aboutsummaryrefslogtreecommitdiffstats
path: root/litmus/sched_gsn_edf.c
blob: 821e96cd4ec9bf289bcf122f7fb1cb891fd43e66 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
/*
 * litmus/sched_gsn_edf.c
 *
 * Implementation of the GSN-EDF scheduling algorithm.
 *
 * This version uses the simple approach and serializes all scheduling
 * decisions by the use of a queue lock. This is probably not the
 * best way to do it, but it should suffice for now.
 */

#include <linux/spinlock.h>
#include <linux/percpu.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/uaccess.h>
#include <linux/module.h>

#include <litmus/litmus.h>
#include <litmus/jobs.h>
#include <litmus/sched_plugin.h>
#include <litmus/edf_common.h>
#include <litmus/sched_trace.h>

#include <litmus/preempt.h>
#include <litmus/budget.h>

#include <litmus/bheap.h>
#include <litmus/binheap.h>
#include <litmus/trace.h>

#ifdef CONFIG_LITMUS_LOCKING
#include <litmus/kfmlp_lock.h>
#endif

#ifdef CONFIG_LITMUS_NESTED_LOCKING
#include <litmus/fifo_lock.h>
#include <litmus/ikglp_lock.h>
#endif

#ifdef CONFIG_SCHED_CPU_AFFINITY
#include <litmus/affinity.h>
#endif

#ifdef CONFIG_REALTIME_AUX_TASKS
#include <litmus/aux_tasks.h>
#endif

#ifdef CONFIG_LITMUS_SOFTIRQD
#include <litmus/litmus_softirq.h>
#endif

#ifdef CONFIG_LITMUS_PAI_SOFTIRQD
#include <linux/interrupt.h>
#endif

#ifdef CONFIG_LITMUS_NVIDIA
#include <litmus/nvidia_info.h>
#endif

#if defined(CONFIG_LITMUS_AFFINITY_LOCKING) && defined(CONFIG_LITMUS_NVIDIA)
#include <litmus/gpu_affinity.h>
#endif

/* Overview of GSN-EDF operations.
 *
 * For a detailed explanation of GSN-EDF have a look at the FMLP paper. This
 * description only covers how the individual operations are implemented in
 * LITMUS.
 *
 * link_task_to_cpu(T, cpu) 	- Low-level operation to update the linkage
 *                                structure (NOT the actually scheduled
 *                                task). If there is another linked task To
 *                                already it will set To->linked_on = NO_CPU
 *                                (thereby removing its association with this
 *                                CPU). However, it will not requeue the
 *                                previously linked task (if any). It will set
 *                                T's state to not completed and check whether
 *                                it is already running somewhere else. If T
 *                                is scheduled somewhere else it will link
 *                                it to that CPU instead (and pull the linked
 *                                task to cpu). T may be NULL.
 *
 * unlink(T)			- Unlink removes T from all scheduler data
 *                                structures. If it is linked to some CPU it
 *                                will link NULL to that CPU. If it is
 *                                currently queued in the gsnedf queue it will
 *                                be removed from the rt_domain. It is safe to
 *                                call unlink(T) if T is not linked. T may not
 *                                be NULL.
 *
 * requeue(T)			- Requeue will insert T into the appropriate
 *                                queue. If the system is in real-time mode and
 *                                the T is released already, it will go into the
 *                                ready queue. If the system is not in
 *                                real-time mode is T, then T will go into the
 *                                release queue. If T's release time is in the
 *                                future, it will go into the release
 *                                queue. That means that T's release time/job
 *                                no/etc. has to be updated before requeu(T) is
 *                                called. It is not safe to call requeue(T)
 *                                when T is already queued. T may not be NULL.
 *
 * gsnedf_job_arrival(T)	- This is the catch all function when T enters
 *                                the system after either a suspension or at a
 *                                job release. It will queue T (which means it
 *                                is not safe to call gsnedf_job_arrival(T) if
 *                                T is already queued) and then check whether a
 *                                preemption is necessary. If a preemption is
 *                                necessary it will update the linkage
 *                                accordingly and cause scheduled to be called
 *                                (either with an IPI or need_resched). It is
 *                                safe to call gsnedf_job_arrival(T) if T's
 *                                next job has not been actually released yet
 *                                (releast time in the future). T will be put
 *                                on the release queue in that case.
 *
 * job_completion(T)		- Take care of everything that needs to be done
 *                                to prepare T for its next release and place
 *                                it in the right queue with
 *                                gsnedf_job_arrival().
 *
 *
 * When we now that T is linked to CPU then link_task_to_cpu(NULL, CPU) is
 * equivalent to unlink(T). Note that if you unlink a task from a CPU none of
 * the functions will automatically propagate pending task from the ready queue
 * to a linked task. This is the job of the calling function ( by means of
 * __take_ready).
 */


/* cpu_entry_t - maintain the linked and scheduled state
 */
typedef struct  {
	int 			cpu;
	struct task_struct*	linked;		/* only RT tasks */
	struct task_struct*	scheduled;	/* only RT tasks */
	struct binheap_node hn;
} cpu_entry_t;
DEFINE_PER_CPU(cpu_entry_t, gsnedf_cpu_entries);

cpu_entry_t* gsnedf_cpus[NR_CPUS];

/* the cpus queue themselves according to priority in here */
static struct binheap gsnedf_cpu_heap;

static rt_domain_t gsnedf;
#define gsnedf_lock (gsnedf.ready_lock)

#ifdef CONFIG_LITMUS_DGL_SUPPORT
static raw_spinlock_t dgl_lock;

static raw_spinlock_t* gsnedf_get_dgl_spinlock(struct task_struct *t)
{
	return(&dgl_lock);
}
#endif

#ifdef CONFIG_LITMUS_PAI_SOFTIRQD
struct tasklet_head gsnedf_pending_tasklets;
#endif


/* Uncomment this if you want to see all scheduling decisions in the
 * TRACE() log.
#define WANT_ALL_SCHED_EVENTS
 */

static int cpu_lower_prio(struct binheap_node *_a, struct binheap_node *_b)
{
	cpu_entry_t *a = binheap_entry(_a, cpu_entry_t, hn);
	cpu_entry_t *b = binheap_entry(_b, cpu_entry_t, hn);

	/* Note that a and b are inverted: we want the lowest-priority CPU at
	 * the top of the heap.
	 */
	return edf_higher_prio(b->linked, a->linked);
}


/* update_cpu_position - Move the cpu entry to the correct place to maintain
 *                       order in the cpu queue. Caller must hold gsnedf lock.
 */
static void update_cpu_position(cpu_entry_t *entry)
{
	if (likely(binheap_is_in_heap(&entry->hn))) {
		binheap_delete(&entry->hn, &gsnedf_cpu_heap);
	}
	binheap_add(&entry->hn, &gsnedf_cpu_heap, cpu_entry_t, hn);
}

/* caller must hold gsnedf lock */
static cpu_entry_t* lowest_prio_cpu(void)
{
	return binheap_top_entry(&gsnedf_cpu_heap, cpu_entry_t, hn);
}


/* link_task_to_cpu - Update the link of a CPU.
 *                    Handles the case where the to-be-linked task is already
 *                    scheduled on a different CPU.
 */
static noinline void link_task_to_cpu(struct task_struct* linked,
				      cpu_entry_t *entry)
{
	cpu_entry_t *sched;
	struct task_struct* tmp;
	int on_cpu;

	//int print = (linked != NULL || entry->linked != NULL);

	BUG_ON(linked && !is_realtime(linked));

	/*
	if (print) {
		TRACE_CUR("linked = %s/%d\n", (linked) ? linked->comm : "(null)", (linked)? linked->pid : 0);
		TRACE_CUR("entry->linked = %s/%d\n", (entry->linked) ? entry->linked->comm : "(null)", (entry->linked)? entry->linked->pid : 0);
	}
	*/

	/* Currently linked task is set to be unlinked. */
	if (entry->linked) {
		entry->linked->rt_param.linked_on = NO_CPU;
	}

	/* Link new task to CPU. */
	if (linked) {
		tsk_rt(linked)->completed = 0;
		/* handle task is already scheduled somewhere! */
		on_cpu = linked->rt_param.scheduled_on;
		if (on_cpu != NO_CPU) {
			sched = &per_cpu(gsnedf_cpu_entries, on_cpu);
			/* this should only happen if not linked already */
			BUG_ON(sched->linked == linked);

