1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
|
/*
* litmus/sched_cedf.c
*
* Implementation of the C-EDF scheduling algorithm.
*
* This implementation is based on G-EDF:
* - CPUs are clustered around L2 or L3 caches.
* - Clusters topology is automatically detected (this is arch dependent
* and is working only on x86 at the moment --- and only with modern
* cpus that exports cpuid4 information)
* - The plugins _does not_ attempt to put tasks in the right cluster i.e.
* the programmer needs to be aware of the topology to place tasks
* in the desired cluster
* - default clustering is around L2 cache (cache index = 2)
* supported clusters are: L1 (private cache: pedf), L2, L3, ALL (all
* online_cpus are placed in a single cluster).
*
* For details on functions, take a look at sched_gsn_edf.c
*
* Currently, we do not support changes in the number of online cpus.
* If the num_online_cpus() dynamically changes, the plugin is broken.
*
* This version uses the simple approach and serializes all scheduling
* decisions by the use of a queue lock. This is probably not the
* best way to do it, but it should suffice for now.
*/
#include <linux/spinlock.h>
#include <linux/percpu.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <litmus/litmus.h>
#include <litmus/jobs.h>
#include <litmus/preempt.h>
#include <litmus/sched_plugin.h>
#include <litmus/edf_common.h>
#include <litmus/sched_trace.h>
#include <litmus/clustered.h>
#include <litmus/bheap.h>
#ifdef CONFIG_SCHED_CPU_AFFINITY
#include <litmus/affinity.h>
#endif
/* to configure the cluster size */
#include <litmus/litmus_proc.h>
#include <linux/uaccess.h>
/* Reference configuration variable. Determines which cache level is used to
* group CPUs into clusters. GLOBAL_CLUSTER, which is the default, means that
* all CPUs form a single cluster (just like GSN-EDF).
*/
static enum cache_level cluster_config = GLOBAL_CLUSTER;
struct clusterdomain;
/* cpu_entry_t - maintain the linked and scheduled state
*
* A cpu also contains a pointer to the cedf_domain_t cluster
* that owns it (struct clusterdomain*)
*/
typedef struct {
int cpu;
struct clusterdomain* cluster; /* owning cluster */
struct task_struct* linked; /* only RT tasks */
struct task_struct* scheduled; /* only RT tasks */
atomic_t will_schedule; /* prevent unneeded IPIs */
struct bheap_node* hn;
} cpu_entry_t;
/* one cpu_entry_t per CPU */
DEFINE_PER_CPU(cpu_entry_t, cedf_cpu_entries);
#define set_will_schedule() \
(atomic_set(&__get_cpu_var(cedf_cpu_entries).will_schedule, 1))
#define clear_will_schedule() \
(atomic_set(&__get_cpu_var(cedf_cpu_entries).will_schedule, 0))
#define test_will_schedule(cpu) \
(atomic_read(&per_cpu(cedf_cpu_entries, cpu).will_schedule))
/*
* In C-EDF there is a cedf domain _per_ cluster
* The number of clusters is dynamically determined accordingly to the
* total cpu number and the cluster size
*/
typedef struct clusterdomain {
/* rt_domain for this cluster */
rt_domain_t domain;
/* cpus in this cluster */
cpu_entry_t* *cpus;
/* map of this cluster cpus */
cpumask_var_t cpu_map;
/* the cpus queue themselves according to priority in here */
struct bheap_node *heap_node;
struct bheap cpu_heap;
/* lock for this cluster */
#define lock domain.ready_lock
} cedf_domain_t;
/* a cedf_domain per cluster; allocation is done at init/activation time */
cedf_domain_t *cedf;
#define remote_cluster(cpu) ((cedf_domain_t *) per_cpu(cedf_cpu_entries, cpu).cluster)
#define task_cpu_cluster(task) remote_cluster(get_partition(task))
/* Uncomment WANT_ALL_SCHED_EVENTS if you want to see all scheduling
* decisions in the TRACE() log; uncomment VERBOSE_INIT for verbose
* information during the initialization of the plugin (e.g., topology)
#define WANT_ALL_SCHED_EVENTS
*/
#define VERBOSE_INIT
static int cpu_lower_prio(struct bheap_node *_a, struct bheap_node *_b)
{
cpu_entry_t *a, *b;
a = _a->value;
b = _b->value;
/* Note that a and b are inverted: we want the lowest-priority CPU at
* the top of the heap.
