each_zone (zone) { | ||
630 | for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) | ||
631 | if (pfn_valid(zone_pfn + zone->zone_start_pfn)) | ||
632 | ClearPageNosaveFree(pfn_to_page(zone_pfn + | ||
633 | zone->zone_start_pfn)); | ||
634 | } | ||
635 | |||
636 | /* Mark orig addresses */ | ||
637 | for_each_pbe (p, pblist) { | ||
638 | if (virt_addr_valid(p->orig_address)) | ||
639 | SetPageNosaveFree(virt_to_page(p->orig_address)); | ||
640 | else | ||
641 | return -EFAULT; | ||
642 | } | ||
643 | |||
644 | return 0; | ||
645 | } | ||
646 | |||
647 | static void copy_page_backup_list(struct pbe *dst, struct pbe *src) | ||
648 | { | ||
649 | /* We assume both lists contain the same number of elements */ | ||
650 | while (src) { | ||
651 | dst->orig_address = src->orig_address; | ||
652 | dst = dst->next; | ||
653 | src = src->next; | ||
654 | } | ||
655 | } | ||
656 | |||
657 | static int check_header(struct swsusp_info *info) | ||
658 | { | ||
659 | char *reason = NULL; | ||
660 | |||
661 | if (info->version_code != LINUX_VERSION_CODE) | ||
662 | reason = "kernel version"; | ||
663 | if (info->num_physpages != num_physpages) | ||
664 | reason = "memory size"; | ||
665 | if (strcmp(info->uts.sysname,system_utsname.sysname)) | ||
666 | reason = "system type"; | ||
667 | if (strcmp(info->uts.release,system_utsname.release)) | ||
668 | reason = "kernel release"; | ||
669 | if (strcmp(info->uts.version,system_utsname.version)) | ||
670 | reason = "version"; | ||
671 | if (strcmp(info->uts.machine,system_utsname.machine)) | ||
672 | reason = "machine"; | ||
673 | if (reason) { | ||
674 | printk(KERN_ERR "swsusp: Resume mismatch: %s\n", reason); | ||
675 | return -EPERM; | ||
676 | } | ||
677 | return 0; | ||
678 | } | ||
679 | |||
680 | /** | ||
681 | * load header - check the image header and copy data from it | ||
682 | */ | ||
683 | |||
684 | static int load_header(struct snapshot_handle *handle, | ||
685 | struct swsusp_info *info) | ||
686 | { | ||
687 | int error; | ||
688 | struct pbe *pblist; | ||
689 | |||
690 | error = check_header(info); | ||
691 | if (!error) { | ||
692 | pblist = alloc_pagedir(info->image_pages, GFP_ATOMIC, 0); | ||
693 | if (!pblist) | ||
694 | return -ENOMEM; | ||
695 | pagedir_nosave = pblist; | ||
696 | handle->pbe = pblist; | ||
697 | nr_copy_pages = info->image_pages; | ||
698 | nr_meta_pages = info->pages - info->image_pages - 1; | ||
699 | } | ||
700 | return error; | ||
701 | } | ||
702 | |||
703 | /** | ||
704 | * unpack_orig_addresses - copy the elements of @buf[] (1 page) to | ||
705 | * the PBEs in the list starting at @pbe | ||
706 | */ | ||
707 | |||
708 | static inline struct pbe *unpack_orig_addresses(unsigned long *buf, | ||
709 | struct pbe *pbe) | ||
710 | { | ||
711 | int j; | ||
712 | |||
713 | for (j = 0; j < PAGE_SIZE / sizeof(long) && pbe; j++) { | ||
714 | pbe->orig_address = buf[j]; | ||
715 | pbe = pbe->next; | ||
716 | } | ||
717 | return pbe; | ||
718 | } | ||
719 | |||
720 | /** | ||
721 | * create_image - use metadata contained in the PBE list | ||
722 | * pointed to by pagedir_nosave to mark the pages that will | ||
723 | * be overwritten in the process of restoring the system | ||
724 | * memory state from the image and allocate memory for | ||
725 | * the image avoiding these pages | ||
726 | */ | ||
727 | |||
728 | static int create_image(struct snapshot_handle *handle) | ||
729 | { | ||
730 | int error = 0; | ||
731 | struct pbe *p, *pblist; | ||
732 | |||
733 | p = pagedir_nosave; | ||
734 | error = mark_unsafe_pages(p); | ||
735 | if (!error) { | ||
736 | pblist = alloc_pagedir(nr_copy_pages, GFP_ATOMIC, 1); | ||
737 | if (pblist) | ||
738 | copy_page_backup_list(pblist, p); | ||
739 | free_pagedir(p); | ||
740 | if (!pblist) | ||
741 | error = -ENOMEM; | ||
742 | } | ||
743 | if (!error) | ||
744 | error = alloc_data_pages(pblist, GFP_ATOMIC, 1); | ||
745 | if (!error) { | ||
746 | release_eaten_pages(); | ||
747 | pagedir_nosave = pblist; | ||
748 | } else { | ||
749 | pagedir_nosave = NULL; | ||
750 | handle->pbe = NULL; | ||
751 | nr_copy_pages = 0; | ||
752 | nr_meta_pages = 0; | ||
753 | } | ||
754 | return error; | ||
755 | } | ||
756 | |||
757 | /** | ||
758 | * snapshot_write_next - used for writing the system memory snapshot. | ||
759 | * | ||
760 | * On the first call to it @handle should point to a zeroed | ||
761 | * snapshot_handle structure. The structure gets updated and a pointer | ||
762 | * to it should be passed to this function every next time. | ||
763 | * | ||
764 | * The @count parameter should contain the number of bytes the caller | ||
765 | * wants to write to the image. It must not be zero. | ||
766 | * | ||
767 | * On success the function returns a positive number. Then, the caller | ||
768 | * is allowed to write up to the returned number of bytes to the memory | ||
769 | * location computed by the data_of() macro. The number returned | ||
770 | * may be smaller than @count, but this only happens if the write would | ||
771 | * cross a page boundary otherwise. | ||
772 | * | ||
773 | * The function returns 0 to indicate the "end of file" condition, | ||
774 | * and a negative number is returned on error. In such cases the | ||
775 | * structure pointed to by @handle is not updated and should not be used | ||
776 | * any more. | ||
777 | */ | ||
778 | |||
779 | int snapshot_write_next(struct snapshot_handle *handle, size_t count) | ||
780 | { | ||
781 | int error = 0; | ||
782 | |||
783 | if (handle->prev && handle->page > nr_meta_pages + nr_copy_pages) | ||
784 | return 0; | ||
785 | if (!buffer) { | ||
786 | /* This makes the buffer be freed by swsusp_free() */ | ||
787 | buffer = alloc_image_page(GFP_ATOMIC, 0); | ||
788 | if (!buffer) | ||
789 | return -ENOMEM; | ||
790 | } | ||
791 | if (!handle->offset) | ||
792 | handle->buffer = buffer; | ||
793 | if (handle->prev < handle->page) { | ||
794 | if (!handle->prev) { | ||
795 | error = load_header(handle, (struct swsusp_info *)buffer); | ||
796 | if (error) | ||
797 | return error; | ||
798 | } else if (handle->prev <= nr_meta_pages) { | ||
799 | handle->pbe = unpack_orig_addresses(buffer, handle->pbe); | ||
800 | if (!handle->pbe) { | ||
801 | error = create_image(handle); | ||
802 | if (error) | ||
803 | return error; | ||
804 | handle->pbe = pagedir_nosave; | ||
805 | handle->buffer = (void *)handle->pbe->address; | ||
806 | } | ||
807 | } else { | ||
808 | handle->pbe = handle->pbe->next; | ||
809 | handle->buffer = (void *)handle->pbe->address; | ||
810 | } | ||
811 | handle->prev = handle->page; | ||
812 | } | ||
813 | handle->buf_offset = handle->page_offset; | ||
814 | if (handle->page_offset + count >= PAGE_SIZE) { | ||
815 | count = PAGE_SIZE - handle->page_offset; | ||
816 | handle->page_offset = 0; | ||
817 | handle->page++; | ||
818 | } else { | ||
819 | handle->page_offset += count; | ||
820 | } | ||
821 | handle->offset += count; | ||
822 | return count; | ||
823 | } | ||
824 | |||
825 | int snapshot_image_loaded(struct snapshot_handle *handle) | ||
826 | { | ||
827 | return !(!handle->pbe || handle->pbe->next || !nr_copy_pages || | ||
828 | handle->page <= nr_meta_pages + nr_copy_pages); | ||
829 | } | ||
diff --git a/kernel/power/swap.c b/kernel/power/swap.c new file mode 100644 index 0000000000..044b8e0c10 --- /dev/null +++ b/kernel/power/swap.c | |||
@@ -0,0 +1,545 @@ | |||
1 | /* | ||
2 | * linux/kernel/power/swap.c | ||
3 | * | ||
4 | * This file provides functions for reading the suspend image from | ||
5 | * and writing it to a swap partition. | ||
6 | * | ||
7 | * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@suse.cz> | ||
8 | * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl> | ||
9 | * | ||
10 | * This file is released under the GPLv2. | ||
11 | * | ||
12 | */ | ||
13 | |||
14 | #include <linux/module.h> | ||
15 | #include <linux/smp_lock.h> | ||
16 | #include <linux/file.h> | ||
17 | #include <linux/utsname.h> | ||
18 | #include <linux/version.h> | ||
19 | #include <linux/delay.h> | ||
20 | #include <linux/bitops.h> | ||
21 | #include <linux/genhd.h> | ||
22 | #include <linux/device.h> | ||
23 | #include <linux/buffer_head.h> | ||
24 | #include <linux/bio.h> | ||
25 | #include <linux/swap.h> | ||
26 | #include <linux/swapops.h> | ||
27 | #include <linux/pm.h> | ||
28 | |||
29 | #include "power.h" | ||
30 | |||
31 | extern char resume_file[]; | ||
32 | |||
33 | #define SWSUSP_SIG "S1SUSPEND" | ||
34 | |||
35 | static struct swsusp_header { | ||
36 | char reserved[PAGE_SIZE - 20 - sizeof(swp_entry_t)]; | ||
37 | swp_entry_t image; | ||
38 | char orig_sig[10]; | ||
39 | char sig[10]; | ||
40 | } __attribute__((packed, aligned(PAGE_SIZE))) swsusp_header; | ||
41 | |||
42 | /* | ||
43 | * Saving part... | ||
44 | */ | ||
45 | |||
46 | static unsigned short root_swap = 0xffff; | ||
47 | |||
48 | static int mark_swapfiles(swp_entry_t start) | ||
49 | { | ||
50 | int error; | ||
51 | |||
52 | rw_swap_page_sync(READ, | ||
53 | swp_entry(root_swap, 0), | ||
54 | virt_to_page((unsigned long)&swsusp_header)); | ||
55 | if (!memcmp("SWAP-SPACE",swsusp_header.sig, 10) || | ||
56 | !memcmp("SWAPSPACE2",swsusp_header.sig, 10)) { | ||
57 | memcpy(swsusp_header.orig_sig,swsusp_header.sig, 10); | ||
58 | memcpy(swsusp_header.sig,SWSUSP_SIG, 10); | ||
59 | swsusp_header.image = start; | ||
60 | error = rw_swap_page_sync(WRITE, | ||
61 | swp_entry(root_swap, 0), | ||
62 | virt_to_page((unsigned long) | ||
63 | &swsusp_header)); | ||
64 | } else { | ||
65 | pr_debug("swsusp: Partition is not swap space.\n"); | ||
66 | error = -ENODEV; | ||
67 | } | ||
68 | return error; | ||
69 | } | ||
70 | |||
71 | /** | ||
72 | * swsusp_swap_check - check if the resume device is a swap device | ||
73 | * and get its index (if so) | ||
74 | */ | ||
75 | |||
76 | static int swsusp_swap_check(void) /* This is called before saving image */ | ||
77 | { | ||
78 | int res = swap_type_of(swsusp_resume_device); | ||
79 | |||
80 | if (res >= 0) { | ||
81 | root_swap = res; | ||
82 | return 0; | ||
83 | } | ||
84 | return res; | ||
85 | } | ||
86 | |||
87 | /** | ||
88 | * write_page - Write one page to given swap location. | ||
89 | * @buf: Address we're writing. | ||
90 | * @offset: Offset of the swap page we're writing to. | ||
91 | */ | ||
92 | |||
93 | static int write_page(void *buf, unsigned long offset) | ||
94 | { | ||
95 | swp_entry_t entry; | ||
96 | int error = -ENOSPC; | ||
97 | |||
98 | if (offset) { | ||
99 | entry = swp_entry(root_swap, offset); | ||
100 | error = rw_swap_page_sync(WRITE, entry, virt_to_page(buf)); | ||
101 | } | ||
102 | return error; | ||
103 | } | ||
104 | |||
105 | /* | ||
106 | * The swap map is a data structure used for keeping track of each page | ||
107 | * written to a swap partition. It consists of many swap_map_page | ||
108 | * structures that contain each an array of MAP_PAGE_SIZE swap entries. | ||
109 | * These structures are stored on the swap and linked together with the | ||
110 | * help of the .next_swap member. | ||
111 | * | ||
112 | * The swap map is created during suspend. The swap map pages are | ||
113 | * allocated and populated one at a time, so we only need one memory | ||
114 | * page to set up the entire structure. | ||
115 | * | ||
116 | * During resume we also only need to use one swap_map_page structure | ||
117 | * at a time. | ||
118 | */ | ||
119 | |||
120 | #define MAP_PAGE_ENTRIES (PAGE_SIZE / sizeof(long) - 1) | ||
121 | |||
122 | struct swap_map_page { | ||
123 | unsigned long entries[MAP_PAGE_ENTRIES]; | ||
124 | unsigned long next_swap; | ||
125 | }; | ||
126 | |||
127 | /** | ||
128 | * The swap_map_handle structure is used for handling swap in | ||
129 | * a file-alike way | ||
130 | */ | ||
131 | |||
132 | struct swap_map_handle { | ||
133 | struct swap_map_page *cur; | ||
134 | unsigned long cur_swap; | ||
135 | struct bitmap_page *bitmap; | ||
136 | unsigned int k; | ||
137 | }; | ||
138 | |||
139 | static void release_swap_writer(struct swap_map_handle *handle) | ||
140 | { | ||
141 | if (handle->cur) | ||
142 | free_page((unsigned long)handle->cur); | ||
143 | handle->cur = NULL; | ||
144 | if (handle->bitmap) | ||
145 | free_bitmap(handle->bitmap); | ||
146 | handle->bitmap = NULL; | ||
147 | } | ||
148 | |||
149 | static int get_swap_writer(struct swap_map_handle *handle) | ||
150 | { | ||
151 | handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL); | ||
152 | if (!handle->cur) | ||
153 | return -ENOMEM; | ||
154 | handle->bitmap = alloc_bitmap(count_swap_pages(root_swap, 0)); | ||
155 | if (!handle->bitmap) { | ||
156 | release_swap_writer(handle); | ||
157 | return -ENOMEM; | ||
158 | } | ||
159 | handle->cur_swap = alloc_swap_page(root_swap, handle->bitmap); | ||
160 | if (!handle->cur_swap) { | ||
161 | release_swap_writer(handle); | ||
162 | return -ENOSPC; | ||
163 | } | ||
164 | handle->k = 0; | ||
165 | return 0; | ||
166 | } | ||
167 | |||
168 | static int swap_write_page(struct swap_map_handle *handle, void *buf) | ||
169 | { | ||
170 | int error; | ||
171 | unsigned long offset; | ||
172 | |||
173 | if (!handle->cur) | ||
174 | return -EINVAL; | ||
175 | offset = alloc_swap_page(root_swap, handle->bitmap); | ||
176 | error = write_page(buf, offset); | ||
177 | if (error) | ||
178 | return error; | ||
179 | handle->cur->entries[handle->k++] = offset; | ||
180 | if (handle->k >= MAP_PAGE_ENTRIES) { | ||
181 | offset = alloc_swap_page(root_swap, handle->bitmap); | ||
182 | if (!offset) | ||
183 | return -ENOSPC; | ||
184 | handle->cur->next_swap = offset; | ||
185 | error = write_page(handle->cur, handle->cur_swap); | ||
186 | if (error) | ||
187 | return error; | ||
188 | memset(handle->cur, 0, PAGE_SIZE); | ||
189 | handle->cur_swap = offset; | ||
190 | handle->k = 0; | ||
191 | } | ||
192 | return 0; | ||
193 | } | ||
194 | |||
195 | static int flush_swap_writer(struct swap_map_handle *handle) | ||
196 | { | ||
197 | if (handle->cur && handle->cur_swap) | ||
198 | return write_page(handle->cur, handle->cur_swap); | ||
199 | else | ||
200 | return -EINVAL; | ||
201 | } | ||
202 | |||
203 | /** | ||
204 | * save_image - save the suspend image data | ||
205 | */ | ||
206 | |||
207 | static int save_image(struct swap_map_handle *handle, | ||
208 | struct snapshot_handle *snapshot, | ||
209 | unsigned int nr_pages) | ||
210 | { | ||
211 | unsigned int m; | ||
212 | int ret; | ||
213 | int error = 0; | ||
214 | |||
215 | printk("Saving image data pages (%u pages) ... ", nr_pages); | ||
216 | m = nr_pages / 100; | ||
217 | if (!m) | ||
218 | m = 1; | ||
219 | nr_pages = 0; | ||
220 | do { | ||
221 | ret = snapshot_read_next(snapshot, PAGE_SIZE); | ||
222 | if (ret > 0) { | ||
223 | error = swap_write_page(handle, data_of(*snapshot)); | ||
224 | if (error) | ||
225 | break; | ||
226 | if (!(nr_pages % m)) | ||
227 | printk("\b\b\b\b%3d%%", nr_pages / m); | ||
228 | nr_pages++; | ||
229 | } | ||
230 | } while (ret > 0); | ||
231 | if (!error) | ||
232 | printk("\b\b\b\bdone\n"); | ||
233 | return error; | ||
234 | } | ||
235 | |||
236 | /** | ||
237 | * enough_swap - Make sure we have enough swap to save the image. | ||
238 | * | ||
239 | * Returns TRUE or FALSE after checking the total amount of swap | ||
240 | * space avaiable from the resume partition. | ||
241 | */ | ||
242 | |||
243 | static int enough_swap(unsigned int nr_pages) | ||
244 | { | ||
245 | unsigned int free_swap = count_swap_pages(root_swap, 1); | ||
246 | |||
247 | pr_debug("swsusp: free swap pages: %u\n", free_swap); | ||
248 | return free_swap > (nr_pages + PAGES_FOR_IO + | ||
249 | (nr_pages + PBES_PER_PAGE - 1) / PBES_PER_PAGE); | ||
250 | } | ||
251 | |||
252 | /** | ||
253 | * swsusp_write - Write entire image and metadata. | ||
254 | * | ||
255 | * It is important _NOT_ to umount filesystems at this point. We want | ||
256 | * them synced (in case something goes wrong) but we DO not want to mark | ||
257 | * filesystem clean: it is not. (And it does not matter, if we resume | ||
258 | * correctly, we'll mark system clean, anyway.) | ||
259 | */ | ||
260 | |||
261 | int swsusp_write(void) | ||
262 | { | ||
263 | struct swap_map_handle handle; | ||
264 | struct snapshot_handle snapshot; | ||
265 | struct swsusp_info *header; | ||
266 | unsigned long start; | ||
267 | int error; | ||
268 | |||
269 | if ((error = swsusp_swap_check())) { | ||
270 | printk(KERN_ERR "swsusp: Cannot find swap device, try swapon -a.\n"); | ||
271 | return error; | ||
272 | } | ||
273 | memset(&snapshot, 0, sizeof(struct snapshot_handle)); | ||
274 | error = snapshot_read_next(&snapshot, PAGE_SIZE); | ||
275 | if (error < PAGE_SIZE) | ||
276 | return error < 0 ? error : -EFAULT; | ||
277 | header = (struct swsusp_info *)data_of(snapshot); | ||
278 | if (!enough_swap(header->pages)) { | ||
279 | printk(KERN_ERR "swsusp: Not enough free swap\n"); | ||
280 | return -ENOSPC; | ||
281 | } | ||
282 | error = get_swap_writer(&handle); | ||
283 | if (!error) { | ||
284 | start = handle.cur_swap; | ||
285 | error = swap_write_page(&handle, header); | ||
286 | } | ||
287 | if (!error) | ||
288 | error = save_image(&handle, &snapshot, header->pages - 1); | ||
289 | if (!error) { | ||
290 | flush_swap_writer(&handle); | ||
291 | printk("S"); | ||
292 | error = mark_swapfiles(swp_entry(root_swap, start)); | ||
293 | printk("|\n"); | ||
294 | } | ||
295 | if (error) | ||
296 | free_all_swap_pages(root_swap, handle.bitmap); | ||
297 | release_swap_writer(&handle); | ||
298 | return error; | ||
299 | } | ||
300 | |||
301 | /* | ||
302 | * Using bio to read from swap. | ||
303 | * This code requires a bit more work than just using buffer heads | ||
304 | * but, it is the recommended way for 2.5/2.6. | ||
305 | * The following are to signal the beginning and end of I/O. Bios | ||
306 | * finish asynchronously, while we want them to happen synchronously. | ||
307 | * A simple atomic_t, and a wait loop take care of this problem. | ||
308 | */ | ||
309 | |||
310 | static atomic_t io_done = ATOMIC_INIT(0); | ||
311 | |||
312 | static int end_io(struct bio *bio, unsigned int num, int err) | ||
313 | { | ||
314 | if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) | ||
315 | panic("I/O error reading memory image"); | ||
316 | atomic_set(&io_done, 0); | ||
317 | return 0; | ||
318 | } | ||
319 | |||
320 | static struct block_device *resume_bdev; | ||
321 | |||
322 | /** | ||
323 | * submit - submit BIO request. | ||
324 | * @rw: READ or WRITE. | ||
325 | * @off physical offset of page. | ||
326 | * @page: page we're reading or writing. | ||
327 | * | ||
328 | * Straight from the textbook - allocate and initialize the bio. | ||
329 | * If we're writing, make sure the page is marked as dirty. | ||
330 | * Then submit it and wait. | ||
331 | */ | ||
332 | |||
333 | static int submit(int rw, pgoff_t page_off, void *page) | ||
334 | { | ||
335 | int error = 0; | ||
336 | struct bio *bio; | ||
337 | |||
338 | bio = bio_alloc(GFP_ATOMIC, 1); | ||
339 | if (!bio) | ||
340 | return -ENOMEM; | ||
341 | bio->bi_sector = page_off * (PAGE_SIZE >> 9); | ||
342 | bio->bi_bdev = resume_bdev; | ||
343 | bio->bi_end_io = end_io; | ||
344 | |||
345 | if (bio_add_page(bio, virt_to_page(page), PAGE_SIZE, 0) < PAGE_SIZE) { | ||
346 | printk("swsusp: ERROR: adding page to bio at %ld\n",page_off); | ||
347 | error = -EFAULT; | ||
348 | goto Done; | ||
349 | } | ||
350 | |||
351 | atomic_set(&io_done, 1); | ||
352 | submit_bio(rw | (1 << BIO_RW_SYNC), bio); | ||
353 | while (atomic_read(&io_done)) | ||
354 | yield(); | ||
355 | if (rw == READ) | ||
356 | bio_set_pages_dirty(bio); | ||
357 | Done: | ||
358 | bio_put(bio); | ||
359 | return error; | ||
360 | } | ||
361 | |||
362 | static int bio_read_page(pgoff_t page_off, void *page) | ||
363 | { | ||
364 | return submit(READ, page_off, page); | ||
365 | } | ||
366 | |||
367 | static int bio_write_page(pgoff_t page_off, void *page) | ||
368 | { | ||
369 | return submit(WRITE, page_off, page); | ||
370 | } | ||
371 | |||
372 | /** | ||
373 | * The following functions allow us to read data using a swap map | ||
374 | * in a file-alike way | ||
375 | */ | ||
376 | |||
377 | static void release_swap_reader(struct swap_map_handle *handle) | ||
378 | { | ||
379 | if (handle->cur) | ||
380 | free_page((unsigned long)handle->cur); | ||
381 | handle->cur = NULL; | ||
382 | } | ||
383 | |||
384 | static int get_swap_reader(struct swap_map_handle *handle, | ||
385 | swp_entry_t start) | ||
386 | { | ||
387 | int error; | ||
388 | |||
389 | if (!swp_offset(start)) | ||
390 | return -EINVAL; | ||
391 | handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_ATOMIC); | ||
392 | if (!handle->cur) | ||
393 | return -ENOMEM; | ||
394 | error = bio_read_page(swp_offset(start), handle->cur); | ||
395 | if (error) { | ||
396 | release_swap_reader(handle); | ||
397 | return error; | ||
398 | } | ||
399 | handle->k = 0; | ||
400 | return 0; | ||
401 | } | ||
402 | |||
403 | static int swap_read_page(struct swap_map_handle *handle, void *buf) | ||
404 | { | ||
405 | unsigned long offset; | ||
406 | int error; | ||
407 | |||
408 | if (!handle->cur) | ||
409 | return -EINVAL; | ||
410 | offset = handle->cur->entries[handle->k]; | ||
411 | if (!offset) | ||
412 | return -EFAULT; | ||
413 | error = bio_read_page(offset, buf); | ||
414 | if (error) | ||
415 | return error; | ||
416 | if (++handle->k >= MAP_PAGE_ENTRIES) { | ||
417 | handle->k = 0; | ||
418 | offset = handle->cur->next_swap; | ||
419 | if (!offset) | ||
420 | release_swap_reader(handle); | ||
421 | else | ||
422 | error = bio_read_page(offset, handle->cur); | ||
423 | } | ||
424 | return error; | ||
425 | } | ||
426 | |||
427 | /** | ||
428 | * load_image - load the image using the swap map handle | ||
429 | * @handle and the snapshot handle @snapshot | ||
430 | * (assume there are @nr_pages pages to load) | ||
431 | */ | ||
432 | |||
433 | static int load_image(struct swap_map_handle *handle, | ||
434 | struct snapshot_handle *snapshot, | ||
435 | unsigned int nr_pages) | ||
436 | { | ||
437 | unsigned int m; | ||
438 | int ret; | ||
439 | int error = 0; | ||
440 | |||
441 | printk("Loading image data pages (%u pages) ... ", nr_pages); | ||
442 | m = nr_pages / 100; | ||
443 | if (!m) | ||
444 | m = 1; | ||
445 | nr_pages = 0; | ||
446 | do { | ||
447 | ret = snapshot_write_next(snapshot, PAGE_SIZE); | ||
448 | if (ret > 0) { | ||
449 | error = swap_read_page(handle, data_of(*snapshot)); | ||
450 | if (error) | ||
451 | break; | ||
452 | if (!(nr_pages % m)) | ||
453 | printk("\b\b\b\b%3d%%", nr_pages / m); | ||
454 | nr_pages++; | ||
455 | } | ||
456 | } while (ret > 0); | ||
457 | if (!error) { | ||
458 | printk("\b\b\b\bdone\n"); | ||
459 | if (!snapshot_image_loaded(snapshot)) | ||
460 | error = -ENODATA; | ||
461 | } | ||
462 | return error; | ||
463 | } | ||
464 | |||
465 | int swsusp_read(void) | ||
466 | { | ||
467 | int error; | ||
468 | struct swap_map_handle handle; | ||
469 | struct snapshot_handle snapshot; | ||
470 | struct swsusp_info *header; | ||
471 | |||
472 | if (IS_ERR(resume_bdev)) { | ||
473 | pr_debug("swsusp: block device not initialised\n"); | ||
474 | return PTR_ERR(resume_bdev); | ||
475 | } | ||
476 | |||
477 | memset(&snapshot, 0, sizeof(struct snapshot_handle)); | ||
478 | error = snapshot_write_next(&snapshot, PAGE_SIZE); | ||
479 | if (error < PAGE_SIZE) | ||
480 | return error < 0 ? error : -EFAULT; | ||
481 | header = (struct swsusp_info *)data_of(snapshot); | ||
482 | error = get_swap_reader(&handle, swsusp_header.image); | ||
483 | if (!error) | ||
484 | error = swap_read_page(&handle, header); | ||
485 | if (!error) | ||
486 | error = load_image(&handle, &snapshot, header->pages - 1); | ||
487 | release_swap_reader(&handle); | ||
488 | |||
489 | blkdev_put(resume_bdev); | ||
490 | |||
491 | if (!error) | ||
492 | pr_debug("swsusp: Reading resume file was successful\n"); | ||
493 | else | ||
494 | pr_debug("swsusp: Error %d resuming\n", error); | ||
495 | return error; | ||
496 | } | ||
497 | |||
498 | /** | ||
499 | * swsusp_check - Check for swsusp signature in the resume device | ||
500 | */ | ||
501 | |||
502 | int swsusp_check(void) | ||
503 | { | ||
504 | int error; | ||
505 | |||
506 | resume_bdev = open_by_devnum(swsusp_resume_device, FMODE_READ); | ||
507 | if (!IS_ERR(resume_bdev)) { | ||
508 | set_blocksize(resume_bdev, PAGE_SIZE); | ||
509 | memset(&swsusp_header, 0, sizeof(swsusp_header)); | ||
510 | if ((error = bio_read_page(0, &swsusp_header))) | ||
511 | return error; | ||
512 | if (!memcmp(SWSUSP_SIG, swsusp_header.sig, 10)) { | ||
513 | memcpy(swsusp_header.sig, swsusp_header.orig_sig, 10); | ||
514 | /* Reset swap signature now */ | ||
515 | error = bio_write_page(0, &swsusp_header); | ||
516 | } else { | ||
517 | return -EINVAL; | ||
518 | } | ||
519 | if (error) | ||
520 | blkdev_put(resume_bdev); | ||
521 | else | ||
522 | pr_debug("swsusp: Signature found, resuming\n"); | ||
523 | } else { | ||
524 | error = PTR_ERR(resume_bdev); | ||
525 | } | ||
526 | |||
527 | if (error) | ||
528 | pr_debug("swsusp: Error %d check for resume file\n", error); | ||
529 | |||
530 | return error; | ||
531 | } | ||
532 | |||
533 | /** | ||
534 | * swsusp_close - close swap device. | ||
535 | */ | ||
536 | |||
537 | void swsusp_close(void) | ||
538 | { | ||
539 | if (IS_ERR(resume_bdev)) { | ||
540 | pr_debug("swsusp: block device not initialised\n"); | ||
541 | return; | ||
542 | } | ||
543 | |||
544 | blkdev_put(resume_bdev); | ||
545 | } | ||
diff --git a/kernel/power/swsusp.c b/kernel/power/swsusp.c index 2d9d08f72f..c4016cbbd3 100644 --- a/kernel/power/swsusp.c +++ b/kernel/power/swsusp.c | |||
@@ -31,41 +31,24 @@ | |||
31 | * Fixed runaway init | 31 | * Fixed runaway init |
32 | * | 32 | * |
33 | * Rafael J. Wysocki <rjw@sisk.pl> | 33 | * Rafael J. Wysocki <rjw@sisk.pl> |
34 | * Added the swap map data structure and reworked the handling of swap | 34 | * Reworked the freeing of memory and the handling of swap |
35 | * | 35 | * |
36 | * More state savers are welcome. Especially for the scsi layer... | 36 | * More state savers are welcome. Especially for the scsi layer... |
37 | * | 37 | * |
38 | * For TODOs,FIXMEs also look in Documentation/power/swsusp.txt | 38 | * For TODOs,FIXMEs also look in Documentation/power/swsusp.txt |
39 | */ | 39 | */ |
40 | 40 | ||
41 | #include <linux/module.h> | ||
42 | #include <linux/mm.h> | 41 | #include <linux/mm.h> |
43 | #include <linux/suspend.h> | 42 | #include <linux/suspend.h> |
44 | #include <linux/smp_lock.h> | ||
45 | #include <linux/file.h> | ||
46 | #include <linux/utsname.h> | ||
47 | #include <linux/version.h> | ||
48 | #include <linux/delay.h> | ||
49 | #include <linux/bitops.h> | ||
50 | #include <linux/spinlock.h> | 43 | #include <linux/spinlock.h> |
51 | #include <linux/genhd.h> | ||
52 | #include <linux/kernel.h> | 44 | #include <linux/kernel.h> |
53 | #include <linux/major.h> | 45 | #include <linux/major.h> |
54 | #include <linux/swap.h> | 46 | #include <linux/swap.h> |
55 | #include <linux/pm.h> | 47 | #include <linux/pm.h> |
56 | #include <linux/device.h> | ||
57 | #include <linux/buffer_head.h> | ||
58 | #include <linux/swapops.h> | 48 | #include <linux/swapops.h> |
59 | #include <linux/bootmem.h> | 49 | #include <linux/bootmem.h> |
60 | #include <linux/syscalls.h> | 50 | #include <linux/syscalls.h> |
61 | #include <linux/highmem.h> | 51 | #include <linux/highmem.h> |
62 | #include <linux/bio.h> | ||
63 | |||
64 | #include <asm/uaccess.h> | ||
65 | #include <asm/mmu_context.h> | ||
66 | #include <asm/pgtable.h> | ||
67 | #include <asm/tlbflush.h> | ||
68 | #include <asm/io.h> | ||
69 | 52 | ||
70 | #include "power.h" | 53 | #include "power.h" |
71 | 54 | ||
@@ -77,6 +60,8 @@ | |||
77 | */ | 60 | */ |
78 | unsigned long image_size = 500 * 1024 * 1024; | 61 | unsigned long image_size = 500 * 1024 * 1024; |
79 | 62 | ||
63 | int in_suspend __nosavedata = 0; | ||
64 | |||
80 | #ifdef CONFIG_HIGHMEM | 65 | #ifdef CONFIG_HIGHMEM |
81 | unsigned int count_highmem_pages(void); | 66 | unsigned int count_highmem_pages(void); |
82 | int save_highmem(void); | 67 | int save_highmem(void); |
@@ -87,471 +72,97 @@ static int restore_highmem(void) { return 0; } | |||
87 | static unsigned int count_highmem_pages(void) { return 0; } | 72 | static unsigned int count_highmem_pages(void) { return 0; } |
88 | #endif | 73 | #endif |
89 | 74 | ||
90 | extern char resume_file[]; | ||
91 | |||
92 | #define SWSUSP_SIG "S1SUSPEND" | ||
93 | |||
94 | static struct swsusp_header { | ||
95 | char reserved[PAGE_SIZE - 20 - sizeof(swp_entry_t)]; | ||
96 | swp_entry_t image; | ||
97 | char orig_sig[10]; | ||
98 | char sig[10]; | ||
99 | } __attribute__((packed, aligned(PAGE_SIZE))) swsusp_header; | ||
100 | |||
101 | static struct swsusp_info swsusp_info; | ||
102 | |||
103 | /* | ||
104 | * Saving part... | ||
105 | */ | ||
106 | |||
107 | static unsigned short root_swap = 0xffff; | ||
108 | |||
109 | static int mark_swapfiles(swp_entry_t start) | ||
110 | { | ||
111 | int error; | ||
112 | |||
113 | rw_swap_page_sync(READ, | ||
114 | swp_entry(root_swap, 0), | ||
115 | virt_to_page((unsigned long)&swsusp_header)); | ||
116 | if (!memcmp("SWAP-SPACE",swsusp_header.sig, 10) || | ||
117 | !memcmp("SWAPSPACE2",swsusp_header.sig, 10)) { | ||
118 | memcpy(swsusp_header.orig_sig,swsusp_header.sig, 10); | ||
119 | memcpy(swsusp_header.sig,SWSUSP_SIG, 10); | ||
120 | swsusp_header.image = start; | ||
