aboutsummaryrefslogtreecommitdiffstats
path: root/litmus/sched_mc.c
blob: 9eae2b716a014bf564b3e8916c7fc96331eeee64 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
/**
 * litmus/sched_mc.c
 *
 * Implementation of the Mixed Criticality scheduling algorithm.
 *
 * (Per Mollison, Erickson, Anderson, Baruah, Scoredos 2010)
 */

#include <linux/spinlock.h>
#include <linux/percpu.h>
#include <linux/sched.h>
#include <linux/hrtimer.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/poison.h>

#include <litmus/litmus.h>
#include <litmus/jobs.h>
#include <litmus/sched_plugin.h>
#include <litmus/edf_common.h>
#include <litmus/sched_trace.h>
#include <litmus/domain.h>
#include <litmus/bheap.h>

#include <litmus/sched_mc.h>

/**
 * crit_entry_t - State of a CPU within each criticality level system.
 * @level	Criticality level of this entry
 * @linked	Logically running task, ghost or regular
 * @domain	Domain from which to draw tasks
 * @usable	False if a higher criticality task is running
 * @timer	For ghost task budget enforcement
 * @node	Used to sort crit_entries by preemptability in global domains
 */
typedef struct {
	enum crit_level		level;
	struct task_struct*	linked;
	domain_t*		domain;
	int			usable;
	struct hrtimer		timer;
	struct bheap_node*	node;
	atomic_t		dirty;
} crit_entry_t;

/**
 * cpu_entry_t - State of a CPU for the entire MC system
 * @cpu		  CPU id
 * @scheduled	  Task that is physically running
 * @linked	  Task that should be running / is logically running
 * @lock	  For serialization
 * @crit_entries  Array of CPU state per criticality level
 */
typedef struct {
	int			cpu;
	struct task_struct*	scheduled;
	struct task_struct*	linked;
	raw_spinlock_t		lock;
	crit_entry_t		crit_entries[NUM_CRIT_LEVELS];
#ifdef CONFIG_PLUGIN_MC_REDIRECT
	struct list_head	redir;
	raw_spinlock_t		redir_lock;
#endif
} cpu_entry_t;

/**
 * domain_data_t - Wrap domains with related CPU state
 * @domain	A domain for a criticality level
 * @heap	The preemptable heap of crit entries (for global domains)
 * @crit_entry	The crit entry for this domain (for partitioned domains)
 */
typedef struct {
	domain_t 	domain;
	struct bheap*	heap;
	crit_entry_t*	crit_entry;
} domain_data_t;

static cpu_entry_t* cpus[NR_CPUS];
#ifdef CONFIG_RELEASE_MASTER
static int interrupt_cpu;
#endif

#define domain_data(dom)  (container_of(dom, domain_data_t, domain))
#define is_global(dom)    (domain_data(dom)->heap)
#define is_global_task(t) (is_global(get_task_domain(t)))
#define is_in_list(t)	  (tsk_rt(t)->list.next != tsk_rt(t)->list)
#define can_requeue(t)					\
	(!is_global_task(t) || (t)->rt_param.scheduled_on == NO_CPU)
#define entry_level(e) \
	(((e)->linked) ? tsk_mc_crit((e)->linked) : NUM_CRIT_LEVELS - 1)
#define crit_cpu(ce) \
	(container_of((void*)((ce) - (ce)->level), cpu_entry_t, crit_entries))
/* Useful debug macros */
#define TS "(%s/%d:%d:%s)"
#define TA(t) (t) ? (is_ghost(t)) ? "ghost" : t->comm : "NULL", (t) ? t->pid : 1, \
	      (t) ? t->rt_param.job_params.job_no : 1,			\
	      (t && get_task_domain(t)) ? get_task_domain(t)->name : ""
#define TRACE_ENTRY(e, fmt, args...)				\
	TRACE("P%d, linked=" TS " " fmt "\n", \
	      e->cpu, TA(e->linked), ##args)
#define TRACE_CRIT_ENTRY(ce, fmt, args...)			\
	TRACE("%s P%d, linked=" TS " " fmt "\n",		\
	      (ce)->domain->name, crit_cpu(ce)->cpu, TA((ce)->linked), ##args)
#undef  TRACE_TASK
#define TRACE_TASK(t, fmt, args...)				\
	TRACE(TS " " fmt "\n", TA(t), ##args)

