aboutsummaryrefslogtreecommitdiffstats
path: root/litmus/sched_gsn_edf.c
blob: 6e2ff6fa689d4296cffd55443c9bceb3dd8d7a46 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
/*
 * litmus/sched_gsn_edf.c
 *
 * Implementation of the GSN-EDF scheduling algorithm.
 *
 * This version uses the simple approach and serializes all scheduling
 * decisions by the use of a queue lock. This is probably not the
 * best way to do it, but it should suffice for now.
 */

#include <linux/spinlock.h>
#include <linux/percpu.h>
#include <linux/sched.h>
#include <linux/slab.h>

#include <litmus/litmus.h>
#include <litmus/jobs.h>
#include <litmus/sched_plugin.h>
#include <litmus/edf_common.h>
#include <litmus/sched_trace.h>
#include <litmus/trace.h>

#include <litmus/preempt.h>
#include <litmus/budget.h>

#include <litmus/bheap.h>

#ifdef CONFIG_SCHED_CPU_AFFINITY
#include <litmus/affinity.h>
#endif

/* to set up domain/cpu mappings */
#include <litmus/litmus_proc.h>

#include <linux/module.h>

/* Overview of GSN-EDF operations.
 *
 * For a detailed explanation of GSN-EDF have a look at the FMLP paper. This
 * description only covers how the individual operations are implemented in
 * LITMUS.
 *
 * link_task_to_cpu(T, cpu) 	- Low-level operation to update the linkage
 *                                structure (NOT the actually scheduled
 *                                task). If there is another linked task To
 *                                already it will set To->linked_on = NO_CPU
 *                                (thereby removing its association with this
 *                                CPU). However, it will not requeue the
 *                                previously linked task (if any). It will set
 *                                T's state to not completed and check whether
 *                                it is already running somewhere else. If T
 *                                is scheduled somewhere else it will link
 *                                it to that CPU instead (and pull the linked
 *                                task to cpu). T may be NULL.
 *
 * unlink(T)			- Unlink removes T from all scheduler data
 *                                structures. If it is linked to some CPU it
 *                                will link NULL to that CPU. If it is
 *                                currently queued in the gsnedf queue it will
 *                                be removed from the rt_domain. It is safe to
 *                                call unlink(T) if T is not linked. T may not
 *                                be NULL.
 *
 * requeue(T)			- Requeue will insert T into the appropriate
 *                                queue. If the system is in real-time mode and
 *                                the T is released already, it will go into the
 *                                ready queue. If the system is not in
 *                                real-time mode is T, then T will go into the
 *                                release queue. If T's release time is in the
 *                                future, it will go into the release
 *                                queue. That means that T's release time/job
 *                                no/etc. has to be updated before requeu(T) is
 *                                called. It is not safe to call requeue(T)
 *                                when T is already queued. T may not be NULL.
 *
 * gsnedf_job_arrival(T)	- This is the catch all function when T enters
 *                                the system after either a suspension or at a
 *                                job release. It will queue T (which means it
 *                                is not safe to call gsnedf_job_arrival(T) if
 *                                T is already queued) and then check whether a
 *                                preemption is necessary. If a preemption is
 *                                necessary it will update the linkage
 *                                accordingly and cause scheduled to be called
 *                                (either with an IPI or need_resched). It is
 *                                safe to call gsnedf_job_arrival(T) if T's
 *                                next job has not been actually released yet
 *                                (releast time in the future). T will be put
 *                                on the release queue in that case.
 *
 * curr_job_completion()	- Take care of everything that needs to be done
 *                                to prepare the current task for its next
 *                                release and place it in the right queue with
 *                                gsnedf_job_arrival().
 *
 *
 * When we now that T is linked to CPU then link_task_to_cpu(NULL, CPU) is
 * equivalent to unlink(T). Note that if you unlink a task from a CPU none of
 * the functions will automatically propagate pending task from the ready queue
 * to a linked task. This is the job of the calling function ( by means of
 * __take_ready).
 */


/* cpu_entry_t - maintain the linked and scheduled state
 */
typedef struct  {
	int 			cpu;
	struct task_struct*	linked;		/* only RT tasks */
	struct task_struct*	scheduled;	/* only RT tasks */
	struct bheap_node*	hn;
} cpu_entry_t;
DEFINE_PER_CPU(cpu_entry_t, gsnedf_cpu_entries);

cpu_entry_t* gsnedf_cpus[NR_CPUS];