*/
return edf_higher_prio(b->linked, a->linked);
}
/* update_cpu_position - Move the cpu entry to the correct place to maintain
* order in the cpu queue. Caller must hold cedf lock.
*/
static void update_cpu_position(cpu_entry_t *entry)
{
cedf_domain_t *cluster = entry->cluster;
if (likely(bheap_node_in_heap(entry->hn)))
bheap_delete(cpu_lower_prio,
&cluster->cpu_heap,
entry->hn);
bheap_insert(cpu_lower_prio, &cluster->cpu_heap, entry->hn);
}
/* caller must hold cedf lock */
static cpu_entry_t* lowest_prio_cpu(cedf_domain_t *cluster)
{
struct bheap_node* hn;
hn = bheap_peek(cpu_lower_prio, &cluster->cpu_heap);
return hn->value;
}
/* link_task_to_cpu - Update the link of a CPU.
* Handles the case where the to-be-linked task is already
* scheduled on a different CPU.
*/
static noinline void link_task_to_cpu(struct task_struct* linked,
cpu_entry_t *entry)
{
cpu_entry_t *sched;
struct task_struct* tmp;
int on_cpu;
BUG_ON(linked && !is_realtime(linked));
/* Currently linked task is set to be unlinked. */
if (entry->linked) {
entry->linked->rt_param.linked_on = NO_CPU;
}
/* Link new task to CPU. */
if (linked) {
set_rt_flags(linked, RT_F_RUNNING);
/* handle task is already scheduled somewhere! */
on_cpu = linked->rt_param.scheduled_on;
if (on_cpu != NO_CPU) {
sched = &per_cpu(cedf_cpu_entries, on_cpu);
/* this should only happen if not linked already */
BUG_ON(sched->linked == linked);
/* If we are already scheduled on the CPU to which we
* wanted to link, we don't need to do the swap --
* we just link ourselves to the CPU and depend on
* the caller to get things right.
*/
if (entry != sched) {
TRACE_TASK(linked,
"already scheduled on %d, updating link.\n",
sched->cpu);
tmp = sched->linked;
linked->rt_param.linked_on = sched->cpu;
sched->linked = linked;
update_cpu_position(sched);
linked = tmp;
}
}
if (linked) /* might be NULL due to swap */
linked->rt_param.linked_on = entry->cpu;
}
entry->linked = linked;
#ifdef WANT_ALL_SCHED_EVENTS
if (linked)
TRACE_TASK(linked, "linked to %d.\n", entry->cpu);
else
TRACE("NULL linked to %d.\n", entry->cpu);
#endif
update_cpu_position(entry);
}
/* unlink - Make sure a task is not linked any longer to an entry
* where it was linked before. Must hold cedf_lock.
*/
static noinline void unlink(struct task_struct* t)
{
cpu_entry_t *entry;
if (t->rt_param.linked_on != NO_CPU) {
/* unlink */
entry = &per_cpu(cedf_cpu_entries, t->rt_param.linked_on);
t->rt_param.linked_on = NO_CPU;
link_task_to_cpu(NULL, entry);
} else if (is_queued(t)) {
/* This is an interesting situation: t is scheduled,
* but was just recently unlinked. It cannot be
* linked anywhere else (because then it would have
* been relinked to this CPU), thus it must be in some
* queue. We must remove it from the list in this
* case.
*
* in C-EDF case is should be somewhere in the queue for
* its domain, therefore and we can get the domain using
* task_cpu_cluster
*/
remove(&(task_cpu_cluster(t))->domain, t);
}
}
/* preempt - force a CPU to reschedule
*/
static void preempt(cpu_entry_t *entry)
{
preempt_if_preemptable(entry->scheduled, entry->cpu);
}
/* requeue - Put an unlinked task into gsn-edf domain.
* Caller must hold cedf_lock.
