aboutsummaryrefslogtreecommitdiffstats
path: root/litmus/sched_cedf.c
blob: d0767ce9e17867f526d9cf6e9a07aad91d66d786 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
/*
 * kernel/sched_cedf.c
 *
 * Implementation of the Clustered EDF (C-EDF) scheduling algorithm.
 * Linking is included so that support for synchronization (e.g., through
 * the implementation of a "CSN-EDF" algorithm) can be added later if desired.
 *
 * This version uses the simple approach and serializes all scheduling
 * decisions by the use of a queue lock. This is probably not the
 * best way to do it, but it should suffice for now.
 */

#include <linux/spinlock.h>
#include <linux/percpu.h>
#include <linux/sched.h>
#include <linux/list.h>

#include <litmus/litmus.h>
#include <litmus/jobs.h>
#include <litmus/sched_plugin.h>
#include <litmus/edf_common.h>
#include <litmus/sched_trace.h>
#include <litmus/bheap.h>

#include <linux/module.h>

/* Overview of C-EDF operations.
 *
 * link_task_to_cpu(T, cpu) 	- Low-level operation to update the linkage
 *                                structure (NOT the actually scheduled
 *                                task). If there is another linked task To
 *                                already it will set To->linked_on = NO_CPU
 *                                (thereby removing its association with this
 *                                CPU). However, it will not requeue the
 *                                previously linked task (if any). It will set
 *                                T's state to RT_F_RUNNING and check whether
 *                                it is already running somewhere else. If T
 *                                is scheduled somewhere else it will link
 *                                it to that CPU instead (and pull the linked
 *                                task to cpu). T may be NULL.
 *
 * unlink(T)			- Unlink removes T from all scheduler data
 *                                structures. If it is linked to some CPU it
 *                                will link NULL to that CPU. If it is
 *                                currently queued in the cedf queue for
 *                                a partition, it will be removed from
 *                                the rt_domain. It is safe to call
 *                                unlink(T) if T is not linked. T may not
 *                                be NULL.
 *
 * requeue(T)			- Requeue will insert T into the appropriate
 *                                queue. If the system is in real-time mode and
 *                                the T is released already, it will go into the
 *                                ready queue. If the system is not in
 *                                real-time mode is T, then T will go into the
 *                                release queue. If T's release time is in the
 *                                future, it will go into the release
 *                                queue. That means that T's release time/job
 *                                no/etc. has to be updated before requeue(T) is
 *                                called. It is not safe to call requeue(T)
 *                                when T is already queued. T may not be NULL.
 *
 * cedf_job_arrival(T)		- This is the catch-all function when T enters
 *                                the system after either a suspension or at a
 *                                job release. It will queue T (which means it
 *                                is not safe to call cedf_job_arrival(T) if
 *                                T is already queued) and then check whether a
 *                                preemption is necessary. If a preemption is
 *                                necessary it will update the linkage
 *                                accordingly and cause scheduled to be called
 *                                (either with an IPI or need_resched). It is
 *                                safe to call cedf_job_arrival(T) if T's
 *                                next job has not been actually released yet
 *                                (release time in the future). T will be put
 *                                on the release queue in that case.
 *
 * job_completion(T)		- Take care of everything that needs to be done
 *                                to prepare T for its next release and place
 *                                it in the right queue with
 *                                cedf_job_arrival().
 *
 *
 * When we now that T is linked to CPU then link_task_to_cpu(NULL, CPU) is
 * equivalent to unlink(T). Note that if you unlink a task from a CPU none of
 * the functions will automatically propagate pending task from the ready queue
 * to a linked task. This is the job of the calling function ( by means of
 * __take_ready).
 */

/* cpu_entry_t - maintain the linked and scheduled state
 */
typedef struct  {
	int 			cpu;
	struct task_struct*	linked;		/* only RT tasks */
	struct task_struct*	scheduled;	/* only RT tasks */
	struct list_head	list;
	atomic_t		will_schedule;	/* prevent unneeded IPIs */
} cpu_entry_t;
DEFINE_PER_CPU(cpu_entry_t, cedf_cpu_entries);

cpu_entry_t* *cedf_cpu_entries_array;