121 | error = rw_swap_page_sync(WRITE, | ||
122 | swp_entry(root_swap, 0), | ||
123 | virt_to_page((unsigned long) | ||
124 | &swsusp_header)); | ||
125 | } else { | ||
126 | pr_debug("swsusp: Partition is not swap space.\n"); | ||
127 | error = -ENODEV; | ||
128 | } | ||
129 | return error; | ||
130 | } | ||
131 | |||
132 | /* | ||
133 | * Check whether the swap device is the specified resume | ||
134 | * device, irrespective of whether they are specified by | ||
135 | * identical names. | ||
136 | * | ||
137 | * (Thus, device inode aliasing is allowed. You can say /dev/hda4 | ||
138 | * instead of /dev/ide/host0/bus0/target0/lun0/part4 [if using devfs] | ||
139 | * and they'll be considered the same device. This is *necessary* for | ||
140 | * devfs, since the resume code can only recognize the form /dev/hda4, | ||
141 | * but the suspend code would see the long name.) | ||
142 | */ | ||
143 | static inline int is_resume_device(const struct swap_info_struct *swap_info) | ||
144 | { | ||
145 | struct file *file = swap_info->swap_file; | ||
146 | struct inode *inode = file->f_dentry->d_inode; | ||
147 | |||
148 | return S_ISBLK(inode->i_mode) && | ||
149 | swsusp_resume_device == MKDEV(imajor(inode), iminor(inode)); | ||
150 | } | ||
151 | |||
152 | static int swsusp_swap_check(void) /* This is called before saving image */ | ||
153 | { | ||
154 | int i; | ||
155 | |||
156 | spin_lock(&swap_lock); | ||
157 | for (i = 0; i < MAX_SWAPFILES; i++) { | ||
158 | if (!(swap_info[i].flags & SWP_WRITEOK)) | ||
159 | continue; | ||
160 | if (!swsusp_resume_device || is_resume_device(swap_info + i)) { | ||
161 | spin_unlock(&swap_lock); | ||
162 | root_swap = i; | ||
163 | return 0; | ||
164 | } | ||
165 | } | ||
166 | spin_unlock(&swap_lock); | ||
167 | return -ENODEV; | ||
168 | } | ||
169 | |||
170 | /** | ||
171 | * write_page - Write one page to a fresh swap location. | ||
172 | * @addr: Address we're writing. | ||
173 | * @loc: Place to store the entry we used. | ||
174 | * | ||
175 | * Allocate a new swap entry and 'sync' it. Note we discard -EIO | ||
176 | * errors. That is an artifact left over from swsusp. It did not | ||
177 | * check the return of rw_swap_page_sync() at all, since most pages | ||
178 | * written back to swap would return -EIO. | ||
179 | * This is a partial improvement, since we will at least return other | ||
180 | * errors, though we need to eventually fix the damn code. | ||
181 | */ | ||
182 | static int write_page(unsigned long addr, swp_entry_t *loc) | ||
183 | { | ||
184 | swp_entry_t entry; | ||
185 | int error = -ENOSPC; | ||
186 | |||
187 | entry = get_swap_page_of_type(root_swap); | ||
188 | if (swp_offset(entry)) { | ||
189 | error = rw_swap_page_sync(WRITE, entry, virt_to_page(addr)); | ||
190 | if (!error || error == -EIO) | ||
191 | *loc = entry; | ||
192 | } | ||
193 | return error; | ||
194 | } | ||
195 | |||
196 | /** | 75 | /** |
197 | * Swap map-handling functions | 76 | * The following functions are used for tracing the allocated |
198 | * | 77 | * swap pages, so that they can be freed in case of an error. |
199 | * The swap map is a data structure used for keeping track of each page | ||
200 | * written to the swap. It consists of many swap_map_page structures | ||
201 | * that contain each an array of MAP_PAGE_SIZE swap entries. | ||
202 | * These structures are linked together with the help of either the | ||
203 | * .next (in memory) or the .next_swap (in swap) member. | ||
204 | * | 78 | * |
205 | * The swap map is created during suspend. At that time we need to keep | 79 | * The functions operate on a linked bitmap structure defined |
206 | * it in memory, because we have to free all of the allocated swap | 80 | * in power.h |
207 | * entries if an error occurs. The memory needed is preallocated | ||
208 | * so that we know in advance if there's enough of it. | ||
209 | * | ||
210 | * The first swap_map_page structure is filled with the swap entries that | ||
211 | * correspond to the first MAP_PAGE_SIZE data pages written to swap and | ||
212 | * so on. After the all of the data pages have been written, the order | ||
213 | * of the swap_map_page structures in the map is reversed so that they | ||
214 | * can be read from swap in the original order. This causes the data | ||
215 | * pages to be loaded in exactly the same order in which they have been | ||
216 | * saved. | ||
217 | * | ||
218 | * During resume we only need to use one swap_map_page structure | ||
219 | * at a time, which means that we only need to use two memory pages for | ||
220 | * reading the image - one for reading the swap_map_page structures | ||
221 | * and the second for reading the data pages from swap. | ||
222 | */ | 81 | */ |
223 | 82 | ||
224 | #define MAP_PAGE_SIZE ((PAGE_SIZE - sizeof(swp_entry_t) - sizeof(void *)) \ | 83 | void free_bitmap(struct bitmap_page *bitmap) |
225 | / sizeof(swp_entry_t)) | ||
226 | |||
227 | struct swap_map_page { | ||
228 | swp_entry_t entries[MAP_PAGE_SIZE]; | ||
229 | swp_entry_t next_swap; | ||
230 | struct swap_map_page *next; | ||
231 | }; | ||
232 | |||
233 | static inline void free_swap_map(struct swap_map_page *swap_map) | ||
234 | { | 84 | { |
235 | struct swap_map_page *swp; | 85 | struct bitmap_page *bp; |
236 | 86 | ||
237 | while (swap_map) { | 87 | while (bitmap) { |
238 | swp = swap_map->next; | 88 | bp = bitmap->next; |
239 | free_page((unsigned long)swap_map); | 89 | free_page((unsigned long)bitmap); |
240 | swap_map = swp; | 90 | bitmap = bp; |
241 | } | 91 | } |
242 | } | 92 | } |
243 | 93 | ||
244 | static struct swap_map_page *alloc_swap_map(unsigned int nr_pages) | 94 | struct bitmap_page *alloc_bitmap(unsigned int nr_bits) |
245 | { | 95 | { |
246 | struct swap_map_page *swap_map, *swp; | 96 | struct bitmap_page *bitmap, *bp; |
247 | unsigned n = 0; | 97 | unsigned int n; |
248 | 98 | ||
249 | if (!nr_pages) | 99 | if (!nr_bits) |
250 | return NULL; | 100 | return NULL; |
251 | 101 | ||
252 | pr_debug("alloc_swap_map(): nr_pages = %d\n", nr_pages); | 102 | bitmap = (struct bitmap_page *)get_zeroed_page(GFP_KERNEL); |
253 | swap_map = (struct swap_map_page *)get_zeroed_page(GFP_ATOMIC); | 103 | bp = bitmap; |
254 | swp = swap_map; | 104 | for (n = BITMAP_PAGE_BITS; n < nr_bits; n += BITMAP_PAGE_BITS) { |
255 | for (n = MAP_PAGE_SIZE; n < nr_pages; n += MAP_PAGE_SIZE) { | 105 | bp->next = (struct bitmap_page *)get_zeroed_page(GFP_KERNEL); |
256 | swp->next = (struct swap_map_page *)get_zeroed_page(GFP_ATOMIC); | 106 | bp = bp->next; |
257 | swp = swp->next; | 107 | if (!bp) { |
258 | if (!swp) { | 108 | free_bitmap(bitmap); |
259 | free_swap_map(swap_map); | ||
260 | return NULL; | 109 | return NULL; |
261 | } | 110 | } |
262 | } | 111 | } |
263 | return swap_map; | 112 | return bitmap; |
264 | } | 113 | } |
265 | 114 | ||
266 | /** | 115 | static int bitmap_set(struct bitmap_page *bitmap, unsigned long bit) |
267 | * reverse_swap_map - reverse the order of pages in the swap map | ||
268 | * @swap_map | ||
269 | */ | ||
270 | |||
271 | static inline struct swap_map_page *reverse_swap_map(struct swap_map_page *swap_map) | ||
272 | { | ||
273 | struct swap_map_page *prev, *next; | ||
274 | |||
275 | prev = NULL; | ||
276 | while (swap_map) { | ||
277 | next = swap_map->next; | ||
278 | swap_map->next = prev; | ||
279 | prev = swap_map; | ||
280 | swap_map = next; | ||
281 | } | ||
282 | return prev; | ||
283 | } | ||
284 | |||
285 | /** | ||
286 | * free_swap_map_entries - free the swap entries allocated to store | ||
287 | * the swap map @swap_map (this is only called in case of an error) | ||
288 | */ | ||
289 | static inline void free_swap_map_entries(struct swap_map_page *swap_map) | ||
290 | { | ||
291 | while (swap_map) { | ||
292 | if (swap_map->next_swap.val) | ||
293 | swap_free(swap_map->next_swap); | ||
294 | swap_map = swap_map->next; | ||
295 | } | ||
296 | } | ||
297 | |||
298 | /** | ||
299 | * save_swap_map - save the swap map used for tracing the data pages | ||
300 | * stored in the swap | ||
301 | */ | ||
302 | |||
303 | static int save_swap_map(struct swap_map_page *swap_map, swp_entry_t *start) | ||
304 | { | ||
305 | swp_entry_t entry = (swp_entry_t){0}; | ||
306 | int error; | ||
307 | |||
308 | while (swap_map) { | ||
309 | swap_map->next_swap = entry; | ||
310 | if ((error = write_page((unsigned long)swap_map, &entry))) | ||
311 | return error; | ||
312 | swap_map = swap_map->next; | ||
313 | } | ||
314 | *start = entry; | ||
315 | return 0; | ||
316 | } | ||
317 | |||
318 | /** | ||
319 | * free_image_entries - free the swap entries allocated to store | ||
320 | * the image data pages (this is only called in case of an error) | ||
321 | */ | ||
322 | |||
323 | static inline void free_image_entries(struct swap_map_page *swp) | ||
324 | { | 116 | { |
325 | unsigned k; | 117 | unsigned int n; |
326 | 118 | ||
327 | while (swp) { | 119 | n = BITMAP_PAGE_BITS; |
328 | for (k = 0; k < MAP_PAGE_SIZE; k++) | 120 | while (bitmap && n <= bit) { |
329 | if (swp->entries[k].val) | 121 | n += BITMAP_PAGE_BITS; |
330 | swap_free(swp->entries[k]); | 122 | bitmap = bitmap->next; |
331 | swp = swp->next; | ||
332 | } | 123 | } |
333 | } | 124 | if (!bitmap) |
334 | 125 | return -EINVAL; | |
335 | /** | 126 | n -= BITMAP_PAGE_BITS; |
336 | * The swap_map_handle structure is used for handling the swap map in | 127 | bit -= n; |
337 | * a file-alike way | 128 | n = 0; |
338 | */ | 129 | while (bit >= BITS_PER_CHUNK) { |
339 | 130 | bit -= BITS_PER_CHUNK; | |
340 | struct swap_map_handle { | 131 | n++; |
341 | struct swap_map_page *cur; | ||
342 | unsigned int k; | ||
343 | }; | ||
344 | |||
345 | static inline void init_swap_map_handle(struct swap_map_handle *handle, | ||
346 | struct swap_map_page *map) | ||
347 | { | ||
348 | handle->cur = map; | ||
349 | handle->k = 0; | ||
350 | } | ||
351 | |||
352 | static inline int swap_map_write_page(struct swap_map_handle *handle, | ||
353 | unsigned long addr) | ||
354 | { | ||
355 | int error; | ||
356 | |||
357 | error = write_page(addr, handle->cur->entries + handle->k); | ||
358 | if (error) | ||
359 | return error; | ||
360 | if (++handle->k >= MAP_PAGE_SIZE) { | ||
361 | handle->cur = handle->cur->next; | ||
362 | handle->k = 0; | ||
363 | } | 132 | } |
133 | bitmap->chunks[n] |= (1UL << bit); | ||
364 | return 0; | 134 | return 0; |
365 | } | 135 | } |
366 | 136 | ||
367 | /** | 137 | unsigned long alloc_swap_page(int swap, struct bitmap_page *bitmap) |
368 | * save_image_data - save the data pages pointed to by the PBEs | ||
369 | * from the list @pblist using the swap map handle @handle | ||
370 | * (assume there are @nr_pages data pages to save) | ||
371 | */ | ||
372 | |||
373 | static int save_image_data(struct pbe *pblist, | ||
374 | struct swap_map_handle *handle, | ||
375 | unsigned int nr_pages) | ||
376 | { | ||
377 | unsigned int m; | ||
378 | struct pbe *p; | ||
379 | int error = 0; | ||
380 | |||
381 | printk("Saving image data pages (%u pages) ... ", nr_pages); | ||
382 | m = nr_pages / 100; | ||
383 | if (!m) | ||
384 | m = 1; | ||
385 | nr_pages = 0; | ||
386 | for_each_pbe (p, pblist) { | ||
387 | error = swap_map_write_page(handle, p->address); | ||
388 | if (error) | ||
389 | break; | ||
390 | if (!(nr_pages % m)) | ||
391 | printk("\b\b\b\b%3d%%", nr_pages / m); | ||
392 | nr_pages++; | ||
393 | } | ||
394 | if (!error) | ||
395 | printk("\b\b\b\bdone\n"); | ||
396 | return error; | ||
397 | } | ||
398 | |||
399 | static void dump_info(void) | ||
400 | { | ||
401 | pr_debug(" swsusp: Version: %u\n",swsusp_info.version_code); | ||
402 | pr_debug(" swsusp: Num Pages: %ld\n",swsusp_info.num_physpages); | ||
403 | pr_debug(" swsusp: UTS Sys: %s\n",swsusp_info.uts.sysname); | ||
404 | pr_debug(" swsusp: UTS Node: %s\n",swsusp_info.uts.nodename); | ||
405 | pr_debug(" swsusp: UTS Release: %s\n",swsusp_info.uts.release); | ||
406 | pr_debug(" swsusp: UTS Version: %s\n",swsusp_info.uts.version); | ||
407 | pr_debug(" swsusp: UTS Machine: %s\n",swsusp_info.uts.machine); | ||
408 | pr_debug(" swsusp: UTS Domain: %s\n",swsusp_info.uts.domainname); | ||
409 | pr_debug(" swsusp: CPUs: %d\n",swsusp_info.cpus); | ||
410 | pr_debug(" swsusp: Image: %ld Pages\n",swsusp_info.image_pages); | ||
411 | pr_debug(" swsusp: Total: %ld Pages\n", swsusp_info.pages); | ||
412 | } | ||
413 | |||
414 | static void init_header(unsigned int nr_pages) | ||
415 | { | ||
416 | memset(&swsusp_info, 0, sizeof(swsusp_info)); | ||
417 | swsusp_info.version_code = LINUX_VERSION_CODE; | ||
418 | swsusp_info.num_physpages = num_physpages; | ||
419 | memcpy(&swsusp_info.uts, &system_utsname, sizeof(system_utsname)); | ||
420 | |||
421 | swsusp_info.cpus = num_online_cpus(); | ||
422 | swsusp_info.image_pages = nr_pages; | ||
423 | swsusp_info.pages = nr_pages + | ||
424 | ((nr_pages * sizeof(long) + PAGE_SIZE - 1) >> PAGE_SHIFT) + 1; | ||
425 | } | ||
426 | |||
427 | /** | ||
428 | * pack_orig_addresses - the .orig_address fields of the PBEs from the | ||
429 | * list starting at @pbe are stored in the array @buf[] (1 page) | ||
430 | */ | ||
431 | |||
432 | static inline struct pbe *pack_orig_addresses(unsigned long *buf, | ||
433 | struct pbe *pbe) | ||
434 | { | ||
435 | int j; | ||
436 | |||
437 | for (j = 0; j < PAGE_SIZE / sizeof(long) && pbe; j++) { | ||
438 | buf[j] = pbe->orig_address; | ||
439 | pbe = pbe->next; | ||
440 | } | ||
441 | if (!pbe) | ||
442 | for (; j < PAGE_SIZE / sizeof(long); j++) | ||
443 | buf[j] = 0; | ||
444 | return pbe; | ||
445 | } | ||
446 | |||
447 | /** | ||
448 | * save_image_metadata - save the .orig_address fields of the PBEs | ||
449 | * from the list @pblist using the swap map handle @handle | ||
450 | */ | ||
451 | |||
452 | static int save_image_metadata(struct pbe *pblist, | ||
453 | struct swap_map_handle *handle) | ||
454 | { | 138 | { |
455 | unsigned long *buf; | 139 | unsigned long offset; |
456 | unsigned int n = 0; | ||
457 | struct pbe *p; | ||
458 | int error = 0; | ||
459 | 140 | ||
460 | printk("Saving image metadata ... "); | 141 | offset = swp_offset(get_swap_page_of_type(swap)); |
461 | buf = (unsigned long *)get_zeroed_page(GFP_ATOMIC); | 142 | if (offset) { |
462 | if (!buf) | 143 | if (bitmap_set(bitmap, offset)) { |
463 | return -ENOMEM; | 144 | swap_free(swp_entry(swap, offset)); |
464 | p = pblist; | 145 | offset = 0; |
465 | while (p) { | 146 | } |
466 | p = pack_orig_addresses(buf, p); | ||
467 | error = swap_map_write_page(handle, (unsigned long)buf); | ||
468 | if (error) | ||
469 | break; | ||
470 | n++; | ||
471 | } | 147 | } |
472 | free_page((unsigned long)buf); | 148 | return offset; |
473 | if (!error) | ||
474 | printk("done (%u pages saved)\n", n); | ||
475 | return error; | ||
476 | } | 149 | } |
477 | 150 | ||
478 | /** | 151 | void free_all_swap_pages(int swap, struct bitmap_page *bitmap) |
479 | * enough_swap - Make sure we have enough swap to save the image. | ||
480 | * | ||
481 | * Returns TRUE or FALSE after checking the total amount of swap | ||
482 | * space avaiable from the resume partition. | ||
483 | */ | ||
484 | |||
485 | static int enough_swap(unsigned int nr_pages) | ||
486 | { | 152 | { |
487 | unsigned int free_swap = swap_info[root_swap].pages - | 153 | unsigned int bit, n; |
488 | swap_info[root_swap].inuse_pages; | 154 | unsigned long test; |
489 | |||
490 | pr_debug("swsusp: free swap pages: %u\n", free_swap); | ||
491 | return free_swap > (nr_pages + PAGES_FOR_IO + | ||
492 | (nr_pages + PBES_PER_PAGE - 1) / PBES_PER_PAGE); | ||
493 | } | ||
494 | 155 | ||
495 | /** | 156 | bit = 0; |
496 | * swsusp_write - Write entire image and metadata. | 157 | while (bitmap) { |
497 | * | 158 | for (n = 0; n < BITMAP_PAGE_CHUNKS; n++) |
498 | * It is important _NOT_ to umount filesystems at this point. We want | 159 | for (test = 1UL; test; test <<= 1) { |
499 | * them synced (in case something goes wrong) but we DO not want to mark | 160 | if (bitmap->chunks[n] & test) |
500 | * filesystem clean: it is not. (And it does not matter, if we resume | 161 | swap_free(swp_entry(swap, bit)); |
501 | * correctly, we'll mark system clean, anyway.) | 162 | bit++; |
502 | */ | 163 | } |
503 | 164 | bitmap = bitmap->next; | |
504 | int swsusp_write(struct pbe *pblist, unsigned int nr_pages) | ||
505 | { | ||
506 | struct swap_map_page *swap_map; | ||
507 | struct swap_map_handle handle; | ||
508 | swp_entry_t start; | ||
509 | int error; | ||
510 | |||
511 | if ((error = swsusp_swap_check())) { | ||
512 | printk(KERN_ERR "swsusp: Cannot find swap device, try swapon -a.\n"); | ||
513 | return error; | ||
514 | } | ||
515 | if (!enough_swap(nr_pages)) { | ||
516 | printk(KERN_ERR "swsusp: Not enough free swap\n"); | ||
517 | return -ENOSPC; | ||
518 | } | 165 | } |
519 | |||
520 | init_header(nr_pages); | ||
521 | swap_map = alloc_swap_map(swsusp_info.pages); | ||
522 | if (!swap_map) | ||
523 | return -ENOMEM; | ||
524 | init_swap_map_handle(&handle, swap_map); | ||
525 | |||
526 | error = swap_map_write_page(&handle, (unsigned long)&swsusp_info); | ||
527 | if (!error) | ||
528 | error = save_image_metadata(pblist, &handle); | ||
529 | if (!error) | ||
530 | error = save_image_data(pblist, &handle, nr_pages); | ||
531 | if (error) | ||
532 | goto Free_image_entries; | ||
533 | |||
534 | swap_map = reverse_swap_map(swap_map); | ||
535 | error = save_swap_map(swap_map, &start); | ||
536 | if (error) | ||
537 | goto Free_map_entries; | ||
538 | |||
539 | dump_info(); | ||
540 | printk( "S" ); | ||
541 | error = mark_swapfiles(start); | ||
542 | printk( "|\n" ); | ||
543 | if (error) | ||
544 | goto Free_map_entries; | ||
545 | |||
546 | Free_swap_map: | ||
547 | free_swap_map(swap_map); | ||
548 | return error; | ||
549 | |||
550 | Free_map_entries: | ||
551 | free_swap_map_entries(swap_map); | ||
552 | Free_image_entries: | ||
553 | free_image_entries(swap_map); | ||
554 | goto Free_swap_map; | ||
555 | } | 166 | } |
556 | 167 | ||
557 | /** | 168 | /** |
@@ -660,379 +271,3 @@ int swsusp_resume(void) | |||
660 | local_irq_enable(); | 271 | local_irq_enable(); |
661 | return error; | 272 | return error; |
662 | } | 273 | } |
663 | |||
664 | /** | ||
665 | * mark_unsafe_pages - mark the pages that cannot be used for storing | ||
666 | * the image during resume, because they conflict with the pages that | ||
667 | * had been used before suspend | ||
668 | */ | ||
669 | |||
670 | static void mark_unsafe_pages(struct pbe *pblist) | ||
671 | { | ||
672 | struct zone *zone; | ||
673 | unsigned long zone_pfn; | ||
674 | struct pbe *p; | ||
675 | |||
676 | if (!pblist) /* a sanity check */ | ||
677 | return; | ||
678 | |||
679 | /* Clear page flags */ | ||
680 | for_each_zone (zone) { | ||
681 | for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) | ||
682 | if (pfn_valid(zone_pfn + zone->zone_start_pfn)) | ||
683 | ClearPageNosaveFree(pfn_to_page(zone_pfn + | ||
684 | zone->zone_start_pfn)); | ||
685 | } | ||
686 | |||
687 | /* Mark orig addresses */ | ||
688 | for_each_pbe (p, pblist) | ||
689 | SetPageNosaveFree(virt_to_page(p->orig_address)); | ||
690 | |||
691 | } | ||
692 | |||
693 | static void copy_page_backup_list(struct pbe *dst, struct pbe *src) | ||
694 | { | ||
695 | /* We assume both lists contain the same number of elements */ | ||
696 | while (src) { | ||
697 | dst->orig_address = src->orig_address; | ||
698 | dst = dst->next; | ||
699 | src = src->next; | ||
700 | } | ||
701 | } | ||
702 | |||
703 | /* | ||
704 | * Using bio to read from swap. | ||
705 | * This code requires a bit more work than just using buffer heads | ||
706 | * but, it is the recommended way for 2.5/2.6. | ||
707 | * The following are to signal the beginning and end of I/O. Bios | ||
708 | * finish asynchronously, while we want them to happen synchronously. | ||
709 | * A simple atomic_t, and a wait loop take care of this problem. | ||
710 | */ | ||
711 | |||
712 | static atomic_t io_done = ATOMIC_INIT(0); | ||
713 | |||
714 | static int end_io(struct bio *bio, unsigned int num, int err) | ||
715 | { | ||
716 | if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) | ||
717 | panic("I/O error reading memory image"); | ||
718 | atomic_set(&io_done, 0); | ||
719 | return 0; | ||
720 | } | ||
721 | |||
722 | static struct block_device *resume_bdev; | ||
723 | |||
724 | /** | ||
725 | * submit - submit BIO request. | ||
726 | * @rw: READ or WRITE. | ||
727 | * @off physical offset of page. | ||
728 | * @page: page we're reading or writing. | ||
729 | * | ||
730 | * Straight from the textbook - allocate and initialize the bio. | ||
731 | * If we're writing, make sure the page is marked as dirty. | ||
732 | * Then submit it and wait. | ||
733 | */ | ||
734 | |||
735 | static int submit(int rw, pgoff_t page_off, void *page) | ||
736 | { | ||
737 | int error = 0; | ||
738 | struct bio *bio; | ||
739 | |||
740 | bio = bio_alloc(GFP_ATOMIC, 1); | ||
741 | if (!bio) | ||
742 | return -ENOMEM; | ||
743 | bio->bi_sector = page_off * (PAGE_SIZE >> 9); | ||
744 | bio->bi_bdev = resume_bdev; | ||
745 | bio->bi_end_io = end_io; | ||
746 | |||
747 | if (bio_add_page(bio, virt_to_page(page), PAGE_SIZE, 0) < PAGE_SIZE) { | ||
748 | printk("swsusp: ERROR: adding page to bio at %ld\n",page_off); | ||
749 | error = -EFAULT; | ||
750 | goto Done; | ||
751 | } | ||
752 | |||
753 | |||
754 | atomic_set(&io_done, 1); | ||
755 | submit_bio(rw | (1 << BIO_RW_SYNC), bio); | ||
756 | while (atomic_read(&io_done)) | ||
757 | yield(); | ||
758 | if (rw == READ) | ||
759 | bio_set_pages_dirty(bio); | ||
760 | Done: | ||
761 | bio_put(bio); | ||
762 | return error; | ||
763 | } | ||
764 | |||
765 | static int bio_read_page(pgoff_t page_off, void *page) | ||
766 | { | ||
767 | return submit(READ, page_off, page); | ||
768 | } | ||
769 | |||
770 | static int bio_write_page(pgoff_t page_off, void *page) | ||
771 | { | ||
772 | return submit(WRITE, page_off, page); | ||
773 | } | ||
774 | |||
775 | /** | ||
776 | * The following functions allow us to read data using a swap map | ||
777 | * in a file-alike way | ||
778 | */ | ||
779 | |||
780 | static inline void release_swap_map_reader(struct swap_map_handle *handle) | ||
781 | { | ||
782 | if (handle->cur) | ||
783 | free_page((unsigned long)handle->cur); | ||
784 | handle->cur = NULL; | ||
785 | } | ||
786 | |||
787 | static inline int get_swap_map_reader(struct swap_map_handle *handle, | ||
788 | swp_entry_t start) | ||
789 | { | ||
790 | int error; | ||
791 | |||
792 | if (!swp_offset(start)) | ||
793 | return -EINVAL; | ||
794 | handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_ATOMIC); | ||
795 | if (!handle->cur) | ||
796 | return -ENOMEM; | ||
797 | error = bio_read_page(swp_offset(start), handle->cur); | ||
798 | if (error) { | ||
799 | release_swap_map_reader(handle); | ||
800 | return error; | ||
801 | } | ||
802 | handle->k = 0; | ||
803 | return 0; | ||
804 | } | ||
805 | |||
806 | static inline int swap_map_read_page(struct swap_map_handle *handle, void *buf) | ||
807 | { | ||
808 | unsigned long offset; | ||
809 | int error; | ||
810 | |||
811 | if (!handle->cur) | ||
812 | return -EINVAL; | ||
813 | offset = swp_offset(handle->cur->entries[handle->k]); | ||
814 | if (!offset) | ||
815 | return -EINVAL; | ||
816 | error = bio_read_page(offset, buf); | ||
817 | if (error) | ||
818 | return error; | ||
819 | if (++handle->k >= MAP_PAGE_SIZE) { | ||
820 | handle->k = 0; | ||
821 | offset = swp_offset(handle->cur->next_swap); | ||
822 | if (!offset) | ||
823 | release_swap_map_reader(handle); | ||
824 | else | ||
825 | error = bio_read_page(offset, handle->cur); | ||
826 | } | ||
827 | return error; | ||
828 | } | ||
829 | |||
830 | static int check_header(void) | ||
831 | { | ||
832 | char *reason = NULL; | ||
833 | |||
834 | dump_info(); | ||
835 | if (swsusp_info.version_code != LINUX_VERSION_CODE) | ||
836 | reason = "kernel version"; | ||
837 | if (swsusp_info.num_physpages != num_physpages) | ||
838 | reason = "memory size"; | ||
839 | if (strcmp(swsusp_info.uts.sysname,system_utsname.sysname)) | ||
840 | reason = "system type"; | ||
841 | if (strcmp(swsusp_info.uts.release,system_utsname.release)) | ||
842 | reason = "kernel release"; | ||
843 | if (strcmp(swsusp_info.uts.version,system_utsname.version)) | ||
844 | reason = "version"; | ||
845 | if (strcmp(swsusp_info.uts.machine,system_utsname.machine)) | ||
846 | reason = "machine"; | ||
847 | if (reason) { | ||
848 | printk(KERN_ERR "swsusp: Resume mismatch: %s\n", reason); | ||
849 | return -EPERM; | ||
850 | } | ||
851 | return 0; | ||
852 | } | ||
853 | |||
854 | /** | ||
855 | * load_image_data - load the image data using the swap map handle | ||
856 | * @handle and store them using the page backup list @pblist | ||
857 | * (assume there are @nr_pages pages to load) | ||
858 | */ | ||
859 | |||
860 | static int load_image_data(struct pbe *pblist, | ||
861 | struct swap_map_handle *handle, | ||
862 | unsigned int nr_pages) | ||
863 | { | ||
864 | int error; | ||
865 | unsigned int m; | ||
866 | struct pbe *p; | ||
867 | |||
868 | if (!pblist) | ||
869 | return -EINVAL; | ||
870 | printk("Loading image data pages (%u pages) ... ", nr_pages); | ||
871 | m = nr_pages / 100; | ||
872 | if (!m) | ||
873 | m = 1; | ||
874 | nr_pages = 0; | ||
875 | p = pblist; | ||
876 | while (p) { | ||
877 | error = swap_map_read_page(handle, (void *)p->address); | ||
878 | if (error) | ||
879 | break; | ||
880 | p = p->next; | ||
881 | if (!(nr_pages % m)) | ||
882 | printk("\b\b\b\b%3d%%", nr_pages / m); | ||
883 | nr_pages++; | ||
884 | } | ||
885 | if (!error) | ||
886 | printk("\b\b\b\bdone\n"); | ||
887 | return error; | ||
888 | } | ||
889 | |||
890 | /** | ||
891 | * unpack_orig_addresses - copy the elements of @buf[] (1 page) to | ||
892 | * the PBEs in the list starting at @pbe | ||
893 | */ | ||
894 | |||
895 | static inline struct pbe *unpack_orig_addresses(unsigned long *buf, | ||
896 | struct pbe *pbe) | ||
897 | { | ||
898 | int j; | ||
899 | |||
900 | for (j = 0; j < PAGE_SIZE / sizeof(long) && pbe; j++) { | ||
901 | pbe->orig_address = buf[j]; | ||
902 | pbe = pbe->next; | ||
903 | } | ||
904 | return pbe; | ||
905 | } | ||
906 | |||
907 | /** | ||
908 | * load_image_metadata - load the image metadata using the swap map | ||
909 | * handle @handle and put them into the PBEs in the list @pblist | ||
910 | */ | ||
911 | |||
912 | static int load_image_metadata(struct pbe *pblist, struct swap_map_handle *handle) | ||
913 | { | ||
914 | struct pbe *p; | ||
915 | unsigned long *buf; | ||
916 | unsigned int n = 0; | ||
917 | int error = 0; | ||
918 | |||
919 | printk("Loading image metadata ... "); | ||
920 | buf = (unsigned long *)get_zeroed_page(GFP_ATOMIC); | ||
921 | if (!buf) | ||
922 | return -ENOMEM; | ||
923 | p = pblist; | ||
924 | while (p) { | ||
925 | error = swap_map_read_page(handle, buf); | ||
926 | if (error) | ||
927 | break; | ||
928 | p = unpack_orig_addresses(buf, p); | ||
929 | n++; | ||
930 | } | ||
931 | free_page((unsigned long)buf); | ||
932 | if (!error) | ||
933 | printk("done (%u pages loaded)\n", n); | ||
934 | return error; | ||
935 | } | ||
936 | |||
937 | int swsusp_read(struct pbe **pblist_ptr) | ||
938 | { | ||
939 | int error; | ||
940 | struct pbe *p, *pblist; | ||
941 | struct swap_map_handle handle; | ||
942 | unsigned int nr_pages; | ||
943 | |||
944 | if (IS_ERR(resume_bdev)) { | ||
945 | pr_debug("swsusp: block device not initialised\n"); | ||
946 | return PTR_ERR(resume_bdev); | ||
947 | } | ||
948 | |||
949 | error = get_swap_map_reader(&handle, swsusp_header.image); | ||
950 | if (!error) | ||
951 | error = swap_map_read_page(&handle, &swsusp_info); | ||
952 | if (!error) | ||
953 | error = check_header(); | ||
954 | if (error) | ||
955 | return error; | ||
956 | nr_pages = swsusp_info.image_pages; | ||
957 | p = alloc_pagedir(nr_pages, GFP_ATOMIC, 0); | ||
958 | if (!p) | ||
959 | return -ENOMEM; | ||
960 | error = load_image_metadata(p, &handle); | ||
961 | if (!error) { | ||
962 | mark_unsafe_pages(p); | ||
963 | pblist = alloc_pagedir(nr_pages, GFP_ATOMIC, 1); | ||
964 | if (pblist) | ||
965 | copy_page_backup_list(pblist, p); | ||
966 | free_pagedir(p); | ||
967 | if (!pblist) | ||
968 | error = -ENOMEM; | ||
969 | |||
970 | /* Allocate memory for the image and read the data from swap */ | ||
971 | if (!error) | ||
972 | error = alloc_data_pages(pblist, GFP_ATOMIC, 1); | ||
973 | if (!error) { | ||
974 | release_eaten_pages(); | ||
975 | error = load_image_data(pblist, &handle, nr_pages); | ||
976 | } | ||
977 | if (!error) | ||
978 | *pblist_ptr = pblist; | ||
979 | } | ||
980 | release_swap_map_reader(&handle); | ||
981 | |||
982 | blkdev_put(resume_bdev); | ||
983 | |||
984 | if (!error) | ||
985 | pr_debug("swsusp: Reading resume file was successful\n"); | ||
986 | else | ||
987 | pr_debug("swsusp: Error %d resuming\n", error); | ||
988 | return error; | ||
989 | } | ||
990 | |||
991 | /** | ||
992 | * swsusp_check - Check for swsusp signature in the resume device | ||
993 | */ | ||
994 | |||
995 | int swsusp_check(void) | ||
996 | { | ||
997 | int error; | ||
998 | |||
999 | resume_bdev = open_by_devnum(swsusp_resume_device, FMODE_READ); | ||
1000 | if (!IS_ERR(resume_bdev)) { | ||
1001 | set_blocksize(resume_bdev, PAGE_SIZE); | ||
1002 | memset(&swsusp_header, 0, sizeof(swsusp_header)); | ||
1003 | if ((error = bio_read_page(0, &swsusp_header))) | ||
1004 | return error; | ||