/* the cpus queue themselves according to priority in here */
static struct bheap_node gsnedf_heap_node[NR_CPUS];
static struct bheap      gsnedf_cpu_heap;

static rt_domain_t gsnedf;
#define gsnedf_lock (gsnedf.ready_lock)


/* Uncomment this if you want to see all scheduling decisions in the
 * TRACE() log.
#define WANT_ALL_SCHED_EVENTS
 */

static int cpu_lower_prio(struct bheap_node *_a, struct bheap_node *_b)
{
	cpu_entry_t *a, *b;
	a = _a->value;
	b = _b->value;
	/* Note that a and b are inverted: we want the lowest-priority CPU at
	 * the top of the heap.
	 */
	return edf_higher_prio(b->linked, a->linked);
}

/* update_cpu_position - Move the cpu entry to the correct place to maintain
 *                       order in the cpu queue. Caller must hold gsnedf lock.
 */
static void update_cpu_position(cpu_entry_t *entry)
{
	if (likely(bheap_node_in_heap(entry->hn)))
		bheap_delete(cpu_lower_prio, &gsnedf_cpu_heap, entry->hn);
	bheap_insert(cpu_lower_prio, &gsnedf_cpu_heap, entry->hn);
}

/* caller must hold gsnedf lock */
static cpu_entry_t* lowest_prio_cpu(void)
{
	struct bheap_node* hn;
	hn = bheap_peek(cpu_lower_prio, &gsnedf_cpu_heap);
	return hn->value;
}


/* link_task_to_cpu - Update the link of a CPU.
 *                    Handles the case where the to-be-linked task is already
 *                    scheduled on a different CPU.
 */
static noinline void link_task_to_cpu(struct task_struct* linked,
				      cpu_entry_t *entry)
{
	cpu_entry_t *sched;
	struct task_struct* tmp;
	int on_cpu;

	BUG_ON(linked && !is_realtime(linked));

	/* Currently linked task is set to be unlinked. */
	if (entry->linked) {
		entry->linked->rt_param.linked_on = NO_CPU;
	}

	/* Link new task to CPU. */
	if (linked) {
		/* handle task is already scheduled somewhere! */
		on_cpu = linked->rt_param.scheduled_on;
		if (on_cpu != NO_CPU) {
			sched = &per_cpu(gsnedf_cpu_entries, on_cpu);
			/* this should only happen if not linked already */
			BUG_ON(sched->linked == linked);

			/* If we are already scheduled on the CPU to which we
			 * wanted to link, we don't need to do the swap --
			 * we just link ourselves to the CPU and depend on
			 * the caller to get things right.
			 */
			if (entry != sched) {
				TRACE_TASK(linked,
					   "already scheduled on %d, updating link.\n",
					   sched->cpu);
				tmp = sched->linked;
				linked->rt_param.linked_on = sched->cpu;
				sched->linked = linked;
				update_cpu_position(sched);
				linked = tmp;
			}
		}
		if (linked) /* might be NULL due to swap */
			linked->rt_param.linked_on = entry->cpu;
	}
	entry->linked = linked;
#ifdef WANT_ALL_SCHED_EVENTS
	if (linked)
		TRACE_TASK(linked, "linked to %d.\n", entry->cpu);
	else
		TRACE("NULL linked to %d.\n", entry->cpu);
#endif
	update_cpu_position(entry);
}

/* unlink - Make sure a task is not linked any longer to an entry
 *          where it was linked before. Must hold gsnedf_lock.
 */
static noinline void unlink(struct task_struct* t)
{
	cpu_entry_t *entry;

	if (t->rt_param.linked_on != NO_CPU) {
		/* unlink */
		entry = &per_cpu(gsnedf_cpu_entries, t->rt_param.linked_on);
		t->rt_param.linked_on = NO_CPU;
		link_task_to_cpu(NULL, entry);
	} else if (is_queued(t)) {
		/* This is an interesting situation: t is scheduled,
		 * but was just recently unlinked.  It cannot be
		 * linked anywhere else (because then it would have
		 * been relinked to this CPU), thus it must be in some
		 * queue. We must remove it from the list in this
		 * case.
		 */
		remove(&gsnedf, t);
	}
}


/* preempt - force a CPU to reschedule
 */
static void preempt(cpu_entry_t *entry)
{
	preempt_if_preemptable(entry->scheduled, entry->cpu);
}