#define set_will_schedule() \
	(atomic_set(&__get_cpu_var(cedf_cpu_entries).will_schedule, 1))
#define clear_will_schedule() \
	(atomic_set(&__get_cpu_var(cedf_cpu_entries).will_schedule, 0))
#define test_will_schedule(cpu) \
	(atomic_read(&per_cpu(cedf_cpu_entries, cpu).will_schedule))

/* Cluster size -- currently four. This is a variable to allow for
 * the possibility of changing the cluster size online in the future.
 */
int cluster_size = 4;

int do_cleanup = 1;

typedef struct {
	rt_domain_t 		domain;
	int          		first_cpu;
	int			last_cpu;

	/* the cpus queue themselves according to priority in here */
	struct list_head	cedf_cpu_queue;

	/* per-partition spinlock: protects the domain and
	 * serializes scheduling decisions
	 */
#define slock domain.ready_lock
} cedf_domain_t;

DEFINE_PER_CPU(cedf_domain_t*, cedf_domains) = NULL;

cedf_domain_t* *cedf_domains_array;


/* These are defined similarly to partitioning, except that a
 * tasks partition is any cpu of the cluster to which it
 * is assigned, typically the lowest-numbered cpu.
 */
#define local_edf		(&__get_cpu_var(cedf_domains)->domain)
#define local_cedf		__get_cpu_var(cedf_domains)
#define remote_edf(cpu)		(&per_cpu(cedf_domains, cpu)->domain)
#define remote_cedf(cpu)	per_cpu(cedf_domains, cpu)
#define task_edf(task)		remote_edf(get_partition(task))
#define task_cedf(task)		remote_cedf(get_partition(task))

/* update_cpu_position - Move the cpu entry to the correct place to maintain
 *                       order in the cpu queue. Caller must hold cedf lock.
 *
 *						This really should be a heap.
 */
static void update_cpu_position(cpu_entry_t *entry)
{
	cpu_entry_t *other;
	struct list_head *cedf_cpu_queue =
		&(remote_cedf(entry->cpu))->cedf_cpu_queue;
	struct list_head *pos;

	BUG_ON(!cedf_cpu_queue);

	if (likely(in_list(&entry->list)))
		list_del(&entry->list);
	/* if we do not execute real-time jobs we just move
	 * to the end of the queue
	 */
	if (entry->linked) {
		list_for_each(pos, cedf_cpu_queue) {
			other = list_entry(pos, cpu_entry_t, list);
			if (edf_higher_prio(entry->linked, other->linked)) {
				__list_add(&entry->list, pos->prev, pos);
				return;
			}
		}
	}
	/* if we get this far we have the lowest priority job */
	list_add_tail(&entry->list, cedf_cpu_queue);
}

/* link_task_to_cpu - Update the link of a CPU.
 *                    Handles the case where the to-be-linked task is already
 *                    scheduled on a different CPU.
 */
static noinline void link_task_to_cpu(struct task_struct* linked,
				      cpu_entry_t *entry)
{
	cpu_entry_t *sched;
	struct task_struct* tmp;
	int on_cpu;

	BUG_ON(linked && !is_realtime(linked));

	/* Cannot link task to a CPU that doesn't belong to its partition... */
	BUG_ON(linked && remote_cedf(entry->cpu) != task_cedf(linked));

	/* Currently linked task is set to be unlinked. */
	if (entry->linked) {
		entry->linked->rt_param.linked_on = NO_CPU;
	}

	/* Link new task to CPU. */
	if (linked) {
		set_rt_flags(linked, RT_F_RUNNING);
		/* handle task is already scheduled somewhere! */
		on_cpu = linked->rt_param.scheduled_on;
		if (on_cpu != NO_CPU) {
			sched = &per_cpu(cedf_cpu_entries, on_cpu);
			/* this should only happen if not linked already */
			BUG_ON(sched->linked == linked);