1005 | if (!memcmp(SWSUSP_SIG, swsusp_header.sig, 10)) { | ||
1006 | memcpy(swsusp_header.sig, swsusp_header.orig_sig, 10); | ||
1007 | /* Reset swap signature now */ | ||
1008 | error = bio_write_page(0, &swsusp_header); | ||
1009 | } else { | ||
1010 | return -EINVAL; | ||
1011 | } | ||
1012 | if (error) | ||
1013 | blkdev_put(resume_bdev); | ||
1014 | else | ||
1015 | pr_debug("swsusp: Signature found, resuming\n"); | ||
1016 | } else { | ||
1017 | error = PTR_ERR(resume_bdev); | ||
1018 | } | ||
1019 | |||
1020 | if (error) | ||
1021 | pr_debug("swsusp: Error %d check for resume file\n", error); | ||
1022 | |||
1023 | return error; | ||
1024 | } | ||
1025 | |||
1026 | /** | ||
1027 | * swsusp_close - close swap device. | ||
1028 | */ | ||
1029 | |||
1030 | void swsusp_close(void) | ||
1031 | { | ||
1032 | if (IS_ERR(resume_bdev)) { | ||
1033 | pr_debug("swsusp: block device not initialised\n"); | ||
1034 | return; | ||
1035 | } | ||
1036 | |||
1037 | blkdev_put(resume_bdev); | ||
1038 | } | ||
diff --git a/kernel/power/user.c b/kernel/power/user.c new file mode 100644 index 0000000000..3f1539fbe4 --- /dev/null +++ b/kernel/power/user.c | |||
@@ -0,0 +1,333 @@ | |||
1 | /* | ||
2 | * linux/kernel/power/user.c | ||
3 | * | ||
4 | * This file provides the user space interface for software suspend/resume. | ||
5 | * | ||
6 | * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl> | ||
7 | * | ||
8 | * This file is released under the GPLv2. | ||
9 | * | ||
10 | */ | ||
11 | |||
12 | #include <linux/suspend.h> | ||
13 | #include <linux/syscalls.h> | ||
14 | #include <linux/string.h> | ||
15 | #include <linux/device.h> | ||
16 | #include <linux/miscdevice.h> | ||
17 | #include <linux/mm.h> | ||
18 | #include <linux/swap.h> | ||
19 | #include <linux/swapops.h> | ||
20 | #include <linux/pm.h> | ||
21 | #include <linux/fs.h> | ||
22 | |||
23 | #include <asm/uaccess.h> | ||
24 | |||
25 | #include "power.h" | ||
26 | |||
27 | #define SNAPSHOT_MINOR 231 | ||
28 | |||
29 | static struct snapshot_data { | ||
30 | struct snapshot_handle handle; | ||
31 | int swap; | ||
32 | struct bitmap_page *bitmap; | ||
33 | int mode; | ||
34 | char frozen; | ||
35 | char ready; | ||
36 | } snapshot_state; | ||
37 | |||
38 | static atomic_t device_available = ATOMIC_INIT(1); | ||
39 | |||
40 | static int snapshot_open(struct inode *inode, struct file *filp) | ||
41 | { | ||
42 | struct snapshot_data *data; | ||
43 | |||
44 | if (!atomic_add_unless(&device_available, -1, 0)) | ||
45 | return -EBUSY; | ||
46 | |||
47 | if ((filp->f_flags & O_ACCMODE) == O_RDWR) | ||
48 | return -ENOSYS; | ||
49 | |||
50 | nonseekable_open(inode, filp); | ||
51 | data = &snapshot_state; | ||
52 | filp->private_data = data; | ||
53 | memset(&data->handle, 0, sizeof(struct snapshot_handle)); | ||
54 | if ((filp->f_flags & O_ACCMODE) == O_RDONLY) { | ||
55 | data->swap = swsusp_resume_device ? swap_type_of(swsusp_resume_device) : -1; | ||
56 | data->mode = O_RDONLY; | ||
57 | } else { | ||
58 | data->swap = -1; | ||
59 | data->mode = O_WRONLY; | ||
60 | } | ||
61 | data->bitmap = NULL; | ||
62 | data->frozen = 0; | ||
63 | data->ready = 0; | ||
64 | |||
65 | return 0; | ||
66 | } | ||
67 | |||
68 | static int snapshot_release(struct inode *inode, struct file *filp) | ||
69 | { | ||
70 | struct snapshot_data *data; | ||
71 | |||
72 | swsusp_free(); | ||
73 | data = filp->private_data; | ||
74 | free_all_swap_pages(data->swap, data->bitmap); | ||
75 | free_bitmap(data->bitmap); | ||
76 | if (data->frozen) { | ||
77 | down(&pm_sem); | ||
78 | thaw_processes(); | ||
79 | enable_nonboot_cpus(); | ||
80 | up(&pm_sem); | ||
81 | } | ||
82 | atomic_inc(&device_available); | ||
83 | return 0; | ||
84 | } | ||
85 | |||
86 | static ssize_t snapshot_read(struct file *filp, char __user *buf, | ||
87 | size_t count, loff_t *offp) | ||
88 | { | ||
89 | struct snapshot_data *data; | ||
90 | ssize_t res; | ||
91 | |||
92 | data = filp->private_data; | ||
93 | res = snapshot_read_next(&data->handle, count); | ||
94 | if (res > 0) { | ||
95 | if (copy_to_user(buf, data_of(data->handle), res)) | ||
96 | res = -EFAULT; | ||
97 | else | ||
98 | *offp = data->handle.offset; | ||
99 | } | ||
100 | return res; | ||
101 | } | ||
102 | |||
103 | static ssize_t snapshot_write(struct file *filp, const char __user *buf, | ||
104 | size_t count, loff_t *offp) | ||
105 | { | ||
106 | struct snapshot_data *data; | ||
107 | ssize_t res; | ||
108 | |||
109 | data = filp->private_data; | ||
110 | res = snapshot_write_next(&data->handle, count); | ||
111 | if (res > 0) { | ||
112 | if (copy_from_user(data_of(data->handle), buf, res)) | ||
113 | res = -EFAULT; | ||
114 | else | ||
115 | *offp = data->handle.offset; | ||
116 | } | ||
117 | return res; | ||
118 | } | ||
119 | |||
120 | static int snapshot_ioctl(struct inode *inode, struct file *filp, | ||
121 | unsigned int cmd, unsigned long arg) | ||
122 | { | ||
123 | int error = 0; | ||
124 | struct snapshot_data *data; | ||
125 | loff_t offset, avail; | ||
126 | |||
127 | if (_IOC_TYPE(cmd) != SNAPSHOT_IOC_MAGIC) | ||
128 | return -ENOTTY; | ||
129 | if (_IOC_NR(cmd) > SNAPSHOT_IOC_MAXNR) | ||
130 | return -ENOTTY; | ||
131 | if (!capable(CAP_SYS_ADMIN)) | ||
132 | return -EPERM; | ||
133 | |||
134 | data = filp->private_data; | ||
135 | |||
136 | switch (cmd) { | ||
137 | |||
138 | case SNAPSHOT_FREEZE: | ||
139 | if (data->frozen) | ||
140 | break; | ||
141 | down(&pm_sem); | ||
142 | disable_nonboot_cpus(); | ||
143 | if (freeze_processes()) { | ||
144 | thaw_processes(); | ||
145 | enable_nonboot_cpus(); | ||
146 | error = -EBUSY; | ||
147 | } | ||
148 | up(&pm_sem); | ||
149 | if (!error) | ||
150 | data->frozen = 1; | ||
151 | break; | ||
152 | |||
153 | case SNAPSHOT_UNFREEZE: | ||
154 | if (!data->frozen) | ||
155 | break; | ||
156 | down(&pm_sem); | ||
157 | thaw_processes(); | ||
158 | enable_nonboot_cpus(); | ||
159 | up(&pm_sem); | ||
160 | data->frozen = 0; | ||
161 | break; | ||
162 | |||
163 | case SNAPSHOT_ATOMIC_SNAPSHOT: | ||
164 | if (data->mode != O_RDONLY || !data->frozen || data->ready) { | ||
165 | error = -EPERM; | ||
166 | break; | ||
167 | } | ||
168 | down(&pm_sem); | ||
169 | /* Free memory before shutting down devices. */ | ||
170 | error = swsusp_shrink_memory(); | ||
171 | if (!error) { | ||
172 | error = device_suspend(PMSG_FREEZE); | ||
173 | if (!error) { | ||
174 | in_suspend = 1; | ||
175 | error = swsusp_suspend(); | ||
176 | device_resume(); | ||
177 | } | ||
178 | } | ||
179 | up(&pm_sem); | ||
180 | if (!error) | ||
181 | error = put_user(in_suspend, (unsigned int __user *)arg); | ||
182 | if (!error) | ||
183 | data->ready = 1; | ||
184 | break; | ||
185 | |||
186 | case SNAPSHOT_ATOMIC_RESTORE: | ||
187 | if (data->mode != O_WRONLY || !data->frozen || | ||
188 | !snapshot_image_loaded(&data->handle)) { | ||
189 | error = -EPERM; | ||
190 | break; | ||
191 | } | ||
192 | down(&pm_sem); | ||
193 | pm_prepare_console(); | ||
194 | error = device_suspend(PMSG_FREEZE); | ||
195 | if (!error) { | ||
196 | error = swsusp_resume(); | ||
197 | device_resume(); | ||
198 | } | ||
199 | pm_restore_console(); | ||
200 | up(&pm_sem); | ||
201 | break; | ||
202 | |||
203 | case SNAPSHOT_FREE: | ||
204 | swsusp_free(); | ||
205 | memset(&data->handle, 0, sizeof(struct snapshot_handle)); | ||
206 | data->ready = 0; | ||
207 | break; | ||
208 | |||
209 | case SNAPSHOT_SET_IMAGE_SIZE: | ||
210 | image_size = arg; | ||
211 | break; | ||
212 | |||
213 | case SNAPSHOT_AVAIL_SWAP: | ||
214 | avail = count_swap_pages(data->swap, 1); | ||
215 | avail <<= PAGE_SHIFT; | ||
216 | error = put_user(avail, (loff_t __user *)arg); | ||
217 | break; | ||
218 | |||
219 | case SNAPSHOT_GET_SWAP_PAGE: | ||
220 | if (data->swap < 0 || data->swap >= MAX_SWAPFILES) { | ||
221 | error = -ENODEV; | ||
222 | break; | ||
223 | } | ||
224 | if (!data->bitmap) { | ||
225 | data->bitmap = alloc_bitmap(count_swap_pages(data->swap, 0)); | ||
226 | if (!data->bitmap) { | ||
227 | error = -ENOMEM; | ||
228 | break; | ||
229 | } | ||
230 | } | ||
231 | offset = alloc_swap_page(data->swap, data->bitmap); | ||
232 | if (offset) { | ||
233 | offset <<= PAGE_SHIFT; | ||
234 | error = put_user(offset, (loff_t __user *)arg); | ||
235 | } else { | ||
236 | error = -ENOSPC; | ||
237 | } | ||
238 | break; | ||
239 | |||
240 | case SNAPSHOT_FREE_SWAP_PAGES: | ||
241 | if (data->swap < 0 || data->swap >= MAX_SWAPFILES) { | ||
242 | error = -ENODEV; | ||
243 | break; | ||
244 | } | ||
245 | free_all_swap_pages(data->swap, data->bitmap); | ||
246 | free_bitmap(data->bitmap); | ||
247 | data->bitmap = NULL; | ||
248 | break; | ||
249 | |||
250 | case SNAPSHOT_SET_SWAP_FILE: | ||
251 | if (!data->bitmap) { | ||
252 | /* | ||
253 | * User space encodes device types as two-byte values, | ||
254 | * so we need to recode them | ||
255 | */ | ||
256 | if (old_decode_dev(arg)) { | ||
257 | data->swap = swap_type_of(old_decode_dev(arg)); | ||
258 | if (data->swap < 0) | ||
259 | error = -ENODEV; | ||
260 | } else { | ||
261 | data->swap = -1; | ||
262 | error = -EINVAL; | ||
263 | } | ||
264 | } else { | ||
265 | error = -EPERM; | ||
266 | } | ||
267 | break; | ||
268 | |||
269 | case SNAPSHOT_S2RAM: | ||
270 | if (!data->frozen) { | ||
271 | error = -EPERM; | ||
272 | break; | ||
273 | } | ||
274 | |||
275 | if (down_trylock(&pm_sem)) { | ||
276 | error = -EBUSY; | ||
277 | break; | ||
278 | } | ||
279 | |||
280 | if (pm_ops->prepare) { | ||
281 | error = pm_ops->prepare(PM_SUSPEND_MEM); | ||
282 | if (error) | ||
283 | goto OutS3; | ||
284 | } | ||
285 | |||
286 | /* Put devices to sleep */ | ||
287 | error = device_suspend(PMSG_SUSPEND); | ||
288 | if (error) { | ||
289 | printk(KERN_ERR "Failed to suspend some devices.\n"); | ||
290 | } else { | ||
291 | /* Enter S3, system is already frozen */ | ||
292 | suspend_enter(PM_SUSPEND_MEM); | ||
293 | |||
294 | /* Wake up devices */ | ||
295 | device_resume(); | ||
296 | } | ||
297 | |||
298 | if (pm_ops->finish) | ||
299 | pm_ops->finish(PM_SUSPEND_MEM); | ||
300 | |||
301 | OutS3: | ||
302 | up(&pm_sem); | ||
303 | break; | ||
304 | |||
305 | default: | ||
306 | error = -ENOTTY; | ||
307 | |||
308 | } | ||
309 | |||
310 | return error; | ||
311 | } | ||
312 | |||
313 | static struct file_operations snapshot_fops = { | ||
314 | .open = snapshot_open, | ||
315 | .release = snapshot_release, | ||
316 | .read = snapshot_read, | ||
317 | .write = snapshot_write, | ||
318 | .llseek = no_llseek, | ||
319 | .ioctl = snapshot_ioctl, | ||
320 | }; | ||
321 | |||
322 | static struct miscdevice snapshot_device = { | ||
323 | .minor = SNAPSHOT_MINOR, | ||
324 | .name = "snapshot", | ||
325 | .fops = &snapshot_fops, | ||
326 | }; | ||
327 | |||
328 | static int __init snapshot_device_init(void) | ||
329 | { | ||
330 | return misc_register(&snapshot_device); | ||
331 | }; | ||
332 | |||
333 | device_initcall(snapshot_device_init); | ||
diff --git a/kernel/printk.c b/kernel/printk.c index 13ced0f782..8cc19431e7 100644 --- a/kernel/printk.c +++ b/kernel/printk.c | |||
@@ -122,44 +122,6 @@ static char *log_buf = __log_buf; | |||
122 | static int log_buf_len = __LOG_BUF_LEN; | 122 | static int log_buf_len = __LOG_BUF_LEN; |
123 | static unsigned long logged_chars; /* Number of chars produced since last read+clear operation */ | 123 | static unsigned long logged_chars; /* Number of chars produced since last read+clear operation */ |
124 | 124 | ||
125 | /* | ||
126 | * Setup a list of consoles. Called from init/main.c | ||
127 | */ | ||
128 | static int __init console_setup(char *str) | ||
129 | { | ||
130 | char name[sizeof(console_cmdline[0].name)]; | ||
131 | char *s, *options; | ||
132 | int idx; | ||
133 | |||
134 | /* | ||
135 | * Decode str into name, index, options. | ||
136 | */ | ||
137 | if (str[0] >= '0' && str[0] <= '9') { | ||
138 | strcpy(name, "ttyS"); | ||
139 | strncpy(name + 4, str, sizeof(name) - 5); | ||
140 | } else | ||
141 | strncpy(name, str, sizeof(name) - 1); | ||
142 | name[sizeof(name) - 1] = 0; | ||
143 | if ((options = strchr(str, ',')) != NULL) | ||
144 | *(options++) = 0; | ||
145 | #ifdef __sparc__ | ||
146 | if (!strcmp(str, "ttya")) | ||
147 | strcpy(name, "ttyS0"); | ||
148 | if (!strcmp(str, "ttyb")) | ||
149 | strcpy(name, "ttyS1"); | ||
150 | #endif | ||
151 | for (s = name; *s; s++) | ||
152 | if ((*s >= '0' && *s <= '9') || *s == ',') | ||
153 | break; | ||
154 | idx = simple_strtoul(s, NULL, 10); | ||
155 | *s = 0; | ||
156 | |||
157 | add_preferred_console(name, idx, options); | ||
158 | return 1; | ||
159 | } | ||
160 | |||
161 | __setup("console=", console_setup); | ||
162 | |||
163 | static int __init log_buf_len_setup(char *str) | 125 | static int __init log_buf_len_setup(char *str) |
164 | { | 126 | { |
165 | unsigned long size = memparse(str, &str); | 127 | unsigned long size = memparse(str, &str); |
@@ -659,6 +621,44 @@ static void call_console_drivers(unsigned long start, unsigned long end) | |||
659 | 621 | ||
660 | #endif | 622 | #endif |
661 | 623 | ||
624 | /* | ||
625 | * Set up a list of consoles. Called from init/main.c | ||
626 | */ | ||
627 | static int __init console_setup(char *str) | ||
628 | { | ||
629 | char name[sizeof(console_cmdline[0].name)]; | ||
630 | char *s, *options; | ||
631 | int idx; | ||
632 | |||
633 | /* | ||
634 | * Decode str into name, index, options. | ||
635 | */ | ||
636 | if (str[0] >= '0' && str[0] <= '9') { | ||
637 | strcpy(name, "ttyS"); | ||
638 | strncpy(name + 4, str, sizeof(name) - 5); | ||
639 | } else { | ||
640 | strncpy(name, str, sizeof(name) - 1); | ||
641 | } | ||
642 | name[sizeof(name) - 1] = 0; | ||
643 | if ((options = strchr(str, ',')) != NULL) | ||
644 | *(options++) = 0; | ||
645 | #ifdef __sparc__ | ||
646 | if (!strcmp(str, "ttya")) | ||
647 | strcpy(name, "ttyS0"); | ||
648 | if (!strcmp(str, "ttyb")) | ||
649 | strcpy(name, "ttyS1"); | ||
650 | #endif | ||
651 | for (s = name; *s; s++) | ||
652 | if ((*s >= '0' && *s <= '9') || *s == ',') | ||
653 | break; | ||
654 | idx = simple_strtoul(s, NULL, 10); | ||
655 | *s = 0; | ||
656 | |||
657 | add_preferred_console(name, idx, options); | ||
658 | return 1; | ||
659 | } | ||
660 | __setup("console=", console_setup); | ||
661 | |||
662 | /** | 662 | /** |
663 | * add_preferred_console - add a device to the list of preferred consoles. | 663 | * add_preferred_console - add a device to the list of preferred consoles. |
664 | * @name: device name | 664 | * @name: device name |
diff --git a/kernel/profile.c b/kernel/profile.c index f89248e6d7..5a730fdb1a 100644 --- a/kernel/profile.c +++ b/kernel/profile.c | |||
@@ -23,6 +23,7 @@ | |||
23 | #include <linux/cpu.h> | 23 | #include <linux/cpu.h> |
24 | #include <linux/profile.h> | 24 | #include <linux/profile.h> |
25 | #include <linux/highmem.h> | 25 | #include <linux/highmem.h> |
26 | #include <linux/mutex.h> | ||
26 | #include <asm/sections.h> | 27 | #include <asm/sections.h> |
27 | #include <asm/semaphore.h> | 28 | #include <asm/semaphore.h> |
28 | 29 | ||
@@ -44,7 +45,7 @@ static cpumask_t prof_cpu_mask = CPU_MASK_ALL; | |||
44 | #ifdef CONFIG_SMP | 45 | #ifdef CONFIG_SMP |
45 | static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits); | 46 | static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits); |
46 | static DEFINE_PER_CPU(int, cpu_profile_flip); | 47 | static DEFINE_PER_CPU(int, cpu_profile_flip); |
47 | static DECLARE_MUTEX(profile_flip_mutex); | 48 | static DEFINE_MUTEX(profile_flip_mutex); |
48 | #endif /* CONFIG_SMP */ | 49 | #endif /* CONFIG_SMP */ |
49 | 50 | ||
50 | static int __init profile_setup(char * str) | 51 | static int __init profile_setup(char * str) |
@@ -86,72 +87,52 @@ void __init profile_init(void) | |||
86 | 87 | ||
87 | #ifdef CONFIG_PROFILING | 88 | #ifdef CONFIG_PROFILING |
88 | 89 | ||
89 | static DECLARE_RWSEM(profile_rwsem); | 90 | static BLOCKING_NOTIFIER_HEAD(task_exit_notifier); |
90 | static DEFINE_RWLOCK(handoff_lock); | 91 | static ATOMIC_NOTIFIER_HEAD(task_free_notifier); |
91 | static struct notifier_block * task_exit_notifier; | 92 | static BLOCKING_NOTIFIER_HEAD(munmap_notifier); |
92 | static struct notifier_block * task_free_notifier; | ||
93 | static struct notifier_block * munmap_notifier; | ||
94 | 93 | ||
95 | void profile_task_exit(struct task_struct * task) | 94 | void profile_task_exit(struct task_struct * task) |
96 | { | 95 | { |
97 | down_read(&profile_rwsem); | 96 | blocking_notifier_call_chain(&task_exit_notifier, 0, task); |
98 | notifier_call_chain(&task_exit_notifier, 0, task); | ||
99 | up_read(&profile_rwsem); | ||
100 | } | 97 | } |
101 | 98 | ||
102 | int profile_handoff_task(struct task_struct * task) | 99 | int profile_handoff_task(struct task_struct * task) |
103 | { | 100 | { |
104 | int ret; | 101 | int ret; |
105 | read_lock(&handoff_lock); | 102 | ret = atomic_notifier_call_chain(&task_free_notifier, 0, task); |
106 | ret = notifier_call_chain(&task_free_notifier, 0, task); | ||
107 | read_unlock(&handoff_lock); | ||
108 | return (ret == NOTIFY_OK) ? 1 : 0; | 103 | return (ret == NOTIFY_OK) ? 1 : 0; |
109 | } | 104 | } |
110 | 105 | ||
111 | void profile_munmap(unsigned long addr) | 106 | void profile_munmap(unsigned long addr) |
112 | { | 107 | { |
113 | down_read(&profile_rwsem); | 108 | blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr); |
114 | notifier_call_chain(&munmap_notifier, 0, (void *)addr); | ||
115 | up_read(&profile_rwsem); | ||
116 | } | 109 | } |
117 | 110 | ||
118 | int task_handoff_register(struct notifier_block * n) | 111 | int task_handoff_register(struct notifier_block * n) |
119 | { | 112 | { |
120 | int err = -EINVAL; | 113 | return atomic_notifier_chain_register(&task_free_notifier, n); |
121 | |||
122 | write_lock(&handoff_lock); | ||
123 | err = notifier_chain_register(&task_free_notifier, n); | ||
124 | write_unlock(&handoff_lock); | ||
125 | return err; | ||
126 | } | 114 | } |
127 | 115 | ||
128 | int task_handoff_unregister(struct notifier_block * n) | 116 | int task_handoff_unregister(struct notifier_block * n) |
129 | { | 117 | { |
130 | int err = -EINVAL; | 118 | return atomic_notifier_chain_unregister(&task_free_notifier, n); |
131 | |||
132 | write_lock(&handoff_lock); | ||
133 | err = notifier_chain_unregister(&task_free_notifier, n); | ||
134 | write_unlock(&handoff_lock); | ||
135 | return err; | ||
136 | } | 119 | } |
137 | 120 | ||
138 | int profile_event_register(enum profile_type type, struct notifier_block * n) | 121 | int profile_event_register(enum profile_type type, struct notifier_block * n) |
139 | { | 122 | { |
140 | int err = -EINVAL; | 123 | int err = -EINVAL; |
141 | 124 | ||
142 | down_write(&profile_rwsem); | ||
143 | |||
144 | switch (type) { | 125 | switch (type) { |
145 | case PROFILE_TASK_EXIT: | 126 | case PROFILE_TASK_EXIT: |
146 | err = notifier_chain_register(&task_exit_notifier, n); | 127 | err = blocking_notifier_chain_register( |
128 | &task_exit_notifier, n); | ||
147 | break; | 129 | break; |
148 | case PROFILE_MUNMAP: | 130 | case PROFILE_MUNMAP: |
149 | err = notifier_chain_register(&munmap_notifier, n); | 131 | err = blocking_notifier_chain_register( |
132 | &munmap_notifier, n); | ||
150 | break; | 133 | break; |
151 | } | 134 | } |
152 | 135 | ||
153 | up_write(&profile_rwsem); | ||
154 | |||
155 | return err; | 136 | return err; |
156 | } | 137 | } |
157 | 138 | ||
@@ -160,18 +141,17 @@ int profile_event_unregister(enum profile_type type, struct notifier_block * n) | |||
160 | { | 141 | { |
161 | int err = -EINVAL; | 142 | int err = -EINVAL; |
162 | 143 | ||
163 | down_write(&profile_rwsem); | ||
164 | |||
165 | switch (type) { | 144 | switch (type) { |
166 | case PROFILE_TASK_EXIT: | 145 | case PROFILE_TASK_EXIT: |
167 | err = notifier_chain_unregister(&task_exit_notifier, n); | 146 | err = blocking_notifier_chain_unregister( |
147 | &task_exit_notifier, n); | ||
168 | break; | 148 | break; |
169 | case PROFILE_MUNMAP: | 149 | case PROFILE_MUNMAP: |
170 | err = notifier_chain_unregister(&munmap_notifier, n); | 150 | err = blocking_notifier_chain_unregister( |
151 | &munmap_notifier, n); | ||
171 | break; | 152 | break; |
172 | } | 153 | } |
173 | 154 | ||
174 | up_write(&profile_rwsem); | ||
175 | return err; | 155 | return err; |
176 | } | 156 | } |
177 | 157 | ||
@@ -243,7 +223,7 @@ static void profile_flip_buffers(void) | |||
243 | { | 223 | { |
244 | int i, j, cpu; | 224 | int i, j, cpu; |
245 | 225 | ||
246 | down(&profile_flip_mutex); | 226 | mutex_lock(&profile_flip_mutex); |
247 | j = per_cpu(cpu_profile_flip, get_cpu()); | 227 | j = per_cpu(cpu_profile_flip, get_cpu()); |
248 | put_cpu(); | 228 | put_cpu(); |
249 | on_each_cpu(__profile_flip_buffers, NULL, 0, 1); | 229 | on_each_cpu(__profile_flip_buffers, NULL, 0, 1); |
@@ -259,14 +239,14 @@ static void profile_flip_buffers(void) | |||
259 | hits[i].hits = hits[i].pc = 0; | 239 | hits[i].hits = hits[i].pc = 0; |
260 | } | 240 | } |
261 | } | 241 | } |
262 | up(&profile_flip_mutex); | 242 | mutex_unlock(&profile_flip_mutex); |
263 | } | 243 | } |
264 | 244 | ||
265 | static void profile_discard_flip_buffers(void) | 245 | static void profile_discard_flip_buffers(void) |
266 | { | 246 | { |
267 | int i, cpu; | 247 | int i, cpu; |
268 | 248 | ||
269 | down(&profile_flip_mutex); | 249 | mutex_lock(&profile_flip_mutex); |
270 | i = per_cpu(cpu_profile_flip, get_cpu()); | 250 | i = per_cpu(cpu_profile_flip, get_cpu()); |
271 | put_cpu(); | 251 | put_cpu(); |
272 | on_each_cpu(__profile_flip_buffers, NULL, 0, 1); | 252 | on_each_cpu(__profile_flip_buffers, NULL, 0, 1); |
@@ -274,7 +254,7 @@ static void profile_discard_flip_buffers(void) | |||
274 | struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i]; | 254 | struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i]; |
275 | memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit)); | 255 | memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit)); |
276 | } | 256 | } |
277 | up(&profile_flip_mutex); | 257 | mutex_unlock(&profile_flip_mutex); |
278 | } | 258 | } |
279 | 259 | ||
280 | void profile_hit(int type, void *__pc) | 260 | void profile_hit(int type, void *__pc) |
diff --git a/kernel/ptrace.c b/kernel/ptrace.c index d95a72c927..86a7f6c60c 100644 --- a/kernel/ptrace.c +++ b/kernel/ptrace.c | |||
@@ -35,9 +35,9 @@ void __ptrace_link(task_t *child, task_t *new_parent) | |||
35 | if (child->parent == new_parent) | 35 | if (child->parent == new_parent) |
36 | return; | 36 | return; |
37 | list_add(&child->ptrace_list, &child->parent->ptrace_children); | 37 | list_add(&child->ptrace_list, &child->parent->ptrace_children); |
38 | REMOVE_LINKS(child); | 38 | remove_parent(child); |
39 | child->parent = new_parent; | 39 | child->parent = new_parent; |
40 | SET_LINKS(child); | 40 | add_parent(child); |
41 | } | 41 | } |
42 | 42 | ||
43 | /* | 43 | /* |
@@ -77,9 +77,9 @@ void __ptrace_unlink(task_t *child) | |||
77 | child->ptrace = 0; | 77 | child->ptrace = 0; |
78 | if (!list_empty(&child->ptrace_list)) { | 78 | if (!list_empty(&child->ptrace_list)) { |
79 | list_del_init(&child->ptrace_list); | 79 | list_del_init(&child->ptrace_list); |
80 | REMOVE_LINKS(child); | 80 | remove_parent(child); |
81 | child->parent = child->real_parent; | 81 | child->parent = child->real_parent; |
82 | SET_LINKS(child); | 82 | add_parent(child); |
83 | } | 83 | } |
84 | 84 | ||
85 | ptrace_untrace(child); | 85 | ptrace_untrace(child); |
diff --git a/kernel/rcupdate.c b/kernel/rcupdate.c index fedf5e3697..13458bbaa1 100644 --- a/kernel/rcupdate.c +++ b/kernel/rcupdate.c | |||
@@ -47,15 +47,16 @@ | |||
47 | #include <linux/notifier.h> | 47 | #include <linux/notifier.h> |
48 | #include <linux/rcupdate.h> | 48 | #include <linux/rcupdate.h> |
49 | #include <linux/cpu.h> | 49 | #include <linux/cpu.h> |
50 | #include <linux/mutex.h> | ||
50 | 51 | ||
51 | /* Definition for rcupdate control block. */ | 52 | /* Definition for rcupdate control block. */ |
52 | struct rcu_ctrlblk rcu_ctrlblk = { | 53 | static struct rcu_ctrlblk rcu_ctrlblk = { |
53 | .cur = -300, | 54 | .cur = -300, |
54 | .completed = -300, | 55 | .completed = -300, |
55 | .lock = SPIN_LOCK_UNLOCKED, | 56 | .lock = SPIN_LOCK_UNLOCKED, |
56 | .cpumask = CPU_MASK_NONE, | 57 | .cpumask = CPU_MASK_NONE, |
57 | }; | 58 | }; |
58 | struct rcu_ctrlblk rcu_bh_ctrlblk = { | 59 | static struct rcu_ctrlblk rcu_bh_ctrlblk = { |
59 | .cur = -300, | 60 | .cur = -300, |
60 | .completed = -300, | 61 | .completed = -300, |
61 | .lock = SPIN_LOCK_UNLOCKED, | 62 | .lock = SPIN_LOCK_UNLOCKED, |
@@ -75,7 +76,7 @@ static int rsinterval = 1000; | |||
75 | #endif | 76 | #endif |
76 | 77 | ||
77 | static atomic_t rcu_barrier_cpu_count; | 78 | static atomic_t rcu_barrier_cpu_count; |
78 | static struct semaphore rcu_barrier_sema; | 79 | static DEFINE_MUTEX(rcu_barrier_mutex); |
79 | static struct completion rcu_barrier_completion; | 80 | static struct completion rcu_barrier_completion; |
80 | 81 | ||
81 | #ifdef CONFIG_SMP | 82 | #ifdef CONFIG_SMP |
@@ -207,13 +208,13 @@ static void rcu_barrier_func(void *notused) | |||
207 | void rcu_barrier(void) | 208 | void rcu_barrier(void) |
208 | { | 209 | { |
209 | BUG_ON(in_interrupt()); | 210 | BUG_ON(in_interrupt()); |
210 | /* Take cpucontrol semaphore to protect against CPU hotplug */ | 211 | /* Take cpucontrol mutex to protect against CPU hotplug */ |
211 | down(&rcu_barrier_sema); | 212 | mutex_lock(&rcu_barrier_mutex); |
212 | init_completion(&rcu_barrier_completion); | 213 | init_completion(&rcu_barrier_completion); |
213 | atomic_set(&rcu_barrier_cpu_count, 0); | 214 | atomic_set(&rcu_barrier_cpu_count, 0); |
214 | on_each_cpu(rcu_barrier_func, NULL, 0, 1); | 215 | on_each_cpu(rcu_barrier_func, NULL, 0, 1); |
215 | wait_for_completion(&rcu_barrier_completion); | 216 | wait_for_completion(&rcu_barrier_completion); |
216 | up(&rcu_barrier_sema); | 217 | mutex_unlock(&rcu_barrier_mutex); |
217 | } | 218 | } |
218 | EXPORT_SYMBOL_GPL(rcu_barrier); | 219 | EXPORT_SYMBOL_GPL(rcu_barrier); |
219 | 220 | ||
@@ -415,8 +416,8 @@ static void __rcu_process_callbacks(struct rcu_ctrlblk *rcp, | |||
415 | rdp->curtail = &rdp->curlist; | 416 | rdp->curtail = &rdp->curlist; |
416 | } | 417 | } |
417 | 418 | ||
418 | local_irq_disable(); | ||
419 | if (rdp->nxtlist && !rdp->curlist) { | 419 | if (rdp->nxtlist && !rdp->curlist) { |
420 | local_irq_disable(); | ||
420 | rdp->curlist = rdp->nxtlist; | 421 | rdp->curlist = rdp->nxtlist; |
421 | rdp->curtail = rdp->nxttail; | 422 | rdp->curtail = rdp->nxttail; |
422 | rdp->nxtlist = NULL; | 423 | rdp->nxtlist = NULL; |
@@ -441,9 +442,8 @@ static void __rcu_process_callbacks(struct rcu_ctrlblk *rcp, | |||
441 | rcu_start_batch(rcp); | 442 | rcu_start_batch(rcp); |
442 | spin_unlock(&rcp->lock); | 443 | spin_unlock(&rcp->lock); |
443 | } | 444 | } |
444 | } else { | ||
445 | local_irq_enable(); | ||
446 | } | 445 | } |
446 | |||
447 | rcu_check_quiescent_state(rcp, rdp); | 447 | rcu_check_quiescent_state(rcp, rdp); |
448 | if (rdp->donelist) | 448 | if (rdp->donelist) |
449 | rcu_do_batch(rdp); | 449 | rcu_do_batch(rdp); |
@@ -549,7 +549,6 @@ static struct notifier_block __devinitdata rcu_nb = { | |||
549 | */ | 549 | */ |
550 | void __init rcu_init(void) | 550 | void __init rcu_init(void) |
551 | { | 551 | { |
552 | sema_init(&rcu_barrier_sema, 1); | ||
553 | rcu_cpu_notify(&rcu_nb, CPU_UP_PREPARE, | 552 | rcu_cpu_notify(&rcu_nb, CPU_UP_PREPARE, |
554 | (void *)(long)smp_processor_id()); | 553 | (void *)(long)smp_processor_id()); |
555 | /* Register notifier for non-boot CPUs */ | 554 | /* Register notifier for non-boot CPUs */ |
diff --git a/kernel/rcutorture.c b/kernel/rcutorture.c index 7712912dbc..8154e7589d 100644 --- a/kernel/rcutorture.c +++ b/kernel/rcutorture.c | |||
@@ -54,15 +54,15 @@ static int verbose; /* Print more debug info. */ | |||
54 | static int test_no_idle_hz; /* Test RCU's support for tickless idle CPUs. */ | 54 | static int test_no_idle_hz; /* Test RCU's support for tickless idle CPUs. */ |
55 | static int shuffle_interval = 5; /* Interval between shuffles (in sec)*/ | 55 | static int shuffle_interval = 5; /* Interval between shuffles (in sec)*/ |
56 | 56 | ||
57 | MODULE_PARM(nreaders, "i"); | 57 | module_param(nreaders, int, 0); |
58 | MODULE_PARM_DESC(nreaders, "Number of RCU reader threads"); | 58 | MODULE_PARM_DESC(nreaders, "Number of RCU reader threads"); |
59 | MODULE_PARM(stat_interval, "i"); | 59 | module_param(stat_interval, int, 0); |
60 | MODULE_PARM_DESC(stat_interval, "Number of seconds between stats printk()s"); | 60 | MODULE_PARM_DESC(stat_interval, "Number of seconds between stats printk()s"); |
61 | MODULE_PARM(verbose, "i"); | 61 | module_param(verbose, bool, 0); |
62 | MODULE_PARM_DESC(verbose, "Enable verbose debugging printk()s"); | 62 | MODULE_PARM_DESC(verbose, "Enable verbose debugging printk()s"); |
63 | MODULE_PARM(test_no_idle_hz, "i"); | 63 | module_param(test_no_idle_hz, bool, 0); |
64 | MODULE_PARM_DESC(test_no_idle_hz, "Test support for tickless idle CPUs"); | 64 | MODULE_PARM_DESC(test_no_idle_hz, "Test support for tickless idle CPUs"); |
65 | MODULE_PARM(shuffle_interval, "i"); | 65 | module_param(shuffle_interval, int, 0); |
66 | MODULE_PARM_DESC(shuffle_interval, "Number of seconds between shuffles"); | 66 | MODULE_PARM_DESC(shuffle_interval, "Number of seconds between shuffles"); |
67 | #define TORTURE_FLAG "rcutorture: " | 67 | #define TORTURE_FLAG "rcutorture: " |
68 | #define PRINTK_STRING(s) \ | 68 | #define PRINTK_STRING(s) \ |
