1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
|
/*
* litmus/sched_mc.c
*
* Implementation of the Mixed Criticality scheduling algorithm.
*
* (Per Mollison, Erickson, Anderson, Baruah, Scoredos 2010)
*
* This version uses the simple approach and serializes all scheduling
* decisions by the use of a queue lock. This is probably not the
* best way to do it, but it should suffice for now.
*/
#include <linux/spinlock.h>
#include <linux/percpu.h>
#include <linux/sched.h>
#include <litmus/litmus.h>
#include <litmus/jobs.h>
#include <litmus/sched_plugin.h>
#include <litmus/edf_common.h>
#include <litmus/sched_trace.h>
#include <litmus/bheap.h>
#include <linux/module.h>
/* Overview of MC operations.
*
* link_task_to_cpu(T, cpu) - Low-level operation to update the linkage
* structure (NOT the actually scheduled
* task). If there is another linked task To
* already it will set To->linked_on = NO_CPU
* (thereby removing its association with this
* CPU). However, it will not requeue the
* previously linked task (if any). It will set
* T's state to RT_F_RUNNING and check whether
* it is already running somewhere else. If T
* is scheduled somewhere else it will link
* it to that CPU instead (and pull the linked
* task to cpu). T may be NULL.
*
* unlink(T) - Unlink removes T from all scheduler data
* structures. If it is linked to some CPU it
* will link NULL to that CPU. If it is
* currently queued in the mc queue it will
* be removed from the rt_domain. It is safe to
* call unlink(T) if T is not linked. T may not
* be NULL.
*
* requeue(T) - Requeue will insert T into the appropriate
* queue. If the system is in real-time mode and
* the T is released already, it will go into the
* ready queue. If the system is not in
* real-time mode is T, then T will go into the
* release queue. If T's release time is in the
* future, it will go into the release
* queue. That means that T's release time/job
* no/etc. has to be updated before requeu(T) is
* called. It is not safe to call requeue(T)
* when T is already queued. T may not be NULL.
*
* mc_job_arrival(T) - This is the catch all function when T enters
* the system after either a suspension or at a
* job release. It will queue T (which means it
* is not safe to call mc_job_arrival(T) if
* T is already queued) and then check whether a
* preemption is necessary. If a preemption is
* necessary it will update the linkage
* accordingly and cause scheduled to be called
* (either with an IPI or need_resched). It is
* safe to call mc_job_arrival(T) if T's
* next job has not been actually released yet
* (releast time in the future). T will be put
* on the release queue in that case.
*
* job_completion(T) - Take care of everything that needs to be done
* to prepare T for its next release and place
* it in the right queue with
* mc_job_arrival().
*
*
* When we now that T is linked to CPU then link_task_to_cpu(NULL, CPU) is
* equivalent to unlink(T). Note that if you unlink a task from a CPU none of
* the functions will automatically propagate pending task from the ready queue
* to a linked task. This is the job of the calling function ( by means of
* __take_ready).