			/* If we are already scheduled on the CPU to which we
			 * wanted to link, we don't need to do the swap --
			 * we just link ourselves to the CPU and depend on
			 * the caller to get things right.
			 */
			if (entry != sched) {
				TRACE_TASK(linked,
					   "already scheduled on %d, updating link.\n",
					   sched->cpu);
				tmp = sched->linked;
				linked->rt_param.linked_on = sched->cpu;
				sched->linked = linked;
				update_cpu_position(sched);
				linked = tmp;
			}
		}
		if (linked) /* might be NULL due to swap */
			linked->rt_param.linked_on = entry->cpu;
	}
	entry->linked = linked;

	/*
	if (print) {
		//#ifdef WANT_ALL_SCHED_EVENTS
		if (linked)
			TRACE_TASK(linked, "linked to %d.\n", entry->cpu);
		else
			TRACE("NULL linked to %d.\n", entry->cpu);
		//#endif
	}
	*/

	update_cpu_position(entry);
}

/* unlink - Make sure a task is not linked any longer to an entry
 *          where it was linked before. Must hold gsnedf_lock.
 */
static noinline void unlink(struct task_struct* t)
{
    	cpu_entry_t *entry;

	if (t->rt_param.linked_on != NO_CPU) {
		/* unlink */
		entry = &per_cpu(gsnedf_cpu_entries, t->rt_param.linked_on);
		t->rt_param.linked_on = NO_CPU;
		link_task_to_cpu(NULL, entry);
	} else if (is_queued(t)) {
		/* This is an interesting situation: t is scheduled,
		 * but was just recently unlinked.  It cannot be
		 * linked anywhere else (because then it would have
		 * been relinked to this CPU), thus it must be in some
		 * queue. We must remove it from the list in this
		 * case.
		 */
		remove(&gsnedf, t);
	}
}


/* preempt - force a CPU to reschedule
 */
static void preempt(cpu_entry_t *entry)
{
	preempt_if_preemptable(entry->scheduled, entry->cpu);
}

/* requeue - Put an unlinked task into gsn-edf domain.
 *           Caller must hold gsnedf_lock.
 */
static noinline void requeue(struct task_struct* task)
{
	BUG_ON(!task);
	/* sanity check before insertion */
	BUG_ON(is_queued(task));

	if (is_early_releasing(task) || is_released(task, litmus_clock())) {
#ifdef CONFIG_REALTIME_AUX_TASKS
		if (unlikely(tsk_rt(task)->is_aux_task && !is_running(task))) {
			/* aux_task probably transitioned to real-time while it was blocked */
			TRACE_CUR("aux task %s/%d is not ready!\n", task->comm, task->pid);
			unlink(task); /* really needed? */
		}
		else
#endif
			__add_ready(&gsnedf, task);
	}
	else {
		/* it has got to wait */
		add_release(&gsnedf, task);
	}
}

#ifdef CONFIG_SCHED_CPU_AFFINITY
static cpu_entry_t* gsnedf_get_nearest_available_cpu(cpu_entry_t *start)
{
	cpu_entry_t *affinity;

	get_nearest_available_cpu(affinity, start, gsnedf_cpu_entries,
#ifdef CONFIG_RELEASE_MASTER
			gsnedf.release_master
#else
			NO_CPU
#endif
			);

	return(affinity);
}
#endif

/* check for any necessary preemptions */
static void check_for_preemptions(void)
{
	struct task_struct *task;
	cpu_entry_t *last;

	for (last = lowest_prio_cpu();
	     edf_preemption_needed(&gsnedf, last->linked);
	     last = lowest_prio_cpu()) {
		/* preemption necessary */
		task = __take_ready(&gsnedf);
		TRACE("check_for_preemptions: attempting to link task %d to %d\n",
		      task->pid, last->cpu);

#ifdef CONFIG_SCHED_CPU_AFFINITY
		{
			cpu_entry_t *affinity =
					gsnedf_get_nearest_available_cpu(
						&per_cpu(gsnedf_cpu_entries, task_cpu(task)));
			if (affinity)
				last = affinity;
			else if (requeue_preempted_job(last->linked))
				requeue(last->linked);
		}
#else
		if (requeue_preempted_job(last->linked))
			requeue(last->linked);
#endif

		link_task_to_cpu(task, last);
		preempt(last);
	}
}

/* gsnedf_job_arrival: task is either resumed or released */
static noinline void gsnedf_job_arrival(struct task_struct* task)
{
	BUG_ON(!task);

	requeue(task);
	check_for_preemptions();
}

static void gsnedf_release_jobs(rt_domain_t* rt, struct bheap* tasks)
{
	unsigned long flags;

	raw_spin_lock_irqsave(&gsnedf_lock, flags);

	__merge_ready(rt, tasks);

	check_for_preemptions();

	raw_spin_unlock_irqrestore(&gsnedf_lock, flags);
}

/* caller holds gsnedf_lock */
static noinline void job_completion(struct task_struct *t, int forced)
{
	BUG_ON(!t);

	sched_trace_task_completion(t, forced);

	TRACE_TASK(t, "job_completion().\n");

	/* set flags */
	tsk_rt(t)->completed = 1;
	/* prepare for next period */
	prepare_for_next_period(t);
	if (is_early_releasing(t) || is_released(t, litmus_clock()))
		sched_trace_task_release(t);
	/* unlink */
	unlink(t);
	/* requeue
	 * But don't requeue a blocking task. */
	if (is_running(t))
		gsnedf_job_arrival(t);
}

static enum hrtimer_restart gsnedf_simple_on_exhausted(struct task_struct *t)
{
	/* Assumption: t is scheduled on the CPU executing this callback */

	if (budget_signalled(t) && !bt_flag_is_set(t, BTF_SIG_BUDGET_SENT)) {
		/* signal exhaustion */
		send_sigbudget(t); /* will set BTF_SIG_BUDGET_SENT */
	}

	if (budget_enforced(t) && !bt_flag_test_and_set(t, BTF_BUDGET_EXHAUSTED)) {
		if (!is_np(t)) {
			/* np tasks will be preempted when they become
			 * preemptable again
			 */
			litmus_reschedule_local();
			TRACE("cedf_scheduler_tick: "
				  "%d is preemptable "
				  " => FORCE_RESCHED\n", t->pid);
		} else if (is_user_np(t)) {
			TRACE("cedf_scheduler_tick: "
				  "%d is non-preemptable, "
				  "preemption delayed.\n", t->pid);
			request_exit_np(t);
		}
	}

	return HRTIMER_NORESTART;
}

/* gsnedf_tick - this function is called for every local timer
 *                         interrupt.
 *
 *                   checks whether the current task has expired and checks
 *                   whether we need to preempt it if it has not expired
 */
static void gsnedf_tick(struct task_struct* t)
{
	if (is_realtime(t) &&
		tsk_rt(t)->budget.ops && budget_quantum_tracked(t) &&
		budget_exhausted(t)) {
		TRACE_TASK(t, "budget exhausted\n");
		tsk_rt(t)->budget.ops->on_exhausted(t);
	}
}



#ifdef CONFIG_LITMUS_PAI_SOFTIRQD


static void __do_lit_tasklet(struct tasklet_struct* tasklet, unsigned long flushed)
{
	if (!atomic_read(&tasklet->count)) {
		if(tasklet->owner) {
			sched_trace_tasklet_begin(tasklet->owner);
		}

		if (!test_and_clear_bit(TASKLET_STATE_SCHED, &tasklet->state))
		{
			BUG();
		}
		TRACE("%s: Invoking tasklet with owner pid = %d (flushed = %d).\n",
			  __FUNCTION__,
			  (tasklet->owner) ? tasklet->owner->pid : 0,
			  (tasklet->owner) ? 0 : 1);
		tasklet->func(tasklet->data);
		tasklet_unlock(tasklet);

		if(tasklet->owner) {
			sched_trace_tasklet_end(tasklet->owner, flushed);
		}
	}
	else {
		BUG();
	}
}

static void do_lit_tasklets(struct task_struct* sched_task)
{
	int work_to_do = 1;
	struct tasklet_struct *tasklet = NULL;
	unsigned long flags;

	while(work_to_do) {

		TS_NV_SCHED_BOTISR_START;