*/
static noinline void requeue(struct task_struct* task)
{
cedf_domain_t *cluster = task_cpu_cluster(task);
BUG_ON(!task);
/* sanity check before insertion */
BUG_ON(is_queued(task));
if (is_released(task, litmus_clock()))
__add_ready(&cluster->domain, task);
else {
/* it has got to wait */
add_release(&cluster->domain, task);
}
}
#ifdef CONFIG_SCHED_CPU_AFFINITY
static cpu_entry_t* cedf_get_nearest_available_cpu(
cedf_domain_t *cluster, cpu_entry_t* start)
{
cpu_entry_t* affinity;
get_nearest_available_cpu(affinity, start, cedf_cpu_entries, -1);
/* make sure CPU is in our cluster */
if (affinity && cpu_isset(affinity->cpu, *cluster->cpu_map))
return(affinity);
else
return(NULL);
}
#endif
/* check for any necessary preemptions */
static void check_for_preemptions(cedf_domain_t *cluster)
{
struct task_struct *task;
cpu_entry_t* last;
for(last = lowest_prio_cpu(cluster);
edf_preemption_needed(&cluster->domain, last->linked);
last = lowest_prio_cpu(cluster)) {
/* preemption necessary */
task = __take_ready(&cluster->domain);
TRACE("check_for_preemptions: attempting to link task %d to %d\n",
task->pid, last->cpu);
#ifdef CONFIG_SCHED_CPU_AFFINITY
{
cpu_entry_t* affinity =
cedf_get_nearest_available_cpu(cluster,
&per_cpu(cedf_cpu_entries, task_cpu(task)));
if(affinity)
last = affinity;
else if(last->linked)
requeue(last->linked);
}
#else
if (last->linked)
requeue(last->linked);
#endif
link_task_to_cpu(task, last);
preempt(last);
}
}
/* cedf_job_arrival: task is either resumed or released */
static noinline void cedf_job_arrival(struct task_struct* task)
{
cedf_domain_t *cluster = task_cpu_cluster(task);
BUG_ON(!task);
requeue(task);
check_for_preemptions(cluster);
}
static void cedf_release_jobs(rt_domain_t* rt, struct bheap* tasks)
{
cedf_domain_t* cluster = container_of(rt, cedf_domain_t, domain);
unsigned long flags;
raw_spin_lock_irqsave(&cluster->lock, flags);
__merge_ready(&cluster->domain, tasks);
check_for_preemptions(cluster);
raw_spin_unlock_irqrestore(&cluster->lock, flags);
}
/* caller holds cedf_lock */
static noinline void job_completion(struct task_struct *t, int forced)
{
BUG_ON(!t);
sched_trace_task_completion(t, forced);
TRACE_TASK(t, "job_completion().\n");
/* set flags */
set_rt_flags(t, RT_F_SLEEP);
/* prepare for next period */
prepare_for_next_period(t);
if (is_released(t, litmus_clock()))
sched_trace_task_release(t);
/* unlink */
unlink(t);
/* requeue
* But don't requeue a blocking task. */
if (is_running(t))
cedf_job_arrival(t);
}
/* cedf_tick - this function is called for every local timer
* interrupt.
*
* checks whether the current task has expired and checks
* whether we need to preempt it if it has not expired
*/
static void cedf_tick(struct task_struct* t)
{
if (is_realtime(t) && budget_enforced(t) && budget_exhausted(t)) {
if (!is_np(t)) {
/* np tasks will be preempted when they become
* preemptable again
*/
litmus_reschedule_local();
set_will_schedule();
TRACE("cedf_scheduler_tick: "
"%d is preemptable "
" => FORCE_RESCHED\n", t->pid);
} else if (is_user_np(t)) {
TRACE("cedf_scheduler_tick: "
"%d is non-preemptable, "
"preemption delayed.\n", t->pid);
request_exit_np(t);
}
}
}
/* Getting schedule() right is a bit tricky. schedule() may not make any
* assumptions on the state of the current task since it may be called for a
* number of reasons. The reasons include a scheduler_tick() determined that it
* was necessary, because sys_exit_np() was called, because some Linux
* subsystem determined so, or even (in the worst case) because there is a bug
* hidden somewhere. Thus, we must take extreme care to determine what the
* current state is.
*
* The CPU could currently be scheduling a task (or not), be linked (or not).
*
* The following assertions for the scheduled task could hold:
*
* - !is_running(scheduled) // the job blocks
* - scheduled->timeslice == 0 // the job completed (forcefully)
* - get_rt_flag() == RT_F_SLEEP // the job completed (by syscall)
* - linked != scheduled // we need to reschedule (for any reason)
* - is_np(scheduled) // rescheduling must be delayed,
* sys_exit_np must be requested
*
* Any of these can occur together.