/*
 * Sort CPUs within a global domain by the domain's priority function.
 */
static int cpu_lower_prio(struct bheap_node *a, struct bheap_node *b)
{
	domain_t *domain;
	crit_entry_t *first, *second;
	struct task_struct *first_link, *second_link;

	first  = a->value;
	second = b->value;
	first_link  = first->linked;
	second_link = second->linked;
	if (!first->usable || !second->usable) {
		return second->usable && first->usable;
	} else if (!first_link || !second_link) {
		return second_link && !first_link;
	} else {
		domain = get_task_domain(first_link);
		BUG_ON(domain != get_task_domain(second_link));
		return domain->higher_prio(second_link, first_link);
	}
}

/*
 * Return true if the domain has a higher priority ready task. The curr
 * task must belong to the domain.
 */
static noinline int mc_preempt_needed(domain_t *dom, struct task_struct* curr)
{
	struct task_struct *next = dom->peek_ready(dom);
	if (!next || !curr) {
		return next && !curr;
	} else {
		BUG_ON(tsk_mc_crit(next) != tsk_mc_crit(curr));
		return get_task_domain(next)->higher_prio(next, curr);
	}
}

/*
 * Return next CPU which should preempted or NULL if the domain has no
 * preemptable CPUs.
 */
static inline crit_entry_t* lowest_prio_cpu(domain_t *dom)
{
	struct bheap *heap = domain_data(dom)->heap;
	struct bheap_node* hn = bheap_peek(cpu_lower_prio, heap);
	return (hn) ? hn->value : NULL;
}

/**
 * update_ghost_time() - Time accounting for ghost tasks.
 * Must be called before a decision is made involving the task's budget.
 */
static void update_ghost_time(struct task_struct *p)
{
	u64 clock = litmus_clock();
	u64 delta = clock - p->se.exec_start;
	BUG_ON(!is_ghost(p));
	if (unlikely ((s64)delta < 0)) {
		delta = 0;
		TRACE_TASK(p, "WARNING: negative time delta");
	}
	if (tsk_mc_data(p)->mc_job.ghost_budget <= delta) {
		TRACE_TASK(p, "Ghost job could have ended");
		tsk_mc_data(p)->mc_job.ghost_budget = 0;
		p->se.exec_start = clock;
	} else {
		TRACE_TASK(p, "Ghost job updated, but didn't finish");
		tsk_mc_data(p)->mc_job.ghost_budget -= delta;
		p->se.exec_start = clock;
	}
}

/**
 * link_task_to_crit() - Logically run a task at a criticality level.
 * Caller must hold @ce's domain's lock.
 */
static void link_task_to_crit(crit_entry_t *ce,
			      struct task_struct *task)
{
	lt_t when_to_fire;
	struct bheap *heap;

	TRACE_CRIT_ENTRY(ce, "Linking " TS, TA(task));
	BUG_ON(!ce->usable && task);
	BUG_ON(task && tsk_rt(task)->linked_on != NO_CPU);
	BUG_ON(task && is_global(ce->domain) &&
	       !bheap_node_in_heap(ce->node));

	/* Unlink last task */
	if (ce->linked) {
		TRACE_TASK(ce->linked, "Unlinking");
		ce->linked->rt_param.linked_on = NO_CPU;
		if (is_ghost(ce->linked)) {
			hrtimer_try_to_cancel(&ce->timer);
			if (tsk_mc_data(ce->linked)->mc_job.ghost_budget > 0) {
				/* Job isn't finished, so do accounting */
				update_ghost_time(ce->linked);
			}
		}
	}

	/* Actually link task */
	ce->linked = task;
	if (task) {
		task->rt_param.linked_on = crit_cpu(ce)->cpu;
		if (is_ghost(task)) {
			/* Reset budget timer */
			task->se.exec_start = litmus_clock();
			when_to_fire = litmus_clock() +
				tsk_mc_data(task)->mc_job.ghost_budget;
			__hrtimer_start_range_ns(&ce->timer,
						 ns_to_ktime(when_to_fire),
						 0 /* delta */,
						 HRTIMER_MODE_ABS_PINNED,
						 0 /* no wakeup */);
		}
	}