		// execute one tasklet that has higher priority
		raw_spin_lock_irqsave(&gsnedf_lock, flags);

		if(gsnedf_pending_tasklets.head != NULL) {
			struct tasklet_struct *prev = NULL;
			tasklet = gsnedf_pending_tasklets.head;

			while(tasklet && edf_higher_prio(sched_task, tasklet->owner)) {
				prev = tasklet;
				tasklet = tasklet->next;
			}

			// remove the tasklet from the queue
			if(prev) {
				prev->next = tasklet->next;
				if(prev->next == NULL) {
					TRACE("%s: Tasklet for %d is the last element in tasklet queue.\n", __FUNCTION__, tasklet->owner->pid);
					gsnedf_pending_tasklets.tail = &(prev);
				}
			}
			else {
				gsnedf_pending_tasklets.head = tasklet->next;
				if(tasklet->next == NULL) {
					TRACE("%s: Tasklet for %d is the last element in tasklet queue.\n", __FUNCTION__, tasklet->owner->pid);
					gsnedf_pending_tasklets.tail = &(gsnedf_pending_tasklets.head);
				}
			}
		}
		else {
			TRACE("%s: Tasklet queue is empty.\n", __FUNCTION__);
		}

		raw_spin_unlock_irqrestore(&gsnedf_lock, flags);

		if(tasklet) {
			__do_lit_tasklet(tasklet, 0ul);
			tasklet = NULL;
		}
		else {
			work_to_do = 0;
		}

		TS_NV_SCHED_BOTISR_END;
	}
}

//static void do_lit_tasklets(struct task_struct* sched_task)
//{
//	int work_to_do = 1;
//	struct tasklet_struct *tasklet = NULL;
//	//struct tasklet_struct *step;
//	unsigned long flags;
//
//	while(work_to_do) {
//
//		TS_NV_SCHED_BOTISR_START;
//
//		// remove tasklet at head of list if it has higher priority.
//		raw_spin_lock_irqsave(&gsnedf_lock, flags);
//
//		if(gsnedf_pending_tasklets.head != NULL) {
//			// remove tasklet at head.
//			tasklet = gsnedf_pending_tasklets.head;
//
//			if(edf_higher_prio(tasklet->owner, sched_task)) {
//
//				if(NULL == tasklet->next) {
//					// tasklet is at the head, list only has one element
//					TRACE("%s: Tasklet for %d is the last element in tasklet queue.\n", __FUNCTION__, tasklet->owner->pid);
//					gsnedf_pending_tasklets.tail = &(gsnedf_pending_tasklets.head);
//				}
//
//				// remove the tasklet from the queue
//				gsnedf_pending_tasklets.head = tasklet->next;
//
//				TRACE("%s: Removed tasklet for %d from tasklet queue.\n", __FUNCTION__, tasklet->owner->pid);
//			}
//			else {
//				TRACE("%s: Pending tasklet (%d) does not have priority to run on this CPU (%d).\n", __FUNCTION__, tasklet->owner->pid, smp_processor_id());
//				tasklet = NULL;
//			}
//		}
//		else {
//			TRACE("%s: Tasklet queue is empty.\n", __FUNCTION__);
//		}
//
//		raw_spin_unlock_irqrestore(&gsnedf_lock, flags);
//
//		TS_NV_SCHED_BOTISR_END;
//
//		if(tasklet) {
//			__do_lit_tasklet(tasklet, 0ul);
//			tasklet = NULL;
//		}
//		else {
//			work_to_do = 0;
//		}
//	}
//
//	//TRACE("%s: exited.\n", __FUNCTION__);
//}

static void __add_pai_tasklet(struct tasklet_struct* tasklet)
{
	struct tasklet_struct* step;

	tasklet->next = NULL;  // make sure there are no old values floating around

	step = gsnedf_pending_tasklets.head;
	if(step == NULL) {
		TRACE("%s: tasklet queue empty.  inserting tasklet for %d at head.\n", __FUNCTION__, tasklet->owner->pid);
		// insert at tail.
		*(gsnedf_pending_tasklets.tail) = tasklet;
		gsnedf_pending_tasklets.tail = &(tasklet->next);
	}
	else if((*(gsnedf_pending_tasklets.tail) != NULL) &&
			edf_higher_prio((*(gsnedf_pending_tasklets.tail))->owner, tasklet->owner)) {
		// insert at tail.
		TRACE("%s: tasklet belongs at end.  inserting tasklet for %d at tail.\n", __FUNCTION__, tasklet->owner->pid);

		*(gsnedf_pending_tasklets.tail) = tasklet;
		gsnedf_pending_tasklets.tail = &(tasklet->next);
	}
	else {
		// insert the tasklet somewhere in the middle.

        TRACE("%s: tasklet belongs somewhere in the middle.\n", __FUNCTION__);

		while(step->next && edf_higher_prio(step->next->owner, tasklet->owner)) {
			step = step->next;
		}

		// insert tasklet right before step->next.

		TRACE("%s: inserting tasklet for %d between %d and %d.\n", __FUNCTION__, tasklet->owner->pid, step->owner->pid, (step->next) ? step->next->owner->pid : 0);

		tasklet->next = step->next;
		step->next = tasklet;

		// patch up the head if needed.
		if(gsnedf_pending_tasklets.head == step)
		{
			TRACE("%s: %d is the new tasklet queue head.\n", __FUNCTION__, tasklet->owner->pid);
			gsnedf_pending_tasklets.head = tasklet;
		}
	}
}

static void gsnedf_run_tasklets(struct task_struct* sched_task)
{
	preempt_disable();

	if(gsnedf_pending_tasklets.head != NULL) {
		TRACE("%s: There are tasklets to process.\n", __FUNCTION__);
		do_lit_tasklets(sched_task);
	}

	preempt_enable_no_resched();
}

static int gsnedf_enqueue_pai_tasklet(struct tasklet_struct* tasklet)
{
	cpu_entry_t *targetCPU = NULL;
	int thisCPU;
	int runLocal = 0;
	int runNow = 0;
	unsigned long flags;

    if(unlikely((tasklet->owner == NULL) || !is_realtime(tasklet->owner)))
    {
        TRACE("%s: No owner associated with this tasklet!\n", __FUNCTION__);
		return 0;
    }


	raw_spin_lock_irqsave(&gsnedf_lock, flags);

	thisCPU = smp_processor_id();

#ifdef CONFIG_SCHED_CPU_AFFINITY
	{
		cpu_entry_t* affinity = NULL;

		// use this CPU if it is in our cluster and isn't running any RT work.
		if(
#ifdef CONFIG_RELEASE_MASTER
		   (thisCPU != gsnedf.release_master) &&
#endif
		   (__get_cpu_var(gsnedf_cpu_entries).linked == NULL)) {
			affinity = &(__get_cpu_var(gsnedf_cpu_entries));
		}
		else {
			// this CPU is busy or shouldn't run tasklet in this cluster.
			// look for available near by CPUs.
			// NOTE: Affinity towards owner and not this CPU.  Is this right?
			affinity =
				gsnedf_get_nearest_available_cpu(
					&per_cpu(gsnedf_cpu_entries, task_cpu(tasklet->owner)));
		}

		targetCPU = affinity;
	}
#endif

	if (targetCPU == NULL) {
		targetCPU = lowest_prio_cpu();
	}

	if (edf_higher_prio(tasklet->owner, targetCPU->linked)) {
		if (thisCPU == targetCPU->cpu) {
			TRACE("%s: Run tasklet locally (and now).\n", __FUNCTION__);
			runLocal = 1;
			runNow = 1;
		}
		else {
			TRACE("%s: Run tasklet remotely (and now).\n", __FUNCTION__);
			runLocal = 0;
			runNow = 1;
		}
	}
	else {
		runLocal = 0;
		runNow = 0;
	}

	if(!runLocal) {
		// enqueue the tasklet
		__add_pai_tasklet(tasklet);
	}

	raw_spin_unlock_irqrestore(&gsnedf_lock, flags);


	if (runLocal /*&& runNow */) {  // runNow == 1 is implied
		TRACE("%s: Running tasklet on CPU where it was received.\n", __FUNCTION__);
		__do_lit_tasklet(tasklet, 0ul);
	}
	else if (runNow /*&& !runLocal */) {  // runLocal == 0 is implied
		TRACE("%s: Triggering CPU %d to run tasklet.\n", __FUNCTION__, targetCPU->cpu);
		preempt(targetCPU);  // need to be protected by cedf_lock?
	}
	else {
		TRACE("%s: Scheduling of tasklet was deferred.\n", __FUNCTION__);
	}

	return(1); // success
}

static void gsnedf_change_prio_pai_tasklet(struct task_struct *old_prio,
										   struct task_struct *new_prio)
{
	struct tasklet_struct* step;
	unsigned long flags;

	if(gsnedf_pending_tasklets.head != NULL) {
		raw_spin_lock_irqsave(&gsnedf_lock, flags);
		for(step = gsnedf_pending_tasklets.head; step != NULL; step = step->next) {
			if(step->owner == old_prio) {
				TRACE("%s: Found tasklet to change: %d\n", __FUNCTION__, step->owner->pid);
				step->owner = new_prio;
			}
		}
		raw_spin_unlock_irqrestore(&gsnedf_lock, flags);
	}
}