*/
/* cpu_entry_t - maintain the linked and scheduled state
*/
typedef struct {
int cpu;
struct task_struct* linked; /* only RT tasks */
struct task_struct* scheduled; /* only RT tasks */
atomic_t will_schedule; /* prevent unneeded IPIs */
struct bheap_node* hn;
struct task_struct* ghost_tasks[CRIT_LEVEL_D+1];
} cpu_entry_t;
DEFINE_PER_CPU(cpu_entry_t, mc_cpu_entries);
cpu_entry_t* mc_cpus[NR_CPUS];
#define set_will_schedule() \
(atomic_set(&__get_cpu_var(mc_cpu_entries).will_schedule, 1))
#define clear_will_schedule() \
(atomic_set(&__get_cpu_var(mc_cpu_entries).will_schedule, 0))
#define test_will_schedule(cpu) \
(atomic_read(&per_cpu(mc_cpu_entries, cpu).will_schedule))
#define remote_cpu_entry(cpu) (&per_cpu(mc_cpu_entries, cpu))
#define is_ghost(t) (tsk_rt(t)->job_params.is_ghost)
/* the cpus queue themselves according to priority in here */
static struct bheap_node mc_heap_node[NR_CPUS];
static struct bheap mc_cpu_heap;
/* Create per-CPU domains for criticality A */
DEFINE_PER_CPU(rt_domain_t, crit_a);
#define remote_a_queue(cpu) (&per_cpu(crit_a, cpu))
#define local_a_queue (&__get_cpu_var(crit_a))
/* Create per-CPU domains for criticality B */
DEFINE_PER_CPU(rt_domain_t, crit_b);
#define remote_b_queue(cpu) (&per_cpu(crit_b, cpu))
#define local_b_queue (&__get_cpu_var(crit_b))
/* Create global domains for criticalities C and D */
static rt_domain_t crit_c;
static rt_domain_t crit_d;
/* We use crit_c.ready_lock as a global lock */
#define global_lock (crit_c.ready_lock)
/* BEGIN clone of edf_common.c to allow shared C/D run queue*/
static int mc_edf_higher_prio(struct task_struct* first, struct task_struct*
second)
{
/*Only differs from normal EDF when two tasks of differing criticality
are compared.*/
if (first && second){
int first_crit = first->rt_param.task_params.crit;
int second_crit = second->rt_param.task_params.crit;
/*Lower criticality numbers are higher priority*/
if (first_crit < second_crit){
return 1;
}
else if (second_crit < first_crit){
return 0;
}
}
return edf_higher_prio(first, second);
}
/* need_to_preempt - check whether the task t needs to be preempted
* call only with irqs disabled and with ready_lock acquired
* THIS DOES NOT TAKE NON-PREEMPTIVE SECTIONS INTO ACCOUNT!
*/
static int mc_edf_preemption_needed(rt_domain_t* rt, struct task_struct *t)
{
/* we need the read lock for edf_ready_queue */
/* no need to preempt if there is nothing pending */
if (!__jobs_pending(rt))
return 0;
/* we need to reschedule if t doesn't exist */
if (!t)
return 1;
/* NOTE: We cannot check for non-preemptibility since we
* don't know what address space we're currently in.
*/
/* make sure to get non-rt stuff out of the way */
return !is_realtime(t) || mc_edf_higher_prio(__next_ready(rt), t);
}
static int mc_edf_ready_order(struct bheap_node* a, struct bheap_node* b)
{
return mc_edf_higher_prio(bheap2task(a), bheap2task(b));
}
static void mc_edf_domain_init(rt_domain_t* rt, check_resched_needed_t resched,
release_jobs_t release)
{
rt_domain_init(rt, mc_edf_ready_order, resched, release);
}
/* END clone of edf_common.c*/
/* Return the domain of a task */
static rt_domain_t* domain_of(struct task_struct* task)
{
switch (task->rt_param.task_params.crit)
{
case CRIT_LEVEL_A:
return remote_a_queue(get_partition(task));
break;
case CRIT_LEVEL_B:
return remote_b_queue(get_partition(task));
break;
case CRIT_LEVEL_C:
return &crit_c;
break;
case CRIT_LEVEL_D:
return &crit_d;
break;
default:
/*Should never get here*/
BUG();
}
}
/* Uncomment this if you want to see all scheduling decisions in the
* TRACE() log.
#define WANT_ALL_SCHED_EVENTS
*/
/* Called by update_cpu_position and lowest_prio_cpu in bheap operations
* Callers always have global lock
*/
static int cpu_lower_prio(struct bheap_node *_a, struct bheap_node *_b)
{
cpu_entry_t *a, *b;
a = _a->value;
b = _b->value;
/* Note that a and b are inverted: we want the lowest-priority CPU at
* the top of the heap.
*/
return mc_edf_higher_prio(b->linked, a->linked);
}
/* update_cpu_position - Move the cpu entry to the correct place to maintain
* order in the cpu queue. Caller must hold global lock.
* Called from link_task_to_cpu, which holds global lock
* link_task_to_cpu is the only way a CPU can get a new task, and hence have its
* priority change.