/* requeue - Put an unlinked task into gsn-edf domain.
 *           Caller must hold gsnedf_lock.
 */
static noinline void requeue(struct task_struct* task)
{
	BUG_ON(!task);
	/* sanity check before insertion */
	BUG_ON(is_queued(task));

	if (is_early_releasing(task) || is_released(task, litmus_clock()))
		__add_ready(&gsnedf, task);
	else {
		/* it has got to wait */
		add_release(&gsnedf, task);
	}
}

#ifdef CONFIG_SCHED_CPU_AFFINITY
static cpu_entry_t* gsnedf_get_nearest_available_cpu(cpu_entry_t *start)
{
	cpu_entry_t *affinity;

	get_nearest_available_cpu(affinity, start, gsnedf_cpu_entries,
#ifdef CONFIG_RELEASE_MASTER
			gsnedf.release_master,
#else
			NO_CPU,
#endif
			cpu_online_mask);

	return(affinity);
}
#endif

/* check for any necessary preemptions */
static void check_for_preemptions(void)
{
	struct task_struct *task;
	cpu_entry_t *last;


#ifdef CONFIG_PREFER_LOCAL_LINKING
	cpu_entry_t *local;

	/* Before linking to other CPUs, check first whether the local CPU is
	 * idle. */
	local = this_cpu_ptr(&gsnedf_cpu_entries);
	task  = __peek_ready(&gsnedf);

	if (task && !local->linked
#ifdef CONFIG_RELEASE_MASTER
	    && likely(local->cpu != gsnedf.release_master)
#endif
		) {
		task = __take_ready(&gsnedf);
		TRACE_TASK(task, "linking to local CPU %d to avoid IPI\n", local->cpu);
		link_task_to_cpu(task, local);
		preempt(local);
	}
#endif

	for (last = lowest_prio_cpu();
	     edf_preemption_needed(&gsnedf, last->linked);
	     last = lowest_prio_cpu()) {
		/* preemption necessary */
		task = __take_ready(&gsnedf);
		TRACE("check_for_preemptions: attempting to link task %d to %d\n",
		      task->pid, last->cpu);

#ifdef CONFIG_SCHED_CPU_AFFINITY
		{
			cpu_entry_t *affinity =
					gsnedf_get_nearest_available_cpu(
						&per_cpu(gsnedf_cpu_entries, task_cpu(task)));
			if (affinity)
				last = affinity;
			else if (requeue_preempted_job(last->linked))
				requeue(last->linked);
		}
#else
		if (requeue_preempted_job(last->linked))
			requeue(last->linked);
#endif

		link_task_to_cpu(task, last);
		preempt(last);
	}
}

/* gsnedf_job_arrival: task is either resumed or released */
static noinline void gsnedf_job_arrival(struct task_struct* task)
{
	BUG_ON(!task);

	requeue(task);
	check_for_preemptions();
}

static void gsnedf_release_jobs(rt_domain_t* rt, struct bheap* tasks)
{
	unsigned long flags;

	raw_spin_lock_irqsave(&gsnedf_lock, flags);

	__merge_ready(rt, tasks);
	check_for_preemptions();

	raw_spin_unlock_irqrestore(&gsnedf_lock, flags);
}

/* caller holds gsnedf_lock */
static noinline void curr_job_completion(int forced)
{
	struct task_struct *t = current;
	BUG_ON(!t);

	sched_trace_task_completion(t, forced);

	TRACE_TASK(t, "job_completion(forced=%d).\n", forced);

	/* set flags */
	tsk_rt(t)->completed = 0;
	/* prepare for next period */
	prepare_for_next_period(t);
	if (is_early_releasing(t) || is_released(t, litmus_clock()))
		sched_trace_task_release(t);
	/* unlink */
	unlink(t);
	/* requeue
	 * But don't requeue a blocking task. */
	if (is_current_running())
		gsnedf_job_arrival(t);
}

/* Getting schedule() right is a bit tricky. schedule() may not make any
 * assumptions on the state of the current task since it may be called for a
 * number of reasons. The reasons include a scheduler_tick() determined that it
 * was necessary, because sys_exit_np() was called, because some Linux
 * subsystem determined so, or even (in the worst case) because there is a bug
 * hidden somewhere. Thus, we must take extreme care to determine what the
 * current state is.
 *
 * The CPU could currently be scheduling a task (or not), be linked (or not).
 *
 * The following assertions for the scheduled task could hold:
 *
 *      - !is_running(scheduled)        // the job blocks
 *	- scheduled->timeslice == 0	// the job completed (forcefully)
 *	- is_completed()		// the job completed (by syscall)
 * 	- linked != scheduled		// we need to reschedule (for any reason)
 * 	- is_np(scheduled)		// rescheduling must be delayed,
 *					   sys_exit_np must be requested
 *
 * Any of these can occur together.
 */
static struct task_struct* gsnedf_schedule(struct task_struct * prev)
{
	cpu_entry_t* entry = this_cpu_ptr(&gsnedf_cpu_entries);
	int out_of_time, sleep, preempt, np, exists, blocks;
	struct task_struct* next = NULL;