#endif  // end PAI


/* Getting schedule() right is a bit tricky. schedule() may not make any
 * assumptions on the state of the current task since it may be called for a
 * number of reasons. The reasons include a scheduler_tick() determined that it
 * was necessary, because sys_exit_np() was called, because some Linux
 * subsystem determined so, or even (in the worst case) because there is a bug
 * hidden somewhere. Thus, we must take extreme care to determine what the
 * current state is.
 *
 * The CPU could currently be scheduling a task (or not), be linked (or not).
 *
 * The following assertions for the scheduled task could hold:
 *
 *      - !is_running(scheduled)        // the job blocks
 *	- scheduled->timeslice == 0	// the job completed (forcefully)
 *	- is_completed()		// the job completed (by syscall)
 * 	- linked != scheduled		// we need to reschedule (for any reason)
 * 	- is_np(scheduled)		// rescheduling must be delayed,
 *					   sys_exit_np must be requested
 *
 * Any of these can occur together.
 */
static struct task_struct* gsnedf_schedule(struct task_struct * prev)
{
	cpu_entry_t* entry = &__get_cpu_var(gsnedf_cpu_entries);
	int out_of_time, sleep, preempt, np, exists, blocks;
	struct task_struct* next = NULL;

#ifdef CONFIG_RELEASE_MASTER
	/* Bail out early if we are the release master.
	 * The release master never schedules any real-time tasks.
	 */
	if (unlikely(gsnedf.release_master == entry->cpu)) {
		sched_state_task_picked();
		return NULL;
	}
#endif

	raw_spin_lock(&gsnedf_lock);

	/* sanity checking */
	BUG_ON(entry->scheduled && entry->scheduled != prev);
	BUG_ON(entry->scheduled && !is_realtime(prev));
	BUG_ON(is_realtime(prev) && !entry->scheduled);

	/* (0) Determine state */
	exists      = entry->scheduled != NULL;
	blocks      = exists && !is_running(entry->scheduled);
	out_of_time = exists &&
		budget_enforced(entry->scheduled) &&
		bt_flag_is_set(entry->scheduled, BTF_BUDGET_EXHAUSTED);
	np 	    = exists && is_np(entry->scheduled);
	sleep	    = exists && is_completed(entry->scheduled);
	preempt     = entry->scheduled != entry->linked;

#ifdef WANT_ALL_SCHED_EVENTS
	TRACE_TASK(prev, "invoked gsnedf_schedule.\n");
#endif

	if (exists) {
		TRACE_TASK(prev,
			   "blocks:%d out_of_time:%d np:%d sleep:%d preempt:%d "
			   "state:%d sig:%d\n",
			   blocks, out_of_time, np, sleep, preempt,
			   prev->state, signal_pending(prev));
	}

	if (entry->linked && preempt)
		TRACE_TASK(prev, "will be preempted by %s/%d\n",
			   entry->linked->comm, entry->linked->pid);

	/* Do budget stuff */
	if (tsk_rt(prev)->budget.ops) {
		if (blocks)
			tsk_rt(prev)->budget.ops->on_blocked(prev);
		else if (sleep)
			tsk_rt(prev)->budget.ops->on_sleep(prev);
		else if (preempt)
			tsk_rt(prev)->budget.ops->on_preempt(prev);
	}

	/* If a task blocks we have no choice but to reschedule.
	 */
	if (blocks) {
		unlink(entry->scheduled);
	}

#if defined(CONFIG_LITMUS_NVIDIA) && defined(CONFIG_LITMUS_AFFINITY_LOCKING)
	if(exists && is_realtime(entry->scheduled) && tsk_rt(entry->scheduled)->held_gpus) {
		if(!blocks || tsk_rt(entry->scheduled)->suspend_gpu_tracker_on_block) {
			stop_gpu_tracker(entry->scheduled);
		}
	}
#endif

	/* Request a sys_exit_np() call if we would like to preempt but cannot.
	 * We need to make sure to update the link structure anyway in case
	 * that we are still linked. Multiple calls to request_exit_np() don't
	 * hurt.
	 */
	if (np && (out_of_time || preempt || sleep)) {
		unlink(entry->scheduled);
		request_exit_np(entry->scheduled);
	}

	/* Any task that is preemptable and either exhausts its execution
	 * budget or wants to sleep completes. We may have to reschedule after
	 * this. Don't do a job completion if we block (can't have timers running
	 * for blocked jobs).
	 */
	if (!np && (out_of_time || sleep) && !blocks) {
		job_completion(entry->scheduled, !sleep);
		//completion = 1;
	}

	/* Link pending task if we became unlinked.
	 */
	if (!entry->linked)
		link_task_to_cpu(__take_ready(&gsnedf), entry);

	/* The final scheduling decision. Do we need to switch for some reason?
	 * If linked is different from scheduled, then select linked as next.
	 */
	if ((!np || blocks) &&
	    entry->linked != entry->scheduled) {
		/* Schedule a linked job? */
		if (entry->linked) {
			entry->linked->rt_param.scheduled_on = entry->cpu;
			next = entry->linked;
			TRACE_TASK(next, "scheduled_on = P%d\n", smp_processor_id());
		}
		if (entry->scheduled) {
			/* not gonna be scheduled soon */
			entry->scheduled->rt_param.scheduled_on = NO_CPU;
			TRACE_TASK(entry->scheduled, "scheduled_on = NO_CPU\n");
		}
	}
	else
	{
		/* Only override Linux scheduler if we have a real-time task
		 * scheduled that needs to continue.
		 */
		if (exists)
			next = prev;
	}

#if 0
	if (completion) {
		TRACE_CUR("switching away from a completion\n");
	}
#endif

	sched_state_task_picked();

	raw_spin_unlock(&gsnedf_lock);

#ifdef WANT_ALL_SCHED_EVENTS
	TRACE("gsnedf_lock released, next=0x%p\n", next);

	if (next)
		TRACE_TASK(next, "scheduled at %llu\n", litmus_clock());
	else if (exists && !next)
		TRACE("becomes idle at %llu.\n", litmus_clock());
#endif

	return next;
}


/* _finish_switch - we just finished the switch away from prev
 */
static void gsnedf_finish_switch(struct task_struct *prev)
{
	cpu_entry_t* 	entry = &__get_cpu_var(gsnedf_cpu_entries);

	entry->scheduled = is_realtime(current) ? current : NULL;

#ifdef WANT_ALL_SCHED_EVENTS
	TRACE_TASK(prev, "switched away from\n");
#endif
}


/*	Prepare a task for running in RT mode
 */
static void gsnedf_task_new(struct task_struct * t, int on_rq, int running)
{
	unsigned long 		flags;
	cpu_entry_t* 		entry;

	TRACE("gsn edf: task new = %d on_rq = %d running = %d\n", t->pid, on_rq, running);

	raw_spin_lock_irqsave(&gsnedf_lock, flags);

	/* setup job params */
	release_at(t, litmus_clock());

	if (running) {
		entry = &per_cpu(gsnedf_cpu_entries, task_cpu(t));
		BUG_ON(entry->scheduled);

#ifdef CONFIG_RELEASE_MASTER
		if (entry->cpu != gsnedf.release_master) {
#endif
			entry->scheduled = t;
			tsk_rt(t)->scheduled_on = task_cpu(t);
#ifdef CONFIG_RELEASE_MASTER
		} else {
			/* do not schedule on release master */
			preempt(entry); /* force resched */
			tsk_rt(t)->scheduled_on = NO_CPU;
		}
#endif
	} else {
		t->rt_param.scheduled_on = NO_CPU;
	}
	t->rt_param.linked_on          = NO_CPU;

	gsnedf_job_arrival(t);
	raw_spin_unlock_irqrestore(&gsnedf_lock, flags);
}

static void gsnedf_task_wake_up(struct task_struct *task)
{
	unsigned long flags;
	//lt_t now;