*/
static void update_cpu_position(cpu_entry_t *entry)
{
if (likely(bheap_node_in_heap(entry->hn)))
bheap_delete(cpu_lower_prio, &mc_cpu_heap, entry->hn);
bheap_insert(cpu_lower_prio, &mc_cpu_heap, entry->hn);
}
/* caller must hold global lock
* Only called when checking for gedf preemptions by check_for_gedf_preemptions,
* which always has global lock
*/
static cpu_entry_t* lowest_prio_cpu(void)
{
struct bheap_node* hn;
hn = bheap_peek(cpu_lower_prio, &mc_cpu_heap);
return hn->value;
}
/* Forward Declarations*/
static noinline void unlink(struct task_struct* t);
static noinline void job_completion(struct task_struct *t, int forced);
/* update_ghost_time - Do time accounting for a ghost job.
* Updates ghost budget and handles expired ghost budget.
* Called from unlink(), mc_tick().
* TODO: LOCK ACCOUNTING SHOULD BE CONSIDERED
*/
static void update_ghost_time(struct task_struct *p)
{
u64 delta;
u64 clock;
BUG_ON(!is_ghost(p));
clock = cpu_clock(p->rt_param.linked_on);
delta = clock - p->se.exec_start;
if (unlikely ((s64)delta < 0)) {
delta = 0;
}
if (p->rt_param.job_params.ghost_budget <= delta) {
p->rt_param.job_params.ghost_budget = 0;
job_completion(p, 0);
}
else{
p->rt_param.job_params.ghost_budget -= delta;
p->se.exec_start = clock;
}
}
/* link_task_to_cpu - Update the link of a CPU.
* Handles the case where the to-be-linked task is already
* scheduled on a different CPU.
* Also handles ghost jobs and preemption of ghost jobs.
* Called from unlink(), prepare_preemption(), and mc_schedule()
* Callers hold global lock
*/
static noinline void link_task_to_cpu(struct task_struct* linked,
cpu_entry_t *entry)
{
cpu_entry_t *sched;
struct task_struct* tmp;
int on_cpu;
int i;
BUG_ON(linked && !is_realtime(linked));
BUG_ON(linked && is_realtime(linked) &&
(linked->rt_param.task_params.crit < CRIT_LEVEL_C) &&
(linked->rt_param.task_params.cpu != entry->cpu));
if (linked && is_ghost(linked)) {
BUG_ON(entry->linked &&
entry->linked->rt_param.task_params.crit <
linked->rt_param.task_params.crit);
tmp = entry->ghost_tasks[linked->rt_param.task_params.crit];
if (tmp) {
unlink(tmp);
}
/* We shouldn't link a ghost job that is already somewhere
* else (or here) - the caller is responsible for unlinking]
* first.
*/
BUG_ON(linked->rt_param.linked_on != NO_CPU);
linked->rt_param.linked_on = entry->cpu;
linked->se.exec_start = cpu_clock(entry->cpu);
entry->ghost_tasks[linked->rt_param.task_params.crit] = linked;
}
else{
/* Currently linked task is set to be unlinked. */
if (entry->linked) {
entry->linked->rt_param.linked_on = NO_CPU;
}
/* Link new task to CPU. */
if (linked) {
set_rt_flags(linked, RT_F_RUNNING);
/* handle task is already scheduled somewhere! */
on_cpu = linked->rt_param.scheduled_on;
if (on_cpu != NO_CPU) {
sched = &per_cpu(mc_cpu_entries, on_cpu);
/* this should only happen if not linked
* already
*/
BUG_ON(sched->linked == linked);
/* If we are already scheduled on the CPU to
* which we wanted to link, we don't need to do
* the swap -- we just link ourselves to the
* CPU and depend on the caller to get things
* right.
*
* Also, we can only safely swap if neither
* task is partitioned.