	/* Update global heap node position */
	if (is_global(ce->domain)) {
		heap = domain_data(ce->domain)->heap;
		bheap_delete(cpu_lower_prio, heap, ce->node);
		bheap_insert(cpu_lower_prio, heap, ce->node);
	}
}

static void check_for_preempt(domain_t*);
/**
 * job_arrival() - Called when a task re-enters the system.
 * Caller must hold no locks.
 */
static void job_arrival(struct task_struct *task)
{
	domain_t *dom = get_task_domain(task);

	TRACE_TASK(task, "Job arriving");
	BUG_ON(!task);
	if (can_requeue(task)) {
		raw_spin_lock(dom->lock);
		dom->requeue(dom, task);
		check_for_preempt(dom);
		raw_spin_unlock(dom->lock);
	} else {
		/* If a global task is scheduled on one cpu, it CANNOT
		 * be requeued into a global domain. Another cpu might
		 * dequeue the global task before it is descheduled,
		 * causing the system to crash when the task is scheduled
		 * in two places simultaneously.
		 */
		TRACE_TASK(task, "Delayed arrival of scheduled task");
	}
}

/**
 * low_prio_arrival() - If CONFIG_PLUGIN_MC_REDIRECT is enabled, will
 * redirect a lower priority job_arrival work to the interrupt_cpu.
 */
static void low_prio_arrival(struct task_struct *task)
{
	cpu_entry_t *entry;

	/* Race conditions! */
	if (!can_requeue(task)) return;

#ifdef  CONFIG_PLUGIN_MC_REDIRECT
#ifndef CONFIG_PLUGIN_MC_REDIRECT_ALL
	if (!is_global_task(task))
	    goto arrive;
#endif
	if (smp_processor_id() != interrupt_cpu) {
		entry = cpus[smp_processor_id()];
		raw_spin_lock(&entry->redir_lock);
		TRACE_TASK(task, "Adding to redirect queue");
		list_add(&tsk_rt(task)->list, &entry->redir);
		raw_spin_unlock(&entry->redir_lock);
		litmus_reschedule(interrupt_cpu);
	} else
#endif
	{
	arrive:
		job_arrival(task);
	}
}

#ifdef CONFIG_PLUGIN_MC_REDIRECT
/**
 * fix_global_levels() - Execute redirected job arrivals on this cpu.
 */
static void fix_global_levels(void)
{
	int c;
	cpu_entry_t *e;
	struct list_head *pos, *safe;
	struct task_struct *t;

	TRACE("Fixing global levels\n");
	for_each_online_cpu(c) {
		e = cpus[c];
		raw_spin_lock(&e->redir_lock);
		list_for_each_safe(pos, safe, &e->redir) {
			t = list_entry(pos, struct task_struct, rt_param.list);
			TRACE_TASK(t, "Dequeued redirected job");
			BUG_ON(is_queued(t));
			list_del_init(pos);
			job_arrival(t);
		}
		raw_spin_unlock(&e->redir_lock);
	}
}
#endif

/**
 * link_task_to_cpu() - Logically run a task on a CPU.
 * The task must first have been linked to one of the CPU's crit_entries.
 * Caller must hold the entry lock.
 */
static void link_task_to_cpu(cpu_entry_t *entry, struct task_struct *task)
{
	int i = entry_level(entry);
	TRACE_TASK(task, "Linking to P%d", entry->cpu);
	BUG_ON(task && tsk_rt(task)->linked_on != entry->cpu);
	BUG_ON(task && is_ghost(task));

	if (task){
		set_rt_flags(task, RT_F_RUNNING);
	}
	entry->linked = task;
	/* Higher criticality crit entries are now usable */
	for (; i < entry_level(entry) + 1; i++) {
		entry->crit_entries[i].usable = 1;
	}
}