@@ -301,7 +301,7 @@ rcu_torture_printk(char *page) | |||
301 | long pipesummary[RCU_TORTURE_PIPE_LEN + 1] = { 0 }; | 301 | long pipesummary[RCU_TORTURE_PIPE_LEN + 1] = { 0 }; |
302 | long batchsummary[RCU_TORTURE_PIPE_LEN + 1] = { 0 }; | 302 | long batchsummary[RCU_TORTURE_PIPE_LEN + 1] = { 0 }; |
303 | 303 | ||
304 | for_each_cpu(cpu) { | 304 | for_each_possible_cpu(cpu) { |
305 | for (i = 0; i < RCU_TORTURE_PIPE_LEN + 1; i++) { | 305 | for (i = 0; i < RCU_TORTURE_PIPE_LEN + 1; i++) { |
306 | pipesummary[i] += per_cpu(rcu_torture_count, cpu)[i]; | 306 | pipesummary[i] += per_cpu(rcu_torture_count, cpu)[i]; |
307 | batchsummary[i] += per_cpu(rcu_torture_batch, cpu)[i]; | 307 | batchsummary[i] += per_cpu(rcu_torture_batch, cpu)[i]; |
@@ -441,6 +441,16 @@ rcu_torture_shuffle(void *arg) | |||
441 | return 0; | 441 | return 0; |
442 | } | 442 | } |
443 | 443 | ||
444 | static inline void | ||
445 | rcu_torture_print_module_parms(char *tag) | ||
446 | { | ||
447 | printk(KERN_ALERT TORTURE_FLAG "--- %s: nreaders=%d " | ||
448 | "stat_interval=%d verbose=%d test_no_idle_hz=%d " | ||
449 | "shuffle_interval = %d\n", | ||
450 | tag, nrealreaders, stat_interval, verbose, test_no_idle_hz, | ||
451 | shuffle_interval); | ||
452 | } | ||
453 | |||
444 | static void | 454 | static void |
445 | rcu_torture_cleanup(void) | 455 | rcu_torture_cleanup(void) |
446 | { | 456 | { |
@@ -483,9 +493,10 @@ rcu_torture_cleanup(void) | |||
483 | rcu_barrier(); | 493 | rcu_barrier(); |
484 | 494 | ||
485 | rcu_torture_stats_print(); /* -After- the stats thread is stopped! */ | 495 | rcu_torture_stats_print(); /* -After- the stats thread is stopped! */ |
486 | printk(KERN_ALERT TORTURE_FLAG | 496 | if (atomic_read(&n_rcu_torture_error)) |
487 | "--- End of test: %s\n", | 497 | rcu_torture_print_module_parms("End of test: FAILURE"); |
488 | atomic_read(&n_rcu_torture_error) == 0 ? "SUCCESS" : "FAILURE"); | 498 | else |
499 | rcu_torture_print_module_parms("End of test: SUCCESS"); | ||
489 | } | 500 | } |
490 | 501 | ||
491 | static int | 502 | static int |
@@ -501,11 +512,7 @@ rcu_torture_init(void) | |||
501 | nrealreaders = nreaders; | 512 | nrealreaders = nreaders; |
502 | else | 513 | else |
503 | nrealreaders = 2 * num_online_cpus(); | 514 | nrealreaders = 2 * num_online_cpus(); |
504 | printk(KERN_ALERT TORTURE_FLAG "--- Start of test: nreaders=%d " | 515 | rcu_torture_print_module_parms("Start of test"); |
505 | "stat_interval=%d verbose=%d test_no_idle_hz=%d " | ||
506 | "shuffle_interval = %d\n", | ||
507 | nrealreaders, stat_interval, verbose, test_no_idle_hz, | ||
508 | shuffle_interval); | ||
509 | fullstop = 0; | 516 | fullstop = 0; |
510 | 517 | ||
511 | /* Set up the freelist. */ | 518 | /* Set up the freelist. */ |
@@ -528,7 +535,7 @@ rcu_torture_init(void) | |||
528 | atomic_set(&n_rcu_torture_error, 0); | 535 | atomic_set(&n_rcu_torture_error, 0); |
529 | for (i = 0; i < RCU_TORTURE_PIPE_LEN + 1; i++) | 536 | for (i = 0; i < RCU_TORTURE_PIPE_LEN + 1; i++) |
530 | atomic_set(&rcu_torture_wcount[i], 0); | 537 | atomic_set(&rcu_torture_wcount[i], 0); |
531 | for_each_cpu(cpu) { | 538 | for_each_possible_cpu(cpu) { |
532 | for (i = 0; i < RCU_TORTURE_PIPE_LEN + 1; i++) { | 539 | for (i = 0; i < RCU_TORTURE_PIPE_LEN + 1; i++) { |
533 | per_cpu(rcu_torture_count, cpu)[i] = 0; | 540 | per_cpu(rcu_torture_count, cpu)[i] = 0; |
534 | per_cpu(rcu_torture_batch, cpu)[i] = 0; | 541 | per_cpu(rcu_torture_batch, cpu)[i] = 0; |
diff --git a/kernel/relay.c b/kernel/relay.c new file mode 100644 index 0000000000..33345e7348 --- /dev/null +++ b/kernel/relay.c | |||
@@ -0,0 +1,1012 @@ | |||
1 | /* | ||
2 | * Public API and common code for kernel->userspace relay file support. | ||
3 | * | ||
4 | * See Documentation/filesystems/relayfs.txt for an overview of relayfs. | ||
5 | * | ||
6 | * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp | ||
7 | * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com) | ||
8 | * | ||
9 | * Moved to kernel/relay.c by Paul Mundt, 2006. | ||
10 | * | ||
11 | * This file is released under the GPL. | ||
12 | */ | ||
13 | #include <linux/errno.h> | ||
14 | #include <linux/stddef.h> | ||
15 | #include <linux/slab.h> | ||
16 | #include <linux/module.h> | ||
17 | #include <linux/string.h> | ||
18 | #include <linux/relay.h> | ||
19 | #include <linux/vmalloc.h> | ||
20 | #include <linux/mm.h> | ||
21 | |||
22 | /* | ||
23 | * close() vm_op implementation for relay file mapping. | ||
24 | */ | ||
25 | static void relay_file_mmap_close(struct vm_area_struct *vma) | ||
26 | { | ||
27 | struct rchan_buf *buf = vma->vm_private_data; | ||
28 | buf->chan->cb->buf_unmapped(buf, vma->vm_file); | ||
29 | } | ||
30 | |||
31 | /* | ||
32 | * nopage() vm_op implementation for relay file mapping. | ||
33 | */ | ||
34 | static struct page *relay_buf_nopage(struct vm_area_struct *vma, | ||
35 | unsigned long address, | ||
36 | int *type) | ||
37 | { | ||
38 | struct page *page; | ||
39 | struct rchan_buf *buf = vma->vm_private_data; | ||
40 | unsigned long offset = address - vma->vm_start; | ||
41 | |||
42 | if (address > vma->vm_end) | ||
43 | return NOPAGE_SIGBUS; /* Disallow mremap */ | ||
44 | if (!buf) | ||
45 | return NOPAGE_OOM; | ||
46 | |||
47 | page = vmalloc_to_page(buf->start + offset); | ||
48 | if (!page) | ||
49 | return NOPAGE_OOM; | ||
50 | get_page(page); | ||
51 | |||
52 | if (type) | ||
53 | *type = VM_FAULT_MINOR; | ||
54 | |||
55 | return page; | ||
56 | } | ||
57 | |||
58 | /* | ||
59 | * vm_ops for relay file mappings. | ||
60 | */ | ||
61 | static struct vm_operations_struct relay_file_mmap_ops = { | ||
62 | .nopage = relay_buf_nopage, | ||
63 | .close = relay_file_mmap_close, | ||
64 | }; | ||
65 | |||
66 | /** | ||
67 | * relay_mmap_buf: - mmap channel buffer to process address space | ||
68 | * @buf: relay channel buffer | ||
69 | * @vma: vm_area_struct describing memory to be mapped | ||
70 | * | ||
71 | * Returns 0 if ok, negative on error | ||
72 | * | ||
73 | * Caller should already have grabbed mmap_sem. | ||
74 | */ | ||
75 | int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma) | ||
76 | { | ||
77 | unsigned long length = vma->vm_end - vma->vm_start; | ||
78 | struct file *filp = vma->vm_file; | ||
79 | |||
80 | if (!buf) | ||
81 | return -EBADF; | ||
82 | |||
83 | if (length != (unsigned long)buf->chan->alloc_size) | ||
84 | return -EINVAL; | ||
85 | |||
86 | vma->vm_ops = &relay_file_mmap_ops; | ||
87 | vma->vm_private_data = buf; | ||
88 | buf->chan->cb->buf_mapped(buf, filp); | ||
89 | |||
90 | return 0; | ||
91 | } | ||
92 | |||
93 | /** | ||
94 | * relay_alloc_buf - allocate a channel buffer | ||
95 | * @buf: the buffer struct | ||
96 | * @size: total size of the buffer | ||
97 | * | ||
98 | * Returns a pointer to the resulting buffer, NULL if unsuccessful. The | ||
99 | * passed in size will get page aligned, if it isn't already. | ||
100 | */ | ||
101 | static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size) | ||
102 | { | ||
103 | void *mem; | ||
104 | unsigned int i, j, n_pages; | ||
105 | |||
106 | *size = PAGE_ALIGN(*size); | ||
107 | n_pages = *size >> PAGE_SHIFT; | ||
108 | |||
109 | buf->page_array = kcalloc(n_pages, sizeof(struct page *), GFP_KERNEL); | ||
110 | if (!buf->page_array) | ||
111 | return NULL; | ||
112 | |||
113 | for (i = 0; i < n_pages; i++) { | ||
114 | buf->page_array[i] = alloc_page(GFP_KERNEL); | ||
115 | if (unlikely(!buf->page_array[i])) | ||
116 | goto depopulate; | ||
117 | } | ||
118 | mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL); | ||
119 | if (!mem) | ||
120 | goto depopulate; | ||
121 | |||
122 | memset(mem, 0, *size); | ||
123 | buf->page_count = n_pages; | ||
124 | return mem; | ||
125 | |||
126 | depopulate: | ||
127 | for (j = 0; j < i; j++) | ||
128 | __free_page(buf->page_array[j]); | ||
129 | kfree(buf->page_array); | ||
130 | return NULL; | ||
131 | } | ||
132 | |||
133 | /** | ||
134 | * relay_create_buf - allocate and initialize a channel buffer | ||
135 | * @alloc_size: size of the buffer to allocate | ||
136 | * @n_subbufs: number of sub-buffers in the channel | ||
137 | * | ||
138 | * Returns channel buffer if successful, NULL otherwise | ||
139 | */ | ||
140 | struct rchan_buf *relay_create_buf(struct rchan *chan) | ||
141 | { | ||
142 | struct rchan_buf *buf = kcalloc(1, sizeof(struct rchan_buf), GFP_KERNEL); | ||
143 | if (!buf) | ||
144 | return NULL; | ||
145 | |||
146 | buf->padding = kmalloc(chan->n_subbufs * sizeof(size_t *), GFP_KERNEL); | ||
147 | if (!buf->padding) | ||
148 | goto free_buf; | ||
149 | |||
150 | buf->start = relay_alloc_buf(buf, &chan->alloc_size); | ||
151 | if (!buf->start) | ||
152 | goto free_buf; | ||
153 | |||
154 | buf->chan = chan; | ||
155 | kref_get(&buf->chan->kref); | ||
156 | return buf; | ||
157 | |||
158 | free_buf: | ||
159 | kfree(buf->padding); | ||
160 | kfree(buf); | ||
161 | return NULL; | ||
162 | } | ||
163 | |||
164 | /** | ||
165 | * relay_destroy_channel - free the channel struct | ||
166 | * | ||
167 | * Should only be called from kref_put(). | ||
168 | */ | ||
169 | void relay_destroy_channel(struct kref *kref) | ||
170 | { | ||
171 | struct rchan *chan = container_of(kref, struct rchan, kref); | ||
172 | kfree(chan); | ||
173 | } | ||
174 | |||
175 | /** | ||
176 | * relay_destroy_buf - destroy an rchan_buf struct and associated buffer | ||
177 | * @buf: the buffer struct | ||
178 | */ | ||
179 | void relay_destroy_buf(struct rchan_buf *buf) | ||
180 | { | ||
181 | struct rchan *chan = buf->chan; | ||
182 | unsigned int i; | ||
183 | |||
184 | if (likely(buf->start)) { | ||
185 | vunmap(buf->start); | ||
186 | for (i = 0; i < buf->page_count; i++) | ||
187 | __free_page(buf->page_array[i]); | ||
188 | kfree(buf->page_array); | ||
189 | } | ||
190 | kfree(buf->padding); | ||
191 | kfree(buf); | ||
192 | kref_put(&chan->kref, relay_destroy_channel); | ||
193 | } | ||
194 | |||
195 | /** | ||
196 | * relay_remove_buf - remove a channel buffer | ||
197 | * | ||
198 | * Removes the file from the fileystem, which also frees the | ||
199 | * rchan_buf_struct and the channel buffer. Should only be called from | ||
200 | * kref_put(). | ||
201 | */ | ||
202 | void relay_remove_buf(struct kref *kref) | ||
203 | { | ||
204 | struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref); | ||
205 | buf->chan->cb->remove_buf_file(buf->dentry); | ||
206 | relay_destroy_buf(buf); | ||
207 | } | ||
208 | |||
209 | /** | ||
210 | * relay_buf_empty - boolean, is the channel buffer empty? | ||
211 | * @buf: channel buffer | ||
212 | * | ||
213 | * Returns 1 if the buffer is empty, 0 otherwise. | ||
214 | */ | ||
215 | int relay_buf_empty(struct rchan_buf *buf) | ||
216 | { | ||
217 | return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1; | ||
218 | } | ||
219 | EXPORT_SYMBOL_GPL(relay_buf_empty); | ||
220 | |||
221 | /** | ||
222 | * relay_buf_full - boolean, is the channel buffer full? | ||
223 | * @buf: channel buffer | ||
224 | * | ||
225 | * Returns 1 if the buffer is full, 0 otherwise. | ||
226 | */ | ||
227 | int relay_buf_full(struct rchan_buf *buf) | ||
228 | { | ||
229 | size_t ready = buf->subbufs_produced - buf->subbufs_consumed; | ||
230 | return (ready >= buf->chan->n_subbufs) ? 1 : 0; | ||
231 | } | ||
232 | EXPORT_SYMBOL_GPL(relay_buf_full); | ||
233 | |||
234 | /* | ||
235 | * High-level relay kernel API and associated functions. | ||
236 | */ | ||
237 | |||
238 | /* | ||
239 | * rchan_callback implementations defining default channel behavior. Used | ||
240 | * in place of corresponding NULL values in client callback struct. | ||
241 | */ | ||
242 | |||
243 | /* | ||
244 | * subbuf_start() default callback. Does nothing. | ||
245 | */ | ||
246 | static int subbuf_start_default_callback (struct rchan_buf *buf, | ||
247 | void *subbuf, | ||
248 | void *prev_subbuf, | ||
249 | size_t prev_padding) | ||
250 | { | ||
251 | if (relay_buf_full(buf)) | ||
252 | return 0; | ||
253 | |||
254 | return 1; | ||
255 | } | ||
256 | |||
257 | /* | ||
258 | * buf_mapped() default callback. Does nothing. | ||
259 | */ | ||
260 | static void buf_mapped_default_callback(struct rchan_buf *buf, | ||
261 | struct file *filp) | ||
262 | { | ||
263 | } | ||
264 | |||
265 | /* | ||
266 | * buf_unmapped() default callback. Does nothing. | ||
267 | */ | ||
268 | static void buf_unmapped_default_callback(struct rchan_buf *buf, | ||
269 | struct file *filp) | ||
270 | { | ||
271 | } | ||
272 | |||
273 | /* | ||
274 | * create_buf_file_create() default callback. Does nothing. | ||
275 | */ | ||
276 | static struct dentry *create_buf_file_default_callback(const char *filename, | ||
277 | struct dentry *parent, | ||
278 | int mode, | ||
279 | struct rchan_buf *buf, | ||
280 | int *is_global) | ||
281 | { | ||
282 | return NULL; | ||
283 | } | ||
284 | |||
285 | /* | ||
286 | * remove_buf_file() default callback. Does nothing. | ||
287 | */ | ||
288 | static int remove_buf_file_default_callback(struct dentry *dentry) | ||
289 | { | ||
290 | return -EINVAL; | ||
291 | } | ||
292 | |||
293 | /* relay channel default callbacks */ | ||
294 | static struct rchan_callbacks default_channel_callbacks = { | ||
295 | .subbuf_start = subbuf_start_default_callback, | ||
296 | .buf_mapped = buf_mapped_default_callback, | ||
297 | .buf_unmapped = buf_unmapped_default_callback, | ||
298 | .create_buf_file = create_buf_file_default_callback, | ||
299 | .remove_buf_file = remove_buf_file_default_callback, | ||
300 | }; | ||
301 | |||
302 | /** | ||
303 | * wakeup_readers - wake up readers waiting on a channel | ||
304 | * @private: the channel buffer | ||
305 | * | ||
306 | * This is the work function used to defer reader waking. The | ||
307 | * reason waking is deferred is that calling directly from write | ||
308 | * causes problems if you're writing from say the scheduler. | ||
309 | */ | ||
310 | static void wakeup_readers(void *private) | ||
311 | { | ||
312 | struct rchan_buf *buf = private; | ||
313 | wake_up_interruptible(&buf->read_wait); | ||
314 | } | ||
315 | |||
316 | /** | ||
317 | * __relay_reset - reset a channel buffer | ||
318 | * @buf: the channel buffer | ||
319 | * @init: 1 if this is a first-time initialization | ||
320 | * | ||
321 | * See relay_reset for description of effect. | ||
322 | */ | ||
323 | static inline void __relay_reset(struct rchan_buf *buf, unsigned int init) | ||
324 | { | ||
325 | size_t i; | ||
326 | |||
327 | if (init) { | ||
328 | init_waitqueue_head(&buf->read_wait); | ||
329 | kref_init(&buf->kref); | ||
330 | INIT_WORK(&buf->wake_readers, NULL, NULL); | ||
331 | } else { | ||
332 | cancel_delayed_work(&buf->wake_readers); | ||
333 | flush_scheduled_work(); | ||
334 | } | ||
335 | |||
336 | buf->subbufs_produced = 0; | ||
337 | buf->subbufs_consumed = 0; | ||
338 | buf->bytes_consumed = 0; | ||
339 | buf->finalized = 0; | ||
340 | buf->data = buf->start; | ||
341 | buf->offset = 0; | ||
342 | |||
343 | for (i = 0; i < buf->chan->n_subbufs; i++) | ||
344 | buf->padding[i] = 0; | ||
345 | |||
346 | buf->chan->cb->subbuf_start(buf, buf->data, NULL, 0); | ||
347 | } | ||
348 | |||
349 | /** | ||
350 | * relay_reset - reset the channel | ||
351 | * @chan: the channel | ||
352 | * | ||
353 | * This has the effect of erasing all data from all channel buffers | ||
354 | * and restarting the channel in its initial state. The buffers | ||
355 | * are not freed, so any mappings are still in effect. | ||
356 | * | ||
357 | * NOTE: Care should be taken that the channel isn't actually | ||
358 | * being used by anything when this call is made. | ||
359 | */ | ||
360 | void relay_reset(struct rchan *chan) | ||
361 | { | ||
362 | unsigned int i; | ||
363 | struct rchan_buf *prev = NULL; | ||
364 | |||
365 | if (!chan) | ||
366 | return; | ||
367 | |||
368 | for (i = 0; i < NR_CPUS; i++) { | ||
369 | if (!chan->buf[i] || chan->buf[i] == prev) | ||
370 | break; | ||
371 | __relay_reset(chan->buf[i], 0); | ||
372 | prev = chan->buf[i]; | ||
373 | } | ||
374 | } | ||
375 | EXPORT_SYMBOL_GPL(relay_reset); | ||
376 | |||
377 | /** | ||
378 | * relay_open_buf - create a new relay channel buffer | ||
379 | * | ||
380 | * Internal - used by relay_open(). | ||
381 | */ | ||
382 | static struct rchan_buf *relay_open_buf(struct rchan *chan, | ||
383 | const char *filename, | ||
384 | struct dentry *parent, | ||
385 | int *is_global) | ||
386 | { | ||
387 | struct rchan_buf *buf; | ||
388 | struct dentry *dentry; | ||
389 | |||
390 | if (*is_global) | ||
391 | return chan->buf[0]; | ||
392 | |||
393 | buf = relay_create_buf(chan); | ||
394 | if (!buf) | ||
395 | return NULL; | ||
396 | |||
397 | /* Create file in fs */ | ||
398 | dentry = chan->cb->create_buf_file(filename, parent, S_IRUSR, | ||
399 | buf, is_global); | ||
400 | if (!dentry) { | ||
401 | relay_destroy_buf(buf); | ||
402 | return NULL; | ||
403 | } | ||
404 | |||
405 | buf->dentry = dentry; | ||
406 | __relay_reset(buf, 1); | ||
407 | |||
408 | return buf; | ||
409 | } | ||
410 | |||
411 | /** | ||
412 | * relay_close_buf - close a channel buffer | ||
413 | * @buf: channel buffer | ||
414 | * | ||
415 | * Marks the buffer finalized and restores the default callbacks. | ||
416 | * The channel buffer and channel buffer data structure are then freed | ||
417 | * automatically when the last reference is given up. | ||
418 | */ | ||
419 | static inline void relay_close_buf(struct rchan_buf *buf) | ||
420 | { | ||
421 | buf->finalized = 1; | ||
422 | cancel_delayed_work(&buf->wake_readers); | ||
423 | flush_scheduled_work(); | ||
424 | kref_put(&buf->kref, relay_remove_buf); | ||
425 | } | ||
426 | |||
427 | static inline void setup_callbacks(struct rchan *chan, | ||
428 | struct rchan_callbacks *cb) | ||
429 | { | ||
430 | if (!cb) { | ||
431 | chan->cb = &default_channel_callbacks; | ||
432 | return; | ||
433 | } | ||
434 | |||
435 | if (!cb->subbuf_start) | ||
436 | cb->subbuf_start = subbuf_start_default_callback; | ||
437 | if (!cb->buf_mapped) | ||
438 | cb->buf_mapped = buf_mapped_default_callback; | ||
439 | if (!cb->buf_unmapped) | ||
440 | cb->buf_unmapped = buf_unmapped_default_callback; | ||
441 | if (!cb->create_buf_file) | ||
442 | cb->create_buf_file = create_buf_file_default_callback; | ||
443 | if (!cb->remove_buf_file) | ||
444 | cb->remove_buf_file = remove_buf_file_default_callback; | ||
445 | chan->cb = cb; | ||
446 | } | ||
447 | |||
448 | /** | ||
449 | * relay_open - create a new relay channel | ||
450 | * @base_filename: base name of files to create | ||
451 | * @parent: dentry of parent directory, NULL for root directory | ||
452 | * @subbuf_size: size of sub-buffers | ||
453 | * @n_subbufs: number of sub-buffers | ||
454 | * @cb: client callback functions | ||
455 | * | ||
456 | * Returns channel pointer if successful, NULL otherwise. | ||
457 | * | ||
458 | * Creates a channel buffer for each cpu using the sizes and | ||
459 | * attributes specified. The created channel buffer files | ||
460 | * will be named base_filename0...base_filenameN-1. File | ||
461 | * permissions will be S_IRUSR. | ||
462 | */ | ||
463 | struct rchan *relay_open(const char *base_filename, | ||
464 | struct dentry *parent, | ||
465 | size_t subbuf_size, | ||
466 | size_t n_subbufs, | ||
467 | struct rchan_callbacks *cb) | ||
468 | { | ||
469 | unsigned int i; | ||
470 | struct rchan *chan; | ||
471 | char *tmpname; | ||
472 | int is_global = 0; | ||
473 | |||
474 | if (!base_filename) | ||
475 | return NULL; | ||
476 | |||
477 | if (!(subbuf_size && n_subbufs)) | ||
478 | return NULL; | ||
479 | |||
480 | chan = kcalloc(1, sizeof(struct rchan), GFP_KERNEL); | ||
481 | if (!chan) | ||
482 | return NULL; | ||
483 | |||
484 | chan->version = RELAYFS_CHANNEL_VERSION; | ||
485 | chan->n_subbufs = n_subbufs; | ||
486 | chan->subbuf_size = subbuf_size; | ||
487 | chan->alloc_size = FIX_SIZE(subbuf_size * n_subbufs); | ||
488 | setup_callbacks(chan, cb); | ||
489 | kref_init(&chan->kref); | ||
490 | |||
491 | tmpname = kmalloc(NAME_MAX + 1, GFP_KERNEL); | ||
492 | if (!tmpname) | ||
493 | goto free_chan; | ||
494 | |||
495 | for_each_online_cpu(i) { | ||
496 | sprintf(tmpname, "%s%d", base_filename, i); | ||
497 | chan->buf[i] = relay_open_buf(chan, tmpname, parent, | ||
498 | &is_global); | ||
499 | if (!chan->buf[i]) | ||
500 | goto free_bufs; | ||
501 | |||
502 | chan->buf[i]->cpu = i; | ||
503 | } | ||
504 | |||
505 | kfree(tmpname); | ||
506 | return chan; | ||
507 | |||
508 | free_bufs: | ||
509 | for (i = 0; i < NR_CPUS; i++) { | ||
510 | if (!chan->buf[i]) | ||
511 | break; | ||
512 | relay_close_buf(chan->buf[i]); | ||
513 | if (is_global) | ||
514 | break; | ||
515 | } | ||
516 | kfree(tmpname); | ||
517 | |||
518 | free_chan: | ||
519 | kref_put(&chan->kref, relay_destroy_channel); | ||
520 | return NULL; | ||
521 | } | ||
522 | EXPORT_SYMBOL_GPL(relay_open); | ||
523 | |||
524 | /** | ||
525 | * relay_switch_subbuf - switch to a new sub-buffer | ||
526 | * @buf: channel buffer | ||
527 | * @length: size of current event | ||
528 | * | ||
529 | * Returns either the length passed in or 0 if full. | ||
530 | * | ||
531 | * Performs sub-buffer-switch tasks such as invoking callbacks, | ||
532 | * updating padding counts, waking up readers, etc. | ||
533 | */ | ||
534 | size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length) | ||
535 | { | ||
536 | void *old, *new; | ||
537 | size_t old_subbuf, new_subbuf; | ||
538 | |||
539 | if (unlikely(length > buf->chan->subbuf_size)) | ||
540 | goto toobig; | ||
541 | |||
542 | if (buf->offset != buf->chan->subbuf_size + 1) { | ||
543 | buf->prev_padding = buf->chan->subbuf_size - buf->offset; | ||
544 | old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs; | ||
545 | buf->padding[old_subbuf] = buf->prev_padding; | ||
546 | buf->subbufs_produced++; | ||
547 | buf->dentry->d_inode->i_size += buf->chan->subbuf_size - | ||
548 | buf->padding[old_subbuf]; | ||
549 | smp_mb(); | ||
550 | if (waitqueue_active(&buf->read_wait)) { | ||
551 | PREPARE_WORK(&buf->wake_readers, wakeup_readers, buf); | ||
552 | schedule_delayed_work(&buf->wake_readers, 1); | ||
553 | } | ||
554 | } | ||
555 | |||
556 | old = buf->data; | ||
557 | new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs; | ||
558 | new = buf->start + new_subbuf * buf->chan->subbuf_size; | ||
559 | buf->offset = 0; | ||
560 | if (!buf->chan->cb->subbuf_start(buf, new, old, buf->prev_padding)) { | ||
561 | buf->offset = buf->chan->subbuf_size + 1; | ||
562 | return 0; | ||
563 | } | ||
564 | buf->data = new; | ||
565 | buf->padding[new_subbuf] = 0; | ||
566 | |||
567 | if (unlikely(length + buf->offset > buf->chan->subbuf_size)) | ||
568 | goto toobig; | ||
569 | |||
570 | return length; | ||
571 | |||
572 | toobig: | ||
573 | buf->chan->last_toobig = length; | ||
574 | return 0; | ||
575 | } | ||
576 | EXPORT_SYMBOL_GPL(relay_switch_subbuf); | ||
577 | |||
578 | /** | ||
579 | * relay_subbufs_consumed - update the buffer's sub-buffers-consumed count | ||
580 | * @chan: the channel | ||
581 | * @cpu: the cpu associated with the channel buffer to update | ||
582 | * @subbufs_consumed: number of sub-buffers to add to current buf's count | ||
583 | * | ||
584 | * Adds to the channel buffer's consumed sub-buffer count. | ||
585 | * subbufs_consumed should be the number of sub-buffers newly consumed, | ||
586 | * not the total consumed. | ||
587 | * | ||
588 | * NOTE: kernel clients don't need to call this function if the channel | ||
589 | * mode is 'overwrite'. | ||
590 | */ | ||
591 | void relay_subbufs_consumed(struct rchan *chan, | ||
592 | unsigned int cpu, | ||
593 | size_t subbufs_consumed) | ||
594 | { | ||
595 | struct rchan_buf *buf; | ||
596 | |||
597 | if (!chan) | ||
598 | return; | ||
599 | |||
600 | if (cpu >= NR_CPUS || !chan->buf[cpu]) | ||
601 | return; | ||
602 | |||
603 | buf = chan->buf[cpu]; | ||
604 | buf->subbufs_consumed += subbufs_consumed; | ||
605 | if (buf->subbufs_consumed > buf->subbufs_produced) | ||
606 | buf->subbufs_consumed = buf->subbufs_produced; | ||
607 | } | ||
608 | EXPORT_SYMBOL_GPL(relay_subbufs_consumed); | ||
609 | |||
610 | /** | ||
611 | * relay_close - close the channel | ||
612 | * @chan: the channel | ||
613 | * | ||
614 | * Closes all channel buffers and frees the channel. | ||
615 | */ | ||
616 | void relay_close(struct rchan *chan) | ||
617 | { | ||
618 | unsigned int i; | ||
619 | struct rchan_buf *prev = NULL; | ||
620 | |||
621 | if (!chan) | ||
622 | return; | ||
623 | |||
624 | for (i = 0; i < NR_CPUS; i++) { | ||
625 | if (!chan->buf[i] || chan->buf[i] == prev) | ||
626 | break; | ||
627 | relay_close_buf(chan->buf[i]); | ||
628 | prev = chan->buf[i]; | ||
629 | } | ||
630 | |||
631 | if (chan->last_toobig) | ||
632 | printk(KERN_WARNING "relay: one or more items not logged " | ||
633 | "[item size (%Zd) > sub-buffer size (%Zd)]\n", | ||
634 | chan->last_toobig, chan->subbuf_size); | ||
635 | |||
636 | kref_put(&chan->kref, relay_destroy_channel); | ||
637 | } | ||
638 | EXPORT_SYMBOL_GPL(relay_close); | ||
639 | |||
640 | /** | ||
641 | * relay_flush - close the channel | ||
642 | * @chan: the channel | ||
643 | * | ||
644 | * Flushes all channel buffers i.e. forces buffer switch. | ||
645 | */ | ||
646 | void relay_flush(struct rchan *chan) | ||
647 | { | ||
648 | unsigned int i; | ||
649 | struct rchan_buf *prev = NULL; | ||
650 | |||
651 | if (!chan) | ||
652 | return; | ||
653 | |||
654 | for (i = 0; i < NR_CPUS; i++) { | ||
655 | if (!chan->buf[i] || chan->buf[i] == prev) | ||
656 | break; | ||
657 | relay_switch_subbuf(chan->buf[i], 0); | ||
658 | prev = chan->buf[i]; | ||
659 | } | ||
660 | } | ||
661 | EXPORT_SYMBOL_GPL(relay_flush); | ||
662 | |||
663 | /** | ||
664 | * relay_file_open - open file op for relay files | ||
665 | * @inode: the inode | ||
666 | * @filp: the file | ||
667 | * | ||
668 | * Increments the channel buffer refcount. | ||
669 | */ | ||
670 | static int relay_file_open(struct inode *inode, struct file *filp) | ||
671 | { | ||
672 | struct rchan_buf *buf = inode->u.generic_ip; | ||
673 | kref_get(&buf->kref); | ||
674 | filp->private_data = buf; | ||
675 | |||
676 | return 0; | ||
677 | } | ||
678 | |||
679 | /** | ||
680 | * relay_file_mmap - mmap file op for relay files | ||
681 | * @filp: the file | ||
682 | * @vma: the vma describing what to map | ||
683 | * | ||
684 | * Calls upon relay_mmap_buf to map the file into user space. | ||
685 | */ | ||
686 | static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma) | ||
687 | { | ||
688 | struct rchan_buf *buf = filp->private_data; | ||
689 | return relay_mmap_buf(buf, vma); | ||
690 | } | ||
691 | |||
692 | /** | ||
693 | * relay_file_poll - poll file op for relay files | ||
694 | * @filp: the file | ||
695 | * @wait: poll table | ||
696 | * | ||
697 | * Poll implemention. | ||
698 | */ | ||
699 | static unsigned int relay_file_poll(struct file *filp, poll_table *wait) | ||
700 | { | ||
701 | unsigned int mask = 0; | ||
702 | struct rchan_buf *buf = filp->private_data; | ||
703 | |||
704 | if (buf->finalized) | ||
705 | return POLLERR; | ||
706 | |||
707 | if (filp->f_mode & FMODE_READ) { | ||
708 | poll_wait(filp, &buf->read_wait, wait); | ||
709 | if (!relay_buf_empty(buf)) | ||
710 | mask |= POLLIN | POLLRDNORM; | ||
711 | } | ||
712 | |||
713 | return mask; | ||
714 | } | ||
715 | |||
716 | /** | ||
717 | * relay_file_release - release file op for relay files | ||
718 | * @inode: the inode | ||
719 | * @filp: the file | ||
720 | * | ||
721 | * Decrements the channel refcount, as the filesystem is | ||
722 | * no longer using it. | ||
723 | */ | ||
724 | static int relay_file_release(struct inode *inode, struct file *filp) | ||
725 | { | ||
726 | struct rchan_buf *buf = filp->private_data; | ||
727 | kref_put(&buf->kref, relay_remove_buf); | ||
728 | |||
729 | return 0; | ||
730 | } | ||
731 | |||
732 | /** | ||
733 | * relay_file_read_consume - update the consumed count for the buffer | ||
734 | */ | ||
735 | static void relay_file_read_consume(struct rchan_buf *buf, | ||
736 | size_t read_pos, | ||
737 | size_t bytes_consumed) | ||
738 | { | ||
739 | size_t subbuf_size = buf->chan->subbuf_size; | ||
740 | size_t n_subbufs = buf->chan->n_subbufs; | ||
741 | size_t read_subbuf; | ||
742 | |||
743 | if (buf->bytes_consumed + bytes_consumed > subbuf_size) { | ||
744 | relay_subbufs_consumed(buf->chan, buf->cpu, 1); | ||
745 | buf->bytes_consumed = 0; | ||
746 | } | ||
747 | |||
748 | buf->bytes_consumed += bytes_consumed; | ||
749 | read_subbuf = read_pos / buf->chan->subbuf_size; | ||
750 | if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) { | ||
751 | if ((read_subbuf == buf->subbufs_produced % n_subbufs) && | ||
752 | (buf->offset == subbuf_size)) | ||
753 | return; | ||
754 | relay_subbufs_consumed(buf->chan, buf->cpu, 1); | ||
755 | buf->bytes_consumed = 0; | ||
756 | } | ||
757 | } | ||
758 | |||
759 | /** | ||
760 | * relay_file_read_avail - boolean, are there unconsumed bytes available? | ||
761 | */ | ||
762 | static int relay_file_read_avail(struct rchan_buf *buf, size_t read_pos) | ||
763 | { | ||
764 | size_t subbuf_size = buf->chan->subbuf_size; | ||
765 | size_t n_subbufs = buf->chan->n_subbufs; | ||
766 | size_t produced = buf->subbufs_produced; | ||
767 | size_t consumed = buf->subbufs_consumed; | ||
768 | |||
769 | relay_file_read_consume(buf, read_pos, 0); | ||
770 | |||
771 | if (unlikely(buf->offset > subbuf_size)) { | ||