*/
tmp = sched->linked;
if (entry != sched &&
linked->rt_param.task_params.crit >
CRIT_LEVEL_B &&
(!tmp || tmp->rt_param.task_params.crit
> CRIT_LEVEL_B)) {
TRACE_TASK(linked,
"already scheduled on %d, updating link.\n",
sched->cpu);
linked->rt_param.linked_on = sched->cpu;
sched->linked = linked;
for (i = linked->
rt_param.task_params.crit;
i < CRIT_LEVEL_D + 1; i++) {
if (sched->ghost_tasks[i]){
unlink(sched->
ghost_tasks[i]);
}
}
update_cpu_position(sched);
linked = tmp;
}
}
if (linked) { /* might be NULL due to swap */
linked->rt_param.linked_on = entry->cpu;
for (i = linked->rt_param.task_params.crit;
i < CRIT_LEVEL_D + 1; i++){
if (entry->ghost_tasks[i]){
unlink(entry->ghost_tasks[i]);
/*TODO: make sure booted tasks
* get rescheduled if needed
*/
}
}
}
}
entry->linked = linked;
}
#ifdef WANT_ALL_SCHED_EVENTS
if (linked)
TRACE_TASK(linked, "linked to %d.\n", entry->cpu);
else
TRACE("NULL linked to %d.\n", entry->cpu);
#endif
update_cpu_position(entry);
}
/* unlink - Make sure a task is not linked any longer to a cpu entry
* where it was linked before.
* Can handle ghost jobs.
* Called by schedule, task_block, task_exit, and job_completion
* Caller assumed to hold global lock
*/
static noinline void unlink(struct task_struct* t)
{
int cpu;
cpu_entry_t *entry;
if (unlikely(!t)) {
TRACE_BUG_ON(!t);
return;
}
cpu = t->rt_param.linked_on;
if (cpu != NO_CPU) {
/* unlink */
entry = remote_cpu_entry(cpu);
t->rt_param.linked_on = NO_CPU;
if (is_ghost(t)) {
if (t->rt_param.job_params.ghost_budget > 0){
/* Job isn't finished, so do accounting. */
update_ghost_time(t);
/* Need to check again since accounting might
* change value.
*/
if (t->rt_param.job_params.ghost_budget > 0) {
/* Still have budget, so just remove
* from CPU
*/
entry->ghost_tasks[
t->rt_param.task_params.crit]
= NULL;
/*TODO: maybe make more efficient by
* only updating on C/D completion?
*/
update_cpu_position(entry);
}
}
else{
/* Job finished, so just remove */
entry->ghost_tasks[
t->rt_param.task_params.crit] = NULL;
update_cpu_position(entry);
}
}
else {
link_task_to_cpu(NULL, entry);
}
} else if (is_queued(t)) {
/* This is an interesting situation: t is scheduled,
* but was just recently unlinked. It cannot be
* linked anywhere else (because then it would have
* been relinked to this CPU), thus it must be in some
* queue. We must remove it from the list in this
* case.
*/
TRACE("Weird is_queued situation happened\n");
remove(domain_of(t), t);
}
}
/* preempt - force a CPU to reschedule
* Just sets a Linux scheduler flag.
*/
static void preempt(cpu_entry_t *entry)
{
preempt_if_preemptable(entry->scheduled, entry->cpu);
}
/* requeue - Put an unlinked task into the proper domain.
* Caller holds global lock.
* Called by mc_job_arrival() and prepare_preemption().
