diff options
author | Bjoern B. Brandenburg <bbb@cs.unc.edu> | 2009-04-15 14:23:48 -0400 |
---|---|---|
committer | Bjoern B. Brandenburg <bbb@cs.unc.edu> | 2009-04-15 14:23:48 -0400 |
commit | c7b59d1e59d066c5b7f1b950b85b4e0314cc19b6 (patch) | |
tree | 05ef9d358c6bbd7630817424a12cfea5e83ad130 | |
parent | 7c114618378b50e12592ab52713331af76e481c6 (diff) |
add G-EDF, a version of GSN-EDF with synchronization support ripped out
a good base version for other schedulers
-rw-r--r-- | litmus/Makefile | 3 | ||||
-rw-r--r-- | litmus/sched_gedf.c | 502 |
2 files changed, 504 insertions, 1 deletions
diff --git a/litmus/Makefile b/litmus/Makefile index 340c43c84f..c2c88cc9f6 100644 --- a/litmus/Makefile +++ b/litmus/Makefile | |||
@@ -10,7 +10,8 @@ obj-y = sched_plugin.o litmus.o \ | |||
10 | sched_psn_edf.o \ | 10 | sched_psn_edf.o \ |
11 | sched_cedf.o \ | 11 | sched_cedf.o \ |
12 | sched_pfair.o \ | 12 | sched_pfair.o \ |
13 | sched_gq_edf.o | 13 | sched_gq_edf.o \ |
14 | sched_gedf.o | ||
14 | 15 | ||
15 | obj-$(CONFIG_FEATHER_TRACE) += trace.o ft_event.o ftdev.o | 16 | obj-$(CONFIG_FEATHER_TRACE) += trace.o ft_event.o ftdev.o |
16 | obj-$(CONFIG_SCHED_TASK_TRACE) += sched_task_trace.o | 17 | obj-$(CONFIG_SCHED_TASK_TRACE) += sched_task_trace.o |
diff --git a/litmus/sched_gedf.c b/litmus/sched_gedf.c new file mode 100644 index 0000000000..e22e847c5f --- /dev/null +++ b/litmus/sched_gedf.c | |||
@@ -0,0 +1,502 @@ | |||
1 | #include <linux/spinlock.h> | ||
2 | #include <linux/percpu.h> | ||
3 | #include <linux/sched.h> | ||
4 | |||
5 | #include <litmus/litmus.h> | ||
6 | #include <litmus/jobs.h> | ||
7 | #include <litmus/sched_plugin.h> | ||
8 | #include <litmus/edf_common.h> | ||
9 | #include <litmus/sched_trace.h> | ||
10 | |||
11 | #include <litmus/heap.h> | ||
12 | |||
13 | #include <linux/module.h> | ||
14 | |||
15 | /* cpu_entry_t - maintain the linked and scheduled state | ||
16 | */ | ||
17 | typedef struct { | ||
18 | int cpu; | ||
19 | struct task_struct* linked; /* only RT tasks */ | ||
20 | struct task_struct* scheduled; /* only RT tasks */ | ||
21 | atomic_t will_schedule; /* prevent unneeded IPIs */ | ||
22 | struct heap_node* hn; | ||
23 | } cpu_entry_t; | ||
24 | DEFINE_PER_CPU(cpu_entry_t, gedf_cpu_entries); | ||
25 | |||
26 | cpu_entry_t* gedf_cpus[NR_CPUS]; | ||
27 | |||
28 | #define set_will_schedule() \ | ||
29 | (atomic_set(&__get_cpu_var(gedf_cpu_entries).will_schedule, 1)) | ||
30 | #define clear_will_schedule() \ | ||
31 | (atomic_set(&__get_cpu_var(gedf_cpu_entries).will_schedule, 0)) | ||
32 | #define test_will_schedule(cpu) \ | ||
33 | (atomic_read(&per_cpu(gedf_cpu_entries, cpu).will_schedule)) | ||
34 | |||
35 | |||
36 | #define NO_CPU 0xffffffff | ||
37 | |||
38 | /* the cpus queue themselves according to priority in here */ | ||
39 | static struct heap_node gedf_heap_node[NR_CPUS]; | ||
40 | static struct heap gedf_cpu_heap; | ||
41 | |||
42 | static rt_domain_t gedf; | ||
43 | #define gedf_lock (gedf.ready_lock) | ||
44 | |||
45 | |||
46 | static int cpu_lower_prio(struct heap_node *_a, struct heap_node *_b) | ||
47 | { | ||
48 | cpu_entry_t *a, *b; | ||
49 | a = _a->value; | ||