			/* If we are already scheduled on the CPU to which we
			 * wanted to link, we don't need to do the swap --
			 * we just link ourselves to the CPU and depend on
			 * the caller to get things right.
			 */
			if (entry != sched) {
				tmp = sched->linked;
				linked->rt_param.linked_on = sched->cpu;
				sched->linked = linked;
				update_cpu_position(sched);
				linked = tmp;
			}
		}
		if (linked) /* might be NULL due to swap */
			linked->rt_param.linked_on = entry->cpu;
	}
	entry->linked = linked;

	if (entry->linked)
		TRACE_TASK(entry->linked, "linked to CPU %d, state:%d\n",
			   entry->cpu, entry->linked->state);
	else
		TRACE("NULL linked to CPU %d\n", entry->cpu);

	update_cpu_position(entry);
}

/* unlink - Make sure a task is not linked any longer to an entry
 *          where it was linked before. Must hold cedf_lock.
 */
static noinline void unlink(struct task_struct* t)
{
    	cpu_entry_t *entry;

	if (unlikely(!t)) {
		TRACE_BUG_ON(!t);
		return;
	}

	if (t->rt_param.linked_on != NO_CPU) {
		/* unlink */
		entry = &per_cpu(cedf_cpu_entries, t->rt_param.linked_on);
		t->rt_param.linked_on = NO_CPU;
		link_task_to_cpu(NULL, entry);
	} else if (is_queued(t)) {
		/* This is an interesting situation: t is scheduled,
		 * but was just recently unlinked.  It cannot be
		 * linked anywhere else (because then it would have
		 * been relinked to this CPU), thus it must be in some
		 * queue. We must remove it from the list in this
		 * case.
		 */
		remove(task_edf(t), t);
	}
}


/* preempt - force a CPU to reschedule
 */
static noinline void preempt(cpu_entry_t *entry)
{
	preempt_if_preemptable(entry->scheduled, entry->cpu);
}

/* requeue - Put an unlinked task into c-edf domain.
 *           Caller must hold cedf_lock.
 */
static noinline void requeue(struct task_struct* task)
{
	cedf_domain_t* cedf;
	rt_domain_t* edf;

	BUG_ON(!task);
	/* sanity check rt_list before insertion */
	BUG_ON(is_queued(task));

	/* Get correct real-time domain. */
	cedf = task_cedf(task);
	edf = &cedf->domain;

	if (is_released(task, litmus_clock()))
		__add_ready(edf, task);
	else {
		/* it has got to wait */
		add_release(edf, task);
	}
}

static void check_for_preemptions(cedf_domain_t* cedf)
{
	cpu_entry_t *last;
	struct task_struct *task;
	struct list_head *cedf_cpu_queue;
	cedf_cpu_queue = &cedf->cedf_cpu_queue;

	for(last = list_entry(cedf_cpu_queue->prev, cpu_entry_t, list);
	    edf_preemption_needed(&cedf->domain, last->linked);
	    last = list_entry(cedf_cpu_queue->prev, cpu_entry_t, list)) {
		/* preemption necessary */
		task = __take_ready(&cedf->domain);
		TRACE("check_for_preemptions: task %d linked to %d, state:%d\n",
		      task->pid, last->cpu, task->state);
		if (last->linked)
			requeue(last->linked);
		link_task_to_cpu(task, last);
		preempt(last);
	}

}

/* cedf_job_arrival: task is either resumed or released */
static noinline void cedf_job_arrival(struct task_struct* task)
{
	cedf_domain_t* cedf;
	rt_domain_t* edf;

	BUG_ON(!task);

	/* Get correct real-time domain. */
	cedf = task_cedf(task);
	edf = &cedf->domain;

	/* first queue arriving job */
	requeue(task);

	/* then check for any necessary preemptions */
	check_for_preemptions(cedf);
}

/* check for current job releases */
static void cedf_release_jobs(rt_domain_t* rt, struct bheap* tasks)
{
        cedf_domain_t*          cedf = container_of(rt, cedf_domain_t, domain);
	unsigned long 		flags;

	spin_lock_irqsave(&cedf->slock, flags);