*/
static noinline void requeue(struct task_struct* task)
{
BUG_ON(!task || !is_realtime(task));
/* sanity check before insertion */
BUG_ON(is_queued(task));
if (is_released(task, litmus_clock()))
__add_ready(domain_of(task), task);
else {
/* it has got to wait */
add_release(domain_of(task), task);
}
}
static void prepare_preemption(rt_domain_t *dom, cpu_entry_t *cpu) {
struct task_struct* task;
task = __take_ready(dom);
TRACE("prepare_preemption: attempting to link task %d to %d\n",
task->pid, cpu->cpu);
if (cpu->linked)
requeue(cpu->linked);
link_task_to_cpu(task, cpu);
preempt(cpu);
}
/* Callers always have global lock */
static void check_for_gedf_preemptions(rt_domain_t *dom){
cpu_entry_t* last;
for (last = lowest_prio_cpu();
mc_edf_preemption_needed(dom, last->linked);
last = lowest_prio_cpu()) {
prepare_preemption(dom, last);
}
}
static void check_for_pedf_preemption(rt_domain_t *dom, cpu_entry_t *cpu) {
if (mc_edf_preemption_needed(dom, cpu->linked)) {
prepare_preemption(dom, cpu);
}
}
/* mc_job_arrival: task is either resumed or released
* Called from job_completion(), mc_task_new(), and mc_task_wake_up(), all
* of which have the global lock
* Requeues task and checks for/triggers preemptions
*/
static noinline void mc_job_arrival(struct task_struct* task)
{
BUG_ON(!task);
TRACE("mc_job_arrival triggered\n");
requeue(task);
if (task->rt_param.task_params.crit == CRIT_LEVEL_A){
check_for_pedf_preemption(remote_a_queue(get_partition(task)),
remote_cpu_entry(get_partition(task)));
}
else if (task->rt_param.task_params.crit == CRIT_LEVEL_B){
check_for_pedf_preemption(remote_b_queue(get_partition(task)),
remote_cpu_entry(get_partition(task)));
}
else if (task->rt_param.task_params.crit == CRIT_LEVEL_C){
check_for_gedf_preemptions(&crit_c);
}
else if (task->rt_param.task_params.crit == CRIT_LEVEL_D){
check_for_gedf_preemptions(&crit_d);
}
}
/* Called by the domain
* Obtains global lock, merges ready tasks, checks for/triggers preemptions,
* and releases global lock
*/
static void mc_release_jobs(rt_domain_t* rt, struct bheap* tasks)
{
unsigned long flags;
int i;
raw_spin_lock_irqsave(&global_lock, flags);
TRACE("mc_release_jobs triggered\n");
__merge_ready(rt, tasks);
for (i = 0; i < NR_CPUS; i++){
if (rt == remote_b_queue(i)){
check_for_pedf_preemption(rt, remote_cpu_entry(i));
}
else if (rt == remote_a_queue(i)){
check_for_pedf_preemption(rt, remote_cpu_entry(i));
}
}
if (rt == &crit_c || rt == &crit_d){
check_for_gedf_preemptions(rt);
}
raw_spin_unlock_irqrestore(&global_lock, flags);
}
/* caller holds global_lock
* Called only by mc_schedule() which holds global lock
* Prepares task for next period, unlinks it, and calls mc_job_arrival
* Converts jobs to ghost jobs as necessary, or finishes end of ghost jobs.
*/
static noinline void job_completion(struct task_struct *t, int forced)
{
cpu_entry_t *cpu;
int already_unlinked = 0;
BUG_ON(!t);
sched_trace_task_completion(t, forced);
TRACE_TASK(t, "job_completion().\n");
/* set flags */
set_rt_flags(t, RT_F_SLEEP);
/*If it's not a ghost job, do ghost job conversion and return.*/
if (!is_ghost(t)) {
cpu = remote_cpu_entry(t->rt_param.scheduled_on);
/*Unlink first while it's not a ghost job.*/
unlink(t);
already_unlinked = 1;
t->rt_param.job_params.ghost_budget = budget_remaining(t);
t->rt_param.job_params.is_ghost = 1;
/* If we did just convert the job to ghost, we can safely
* reschedule it and then let schedule() determine a new
* job to run in the slack.
*/
if (t->rt_param.job_params.ghost_budget > 0){
link_task_to_cpu(t, cpu);
preempt(cpu);
return;
}
}
/* prepare for next period */
if (is_ghost(t)) {
t->rt_param.job_params.ghost_budget = 0;
prepare_for_next_period(t);
}
else {
t->rt_param.job_params.ghost_budget = budget_remaining(t);
}
if (is_released(t, litmus_clock()))
sched_trace_task_release(t);
/* unlink if we didn't above */
if (!already_unlinked)
unlink(t);
/* requeue
* But don't requeue a blocking task. */
if (is_running(t))
mc_job_arrival(t);
}
/* mc_tick - this function is called for every local timer
* interrupt.