772 | if (produced == consumed) | ||
773 | return 0; | ||
774 | return 1; | ||
775 | } | ||
776 | |||
777 | if (unlikely(produced - consumed >= n_subbufs)) { | ||
778 | consumed = (produced / n_subbufs) * n_subbufs; | ||
779 | buf->subbufs_consumed = consumed; | ||
780 | } | ||
781 | |||
782 | produced = (produced % n_subbufs) * subbuf_size + buf->offset; | ||
783 | consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed; | ||
784 | |||
785 | if (consumed > produced) | ||
786 | produced += n_subbufs * subbuf_size; | ||
787 | |||
788 | if (consumed == produced) | ||
789 | return 0; | ||
790 | |||
791 | return 1; | ||
792 | } | ||
793 | |||
794 | /** | ||
795 | * relay_file_read_subbuf_avail - return bytes available in sub-buffer | ||
796 | */ | ||
797 | static size_t relay_file_read_subbuf_avail(size_t read_pos, | ||
798 | struct rchan_buf *buf) | ||
799 | { | ||
800 | size_t padding, avail = 0; | ||
801 | size_t read_subbuf, read_offset, write_subbuf, write_offset; | ||
802 | size_t subbuf_size = buf->chan->subbuf_size; | ||
803 | |||
804 | write_subbuf = (buf->data - buf->start) / subbuf_size; | ||
805 | write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset; | ||
806 | read_subbuf = read_pos / subbuf_size; | ||
807 | read_offset = read_pos % subbuf_size; | ||
808 | padding = buf->padding[read_subbuf]; | ||
809 | |||
810 | if (read_subbuf == write_subbuf) { | ||
811 | if (read_offset + padding < write_offset) | ||
812 | avail = write_offset - (read_offset + padding); | ||
813 | } else | ||
814 | avail = (subbuf_size - padding) - read_offset; | ||
815 | |||
816 | return avail; | ||
817 | } | ||
818 | |||
819 | /** | ||
820 | * relay_file_read_start_pos - find the first available byte to read | ||
821 | * | ||
822 | * If the read_pos is in the middle of padding, return the | ||
823 | * position of the first actually available byte, otherwise | ||
824 | * return the original value. | ||
825 | */ | ||
826 | static size_t relay_file_read_start_pos(size_t read_pos, | ||
827 | struct rchan_buf *buf) | ||
828 | { | ||
829 | size_t read_subbuf, padding, padding_start, padding_end; | ||
830 | size_t subbuf_size = buf->chan->subbuf_size; | ||
831 | size_t n_subbufs = buf->chan->n_subbufs; | ||
832 | |||
833 | read_subbuf = read_pos / subbuf_size; | ||
834 | padding = buf->padding[read_subbuf]; | ||
835 | padding_start = (read_subbuf + 1) * subbuf_size - padding; | ||
836 | padding_end = (read_subbuf + 1) * subbuf_size; | ||
837 | if (read_pos >= padding_start && read_pos < padding_end) { | ||
838 | read_subbuf = (read_subbuf + 1) % n_subbufs; | ||
839 | read_pos = read_subbuf * subbuf_size; | ||
840 | } | ||
841 | |||
842 | return read_pos; | ||
843 | } | ||
844 | |||
845 | /** | ||
846 | * relay_file_read_end_pos - return the new read position | ||
847 | */ | ||
848 | static size_t relay_file_read_end_pos(struct rchan_buf *buf, | ||
849 | size_t read_pos, | ||
850 | size_t count) | ||
851 | { | ||
852 | size_t read_subbuf, padding, end_pos; | ||
853 | size_t subbuf_size = buf->chan->subbuf_size; | ||
854 | size_t n_subbufs = buf->chan->n_subbufs; | ||
855 | |||
856 | read_subbuf = read_pos / subbuf_size; | ||
857 | padding = buf->padding[read_subbuf]; | ||
858 | if (read_pos % subbuf_size + count + padding == subbuf_size) | ||
859 | end_pos = (read_subbuf + 1) * subbuf_size; | ||
860 | else | ||
861 | end_pos = read_pos + count; | ||
862 | if (end_pos >= subbuf_size * n_subbufs) | ||
863 | end_pos = 0; | ||
864 | |||
865 | return end_pos; | ||
866 | } | ||
867 | |||
868 | /** | ||
869 | * subbuf_read_actor - read up to one subbuf's worth of data | ||
870 | */ | ||
871 | static int subbuf_read_actor(size_t read_start, | ||
872 | struct rchan_buf *buf, | ||
873 | size_t avail, | ||
874 | read_descriptor_t *desc, | ||
875 | read_actor_t actor) | ||
876 | { | ||
877 | void *from; | ||
878 | int ret = 0; | ||
879 | |||
880 | from = buf->start + read_start; | ||
881 | ret = avail; | ||
882 | if (copy_to_user(desc->arg.data, from, avail)) { | ||
883 | desc->error = -EFAULT; | ||
884 | ret = 0; | ||
885 | } | ||
886 | desc->arg.data += ret; | ||
887 | desc->written += ret; | ||
888 | desc->count -= ret; | ||
889 | |||
890 | return ret; | ||
891 | } | ||
892 | |||
893 | /** | ||
894 | * subbuf_send_actor - send up to one subbuf's worth of data | ||
895 | */ | ||
896 | static int subbuf_send_actor(size_t read_start, | ||
897 | struct rchan_buf *buf, | ||
898 | size_t avail, | ||
899 | read_descriptor_t *desc, | ||
900 | read_actor_t actor) | ||
901 | { | ||
902 | unsigned long pidx, poff; | ||
903 | unsigned int subbuf_pages; | ||
904 | int ret = 0; | ||
905 | |||
906 | subbuf_pages = buf->chan->alloc_size >> PAGE_SHIFT; | ||
907 | pidx = (read_start / PAGE_SIZE) % subbuf_pages; | ||
908 | poff = read_start & ~PAGE_MASK; | ||
909 | while (avail) { | ||
910 | struct page *p = buf->page_array[pidx]; | ||
911 | unsigned int len; | ||
912 | |||
913 | len = PAGE_SIZE - poff; | ||
914 | if (len > avail) | ||
915 | len = avail; | ||
916 | |||
917 | len = actor(desc, p, poff, len); | ||
918 | if (desc->error) | ||
919 | break; | ||
920 | |||
921 | avail -= len; | ||
922 | ret += len; | ||
923 | poff = 0; | ||
924 | pidx = (pidx + 1) % subbuf_pages; | ||
925 | } | ||
926 | |||
927 | return ret; | ||
928 | } | ||
929 | |||
930 | typedef int (*subbuf_actor_t) (size_t read_start, | ||
931 | struct rchan_buf *buf, | ||
932 | size_t avail, | ||
933 | read_descriptor_t *desc, | ||
934 | read_actor_t actor); | ||
935 | |||
936 | /** | ||
937 | * relay_file_read_subbufs - read count bytes, bridging subbuf boundaries | ||
938 | */ | ||
939 | static inline ssize_t relay_file_read_subbufs(struct file *filp, | ||
940 | loff_t *ppos, | ||
941 | size_t count, | ||
942 | subbuf_actor_t subbuf_actor, | ||
943 | read_actor_t actor, | ||
944 | void *target) | ||
945 | { | ||
946 | struct rchan_buf *buf = filp->private_data; | ||
947 | size_t read_start, avail; | ||
948 | read_descriptor_t desc; | ||
949 | int ret; | ||
950 | |||
951 | if (!count) | ||
952 | return 0; | ||
953 | |||
954 | desc.written = 0; | ||
955 | desc.count = count; | ||
956 | desc.arg.data = target; | ||
957 | desc.error = 0; | ||
958 | |||
959 | mutex_lock(&filp->f_dentry->d_inode->i_mutex); | ||
960 | do { | ||
961 | if (!relay_file_read_avail(buf, *ppos)) | ||
962 | break; | ||
963 | |||
964 | read_start = relay_file_read_start_pos(*ppos, buf); | ||
965 | avail = relay_file_read_subbuf_avail(read_start, buf); | ||
966 | if (!avail) | ||
967 | break; | ||
968 | |||
969 | avail = min(desc.count, avail); | ||
970 | ret = subbuf_actor(read_start, buf, avail, &desc, actor); | ||
971 | if (desc.error < 0) | ||
972 | break; | ||
973 | |||
974 | if (ret) { | ||
975 | relay_file_read_consume(buf, read_start, ret); | ||
976 | *ppos = relay_file_read_end_pos(buf, read_start, ret); | ||
977 | } | ||
978 | } while (desc.count && ret); | ||
979 | mutex_unlock(&filp->f_dentry->d_inode->i_mutex); | ||
980 | |||
981 | return desc.written; | ||
982 | } | ||
983 | |||
984 | static ssize_t relay_file_read(struct file *filp, | ||
985 | char __user *buffer, | ||
986 | size_t count, | ||
987 | loff_t *ppos) | ||
988 | { | ||
989 | return relay_file_read_subbufs(filp, ppos, count, subbuf_read_actor, | ||
990 | NULL, buffer); | ||
991 | } | ||
992 | |||
993 | static ssize_t relay_file_sendfile(struct file *filp, | ||
994 | loff_t *ppos, | ||
995 | size_t count, | ||
996 | read_actor_t actor, | ||
997 | void *target) | ||
998 | { | ||
999 | return relay_file_read_subbufs(filp, ppos, count, subbuf_send_actor, | ||
1000 | actor, target); | ||
1001 | } | ||
1002 | |||
1003 | struct file_operations relay_file_operations = { | ||
1004 | .open = relay_file_open, | ||
1005 | .poll = relay_file_poll, | ||
1006 | .mmap = relay_file_mmap, | ||
1007 | .read = relay_file_read, | ||
1008 | .llseek = no_llseek, | ||
1009 | .release = relay_file_release, | ||
1010 | .sendfile = relay_file_sendfile, | ||
1011 | }; | ||
1012 | EXPORT_SYMBOL_GPL(relay_file_operations); | ||
diff --git a/kernel/sched.c b/kernel/sched.c index 4d46e90f59..a9ecac398b 100644 --- a/kernel/sched.c +++ b/kernel/sched.c | |||
@@ -49,6 +49,7 @@ | |||
49 | #include <linux/syscalls.h> | 49 | #include <linux/syscalls.h> |
50 | #include <linux/times.h> | 50 | #include <linux/times.h> |
51 | #include <linux/acct.h> | 51 | #include <linux/acct.h> |
52 | #include <linux/kprobes.h> | ||
52 | #include <asm/tlb.h> | 53 | #include <asm/tlb.h> |
53 | 54 | ||
54 | #include <asm/unistd.h> | 55 | #include <asm/unistd.h> |
@@ -144,7 +145,8 @@ | |||
144 | (v1) * (v2_max) / (v1_max) | 145 | (v1) * (v2_max) / (v1_max) |
145 | 146 | ||
146 | #define DELTA(p) \ | 147 | #define DELTA(p) \ |
147 | (SCALE(TASK_NICE(p), 40, MAX_BONUS) + INTERACTIVE_DELTA) | 148 | (SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \ |
149 | INTERACTIVE_DELTA) | ||
148 | 150 | ||
149 | #define TASK_INTERACTIVE(p) \ | 151 | #define TASK_INTERACTIVE(p) \ |
150 | ((p)->prio <= (p)->static_prio - DELTA(p)) | 152 | ((p)->prio <= (p)->static_prio - DELTA(p)) |
@@ -237,6 +239,7 @@ struct runqueue { | |||
237 | 239 | ||
238 | task_t *migration_thread; | 240 | task_t *migration_thread; |
239 | struct list_head migration_queue; | 241 | struct list_head migration_queue; |
242 | int cpu; | ||
240 | #endif | 243 | #endif |
241 | 244 | ||
242 | #ifdef CONFIG_SCHEDSTATS | 245 | #ifdef CONFIG_SCHEDSTATS |
@@ -707,12 +710,6 @@ static int recalc_task_prio(task_t *p, unsigned long long now) | |||
707 | DEF_TIMESLICE); | 710 | DEF_TIMESLICE); |
708 | } else { | 711 | } else { |
709 | /* | 712 | /* |
710 | * The lower the sleep avg a task has the more | ||
711 | * rapidly it will rise with sleep time. | ||
712 | */ | ||
713 | sleep_time *= (MAX_BONUS - CURRENT_BONUS(p)) ? : 1; | ||
714 | |||
715 | /* | ||
716 | * Tasks waking from uninterruptible sleep are | 713 | * Tasks waking from uninterruptible sleep are |
717 | * limited in their sleep_avg rise as they | 714 | * limited in their sleep_avg rise as they |
718 | * are likely to be waiting on I/O | 715 | * are likely to be waiting on I/O |
@@ -1551,8 +1548,14 @@ static inline void finish_task_switch(runqueue_t *rq, task_t *prev) | |||
1551 | finish_lock_switch(rq, prev); | 1548 | finish_lock_switch(rq, prev); |
1552 | if (mm) | 1549 | if (mm) |
1553 | mmdrop(mm); | 1550 | mmdrop(mm); |
1554 | if (unlikely(prev_task_flags & PF_DEAD)) | 1551 | if (unlikely(prev_task_flags & PF_DEAD)) { |
1552 | /* | ||
1553 | * Remove function-return probe instances associated with this | ||
1554 | * task and put them back on the free list. | ||
1555 | */ | ||
1556 | kprobe_flush_task(prev); | ||
1555 | put_task_struct(prev); | 1557 | put_task_struct(prev); |
1558 | } | ||
1556 | } | 1559 | } |
1557 | 1560 | ||
1558 | /** | 1561 | /** |
@@ -1622,7 +1625,7 @@ unsigned long nr_uninterruptible(void) | |||
1622 | { | 1625 | { |
1623 | unsigned long i, sum = 0; | 1626 | unsigned long i, sum = 0; |
1624 | 1627 | ||
1625 | for_each_cpu(i) | 1628 | for_each_possible_cpu(i) |
1626 | sum += cpu_rq(i)->nr_uninterruptible; | 1629 | sum += cpu_rq(i)->nr_uninterruptible; |
1627 | 1630 | ||
1628 | /* | 1631 | /* |
@@ -1639,7 +1642,7 @@ unsigned long long nr_context_switches(void) | |||
1639 | { | 1642 | { |
1640 | unsigned long long i, sum = 0; | 1643 | unsigned long long i, sum = 0; |
1641 | 1644 | ||
1642 | for_each_cpu(i) | 1645 | for_each_possible_cpu(i) |
1643 | sum += cpu_rq(i)->nr_switches; | 1646 | sum += cpu_rq(i)->nr_switches; |
1644 | 1647 | ||
1645 | return sum; | 1648 | return sum; |
@@ -1649,7 +1652,7 @@ unsigned long nr_iowait(void) | |||
1649 | { | 1652 | { |
1650 | unsigned long i, sum = 0; | 1653 | unsigned long i, sum = 0; |
1651 | 1654 | ||
1652 | for_each_cpu(i) | 1655 | for_each_possible_cpu(i) |
1653 | sum += atomic_read(&cpu_rq(i)->nr_iowait); | 1656 | sum += atomic_read(&cpu_rq(i)->nr_iowait); |
1654 | 1657 | ||
1655 | return sum; | 1658 | return sum; |
@@ -1660,6 +1663,9 @@ unsigned long nr_iowait(void) | |||
1660 | /* | 1663 | /* |
1661 | * double_rq_lock - safely lock two runqueues | 1664 | * double_rq_lock - safely lock two runqueues |
1662 | * | 1665 | * |
1666 | * We must take them in cpu order to match code in | ||
1667 | * dependent_sleeper and wake_dependent_sleeper. | ||
1668 | * | ||
1663 | * Note this does not disable interrupts like task_rq_lock, | 1669 | * Note this does not disable interrupts like task_rq_lock, |
1664 | * you need to do so manually before calling. | 1670 | * you need to do so manually before calling. |
1665 | */ | 1671 | */ |
@@ -1671,7 +1677,7 @@ static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2) | |||
1671 | spin_lock(&rq1->lock); | 1677 | spin_lock(&rq1->lock); |
1672 | __acquire(rq2->lock); /* Fake it out ;) */ | 1678 | __acquire(rq2->lock); /* Fake it out ;) */ |
1673 | } else { | 1679 | } else { |
1674 | if (rq1 < rq2) { | 1680 | if (rq1->cpu < rq2->cpu) { |
1675 | spin_lock(&rq1->lock); | 1681 | spin_lock(&rq1->lock); |
1676 | spin_lock(&rq2->lock); | 1682 | spin_lock(&rq2->lock); |
1677 | } else { | 1683 | } else { |
@@ -1707,7 +1713,7 @@ static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest) | |||
1707 | __acquires(this_rq->lock) | 1713 | __acquires(this_rq->lock) |
1708 | { | 1714 | { |
1709 | if (unlikely(!spin_trylock(&busiest->lock))) { | 1715 | if (unlikely(!spin_trylock(&busiest->lock))) { |
1710 | if (busiest < this_rq) { | 1716 | if (busiest->cpu < this_rq->cpu) { |
1711 | spin_unlock(&this_rq->lock); | 1717 | spin_unlock(&this_rq->lock); |
1712 | spin_lock(&busiest->lock); | 1718 | spin_lock(&busiest->lock); |
1713 | spin_lock(&this_rq->lock); | 1719 | spin_lock(&this_rq->lock); |
@@ -2873,13 +2879,11 @@ asmlinkage void __sched schedule(void) | |||
2873 | * schedule() atomically, we ignore that path for now. | 2879 | * schedule() atomically, we ignore that path for now. |
2874 | * Otherwise, whine if we are scheduling when we should not be. | 2880 | * Otherwise, whine if we are scheduling when we should not be. |
2875 | */ | 2881 | */ |
2876 | if (likely(!current->exit_state)) { | 2882 | if (unlikely(in_atomic() && !current->exit_state)) { |
2877 | if (unlikely(in_atomic())) { | 2883 | printk(KERN_ERR "BUG: scheduling while atomic: " |
2878 | printk(KERN_ERR "scheduling while atomic: " | 2884 | "%s/0x%08x/%d\n", |
2879 | "%s/0x%08x/%d\n", | 2885 | current->comm, preempt_count(), current->pid); |
2880 | current->comm, preempt_count(), current->pid); | 2886 | dump_stack(); |
2881 | dump_stack(); | ||
2882 | } | ||
2883 | } | 2887 | } |
2884 | profile_hit(SCHED_PROFILING, __builtin_return_address(0)); | 2888 | profile_hit(SCHED_PROFILING, __builtin_return_address(0)); |
2885 | 2889 | ||
@@ -5570,11 +5574,31 @@ static int cpu_to_cpu_group(int cpu) | |||
5570 | } | 5574 | } |
5571 | #endif | 5575 | #endif |
5572 | 5576 | ||
5577 | #ifdef CONFIG_SCHED_MC | ||
5578 | static DEFINE_PER_CPU(struct sched_domain, core_domains); | ||
5579 | static struct sched_group sched_group_core[NR_CPUS]; | ||
5580 | #endif | ||
5581 | |||
5582 | #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT) | ||
5583 | static int cpu_to_core_group(int cpu) | ||
5584 | { | ||
5585 | return first_cpu(cpu_sibling_map[cpu]); | ||
5586 | } | ||
5587 | #elif defined(CONFIG_SCHED_MC) | ||
5588 | static int cpu_to_core_group(int cpu) | ||
5589 | { | ||
5590 | return cpu; | ||
5591 | } | ||
5592 | #endif | ||
5593 | |||
5573 | static DEFINE_PER_CPU(struct sched_domain, phys_domains); | 5594 | static DEFINE_PER_CPU(struct sched_domain, phys_domains); |
5574 | static struct sched_group sched_group_phys[NR_CPUS]; | 5595 | static struct sched_group sched_group_phys[NR_CPUS]; |
5575 | static int cpu_to_phys_group(int cpu) | 5596 | static int cpu_to_phys_group(int cpu) |
5576 | { | 5597 | { |
5577 | #ifdef CONFIG_SCHED_SMT | 5598 | #if defined(CONFIG_SCHED_MC) |
5599 | cpumask_t mask = cpu_coregroup_map(cpu); | ||
5600 | return first_cpu(mask); | ||
5601 | #elif defined(CONFIG_SCHED_SMT) | ||
5578 | return first_cpu(cpu_sibling_map[cpu]); | 5602 | return first_cpu(cpu_sibling_map[cpu]); |
5579 | #else | 5603 | #else |
5580 | return cpu; | 5604 | return cpu; |
@@ -5597,6 +5621,32 @@ static int cpu_to_allnodes_group(int cpu) | |||
5597 | { | 5621 | { |
5598 | return cpu_to_node(cpu); | 5622 | return cpu_to_node(cpu); |
5599 | } | 5623 | } |
5624 | static void init_numa_sched_groups_power(struct sched_group *group_head) | ||
5625 | { | ||
5626 | struct sched_group *sg = group_head; | ||
5627 | int j; | ||
5628 | |||
5629 | if (!sg) | ||
5630 | return; | ||
5631 | next_sg: | ||
5632 | for_each_cpu_mask(j, sg->cpumask) { | ||
5633 | struct sched_domain *sd; | ||
5634 | |||
5635 | sd = &per_cpu(phys_domains, j); | ||
5636 | if (j != first_cpu(sd->groups->cpumask)) { | ||
5637 | /* | ||
5638 | * Only add "power" once for each | ||
5639 | * physical package. | ||
5640 | */ | ||
5641 | continue; | ||
5642 | } | ||
5643 | |||
5644 | sg->cpu_power += sd->groups->cpu_power; | ||
5645 | } | ||
5646 | sg = sg->next; | ||
5647 | if (sg != group_head) | ||
5648 | goto next_sg; | ||
5649 | } | ||
5600 | #endif | 5650 | #endif |
5601 | 5651 | ||
5602 | /* | 5652 | /* |
@@ -5672,6 +5722,17 @@ void build_sched_domains(const cpumask_t *cpu_map) | |||
5672 | sd->parent = p; | 5722 | sd->parent = p; |
5673 | sd->groups = &sched_group_phys[group]; | 5723 | sd->groups = &sched_group_phys[group]; |
5674 | 5724 | ||
5725 | #ifdef CONFIG_SCHED_MC | ||
5726 | p = sd; | ||
5727 | sd = &per_cpu(core_domains, i); | ||
5728 | group = cpu_to_core_group(i); | ||
5729 | *sd = SD_MC_INIT; | ||
5730 | sd->span = cpu_coregroup_map(i); | ||
5731 | cpus_and(sd->span, sd->span, *cpu_map); | ||
5732 | sd->parent = p; | ||
5733 | sd->groups = &sched_group_core[group]; | ||
5734 | #endif | ||
5735 | |||
5675 | #ifdef CONFIG_SCHED_SMT | 5736 | #ifdef CONFIG_SCHED_SMT |
5676 | p = sd; | 5737 | p = sd; |
5677 | sd = &per_cpu(cpu_domains, i); | 5738 | sd = &per_cpu(cpu_domains, i); |
@@ -5697,6 +5758,19 @@ void build_sched_domains(const cpumask_t *cpu_map) | |||
5697 | } | 5758 | } |
5698 | #endif | 5759 | #endif |
5699 | 5760 | ||
5761 | #ifdef CONFIG_SCHED_MC | ||
5762 | /* Set up multi-core groups */ | ||
5763 | for_each_cpu_mask(i, *cpu_map) { | ||
5764 | cpumask_t this_core_map = cpu_coregroup_map(i); | ||
5765 | cpus_and(this_core_map, this_core_map, *cpu_map); | ||
5766 | if (i != first_cpu(this_core_map)) | ||
5767 | continue; | ||
5768 | init_sched_build_groups(sched_group_core, this_core_map, | ||
5769 | &cpu_to_core_group); | ||
5770 | } | ||
5771 | #endif | ||
5772 | |||
5773 | |||
5700 | /* Set up physical groups */ | 5774 | /* Set up physical groups */ |
5701 | for (i = 0; i < MAX_NUMNODES; i++) { | 5775 | for (i = 0; i < MAX_NUMNODES; i++) { |
5702 | cpumask_t nodemask = node_to_cpumask(i); | 5776 | cpumask_t nodemask = node_to_cpumask(i); |
@@ -5793,51 +5867,38 @@ void build_sched_domains(const cpumask_t *cpu_map) | |||
5793 | power = SCHED_LOAD_SCALE; | 5867 | power = SCHED_LOAD_SCALE; |
5794 | sd->groups->cpu_power = power; | 5868 | sd->groups->cpu_power = power; |
5795 | #endif | 5869 | #endif |
5870 | #ifdef CONFIG_SCHED_MC | ||
5871 | sd = &per_cpu(core_domains, i); | ||
5872 | power = SCHED_LOAD_SCALE + (cpus_weight(sd->groups->cpumask)-1) | ||
5873 | * SCHED_LOAD_SCALE / 10; | ||
5874 | sd->groups->cpu_power = power; | ||
5875 | |||
5876 | sd = &per_cpu(phys_domains, i); | ||
5796 | 5877 | ||
5878 | /* | ||
5879 | * This has to be < 2 * SCHED_LOAD_SCALE | ||
5880 | * Lets keep it SCHED_LOAD_SCALE, so that | ||
5881 | * while calculating NUMA group's cpu_power | ||
5882 | * we can simply do | ||
5883 | * numa_group->cpu_power += phys_group->cpu_power; | ||
5884 | * | ||
5885 | * See "only add power once for each physical pkg" | ||
5886 | * comment below | ||
5887 | */ | ||
5888 | sd->groups->cpu_power = SCHED_LOAD_SCALE; | ||
5889 | #else | ||
5797 | sd = &per_cpu(phys_domains, i); | 5890 | sd = &per_cpu(phys_domains, i); |
5798 | power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE * | 5891 | power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE * |
5799 | (cpus_weight(sd->groups->cpumask)-1) / 10; | 5892 | (cpus_weight(sd->groups->cpumask)-1) / 10; |
5800 | sd->groups->cpu_power = power; | 5893 | sd->groups->cpu_power = power; |
5801 | |||
5802 | #ifdef CONFIG_NUMA | ||
5803 | sd = &per_cpu(allnodes_domains, i); | ||
5804 | if (sd->groups) { | ||
5805 | power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE * | ||
5806 | (cpus_weight(sd->groups->cpumask)-1) / 10; | ||
5807 | sd->groups->cpu_power = power; | ||
5808 | } | ||
5809 | #endif | 5894 | #endif |
5810 | } | 5895 | } |
5811 | 5896 | ||
5812 | #ifdef CONFIG_NUMA | 5897 | #ifdef CONFIG_NUMA |
5813 | for (i = 0; i < MAX_NUMNODES; i++) { | 5898 | for (i = 0; i < MAX_NUMNODES; i++) |
5814 | struct sched_group *sg = sched_group_nodes[i]; | 5899 | init_numa_sched_groups_power(sched_group_nodes[i]); |
5815 | int j; | ||
5816 | |||
5817 | if (sg == NULL) | ||
5818 | continue; | ||
5819 | next_sg: | ||
5820 | for_each_cpu_mask(j, sg->cpumask) { | ||
5821 | struct sched_domain *sd; | ||
5822 | int power; | ||
5823 | 5900 | ||
5824 | sd = &per_cpu(phys_domains, j); | 5901 | init_numa_sched_groups_power(sched_group_allnodes); |
5825 | if (j != first_cpu(sd->groups->cpumask)) { | ||
5826 | /* | ||
5827 | * Only add "power" once for each | ||
5828 | * physical package. | ||
5829 | */ | ||
5830 | continue; | ||
5831 | } | ||
5832 | power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE * | ||
5833 | (cpus_weight(sd->groups->cpumask)-1) / 10; | ||
5834 | |||
5835 | sg->cpu_power += power; | ||
5836 | } | ||
5837 | sg = sg->next; | ||
5838 | if (sg != sched_group_nodes[i]) | ||
5839 | goto next_sg; | ||
5840 | } | ||
5841 | #endif | 5902 | #endif |
5842 | 5903 | ||
5843 | /* Attach the domains */ | 5904 | /* Attach the domains */ |
@@ -5845,6 +5906,8 @@ next_sg: | |||
5845 | struct sched_domain *sd; | 5906 | struct sched_domain *sd; |
5846 | #ifdef CONFIG_SCHED_SMT | 5907 | #ifdef CONFIG_SCHED_SMT |
5847 | sd = &per_cpu(cpu_domains, i); | 5908 | sd = &per_cpu(cpu_domains, i); |
5909 | #elif defined(CONFIG_SCHED_MC) | ||
5910 | sd = &per_cpu(core_domains, i); | ||
5848 | #else | 5911 | #else |
5849 | sd = &per_cpu(phys_domains, i); | 5912 | sd = &per_cpu(phys_domains, i); |
5850 | #endif | 5913 | #endif |
@@ -6017,7 +6080,7 @@ void __init sched_init(void) | |||
6017 | runqueue_t *rq; | 6080 | runqueue_t *rq; |
6018 | int i, j, k; | 6081 | int i, j, k; |
6019 | 6082 | ||
6020 | for_each_cpu(i) { | 6083 | for_each_possible_cpu(i) { |
6021 | prio_array_t *array; | 6084 | prio_array_t *array; |
6022 | 6085 | ||
6023 | rq = cpu_rq(i); | 6086 | rq = cpu_rq(i); |
@@ -6035,6 +6098,7 @@ void __init sched_init(void) | |||
6035 | rq->push_cpu = 0; | 6098 | rq->push_cpu = 0; |
6036 | rq->migration_thread = NULL; | 6099 | rq->migration_thread = NULL; |
6037 | INIT_LIST_HEAD(&rq->migration_queue); | 6100 | INIT_LIST_HEAD(&rq->migration_queue); |
6101 | rq->cpu = i; | ||
6038 | #endif | 6102 | #endif |
6039 | atomic_set(&rq->nr_iowait, 0); | 6103 | atomic_set(&rq->nr_iowait, 0); |
6040 | 6104 | ||
@@ -6075,7 +6139,7 @@ void __might_sleep(char *file, int line) | |||
6075 | if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) | 6139 | if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) |
6076 | return; | 6140 | return; |
6077 | prev_jiffy = jiffies; | 6141 | prev_jiffy = jiffies; |
6078 | printk(KERN_ERR "Debug: sleeping function called from invalid" | 6142 | printk(KERN_ERR "BUG: sleeping function called from invalid" |
6079 | " context at %s:%d\n", file, line); | 6143 | " context at %s:%d\n", file, line); |
6080 | printk("in_atomic():%d, irqs_disabled():%d\n", | 6144 | printk("in_atomic():%d, irqs_disabled():%d\n", |
6081 | in_atomic(), irqs_disabled()); | 6145 | in_atomic(), irqs_disabled()); |
diff --git a/kernel/signal.c b/kernel/signal.c index ea154104a0..4922928d91 100644 --- a/kernel/signal.c +++ b/kernel/signal.c | |||
@@ -22,7 +22,6 @@ | |||
22 | #include <linux/security.h> | 22 | #include <linux/security.h> |
23 | #include <linux/syscalls.h> | 23 | #include <linux/syscalls.h> |
24 | #include <linux/ptrace.h> | 24 | #include <linux/ptrace.h> |
25 | #include <linux/posix-timers.h> | ||
26 | #include <linux/signal.h> | 25 | #include <linux/signal.h> |
27 | #include <linux/audit.h> | 26 | #include <linux/audit.h> |
28 | #include <linux/capability.h> | 27 | #include <linux/capability.h> |
@@ -147,6 +146,8 @@ static kmem_cache_t *sigqueue_cachep; | |||
147 | #define sig_kernel_stop(sig) \ | 146 | #define sig_kernel_stop(sig) \ |
148 | (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_STOP_MASK)) | 147 | (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_STOP_MASK)) |
149 | 148 | ||
149 | #define sig_needs_tasklist(sig) ((sig) == SIGCONT) | ||
150 | |||
150 | #define sig_user_defined(t, signr) \ | 151 | #define sig_user_defined(t, signr) \ |
151 | (((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_DFL) && \ | 152 | (((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_DFL) && \ |
152 | ((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_IGN)) | 153 | ((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_IGN)) |
@@ -292,7 +293,7 @@ static void __sigqueue_free(struct sigqueue *q) | |||
292 | kmem_cache_free(sigqueue_cachep, q); | 293 | kmem_cache_free(sigqueue_cachep, q); |
293 | } | 294 | } |
294 | 295 | ||
295 | static void flush_sigqueue(struct sigpending *queue) | 296 | void flush_sigqueue(struct sigpending *queue) |
296 | { | 297 | { |
297 | struct sigqueue *q; | 298 | struct sigqueue *q; |
298 | 299 | ||
@@ -307,9 +308,7 @@ static void flush_sigqueue(struct sigpending *queue) | |||
307 | /* | 308 | /* |
308 | * Flush all pending signals for a task. | 309 | * Flush all pending signals for a task. |
309 | */ | 310 | */ |
310 | 311 | void flush_signals(struct task_struct *t) | |
311 | void | ||
312 | flush_signals(struct task_struct *t) | ||
313 | { | 312 | { |
314 | unsigned long flags; | 313 | unsigned long flags; |
315 | 314 | ||
@@ -321,109 +320,6 @@ flush_signals(struct task_struct *t) | |||
321 | } | 320 | } |
322 | 321 | ||
323 | /* | 322 | /* |
324 | * This function expects the tasklist_lock write-locked. | ||
325 | */ | ||
326 | void __exit_sighand(struct task_struct *tsk) | ||
327 | { | ||
328 | struct sighand_struct * sighand = tsk->sighand; | ||
329 | |||
330 | /* Ok, we're done with the signal handlers */ | ||
331 | tsk->sighand = NULL; | ||
332 | if (atomic_dec_and_test(&sighand->count)) | ||
333 | sighand_free(sighand); | ||
334 | } | ||
335 | |||
336 | void exit_sighand(struct task_struct *tsk) | ||
337 | { | ||
338 | write_lock_irq(&tasklist_lock); | ||
339 | rcu_read_lock(); | ||
340 | if (tsk->sighand != NULL) { | ||
341 | struct sighand_struct *sighand = rcu_dereference(tsk->sighand); | ||
342 | spin_lock(&sighand->siglock); | ||
343 | __exit_sighand(tsk); | ||
344 | spin_unlock(&sighand->siglock); | ||
345 | } | ||
346 | rcu_read_unlock(); | ||
347 | write_unlock_irq(&tasklist_lock); | ||
348 | } | ||
349 | |||
350 | /* | ||
351 | * This function expects the tasklist_lock write-locked. | ||
352 | */ | ||
353 | void __exit_signal(struct task_struct *tsk) | ||
354 | { | ||
355 | struct signal_struct * sig = tsk->signal; | ||
356 | struct sighand_struct * sighand; | ||
357 | |||
358 | if (!sig) | ||
359 | BUG(); | ||
360 | if (!atomic_read(&sig->count)) | ||
361 | BUG(); | ||
362 | rcu_read_lock(); | ||
363 | sighand = rcu_dereference(tsk->sighand); | ||
364 | spin_lock(&sighand->siglock); | ||
365 | posix_cpu_timers_exit(tsk); | ||
366 | if (atomic_dec_and_test(&sig->count)) { | ||
367 | posix_cpu_timers_exit_group(tsk); | ||
368 | tsk->signal = NULL; | ||
369 | __exit_sighand(tsk); | ||
370 | spin_unlock(&sighand->siglock); | ||
371 | flush_sigqueue(&sig->shared_pending); | ||
372 | } else { | ||
373 | /* | ||
374 | * If there is any task waiting for the group exit | ||
375 | * then notify it: | ||
376 | */ | ||
377 | if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) { | ||
378 | wake_up_process(sig->group_exit_task); | ||
379 | sig->group_exit_task = NULL; | ||
380 | } | ||
381 | if (tsk == sig->curr_target) | ||
382 | sig->curr_target = next_thread(tsk); | ||
383 | tsk->signal = NULL; | ||
384 | /* | ||
385 | * Accumulate here the counters for all threads but the | ||
386 | * group leader as they die, so they can be added into | ||
387 | * the process-wide totals when those are taken. | ||
388 | * The group leader stays around as a zombie as long | ||
389 | * as there are other threads. When it gets reaped, | ||
390 | * the exit.c code will add its counts into these totals. | ||
391 | * We won't ever get here for the group leader, since it | ||
392 | * will have been the last reference on the signal_struct. | ||
393 | */ | ||
394 | sig->utime = cputime_add(sig->utime, tsk->utime); | ||
395 | sig->stime = cputime_add(sig->stime, tsk->stime); | ||
396 | sig->min_flt += tsk->min_flt; | ||
397 | sig->maj_flt += tsk->maj_flt; | ||
398 | sig->nvcsw += tsk->nvcsw; | ||
399 | sig->nivcsw += tsk->nivcsw; | ||
400 | sig->sched_time += tsk->sched_time; | ||
401 | __exit_sighand(tsk); | ||
402 | spin_unlock(&sighand->siglock); | ||
403 | sig = NULL; /* Marker for below. */ | ||
404 | } | ||
405 | rcu_read_unlock(); | ||
406 | clear_tsk_thread_flag(tsk,TIF_SIGPENDING); | ||
407 | flush_sigqueue(&tsk->pending); | ||
408 | if (sig) { | ||