#ifdef CONFIG_RELEASE_MASTER
	/* Bail out early if we are the release master.
	 * The release master never schedules any real-time tasks.
	 */
	if (unlikely(gsnedf.release_master == entry->cpu)) {
		sched_state_task_picked();
		return NULL;
	}
#endif

	raw_spin_lock(&gsnedf_lock);

	/* sanity checking */
	BUG_ON(entry->scheduled && entry->scheduled != prev);
	BUG_ON(entry->scheduled && !is_realtime(prev));
	BUG_ON(is_realtime(prev) && !entry->scheduled);

	/* (0) Determine state */
	exists      = entry->scheduled != NULL;
	blocks      = exists && !is_current_running();
	out_of_time = exists && budget_enforced(entry->scheduled)
		&& budget_exhausted(entry->scheduled);
	np 	    = exists && is_np(entry->scheduled);
	sleep	    = exists && is_completed(entry->scheduled);
	preempt     = entry->scheduled != entry->linked;

#ifdef WANT_ALL_SCHED_EVENTS
	TRACE_TASK(prev, "invoked gsnedf_schedule.\n");
#endif

	if (exists)
		TRACE_TASK(prev,
			   "blocks:%d out_of_time:%d np:%d sleep:%d preempt:%d "
			   "state:%d sig:%d\n",
			   blocks, out_of_time, np, sleep, preempt,
			   prev->state, signal_pending(prev));
	if (entry->linked && preempt)
		TRACE_TASK(prev, "will be preempted by %s/%d\n",
			   entry->linked->comm, entry->linked->pid);


	/* If a task blocks we have no choice but to reschedule.
	 */
	if (blocks)
		unlink(entry->scheduled);

	/* Request a sys_exit_np() call if we would like to preempt but cannot.
	 * We need to make sure to update the link structure anyway in case
	 * that we are still linked. Multiple calls to request_exit_np() don't
	 * hurt.
	 */
	if (np && (out_of_time || preempt || sleep)) {
		unlink(entry->scheduled);
		request_exit_np(entry->scheduled);
	}

	/* Any task that is preemptable and either exhausts its execution
	 * budget or wants to sleep completes. We may have to reschedule after
	 * this. Don't do a job completion if we block (can't have timers running
	 * for blocked jobs).
	 */
	if (!np && (out_of_time || sleep))
		curr_job_completion(!sleep);

	/* Link pending task if we became unlinked.
	 */
	if (!entry->linked)
		link_task_to_cpu(__take_ready(&gsnedf), entry);

	/* The final scheduling decision. Do we need to switch for some reason?
	 * If linked is different from scheduled, then select linked as next.
	 */
	if ((!np || blocks) &&
	    entry->linked != entry->scheduled) {
		/* Schedule a linked job? */
		if (entry->linked) {
			entry->linked->rt_param.scheduled_on = entry->cpu;
			next = entry->linked;
			TRACE_TASK(next, "scheduled_on = P%d\n", smp_processor_id());
		}
		if (entry->scheduled) {
			/* not gonna be scheduled soon */
			entry->scheduled->rt_param.scheduled_on = NO_CPU;
			TRACE_TASK(entry->scheduled, "scheduled_on = NO_CPU\n");
		}
	} else
		/* Only override Linux scheduler if we have a real-time task
		 * scheduled that needs to continue.
		 */
		if (exists)
			next = prev;

	sched_state_task_picked();

	raw_spin_unlock(&gsnedf_lock);