50 | b = _b->value; | ||
51 | /* Note that a and b are inverted: we want the lowest-priority CPU at | ||
52 | * the top of the heap. | ||
53 | */ | ||
54 | return edf_higher_prio(b->linked, a->linked); | ||
55 | } | ||
56 | |||
57 | /* update_cpu_position - Move the cpu entry to the correct place to maintain | ||
58 | * order in the cpu queue. Caller must hold gedf lock. | ||
59 | */ | ||
60 | static void update_cpu_position(cpu_entry_t *entry) | ||
61 | { | ||
62 | if (likely(heap_node_in_heap(entry->hn))) | ||
63 | heap_delete(cpu_lower_prio, &gedf_cpu_heap, entry->hn); | ||
64 | heap_insert(cpu_lower_prio, &gedf_cpu_heap, entry->hn); | ||
65 | } | ||
66 | |||
67 | /* caller must hold gedf lock */ | ||
68 | static cpu_entry_t* lowest_prio_cpu(void) | ||
69 | { | ||
70 | struct heap_node* hn; | ||
71 | hn = heap_peek(cpu_lower_prio, &gedf_cpu_heap); | ||
72 | return hn->value; | ||
73 | } | ||
74 | |||
75 | |||
76 | /* link_task_to_cpu - Update the link of a CPU. | ||
77 | * Handles the case where the to-be-linked task is already | ||
78 | * scheduled on a different CPU. | ||
79 | */ | ||
80 | static noinline void link_task_to_cpu(struct task_struct* linked, | ||
81 | cpu_entry_t *entry) | ||
82 | { | ||
83 | cpu_entry_t *sched; | ||
84 | struct task_struct* tmp; | ||
85 | int on_cpu; | ||
86 | |||
87 | BUG_ON(linked && !is_realtime(linked)); | ||
88 | |||
89 | /* Currently linked task is set to be unlinked. */ | ||
90 | if (entry->linked) { | ||
91 | entry->linked->rt_param.linked_on = NO_CPU; | ||
92 | } | ||
93 | |||
94 | /* Link new task to CPU. */ | ||
95 | if (linked) { | ||
96 | set_rt_flags(linked, RT_F_RUNNING); | ||
97 | /* handle task is already scheduled somewhere! */ | ||
98 | on_cpu = linked->rt_param.scheduled_on; | ||
99 | if (on_cpu != NO_CPU) { | ||
100 | sched = &per_cpu(gedf_cpu_entries, on_cpu); | ||
101 | /* this should only happen if not linked already */ | ||
102 | BUG_ON(sched->linked == linked); | ||
103 | |||
104 | /* If we are already scheduled on the CPU to which we | ||
105 | * wanted to link, we don't need to do the swap -- | ||
106 | * we just link ourselves to the CPU and depend on | ||
107 | * the caller to get things right. | ||
108 | */ | ||
109 | if (entry != sched) { | ||
110 | TRACE_TASK(linked, | ||
111 | "already scheduled on %d, updating link.\n", | ||
112 | sched->cpu); | ||
113 | tmp = sched->linked; | ||
114 | linked->rt_param.linked_on = sched->cpu; | ||
115 | sched->linked = linked; | ||
116 | update_cpu_position(sched); | ||
117 | linked = tmp; | ||
118 | } | ||
119 | } | ||
120 | if (linked) /* might be NULL due to swap */ | ||
121 | linked->rt_param.linked_on = entry->cpu; | ||
122 | } | ||
123 | entry->linked = linked; | ||
124 | if (linked) | ||
125 | TRACE_TASK(linked, "linked to %d.\n", entry->cpu); | ||
126 | else | ||
127 | TRACE("NULL linked to %d.\n", entry->cpu); | ||
128 | update_cpu_position(entry); | ||
129 | } | ||
130 | |||
131 | /* unlink - Make sure a task is not linked any longer to an entry | ||
132 | * where it was linked before. Must hold gedf_lock. | ||
133 | */ | ||
134 | static noinline void unlink(struct task_struct* t) | ||