/**
 * preempt() - Preempt a logically running task with a higher priority one.
 * @dom	Domain from which to draw higher priority task
 * @ce	CPU criticality level to preempt
 *
 * Caller must hold the lock for @dom and @ce's CPU lock.
 */
static void preempt(domain_t *dom, crit_entry_t *ce)
{
	struct task_struct *task = dom->take_ready(dom);
	cpu_entry_t *entry = crit_cpu(ce);

	BUG_ON(!task);
	TRACE_CRIT_ENTRY(ce, "Preempted by " TS, TA(task));

	/* Per-domain preemption */
	if (ce->linked && can_requeue(ce->linked)) {
		dom->requeue(dom, ce->linked);
	}
	link_task_to_crit(ce, task);
	/* Preempt actual execution if this is a running task */
	if (!is_ghost(task)) {
		link_task_to_cpu(entry, task);
		preempt_if_preemptable(entry->scheduled, entry->cpu);
	}
}

/**
 * update_crit_levels() - Update criticality entries for the new cpu state.
 * This should be called after a new task has been linked to @entry.
 * The caller must hold the @entry->lock, but this method will release it.
 */
static void update_crit_levels(cpu_entry_t *entry)
{
	int i;
	crit_entry_t *ce;
	struct task_struct *tasks[NUM_CRIT_LEVELS];
	enum crit_level level = entry_level(entry);

	/* Remove lower priority tasks from the entry */
	for (i = level + 1; i < NUM_CRIT_LEVELS; i++) {
		ce = &entry->crit_entries[i];
		tasks[i] = ce->linked;
		ce->usable = 0;
		if (ce->linked)
			link_task_to_crit(ce, NULL);
	}
	/* Need to unlock so we can access domains */
	raw_spin_unlock(&entry->lock);

	/* Re-admit tasks to the system */
	for (i = level + 1; i < NUM_CRIT_LEVELS; i++) {
		ce = &entry->crit_entries[i];
		if (tasks[i])
			low_prio_arrival(tasks[i]);
	}
}

/**
 * check_for_preempt() - Causes a preemption if higher-priority tasks are ready.
 * Caller must hold domain lock.
 * Makes gigantic nasty assumption that there is 1 global criticality level,
 * and it is the last one in each list, so it doesn't call update_crit..
 */
static void check_for_preempt(domain_t *dom)
{
	int preempted = 1;
	cpu_entry_t *entry;
	crit_entry_t *ce;

	if (is_global(dom)) {
		/* Loop until we find a non-preemptable CPU */
		while ((ce = lowest_prio_cpu(dom)) && preempted) {
			entry = crit_cpu(ce);
			preempted = 0;
			raw_spin_lock(&entry->lock);
			if (ce->usable && dom->preempt_needed(dom, ce->linked)){
				preempted = 1;
				preempt(dom, ce);
			}
			raw_spin_unlock(&entry->lock);
		}
	} else /* Partitioned */ {
		ce = domain_data(dom)->crit_entry;
		entry = crit_cpu(ce);
		raw_spin_lock(&entry->lock);
		if (ce->usable && dom->preempt_needed(dom, ce->linked)) {
			preempt(dom, ce);
			update_crit_levels(entry);
		} else {
			raw_spin_unlock(&entry->lock);
		}
	}
}

/**
 * remove_from_all() - Logically remove a task from all structures.
 * Caller must hold no locks.
 */
static void remove_from_all(struct task_struct* task)
{
	int update = 0;
    	cpu_entry_t *entry;
	crit_entry_t *ce;
	domain_t *dom = get_task_domain(task);

	TRACE_TASK(task, "Removing from everything");
	BUG_ON(!task);

	raw_spin_lock(dom->lock);

	if (task->rt_param.linked_on != NO_CPU) {
		entry = cpus[task->rt_param.linked_on];
		raw_spin_lock(&entry->lock);