	TRACE_TASK(task, "wake_up at %llu\n", litmus_clock());

	raw_spin_lock_irqsave(&gsnedf_lock, flags);

#if 0
	/* sporadic task model. will increment job numbers automatically */
	now = litmus_clock();
	if (is_sporadic(task) && is_tardy(task, now)) {
		/* new sporadic release */
		release_at(task, now);
		sched_trace_task_release(task);
	}
	else {
		if (task->rt.time_slice) {
			/* came back in time before deadline
			*/
			tsk_rt(task)->completed = 0;
		}
	}
#else
	/* don't force job to end.  rely on user to say when jobs complete */
	tsk_rt(task)->completed = 0;
#endif

#ifdef CONFIG_REALTIME_AUX_TASKS
	if (tsk_rt(task)->has_aux_tasks && !tsk_rt(task)->hide_from_aux_tasks) {
		TRACE_CUR("%s/%d is ready so aux tasks may not inherit.\n", task->comm, task->pid);
		disable_aux_task_owner(task);
	}
#endif

#ifdef CONFIG_LITMUS_NVIDIA
	if (tsk_rt(task)->held_gpus && !tsk_rt(task)->hide_from_gpu) {
		TRACE_CUR("%s/%d is ready so gpu klmirqd tasks may not inherit.\n", task->comm, task->pid);
		disable_gpu_owner(task);
	}
#endif

	gsnedf_job_arrival(task);
	raw_spin_unlock_irqrestore(&gsnedf_lock, flags);
}

static void gsnedf_task_block(struct task_struct *t)
{
	unsigned long flags;

	TRACE_TASK(t, "block at %llu\n", litmus_clock());

	/* unlink if necessary */
	raw_spin_lock_irqsave(&gsnedf_lock, flags);

	unlink(t);

#ifdef CONFIG_REALTIME_AUX_TASKS
	if (tsk_rt(t)->has_aux_tasks && !tsk_rt(t)->hide_from_aux_tasks) {

		TRACE_CUR("%s/%d is blocked so aux tasks may inherit.\n", t->comm, t->pid);
		enable_aux_task_owner(t);
	}
#endif

#ifdef CONFIG_LITMUS_NVIDIA
	if (tsk_rt(t)->held_gpus && !tsk_rt(t)->hide_from_gpu) {

		TRACE_CUR("%s/%d is blocked so aux tasks may inherit.\n", t->comm, t->pid);
		enable_gpu_owner(t);
	}
#endif

	raw_spin_unlock_irqrestore(&gsnedf_lock, flags);

	BUG_ON(!is_realtime(t));
}


static void gsnedf_task_exit(struct task_struct * t)
{
	unsigned long flags;

#ifdef CONFIG_LITMUS_PAI_SOFTIRQD
	gsnedf_change_prio_pai_tasklet(t, NULL);
#endif

	/* unlink if necessary */
	raw_spin_lock_irqsave(&gsnedf_lock, flags);

	/* disable budget enforcement */
	if (tsk_rt(t)->budget.ops)
		tsk_rt(t)->budget.ops->on_exit(t);

#ifdef CONFIG_REALTIME_AUX_TASKS
	/* make sure we clean up on our way out */
	if (unlikely(tsk_rt(t)->is_aux_task)) {
		exit_aux_task(t);
	}
	else if(tsk_rt(t)->has_aux_tasks) {
		disable_aux_task_owner(t);
	}
#endif

#ifdef CONFIG_LITMUS_NVIDIA
	/* make sure we clean up on our way out */
	if(tsk_rt(t)->held_gpus) {
		disable_gpu_owner(t);
	}
#endif

	unlink(t);
	if (tsk_rt(t)->scheduled_on != NO_CPU) {
		gsnedf_cpus[tsk_rt(t)->scheduled_on]->scheduled = NULL;
		tsk_rt(t)->scheduled_on = NO_CPU;
	}
	raw_spin_unlock_irqrestore(&gsnedf_lock, flags);

	BUG_ON(!is_realtime(t));
	TRACE_TASK(t, "RIP\n");
}


static struct budget_tracker_ops gsnedf_drain_simple_ops =
{
	.on_scheduled = simple_on_scheduled,
	.on_blocked = simple_on_blocked,
	.on_preempt = simple_on_preempt,
	.on_sleep = simple_on_sleep,
	.on_exit = simple_on_exit,

	.on_exhausted = gsnedf_simple_on_exhausted,

	.on_inherit = NULL,
	.on_disinherit = NULL,
};

static long gsnedf_admit_task(struct task_struct* tsk)
{
	if (budget_enforced(tsk) || budget_signalled(tsk)) {
		switch(get_drain_policy(tsk)) {
			case DRAIN_SIMPLE:
				init_budget_tracker(&tsk_rt(tsk)->budget, &gsnedf_drain_simple_ops);
				break;
			default:
				TRACE_TASK(tsk, "Unsupported budget draining mode.\n");
				return -EINVAL;
		}
	}

#ifdef CONFIG_LITMUS_NESTED_LOCKING
	INIT_BINHEAP_HANDLE(&tsk_rt(tsk)->hp_blocked_tasks,
						edf_max_heap_base_priority_order);
#endif

	return 0;
}


#ifdef CONFIG_LITMUS_LOCKING

#include <litmus/fdso.h>

/* called with IRQs off */
static int __increase_priority_inheritance(struct task_struct* t,
										    struct task_struct* prio_inh)
{
	int success = 1;
	int linked_on;
	int check_preempt = 0;

	if (prio_inh && prio_inh == effective_priority(t)) {
		/* relationship already established. */
		TRACE_TASK(t, "already has effective priority of %s/%d\n",
					prio_inh->comm, prio_inh->pid);
		goto out;
	}

#ifdef CONFIG_LITMUS_NESTED_LOCKING
	/* this sanity check allows for weaker locking in protocols */
	if(__edf_higher_prio(prio_inh, BASE, t, EFFECTIVE)) {
#endif
		TRACE_TASK(t, "inherits priority from %s/%d\n",
				   prio_inh->comm, prio_inh->pid);
		tsk_rt(t)->inh_task = prio_inh;

		linked_on  = tsk_rt(t)->linked_on;

		/* If it is scheduled, then we need to reorder the CPU heap. */
		if (linked_on != NO_CPU) {
			TRACE_TASK(t, "%s: linked  on %d\n",
				   __FUNCTION__, linked_on);
			/* Holder is scheduled; need to re-order CPUs.
			 * We can't use heap_decrease() here since
			 * the cpu_heap is ordered in reverse direction, so
			 * it is actually an increase. */
			binheap_delete(&gsnedf_cpus[linked_on]->hn, &gsnedf_cpu_heap);
			binheap_add(&gsnedf_cpus[linked_on]->hn,
					&gsnedf_cpu_heap, cpu_entry_t, hn);
		} else {
			/* holder may be queued: first stop queue changes */
			raw_spin_lock(&gsnedf.release_lock);
			if (is_queued(t)) {
				TRACE_TASK(t, "%s: is queued\n",
					   __FUNCTION__);
				/* We need to update the position of holder in some
				 * heap. Note that this could be a release heap if we
				 * budget enforcement is used and this job overran. */
				check_preempt =
					!bheap_decrease(edf_ready_order,
							   tsk_rt(t)->heap_node);
			} else {
				/* Nothing to do: if it is not queued and not linked
				 * then it is either sleeping or currently being moved
				 * by other code (e.g., a timer interrupt handler) that
				 * will use the correct priority when enqueuing the
				 * task. */
				TRACE_TASK(t, "%s: is NOT queued => Done.\n",
					   __FUNCTION__);
			}
			raw_spin_unlock(&gsnedf.release_lock);