135 | { | ||
136 | cpu_entry_t *entry; | ||
137 | |||
138 | if (unlikely(!t)) { | ||
139 | TRACE_BUG_ON(!t); | ||
140 | return; | ||
141 | } | ||
142 | |||
143 | if (t->rt_param.linked_on != NO_CPU) { | ||
144 | /* unlink */ | ||
145 | entry = &per_cpu(gedf_cpu_entries, t->rt_param.linked_on); | ||
146 | t->rt_param.linked_on = NO_CPU; | ||
147 | link_task_to_cpu(NULL, entry); | ||
148 | } else if (is_queued(t)) { | ||
149 | /* This is an interesting situation: t is scheduled, | ||
150 | * but was just recently unlinked. It cannot be | ||
151 | * linked anywhere else (because then it would have | ||
152 | * been relinked to this CPU), thus it must be in some | ||
153 | * queue. We must remove it from the list in this | ||
154 | * case. | ||
155 | */ | ||
156 | remove(&gedf, t); | ||
157 | } | ||
158 | } | ||
159 | |||
160 | |||
161 | /* preempt - force a CPU to reschedule | ||
162 | */ | ||
163 | static noinline void preempt(cpu_entry_t *entry) | ||
164 | { | ||
165 | if (smp_processor_id() == entry->cpu) { | ||
166 | set_tsk_need_resched(current); | ||
167 | } else | ||
168 | /* in case that it is a remote CPU we have to defer the | ||
169 | * the decision to the remote CPU | ||
170 | */ | ||
171 | if (!test_will_schedule(entry->cpu)) | ||
172 | smp_send_reschedule(entry->cpu); | ||
173 | } | ||
174 | |||
175 | /* requeue - Put an unlinked task into gsn-edf domain. | ||
176 | * Caller must hold gedf_lock. | ||
177 | */ | ||
178 | static noinline void requeue(struct task_struct* task) | ||
179 | { | ||
180 | BUG_ON(!task); | ||
181 | /* sanity check before insertion */ | ||
182 | BUG_ON(is_queued(task)); | ||
183 | |||
184 | if (is_released(task, litmus_clock())) | ||
185 | __add_ready(&gedf, task); | ||
186 | else { | ||
187 | /* it has got to wait */ | ||
188 | add_release(&gedf, task); | ||
189 | } | ||
190 | } | ||
191 | |||
192 | /* check for any necessary preemptions */ | ||
193 | static void check_for_preemptions(void) | ||
194 | { | ||
195 | struct task_struct *task; | ||
196 | cpu_entry_t* last; | ||
197 | |||
198 | for(last = lowest_prio_cpu(); | ||
199 | edf_preemption_needed(&gedf, last->linked); | ||
200 | last = lowest_prio_cpu()) { | ||
201 | /* preemption necessary */ | ||
202 | task = __take_ready(&gedf); | ||
203 | TRACE("check_for_preemptions: attempting to link task %d to %d\n", | ||
204 | task->pid, last->cpu); | ||
205 | if (last->linked) | ||
206 | requeue(last->linked); | ||
207 | link_task_to_cpu(task, last); | ||
208 | preempt(last); | ||
209 | } | ||
210 | } | ||
211 | |||
212 | /* gedf_job_arrival: task is either resumed or released */ | ||
213 | static noinline void gedf_job_arrival(struct task_struct* task) | ||
214 | { | ||
215 | BUG_ON(!task); | ||
216 | |||
217 | requeue(task); | ||
218 | check_for_preemptions(); | ||
219 | } | ||
220 | |||
221 | static void gedf_release_jobs(rt_domain_t* rt, struct heap* tasks) | ||
222 | { | ||
223 | unsigned long flags; | ||
224 | |||
225 | spin_lock_irqsave(&gedf_lock, flags); | ||
226 | |||
227 | __merge_ready(rt, tasks); | ||
228 | check_for_preemptions(); | ||
229 | |||
230 | spin_unlock_irqrestore(&gedf_lock, flags); | ||
231 | } | ||