		/* Unlink only if task is still linked post lock */
		ce = &entry->crit_entries[tsk_mc_crit(task)];
		if (task->rt_param.linked_on != NO_CPU) {
			BUG_ON(entry->linked != task);
			link_task_to_crit(ce, NULL);
			if (!is_ghost(task)) {
				update = 1;
				link_task_to_cpu(entry, NULL);
			}
		}

		if (update)
			update_crit_levels(entry);
		else
			raw_spin_unlock(&entry->lock);
	} else if (is_queued(task)) {
		/* This is an interesting situation: t is scheduled,
		 * but was just recently unlinked. It cannot be
		 * linked anywhere else (because then it would have
		 * been relinked to this CPU), thus it must be in some
		 * queue. We must remove it from the list in this
		 * case.
		 */
		remove((rt_domain_t*)get_task_domain(task)->data, task);
	}
	BUG_ON(is_queued(task));
	raw_spin_unlock(dom->lock);
}

/**
 * job_completion() - Update task state and re-enter it into the system.
 * Converts tasks which have completed their execution early into ghost jobs.
 * Caller must hold no locks.
 */
static void job_completion(struct task_struct *task, int forced)
{
	TRACE_TASK(task, "Completed");
	sched_trace_task_completion(task, forced);
	BUG_ON(!task);

	/* Logically stop the task execution */
	set_rt_flags(task, RT_F_SLEEP);
	remove_from_all(task);

	/* If it's not a ghost job, do ghost job conversion */
	if (!is_ghost(task)) {
		tsk_mc_data(task)->mc_job.ghost_budget = budget_remaining(task);
		tsk_mc_data(task)->mc_job.is_ghost = 1;
	}

	/* If the task is a ghost job with no budget, it either exhausted
	 * its ghost budget or there was no ghost budget after the job
	 * conversion. Revert back to a normal task and complete the period.
	 */
	if (tsk_mc_data(task)->mc_job.ghost_budget == 0) {
		tsk_mc_data(task)->mc_job.is_ghost = 0;
		prepare_for_next_period(task);
		if (is_released(task, litmus_clock()))
			sched_trace_task_release(task);
	}

	/* Requeue non-blocking tasks */
	if (is_running(task))
		job_arrival(task);
}

/**
 * mc_ghost_exhausted() - Complete logically running ghost task.
 */
static enum hrtimer_restart mc_ghost_exhausted(struct hrtimer *timer)
{
	unsigned long flags;
	struct task_struct *tmp = NULL;
	crit_entry_t *ce = container_of(timer, crit_entry_t, timer);;

	local_irq_save(flags);
	TRACE_CRIT_ENTRY(ce, "Ghost exhausted firing");

	/* Due to race conditions, we cannot just set the linked
	 * task's budget to 0 as it may no longer be the task
	 * for which this timer was armed. Instead, update the running
	 * task time and see if this causes exhaustion.
	 */
	raw_spin_lock(&crit_cpu(ce)->lock);
	if (ce->linked && is_ghost(ce->linked)) {
		update_ghost_time(ce->linked);
		if (tsk_mc_data(ce->linked)->mc_job.ghost_budget == 0) {
			tmp = ce->linked;
			link_task_to_crit(ce, NULL);
		}
	}
	raw_spin_unlock(&crit_cpu(ce)->lock);

	if (tmp)
		job_completion(tmp, 0);

	local_irq_restore(flags);
	return HRTIMER_NORESTART;
}

/**
 * mc_release_jobs() - Add heap of tasks to the system, check for preemptions.
 */
static void mc_release_jobs(rt_domain_t* rt, struct bheap* tasks)
{
	unsigned long flags;
	struct task_struct *first = bheap_peek(rt->order, tasks)->value;
	domain_t *dom = get_task_domain(first);

	raw_spin_lock_irqsave(dom->lock, flags);
	TRACE_TASK(first, "Jobs released");
	__merge_ready(rt, tasks);
	check_for_preempt(dom);
	raw_spin_unlock_irqrestore(dom->lock, flags);
}

/**
 * ms_task_new() - Setup new mixed-criticality task.
 * Assumes that there are no partitioned domains after level B.
 */
static void mc_task_new(struct task_struct *t, int on_rq, int running)
{
	unsigned long flags;
	cpu_entry_t* entry;
	enum crit_level level = tsk_mc_crit(t);

	local_irq_save(flags);
	TRACE("New mixed criticality task %d\n", t->pid);

