1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
|
/*
* mmap based event notifications for SELinux
*
* Author: KaiGai Kohei <kaigai@ak.jp.nec.com>
*
* Copyright (C) 2010 NEC corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2,
* as published by the Free Software Foundation.
*/
#include <linux/kernel.h>
#include <linux/gfp.h>
#include <linux/mm.h>
#include <linux/mutex.h>
#include "avc.h"
#include "services.h"
/*
* The selinux_status_page shall be exposed to userspace applications
* using mmap interface on /selinux/status.
* It enables to notify applications a few events that will cause reset
* of userspace access vector without context switching.
*
* The selinux_kernel_status structure on the head of status page is
* protected from concurrent accesses using seqlock logic, so userspace
* application should reference the status page according to the seqlock
* logic.
*
* Typically, application checks status->sequence at the head of access
* control routine. If it is odd-number, kernel is updating the status,
* so please wait for a moment. If it is changed from the last sequence
* number, it means something happen, so application will reset userspace
* avc, if needed.
* In most cases, application shall confirm the kernel status is not
* changed without any system call invocations.
*/
static struct page *selinux_status_page = NULL;
static DEFINE_MUTEX(selinux_status_lock);
/*
* selinux_kernel_status_page
*
* It returns a reference to selinux_status_page. If the status page is
* not allocated yet, it also tries to allocate it at the first time.
*/
struct page *selinux_kernel_status_page(void)
{
struct selinux_kernel_status *status;
struct page *result = NULL;
mutex_lock(&selinux_status_lock);
if (!selinux_status_page)
{
selinux_status_page = alloc_page(GFP_KERNEL|__GFP_ZERO);
if (selinux_status_page)
{
status = page_address(selinux_status_page);
status->version = SELINUX_KERNEL_STATUS_VERSION;
status->sequence = 0;
status->enforcing = selinux_enforcing;
/*
* NOTE: the next policyload event shall set
* a positive value on the status->policyload,
* although it may not be 1, but never zero.
* So, application can know it was updated.
*/
status->policyload = 0;
status->deny_unknown = !security_get_allow_unknown();
}
}
result = selinux_status_page;
mutex_unlock(&selinux_status_lock);
return result;
}
/*
* selinux_status_update_setenforce
*
* It updates status of the current enforcing/permissive mode.
*/
void selinux_status_update_setenforce(int enforcing)
{
struct selinux_kernel_status *status;
mutex_lock(&selinux_status_lock);
if (selinux_status_page)
{
status = page_address(selinux_status_page);
status->sequence++;
smp_wmb();
status->enforcing = enforcing;
smp_wmb();
status->sequence++;
}
mutex_unlock(&selinux_status_lock);
}
/*
* selinux_status_update_policyload
*
* It updates status of the times of policy reloaded, and current
* setting of deny_unknown.
*/
void selinux_status_update_policyload(int seqno)
{
struct selinux_kernel_status *status;
mutex_lock(&selinux_status_lock);
if (selinux_status_page)
{
status = page_address(selinux_status_page);
status->sequence++;
smp_wmb();
status->policyload = seqno;
status->deny_unknown = !security_get_allow_unknown();
smp_wmb();
status->sequence++;
}
mutex_unlock(&selinux_status_lock);
}
|