232 | |||
233 | /* caller holds gedf_lock */ | ||
234 | static noinline void job_completion(struct task_struct *t, int forced) | ||
235 | { | ||
236 | BUG_ON(!t); | ||
237 | |||
238 | sched_trace_task_completion(t, forced); | ||
239 | |||
240 | TRACE_TASK(t, "job_completion().\n"); | ||
241 | |||
242 | /* set flags */ | ||
243 | set_rt_flags(t, RT_F_SLEEP); | ||
244 | /* prepare for next period */ | ||
245 | prepare_for_next_period(t); | ||
246 | if (is_released(t, litmus_clock())) | ||
247 | sched_trace_task_release(t); | ||
248 | /* unlink */ | ||
249 | unlink(t); | ||
250 | /* requeue | ||
251 | * But don't requeue a blocking task. */ | ||
252 | if (is_running(t)) | ||
253 | gedf_job_arrival(t); | ||
254 | } | ||
255 | |||
256 | /* gedf_tick - this function is called for every local timer | ||
257 | * interrupt. | ||
258 | * | ||
259 | * checks whether the current task has expired and checks | ||
260 | * whether we need to preempt it if it has not expired | ||
261 | */ | ||
262 | static void gedf_tick(struct task_struct* t) | ||
263 | { | ||
264 | if (is_realtime(t) && budget_exhausted(t)) { | ||
265 | set_tsk_need_resched(t); | ||
266 | set_will_schedule(); | ||
267 | } | ||
268 | } | ||
269 | |||
270 | static struct task_struct* gedf_schedule(struct task_struct * prev) | ||
271 | { | ||
272 | cpu_entry_t* entry = &__get_cpu_var(gedf_cpu_entries); | ||
273 | int out_of_time, sleep, preempt, np, exists, blocks; | ||
274 | struct task_struct* next = NULL; | ||
275 | |||
276 | /* Will be released in finish_switch. */ | ||
277 | spin_lock(&gedf_lock); | ||
278 | clear_will_schedule(); | ||
279 | |||
280 | /* sanity checking */ | ||
281 | BUG_ON(entry->scheduled && entry->scheduled != prev); | ||
282 | BUG_ON(entry->scheduled && !is_realtime(prev)); | ||
283 | BUG_ON(is_realtime(prev) && !entry->scheduled); | ||
284 | |||
285 | /* (0) Determine state */ | ||
286 | exists = entry->scheduled != NULL; | ||
287 | blocks = exists && !is_running(entry->scheduled); | ||
288 | out_of_time = exists && budget_exhausted(entry->scheduled); | ||
289 | sleep = exists && get_rt_flags(entry->scheduled) == RT_F_SLEEP; | ||
290 | preempt = entry->scheduled != entry->linked; | ||
291 | |||
292 | TRACE_TASK(prev, "invoked gedf_schedule.\n"); | ||
293 | |||
294 | if (exists) | ||
295 | TRACE_TASK(prev, | ||
296 | "blocks:%d out_of_time:%d sleep:%d preempt:%d " | ||
297 | "state:%d sig:%d\n", | ||
298 | blocks, out_of_time, sleep, preempt, | ||
299 | prev->state, signal_pending(prev)); | ||
300 | if (entry->linked && preempt) | ||
301 | TRACE_TASK(prev, "will be preempted by %s/%d\n", | ||
302 | entry->linked->comm, entry->linked->pid); | ||
303 | |||
304 | |||
305 | /* If a task blocks we have no choice but to reschedule. | ||
306 | */ | ||
307 | if (blocks) | ||
308 | unlink(entry->scheduled); | ||
309 | |||
310 | |||
311 | /* Any task that is preemptable and either exhausts its execution | ||
312 | * budget or wants to sleep completes. We may have to reschedule after | ||
313 | * this. Don't do a job completion if we block (can't have timers running | ||
314 | * for blocked jobs). Preemption go first for the same reason. | ||