#ifdef WANT_ALL_SCHED_EVENTS
	TRACE("gsnedf_lock released, next=0x%p\n", next);

	if (next)
		TRACE_TASK(next, "scheduled at %llu\n", litmus_clock());
	else if (exists && !next)
		TRACE("becomes idle at %llu.\n", litmus_clock());
#endif


	return next;
}


/* _finish_switch - we just finished the switch away from prev
 */
static void gsnedf_finish_switch(struct task_struct *prev)
{
	cpu_entry_t* 	entry = this_cpu_ptr(&gsnedf_cpu_entries);

	entry->scheduled = is_realtime(current) ? current : NULL;
#ifdef WANT_ALL_SCHED_EVENTS
	TRACE_TASK(prev, "switched away from\n");
#endif
}


/*	Prepare a task for running in RT mode
 */
static void gsnedf_task_new(struct task_struct * t, int on_rq, int is_scheduled)
{
	unsigned long 		flags;
	cpu_entry_t* 		entry;

	TRACE("gsn edf: task new %d\n", t->pid);

	raw_spin_lock_irqsave(&gsnedf_lock, flags);

	/* setup job params */
	release_at(t, litmus_clock());

	if (is_scheduled) {
		entry = &per_cpu(gsnedf_cpu_entries, task_cpu(t));
		BUG_ON(entry->scheduled);

#ifdef CONFIG_RELEASE_MASTER
		if (entry->cpu != gsnedf.release_master) {
#endif
			entry->scheduled = t;
			tsk_rt(t)->scheduled_on = task_cpu(t);
#ifdef CONFIG_RELEASE_MASTER
		} else {
			/* do not schedule on release master */
			preempt(entry); /* force resched */
			tsk_rt(t)->scheduled_on = NO_CPU;
		}
#endif
	} else {
		t->rt_param.scheduled_on = NO_CPU;
	}
	t->rt_param.linked_on          = NO_CPU;

	if (on_rq || is_scheduled)
		gsnedf_job_arrival(t);
	raw_spin_unlock_irqrestore(&gsnedf_lock, flags);
}

static void gsnedf_task_wake_up(struct task_struct *task)
{
	unsigned long flags;
	lt_t now;

	TRACE_TASK(task, "wake_up at %llu\n", litmus_clock());

	raw_spin_lock_irqsave(&gsnedf_lock, flags);
	now = litmus_clock();
	if (is_sporadic(task) && is_tardy(task, now)) {
		/* new sporadic release */
		release_at(task, now);
		sched_trace_task_release(task);
	}
	gsnedf_job_arrival(task);
	raw_spin_unlock_irqrestore(&gsnedf_lock, flags);
}

static void gsnedf_task_block(struct task_struct *t)
{
	unsigned long flags;

	TRACE_TASK(t, "block at %llu\n", litmus_clock());

	/* unlink if necessary */
	raw_spin_lock_irqsave(&gsnedf_lock, flags);
	unlink(t);
	raw_spin_unlock_irqrestore(&gsnedf_lock, flags);

	BUG_ON(!is_realtime(t));
}


static void gsnedf_task_exit(struct task_struct * t)
{
	unsigned long flags;

	/* unlink if necessary */
	raw_spin_lock_irqsave(&gsnedf_lock, flags);
	unlink(t);
	if (tsk_rt(t)->scheduled_on != NO_CPU) {
		gsnedf_cpus[tsk_rt(t)->scheduled_on]->scheduled = NULL;
		tsk_rt(t)->scheduled_on = NO_CPU;
	}
	raw_spin_unlock_irqrestore(&gsnedf_lock, flags);

	BUG_ON(!is_realtime(t));
        TRACE_TASK(t, "RIP\n");
}


static long gsnedf_admit_task(struct task_struct* tsk)
{
	return 0;
}

#ifdef CONFIG_LITMUS_LOCKING

#include <litmus/fdso.h>

/* called with IRQs off */
static void set_priority_inheritance(struct task_struct* t, struct task_struct* prio_inh)
{
	int linked_on;
	int check_preempt = 0;

	raw_spin_lock(&gsnedf_lock);

	TRACE_TASK(t, "inherits priority from %s/%d\n", prio_inh->comm, prio_inh->pid);
	tsk_rt(t)->inh_task = prio_inh;

	linked_on  = tsk_rt(t)->linked_on;