	__merge_ready(&cedf->domain, tasks);
	check_for_preemptions(cedf);
	spin_unlock_irqrestore(&cedf->slock, flags);
}

/* cedf_tick - this function is called for every local timer
 *                         interrupt.
 *
 *                   checks whether the current task has expired and checks
 *                   whether we need to preempt it if it has not expired
 */
static void cedf_tick(struct task_struct* t)
{
	BUG_ON(!t);

	if (is_realtime(t) && budget_exhausted(t)) {
		if (!is_np(t)) {
			/* np tasks will be preempted when they become
			 * preemptable again
			 */
			set_tsk_need_resched(t);
			set_will_schedule();
			TRACE("cedf_scheduler_tick: "
			      "%d is preemptable (state:%d) "
			      " => FORCE_RESCHED\n", t->pid, t->state);
		} else if(is_user_np(t)) {
			TRACE("cedf_scheduler_tick: "
			      "%d is non-preemptable (state:%d), "
			      "preemption delayed.\n", t->pid, t->state);
			request_exit_np(t);
		}
	}
}

/* caller holds cedf_lock */
static noinline void job_completion(struct task_struct *t, int forced)
{
	BUG_ON(!t);

	sched_trace_task_completion(t, forced);

	TRACE_TASK(t, "job_completion(). [state:%d]\n", t->state);

	/* set flags */
	set_rt_flags(t, RT_F_SLEEP);
	/* prepare for next period */
	prepare_for_next_period(t);
	/* unlink */
	unlink(t);
	/* requeue
	 * But don't requeue a blocking task. */
	if (is_running(t))
		cedf_job_arrival(t);
}

/* Getting schedule() right is a bit tricky. schedule() may not make any
 * assumptions on the state of the current task since it may be called for a
 * number of reasons. The reasons include a scheduler_tick() determined that it
 * was necessary, because sys_exit_np() was called, because some Linux
 * subsystem determined so, or even (in the worst case) because there is a bug
 * hidden somewhere. Thus, we must take extreme care to determine what the
 * current state is.
 *
 * The CPU could currently be scheduling a task (or not), be linked (or not).
 *
 * The following assertions for the scheduled task could hold:
 *
 *      - !is_running(scheduled)        // the job blocks
 *	- scheduled->timeslice == 0	// the job completed (forcefully)
 *	- get_rt_flag() == RT_F_SLEEP	// the job completed (by syscall)
 * 	- linked != scheduled		// we need to reschedule (for any reason)
 * 	- is_np(scheduled)		// rescheduling must be delayed,
 *					   sys_exit_np must be requested
 *
 * Any of these can occur together.
 */
static struct task_struct* cedf_schedule(struct task_struct * prev)
{
	cedf_domain_t* 		cedf = local_cedf;
	rt_domain_t*		edf  = &cedf->domain;
	cpu_entry_t* 		entry = &__get_cpu_var(cedf_cpu_entries);
	int 			out_of_time, sleep, preempt, np,
				exists, blocks;
	struct task_struct* 	next = NULL;

	BUG_ON(!prev);
	BUG_ON(!cedf);
	BUG_ON(!edf);
	BUG_ON(!entry);
	BUG_ON(cedf != remote_cedf(entry->cpu));
	BUG_ON(is_realtime(prev) && cedf != task_cedf(prev));

	/* Will be released in finish_switch. */
	spin_lock(&cedf->slock);
	clear_will_schedule();

	/* sanity checking */
	BUG_ON(entry->scheduled && entry->scheduled != prev);
	BUG_ON(entry->scheduled && !is_realtime(prev));
	BUG_ON(is_realtime(prev) && !entry->scheduled);

	/* (0) Determine state */
	exists      = entry->scheduled != NULL;
	blocks      = exists && !is_running(entry->scheduled);
	out_of_time = exists && budget_exhausted(entry->scheduled);
	np 	    = exists && is_np(entry->scheduled);
	sleep	    = exists && get_rt_flags(entry->scheduled) == RT_F_SLEEP;
	preempt     = entry->scheduled != entry->linked;

	/* If a task blocks we have no choice but to reschedule.
	 */
	if (blocks)
		unlink(entry->scheduled);

	/* Request a sys_exit_np() call if we would like to preempt but cannot.
	 * We need to make sure to update the link structure anyway in case
	 * that we are still linked. Multiple calls to request_exit_np() don't
	 * hurt.
	 */
	if (np && (out_of_time || preempt || sleep)) {
		unlink(entry->scheduled);
		request_exit_np(entry->scheduled);
	}