409 | /* | ||
410 | * We are cleaning up the signal_struct here. | ||
411 | */ | ||
412 | exit_thread_group_keys(sig); | ||
413 | kmem_cache_free(signal_cachep, sig); | ||
414 | } | ||
415 | } | ||
416 | |||
417 | void exit_signal(struct task_struct *tsk) | ||
418 | { | ||
419 | atomic_dec(&tsk->signal->live); | ||
420 | |||
421 | write_lock_irq(&tasklist_lock); | ||
422 | __exit_signal(tsk); | ||
423 | write_unlock_irq(&tasklist_lock); | ||
424 | } | ||
425 | |||
426 | /* | ||
427 | * Flush all handlers for a task. | 323 | * Flush all handlers for a task. |
428 | */ | 324 | */ |
429 | 325 | ||
@@ -695,9 +591,7 @@ static int check_kill_permission(int sig, struct siginfo *info, | |||
695 | } | 591 | } |
696 | 592 | ||
697 | /* forward decl */ | 593 | /* forward decl */ |
698 | static void do_notify_parent_cldstop(struct task_struct *tsk, | 594 | static void do_notify_parent_cldstop(struct task_struct *tsk, int why); |
699 | int to_self, | ||
700 | int why); | ||
701 | 595 | ||
702 | /* | 596 | /* |
703 | * Handle magic process-wide effects of stop/continue signals. | 597 | * Handle magic process-wide effects of stop/continue signals. |
@@ -747,7 +641,7 @@ static void handle_stop_signal(int sig, struct task_struct *p) | |||
747 | p->signal->group_stop_count = 0; | 641 | p->signal->group_stop_count = 0; |
748 | p->signal->flags = SIGNAL_STOP_CONTINUED; | 642 | p->signal->flags = SIGNAL_STOP_CONTINUED; |
749 | spin_unlock(&p->sighand->siglock); | 643 | spin_unlock(&p->sighand->siglock); |
750 | do_notify_parent_cldstop(p, (p->ptrace & PT_PTRACED), CLD_STOPPED); | 644 | do_notify_parent_cldstop(p, CLD_STOPPED); |
751 | spin_lock(&p->sighand->siglock); | 645 | spin_lock(&p->sighand->siglock); |
752 | } | 646 | } |
753 | rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending); | 647 | rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending); |
@@ -788,7 +682,7 @@ static void handle_stop_signal(int sig, struct task_struct *p) | |||
788 | p->signal->flags = SIGNAL_STOP_CONTINUED; | 682 | p->signal->flags = SIGNAL_STOP_CONTINUED; |
789 | p->signal->group_exit_code = 0; | 683 | p->signal->group_exit_code = 0; |
790 | spin_unlock(&p->sighand->siglock); | 684 | spin_unlock(&p->sighand->siglock); |
791 | do_notify_parent_cldstop(p, (p->ptrace & PT_PTRACED), CLD_CONTINUED); | 685 | do_notify_parent_cldstop(p, CLD_CONTINUED); |
792 | spin_lock(&p->sighand->siglock); | 686 | spin_lock(&p->sighand->siglock); |
793 | } else { | 687 | } else { |
794 | /* | 688 | /* |
@@ -1120,27 +1014,37 @@ void zap_other_threads(struct task_struct *p) | |||
1120 | /* | 1014 | /* |
1121 | * Must be called under rcu_read_lock() or with tasklist_lock read-held. | 1015 | * Must be called under rcu_read_lock() or with tasklist_lock read-held. |
1122 | */ | 1016 | */ |
1017 | struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags) | ||
1018 | { | ||
1019 | struct sighand_struct *sighand; | ||
1020 | |||
1021 | for (;;) { | ||
1022 | sighand = rcu_dereference(tsk->sighand); | ||
1023 | if (unlikely(sighand == NULL)) | ||
1024 | break; | ||
1025 | |||
1026 | spin_lock_irqsave(&sighand->siglock, *flags); | ||
1027 | if (likely(sighand == tsk->sighand)) | ||
1028 | break; | ||
1029 | spin_unlock_irqrestore(&sighand->siglock, *flags); | ||
1030 | } | ||
1031 | |||
1032 | return sighand; | ||
1033 | } | ||
1034 | |||
1123 | int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) | 1035 | int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) |
1124 | { | 1036 | { |
1125 | unsigned long flags; | 1037 | unsigned long flags; |
1126 | struct sighand_struct *sp; | ||
1127 | int ret; | 1038 | int ret; |
1128 | 1039 | ||
1129 | retry: | ||
1130 | ret = check_kill_permission(sig, info, p); | 1040 | ret = check_kill_permission(sig, info, p); |
1131 | if (!ret && sig && (sp = rcu_dereference(p->sighand))) { | 1041 | |
1132 | spin_lock_irqsave(&sp->siglock, flags); | 1042 | if (!ret && sig) { |
1133 | if (p->sighand != sp) { | 1043 | ret = -ESRCH; |
1134 | spin_unlock_irqrestore(&sp->siglock, flags); | 1044 | if (lock_task_sighand(p, &flags)) { |
1135 | goto retry; | 1045 | ret = __group_send_sig_info(sig, info, p); |
1136 | } | 1046 | unlock_task_sighand(p, &flags); |
1137 | if ((atomic_read(&sp->count) == 0) || | ||
1138 | (atomic_read(&p->usage) == 0)) { | ||
1139 | spin_unlock_irqrestore(&sp->siglock, flags); | ||
1140 | return -ESRCH; | ||
1141 | } | 1047 | } |
1142 | ret = __group_send_sig_info(sig, info, p); | ||
1143 | spin_unlock_irqrestore(&sp->siglock, flags); | ||
1144 | } | 1048 | } |
1145 | 1049 | ||
1146 | return ret; | 1050 | return ret; |
@@ -1189,7 +1093,7 @@ kill_proc_info(int sig, struct siginfo *info, pid_t pid) | |||
1189 | struct task_struct *p; | 1093 | struct task_struct *p; |
1190 | 1094 | ||
1191 | rcu_read_lock(); | 1095 | rcu_read_lock(); |
1192 | if (unlikely(sig_kernel_stop(sig) || sig == SIGCONT)) { | 1096 | if (unlikely(sig_needs_tasklist(sig))) { |
1193 | read_lock(&tasklist_lock); | 1097 | read_lock(&tasklist_lock); |
1194 | acquired_tasklist_lock = 1; | 1098 | acquired_tasklist_lock = 1; |
1195 | } | 1099 | } |
@@ -1405,12 +1309,10 @@ void sigqueue_free(struct sigqueue *q) | |||
1405 | __sigqueue_free(q); | 1309 | __sigqueue_free(q); |
1406 | } | 1310 | } |
1407 | 1311 | ||
1408 | int | 1312 | int send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p) |
1409 | send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p) | ||
1410 | { | 1313 | { |
1411 | unsigned long flags; | 1314 | unsigned long flags; |
1412 | int ret = 0; | 1315 | int ret = 0; |
1413 | struct sighand_struct *sh; | ||
1414 | 1316 | ||
1415 | BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); | 1317 | BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); |
1416 | 1318 | ||
@@ -1424,48 +1326,17 @@ send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p) | |||
1424 | */ | 1326 | */ |
1425 | rcu_read_lock(); | 1327 | rcu_read_lock(); |
1426 | 1328 | ||
1427 | if (unlikely(p->flags & PF_EXITING)) { | 1329 | if (!likely(lock_task_sighand(p, &flags))) { |
1428 | ret = -1; | 1330 | ret = -1; |
1429 | goto out_err; | 1331 | goto out_err; |
1430 | } | 1332 | } |
1431 | 1333 | ||
1432 | retry: | ||
1433 | sh = rcu_dereference(p->sighand); | ||
1434 | |||
1435 | spin_lock_irqsave(&sh->siglock, flags); | ||
1436 | if (p->sighand != sh) { | ||
1437 | /* We raced with exec() in a multithreaded process... */ | ||
1438 | spin_unlock_irqrestore(&sh->siglock, flags); | ||
1439 | goto retry; | ||
1440 | } | ||
1441 | |||
1442 | /* | ||
1443 | * We do the check here again to handle the following scenario: | ||
1444 | * | ||
1445 | * CPU 0 CPU 1 | ||
1446 | * send_sigqueue | ||
1447 | * check PF_EXITING | ||
1448 | * interrupt exit code running | ||
1449 | * __exit_signal | ||
1450 | * lock sighand->siglock | ||
1451 | * unlock sighand->siglock | ||
1452 | * lock sh->siglock | ||
1453 | * add(tsk->pending) flush_sigqueue(tsk->pending) | ||
1454 | * | ||
1455 | */ | ||
1456 | |||
1457 | if (unlikely(p->flags & PF_EXITING)) { | ||
1458 | ret = -1; | ||
1459 | goto out; | ||
1460 | } | ||
1461 | |||
1462 | if (unlikely(!list_empty(&q->list))) { | 1334 | if (unlikely(!list_empty(&q->list))) { |
1463 | /* | 1335 | /* |
1464 | * If an SI_TIMER entry is already queue just increment | 1336 | * If an SI_TIMER entry is already queue just increment |
1465 | * the overrun count. | 1337 | * the overrun count. |
1466 | */ | 1338 | */ |
1467 | if (q->info.si_code != SI_TIMER) | 1339 | BUG_ON(q->info.si_code != SI_TIMER); |
1468 | BUG(); | ||
1469 | q->info.si_overrun++; | 1340 | q->info.si_overrun++; |
1470 | goto out; | 1341 | goto out; |
1471 | } | 1342 | } |
@@ -1481,7 +1352,7 @@ retry: | |||
1481 | signal_wake_up(p, sig == SIGKILL); | 1352 | signal_wake_up(p, sig == SIGKILL); |
1482 | 1353 | ||
1483 | out: | 1354 | out: |
1484 | spin_unlock_irqrestore(&sh->siglock, flags); | 1355 | unlock_task_sighand(p, &flags); |
1485 | out_err: | 1356 | out_err: |
1486 | rcu_read_unlock(); | 1357 | rcu_read_unlock(); |
1487 | 1358 | ||
@@ -1613,14 +1484,14 @@ void do_notify_parent(struct task_struct *tsk, int sig) | |||
1613 | spin_unlock_irqrestore(&psig->siglock, flags); | 1484 | spin_unlock_irqrestore(&psig->siglock, flags); |
1614 | } | 1485 | } |
1615 | 1486 | ||
1616 | static void do_notify_parent_cldstop(struct task_struct *tsk, int to_self, int why) | 1487 | static void do_notify_parent_cldstop(struct task_struct *tsk, int why) |
1617 | { | 1488 | { |
1618 | struct siginfo info; | 1489 | struct siginfo info; |
1619 | unsigned long flags; | 1490 | unsigned long flags; |
1620 | struct task_struct *parent; | 1491 | struct task_struct *parent; |
1621 | struct sighand_struct *sighand; | 1492 | struct sighand_struct *sighand; |
1622 | 1493 | ||
1623 | if (to_self) | 1494 | if (tsk->ptrace & PT_PTRACED) |
1624 | parent = tsk->parent; | 1495 | parent = tsk->parent; |
1625 | else { | 1496 | else { |
1626 | tsk = tsk->group_leader; | 1497 | tsk = tsk->group_leader; |
@@ -1695,7 +1566,7 @@ static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info) | |||
1695 | !(current->ptrace & PT_ATTACHED)) && | 1566 | !(current->ptrace & PT_ATTACHED)) && |
1696 | (likely(current->parent->signal != current->signal) || | 1567 | (likely(current->parent->signal != current->signal) || |
1697 | !unlikely(current->signal->flags & SIGNAL_GROUP_EXIT))) { | 1568 | !unlikely(current->signal->flags & SIGNAL_GROUP_EXIT))) { |
1698 | do_notify_parent_cldstop(current, 1, CLD_TRAPPED); | 1569 | do_notify_parent_cldstop(current, CLD_TRAPPED); |
1699 | read_unlock(&tasklist_lock); | 1570 | read_unlock(&tasklist_lock); |
1700 | schedule(); | 1571 | schedule(); |
1701 | } else { | 1572 | } else { |
@@ -1744,25 +1615,17 @@ void ptrace_notify(int exit_code) | |||
1744 | static void | 1615 | static void |
1745 | finish_stop(int stop_count) | 1616 | finish_stop(int stop_count) |
1746 | { | 1617 | { |
1747 | int to_self; | ||
1748 | |||
1749 | /* | 1618 | /* |
1750 | * If there are no other threads in the group, or if there is | 1619 | * If there are no other threads in the group, or if there is |
1751 | * a group stop in progress and we are the last to stop, | 1620 | * a group stop in progress and we are the last to stop, |
1752 | * report to the parent. When ptraced, every thread reports itself. | 1621 | * report to the parent. When ptraced, every thread reports itself. |
1753 | */ | 1622 | */ |
1754 | if (stop_count < 0 || (current->ptrace & PT_PTRACED)) | 1623 | if (stop_count == 0 || (current->ptrace & PT_PTRACED)) { |
1755 | to_self = 1; | 1624 | read_lock(&tasklist_lock); |
1756 | else if (stop_count == 0) | 1625 | do_notify_parent_cldstop(current, CLD_STOPPED); |
1757 | to_self = 0; | 1626 | read_unlock(&tasklist_lock); |
1758 | else | 1627 | } |
1759 | goto out; | ||
1760 | |||
1761 | read_lock(&tasklist_lock); | ||
1762 | do_notify_parent_cldstop(current, to_self, CLD_STOPPED); | ||
1763 | read_unlock(&tasklist_lock); | ||
1764 | 1628 | ||
1765 | out: | ||
1766 | schedule(); | 1629 | schedule(); |
1767 | /* | 1630 | /* |
1768 | * Now we don't run again until continued. | 1631 | * Now we don't run again until continued. |
@@ -1776,12 +1639,10 @@ out: | |||
1776 | * Returns nonzero if we've actually stopped and released the siglock. | 1639 | * Returns nonzero if we've actually stopped and released the siglock. |
1777 | * Returns zero if we didn't stop and still hold the siglock. | 1640 | * Returns zero if we didn't stop and still hold the siglock. |
1778 | */ | 1641 | */ |
1779 | static int | 1642 | static int do_signal_stop(int signr) |
1780 | do_signal_stop(int signr) | ||
1781 | { | 1643 | { |
1782 | struct signal_struct *sig = current->signal; | 1644 | struct signal_struct *sig = current->signal; |
1783 | struct sighand_struct *sighand = current->sighand; | 1645 | int stop_count; |
1784 | int stop_count = -1; | ||
1785 | 1646 | ||
1786 | if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED)) | 1647 | if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED)) |
1787 | return 0; | 1648 | return 0; |
@@ -1791,86 +1652,37 @@ do_signal_stop(int signr) | |||
1791 | * There is a group stop in progress. We don't need to | 1652 | * There is a group stop in progress. We don't need to |
1792 | * start another one. | 1653 | * start another one. |
1793 | */ | 1654 | */ |
1794 | signr = sig->group_exit_code; | ||
1795 | stop_count = --sig->group_stop_count; | 1655 | stop_count = --sig->group_stop_count; |
1796 | current->exit_code = signr; | 1656 | } else { |
1797 | set_current_state(TASK_STOPPED); | ||
1798 | if (stop_count == 0) | ||
1799 | sig->flags = SIGNAL_STOP_STOPPED; | ||
1800 | spin_unlock_irq(&sighand->siglock); | ||
1801 | } | ||
1802 | else if (thread_group_empty(current)) { | ||
1803 | /* | ||
1804 | * Lock must be held through transition to stopped state. | ||
1805 | */ | ||
1806 | current->exit_code = current->signal->group_exit_code = signr; | ||
1807 | set_current_state(TASK_STOPPED); | ||
1808 | sig->flags = SIGNAL_STOP_STOPPED; | ||
1809 | spin_unlock_irq(&sighand->siglock); | ||
1810 | } | ||
1811 | else { | ||
1812 | /* | 1657 | /* |
1813 | * There is no group stop already in progress. | 1658 | * There is no group stop already in progress. |
1814 | * We must initiate one now, but that requires | 1659 | * We must initiate one now. |
1815 | * dropping siglock to get both the tasklist lock | ||
1816 | * and siglock again in the proper order. Note that | ||
1817 | * this allows an intervening SIGCONT to be posted. | ||
1818 | * We need to check for that and bail out if necessary. | ||
1819 | */ | 1660 | */ |
1820 | struct task_struct *t; | 1661 | struct task_struct *t; |
1821 | 1662 | ||
1822 | spin_unlock_irq(&sighand->siglock); | 1663 | sig->group_exit_code = signr; |
1823 | |||
1824 | /* signals can be posted during this window */ | ||
1825 | 1664 | ||
1826 | read_lock(&tasklist_lock); | 1665 | stop_count = 0; |
1827 | spin_lock_irq(&sighand->siglock); | 1666 | for (t = next_thread(current); t != current; t = next_thread(t)) |
1828 | |||
1829 | if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED)) { | ||
1830 | /* | 1667 | /* |
1831 | * Another stop or continue happened while we | 1668 | * Setting state to TASK_STOPPED for a group |
1832 | * didn't have the lock. We can just swallow this | 1669 | * stop is always done with the siglock held, |
1833 | * signal now. If we raced with a SIGCONT, that | 1670 | * so this check has no races. |
1834 | * should have just cleared it now. If we raced | ||
1835 | * with another processor delivering a stop signal, | ||
1836 | * then the SIGCONT that wakes us up should clear it. | ||
1837 | */ | 1671 | */ |
1838 | read_unlock(&tasklist_lock); | 1672 | if (!t->exit_state && |
1839 | return 0; | 1673 | !(t->state & (TASK_STOPPED|TASK_TRACED))) { |
1840 | } | 1674 | stop_count++; |
1841 | 1675 | signal_wake_up(t, 0); | |
1842 | if (sig->group_stop_count == 0) { | 1676 | } |
1843 | sig->group_exit_code = signr; | 1677 | sig->group_stop_count = stop_count; |
1844 | stop_count = 0; | ||
1845 | for (t = next_thread(current); t != current; | ||
1846 | t = next_thread(t)) | ||
1847 | /* | ||
1848 | * Setting state to TASK_STOPPED for a group | ||
1849 | * stop is always done with the siglock held, | ||
1850 | * so this check has no races. | ||
1851 | */ | ||
1852 | if (!t->exit_state && | ||
1853 | !(t->state & (TASK_STOPPED|TASK_TRACED))) { | ||
1854 | stop_count++; | ||
1855 | signal_wake_up(t, 0); | ||
1856 | } | ||
1857 | sig->group_stop_count = stop_count; | ||
1858 | } | ||
1859 | else { | ||
1860 | /* A race with another thread while unlocked. */ | ||
1861 | signr = sig->group_exit_code; | ||
1862 | stop_count = --sig->group_stop_count; | ||
1863 | } | ||
1864 | |||
1865 | current->exit_code = signr; | ||
1866 | set_current_state(TASK_STOPPED); | ||
1867 | if (stop_count == 0) | ||
1868 | sig->flags = SIGNAL_STOP_STOPPED; | ||
1869 | |||
1870 | spin_unlock_irq(&sighand->siglock); | ||
1871 | read_unlock(&tasklist_lock); | ||
1872 | } | 1678 | } |
1873 | 1679 | ||
1680 | if (stop_count == 0) | ||
1681 | sig->flags = SIGNAL_STOP_STOPPED; | ||
1682 | current->exit_code = sig->group_exit_code; | ||
1683 | __set_current_state(TASK_STOPPED); | ||
1684 | |||
1685 | spin_unlock_irq(¤t->sighand->siglock); | ||
1874 | finish_stop(stop_count); | 1686 | finish_stop(stop_count); |
1875 | return 1; | 1687 | return 1; |
1876 | } | 1688 | } |
@@ -1922,6 +1734,8 @@ int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka, | |||
1922 | sigset_t *mask = ¤t->blocked; | 1734 | sigset_t *mask = ¤t->blocked; |
1923 | int signr = 0; | 1735 | int signr = 0; |
1924 | 1736 | ||
1737 | try_to_freeze(); | ||
1738 | |||
1925 | relock: | 1739 | relock: |
1926 | spin_lock_irq(¤t->sighand->siglock); | 1740 | spin_lock_irq(¤t->sighand->siglock); |
1927 | for (;;) { | 1741 | for (;;) { |
@@ -1988,7 +1802,7 @@ relock: | |||
1988 | continue; | 1802 | continue; |
1989 | 1803 | ||
1990 | /* Init gets no signals it doesn't want. */ | 1804 | /* Init gets no signals it doesn't want. */ |
1991 | if (current->pid == 1) | 1805 | if (current == child_reaper) |
1992 | continue; | 1806 | continue; |
1993 | 1807 | ||
1994 | if (sig_kernel_stop(signr)) { | 1808 | if (sig_kernel_stop(signr)) { |
@@ -2099,10 +1913,11 @@ long do_no_restart_syscall(struct restart_block *param) | |||
2099 | int sigprocmask(int how, sigset_t *set, sigset_t *oldset) | 1913 | int sigprocmask(int how, sigset_t *set, sigset_t *oldset) |
2100 | { | 1914 | { |
2101 | int error; | 1915 | int error; |
2102 | sigset_t old_block; | ||
2103 | 1916 | ||
2104 | spin_lock_irq(¤t->sighand->siglock); | 1917 | spin_lock_irq(¤t->sighand->siglock); |
2105 | old_block = current->blocked; | 1918 | if (oldset) |
1919 | *oldset = current->blocked; | ||
1920 | |||
2106 | error = 0; | 1921 | error = 0; |
2107 | switch (how) { | 1922 | switch (how) { |
2108 | case SIG_BLOCK: | 1923 | case SIG_BLOCK: |
@@ -2119,8 +1934,7 @@ int sigprocmask(int how, sigset_t *set, sigset_t *oldset) | |||
2119 | } | 1934 | } |
2120 | recalc_sigpending(); | 1935 | recalc_sigpending(); |
2121 | spin_unlock_irq(¤t->sighand->siglock); | 1936 | spin_unlock_irq(¤t->sighand->siglock); |
2122 | if (oldset) | 1937 | |
2123 | *oldset = old_block; | ||
2124 | return error; | 1938 | return error; |
2125 | } | 1939 | } |
2126 | 1940 | ||
@@ -2307,7 +2121,6 @@ sys_rt_sigtimedwait(const sigset_t __user *uthese, | |||
2307 | 2121 | ||
2308 | timeout = schedule_timeout_interruptible(timeout); | 2122 | timeout = schedule_timeout_interruptible(timeout); |
2309 | 2123 | ||
2310 | try_to_freeze(); | ||
2311 | spin_lock_irq(¤t->sighand->siglock); | 2124 | spin_lock_irq(¤t->sighand->siglock); |
2312 | sig = dequeue_signal(current, &these, &info); | 2125 | sig = dequeue_signal(current, &these, &info); |
2313 | current->blocked = current->real_blocked; | 2126 | current->blocked = current->real_blocked; |
@@ -2429,8 +2242,7 @@ sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo) | |||
2429 | return kill_proc_info(sig, &info, pid); | 2242 | return kill_proc_info(sig, &info, pid); |
2430 | } | 2243 | } |
2431 | 2244 | ||
2432 | int | 2245 | int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) |
2433 | do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) | ||
2434 | { | 2246 | { |
2435 | struct k_sigaction *k; | 2247 | struct k_sigaction *k; |
2436 | sigset_t mask; | 2248 | sigset_t mask; |
@@ -2456,6 +2268,7 @@ do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) | |||
2456 | if (act) { | 2268 | if (act) { |
2457 | sigdelsetmask(&act->sa.sa_mask, | 2269 | sigdelsetmask(&act->sa.sa_mask, |
2458 | sigmask(SIGKILL) | sigmask(SIGSTOP)); | 2270 | sigmask(SIGKILL) | sigmask(SIGSTOP)); |
2271 | *k = *act; | ||
2459 | /* | 2272 | /* |
2460 | * POSIX 3.3.1.3: | 2273 | * POSIX 3.3.1.3: |
2461 | * "Setting a signal action to SIG_IGN for a signal that is | 2274 | * "Setting a signal action to SIG_IGN for a signal that is |
@@ -2468,19 +2281,8 @@ do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) | |||
2468 | * be discarded, whether or not it is blocked" | 2281 | * be discarded, whether or not it is blocked" |
2469 | */ | 2282 | */ |
2470 | if (act->sa.sa_handler == SIG_IGN || | 2283 | if (act->sa.sa_handler == SIG_IGN || |
2471 | (act->sa.sa_handler == SIG_DFL && | 2284 | (act->sa.sa_handler == SIG_DFL && sig_kernel_ignore(sig))) { |
2472 | sig_kernel_ignore(sig))) { | ||
2473 | /* | ||
2474 | * This is a fairly rare case, so we only take the | ||
2475 | * tasklist_lock once we're sure we'll need it. | ||
2476 | * Now we must do this little unlock and relock | ||
2477 | * dance to maintain the lock hierarchy. | ||
2478 | */ | ||
2479 | struct task_struct *t = current; | 2285 | struct task_struct *t = current; |
2480 | spin_unlock_irq(&t->sighand->siglock); | ||
2481 | read_lock(&tasklist_lock); | ||
2482 | spin_lock_irq(&t->sighand->siglock); | ||
2483 | *k = *act; | ||
2484 | sigemptyset(&mask); | 2286 | sigemptyset(&mask); |
2485 | sigaddset(&mask, sig); | 2287 | sigaddset(&mask, sig); |
2486 | rm_from_queue_full(&mask, &t->signal->shared_pending); | 2288 | rm_from_queue_full(&mask, &t->signal->shared_pending); |
@@ -2489,12 +2291,7 @@ do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) | |||
2489 | recalc_sigpending_tsk(t); | 2291 | recalc_sigpending_tsk(t); |
2490 | t = next_thread(t); | 2292 | t = next_thread(t); |
2491 | } while (t != current); | 2293 | } while (t != current); |
2492 | spin_unlock_irq(¤t->sighand->siglock); | ||
2493 | read_unlock(&tasklist_lock); | ||
2494 | return 0; | ||
2495 | } | 2294 | } |
2496 | |||
2497 | *k = *act; | ||
2498 | } | 2295 | } |
2499 | 2296 | ||
2500 | spin_unlock_irq(¤t->sighand->siglock); | 2297 | spin_unlock_irq(¤t->sighand->siglock); |
diff --git a/kernel/softirq.c b/kernel/softirq.c index ad3295cdde..ec8fed42a8 100644 --- a/kernel/softirq.c +++ b/kernel/softirq.c | |||
@@ -16,6 +16,7 @@ | |||
16 | #include <linux/cpu.h> | 16 | #include <linux/cpu.h> |
17 | #include <linux/kthread.h> | 17 | #include <linux/kthread.h> |
18 | #include <linux/rcupdate.h> | 18 | #include <linux/rcupdate.h> |
19 | #include <linux/smp.h> | ||
19 | 20 | ||
20 | #include <asm/irq.h> | 21 | #include <asm/irq.h> |
21 | /* | 22 | /* |
@@ -495,3 +496,22 @@ __init int spawn_ksoftirqd(void) | |||
495 | register_cpu_notifier(&cpu_nfb); | 496 | register_cpu_notifier(&cpu_nfb); |
496 | return 0; | 497 | return 0; |
497 | } | 498 | } |
499 | |||
500 | #ifdef CONFIG_SMP | ||
501 | /* | ||
502 | * Call a function on all processors | ||
503 | */ | ||
504 | int on_each_cpu(void (*func) (void *info), void *info, int retry, int wait) | ||
505 | { | ||
506 | int ret = 0; | ||
507 | |||
508 | preempt_disable(); | ||
509 | ret = smp_call_function(func, info, retry, wait); | ||
510 | local_irq_disable(); | ||
511 | func(info); | ||
512 | local_irq_enable(); | ||
513 | preempt_enable(); | ||
514 | return ret; | ||
515 | } | ||
516 | EXPORT_SYMBOL(on_each_cpu); | ||
517 | #endif | ||
diff --git a/kernel/softlockup.c b/kernel/softlockup.c index c67189a25d..ced91e1ff5 100644 --- a/kernel/softlockup.c +++ b/kernel/softlockup.c | |||
@@ -1,12 +1,11 @@ | |||
1 | /* | 1 | /* |
2 | * Detect Soft Lockups | 2 | * Detect Soft Lockups |
3 | * | 3 | * |
4 | * started by Ingo Molnar, (C) 2005, Red Hat | 4 | * started by Ingo Molnar, Copyright (C) 2005, 2006 Red Hat, Inc. |
5 | * | 5 | * |
6 | * this code detects soft lockups: incidents in where on a CPU | 6 | * this code detects soft lockups: incidents in where on a CPU |
7 | * the kernel does not reschedule for 10 seconds or more. | 7 | * the kernel does not reschedule for 10 seconds or more. |
8 | */ | 8 | */ |
9 | |||
10 | #include <linux/mm.h> | 9 | #include <linux/mm.h> |
11 | #include <linux/cpu.h> | 10 | #include <linux/cpu.h> |
12 | #include <linux/init.h> | 11 | #include <linux/init.h> |
@@ -17,13 +16,14 @@ | |||
17 | 16 | ||
18 | static DEFINE_SPINLOCK(print_lock); | 17 | static DEFINE_SPINLOCK(print_lock); |
19 | 18 | ||
20 | static DEFINE_PER_CPU(unsigned long, timestamp) = 0; | 19 | static DEFINE_PER_CPU(unsigned long, touch_timestamp); |
21 | static DEFINE_PER_CPU(unsigned long, print_timestamp) = 0; | 20 | static DEFINE_PER_CPU(unsigned long, print_timestamp); |
22 | static DEFINE_PER_CPU(struct task_struct *, watchdog_task); | 21 | static DEFINE_PER_CPU(struct task_struct *, watchdog_task); |
23 | 22 | ||
24 | static int did_panic = 0; | 23 | static int did_panic = 0; |
25 | static int softlock_panic(struct notifier_block *this, unsigned long event, | 24 | |
26 | void *ptr) | 25 | static int |
26 | softlock_panic(struct notifier_block *this, unsigned long event, void *ptr) | ||
27 | { | 27 | { |
28 | did_panic = 1; | 28 | did_panic = 1; |
29 | 29 | ||
@@ -36,7 +36,7 @@ static struct notifier_block panic_block = { | |||
36 | 36 | ||
37 | void touch_softlockup_watchdog(void) | 37 | void touch_softlockup_watchdog(void) |
38 | { | 38 | { |
39 | per_cpu(timestamp, raw_smp_processor_id()) = jiffies; | 39 | per_cpu(touch_timestamp, raw_smp_processor_id()) = jiffies; |
40 | } | 40 | } |
41 | EXPORT_SYMBOL(touch_softlockup_watchdog); | 41 | EXPORT_SYMBOL(touch_softlockup_watchdog); |
42 | 42 | ||
@@ -44,25 +44,35 @@ EXPORT_SYMBOL(touch_softlockup_watchdog); | |||
44 | * This callback runs from the timer interrupt, and checks | 44 | * This callback runs from the timer interrupt, and checks |
45 | * whether the watchdog thread has hung or not: | 45 | * whether the watchdog thread has hung or not: |
46 | */ | 46 | */ |
47 | void softlockup_tick(struct pt_regs *regs) | 47 | void softlockup_tick(void) |
48 | { | 48 | { |
49 | int this_cpu = smp_processor_id(); | 49 | int this_cpu = smp_processor_id(); |
50 | unsigned long timestamp = per_cpu(timestamp, this_cpu); | 50 | unsigned long touch_timestamp = per_cpu(touch_timestamp, this_cpu); |
51 | 51 | ||
52 | if (per_cpu(print_timestamp, this_cpu) == timestamp) | 52 | /* prevent double reports: */ |
53 | if (per_cpu(print_timestamp, this_cpu) == touch_timestamp || | ||
54 | did_panic || | ||
55 | !per_cpu(watchdog_task, this_cpu)) | ||
53 | return; | 56 | return; |
54 | 57 | ||
55 | /* Do not cause a second panic when there already was one */ | 58 | /* do not print during early bootup: */ |
56 | if (did_panic) | 59 | if (unlikely(system_state != SYSTEM_RUNNING)) { |
60 | touch_softlockup_watchdog(); | ||
57 | return; | 61 | return; |
62 | } | ||
58 | 63 | ||
59 | if (time_after(jiffies, timestamp + 10*HZ)) { | 64 | /* Wake up the high-prio watchdog task every second: */ |
60 | per_cpu(print_timestamp, this_cpu) = timestamp; | 65 | if (time_after(jiffies, touch_timestamp + HZ)) |
66 | wake_up_process(per_cpu(watchdog_task, this_cpu)); | ||
67 | |||
68 | /* Warn about unreasonable 10+ seconds delays: */ | ||
69 | if (time_after(jiffies, touch_timestamp + 10*HZ)) { | ||
70 | per_cpu(print_timestamp, this_cpu) = touch_timestamp; | ||
61 | 71 | ||
62 | spin_lock(&print_lock); | 72 | spin_lock(&print_lock); |
63 | printk(KERN_ERR "BUG: soft lockup detected on CPU#%d!\n", | 73 | printk(KERN_ERR "BUG: soft lockup detected on CPU#%d!\n", |
64 | this_cpu); | 74 | this_cpu); |
65 | show_regs(regs); | 75 | dump_stack(); |
66 | spin_unlock(&print_lock); | 76 | spin_unlock(&print_lock); |
67 | } | 77 | } |
68 | } | 78 | } |
@@ -77,18 +87,16 @@ static int watchdog(void * __bind_cpu) | |||
77 | sched_setscheduler(current, SCHED_FIFO, ¶m); | 87 | sched_setscheduler(current, SCHED_FIFO, ¶m); |
78 | current->flags |= PF_NOFREEZE; | 88 | current->flags |= PF_NOFREEZE; |
79 | 89 | ||
80 | set_current_state(TASK_INTERRUPTIBLE); | ||
81 | |||
82 | /* | 90 | /* |
83 | * Run briefly once per second - if this gets delayed for | 91 | * Run briefly once per second to reset the softlockup timestamp. |
84 | * more than 10 seconds then the debug-printout triggers | 92 | * If this gets delayed for more than 10 seconds then the |
85 | * in softlockup_tick(): | 93 | * debug-printout triggers in softlockup_tick(). |
86 | */ | 94 | */ |
87 | while (!kthread_should_stop()) { | 95 | while (!kthread_should_stop()) { |
88 | msleep_interruptible(1000); | 96 | set_current_state(TASK_INTERRUPTIBLE); |
89 | touch_softlockup_watchdog(); | 97 | touch_softlockup_watchdog(); |
98 | schedule(); | ||
90 | } | 99 | } |
91 | __set_current_state(TASK_RUNNING); | ||
92 | 100 | ||
93 | return 0; | 101 | return 0; |
94 | } | 102 | } |
@@ -110,11 +118,11 @@ cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu) | |||
110 | printk("watchdog for %i failed\n", hotcpu); | 118 | printk("watchdog for %i failed\n", hotcpu); |
111 | return NOTIFY_BAD; | 119 | return NOTIFY_BAD; |
112 | } | 120 | } |
121 | per_cpu(touch_timestamp, hotcpu) = jiffies; | ||
113 | per_cpu(watchdog_task, hotcpu) = p; | 122 | per_cpu(watchdog_task, hotcpu) = p; |
114 | kthread_bind(p, hotcpu); | 123 | kthread_bind(p, hotcpu); |
115 | break; | 124 | break; |
116 | case CPU_ONLINE: | 125 | case CPU_ONLINE: |
117 | |||
118 | wake_up_process(per_cpu(watchdog_task, hotcpu)); | 126 | wake_up_process(per_cpu(watchdog_task, hotcpu)); |
119 | break; | 127 | break; |
120 | #ifdef CONFIG_HOTPLUG_CPU | 128 | #ifdef CONFIG_HOTPLUG_CPU |
@@ -144,6 +152,5 @@ __init void spawn_softlockup_task(void) | |||
144 | cpu_callback(&cpu_nfb, CPU_ONLINE, cpu); | 152 | cpu_callback(&cpu_nfb, CPU_ONLINE, cpu); |
145 | register_cpu_notifier(&cpu_nfb); | 153 | register_cpu_notifier(&cpu_nfb); |
146 | 154 | ||