	/* If it is scheduled, then we need to reorder the CPU heap. */
	if (linked_on != NO_CPU) {
		TRACE_TASK(t, "%s: linked  on %d\n",
			   __FUNCTION__, linked_on);
		/* Holder is scheduled; need to re-order CPUs.
		 * We can't use heap_decrease() here since
		 * the cpu_heap is ordered in reverse direction, so
		 * it is actually an increase. */
		bheap_delete(cpu_lower_prio, &gsnedf_cpu_heap,
			    gsnedf_cpus[linked_on]->hn);
		bheap_insert(cpu_lower_prio, &gsnedf_cpu_heap,
			    gsnedf_cpus[linked_on]->hn);
	} else {
		/* holder may be queued: first stop queue changes */
		raw_spin_lock(&gsnedf.release_lock);
		if (is_queued(t)) {
			TRACE_TASK(t, "%s: is queued\n",
				   __FUNCTION__);
			/* We need to update the position of holder in some
			 * heap. Note that this could be a release heap if we
			 * budget enforcement is used and this job overran. */
			check_preempt =
				!bheap_decrease(edf_ready_order,
					       tsk_rt(t)->heap_node);
		} else {
			/* Nothing to do: if it is not queued and not linked
			 * then it is either sleeping or currently being moved
			 * by other code (e.g., a timer interrupt handler) that
			 * will use the correct priority when enqueuing the
			 * task. */
			TRACE_TASK(t, "%s: is NOT queued => Done.\n",
				   __FUNCTION__);
		}
		raw_spin_unlock(&gsnedf.release_lock);

		/* If holder was enqueued in a release heap, then the following
		 * preemption check is pointless, but we can't easily detect
		 * that case. If you want to fix this, then consider that
		 * simply adding a state flag requires O(n) time to update when
		 * releasing n tasks, which conflicts with the goal to have
		 * O(log n) merges. */
		if (check_preempt) {
			/* heap_decrease() hit the top level of the heap: make
			 * sure preemption checks get the right task, not the
			 * potentially stale cache. */
			bheap_uncache_min(edf_ready_order,
					 &gsnedf.ready_queue);
			check_for_preemptions();
		}
	}

	raw_spin_unlock(&gsnedf_lock);
}

/* called with IRQs off */
static void clear_priority_inheritance(struct task_struct* t)
{
	raw_spin_lock(&gsnedf_lock);

	/* A job only stops inheriting a priority when it releases a
	 * resource. Thus we can make the following assumption.*/
	BUG_ON(tsk_rt(t)->scheduled_on == NO_CPU);

	TRACE_TASK(t, "priority restored\n");
	tsk_rt(t)->inh_task = NULL;

	/* Check if rescheduling is necessary. We can't use heap_decrease()
	 * since the priority was effectively lowered. */
	unlink(t);
	gsnedf_job_arrival(t);

	raw_spin_unlock(&gsnedf_lock);
}


/* ******************** FMLP support ********************** */

/* struct for semaphore with priority inheritance */
struct fmlp_semaphore {
	struct litmus_lock litmus_lock;

	/* current resource holder */
	struct task_struct *owner;

	/* highest-priority waiter */
	struct task_struct *hp_waiter;

	/* FIFO queue of waiting tasks */
	wait_queue_head_t wait;
};

static inline struct fmlp_semaphore* fmlp_from_lock(struct litmus_lock* lock)
{
	return container_of(lock, struct fmlp_semaphore, litmus_lock);
}

/* caller is responsible for locking */
struct task_struct* find_hp_waiter(struct fmlp_semaphore *sem,
				   struct task_struct* skip)
{
	struct list_head	*pos;
	struct task_struct 	*queued, *found = NULL;

	list_for_each(pos, &sem->wait.task_list) {
		queued  = (struct task_struct*) list_entry(pos, wait_queue_t,
							   task_list)->private;

		/* Compare task prios, find high prio task. */
		if (queued != skip && edf_higher_prio(queued, found))
			found = queued;
	}
	return found;
}

int gsnedf_fmlp_lock(struct litmus_lock* l)
{
	struct task_struct* t = current;
	struct fmlp_semaphore *sem = fmlp_from_lock(l);
	wait_queue_t wait;
	unsigned long flags;

	if (!is_realtime(t))
		return -EPERM;

	/* prevent nested lock acquisition --- not supported by FMLP */
	if (tsk_rt(t)->num_locks_held)
		return -EBUSY;

	spin_lock_irqsave(&sem->wait.lock, flags);

	if (sem->owner) {
		/* resource is not free => must suspend and wait */

		init_waitqueue_entry(&wait, t);

		/* FIXME: interruptible would be nice some day */
		set_task_state(t, TASK_UNINTERRUPTIBLE);