	/* Any task that is preemptable and either exhausts its execution
	 * budget or wants to sleep completes. We may have to reschedule after
	 * this. Don't do a job completion if blocks (can't have timers
	 * running for blocked jobs). Preemption go first for the same reason.
	 */
	if (!np && (out_of_time || sleep) && !blocks && !preempt)
		job_completion(entry->scheduled, !sleep);

	/* Link pending task if we became unlinked.
	 */
	if (!entry->linked)
		link_task_to_cpu(__take_ready(edf), entry);

	/* The final scheduling decision. Do we need to switch for some reason?
	 * If linked different from scheduled select linked as next.
	 */
	if ((!np || blocks) &&
	    entry->linked != entry->scheduled) {
		/* Schedule a linked job? */
		if (entry->linked) {
			entry->linked->rt_param.scheduled_on = entry->cpu;
			next = entry->linked;
		}
                if (entry->scheduled) {
			/* not gonna be scheduled soon */
			entry->scheduled->rt_param.scheduled_on = NO_CPU;
			TRACE_TASK(entry->scheduled, "cedf_schedule: scheduled_on = NO_CPU\n");
		}
	} else
		/* Only override Linux scheduler if we have real-time task
		 * scheduled that needs to continue.
		 */
		if (exists)
			next = prev;

	spin_unlock(&cedf->slock);

	return next;
}

/* _finish_switch - we just finished the switch away from prev
 */
static void cedf_finish_switch(struct task_struct *prev)
{
	cpu_entry_t* entry = &__get_cpu_var(cedf_cpu_entries);

	BUG_ON(!prev);
	BUG_ON(!entry);

	entry->scheduled = is_realtime(current) ? current : NULL;
}

/*	Prepare a task for running in RT mode
 */
static void cedf_task_new(struct task_struct *t, int on_rq, int running)
{
	unsigned long 		flags;
	cedf_domain_t*	 	cedf = task_cedf(t);
	cpu_entry_t* 		entry;

	BUG_ON(!cedf);

	spin_lock_irqsave(&cedf->slock, flags);
	if (running) {
		entry = &per_cpu(cedf_cpu_entries, task_cpu(t));
		BUG_ON(!entry);
		BUG_ON(entry->scheduled);
		entry->scheduled = t;
		t->rt_param.scheduled_on = task_cpu(t);
	} else
		t->rt_param.scheduled_on = NO_CPU;
	t->rt_param.linked_on = NO_CPU;

	/* setup job params */
	release_at(t, litmus_clock());

	cedf_job_arrival(t);
	spin_unlock_irqrestore(&cedf->slock, flags);
}


static void cedf_task_wake_up(struct task_struct *task)
{
	unsigned long		flags;
	cedf_domain_t*	 	cedf;
	lt_t 			now;

	BUG_ON(!task);

	cedf = task_cedf(task);
	BUG_ON(!cedf);

	spin_lock_irqsave(&cedf->slock, flags);
	/* We need to take suspensions because of semaphores into
	 * account! If a job resumes after being suspended due to acquiring
	 * a semaphore, it should never be treated as a new job release.
	 */
	if (get_rt_flags(task) == RT_F_EXIT_SEM) {
		set_rt_flags(task, RT_F_RUNNING);
	} else {
		now = litmus_clock();
		if (is_tardy(task, now)) {
			/* new sporadic release */
			release_at(task, now);
			sched_trace_task_release(task);
		}
		else if (task->rt.time_slice)
			/* came back in time before deadline
			 */
			set_rt_flags(task, RT_F_RUNNING);
	}
	cedf_job_arrival(task);
	spin_unlock_irqrestore(&cedf->slock, flags);
}


static void cedf_task_block(struct task_struct *t)
{
	unsigned long flags;

	BUG_ON(!t);

	/* unlink if necessary */
	spin_lock_irqsave(&task_cedf(t)->slock, flags);

	t->rt_param.scheduled_on = NO_CPU;
	unlink(t);

	spin_unlock_irqrestore(&task_cedf(t)->slock, flags);

	BUG_ON(!is_realtime(t));
}

static void cedf_task_exit(struct task_struct * t)
{
	unsigned long flags;

	BUG_ON(!t);