*
* checks whether the current task has expired and checks
* whether we need to preempt it if it has not expired
* Called from LITMUS core
* Does not use locks
* Just sets reschedule flags on task and CPU and request_exit_np flag on task
*/
static void mc_tick(struct task_struct* t)
{
if (is_ghost(t)) {
update_ghost_time(t);
}
if (is_realtime(t) && budget_enforced(t) && budget_exhausted(t)) {
if (!is_np(t)) {
/* np tasks will be preempted when they become
* preemptable again
*/
set_tsk_need_resched(t);
set_will_schedule();
TRACE("mc_scheduler_tick: "
"%d is preemptable "
" => FORCE_RESCHED\n", t->pid);
} else if (is_user_np(t)) {
TRACE("mc_scheduler_tick: "
"%d is non-preemptable, "
"preemption delayed.\n", t->pid);
request_exit_np(t);
}
}
}
/* Getting schedule() right is a bit tricky. schedule() may not make any
* assumptions on the state of the current task since it may be called for a
* number of reasons. The reasons include a scheduler_tick() determined that it
* was necessary, because sys_exit_np() was called, because some Linux
* subsystem determined so, or even (in the worst case) because there is a bug
* hidden somewhere. Thus, we must take extreme care to determine what the
* current state is.
*
* The CPU could currently be scheduling a task (or not), be linked (or not).
*
* The following assertions for the scheduled task could hold:
*
* - !is_running(scheduled) // the job blocks
* - scheduled->timeslice == 0 // the job completed (forcefully)
* - get_rt_flag() == RT_F_SLEEP // the job completed (by syscall)
* - linked != scheduled // we need to reschedule (for any reason)
* - is_np(scheduled) // rescheduling must be delayed,
* sys_exit_np must be requested
*
* Any of these can occur together.
*
*
* Called by LITMUS core
* No lock required by caller
* Obtains global lock
* can call unlink(), request_exit_np(), job_completion(), __take_ready()
* modifies next, scheduled->scheduled_on, linked->scheduled_on
* Releases global lock
*/
static struct task_struct* mc_schedule(struct task_struct * prev)
{
cpu_entry_t* entry = &__get_cpu_var(mc_cpu_entries);
int out_of_time, sleep, preempt, np, exists, blocks;
struct task_struct* next = NULL;
struct task_struct* ready_task = NULL;
#ifdef CONFIG_RELEASE_MASTER
/* Bail out early if we are the release master.
* The release master never schedules any real-time tasks.
*/
if (mc.release_master == entry->cpu)
return NULL;
#endif
raw_spin_lock(&global_lock);
clear_will_schedule();
/* sanity checking */
BUG_ON(entry->scheduled && entry->scheduled != prev);
BUG_ON(entry->scheduled && !is_realtime(prev));
BUG_ON(is_realtime(prev) && !entry->scheduled);
/* (0) Determine state */
exists = entry->scheduled != NULL;
blocks = exists && !is_running(entry->scheduled);
out_of_time = exists &&
budget_enforced(entry->scheduled) &&
budget_exhausted(entry->scheduled);
np = exists && is_np(entry->scheduled);
sleep = exists && get_rt_flags(entry->scheduled) == RT_F_SLEEP;
preempt = entry->scheduled != entry->linked;
#ifdef WANT_ALL_SCHED_EVENTS
TRACE_TASK(prev, "invoked mc_schedule.\n");
#endif
if (exists)
TRACE_TASK(prev,
"blocks:%d out_of_time:%d np:%d sleep:%d preempt:%d "
"state:%d sig:%d\n",
blocks, out_of_time, np, sleep, preempt,
prev->state, signal_pending(prev));
if (entry->linked && preempt)
TRACE_TASK(prev, "will be preempted by %s/%d\n",
entry->linked->comm, entry->linked->pid);
/* If a task blocks we have no choice but to reschedule.
*/
if (blocks)
unlink(entry->scheduled);
/* Request a sys_exit_np() call if we would like to preempt but cannot.
* We need to make sure to update the link structure anyway in case
* that we are still linked. Multiple calls to request_exit_np() don't
* hurt.
*/
if (np && (out_of_time || preempt || sleep)) {
unlink(entry->scheduled);
request_exit_np(entry->scheduled);
}
/* Any task that is preemptable and either exhausts its execution
* budget or wants to sleep completes. We may have to reschedule after
* this. Don't do a job completion if we block (can't have timers running
* for blocked jobs). Preemption go first for the same reason.