	/* Assign domain */
	if (level < CRIT_LEVEL_C)
		entry = cpus[get_partition(t)];
	else
		entry = cpus[task_cpu(t)];
	t->rt_param._domain = entry->crit_entries[level].domain;

	/* Setup job params */
	release_at(t, litmus_clock());
	tsk_mc_data(t)->mc_job.ghost_budget = 0;
	tsk_mc_data(t)->mc_job.is_ghost = 0;
	if (running) {
		BUG_ON(entry->scheduled);
		entry->scheduled = t;
		tsk_rt(t)->scheduled_on = entry->cpu;
	} else {
		t->rt_param.scheduled_on = NO_CPU;
	}
	t->rt_param.linked_on = NO_CPU;

	job_arrival(t);

	local_irq_restore(flags);
}

/**
 * mc_task_new() - Add task back into its domain check for preemptions.
 */
static void mc_task_wake_up(struct task_struct *task)
{
	unsigned long flags;
	lt_t now = litmus_clock();
	local_irq_save(flags);

	TRACE_TASK(task, "Wakes up");
	if (is_tardy(task, now)) {
		/* Task missed its last release */
		release_at(task, now);
		sched_trace_task_release(task);
	}
	if (!is_ghost(task))
		job_arrival(task);

	local_irq_restore(flags);
}

/**
 * mc_task_block() - Remove task from state to prevent it being run anywhere.
 */
static void mc_task_block(struct task_struct *task)
{
	unsigned long flags;
	local_irq_save(flags);
	TRACE_TASK(task, "Block at %llu", litmus_clock());
	remove_from_all(task);
	local_irq_restore(flags);
}

/**
 * mc_task_exit() - Remove task from the system.
 */
static void mc_task_exit(struct task_struct *task)
{
	unsigned long flags;
	local_irq_save(flags);
	BUG_ON(!is_realtime(task));
        TRACE_TASK(task, "RIP");

	remove_from_all(task);
	if (tsk_rt(task)->scheduled_on != NO_CPU) {
		cpus[tsk_rt(task)->scheduled_on]->scheduled = NULL;
		tsk_rt(task)->scheduled_on = NO_CPU;
	}

	local_irq_restore(flags);
}

/**
 * mc_admit_task() - Return true if the task is valid.
 * Assumes there are no partitioned levels after level B.
 */
static long mc_admit_task(struct task_struct* task)
{
	if (!tsk_mc_data(task))	{
		printk(KERN_WARNING "Tried to admit task with no criticality "
			"level\n");
		return -EINVAL;
	}
	if (tsk_mc_crit(task) < CRIT_LEVEL_C && get_partition(task) == NO_CPU) {
		printk(KERN_WARNING "Tried to admit partitioned task with no "
		       "partition\n");
		return -EINVAL;
	}
	printk(KERN_INFO "Admitted task with criticality level %d\n",
		tsk_mc_crit(task));
	return 0;
}

/**
 * mc_schedule() - Return next task which should be scheduled.
 */
static struct task_struct* mc_schedule(struct task_struct * prev)
{
	unsigned long flags;
	domain_t *dom;
	crit_entry_t *ce;
	cpu_entry_t* entry = cpus[smp_processor_id()];
	int i, out_of_time, sleep, preempt, exists, blocks, global, lower;
	struct task_struct *dtask = NULL, *ready_task = NULL, *next = NULL;

	local_irq_save(flags);

	/* Sanity checking */
	BUG_ON(entry->scheduled && entry->scheduled != prev);
	BUG_ON(entry->scheduled && !is_realtime(prev));
	BUG_ON(is_realtime(prev) && !entry->scheduled);

	/* Determine state */
	exists      = entry->scheduled != NULL;
	blocks      = exists && !is_running(entry->scheduled);
	out_of_time = exists &&	budget_enforced(entry->scheduled) &&
				budget_exhausted(entry->scheduled);
	sleep	    = exists && get_rt_flags(entry->scheduled) == RT_F_SLEEP;
	global      = exists && is_global_task(entry->scheduled);
	preempt     = entry->scheduled != entry->linked;
	lower       = exists && preempt && entry->linked &&
		tsk_mc_crit(entry->scheduled) > tsk_mc_crit(entry->linked);

	if (exists) {
		entry->scheduled->rt_param.scheduled_on = NO_CPU;
		TRACE_TASK(prev,
			   "blocks:%d out_of_time:%d sleep:%d preempt:%d "
			   "state:%d sig:%d global:%d",
			   blocks, out_of_time, sleep, preempt,
			   prev->state, signal_pending(prev), global);
	}