			/* If holder was enqueued in a release heap, then the following
			 * preemption check is pointless, but we can't easily detect
			 * that case. If you want to fix this, then consider that
			 * simply adding a state flag requires O(n) time to update when
			 * releasing n tasks, which conflicts with the goal to have
			 * O(log n) merges. */
			if (check_preempt) {
				/* heap_decrease() hit the top level of the heap: make
				 * sure preemption checks get the right task, not the
				 * potentially stale cache. */
				bheap_uncache_min(edf_ready_order,
						 &gsnedf.ready_queue);
				check_for_preemptions();
			}

#ifdef CONFIG_REALTIME_AUX_TASKS
			/* propagate to aux tasks */
			if (tsk_rt(t)->has_aux_tasks) {
				aux_task_owner_increase_priority(t);
			}
#endif

#ifdef CONFIG_LITMUS_NVIDIA
			/* propagate to gpu klmirqd */
			if (tsk_rt(t)->held_gpus) {
				gpu_owner_increase_priority(t);
			}
#endif

		}
#ifdef CONFIG_LITMUS_NESTED_LOCKING
	}
	else {
		TRACE_TASK(t, "Spurious invalid priority increase. "
					  "Inheritance request: %s/%d [eff_prio = %s/%d] to inherit from %s/%d\n"
					  "Occurance is likely okay: probably due to (hopefully safe) concurrent priority updates.\n",
				   t->comm, t->pid,
				   effective_priority(t)->comm, effective_priority(t)->pid,
				   (prio_inh) ? prio_inh->comm : "null",
				   (prio_inh) ? prio_inh->pid : 0);
		WARN_ON(!prio_inh);
		success = 0;
	}
#endif

out:
	return success;
}

/* called with IRQs off */
static void increase_priority_inheritance(struct task_struct* t, struct task_struct* prio_inh)
{
	int success;

	raw_spin_lock(&gsnedf_lock);

	success = __increase_priority_inheritance(t, prio_inh);

	raw_spin_unlock(&gsnedf_lock);

#if defined(CONFIG_LITMUS_PAI_SOFTIRQD) && defined(CONFIG_LITMUS_NVIDIA)
	if(tsk_rt(t)->held_gpus) {
		int i;
		for(i = find_first_bit(&tsk_rt(t)->held_gpus, sizeof(tsk_rt(t)->held_gpus));
			i < NV_DEVICE_NUM;
			i = find_next_bit(&tsk_rt(t)->held_gpus, sizeof(tsk_rt(t)->held_gpus), i+1)) {
			pai_check_priority_increase(t, i);
		}
	}
#endif
}


/* called with IRQs off */
static int __decrease_priority_inheritance(struct task_struct* t,
											struct task_struct* prio_inh)
{
	int success = 1;

	if (prio_inh == tsk_rt(t)->inh_task) {
		/* relationship already established. */
		TRACE_TASK(t, "already inherits priority from %s/%d\n",
				   (prio_inh) ? prio_inh->comm : "(null)",
				   (prio_inh) ? prio_inh->pid : 0);
		goto out;
	}

#ifdef CONFIG_LITMUS_NESTED_LOCKING
	if(__edf_higher_prio(t, EFFECTIVE, prio_inh, BASE)) {
#endif
		/* A job only stops inheriting a priority when it releases a
		 * resource. Thus we can make the following assumption.*/
		if(prio_inh)
			TRACE_TASK(t, "EFFECTIVE priority decreased to %s/%d\n",
					   prio_inh->comm, prio_inh->pid);
		else
			TRACE_TASK(t, "base priority restored.\n");

		tsk_rt(t)->inh_task = prio_inh;

		if(tsk_rt(t)->scheduled_on != NO_CPU) {
			TRACE_TASK(t, "is scheduled.\n");

			/* Check if rescheduling is necessary. We can't use heap_decrease()
			 * since the priority was effectively lowered. */
			unlink(t);
			gsnedf_job_arrival(t);
		}
		else {
			/* task is queued */
			raw_spin_lock(&gsnedf.release_lock);
			if (is_queued(t)) {
				TRACE_TASK(t, "is queued.\n");

				/* decrease in priority, so we have to re-add to binomial heap */
				unlink(t);
				gsnedf_job_arrival(t);
			}
			else {
				TRACE_TASK(t, "is not in scheduler. Probably on wait queue somewhere.\n");
			}
			raw_spin_unlock(&gsnedf.release_lock);
		}

#ifdef CONFIG_REALTIME_AUX_TASKS
		/* propagate to aux tasks */
		if (tsk_rt(t)->has_aux_tasks) {
			aux_task_owner_decrease_priority(t);
		}
#endif

#ifdef CONFIG_LITMUS_NVIDIA
		/* propagate to gpu */
		if (tsk_rt(t)->held_gpus) {
			gpu_owner_decrease_priority(t);
		}
#endif


#ifdef CONFIG_LITMUS_NESTED_LOCKING
	}
	else {
		TRACE_TASK(t, "Spurious invalid priority decrease. "
				   "Inheritance request: %s/%d [eff_prio = %s/%d] to inherit from %s/%d\n"
				   "Occurance is likely okay: probably due to (hopefully safe) concurrent priority updates.\n",
				   t->comm, t->pid,
				   effective_priority(t)->comm, effective_priority(t)->pid,
				   (prio_inh) ? prio_inh->comm : "null",
				   (prio_inh) ? prio_inh->pid : 0);
		success = 0;
	}
#endif

out:
	return success;
}

static void decrease_priority_inheritance(struct task_struct* t,
										  struct task_struct* prio_inh)
{
	int success;

	raw_spin_lock(&gsnedf_lock);

	success = __decrease_priority_inheritance(t, prio_inh);

	raw_spin_unlock(&gsnedf_lock);

#if defined(CONFIG_LITMUS_PAI_SOFTIRQD) && defined(CONFIG_LITMUS_NVIDIA)
	if(tsk_rt(t)->held_gpus) {
		int i;
		for(i = find_first_bit(&tsk_rt(t)->held_gpus, sizeof(tsk_rt(t)->held_gpus));
			i < NV_DEVICE_NUM;
			i = find_next_bit(&tsk_rt(t)->held_gpus, sizeof(tsk_rt(t)->held_gpus), i+1)) {
			pai_check_priority_decrease(t, i);
		}
	}
#endif
}



#ifdef CONFIG_LITMUS_NESTED_LOCKING

/* called with IRQs off */
/* preconditions:
 (1) The 'hp_blocked_tasks_lock' of task 't' is held.
 (2) The lock 'to_unlock' is held.
 */
static void nested_increase_priority_inheritance(struct task_struct* t,
												 struct task_struct* prio_inh,
												 raw_spinlock_t *to_unlock,
												 unsigned long irqflags)
{
	struct litmus_lock *blocked_lock = tsk_rt(t)->blocked_lock;

	if(tsk_rt(t)->inh_task != prio_inh) { 		// shield redundent calls.
		increase_priority_inheritance(t, prio_inh);  // increase our prio.
	}

	raw_spin_unlock(&tsk_rt(t)->hp_blocked_tasks_lock);  // unlock the t's heap.


	if(blocked_lock) {
		if(blocked_lock->ops->propagate_increase_inheritance) {
			TRACE_TASK(t, "Inheritor is blocked (...perhaps).  Checking lock %d.\n",
					   blocked_lock->ident);

			// beware: recursion
			blocked_lock->ops->propagate_increase_inheritance(blocked_lock,
															  t, to_unlock,
															  irqflags);
		}
		else {
			TRACE_TASK(t, "Inheritor is blocked on lock (%d) that does not support nesting!\n",
					   blocked_lock->ident);
			unlock_fine_irqrestore(to_unlock, irqflags);
		}
	}
	else {
		TRACE_TASK(t, "is not blocked.  No propagation.\n");
		unlock_fine_irqrestore(to_unlock, irqflags);
	}
}

/* called with IRQs off */
/* preconditions:
 (1) The 'hp_blocked_tasks_lock' of task 't' is held.
 (2) The lock 'to_unlock' is held.
 */
static void nested_decrease_priority_inheritance(struct task_struct* t,
												 struct task_struct* prio_inh,
												 raw_spinlock_t *to_unlock,
												 unsigned long irqflags)
{
	struct litmus_lock *blocked_lock = tsk_rt(t)->blocked_lock;
	decrease_priority_inheritance(t, prio_inh);

	raw_spin_unlock(&tsk_rt(t)->hp_blocked_tasks_lock);  // unlock the t's heap.