*/
if (!np && (out_of_time || sleep) && !blocks && !preempt)
job_completion(entry->scheduled, !sleep);
/* Link pending task if we became unlinked.
*/
if (!entry->linked){
ready_task = __take_ready(local_a_queue);
if (!ready_task)
ready_task = __take_ready(local_b_queue);
if (!ready_task)
ready_task = __take_ready(&crit_c);
if (!ready_task)
ready_task = __take_ready(&crit_d);
link_task_to_cpu(ready_task, entry);
if (ready_task)
TRACE_TASK(ready_task, "Linked task inside scheduler\n");
}
/* The final scheduling decision. Do we need to switch for some reason?
* If linked is different from scheduled, then select linked as next.
*/
if ((!np || blocks) &&
entry->linked != entry->scheduled) {
/* Schedule a linked job? */
if (entry->linked) {
entry->linked->rt_param.scheduled_on = entry->cpu;
next = entry->linked;
}
if (entry->scheduled) {
/* not gonna be scheduled soon */
entry->scheduled->rt_param.scheduled_on = NO_CPU;
TRACE_TASK(entry->scheduled, "scheduled_on = NO_CPU\n");
}
} else
/* Only override Linux scheduler if we have a real-time task
* scheduled that needs to continue.
*/
if (exists)
next = prev;
/*TODO: Update name of locking, reflect that we're locking all queues*/
raw_spin_unlock(&global_lock);
#ifdef WANT_ALL_SCHED_EVENTS
TRACE("global_lock released, next=0x%p\n", next);
if (next)
TRACE_TASK(next, "scheduled at %llu\n", litmus_clock());
else if (exists && !next)
TRACE("becomes idle at %llu.\n", litmus_clock());
#endif
return next;
}
/* _finish_switch - we just finished the switch away from prev
* Called by LITMUS core
* No locks
*/
static void mc_finish_switch(struct task_struct *prev)
{
cpu_entry_t* entry = &__get_cpu_var(mc_cpu_entries);
entry->scheduled = is_realtime(current) ? current : NULL;
#ifdef WANT_ALL_SCHED_EVENTS
TRACE_TASK(prev, "switched away from\n");
#endif
}
/* Prepare a task for running in RT mode
* Called by LITMUS core
* No lock required by caller
* Obtains lock and calls mc_job_arrival before releasing lock
*/
static void mc_task_new(struct task_struct * t, int on_rq, int running)
{
unsigned long flags;
cpu_entry_t* entry;
TRACE("mixed crit: task new %d\n", t->pid);
raw_spin_lock_irqsave(&global_lock, flags);
/* setup job params */
release_at(t, litmus_clock());
t->rt_param.job_params.ghost_budget = 0;
t->rt_param.job_params.is_ghost = 0;
if (running) {
entry = &per_cpu(mc_cpu_entries, task_cpu(t));
BUG_ON(entry->scheduled);
#ifdef CONFIG_RELEASE_MASTER
if (entry->cpu != mc.release_master) {
#endif
entry->scheduled = t;
tsk_rt(t)->scheduled_on = task_cpu(t);
#ifdef CONFIG_RELEASE_MASTER
} else {
/* do not schedule on release master */
preempt(entry); /* force resched */
tsk_rt(t)->scheduled_on = NO_CPU;
}
#endif
} else {
t->rt_param.scheduled_on = NO_CPU;
}
t->rt_param.linked_on = NO_CPU;
mc_job_arrival(t);
raw_spin_unlock_irqrestore(&global_lock, flags);
}
/* Called by LITMUS core
* No lock required by caller
* Obtains lock and calls mc_job_arrival before releasing lock
*/
static void mc_task_wake_up(struct task_struct *task)
{
unsigned long flags;
lt_t now;
TRACE_TASK(task, "wake_up at %llu\n", litmus_clock());
raw_spin_lock_irqsave(&global_lock, flags);
/* We need to take suspensions because of semaphores into
* account! If a job resumes after being suspended due to acquiring
* a semaphore, it should never be treated as a new job release.