147 | notifier_chain_register(&panic_notifier_list, &panic_block); | 155 | atomic_notifier_chain_register(&panic_notifier_list, &panic_block); |
148 | } | 156 | } |
149 | |||
diff --git a/kernel/spinlock.c b/kernel/spinlock.c index 0375fcd592..d1b810782b 100644 --- a/kernel/spinlock.c +++ b/kernel/spinlock.c | |||
@@ -179,16 +179,16 @@ EXPORT_SYMBOL(_write_lock); | |||
179 | #define BUILD_LOCK_OPS(op, locktype) \ | 179 | #define BUILD_LOCK_OPS(op, locktype) \ |
180 | void __lockfunc _##op##_lock(locktype##_t *lock) \ | 180 | void __lockfunc _##op##_lock(locktype##_t *lock) \ |
181 | { \ | 181 | { \ |
182 | preempt_disable(); \ | ||
183 | for (;;) { \ | 182 | for (;;) { \ |
183 | preempt_disable(); \ | ||
184 | if (likely(_raw_##op##_trylock(lock))) \ | 184 | if (likely(_raw_##op##_trylock(lock))) \ |
185 | break; \ | 185 | break; \ |
186 | preempt_enable(); \ | 186 | preempt_enable(); \ |
187 | \ | ||
187 | if (!(lock)->break_lock) \ | 188 | if (!(lock)->break_lock) \ |
188 | (lock)->break_lock = 1; \ | 189 | (lock)->break_lock = 1; \ |
189 | while (!op##_can_lock(lock) && (lock)->break_lock) \ | 190 | while (!op##_can_lock(lock) && (lock)->break_lock) \ |
190 | cpu_relax(); \ | 191 | cpu_relax(); \ |
191 | preempt_disable(); \ | ||
192 | } \ | 192 | } \ |
193 | (lock)->break_lock = 0; \ | 193 | (lock)->break_lock = 0; \ |
194 | } \ | 194 | } \ |
@@ -199,19 +199,18 @@ unsigned long __lockfunc _##op##_lock_irqsave(locktype##_t *lock) \ | |||
199 | { \ | 199 | { \ |
200 | unsigned long flags; \ | 200 | unsigned long flags; \ |
201 | \ | 201 | \ |
202 | preempt_disable(); \ | ||
203 | for (;;) { \ | 202 | for (;;) { \ |
203 | preempt_disable(); \ | ||
204 | local_irq_save(flags); \ | 204 | local_irq_save(flags); \ |
205 | if (likely(_raw_##op##_trylock(lock))) \ | 205 | if (likely(_raw_##op##_trylock(lock))) \ |
206 | break; \ | 206 | break; \ |
207 | local_irq_restore(flags); \ | 207 | local_irq_restore(flags); \ |
208 | \ | ||
209 | preempt_enable(); \ | 208 | preempt_enable(); \ |
209 | \ | ||
210 | if (!(lock)->break_lock) \ | 210 | if (!(lock)->break_lock) \ |
211 | (lock)->break_lock = 1; \ | 211 | (lock)->break_lock = 1; \ |
212 | while (!op##_can_lock(lock) && (lock)->break_lock) \ | 212 | while (!op##_can_lock(lock) && (lock)->break_lock) \ |
213 | cpu_relax(); \ | 213 | cpu_relax(); \ |
214 | preempt_disable(); \ | ||
215 | } \ | 214 | } \ |
216 | (lock)->break_lock = 0; \ | 215 | (lock)->break_lock = 0; \ |
217 | return flags; \ | 216 | return flags; \ |
diff --git a/kernel/sys.c b/kernel/sys.c index f91218a546..7ef7f6054c 100644 --- a/kernel/sys.c +++ b/kernel/sys.c | |||
@@ -95,99 +95,304 @@ int cad_pid = 1; | |||
95 | * and the like. | 95 | * and the like. |
96 | */ | 96 | */ |
97 | 97 | ||
98 | static struct notifier_block *reboot_notifier_list; | 98 | static BLOCKING_NOTIFIER_HEAD(reboot_notifier_list); |
99 | static DEFINE_RWLOCK(notifier_lock); | 99 | |
100 | /* | ||
101 | * Notifier chain core routines. The exported routines below | ||
102 | * are layered on top of these, with appropriate locking added. | ||
103 | */ | ||
104 | |||
105 | static int notifier_chain_register(struct notifier_block **nl, | ||
106 | struct notifier_block *n) | ||
107 | { | ||
108 | while ((*nl) != NULL) { | ||
109 | if (n->priority > (*nl)->priority) | ||
110 | break; | ||
111 | nl = &((*nl)->next); | ||
112 | } | ||
113 | n->next = *nl; | ||
114 | rcu_assign_pointer(*nl, n); | ||
115 | return 0; | ||
116 | } | ||
117 | |||
118 | static int notifier_chain_unregister(struct notifier_block **nl, | ||
119 | struct notifier_block *n) | ||
120 | { | ||
121 | while ((*nl) != NULL) { | ||
122 | if ((*nl) == n) { | ||
123 | rcu_assign_pointer(*nl, n->next); | ||
124 | return 0; | ||
125 | } | ||
126 | nl = &((*nl)->next); | ||
127 | } | ||
128 | return -ENOENT; | ||
129 | } | ||
130 | |||
131 | static int __kprobes notifier_call_chain(struct notifier_block **nl, | ||
132 | unsigned long val, void *v) | ||
133 | { | ||
134 | int ret = NOTIFY_DONE; | ||
135 | struct notifier_block *nb; | ||
136 | |||
137 | nb = rcu_dereference(*nl); | ||
138 | while (nb) { | ||
139 | ret = nb->notifier_call(nb, val, v); | ||
140 | if ((ret & NOTIFY_STOP_MASK) == NOTIFY_STOP_MASK) | ||
141 | break; | ||
142 | nb = rcu_dereference(nb->next); | ||
143 | } | ||
144 | return ret; | ||
145 | } | ||
146 | |||
147 | /* | ||
148 | * Atomic notifier chain routines. Registration and unregistration | ||
149 | * use a mutex, and call_chain is synchronized by RCU (no locks). | ||
150 | */ | ||
100 | 151 | ||
101 | /** | 152 | /** |
102 | * notifier_chain_register - Add notifier to a notifier chain | 153 | * atomic_notifier_chain_register - Add notifier to an atomic notifier chain |
103 | * @list: Pointer to root list pointer | 154 | * @nh: Pointer to head of the atomic notifier chain |
104 | * @n: New entry in notifier chain | 155 | * @n: New entry in notifier chain |
105 | * | 156 | * |
106 | * Adds a notifier to a notifier chain. | 157 | * Adds a notifier to an atomic notifier chain. |
107 | * | 158 | * |
108 | * Currently always returns zero. | 159 | * Currently always returns zero. |
109 | */ | 160 | */ |
161 | |||
162 | int atomic_notifier_chain_register(struct atomic_notifier_head *nh, | ||
163 | struct notifier_block *n) | ||
164 | { | ||
165 | unsigned long flags; | ||
166 | int ret; | ||
167 | |||
168 | spin_lock_irqsave(&nh->lock, flags); | ||
169 | ret = notifier_chain_register(&nh->head, n); | ||
170 | spin_unlock_irqrestore(&nh->lock, flags); | ||
171 | return ret; | ||
172 | } | ||
173 | |||
174 | EXPORT_SYMBOL_GPL(atomic_notifier_chain_register); | ||
175 | |||
176 | /** | ||
177 | * atomic_notifier_chain_unregister - Remove notifier from an atomic notifier chain | ||
178 | * @nh: Pointer to head of the atomic notifier chain | ||
179 | * @n: Entry to remove from notifier chain | ||
180 | * | ||
181 | * Removes a notifier from an atomic notifier chain. | ||
182 | * | ||
183 | * Returns zero on success or %-ENOENT on failure. | ||
184 | */ | ||
185 | int atomic_notifier_chain_unregister(struct atomic_notifier_head *nh, | ||
186 | struct notifier_block *n) | ||
187 | { | ||
188 | unsigned long flags; | ||
189 | int ret; | ||
190 | |||
191 | spin_lock_irqsave(&nh->lock, flags); | ||
192 | ret = notifier_chain_unregister(&nh->head, n); | ||
193 | spin_unlock_irqrestore(&nh->lock, flags); | ||
194 | synchronize_rcu(); | ||
195 | return ret; | ||
196 | } | ||
197 | |||
198 | EXPORT_SYMBOL_GPL(atomic_notifier_chain_unregister); | ||
199 | |||
200 | /** | ||
201 | * atomic_notifier_call_chain - Call functions in an atomic notifier chain | ||
202 | * @nh: Pointer to head of the atomic notifier chain | ||
203 | * @val: Value passed unmodified to notifier function | ||
204 | * @v: Pointer passed unmodified to notifier function | ||
205 | * | ||
206 | * Calls each function in a notifier chain in turn. The functions | ||
207 | * run in an atomic context, so they must not block. | ||
208 | * This routine uses RCU to synchronize with changes to the chain. | ||
209 | * | ||
210 | * If the return value of the notifier can be and'ed | ||
211 | * with %NOTIFY_STOP_MASK then atomic_notifier_call_chain | ||
212 | * will return immediately, with the return value of | ||
213 | * the notifier function which halted execution. | ||
214 | * Otherwise the return value is the return value | ||
215 | * of the last notifier function called. | ||
216 | */ | ||
110 | 217 | ||
111 | int notifier_chain_register(struct notifier_block **list, struct notifier_block *n) | 218 | int atomic_notifier_call_chain(struct atomic_notifier_head *nh, |
219 | unsigned long val, void *v) | ||
112 | { | 220 | { |
113 | write_lock(¬ifier_lock); | 221 | int ret; |
114 | while(*list) | 222 | |
115 | { | 223 | rcu_read_lock(); |
116 | if(n->priority > (*list)->priority) | 224 | ret = notifier_call_chain(&nh->head, val, v); |
117 | break; | 225 | rcu_read_unlock(); |
118 | list= &((*list)->next); | 226 | return ret; |
119 | } | ||
120 | n->next = *list; | ||
121 | *list=n; | ||
122 | write_unlock(¬ifier_lock); | ||
123 | return 0; | ||
124 | } | 227 | } |
125 | 228 | ||
126 | EXPORT_SYMBOL(notifier_chain_register); | 229 | EXPORT_SYMBOL_GPL(atomic_notifier_call_chain); |
230 | |||
231 | /* | ||
232 | * Blocking notifier chain routines. All access to the chain is | ||
233 | * synchronized by an rwsem. | ||
234 | */ | ||
127 | 235 | ||
128 | /** | 236 | /** |
129 | * notifier_chain_unregister - Remove notifier from a notifier chain | 237 | * blocking_notifier_chain_register - Add notifier to a blocking notifier chain |
130 | * @nl: Pointer to root list pointer | 238 | * @nh: Pointer to head of the blocking notifier chain |
131 | * @n: New entry in notifier chain | 239 | * @n: New entry in notifier chain |
132 | * | 240 | * |
133 | * Removes a notifier from a notifier chain. | 241 | * Adds a notifier to a blocking notifier chain. |
242 | * Must be called in process context. | ||
134 | * | 243 | * |
135 | * Returns zero on success, or %-ENOENT on failure. | 244 | * Currently always returns zero. |
136 | */ | 245 | */ |
137 | 246 | ||
138 | int notifier_chain_unregister(struct notifier_block **nl, struct notifier_block *n) | 247 | int blocking_notifier_chain_register(struct blocking_notifier_head *nh, |
248 | struct notifier_block *n) | ||
139 | { | 249 | { |
140 | write_lock(¬ifier_lock); | 250 | int ret; |
141 | while((*nl)!=NULL) | 251 | |
142 | { | 252 | /* |
143 | if((*nl)==n) | 253 | * This code gets used during boot-up, when task switching is |
144 | { | 254 | * not yet working and interrupts must remain disabled. At |
145 | *nl=n->next; | 255 | * such times we must not call down_write(). |
146 | write_unlock(¬ifier_lock); | 256 | */ |
147 | return 0; | 257 | if (unlikely(system_state == SYSTEM_BOOTING)) |
148 | } | 258 | return notifier_chain_register(&nh->head, n); |
149 | nl=&((*nl)->next); | 259 | |
150 | } | 260 | down_write(&nh->rwsem); |
151 | write_unlock(¬ifier_lock); | 261 | ret = notifier_chain_register(&nh->head, n); |
152 | return -ENOENT; | 262 | up_write(&nh->rwsem); |
263 | return ret; | ||
153 | } | 264 | } |
154 | 265 | ||
155 | EXPORT_SYMBOL(notifier_chain_unregister); | 266 | EXPORT_SYMBOL_GPL(blocking_notifier_chain_register); |
156 | 267 | ||
157 | /** | 268 | /** |
158 | * notifier_call_chain - Call functions in a notifier chain | 269 | * blocking_notifier_chain_unregister - Remove notifier from a blocking notifier chain |
159 | * @n: Pointer to root pointer of notifier chain | 270 | * @nh: Pointer to head of the blocking notifier chain |
271 | * @n: Entry to remove from notifier chain | ||
272 | * | ||
273 | * Removes a notifier from a blocking notifier chain. | ||
274 | * Must be called from process context. | ||
275 | * | ||
276 | * Returns zero on success or %-ENOENT on failure. | ||
277 | */ | ||
278 | int blocking_notifier_chain_unregister(struct blocking_notifier_head *nh, | ||
279 | struct notifier_block *n) | ||
280 | { | ||
281 | int ret; | ||
282 | |||
283 | /* | ||
284 | * This code gets used during boot-up, when task switching is | ||
285 | * not yet working and interrupts must remain disabled. At | ||
286 | * such times we must not call down_write(). | ||
287 | */ | ||
288 | if (unlikely(system_state == SYSTEM_BOOTING)) | ||
289 | return notifier_chain_unregister(&nh->head, n); | ||
290 | |||
291 | down_write(&nh->rwsem); | ||
292 | ret = notifier_chain_unregister(&nh->head, n); | ||
293 | up_write(&nh->rwsem); | ||
294 | return ret; | ||
295 | } | ||
296 | |||
297 | EXPORT_SYMBOL_GPL(blocking_notifier_chain_unregister); | ||
298 | |||
299 | /** | ||
300 | * blocking_notifier_call_chain - Call functions in a blocking notifier chain | ||
301 | * @nh: Pointer to head of the blocking notifier chain | ||
160 | * @val: Value passed unmodified to notifier function | 302 | * @val: Value passed unmodified to notifier function |
161 | * @v: Pointer passed unmodified to notifier function | 303 | * @v: Pointer passed unmodified to notifier function |
162 | * | 304 | * |
163 | * Calls each function in a notifier chain in turn. | 305 | * Calls each function in a notifier chain in turn. The functions |
306 | * run in a process context, so they are allowed to block. | ||
164 | * | 307 | * |
165 | * If the return value of the notifier can be and'd | 308 | * If the return value of the notifier can be and'ed |
166 | * with %NOTIFY_STOP_MASK, then notifier_call_chain | 309 | * with %NOTIFY_STOP_MASK then blocking_notifier_call_chain |
167 | * will return immediately, with the return value of | 310 | * will return immediately, with the return value of |
168 | * the notifier function which halted execution. | 311 | * the notifier function which halted execution. |
169 | * Otherwise, the return value is the return value | 312 | * Otherwise the return value is the return value |
170 | * of the last notifier function called. | 313 | * of the last notifier function called. |
171 | */ | 314 | */ |
172 | 315 | ||
173 | int __kprobes notifier_call_chain(struct notifier_block **n, unsigned long val, void *v) | 316 | int blocking_notifier_call_chain(struct blocking_notifier_head *nh, |
317 | unsigned long val, void *v) | ||
174 | { | 318 | { |
175 | int ret=NOTIFY_DONE; | 319 | int ret; |
176 | struct notifier_block *nb = *n; | ||
177 | 320 | ||
178 | while(nb) | 321 | down_read(&nh->rwsem); |
179 | { | 322 | ret = notifier_call_chain(&nh->head, val, v); |
180 | ret=nb->notifier_call(nb,val,v); | 323 | up_read(&nh->rwsem); |
181 | if(ret&NOTIFY_STOP_MASK) | ||
182 | { | ||
183 | return ret; | ||
184 | } | ||
185 | nb=nb->next; | ||
186 | } | ||
187 | return ret; | 324 | return ret; |
188 | } | 325 | } |
189 | 326 | ||
190 | EXPORT_SYMBOL(notifier_call_chain); | 327 | EXPORT_SYMBOL_GPL(blocking_notifier_call_chain); |
328 | |||
329 | /* | ||
330 | * Raw notifier chain routines. There is no protection; | ||
331 | * the caller must provide it. Use at your own risk! | ||
332 | */ | ||
333 | |||
334 | /** | ||
335 | * raw_notifier_chain_register - Add notifier to a raw notifier chain | ||
336 | * @nh: Pointer to head of the raw notifier chain | ||
337 | * @n: New entry in notifier chain | ||
338 | * | ||
339 | * Adds a notifier to a raw notifier chain. | ||
340 | * All locking must be provided by the caller. | ||
341 | * | ||
342 | * Currently always returns zero. | ||
343 | */ | ||
344 | |||
345 | int raw_notifier_chain_register(struct raw_notifier_head *nh, | ||
346 | struct notifier_block *n) | ||
347 | { | ||
348 | return notifier_chain_register(&nh->head, n); | ||
349 | } | ||
350 | |||
351 | EXPORT_SYMBOL_GPL(raw_notifier_chain_register); | ||
352 | |||
353 | /** | ||
354 | * raw_notifier_chain_unregister - Remove notifier from a raw notifier chain | ||
355 | * @nh: Pointer to head of the raw notifier chain | ||
356 | * @n: Entry to remove from notifier chain | ||
357 | * | ||
358 | * Removes a notifier from a raw notifier chain. | ||
359 | * All locking must be provided by the caller. | ||
360 | * | ||
361 | * Returns zero on success or %-ENOENT on failure. | ||
362 | */ | ||
363 | int raw_notifier_chain_unregister(struct raw_notifier_head *nh, | ||
364 | struct notifier_block *n) | ||
365 | { | ||
366 | return notifier_chain_unregister(&nh->head, n); | ||
367 | } | ||
368 | |||
369 | EXPORT_SYMBOL_GPL(raw_notifier_chain_unregister); | ||
370 | |||
371 | /** | ||
372 | * raw_notifier_call_chain - Call functions in a raw notifier chain | ||
373 | * @nh: Pointer to head of the raw notifier chain | ||
374 | * @val: Value passed unmodified to notifier function | ||
375 | * @v: Pointer passed unmodified to notifier function | ||
376 | * | ||
377 | * Calls each function in a notifier chain in turn. The functions | ||
378 | * run in an undefined context. | ||
379 | * All locking must be provided by the caller. | ||
380 | * | ||
381 | * If the return value of the notifier can be and'ed | ||
382 | * with %NOTIFY_STOP_MASK then raw_notifier_call_chain | ||
383 | * will return immediately, with the return value of | ||
384 | * the notifier function which halted execution. | ||
385 | * Otherwise the return value is the return value | ||
386 | * of the last notifier function called. | ||
387 | */ | ||
388 | |||
389 | int raw_notifier_call_chain(struct raw_notifier_head *nh, | ||
390 | unsigned long val, void *v) | ||
391 | { | ||
392 | return notifier_call_chain(&nh->head, val, v); | ||
393 | } | ||
394 | |||
395 | EXPORT_SYMBOL_GPL(raw_notifier_call_chain); | ||
191 | 396 | ||
192 | /** | 397 | /** |
193 | * register_reboot_notifier - Register function to be called at reboot time | 398 | * register_reboot_notifier - Register function to be called at reboot time |
@@ -196,13 +401,13 @@ EXPORT_SYMBOL(notifier_call_chain); | |||
196 | * Registers a function with the list of functions | 401 | * Registers a function with the list of functions |
197 | * to be called at reboot time. | 402 | * to be called at reboot time. |
198 | * | 403 | * |
199 | * Currently always returns zero, as notifier_chain_register | 404 | * Currently always returns zero, as blocking_notifier_chain_register |
200 | * always returns zero. | 405 | * always returns zero. |
201 | */ | 406 | */ |
202 | 407 | ||
203 | int register_reboot_notifier(struct notifier_block * nb) | 408 | int register_reboot_notifier(struct notifier_block * nb) |
204 | { | 409 | { |
205 | return notifier_chain_register(&reboot_notifier_list, nb); | 410 | return blocking_notifier_chain_register(&reboot_notifier_list, nb); |
206 | } | 411 | } |
207 | 412 | ||
208 | EXPORT_SYMBOL(register_reboot_notifier); | 413 | EXPORT_SYMBOL(register_reboot_notifier); |
@@ -219,23 +424,11 @@ EXPORT_SYMBOL(register_reboot_notifier); | |||
219 | 424 | ||
220 | int unregister_reboot_notifier(struct notifier_block * nb) | 425 | int unregister_reboot_notifier(struct notifier_block * nb) |
221 | { | 426 | { |
222 | return notifier_chain_unregister(&reboot_notifier_list, nb); | 427 | return blocking_notifier_chain_unregister(&reboot_notifier_list, nb); |
223 | } | 428 | } |
224 | 429 | ||
225 | EXPORT_SYMBOL(unregister_reboot_notifier); | 430 | EXPORT_SYMBOL(unregister_reboot_notifier); |
226 | 431 | ||
227 | #ifndef CONFIG_SECURITY | ||
228 | int capable(int cap) | ||
229 | { | ||
230 | if (cap_raised(current->cap_effective, cap)) { | ||
231 | current->flags |= PF_SUPERPRIV; | ||
232 | return 1; | ||
233 | } | ||
234 | return 0; | ||
235 | } | ||
236 | EXPORT_SYMBOL(capable); | ||
237 | #endif | ||
238 | |||
239 | static int set_one_prio(struct task_struct *p, int niceval, int error) | 432 | static int set_one_prio(struct task_struct *p, int niceval, int error) |
240 | { | 433 | { |
241 | int no_nice; | 434 | int no_nice; |
@@ -392,7 +585,7 @@ EXPORT_SYMBOL_GPL(emergency_restart); | |||
392 | 585 | ||
393 | void kernel_restart_prepare(char *cmd) | 586 | void kernel_restart_prepare(char *cmd) |
394 | { | 587 | { |
395 | notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd); | 588 | blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd); |
396 | system_state = SYSTEM_RESTART; | 589 | system_state = SYSTEM_RESTART; |
397 | device_shutdown(); | 590 | device_shutdown(); |
398 | } | 591 | } |
@@ -442,7 +635,7 @@ EXPORT_SYMBOL_GPL(kernel_kexec); | |||
442 | 635 | ||
443 | void kernel_shutdown_prepare(enum system_states state) | 636 | void kernel_shutdown_prepare(enum system_states state) |
444 | { | 637 | { |
445 | notifier_call_chain(&reboot_notifier_list, | 638 | blocking_notifier_call_chain(&reboot_notifier_list, |
446 | (state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL); | 639 | (state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL); |
447 | system_state = state; | 640 | system_state = state; |
448 | device_shutdown(); | 641 | device_shutdown(); |
@@ -1009,69 +1202,24 @@ asmlinkage long sys_times(struct tms __user * tbuf) | |||
1009 | */ | 1202 | */ |
1010 | if (tbuf) { | 1203 | if (tbuf) { |
1011 | struct tms tmp; | 1204 | struct tms tmp; |
1205 | struct task_struct *tsk = current; | ||
1206 | struct task_struct *t; | ||
1012 | cputime_t utime, stime, cutime, cstime; | 1207 | cputime_t utime, stime, cutime, cstime; |
1013 | 1208 | ||
1014 | #ifdef CONFIG_SMP | 1209 | spin_lock_irq(&tsk->sighand->siglock); |
1015 | if (thread_group_empty(current)) { | 1210 | utime = tsk->signal->utime; |
1016 | /* | 1211 | stime = tsk->signal->stime; |
1017 | * Single thread case without the use of any locks. | 1212 | t = tsk; |
1018 | * | 1213 | do { |
1019 | * We may race with release_task if two threads are | 1214 | utime = cputime_add(utime, t->utime); |
1020 | * executing. However, release task first adds up the | 1215 | stime = cputime_add(stime, t->stime); |
1021 | * counters (__exit_signal) before removing the task | 1216 | t = next_thread(t); |
1022 | * from the process tasklist (__unhash_process). | 1217 | } while (t != tsk); |
1023 | * __exit_signal also acquires and releases the | ||
1024 | * siglock which results in the proper memory ordering | ||
1025 | * so that the list modifications are always visible | ||
1026 | * after the counters have been updated. | ||
1027 | * | ||
1028 | * If the counters have been updated by the second thread | ||
1029 | * but the thread has not yet been removed from the list | ||
1030 | * then the other branch will be executing which will | ||
1031 | * block on tasklist_lock until the exit handling of the | ||
1032 | * other task is finished. | ||
1033 | * | ||
1034 | * This also implies that the sighand->siglock cannot | ||
1035 | * be held by another processor. So we can also | ||
1036 | * skip acquiring that lock. | ||
1037 | */ | ||
1038 | utime = cputime_add(current->signal->utime, current->utime); | ||
1039 | stime = cputime_add(current->signal->utime, current->stime); | ||
1040 | cutime = current->signal->cutime; | ||
1041 | cstime = current->signal->cstime; | ||
1042 | } else | ||
1043 | #endif | ||
1044 | { | ||
1045 | 1218 | ||
1046 | /* Process with multiple threads */ | 1219 | cutime = tsk->signal->cutime; |
1047 | struct task_struct *tsk = current; | 1220 | cstime = tsk->signal->cstime; |
1048 | struct task_struct *t; | 1221 | spin_unlock_irq(&tsk->sighand->siglock); |
1049 | |||
1050 | read_lock(&tasklist_lock); | ||
1051 | utime = tsk->signal->utime; | ||
1052 | stime = tsk->signal->stime; | ||
1053 | t = tsk; | ||
1054 | do { | ||
1055 | utime = cputime_add(utime, t->utime); | ||
1056 | stime = cputime_add(stime, t->stime); | ||
1057 | t = next_thread(t); | ||
1058 | } while (t != tsk); | ||
1059 | 1222 | ||
1060 | /* | ||
1061 | * While we have tasklist_lock read-locked, no dying thread | ||
1062 | * can be updating current->signal->[us]time. Instead, | ||
1063 | * we got their counts included in the live thread loop. | ||
1064 | * However, another thread can come in right now and | ||
1065 | * do a wait call that updates current->signal->c[us]time. | ||
1066 | * To make sure we always see that pair updated atomically, | ||
1067 | * we take the siglock around fetching them. | ||
1068 | */ | ||
1069 | spin_lock_irq(&tsk->sighand->siglock); | ||
1070 | cutime = tsk->signal->cutime; | ||
1071 | cstime = tsk->signal->cstime; | ||
1072 | spin_unlock_irq(&tsk->sighand->siglock); | ||
1073 | read_unlock(&tasklist_lock); | ||
1074 | } | ||
1075 | tmp.tms_utime = cputime_to_clock_t(utime); | 1223 | tmp.tms_utime = cputime_to_clock_t(utime); |
1076 | tmp.tms_stime = cputime_to_clock_t(stime); | 1224 | tmp.tms_stime = cputime_to_clock_t(stime); |
1077 | tmp.tms_cutime = cputime_to_clock_t(cutime); | 1225 | tmp.tms_cutime = cputime_to_clock_t(cutime); |
@@ -1227,7 +1375,7 @@ asmlinkage long sys_setsid(void) | |||
1227 | struct pid *pid; | 1375 | struct pid *pid; |
1228 | int err = -EPERM; | 1376 | int err = -EPERM; |
1229 | 1377 | ||
1230 | down(&tty_sem); | 1378 | mutex_lock(&tty_mutex); |
1231 | write_lock_irq(&tasklist_lock); | 1379 | write_lock_irq(&tasklist_lock); |
1232 | 1380 | ||
1233 | pid = find_pid(PIDTYPE_PGID, group_leader->pid); | 1381 | pid = find_pid(PIDTYPE_PGID, group_leader->pid); |
@@ -1241,7 +1389,7 @@ asmlinkage long sys_setsid(void) | |||
1241 | err = process_group(group_leader); | 1389 | err = process_group(group_leader); |
1242 | out: | 1390 | out: |
1243 | write_unlock_irq(&tasklist_lock); | 1391 | write_unlock_irq(&tasklist_lock); |
1244 | up(&tty_sem); | 1392 | mutex_unlock(&tty_mutex); |
1245 | return err; | 1393 | return err; |
1246 | } | 1394 | } |
1247 | 1395 | ||
@@ -1375,7 +1523,7 @@ static void groups_sort(struct group_info *group_info) | |||
1375 | /* a simple bsearch */ | 1523 | /* a simple bsearch */ |
1376 | int groups_search(struct group_info *group_info, gid_t grp) | 1524 | int groups_search(struct group_info *group_info, gid_t grp) |
1377 | { | 1525 | { |
1378 | int left, right; | 1526 | unsigned int left, right; |
1379 | 1527 | ||
1380 | if (!group_info) | 1528 | if (!group_info) |
1381 | return 0; | 1529 | return 0; |
@@ -1383,7 +1531,7 @@ int groups_search(struct group_info *group_info, gid_t grp) | |||
1383 | left = 0; | 1531 | left = 0; |
1384 | right = group_info->ngroups; | 1532 | right = group_info->ngroups; |
1385 | while (left < right) { | 1533 | while (left < right) { |
1386 | int mid = (left+right)/2; | 1534 | unsigned int mid = (left+right)/2; |
1387 | int cmp = grp - GROUP_AT(group_info, mid); | 1535 | int cmp = grp - GROUP_AT(group_info, mid); |
1388 | if (cmp > 0) | 1536 | if (cmp > 0) |
1389 | left = mid + 1; | 1537 | left = mid + 1; |
@@ -1433,7 +1581,6 @@ asmlinkage long sys_getgroups(int gidsetsize, gid_t __user *grouplist) | |||
1433 | return -EINVAL; | 1581 | return -EINVAL; |
1434 | 1582 | ||
1435 | /* no need to grab task_lock here; it cannot change */ | 1583 | /* no need to grab task_lock here; it cannot change */ |
1436 | get_group_info(current->group_info); | ||
1437 | i = current->group_info->ngroups; | 1584 | i = current->group_info->ngroups; |
1438 | if (gidsetsize) { | 1585 | if (gidsetsize) { |
1439 | if (i > gidsetsize) { | 1586 | if (i > gidsetsize) { |
@@ -1446,7 +1593,6 @@ asmlinkage long sys_getgroups(int gidsetsize, gid_t __user *grouplist) | |||
1446 | } | 1593 | } |
1447 | } | 1594 | } |
1448 | out: | 1595 | out: |
1449 | put_group_info(current->group_info); | ||
1450 | return i; | 1596 | return i; |
1451 | } | 1597 | } |
1452 | 1598 | ||
@@ -1487,9 +1633,7 @@ int in_group_p(gid_t grp) | |||
1487 | { | 1633 | { |
1488 | int retval = 1; | 1634 | int retval = 1; |
1489 | if (grp != current->fsgid) { | 1635 | if (grp != current->fsgid) { |
1490 | get_group_info(current->group_info); | ||
1491 | retval = groups_search(current->group_info, grp); | 1636 | retval = groups_search(current->group_info, grp); |
1492 | put_group_info(current->group_info); | ||
1493 | } | 1637 | } |
1494 | return retval; | 1638 | return retval; |
1495 | } | 1639 | } |
@@ -1500,9 +1644,7 @@ int in_egroup_p(gid_t grp) | |||
1500 | { | 1644 | { |
1501 | int retval = 1; | 1645 | int retval = 1; |
1502 | if (grp != current->egid) { | 1646 | if (grp != current->egid) { |
1503 | get_group_info(current->group_info); | ||
1504 | retval = groups_search(current->group_info, grp); | 1647 | retval = groups_search(current->group_info, grp); |
1505 | put_group_info(current->group_info); | ||
1506 | } | 1648 | } |
1507 | return retval; | 1649 | return retval; |
1508 | } | 1650 | } |
@@ -1630,20 +1772,21 @@ asmlinkage long sys_old_getrlimit(unsigned int resource, struct rlimit __user *r | |||
1630 | asmlinkage long sys_setrlimit(unsigned int resource, struct rlimit __user *rlim) | 1772 | asmlinkage long sys_setrlimit(unsigned int resource, struct rlimit __user *rlim) |
1631 | { | 1773 | { |
1632 | struct rlimit new_rlim, *old_rlim; | 1774 | struct rlimit new_rlim, *old_rlim; |
1775 | unsigned long it_prof_secs; | ||
1633 | int retval; | 1776 | int retval; |
1634 | 1777 | ||
1635 | if (resource >= RLIM_NLIMITS) | 1778 | if (resource >= RLIM_NLIMITS) |
1636 | return -EINVAL; | 1779 | return -EINVAL; |
1637 | if(copy_from_user(&new_rlim, rlim, sizeof(*rlim))) | 1780 | if (copy_from_user(&new_rlim, rlim, sizeof(*rlim))) |
1638 | return -EFAULT; | 1781 | return -EFAULT; |
1639 | if (new_rlim.rlim_cur > new_rlim.rlim_max) | 1782 | if (new_rlim.rlim_cur > new_rlim.rlim_max) |
1640 | return -EINVAL; | 1783 | return -EINVAL; |
1641 | old_rlim = current->signal->rlim + resource; | 1784 | old_rlim = current->signal->rlim + resource; |
1642 | if ((new_rlim.rlim_max > old_rlim->rlim_max) && | 1785 | if ((new_rlim.rlim_max > old_rlim->rlim_max) && |
1643 | !capable(CAP_SYS_RESOURCE)) | 1786 | !capable(CAP_SYS_RESOURCE)) |
1644 | return -EPERM; | 1787 | return -EPERM; |
1645 | if (resource == RLIMIT_NOFILE && new_rlim.rlim_max > NR_OPEN) | 1788 | if (resource == RLIMIT_NOFILE && new_rlim.rlim_max > NR_OPEN) |
1646 | return -EPERM; | 1789 | return -EPERM; |
1647 | 1790 | ||
1648 | retval = security_task_setrlimit(resource, &new_rlim); | 1791 | retval = security_task_setrlimit(resource, &new_rlim); |
1649 | if (retval) | 1792 | if (retval) |
@@ -1653,19 +1796,40 @@ asmlinkage long sys_setrlimit(unsigned int resource, struct rlimit __user *rlim) | |||
1653 | *old_rlim = new_rlim; | 1796 | *old_rlim = new_rlim; |
1654 | task_unlock(current->group_leader); | 1797 | task_unlock(current->group_leader); |
1655 | 1798 | ||
1656 | if (resource == RLIMIT_CPU && new_rlim.rlim_cur != RLIM_INFINITY && | 1799 | if (resource != RLIMIT_CPU) |
1657 | (cputime_eq(current->signal->it_prof_expires, cputime_zero) || | 1800 | goto out; |
1658 | new_rlim.rlim_cur <= cputime_to_secs( | 1801 | |