	if(blocked_lock) {
		if(blocked_lock->ops->propagate_decrease_inheritance) {
			TRACE_TASK(t, "Inheritor is blocked (...perhaps).  Checking lock %d.\n",
					   blocked_lock->ident);

			// beware: recursion
			blocked_lock->ops->propagate_decrease_inheritance(blocked_lock, t,
															  to_unlock,
															  irqflags);
		}
		else {
			TRACE_TASK(t, "Inheritor is blocked on lock (%p) that does not support nesting!\n",
					   blocked_lock);
			unlock_fine_irqrestore(to_unlock, irqflags);
		}
	}
	else {
		TRACE_TASK(t, "is not blocked.  No propagation.\n");
		unlock_fine_irqrestore(to_unlock, irqflags);
	}
}


/* ******************** FIFO MUTEX ********************** */

static struct litmus_lock_ops gsnedf_fifo_mutex_lock_ops = {
	.lock   = fifo_mutex_lock,
	.unlock = fifo_mutex_unlock,
	.close  = fifo_mutex_close,
	.deallocate = fifo_mutex_free,

	.propagate_increase_inheritance = fifo_mutex_propagate_increase_inheritance,
	.propagate_decrease_inheritance = fifo_mutex_propagate_decrease_inheritance,

#ifdef CONFIG_LITMUS_DGL_SUPPORT
	.dgl_lock = fifo_mutex_dgl_lock,
	.is_owner = fifo_mutex_is_owner,
	.enable_priority = fifo_mutex_enable_priority,
#endif
};

static struct litmus_lock* gsnedf_new_fifo_mutex(void)
{
	return fifo_mutex_new(&gsnedf_fifo_mutex_lock_ops);
}

/* ******************** IKGLP ********************** */

static struct litmus_lock_ops gsnedf_ikglp_lock_ops = {
	.lock   = ikglp_lock,
	.unlock = ikglp_unlock,
	.close  = ikglp_close,
	.deallocate = ikglp_free,

	// ikglp can only be an outer-most lock.
	.propagate_increase_inheritance = NULL,
	.propagate_decrease_inheritance = NULL,
};

static struct litmus_lock* gsnedf_new_ikglp(void* __user arg)
{
	return ikglp_new(num_online_cpus(), &gsnedf_ikglp_lock_ops, arg);
}

#endif  /* CONFIG_LITMUS_NESTED_LOCKING */


/* ******************** KFMLP support ********************** */

static struct litmus_lock_ops gsnedf_kfmlp_lock_ops = {
	.lock   = kfmlp_lock,
	.unlock = kfmlp_unlock,
	.close  = kfmlp_close,
	.deallocate = kfmlp_free,

	// kfmlp can only be an outer-most lock.
	.propagate_increase_inheritance = NULL,
	.propagate_decrease_inheritance = NULL,
};


static struct litmus_lock* gsnedf_new_kfmlp(void* __user arg)
{
	return kfmlp_new(&gsnedf_kfmlp_lock_ops, arg);
}

/* ******************** FMLP support ********************** */

/* struct for semaphore with priority inheritance */
struct fmlp_semaphore {
	struct litmus_lock litmus_lock;

	/* current resource holder */
	struct task_struct *owner;

	/* highest-priority waiter */
	struct task_struct *hp_waiter;

	/* FIFO queue of waiting tasks */
	wait_queue_head_t wait;
};

static inline struct fmlp_semaphore* fmlp_from_lock(struct litmus_lock* lock)
{
	return container_of(lock, struct fmlp_semaphore, litmus_lock);
}

/* caller is responsible for locking */
struct task_struct* find_hp_waiter(struct fmlp_semaphore *sem,
				   struct task_struct* skip)
{
	struct list_head	*pos;
	struct task_struct 	*queued, *found = NULL;

	list_for_each(pos, &sem->wait.task_list) {
		queued  = (struct task_struct*) list_entry(pos, wait_queue_t,
							   task_list)->private;

		/* Compare task prios, find high prio task. */
		if (queued != skip && edf_higher_prio(queued, found))
			found = queued;
	}
	return found;
}

int gsnedf_fmlp_lock(struct litmus_lock* l)
{
	struct task_struct* t = current;
	struct fmlp_semaphore *sem = fmlp_from_lock(l);
	wait_queue_t wait;
	unsigned long flags;

	if (!is_realtime(t))
		return -EPERM;

	/* prevent nested lock acquisition --- not supported by FMLP */
	if (tsk_rt(t)->num_locks_held)
		return -EBUSY;

	spin_lock_irqsave(&sem->wait.lock, flags);

	if (sem->owner) {
		/* resource is not free => must suspend and wait */

		init_waitqueue_entry(&wait, t);

		/* FIXME: interruptible would be nice some day */
		set_task_state(t, TASK_UNINTERRUPTIBLE);

		__add_wait_queue_tail_exclusive(&sem->wait, &wait);

		/* check if we need to activate priority inheritance */
		if (edf_higher_prio(t, sem->hp_waiter)) {
			sem->hp_waiter = t;
			if (edf_higher_prio(t, sem->owner))
				increase_priority_inheritance(sem->owner, sem->hp_waiter);
		}

		TS_LOCK_SUSPEND;

		/* release lock before sleeping */
		spin_unlock_irqrestore(&sem->wait.lock, flags);

		/* We depend on the FIFO order.  Thus, we don't need to recheck
		 * when we wake up; we are guaranteed to have the lock since
		 * there is only one wake up per release.
		 */

		suspend_for_lock();

		TS_LOCK_RESUME;

		/* Since we hold the lock, no other task will change
		 * ->owner. We can thus check it without acquiring the spin
		 * lock. */
		BUG_ON(sem->owner != t);
	} else {
		/* it's ours now */
		sem->owner = t;

		spin_unlock_irqrestore(&sem->wait.lock, flags);
	}

	tsk_rt(t)->num_locks_held++;

	return 0;
}

int gsnedf_fmlp_unlock(struct litmus_lock* l)
{
	struct task_struct *t = current, *next;
	struct fmlp_semaphore *sem = fmlp_from_lock(l);
	unsigned long flags;
	int err = 0;

	spin_lock_irqsave(&sem->wait.lock, flags);

	if (sem->owner != t) {
		err = -EINVAL;
		goto out;
	}

	tsk_rt(t)->num_locks_held--;

	/* check if there are jobs waiting for this resource */
	next = __waitqueue_remove_first(&sem->wait);
	if (next) {
		/* next becomes the resouce holder */
		sem->owner = next;
		TRACE_CUR("lock ownership passed to %s/%d\n", next->comm, next->pid);

		/* determine new hp_waiter if necessary */
		if (next == sem->hp_waiter) {
			TRACE_TASK(next, "was highest-prio waiter\n");
			/* next has the highest priority --- it doesn't need to
			 * inherit.  However, we need to make sure that the
			 * next-highest priority in the queue is reflected in
			 * hp_waiter. */
			sem->hp_waiter = find_hp_waiter(sem, next);
			if (sem->hp_waiter)
				TRACE_TASK(sem->hp_waiter, "is new highest-prio waiter\n");
			else
				TRACE("no further waiters\n");
		} else {
			/* Well, if next is not the highest-priority waiter,
			 * then it ought to inherit the highest-priority
			 * waiter's priority. */
			increase_priority_inheritance(next, sem->hp_waiter);
		}

		/* wake up next */
		wake_up_process(next);
	} else
		/* becomes available */
		sem->owner = NULL;

	/* we lose the benefit of priority inheritance (if any) */
	if (tsk_rt(t)->inh_task)
		decrease_priority_inheritance(t, NULL);

out:
	spin_unlock_irqrestore(&sem->wait.lock, flags);

	return err;
}

int gsnedf_fmlp_close(struct litmus_lock* l)
{
	struct task_struct *t = current;
	struct fmlp_semaphore *sem = fmlp_from_lock(l);
	unsigned long flags;

	int owner;

	spin_lock_irqsave(&sem->wait.lock, flags);

	owner = sem->owner == t;

	spin_unlock_irqrestore(&sem->wait.lock, flags);

	if (owner)
		gsnedf_fmlp_unlock(l);

	return 0;
}

void gsnedf_fmlp_free(struct litmus_lock* lock)
{
	kfree(fmlp_from_lock(lock));
}

static struct litmus_lock_ops gsnedf_fmlp_lock_ops = {
	.close  = gsnedf_fmlp_close,
	.lock   = gsnedf_fmlp_lock,
	.unlock = gsnedf_fmlp_unlock,
	.deallocate = gsnedf_fmlp_free,