315 | */ | ||
316 | if ((out_of_time || sleep) && !blocks && !preempt) | ||
317 | job_completion(entry->scheduled, !sleep); | ||
318 | |||
319 | /* Link pending task if we became unlinked. | ||
320 | */ | ||
321 | if (!entry->linked) | ||
322 | link_task_to_cpu(__take_ready(&gedf), entry); | ||
323 | |||
324 | /* The final scheduling decision. Do we need to switch for some reason? | ||
325 | * If linked is different from scheduled, then select linked as next. | ||
326 | */ | ||
327 | if (entry->linked != entry->scheduled) { | ||
328 | /* Schedule a linked job? */ | ||
329 | if (entry->linked) { | ||
330 | entry->linked->rt_param.scheduled_on = entry->cpu; | ||
331 | next = entry->linked; | ||
332 | } | ||
333 | if (entry->scheduled) { | ||
334 | /* not gonna be scheduled soon */ | ||
335 | entry->scheduled->rt_param.scheduled_on = NO_CPU; | ||
336 | TRACE_TASK(entry->scheduled, "scheduled_on = NO_CPU\n"); | ||
337 | } | ||
338 | } else | ||
339 | /* Only override Linux scheduler if we have a real-time task | ||
340 | * scheduled that needs to continue. | ||
341 | */ | ||
342 | if (exists) | ||
343 | next = prev; | ||
344 | |||
345 | spin_unlock(&gedf_lock); | ||
346 | |||
347 | TRACE("gedf_lock released, next=0x%p\n", next); | ||
348 | |||
349 | |||
350 | if (next) | ||
351 | TRACE_TASK(next, "scheduled at %llu\n", litmus_clock()); | ||
352 | else if (exists && !next) | ||
353 | TRACE("becomes idle at %llu.\n", litmus_clock()); | ||
354 | |||
355 | |||
356 | return next; | ||
357 | } | ||
358 | |||
359 | |||
360 | /* _finish_switch - we just finished the switch away from prev | ||
361 | */ | ||
362 | static void gedf_finish_switch(struct task_struct *prev) | ||
363 | { | ||
364 | cpu_entry_t* entry = &__get_cpu_var(gedf_cpu_entries); | ||
365 | |||
366 | entry->scheduled = is_realtime(current) ? current : NULL; | ||
367 | TRACE_TASK(prev, "switched away from\n"); | ||
368 | } | ||
369 | |||
370 | |||
371 | /* Prepare a task for running in RT mode | ||
372 | */ | ||
373 | static void gedf_task_new(struct task_struct * t, int on_rq, int running) | ||
374 | { | ||
375 | unsigned long flags; | ||
376 | cpu_entry_t* entry; | ||
377 | |||
378 | TRACE("gsn edf: task new %d\n", t->pid); | ||
379 | |||
380 | spin_lock_irqsave(&gedf_lock, flags); | ||
381 | if (running) { | ||
382 | entry = &per_cpu(gedf_cpu_entries, task_cpu(t)); | ||
383 | BUG_ON(entry->scheduled); | ||
384 | entry->scheduled = t; | ||
385 | t->rt_param.scheduled_on = task_cpu(t); | ||
386 | } else | ||
387 | t->rt_param.scheduled_on = NO_CPU; | ||
388 | t->rt_param.linked_on = NO_CPU; | ||
389 | |||
390 | /* setup job params */ | ||
391 | release_at(t, litmus_clock()); | ||
392 | |||
393 | gedf_job_arrival(t); | ||
394 | spin_unlock_irqrestore(&gedf_lock, flags); | ||
395 | } | ||
396 | |||
397 | static void gedf_task_wake_up(struct task_struct *task) | ||
398 | { | ||
399 | unsigned long flags; | ||
400 | lt_t now; | ||
401 | |||
402 | TRACE_TASK(task, "wake_up at %llu\n", litmus_clock()); | ||
403 | |||
404 | spin_lock_irqsave(&gedf_lock, flags); | ||
405 | /* We need to take suspensions because of semaphores into | ||