#ifdef CONFIG_PLUGIN_MC_REDIRECT
	if (smp_processor_id() == interrupt_cpu)
		fix_global_levels();
#endif
	/* If a task blocks we have no choice but to reschedule */
	if (blocks)
		remove_from_all(entry->scheduled);
	/* Any task which exhausts its budget or sleeps waiting for its next
	 * period completes unless its execution has been forcibly stopped.
	 */
	if ((out_of_time || sleep) && !blocks && !preempt)
		job_completion(entry->scheduled, !sleep);
	/* Global scheduled tasks must wait for a deschedule before they
	 * can rejoin the global state. Rejoin them here.
	 */
	else if (global && preempt && !blocks) {
		if (lower)
			low_prio_arrival(entry->scheduled);
		else
			job_arrival(entry->scheduled);
	}

	/* Pick next task if none is linked */
	raw_spin_lock(&entry->lock);
	for (i = 0; i < NUM_CRIT_LEVELS && !entry->linked; i++) {
		ce = &entry->crit_entries[i];
		dom = ce->domain;

		/* Swap locks. We cannot acquire a domain lock while
		 * holding an entry lock or deadlocks will happen.
		 */
		raw_spin_unlock(&entry->lock);
		raw_spin_lock(dom->lock);
		raw_spin_lock(&entry->lock);

		dtask = dom->peek_ready(dom);
		if (!entry->linked && ce->usable && !ce->linked && dtask) {
			dom->take_ready(dom);
			link_task_to_crit(ce, dtask);
			ready_task = (is_ghost(dtask)) ? NULL : dtask;

			/* Task found! */
			if (ready_task) {
				link_task_to_cpu(entry, ready_task);
				raw_spin_unlock(dom->lock);
				update_crit_levels(entry);
				raw_spin_lock(&entry->lock);
			}
		}
		raw_spin_unlock(dom->lock);
	}

	/* Schedule next task */
	next = entry->linked;
	entry->scheduled = next;
	if (entry->scheduled)
		entry->scheduled->rt_param.scheduled_on = entry->cpu;
	sched_state_task_picked();

	raw_spin_unlock(&entry->lock);
	local_irq_restore(flags);
	if (next)
		TRACE_TASK(next, "Scheduled at %llu", litmus_clock());
	else if (exists && !next)
		TRACE("Becomes idle at %llu\n", litmus_clock());
	return next;
}

static long mc_activate_plugin(void)
{
#ifdef CONFIG_RELEASE_MASTER
	interrupt_cpu = atomic_read(&release_master_cpu);
	if (interrupt_cpu == NO_CPU)
		interrupt_cpu = 0;
#endif
	return 0;
}

/* **************************************************************************
 * Initialization
 * ************************************************************************** */

/* Initialize values here so that they are allocated with the module
 * and destroyed when the module is unloaded.
 */
DEFINE_PER_CPU(cpu_entry_t, _mc_cpus);
/* LVL-A */
DEFINE_PER_CPU(domain_data_t, _mc_crit_a);
DEFINE_PER_CPU(rt_domain_t, _mc_crit_a_rt);
/* LVL-B */
DEFINE_PER_CPU(domain_data_t, _mc_crit_b);
DEFINE_PER_CPU(rt_domain_t, _mc_crit_b_rt);
/* LVL-C */
static domain_data_t _mc_crit_c;
static rt_domain_t _mc_crit_c_rt;
struct bheap _mc_heap_c;
struct bheap_node _mc_nodes_c[NR_CPUS];