		__add_wait_queue_tail_exclusive(&sem->wait, &wait);

		/* check if we need to activate priority inheritance */
		if (edf_higher_prio(t, sem->hp_waiter)) {
			sem->hp_waiter = t;
			if (edf_higher_prio(t, sem->owner))
				set_priority_inheritance(sem->owner, sem->hp_waiter);
		}

		TS_LOCK_SUSPEND;

		/* release lock before sleeping */
		spin_unlock_irqrestore(&sem->wait.lock, flags);

		/* We depend on the FIFO order.  Thus, we don't need to recheck
		 * when we wake up; we are guaranteed to have the lock since
		 * there is only one wake up per release.
		 */

		schedule();

		TS_LOCK_RESUME;

		/* Since we hold the lock, no other task will change
		 * ->owner. We can thus check it without acquiring the spin
		 * lock. */
		BUG_ON(sem->owner != t);
	} else {
		/* it's ours now */
		sem->owner = t;

		spin_unlock_irqrestore(&sem->wait.lock, flags);
	}

	tsk_rt(t)->num_locks_held++;

	return 0;
}

int gsnedf_fmlp_unlock(struct litmus_lock* l)
{
	struct task_struct *t = current, *next;
	struct fmlp_semaphore *sem = fmlp_from_lock(l);
	unsigned long flags;
	int err = 0;

	spin_lock_irqsave(&sem->wait.lock, flags);

	if (sem->owner != t) {
		err = -EINVAL;
		goto out;
	}

	tsk_rt(t)->num_locks_held--;

	/* check if there are jobs waiting for this resource */
	next = __waitqueue_remove_first(&sem->wait);
	if (next) {
		/* next becomes the resouce holder */
		sem->owner = next;
		TRACE_CUR("lock ownership passed to %s/%d\n", next->comm, next->pid);

		/* determine new hp_waiter if necessary */
		if (next == sem->hp_waiter) {
			TRACE_TASK(next, "was highest-prio waiter\n");
			/* next has the highest priority --- it doesn't need to
			 * inherit.  However, we need to make sure that the
			 * next-highest priority in the queue is reflected in
			 * hp_waiter. */
			sem->hp_waiter = find_hp_waiter(sem, next);
			if (sem->hp_waiter)
				TRACE_TASK(sem->hp_waiter, "is new highest-prio waiter\n");
			else
				TRACE("no further waiters\n");
		} else {
			/* Well, if next is not the highest-priority waiter,
			 * then it ought to inherit the highest-priority
			 * waiter's priority. */
			set_priority_inheritance(next, sem->hp_waiter);
		}

		/* wake up next */
		wake_up_process(next);
	} else
		/* becomes available */
		sem->owner = NULL;

	/* we lose the benefit of priority inheritance (if any) */
	if (tsk_rt(t)->inh_task)
		clear_priority_inheritance(t);

out:
	spin_unlock_irqrestore(&sem->wait.lock, flags);

	return err;
}

int gsnedf_fmlp_close(struct litmus_lock* l)
{
	struct task_struct *t = current;
	struct fmlp_semaphore *sem = fmlp_from_lock(l);
	unsigned long flags;

	int owner;

	spin_lock_irqsave(&sem->wait.lock, flags);

	owner = sem->owner == t;

	spin_unlock_irqrestore(&sem->wait.lock, flags);

	if (owner)
		gsnedf_fmlp_unlock(l);

	return 0;
}

void gsnedf_fmlp_free(struct litmus_lock* lock)
{
	kfree(fmlp_from_lock(lock));
}

static struct litmus_lock_ops gsnedf_fmlp_lock_ops = {
	.close  = gsnedf_fmlp_close,
	.lock   = gsnedf_fmlp_lock,
	.unlock = gsnedf_fmlp_unlock,
	.deallocate = gsnedf_fmlp_free,
};

static struct litmus_lock* gsnedf_new_fmlp(void)
{
	struct fmlp_semaphore* sem;

	sem = kmalloc(sizeof(*sem), GFP_KERNEL);
	if (!sem)
		return NULL;

	sem->owner   = NULL;
	sem->hp_waiter = NULL;
	init_waitqueue_head(&sem->wait);
	sem->litmus_lock.ops = &gsnedf_fmlp_lock_ops;

	return &sem->litmus_lock;
}

/* **** lock constructor **** */


static long gsnedf_allocate_lock(struct litmus_lock **lock, int type,
				 void* __user unused)
{
	int err = -ENXIO;