*/
static struct task_struct* cedf_schedule(struct task_struct * prev)
{
cpu_entry_t* entry = &__get_cpu_var(cedf_cpu_entries);
cedf_domain_t *cluster = entry->cluster;
int out_of_time, sleep, preempt, np, exists, blocks;
struct task_struct* next = NULL;
raw_spin_lock(&cluster->lock);
clear_will_schedule();
/* sanity checking */
BUG_ON(entry->scheduled && entry->scheduled != prev);
BUG_ON(entry->scheduled && !is_realtime(prev));
BUG_ON(is_realtime(prev) && !entry->scheduled);
/* (0) Determine state */
exists = entry->scheduled != NULL;
blocks = exists && !is_running(entry->scheduled);
out_of_time = exists &&
budget_enforced(entry->scheduled) &&
budget_exhausted(entry->scheduled);
np = exists && is_np(entry->scheduled);
sleep = exists && get_rt_flags(entry->scheduled) == RT_F_SLEEP;
preempt = entry->scheduled != entry->linked;
#ifdef WANT_ALL_SCHED_EVENTS
TRACE_TASK(prev, "invoked cedf_schedule.\n");
#endif
if (exists)
TRACE_TASK(prev,
"blocks:%d out_of_time:%d np:%d sleep:%d preempt:%d "
"state:%d sig:%d\n",
blocks, out_of_time, np, sleep, preempt,
prev->state, signal_pending(prev));
if (entry->linked && preempt)
TRACE_TASK(prev, "will be preempted by %s/%d\n",
entry->linked->comm, entry->linked->pid);
/* If a task blocks we have no choice but to reschedule.
*/
if (blocks)
unlink(entry->scheduled);
/* Request a sys_exit_np() call if we would like to preempt but cannot.
* We need to make sure to update the link structure anyway in case
* that we are still linked. Multiple calls to request_exit_np() don't
* hurt.
*/
if (np && (out_of_time || preempt || sleep)) {
unlink(entry->scheduled);
request_exit_np(entry->scheduled);
}
/* Any task that is preemptable and either exhausts its execution
* budget or wants to sleep completes. We may have to reschedule after
* this. Don't do a job completion if we block (can't have timers running
* for blocked jobs). Preemption go first for the same reason.
*/
if (!np && (out_of_time || sleep) && !blocks && !preempt)
job_completion(entry->scheduled, !sleep);
/* Link pending task if we became unlinked.
*/
if (!entry->linked)
link_task_to_cpu(__take_ready(&cluster->domain), entry);
/* The final scheduling decision. Do we need to switch for some reason?
* If linked is different from scheduled, then select linked as next.
*/
if ((!np || blocks) &&
entry->linked != entry->scheduled) {
/* Schedule a linked job? */
if (entry->linked) {
entry->linked->rt_param.scheduled_on = entry->cpu;
next = entry->linked;
}
if (entry->scheduled) {
/* not gonna be scheduled soon */
entry->scheduled->rt_param.scheduled_on = NO_CPU;
TRACE_TASK(entry->scheduled, "scheduled_on = NO_CPU\n");
}
} else
/* Only override Linux scheduler if we have a real-time task
* scheduled that needs to continue.
*/
if (exists)
next = prev;
sched_state_task_picked();
raw_spin_unlock(&cluster->lock);
#ifdef WANT_ALL_SCHED_EVENTS
TRACE("cedf_lock released, next=0x%p\n", next);
if (next)
TRACE_TASK(next, "scheduled at %llu\n", litmus_clock());
else if (exists && !next)
TRACE("becomes idle at %llu.\n", litmus_clock());
#endif
return next;
}
/* _finish_switch - we just finished the switch away from prev
*/
static void cedf_finish_switch(struct task_struct *prev)
{
cpu_entry_t* entry = &__get_cpu_var(cedf_cpu_entries);
entry->scheduled = is_realtime(current) ? current : NULL;
#ifdef WANT_ALL_SCHED_EVENTS
TRACE_TASK(prev, "switched away from\n");
#endif
}
/* Prepare a task for running in RT mode
*/
static void cedf_task_new(struct task_struct * t, int on_rq, int running)
{
unsigned long flags;
cpu_entry_t* entry;
cedf_domain_t* cluster;
TRACE("gsn edf: task new %d\n", t->pid);
/* the cluster doesn't change even if t is running */
cluster = task_cpu_cluster(t);
raw_spin_lock_irqsave(&cluster->domain.ready_lock, flags);
/* setup job params */
release_at(t, litmus_clock());
if (running) {
entry = &per_cpu(cedf_cpu_entries, task_cpu(t));
BUG_ON(entry->scheduled);
entry->scheduled = t;
tsk_rt(t)->scheduled_on = task_cpu(t);
} else {
t->rt_param.scheduled_on = NO_CPU;
}
t->rt_param.linked_on = NO_CPU;
cedf_job_arrival(t);
raw_spin_unlock_irqrestore(&(cluster->domain.ready_lock), flags);
}
static void cedf_task_wake_up(struct task_struct *task)
{
unsigned long flags;
lt_t now;
cedf_domain_t *cluster;
TRACE_TASK(task, "wake_up at %llu\n", litmus_clock());
cluster = task_cpu_cluster(task);
raw_spin_lock_irqsave(&cluster->lock, flags);
/* We need to take suspensions because of semaphores into
* account! If a job resumes after being suspended due to acquiring
* a semaphore, it should never be treated as a new job release.