release_at)_

static struct sched_plugin mc_plugin __cacheline_aligned_in_smp = {
	.plugin_name		= "MC",
	.task_new		= mc_task_new,
	.complete_job		= complete_job,
	.task_exit		= mc_task_exit,
	.schedule		= mc_schedule,
	.task_wake_up		= mc_task_wake_up,
	.task_block		= mc_task_block,
	.admit_task		= mc_admit_task,
	.activate_plugin	= mc_activate_plugin,
};

static void init_crit_entry(crit_entry_t *ce, enum crit_level level,
			    domain_data_t *dom_data,
			    struct bheap_node *node)
{
	ce->level  = level;
	ce->linked = NULL;
	ce->node   = node;
	ce->domain = &dom_data->domain;
	ce->usable = 1;
	atomic_set(&ce->dirty, 1);
	hrtimer_init(&ce->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	ce->timer.function = mc_ghost_exhausted;
}

static void init_local_domain(cpu_entry_t *entry, domain_data_t *dom_data,
			      enum crit_level level)
{
	dom_data->heap = NULL;
	dom_data->crit_entry = &entry->crit_entries[level];
	init_crit_entry(dom_data->crit_entry, level, dom_data, NULL);
}

static void init_global_domain(domain_data_t *dom_data, enum crit_level level,
			       struct bheap *heap, struct bheap_node *nodes)
{
	int cpu;
	cpu_entry_t *entry;
	crit_entry_t *ce;
	struct bheap_node *node;

	dom_data->crit_entry = NULL;
	dom_data->heap = heap;
	bheap_init(heap);

	for_each_online_cpu(cpu) {
		entry = cpus[cpu];
		node = &nodes[cpu];
		ce = &entry->crit_entries[level];
		init_crit_entry(ce, level, dom_data, node);
		bheap_node_init(&ce->node, ce);
		bheap_insert(cpu_lower_prio, heap, node);
	}
}

static inline void init_edf_domain(domain_t *dom, rt_domain_t *rt)
{
	pd_domain_init(dom, rt, edf_ready_order, NULL,
		       mc_release_jobs, mc_preempt_needed,
		       edf_higher_prio);
}

static int __init init_mc(void)
{
	int cpu;
	cpu_entry_t *entry;
	rt_domain_t *rt;
	domain_data_t *dom_data;
	raw_spinlock_t *a_dom, *b_dom, *c_dom; /* For lock debugger */

	for_each_online_cpu(cpu) {
		entry = &per_cpu(_mc_cpus, cpu);
		cpus[cpu] = entry;

		/* CPU */
		entry->cpu = cpu;
		entry->scheduled = NULL;
		entry->linked = NULL;
		raw_spin_lock_init(&entry->lock);
#ifdef CONFIG_PLUGIN_MC_REDIRECT
		raw_spin_lock_init(&entry->redir_lock);
		INIT_LIST_HEAD(&entry->redir);
#endif

		/* CRIT_LEVEL_A */
		dom_data = &per_cpu(_mc_crit_a, cpu);
		rt = &per_cpu(_mc_crit_a_rt, cpu);
		init_local_domain(entry, dom_data, CRIT_LEVEL_A);
		init_edf_domain(&dom_data->domain, rt);
		a_dom = dom_data->domain.lock;
		raw_spin_lock_init(a_dom);
		dom_data->domain.name = "LVL-A";

		/* CRIT_LEVEL_B */
		dom_data = &per_cpu(_mc_crit_b, cpu);
		rt = &per_cpu(_mc_crit_b_rt, cpu);
		init_local_domain(entry, dom_data, CRIT_LEVEL_B);
		init_edf_domain(&dom_data->domain, rt);
		b_dom = dom_data->domain.lock;
		raw_spin_lock_init(b_dom);
		dom_data->domain.name = "LVL-B";
	}

	/* CRIT_LEVEL_C */
	init_global_domain(&_mc_crit_c, CRIT_LEVEL_C,
			   &_mc_heap_c, _mc_nodes_c);
	init_edf_domain(&_mc_crit_c.domain, &_mc_crit_c_rt);
	c_dom = _mc_crit_c.domain.lock;
	raw_spin_lock_init(c_dom);
	_mc_crit_c.domain.name = "LVL-C";

	return register_sched_plugin(&mc_plugin);
}

module_init(init_mc);