1659 | current->signal->it_prof_expires))) { | 1802 | /* |
1660 | cputime_t cputime = secs_to_cputime(new_rlim.rlim_cur); | 1803 | * RLIMIT_CPU handling. Note that the kernel fails to return an error |
1804 | * code if it rejected the user's attempt to set RLIMIT_CPU. This is a | ||
1805 | * very long-standing error, and fixing it now risks breakage of | ||
1806 | * applications, so we live with it | ||
1807 | */ | ||
1808 | if (new_rlim.rlim_cur == RLIM_INFINITY) | ||
1809 | goto out; | ||
1810 | |||
1811 | it_prof_secs = cputime_to_secs(current->signal->it_prof_expires); | ||
1812 | if (it_prof_secs == 0 || new_rlim.rlim_cur <= it_prof_secs) { | ||
1813 | unsigned long rlim_cur = new_rlim.rlim_cur; | ||
1814 | cputime_t cputime; | ||
1815 | |||
1816 | if (rlim_cur == 0) { | ||
1817 | /* | ||
1818 | * The caller is asking for an immediate RLIMIT_CPU | ||
1819 | * expiry. But we use the zero value to mean "it was | ||
1820 | * never set". So let's cheat and make it one second | ||
1821 | * instead | ||
1822 | */ | ||
1823 | rlim_cur = 1; | ||
1824 | } | ||
1825 | cputime = secs_to_cputime(rlim_cur); | ||
1661 | read_lock(&tasklist_lock); | 1826 | read_lock(&tasklist_lock); |
1662 | spin_lock_irq(¤t->sighand->siglock); | 1827 | spin_lock_irq(¤t->sighand->siglock); |
1663 | set_process_cpu_timer(current, CPUCLOCK_PROF, | 1828 | set_process_cpu_timer(current, CPUCLOCK_PROF, &cputime, NULL); |
1664 | &cputime, NULL); | ||
1665 | spin_unlock_irq(¤t->sighand->siglock); | 1829 | spin_unlock_irq(¤t->sighand->siglock); |
1666 | read_unlock(&tasklist_lock); | 1830 | read_unlock(&tasklist_lock); |
1667 | } | 1831 | } |
1668 | 1832 | out: | |
1669 | return 0; | 1833 | return 0; |
1670 | } | 1834 | } |
1671 | 1835 | ||
@@ -1677,9 +1841,6 @@ asmlinkage long sys_setrlimit(unsigned int resource, struct rlimit __user *rlim) | |||
1677 | * a lot simpler! (Which we're not doing right now because we're not | 1841 | * a lot simpler! (Which we're not doing right now because we're not |
1678 | * measuring them yet). | 1842 | * measuring them yet). |
1679 | * | 1843 | * |
1680 | * This expects to be called with tasklist_lock read-locked or better, | ||
1681 | * and the siglock not locked. It may momentarily take the siglock. | ||
1682 | * | ||
1683 | * When sampling multiple threads for RUSAGE_SELF, under SMP we might have | 1844 | * When sampling multiple threads for RUSAGE_SELF, under SMP we might have |
1684 | * races with threads incrementing their own counters. But since word | 1845 | * races with threads incrementing their own counters. But since word |
1685 | * reads are atomic, we either get new values or old values and we don't | 1846 | * reads are atomic, we either get new values or old values and we don't |
@@ -1687,6 +1848,25 @@ asmlinkage long sys_setrlimit(unsigned int resource, struct rlimit __user *rlim) | |||
1687 | * the c* fields from p->signal from races with exit.c updating those | 1848 | * the c* fields from p->signal from races with exit.c updating those |
1688 | * fields when reaping, so a sample either gets all the additions of a | 1849 | * fields when reaping, so a sample either gets all the additions of a |
1689 | * given child after it's reaped, or none so this sample is before reaping. | 1850 | * given child after it's reaped, or none so this sample is before reaping. |
1851 | * | ||
1852 | * tasklist_lock locking optimisation: | ||
1853 | * If we are current and single threaded, we do not need to take the tasklist | ||
1854 | * lock or the siglock. No one else can take our signal_struct away, | ||
1855 | * no one else can reap the children to update signal->c* counters, and | ||
1856 | * no one else can race with the signal-> fields. | ||
1857 | * If we do not take the tasklist_lock, the signal-> fields could be read | ||
1858 | * out of order while another thread was just exiting. So we place a | ||
1859 | * read memory barrier when we avoid the lock. On the writer side, | ||
1860 | * write memory barrier is implied in __exit_signal as __exit_signal releases | ||
1861 | * the siglock spinlock after updating the signal-> fields. | ||
1862 | * | ||
1863 | * We don't really need the siglock when we access the non c* fields | ||
1864 | * of the signal_struct (for RUSAGE_SELF) even in multithreaded | ||
1865 | * case, since we take the tasklist lock for read and the non c* signal-> | ||
1866 | * fields are updated only in __exit_signal, which is called with | ||
1867 | * tasklist_lock taken for write, hence these two threads cannot execute | ||
1868 | * concurrently. | ||
1869 | * | ||
1690 | */ | 1870 | */ |
1691 | 1871 | ||
1692 | static void k_getrusage(struct task_struct *p, int who, struct rusage *r) | 1872 | static void k_getrusage(struct task_struct *p, int who, struct rusage *r) |
@@ -1694,13 +1874,23 @@ static void k_getrusage(struct task_struct *p, int who, struct rusage *r) | |||
1694 | struct task_struct *t; | 1874 | struct task_struct *t; |
1695 | unsigned long flags; | 1875 | unsigned long flags; |
1696 | cputime_t utime, stime; | 1876 | cputime_t utime, stime; |
1877 | int need_lock = 0; | ||
1697 | 1878 | ||
1698 | memset((char *) r, 0, sizeof *r); | 1879 | memset((char *) r, 0, sizeof *r); |
1880 | utime = stime = cputime_zero; | ||
1699 | 1881 | ||
1700 | if (unlikely(!p->signal)) | 1882 | if (p != current || !thread_group_empty(p)) |
1701 | return; | 1883 | need_lock = 1; |
1702 | 1884 | ||
1703 | utime = stime = cputime_zero; | 1885 | if (need_lock) { |
1886 | read_lock(&tasklist_lock); | ||
1887 | if (unlikely(!p->signal)) { | ||
1888 | read_unlock(&tasklist_lock); | ||
1889 | return; | ||
1890 | } | ||
1891 | } else | ||
1892 | /* See locking comments above */ | ||
1893 | smp_rmb(); | ||
1704 | 1894 | ||
1705 | switch (who) { | 1895 | switch (who) { |
1706 | case RUSAGE_BOTH: | 1896 | case RUSAGE_BOTH: |
@@ -1740,6 +1930,8 @@ static void k_getrusage(struct task_struct *p, int who, struct rusage *r) | |||
1740 | BUG(); | 1930 | BUG(); |
1741 | } | 1931 | } |
1742 | 1932 | ||
1933 | if (need_lock) | ||
1934 | read_unlock(&tasklist_lock); | ||
1743 | cputime_to_timeval(utime, &r->ru_utime); | 1935 | cputime_to_timeval(utime, &r->ru_utime); |
1744 | cputime_to_timeval(stime, &r->ru_stime); | 1936 | cputime_to_timeval(stime, &r->ru_stime); |
1745 | } | 1937 | } |
@@ -1747,9 +1939,7 @@ static void k_getrusage(struct task_struct *p, int who, struct rusage *r) | |||
1747 | int getrusage(struct task_struct *p, int who, struct rusage __user *ru) | 1939 | int getrusage(struct task_struct *p, int who, struct rusage __user *ru) |
1748 | { | 1940 | { |
1749 | struct rusage r; | 1941 | struct rusage r; |
1750 | read_lock(&tasklist_lock); | ||
1751 | k_getrusage(p, who, &r); | 1942 | k_getrusage(p, who, &r); |
1752 | read_unlock(&tasklist_lock); | ||
1753 | return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0; | 1943 | return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0; |
1754 | } | 1944 | } |
1755 | 1945 | ||
diff --git a/kernel/sys_ni.c b/kernel/sys_ni.c index 1067090db6..d82864c4a6 100644 --- a/kernel/sys_ni.c +++ b/kernel/sys_ni.c | |||
@@ -42,6 +42,10 @@ cond_syscall(sys_recvmsg); | |||
42 | cond_syscall(sys_socketcall); | 42 | cond_syscall(sys_socketcall); |
43 | cond_syscall(sys_futex); | 43 | cond_syscall(sys_futex); |
44 | cond_syscall(compat_sys_futex); | 44 | cond_syscall(compat_sys_futex); |
45 | cond_syscall(sys_set_robust_list); | ||
46 | cond_syscall(compat_sys_set_robust_list); | ||
47 | cond_syscall(sys_get_robust_list); | ||
48 | cond_syscall(compat_sys_get_robust_list); | ||
45 | cond_syscall(sys_epoll_create); | 49 | cond_syscall(sys_epoll_create); |
46 | cond_syscall(sys_epoll_ctl); | 50 | cond_syscall(sys_epoll_ctl); |
47 | cond_syscall(sys_epoll_wait); | 51 | cond_syscall(sys_epoll_wait); |
diff --git a/kernel/sysctl.c b/kernel/sysctl.c index 32b48e8ee3..e82726faee 100644 --- a/kernel/sysctl.c +++ b/kernel/sysctl.c | |||
@@ -742,18 +742,18 @@ static ctl_table vm_table[] = { | |||
742 | { | 742 | { |
743 | .ctl_name = VM_DIRTY_WB_CS, | 743 | .ctl_name = VM_DIRTY_WB_CS, |
744 | .procname = "dirty_writeback_centisecs", | 744 | .procname = "dirty_writeback_centisecs", |
745 | .data = &dirty_writeback_centisecs, | 745 | .data = &dirty_writeback_interval, |
746 | .maxlen = sizeof(dirty_writeback_centisecs), | 746 | .maxlen = sizeof(dirty_writeback_interval), |
747 | .mode = 0644, | 747 | .mode = 0644, |
748 | .proc_handler = &dirty_writeback_centisecs_handler, | 748 | .proc_handler = &dirty_writeback_centisecs_handler, |
749 | }, | 749 | }, |
750 | { | 750 | { |
751 | .ctl_name = VM_DIRTY_EXPIRE_CS, | 751 | .ctl_name = VM_DIRTY_EXPIRE_CS, |
752 | .procname = "dirty_expire_centisecs", | 752 | .procname = "dirty_expire_centisecs", |
753 | .data = &dirty_expire_centisecs, | 753 | .data = &dirty_expire_interval, |
754 | .maxlen = sizeof(dirty_expire_centisecs), | 754 | .maxlen = sizeof(dirty_expire_interval), |
755 | .mode = 0644, | 755 | .mode = 0644, |
756 | .proc_handler = &proc_dointvec, | 756 | .proc_handler = &proc_dointvec_userhz_jiffies, |
757 | }, | 757 | }, |
758 | { | 758 | { |
759 | .ctl_name = VM_NR_PDFLUSH_THREADS, | 759 | .ctl_name = VM_NR_PDFLUSH_THREADS, |
@@ -848,9 +848,8 @@ static ctl_table vm_table[] = { | |||
848 | .data = &laptop_mode, | 848 | .data = &laptop_mode, |
849 | .maxlen = sizeof(laptop_mode), | 849 | .maxlen = sizeof(laptop_mode), |
850 | .mode = 0644, | 850 | .mode = 0644, |
851 | .proc_handler = &proc_dointvec, | 851 | .proc_handler = &proc_dointvec_jiffies, |
852 | .strategy = &sysctl_intvec, | 852 | .strategy = &sysctl_jiffies, |
853 | .extra1 = &zero, | ||
854 | }, | 853 | }, |
855 | { | 854 | { |
856 | .ctl_name = VM_BLOCK_DUMP, | 855 | .ctl_name = VM_BLOCK_DUMP, |
@@ -2054,6 +2053,8 @@ static int do_proc_dointvec_jiffies_conv(int *negp, unsigned long *lvalp, | |||
2054 | int write, void *data) | 2053 | int write, void *data) |
2055 | { | 2054 | { |
2056 | if (write) { | 2055 | if (write) { |
2056 | if (*lvalp > LONG_MAX / HZ) | ||
2057 | return 1; | ||
2057 | *valp = *negp ? -(*lvalp*HZ) : (*lvalp*HZ); | 2058 | *valp = *negp ? -(*lvalp*HZ) : (*lvalp*HZ); |
2058 | } else { | 2059 | } else { |
2059 | int val = *valp; | 2060 | int val = *valp; |
@@ -2075,6 +2076,8 @@ static int do_proc_dointvec_userhz_jiffies_conv(int *negp, unsigned long *lvalp, | |||
2075 | int write, void *data) | 2076 | int write, void *data) |
2076 | { | 2077 | { |
2077 | if (write) { | 2078 | if (write) { |
2079 | if (USER_HZ < HZ && *lvalp > (LONG_MAX / HZ) * USER_HZ) | ||
2080 | return 1; | ||
2078 | *valp = clock_t_to_jiffies(*negp ? -*lvalp : *lvalp); | 2081 | *valp = clock_t_to_jiffies(*negp ? -*lvalp : *lvalp); |
2079 | } else { | 2082 | } else { |
2080 | int val = *valp; | 2083 | int val = *valp; |
diff --git a/kernel/time.c b/kernel/time.c index 804539165d..ff8e7019c4 100644 --- a/kernel/time.c +++ b/kernel/time.c | |||
@@ -202,24 +202,6 @@ asmlinkage long sys_settimeofday(struct timeval __user *tv, | |||
202 | return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL); | 202 | return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL); |
203 | } | 203 | } |
204 | 204 | ||
205 | long pps_offset; /* pps time offset (us) */ | ||
206 | long pps_jitter = MAXTIME; /* time dispersion (jitter) (us) */ | ||
207 | |||
208 | long pps_freq; /* frequency offset (scaled ppm) */ | ||
209 | long pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */ | ||
210 | |||
211 | long pps_valid = PPS_VALID; /* pps signal watchdog counter */ | ||
212 | |||
213 | int pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */ | ||
214 | |||
215 | long pps_jitcnt; /* jitter limit exceeded */ | ||
216 | long pps_calcnt; /* calibration intervals */ | ||
217 | long pps_errcnt; /* calibration errors */ | ||
218 | long pps_stbcnt; /* stability limit exceeded */ | ||
219 | |||
220 | /* hook for a loadable hardpps kernel module */ | ||
221 | void (*hardpps_ptr)(struct timeval *); | ||
222 | |||
223 | /* we call this to notify the arch when the clock is being | 205 | /* we call this to notify the arch when the clock is being |
224 | * controlled. If no such arch routine, do nothing. | 206 | * controlled. If no such arch routine, do nothing. |
225 | */ | 207 | */ |
@@ -279,7 +261,7 @@ int do_adjtimex(struct timex *txc) | |||
279 | result = -EINVAL; | 261 | result = -EINVAL; |
280 | goto leave; | 262 | goto leave; |
281 | } | 263 | } |
282 | time_freq = txc->freq - pps_freq; | 264 | time_freq = txc->freq; |
283 | } | 265 | } |
284 | 266 | ||
285 | if (txc->modes & ADJ_MAXERROR) { | 267 | if (txc->modes & ADJ_MAXERROR) { |
@@ -312,10 +294,8 @@ int do_adjtimex(struct timex *txc) | |||
312 | if ((time_next_adjust = txc->offset) == 0) | 294 | if ((time_next_adjust = txc->offset) == 0) |
313 | time_adjust = 0; | 295 | time_adjust = 0; |
314 | } | 296 | } |
315 | else if ( time_status & (STA_PLL | STA_PPSTIME) ) { | 297 | else if (time_status & STA_PLL) { |
316 | ltemp = (time_status & (STA_PPSTIME | STA_PPSSIGNAL)) == | 298 | ltemp = txc->offset; |
317 | (STA_PPSTIME | STA_PPSSIGNAL) ? | ||
318 | pps_offset : txc->offset; | ||
319 | 299 | ||
320 | /* | 300 | /* |
321 | * Scale the phase adjustment and | 301 | * Scale the phase adjustment and |
@@ -356,23 +336,14 @@ int do_adjtimex(struct timex *txc) | |||
356 | } | 336 | } |
357 | time_freq = min(time_freq, time_tolerance); | 337 | time_freq = min(time_freq, time_tolerance); |
358 | time_freq = max(time_freq, -time_tolerance); | 338 | time_freq = max(time_freq, -time_tolerance); |
359 | } /* STA_PLL || STA_PPSTIME */ | 339 | } /* STA_PLL */ |
360 | } /* txc->modes & ADJ_OFFSET */ | 340 | } /* txc->modes & ADJ_OFFSET */ |
361 | if (txc->modes & ADJ_TICK) { | 341 | if (txc->modes & ADJ_TICK) { |
362 | tick_usec = txc->tick; | 342 | tick_usec = txc->tick; |
363 | tick_nsec = TICK_USEC_TO_NSEC(tick_usec); | 343 | tick_nsec = TICK_USEC_TO_NSEC(tick_usec); |
364 | } | 344 | } |
365 | } /* txc->modes */ | 345 | } /* txc->modes */ |
366 | leave: if ((time_status & (STA_UNSYNC|STA_CLOCKERR)) != 0 | 346 | leave: if ((time_status & (STA_UNSYNC|STA_CLOCKERR)) != 0) |
367 | || ((time_status & (STA_PPSFREQ|STA_PPSTIME)) != 0 | ||
368 | && (time_status & STA_PPSSIGNAL) == 0) | ||
369 | /* p. 24, (b) */ | ||
370 | || ((time_status & (STA_PPSTIME|STA_PPSJITTER)) | ||
371 | == (STA_PPSTIME|STA_PPSJITTER)) | ||
372 | /* p. 24, (c) */ | ||
373 | || ((time_status & STA_PPSFREQ) != 0 | ||
374 | && (time_status & (STA_PPSWANDER|STA_PPSERROR)) != 0)) | ||
375 | /* p. 24, (d) */ | ||
376 | result = TIME_ERROR; | 347 | result = TIME_ERROR; |
377 | 348 | ||
378 | if ((txc->modes & ADJ_OFFSET_SINGLESHOT) == ADJ_OFFSET_SINGLESHOT) | 349 | if ((txc->modes & ADJ_OFFSET_SINGLESHOT) == ADJ_OFFSET_SINGLESHOT) |
@@ -380,7 +351,7 @@ leave: if ((time_status & (STA_UNSYNC|STA_CLOCKERR)) != 0 | |||
380 | else { | 351 | else { |
381 | txc->offset = shift_right(time_offset, SHIFT_UPDATE); | 352 | txc->offset = shift_right(time_offset, SHIFT_UPDATE); |
382 | } | 353 | } |
383 | txc->freq = time_freq + pps_freq; | 354 | txc->freq = time_freq; |
384 | txc->maxerror = time_maxerror; | 355 | txc->maxerror = time_maxerror; |
385 | txc->esterror = time_esterror; | 356 | txc->esterror = time_esterror; |
386 | txc->status = time_status; | 357 | txc->status = time_status; |
@@ -388,14 +359,16 @@ leave: if ((time_status & (STA_UNSYNC|STA_CLOCKERR)) != 0 | |||
388 | txc->precision = time_precision; | 359 | txc->precision = time_precision; |
389 | txc->tolerance = time_tolerance; | 360 | txc->tolerance = time_tolerance; |
390 | txc->tick = tick_usec; | 361 | txc->tick = tick_usec; |
391 | txc->ppsfreq = pps_freq; | 362 | |
392 | txc->jitter = pps_jitter >> PPS_AVG; | 363 | /* PPS is not implemented, so these are zero */ |
393 | txc->shift = pps_shift; | 364 | txc->ppsfreq = 0; |
394 | txc->stabil = pps_stabil; | 365 | txc->jitter = 0; |
395 | txc->jitcnt = pps_jitcnt; | 366 | txc->shift = 0; |
396 | txc->calcnt = pps_calcnt; | 367 | txc->stabil = 0; |
397 | txc->errcnt = pps_errcnt; | 368 | txc->jitcnt = 0; |
398 | txc->stbcnt = pps_stbcnt; | 369 | txc->calcnt = 0; |
370 | txc->errcnt = 0; | ||
371 | txc->stbcnt = 0; | ||
399 | write_sequnlock_irq(&xtime_lock); | 372 | write_sequnlock_irq(&xtime_lock); |
400 | do_gettimeofday(&txc->time); | 373 | do_gettimeofday(&txc->time); |
401 | notify_arch_cmos_timer(); | 374 | notify_arch_cmos_timer(); |
@@ -637,7 +610,7 @@ void set_normalized_timespec(struct timespec *ts, time_t sec, long nsec) | |||
637 | * | 610 | * |
638 | * Returns the timespec representation of the nsec parameter. | 611 | * Returns the timespec representation of the nsec parameter. |
639 | */ | 612 | */ |
640 | struct timespec ns_to_timespec(const nsec_t nsec) | 613 | struct timespec ns_to_timespec(const s64 nsec) |
641 | { | 614 | { |
642 | struct timespec ts; | 615 | struct timespec ts; |
643 | 616 | ||
@@ -657,7 +630,7 @@ struct timespec ns_to_timespec(const nsec_t nsec) | |||
657 | * | 630 | * |
658 | * Returns the timeval representation of the nsec parameter. | 631 | * Returns the timeval representation of the nsec parameter. |
659 | */ | 632 | */ |
660 | struct timeval ns_to_timeval(const nsec_t nsec) | 633 | struct timeval ns_to_timeval(const s64 nsec) |
661 | { | 634 | { |
662 | struct timespec ts = ns_to_timespec(nsec); | 635 | struct timespec ts = ns_to_timespec(nsec); |
663 | struct timeval tv; | 636 | struct timeval tv; |
diff --git a/kernel/timer.c b/kernel/timer.c index 2410c18dbe..ab189dd187 100644 --- a/kernel/timer.c +++ b/kernel/timer.c | |||
@@ -86,7 +86,8 @@ struct tvec_t_base_s { | |||
86 | } ____cacheline_aligned_in_smp; | 86 | } ____cacheline_aligned_in_smp; |
87 | 87 | ||
88 | typedef struct tvec_t_base_s tvec_base_t; | 88 | typedef struct tvec_t_base_s tvec_base_t; |
89 | static DEFINE_PER_CPU(tvec_base_t, tvec_bases); | 89 | static DEFINE_PER_CPU(tvec_base_t *, tvec_bases); |
90 | static tvec_base_t boot_tvec_bases; | ||
90 | 91 | ||
91 | static inline void set_running_timer(tvec_base_t *base, | 92 | static inline void set_running_timer(tvec_base_t *base, |
92 | struct timer_list *timer) | 93 | struct timer_list *timer) |
@@ -157,7 +158,7 @@ EXPORT_SYMBOL(__init_timer_base); | |||
157 | void fastcall init_timer(struct timer_list *timer) | 158 | void fastcall init_timer(struct timer_list *timer) |
158 | { | 159 | { |
159 | timer->entry.next = NULL; | 160 | timer->entry.next = NULL; |
160 | timer->base = &per_cpu(tvec_bases, raw_smp_processor_id()).t_base; | 161 | timer->base = &per_cpu(tvec_bases, raw_smp_processor_id())->t_base; |
161 | } | 162 | } |
162 | EXPORT_SYMBOL(init_timer); | 163 | EXPORT_SYMBOL(init_timer); |
163 | 164 | ||
@@ -218,7 +219,7 @@ int __mod_timer(struct timer_list *timer, unsigned long expires) | |||
218 | ret = 1; | 219 | ret = 1; |
219 | } | 220 | } |
220 | 221 | ||
221 | new_base = &__get_cpu_var(tvec_bases); | 222 | new_base = __get_cpu_var(tvec_bases); |
222 | 223 | ||
223 | if (base != &new_base->t_base) { | 224 | if (base != &new_base->t_base) { |
224 | /* | 225 | /* |
@@ -258,7 +259,7 @@ EXPORT_SYMBOL(__mod_timer); | |||
258 | */ | 259 | */ |
259 | void add_timer_on(struct timer_list *timer, int cpu) | 260 | void add_timer_on(struct timer_list *timer, int cpu) |
260 | { | 261 | { |
261 | tvec_base_t *base = &per_cpu(tvec_bases, cpu); | 262 | tvec_base_t *base = per_cpu(tvec_bases, cpu); |
262 | unsigned long flags; | 263 | unsigned long flags; |
263 | 264 | ||
264 | BUG_ON(timer_pending(timer) || !timer->function); | 265 | BUG_ON(timer_pending(timer) || !timer->function); |
@@ -504,7 +505,7 @@ unsigned long next_timer_interrupt(void) | |||
504 | } | 505 | } |
505 | hr_expires += jiffies; | 506 | hr_expires += jiffies; |
506 | 507 | ||
507 | base = &__get_cpu_var(tvec_bases); | 508 | base = __get_cpu_var(tvec_bases); |
508 | spin_lock(&base->t_base.lock); | 509 | spin_lock(&base->t_base.lock); |
509 | expires = base->timer_jiffies + (LONG_MAX >> 1); | 510 | expires = base->timer_jiffies + (LONG_MAX >> 1); |
510 | list = NULL; | 511 | list = NULL; |
@@ -696,18 +697,9 @@ static void second_overflow(void) | |||
696 | 697 | ||
697 | /* | 698 | /* |
698 | * Compute the frequency estimate and additional phase adjustment due | 699 | * Compute the frequency estimate and additional phase adjustment due |
699 | * to frequency error for the next second. When the PPS signal is | 700 | * to frequency error for the next second. |
700 | * engaged, gnaw on the watchdog counter and update the frequency | ||
701 | * computed by the pll and the PPS signal. | ||
702 | */ | 701 | */ |
703 | pps_valid++; | 702 | ltemp = time_freq; |
704 | if (pps_valid == PPS_VALID) { /* PPS signal lost */ | ||
705 | pps_jitter = MAXTIME; | ||
706 | pps_stabil = MAXFREQ; | ||
707 | time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER | | ||
708 | STA_PPSWANDER | STA_PPSERROR); | ||
709 | } | ||
710 | ltemp = time_freq + pps_freq; | ||
711 | time_adj += shift_right(ltemp,(SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE)); | 703 | time_adj += shift_right(ltemp,(SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE)); |
712 | 704 | ||
713 | #if HZ == 100 | 705 | #if HZ == 100 |
@@ -901,7 +893,7 @@ EXPORT_SYMBOL(xtime_lock); | |||
901 | */ | 893 | */ |
902 | static void run_timer_softirq(struct softirq_action *h) | 894 | static void run_timer_softirq(struct softirq_action *h) |
903 | { | 895 | { |
904 | tvec_base_t *base = &__get_cpu_var(tvec_bases); | 896 | tvec_base_t *base = __get_cpu_var(tvec_bases); |
905 | 897 | ||
906 | hrtimer_run_queues(); | 898 | hrtimer_run_queues(); |
907 | if (time_after_eq(jiffies, base->timer_jiffies)) | 899 | if (time_after_eq(jiffies, base->timer_jiffies)) |
@@ -914,6 +906,7 @@ static void run_timer_softirq(struct softirq_action *h) | |||
914 | void run_local_timers(void) | 906 | void run_local_timers(void) |
915 | { | 907 | { |
916 | raise_softirq(TIMER_SOFTIRQ); | 908 | raise_softirq(TIMER_SOFTIRQ); |
909 | softlockup_tick(); | ||
917 | } | 910 | } |
918 | 911 | ||
919 | /* | 912 | /* |
@@ -944,7 +937,6 @@ void do_timer(struct pt_regs *regs) | |||
944 | /* prevent loading jiffies before storing new jiffies_64 value. */ | 937 | /* prevent loading jiffies before storing new jiffies_64 value. */ |
945 | barrier(); | 938 | barrier(); |
946 | update_times(); | 939 | update_times(); |
947 | softlockup_tick(regs); | ||
948 | } | 940 | } |
949 | 941 | ||
950 | #ifdef __ARCH_WANT_SYS_ALARM | 942 | #ifdef __ARCH_WANT_SYS_ALARM |
@@ -955,19 +947,7 @@ void do_timer(struct pt_regs *regs) | |||
955 | */ | 947 | */ |
956 | asmlinkage unsigned long sys_alarm(unsigned int seconds) | 948 | asmlinkage unsigned long sys_alarm(unsigned int seconds) |
957 | { | 949 | { |
958 | struct itimerval it_new, it_old; | 950 | return alarm_setitimer(seconds); |
959 | unsigned int oldalarm; | ||
960 | |||
961 | it_new.it_interval.tv_sec = it_new.it_interval.tv_usec = 0; | ||
962 | it_new.it_value.tv_sec = seconds; | ||
963 | it_new.it_value.tv_usec = 0; | ||
964 | do_setitimer(ITIMER_REAL, &it_new, &it_old); | ||
965 | oldalarm = it_old.it_value.tv_sec; | ||
966 | /* ehhh.. We can't return 0 if we have an alarm pending.. */ | ||
967 | /* And we'd better return too much than too little anyway */ | ||
968 | if ((!oldalarm && it_old.it_value.tv_usec) || it_old.it_value.tv_usec >= 500000) | ||
969 | oldalarm++; | ||
970 | return oldalarm; | ||
971 | } | 951 | } |
972 | 952 | ||
973 | #endif | 953 | #endif |
@@ -1256,12 +1236,32 @@ asmlinkage long sys_sysinfo(struct sysinfo __user *info) | |||
1256 | return 0; | 1236 | return 0; |
1257 | } | 1237 | } |
1258 | 1238 | ||
1259 | static void __devinit init_timers_cpu(int cpu) | 1239 | static int __devinit init_timers_cpu(int cpu) |
1260 | { | 1240 | { |
1261 | int j; | 1241 | int j; |
1262 | tvec_base_t *base; | 1242 | tvec_base_t *base; |
1263 | 1243 | ||
1264 | base = &per_cpu(tvec_bases, cpu); | 1244 | base = per_cpu(tvec_bases, cpu); |
1245 | if (!base) { | ||
1246 | static char boot_done; | ||
1247 | |||
1248 | /* | ||
1249 | * Cannot do allocation in init_timers as that runs before the | ||
1250 | * allocator initializes (and would waste memory if there are | ||
1251 | * more possible CPUs than will ever be installed/brought up). | ||
1252 | */ | ||
1253 | if (boot_done) { | ||
1254 | base = kmalloc_node(sizeof(*base), GFP_KERNEL, | ||
1255 | cpu_to_node(cpu)); | ||
1256 | if (!base) | ||
1257 | return -ENOMEM; | ||
1258 | memset(base, 0, sizeof(*base)); | ||
1259 | } else { | ||
1260 | base = &boot_tvec_bases; | ||
1261 | boot_done = 1; | ||
1262 | } | ||
1263 | per_cpu(tvec_bases, cpu) = base; | ||
1264 | } | ||
1265 | spin_lock_init(&base->t_base.lock); | 1265 | spin_lock_init(&base->t_base.lock); |
1266 | for (j = 0; j < TVN_SIZE; j++) { | 1266 | for (j = 0; j < TVN_SIZE; j++) { |
1267 | INIT_LIST_HEAD(base->tv5.vec + j); | 1267 | INIT_LIST_HEAD(base->tv5.vec + j); |
@@ -1273,6 +1273,7 @@ static void __devinit init_timers_cpu(int cpu) | |||
1273 | INIT_LIST_HEAD(base->tv1.vec + j); | 1273 | INIT_LIST_HEAD(base->tv1.vec + j); |
1274 | 1274 | ||
1275 | base->timer_jiffies = jiffies; | 1275 | base->timer_jiffies = jiffies; |
1276 | return 0; | ||
1276 | } | 1277 | } |
1277 | 1278 | ||
1278 | #ifdef CONFIG_HOTPLUG_CPU | 1279 | #ifdef CONFIG_HOTPLUG_CPU |
@@ -1295,8 +1296,8 @@ static void __devinit migrate_timers(int cpu) | |||
1295 | int i; | 1296 | int i; |
1296 | 1297 | ||
1297 | BUG_ON(cpu_online(cpu)); | 1298 | BUG_ON(cpu_online(cpu)); |
1298 | old_base = &per_cpu(tvec_bases, cpu); | 1299 | old_base = per_cpu(tvec_bases, cpu); |
1299 | new_base = &get_cpu_var(tvec_bases); | 1300 | new_base = get_cpu_var(tvec_bases); |
1300 | 1301 | ||
1301 | local_irq_disable(); | 1302 | local_irq_disable(); |
1302 | spin_lock(&new_base->t_base.lock); | 1303 | spin_lock(&new_base->t_base.lock); |
@@ -1326,7 +1327,8 @@ static int __devinit timer_cpu_notify(struct notifier_block *self, | |||
1326 | long cpu = (long)hcpu; | 1327 | long cpu = (long)hcpu; |
1327 | switch(action) { | 1328 | switch(action) { |
1328 | case CPU_UP_PREPARE: | 1329 | case CPU_UP_PREPARE: |
1329 | init_timers_cpu(cpu); | 1330 | if (init_timers_cpu(cpu) < 0) |
1331 | return NOTIFY_BAD; | ||
1330 | break; | 1332 | break; |
1331 | #ifdef CONFIG_HOTPLUG_CPU | 1333 | #ifdef CONFIG_HOTPLUG_CPU |
1332 | case CPU_DEAD: | 1334 | case CPU_DEAD: |
diff --git a/kernel/user.c b/kernel/user.c index d9deae43a9..2116642f42 100644 --- a/kernel/user.c +++ b/kernel/user.c | |||
@@ -105,15 +105,19 @@ void free_uid(struct user_struct *up) | |||
105 | { | 105 | { |
106 | unsigned long flags; | 106 | unsigned long flags; |
107 | 107 | ||
108 | if (!up) | ||
109 | return; | ||
110 | |||
108 | local_irq_save(flags); | 111 | local_irq_save(flags); |
109 | if (up && atomic_dec_and_lock(&up->__count, &uidhash_lock)) { | 112 | if (atomic_dec_and_lock(&up->__count, &uidhash_lock)) { |
110 | uid_hash_remove(up); | 113 | uid_hash_remove(up); |
114 | spin_unlock_irqrestore(&uidhash_lock, flags); | ||
111 | key_put(up->uid_keyring); | 115 | key_put(up->uid_keyring); |
112 | key_put(up->session_keyring); | 116 | key_put(up->session_keyring); |
113 | kmem_cache_free(uid_cachep, up); | 117 | kmem_cache_free(uid_cachep, up); |
114 | spin_unlock(&uidhash_lock); | 118 | } else { |
119 | local_irq_restore(flags); | ||
115 | } | 120 | } |
116 | local_irq_restore(flags); | ||
117 | } | 121 | } |
118 | 122 | ||
119 | struct user_struct * alloc_uid(uid_t uid) | 123 | struct user_struct * alloc_uid(uid_t uid) |
diff --git a/kernel/workqueue.c b/kernel/workqueue.c index b052e2c4c7..e9e464a903 100644 --- a/kernel/workqueue.c +++ b/kernel/workqueue.c | |||
@@ -27,6 +27,7 @@ | |||
27 | #include <linux/cpu.h> | 27 | #include <linux/cpu.h> |
28 | #include <linux/notifier.h> | 28 | #include <linux/notifier.h> |
29 | #include <linux/kthread.h> | 29 | #include <linux/kthread.h> |
30 | #include <linux/hardirq.h> | ||
30 | 31 | ||
31 | /* | 32 | /* |
32 | * The per-CPU workqueue (if single thread, we always use the first | 33 | * The per-CPU workqueue (if single thread, we always use the first |
@@ -476,6 +477,34 @@ void cancel_rearming_delayed_work(struct work_struct *work) | |||
476 | } | 477 | } |
477 | EXPORT_SYMBOL(cancel_rearming_delayed_work); | 478 | EXPORT_SYMBOL(cancel_rearming_delayed_work); |
478 | 479 | ||
480 | /** | ||
481 | * execute_in_process_context - reliably execute the routine with user context | ||
482 | * @fn: the function to execute | ||
483 | * @data: data to pass to the function | ||
484 | * @ew: guaranteed storage for the execute work structure (must | ||
485 | * be available when the work executes) | ||
486 | * | ||
487 | * Executes the function immediately if process context is available, | ||
488 | * otherwise schedules the function for delayed execution. | ||
489 | * | ||
490 | * Returns: 0 - function was executed | ||
491 | * 1 - function was scheduled for execution | ||
492 | */ | ||
493 | int execute_in_process_context(void (*fn)(void *data), void *data, | ||
494 | struct execute_work *ew) | ||
495 | { | ||
496 | if (!in_interrupt()) { | ||
497 | fn(data); | ||
498 | return 0; | ||
499 | } | ||
500 | |||
501 | INIT_WORK(&ew->work, fn, data); | ||
502 | schedule_work(&ew->work); | ||
503 | |||
504 | return 1; | ||
505 | } | ||
506 | EXPORT_SYMBOL_GPL(execute_in_process_context); | ||
507 | |||
479 | int keventd_up(void) | 508 | int keventd_up(void) |
480 | { | 509 | { |
481 | return keventd_wq != NULL; | 510 | return keventd_wq != NULL; |