*/
if (get_rt_flags(task) == RT_F_EXIT_SEM) {
set_rt_flags(task, RT_F_RUNNING);
} else {
now = litmus_clock();
if (is_tardy(task, now)) {
/* new sporadic release */
release_at(task, now);
sched_trace_task_release(task);
}
else {
if (task->rt.time_slice) {
/* came back in time before deadline
*/
set_rt_flags(task, RT_F_RUNNING);
}
}
}
mc_job_arrival(task);
raw_spin_unlock_irqrestore(&global_lock, flags);
}
/* Called by LITMUS core
* No lock required by caller
* Obtains and releases global lock
*/
static void mc_task_block(struct task_struct *t)
{
unsigned long flags;
TRACE_TASK(t, "block at %llu\n", litmus_clock());
/* unlink if necessary */
raw_spin_lock_irqsave(&global_lock, flags);
unlink(t);
raw_spin_unlock_irqrestore(&global_lock, flags);
BUG_ON(!is_realtime(t));
}
/* Called by LITMUS core
* No lock required by caller
* Obtains and releases global lock
*/
static void mc_task_exit(struct task_struct * t)
{
unsigned long flags;
/* unlink if necessary */
raw_spin_lock_irqsave(&global_lock, flags);
unlink(t);
if (tsk_rt(t)->scheduled_on != NO_CPU) {
mc_cpus[tsk_rt(t)->scheduled_on]->scheduled = NULL;
tsk_rt(t)->scheduled_on = NO_CPU;
}
raw_spin_unlock_irqrestore(&global_lock, flags);
BUG_ON(!is_realtime(t));
TRACE_TASK(t, "RIP\n");
}
static long mc_admit_task(struct task_struct* tsk)
{
return 0;
}
static long mc_activate_plugin(void)
{
int cpu;
cpu_entry_t *entry;
bheap_init(&mc_cpu_heap);
#ifdef CONFIG_RELEASE_MASTER
mc.release_master = atomic_read(&release_master_cpu);
#endif
for_each_online_cpu(cpu) {
entry = &per_cpu(mc_cpu_entries, cpu);
bheap_node_init(&entry->hn, entry);
atomic_set(&entry->will_schedule, 0);
entry->linked = NULL;
entry->scheduled = NULL;
#ifdef CONFIG_RELEASE_MASTER
if (cpu != mc.release_master) {
#endif
TRACE("MC: Initializing CPU #%d.\n", cpu);
update_cpu_position(entry);
#ifdef CONFIG_RELEASE_MASTER
} else {
TRACE("MC: CPU %d is release master.\n", cpu);
}
#endif
}
return 0;
}
/* Plugin object */
static struct sched_plugin mc_plugin __cacheline_aligned_in_smp = {
.plugin_name = "MC",
.finish_switch = mc_finish_switch,
.tick = mc_tick,
.task_new = mc_task_new,
.complete_job = complete_job,
.task_exit = mc_task_exit,
.schedule = mc_schedule,
.task_wake_up = mc_task_wake_up,
.task_block = mc_task_block,
.admit_task = mc_admit_task,
.activate_plugin = mc_activate_plugin,
};
static int __init init_mc(void)
{
int cpu;
int i;
cpu_entry_t *entry;
bheap_init(&mc_cpu_heap);
/* initialize CPU state */
for (cpu = 0; cpu < NR_CPUS; cpu++) {
entry = &per_cpu(mc_cpu_entries, cpu);
mc_cpus[cpu] = entry;
atomic_set(&entry->will_schedule, 0);
entry->cpu = cpu;
entry->hn = &mc_heap_node[cpu];
bheap_node_init(&entry->hn, entry);
}
mc_edf_domain_init(&crit_c, NULL, mc_release_jobs);
mc_edf_domain_init(&crit_d, NULL, mc_release_jobs);
for (i = 0; i < NR_CPUS; i++){
mc_edf_domain_init(remote_b_queue(i), NULL,
mc_release_jobs);
}
for (i = 0; i < NR_CPUS; i++){
mc_edf_domain_init(remote_a_queue(i), NULL,
mc_release_jobs);
}
return register_sched_plugin(&mc_plugin);
}
module_init(init_mc);
|