	/* unlink if necessary */
	spin_lock_irqsave(&task_cedf(t)->slock, flags);
	unlink(t);
	if (tsk_rt(t)->scheduled_on != NO_CPU) {
		cedf_cpu_entries_array[tsk_rt(t)->scheduled_on]->
			scheduled = NULL;
		tsk_rt(t)->scheduled_on = NO_CPU;
	}
	spin_unlock_irqrestore(&task_cedf(t)->slock, flags);

	BUG_ON(!is_realtime(t));
        TRACE_TASK(t, "RIP\n");
}

static long cedf_admit_task(struct task_struct* tsk)
{
	return (task_cpu(tsk) >= task_cedf(tsk)->first_cpu &&
	        task_cpu(tsk) <= task_cedf(tsk)->last_cpu) ? 0 : -EINVAL;
}


/*	Plugin object	*/
static struct sched_plugin cedf_plugin __cacheline_aligned_in_smp = {
	.plugin_name		= "C-EDF",
	.finish_switch		= cedf_finish_switch,
	.tick			= cedf_tick,
	.task_new		= cedf_task_new,
	.complete_job		= complete_job,
	.task_exit		= cedf_task_exit,
	.schedule		= cedf_schedule,
	.task_wake_up		= cedf_task_wake_up,
	.task_block		= cedf_task_block,
	.admit_task		= cedf_admit_task
};

static void cedf_domain_init(int first_cpu, int last_cpu)
{
	int cpu;

	/* Create new domain for this cluster. */
	cedf_domain_t *new_cedf_domain = kmalloc(sizeof(*new_cedf_domain),
						     GFP_KERNEL);

	/* Initialize cluster domain. */
	edf_domain_init(&new_cedf_domain->domain, NULL,
			cedf_release_jobs);
	new_cedf_domain->first_cpu	= first_cpu;
	new_cedf_domain->last_cpu	= last_cpu;
	INIT_LIST_HEAD(&new_cedf_domain->cedf_cpu_queue);

	/* Assign all cpus in cluster to point to this domain. */
	for (cpu = first_cpu; cpu <= last_cpu; cpu++) {
		remote_cedf(cpu) = new_cedf_domain;
		cedf_domains_array[cpu] = new_cedf_domain;
	}
}

static int __init init_cedf(void)
{
	int cpu;
	cpu_entry_t *entry;

	/* num_online_cpus() should have been set already
	 * if the number of available cpus is less then the cluster
	 * size (currently 4) then it is pointless trying to use
	 * CEDF, so we disable this plugin
	 */
	if(num_online_cpus() < cluster_size) {
		printk(KERN_INFO "Not registering C-EDF plugin: "
			"Num Online Cpus (%d) < Min Cluster Size (%d)\n",
			num_online_cpus(), cluster_size);
		do_cleanup = 0;
		return 0;
	}

	/*
	 * initialize short_cut for per-cpu cedf state;
	 * there may be a problem here if someone removes a cpu
	 * while we are doing this initialization... and if cpus
	 * are added / removed later... is it a _real_ problem for cedf?
	 */
	cedf_cpu_entries_array = kmalloc(
			sizeof(cpu_entry_t *) * num_online_cpus(),
			GFP_KERNEL);

	cedf_domains_array = kmalloc(
			sizeof(cedf_domain_t *) * num_online_cpus(),
			GFP_KERNEL);

	/* initialize CPU state */
	for (cpu = 0; cpu < num_online_cpus(); cpu++)  {
		entry = &per_cpu(cedf_cpu_entries, cpu);
		cedf_cpu_entries_array[cpu] = entry;
		atomic_set(&entry->will_schedule, 0);
		entry->linked    = NULL;
		entry->scheduled = NULL;
		entry->cpu 	 = cpu;
		INIT_LIST_HEAD(&entry->list);
	}

	/* initialize all cluster domains */
	for (cpu = 0; cpu < num_online_cpus(); cpu += cluster_size)
		cedf_domain_init(cpu, cpu+cluster_size-1);

	return register_sched_plugin(&cedf_plugin);
}

static void clean_cedf(void)
{
	if(do_cleanup) {
		kfree(cedf_cpu_entries_array);
		kfree(cedf_domains_array);
	}
}

module_init(init_cedf);
module_exit(clean_cedf);