#ifdef CONFIG_LITMUS_NESTED_LOCKING
	.propagate_increase_inheritance = NULL,
	.propagate_decrease_inheritance = NULL
#endif
};

static struct litmus_lock* gsnedf_new_fmlp(void)
{
	struct fmlp_semaphore* sem;

	sem = kmalloc(sizeof(*sem), GFP_KERNEL);
	if (!sem)
		return NULL;
	memset(sem, 0, sizeof(*sem));

	sem->owner   = NULL;
	sem->hp_waiter = NULL;
	init_waitqueue_head(&sem->wait);
	sem->litmus_lock.ops = &gsnedf_fmlp_lock_ops;

	return &sem->litmus_lock;
}


static long gsnedf_allocate_lock(struct litmus_lock **lock, int type,
				 void* __user args)
{
	int err;

	switch (type) {

	case FMLP_SEM:
		/* Flexible Multiprocessor Locking Protocol */
		*lock = gsnedf_new_fmlp();
		break;
#ifdef CONFIG_LITMUS_NESTED_LOCKING
    case FIFO_MUTEX:
		*lock = gsnedf_new_fifo_mutex();
		break;

	case IKGLP_SEM:
		*lock = gsnedf_new_ikglp(args);
		break;
#endif
	case KFMLP_SEM:
		*lock = gsnedf_new_kfmlp(args);
		break;
	default:
		err = -ENXIO;
		goto UNSUPPORTED_LOCK;
	};

	if (*lock)
		err = 0;
	else
		err = -ENOMEM;

UNSUPPORTED_LOCK:
	return err;
}

#endif  // CONFIG_LITMUS_LOCKING





#ifdef CONFIG_LITMUS_AFFINITY_LOCKING
static struct affinity_observer_ops gsnedf_kfmlp_affinity_ops __attribute__ ((unused)) = {
	.close = kfmlp_aff_obs_close,
	.deallocate = kfmlp_aff_obs_free,
};

#ifdef CONFIG_LITMUS_NESTED_LOCKING
static struct affinity_observer_ops gsnedf_ikglp_affinity_ops __attribute__ ((unused)) = {
	.close = ikglp_aff_obs_close,
	.deallocate = ikglp_aff_obs_free,
};
#endif

static long gsnedf_allocate_affinity_observer(
								struct affinity_observer **aff_obs,
								int type,
								void* __user args)
{
	int err;

	switch (type) {
#ifdef CONFIG_LITMUS_NVIDIA
		case KFMLP_SIMPLE_GPU_AFF_OBS:
			*aff_obs = kfmlp_simple_gpu_aff_obs_new(&gsnedf_kfmlp_affinity_ops, args);
			break;

		case KFMLP_GPU_AFF_OBS:
			*aff_obs = kfmlp_gpu_aff_obs_new(&gsnedf_kfmlp_affinity_ops, args);
			break;

#ifdef CONFIG_LITMUS_NESTED_LOCKING
		case IKGLP_SIMPLE_GPU_AFF_OBS:
			*aff_obs = ikglp_simple_gpu_aff_obs_new(&gsnedf_ikglp_affinity_ops, args);
			break;

		case IKGLP_GPU_AFF_OBS:
			*aff_obs = ikglp_gpu_aff_obs_new(&gsnedf_ikglp_affinity_ops, args);
			break;
#endif
#endif
		default:
			err = -ENXIO;
			goto UNSUPPORTED_AFF_OBS;
	};

	if (*aff_obs)
		err = 0;
	else
		err = -ENOMEM;

UNSUPPORTED_AFF_OBS:
	return err;
}
#endif


#if defined(CONFIG_LITMUS_NVIDIA) && defined(CONFIG_LITMUS_SOFTIRQD)
static int gsnedf_map_gpu_to_cpu(int gpu)
{
	return -1;  // No CPU affinity needed.
}
#endif


static long gsnedf_activate_plugin(void)
{
	int cpu;
	cpu_entry_t *entry;

	INIT_BINHEAP_HANDLE(&gsnedf_cpu_heap, cpu_lower_prio);
#ifdef CONFIG_RELEASE_MASTER
	gsnedf.release_master = atomic_read(&release_master_cpu);
#endif

	for_each_online_cpu(cpu) {
		entry = &per_cpu(gsnedf_cpu_entries, cpu);
		INIT_BINHEAP_NODE(&entry->hn);
		entry->linked    = NULL;
		entry->scheduled = NULL;
#ifdef CONFIG_RELEASE_MASTER
		if (cpu != gsnedf.release_master) {
#endif
			TRACE("GSN-EDF: Initializing CPU #%d.\n", cpu);
			update_cpu_position(entry);
#ifdef CONFIG_RELEASE_MASTER
		} else {
			TRACE("GSN-EDF: CPU %d is release master.\n", cpu);
		}
#endif
	}

#ifdef CONFIG_LITMUS_PAI_SOFTIRQD
	gsnedf_pending_tasklets.head = NULL;
	gsnedf_pending_tasklets.tail = &(gsnedf_pending_tasklets.head);
#endif

#ifdef CONFIG_LITMUS_SOFTIRQD
    init_klmirqd();
#endif

#ifdef CONFIG_LITMUS_NVIDIA
	init_nvidia_info();
#endif

	return 0;
}

/*	Plugin object	*/
static struct sched_plugin gsn_edf_plugin __cacheline_aligned_in_smp = {
	.plugin_name		= "GSN-EDF",
	.finish_switch		= gsnedf_finish_switch,
	.tick			= gsnedf_tick,
	.task_new		= gsnedf_task_new,
	.complete_job		= complete_job,
	.task_exit		= gsnedf_task_exit,
	.schedule		= gsnedf_schedule,
	.task_wake_up		= gsnedf_task_wake_up,
	.task_block		= gsnedf_task_block,
	.admit_task		= gsnedf_admit_task,
	.activate_plugin	= gsnedf_activate_plugin,
	.compare		= edf_higher_prio,
#ifdef CONFIG_LITMUS_LOCKING
	.allocate_lock		= gsnedf_allocate_lock,
	.increase_prio		= increase_priority_inheritance,
	.decrease_prio		= decrease_priority_inheritance,
	.__increase_prio	= __increase_priority_inheritance,
	.__decrease_prio	= __decrease_priority_inheritance,
#endif
#ifdef CONFIG_LITMUS_NESTED_LOCKING
	.nested_increase_prio		= nested_increase_priority_inheritance,
	.nested_decrease_prio		= nested_decrease_priority_inheritance,
	.__compare					= __edf_higher_prio,
#endif
#ifdef CONFIG_LITMUS_DGL_SUPPORT
	.get_dgl_spinlock = gsnedf_get_dgl_spinlock,
#endif
#ifdef CONFIG_LITMUS_AFFINITY_LOCKING
	.allocate_aff_obs = gsnedf_allocate_affinity_observer,
#endif
#ifdef CONFIG_LITMUS_PAI_SOFTIRQD
	.enqueue_pai_tasklet = gsnedf_enqueue_pai_tasklet,
	.change_prio_pai_tasklet = gsnedf_change_prio_pai_tasklet,
	.run_tasklets = gsnedf_run_tasklets,
#endif
#if defined(CONFIG_LITMUS_NVIDIA) && defined(CONFIG_LITMUS_SOFTIRQD)
	.map_gpu_to_cpu = gsnedf_map_gpu_to_cpu,
#endif
};


static int __init init_gsn_edf(void)
{
	int cpu;
	cpu_entry_t *entry;

	INIT_BINHEAP_HANDLE(&gsnedf_cpu_heap, cpu_lower_prio);
	/* initialize CPU state */
	for (cpu = 0; cpu < NR_CPUS; ++cpu)  {
		entry = &per_cpu(gsnedf_cpu_entries, cpu);
		gsnedf_cpus[cpu] = entry;
		entry->cpu 	 = cpu;

		INIT_BINHEAP_NODE(&entry->hn);
	}

#ifdef CONFIG_LITMUS_DGL_SUPPORT
	raw_spin_lock_init(&dgl_lock);
#endif

	edf_domain_init(&gsnedf, NULL, gsnedf_release_jobs);
	return register_sched_plugin(&gsn_edf_plugin);
}


module_init(init_gsn_edf);