406 | * account! If a job resumes after being suspended due to acquiring | ||
407 | * a semaphore, it should never be treated as a new job release. | ||
408 | */ | ||
409 | if (get_rt_flags(task) == RT_F_EXIT_SEM) { | ||
410 | set_rt_flags(task, RT_F_RUNNING); | ||
411 | } else { | ||
412 | now = litmus_clock(); | ||
413 | if (is_tardy(task, now)) { | ||
414 | /* new sporadic release */ | ||
415 | release_at(task, now); | ||
416 | sched_trace_task_release(task); | ||
417 | } | ||
418 | else if (task->time_slice) | ||
419 | /* came back in time before deadline | ||
420 | */ | ||
421 | set_rt_flags(task, RT_F_RUNNING); | ||
422 | } | ||
423 | gedf_job_arrival(task); | ||
424 | spin_unlock_irqrestore(&gedf_lock, flags); | ||
425 | } | ||
426 | |||
427 | static void gedf_task_block(struct task_struct *t) | ||
428 | { | ||
429 | unsigned long flags; | ||
430 | |||
431 | TRACE_TASK(t, "block at %llu\n", litmus_clock()); | ||
432 | |||
433 | /* unlink if necessary */ | ||
434 | spin_lock_irqsave(&gedf_lock, flags); | ||
435 | unlink(t); | ||
436 | spin_unlock_irqrestore(&gedf_lock, flags); | ||
437 | |||
438 | BUG_ON(!is_realtime(t)); | ||
439 | } | ||
440 | |||
441 | |||
442 | static void gedf_task_exit(struct task_struct * t) | ||
443 | { | ||
444 | unsigned long flags; | ||
445 | |||
446 | /* unlink if necessary */ | ||
447 | spin_lock_irqsave(&gedf_lock, flags); | ||
448 | unlink(t); | ||
449 | if (tsk_rt(t)->scheduled_on != NO_CPU) { | ||
450 | gedf_cpus[tsk_rt(t)->scheduled_on]->scheduled = NULL; | ||
451 | tsk_rt(t)->scheduled_on = NO_CPU; | ||
452 | } | ||
453 | spin_unlock_irqrestore(&gedf_lock, flags); | ||
454 | |||
455 | BUG_ON(!is_realtime(t)); | ||
456 | TRACE_TASK(t, "RIP\n"); | ||
457 | } | ||
458 | |||
459 | static long gedf_admit_task(struct task_struct* tsk) | ||
460 | { | ||
461 | return 0; | ||
462 | } | ||
463 | |||
464 | |||
465 | /* Plugin object */ | ||
466 | static struct sched_plugin gedf_plugin __cacheline_aligned_in_smp = { | ||
467 | .plugin_name = "G-EDF", | ||
468 | .finish_switch = gedf_finish_switch, | ||
469 | .tick = gedf_tick, | ||
470 | .task_new = gedf_task_new, | ||
471 | .complete_job = complete_job, | ||
472 | .task_exit = gedf_task_exit, | ||
473 | .schedule = gedf_schedule, | ||
474 | .task_wake_up = gedf_task_wake_up, | ||
475 | .task_block = gedf_task_block, | ||
476 | .admit_task = gedf_admit_task | ||
477 | }; | ||
478 | |||
479 | |||
480 | static int __init init_gedf(void) | ||
481 | { | ||
482 | int cpu; | ||
483 | cpu_entry_t *entry; | ||
484 | |||
485 | heap_init(&gedf_cpu_heap); | ||
486 | /* initialize CPU state */ | ||
487 | for (cpu = 0; cpu < NR_CPUS; cpu++) { | ||
488 | entry = &per_cpu(gedf_cpu_entries, cpu); | ||
489 | gedf_cpus[cpu] = entry; | ||
490 | atomic_set(&entry->will_schedule, 0); | ||
491 | entry->linked = NULL; | ||
492 | entry->scheduled = NULL; | ||
493 | entry->cpu = cpu; | ||
494 | entry->hn = &gedf_heap_node[cpu]; | ||
495 | heap_node_init(&entry->hn, entry); | ||
496 | } | ||
497 | edf_domain_init(&gedf, NULL, gedf_release_jobs); | ||
498 | return register_sched_plugin(&gedf_plugin); | ||
499 | } | ||
500 | |||
501 | |||
502 | module_init(init_gedf); | ||