	/* GSN-EDF currently only supports the FMLP for global resources. */
	switch (type) {

	case FMLP_SEM:
		/* Flexible Multiprocessor Locking Protocol */
		*lock = gsnedf_new_fmlp();
		if (*lock)
			err = 0;
		else
			err = -ENOMEM;
		break;

	};

	return err;
}

#endif

static struct domain_proc_info gsnedf_domain_proc_info;
static long gsnedf_get_domain_proc_info(struct domain_proc_info **ret)
{
	*ret = &gsnedf_domain_proc_info;
	return 0;
}

static void gsnedf_setup_domain_proc(void)
{
	int i, cpu;
	int release_master =
#ifdef CONFIG_RELEASE_MASTER
			atomic_read(&release_master_cpu);
#else
		NO_CPU;
#endif
	int num_rt_cpus = num_online_cpus() - (release_master != NO_CPU);
	struct cd_mapping *map;

	memset(&gsnedf_domain_proc_info, sizeof(gsnedf_domain_proc_info), 0);
	init_domain_proc_info(&gsnedf_domain_proc_info, num_rt_cpus, 1);
	gsnedf_domain_proc_info.num_cpus = num_rt_cpus;
	gsnedf_domain_proc_info.num_domains = 1;

	gsnedf_domain_proc_info.domain_to_cpus[0].id = 0;
	for (cpu = 0, i = 0; cpu < num_online_cpus(); ++cpu) {
		if (cpu == release_master)
			continue;
		map = &gsnedf_domain_proc_info.cpu_to_domains[i];
		map->id = cpu;
		cpumask_set_cpu(0, map->mask);
		++i;

		/* add cpu to the domain */
		cpumask_set_cpu(cpu,
			gsnedf_domain_proc_info.domain_to_cpus[0].mask);
	}
}

static long gsnedf_activate_plugin(void)
{
	int cpu;
	cpu_entry_t *entry;

	bheap_init(&gsnedf_cpu_heap);
#ifdef CONFIG_RELEASE_MASTER
	gsnedf.release_master = atomic_read(&release_master_cpu);
#endif

	for_each_online_cpu(cpu) {
		entry = &per_cpu(gsnedf_cpu_entries, cpu);
		bheap_node_init(&entry->hn, entry);
		entry->linked    = NULL;
		entry->scheduled = NULL;
#ifdef CONFIG_RELEASE_MASTER
		if (cpu != gsnedf.release_master) {
#endif
			TRACE("GSN-EDF: Initializing CPU #%d.\n", cpu);
			update_cpu_position(entry);
#ifdef CONFIG_RELEASE_MASTER
		} else {
			TRACE("GSN-EDF: CPU %d is release master.\n", cpu);
		}
#endif
	}

	gsnedf_setup_domain_proc();

	return 0;
}

static long gsnedf_deactivate_plugin(void)
{
	destroy_domain_proc_info(&gsnedf_domain_proc_info);
	return 0;
}

/*	Plugin object	*/
static struct sched_plugin gsn_edf_plugin __cacheline_aligned_in_smp = {
	.plugin_name		= "GSN-EDF",
	.finish_switch		= gsnedf_finish_switch,
	.task_new		= gsnedf_task_new,
	.complete_job		= complete_job,
	.task_exit		= gsnedf_task_exit,
	.schedule		= gsnedf_schedule,
	.task_wake_up		= gsnedf_task_wake_up,
	.task_block		= gsnedf_task_block,
	.admit_task		= gsnedf_admit_task,
	.activate_plugin	= gsnedf_activate_plugin,
	.deactivate_plugin	= gsnedf_deactivate_plugin,
	.get_domain_proc_info	= gsnedf_get_domain_proc_info,
#ifdef CONFIG_LITMUS_LOCKING
	.allocate_lock		= gsnedf_allocate_lock,
#endif
};


static int __init init_gsn_edf(void)
{
	int cpu;
	cpu_entry_t *entry;

	bheap_init(&gsnedf_cpu_heap);
	/* initialize CPU state */
	for (cpu = 0; cpu < NR_CPUS; cpu++)  {
		entry = &per_cpu(gsnedf_cpu_entries, cpu);
		gsnedf_cpus[cpu] = entry;
		entry->cpu 	 = cpu;
		entry->hn        = &gsnedf_heap_node[cpu];
		bheap_node_init(&entry->hn, entry);
	}
	edf_domain_init(&gsnedf, NULL, gsnedf_release_jobs);
	return register_sched_plugin(&gsn_edf_plugin);
}


module_init(init_gsn_edf);