*/
if (get_rt_flags(task) == RT_F_EXIT_SEM) {
set_rt_flags(task, RT_F_RUNNING);
} else {
now = litmus_clock();
if (is_tardy(task, now)) {
/* new sporadic release */
release_at(task, now);
sched_trace_task_release(task);
}
else {
if (task->rt.time_slice) {
/* came back in time before deadline
*/
set_rt_flags(task, RT_F_RUNNING);
}
}
}
cedf_job_arrival(task);
raw_spin_unlock_irqrestore(&cluster->lock, flags);
}
static void cedf_task_block(struct task_struct *t)
{
unsigned long flags;
cedf_domain_t *cluster;
TRACE_TASK(t, "block at %llu\n", litmus_clock());
cluster = task_cpu_cluster(t);
/* unlink if necessary */
raw_spin_lock_irqsave(&cluster->lock, flags);
unlink(t);
raw_spin_unlock_irqrestore(&cluster->lock, flags);
BUG_ON(!is_realtime(t));
}
static void cedf_task_exit(struct task_struct * t)
{
unsigned long flags;
cedf_domain_t *cluster = task_cpu_cluster(t);
/* unlink if necessary */
raw_spin_lock_irqsave(&cluster->lock, flags);
unlink(t);
if (tsk_rt(t)->scheduled_on != NO_CPU) {
cpu_entry_t *cpu;
cpu = &per_cpu(cedf_cpu_entries, tsk_rt(t)->scheduled_on);
cpu->scheduled = NULL;
tsk_rt(t)->scheduled_on = NO_CPU;
}
raw_spin_unlock_irqrestore(&cluster->lock, flags);
BUG_ON(!is_realtime(t));
TRACE_TASK(t, "RIP\n");
}
static long cedf_admit_task(struct task_struct* tsk)
{
return task_cpu(tsk) == tsk->rt_param.task_params.cpu ? 0 : -EINVAL;
}
/* total number of cluster */
static int num_clusters;
/* we do not support cluster of different sizes */
static unsigned int cluster_size;
#ifdef VERBOSE_INIT
static void print_cluster_topology(cpumask_var_t mask, int cpu)
{
int chk;
char buf[255];
chk = cpulist_scnprintf(buf, 254, mask);
buf[chk] = '\0';
printk(KERN_INFO "CPU = %d, shared cpu(s) = %s\n", cpu, buf);
}
#endif
static int clusters_allocated = 0;
static void cleanup_cedf(void)
{
int i;
if (clusters_allocated) {
for (i = 0; i < num_clusters; i++) {
kfree(cedf[i].cpus);
kfree(cedf[i].heap_node);
free_cpumask_var(cedf[i].cpu_map);
}
kfree(cedf);
}
}
static long cedf_activate_plugin(void)
{
int i, j, cpu, ccpu, cpu_count;
cpu_entry_t *entry;
cpumask_var_t mask;
int chk = 0;
/* de-allocate old clusters, if any */
cleanup_cedf();
printk(KERN_INFO "C-EDF: Activate Plugin, cluster configuration = %d\n",
cluster_config);
/* need to get cluster_size first */
if(!zalloc_cpumask_var(&mask, GFP_ATOMIC))
return -ENOMEM;
if (unlikely(cluster_config == GLOBAL_CLUSTER)) {
cluster_size = num_online_cpus();
} else {
chk = get_shared_cpu_map(mask, 0, cluster_config);
if (chk) {
/* if chk != 0 then it is the max allowed index */
printk(KERN_INFO "C-EDF: Cluster configuration = %d "
"is not supported on this hardware.\n",
cluster_config);
/* User should notice that the configuration failed, so
* let's bail out. */
return -EINVAL;
}
cluster_size = cpumask_weight(mask);
}
if ((num_online_cpus() % cluster_size) != 0) {
/* this can't be right, some cpus are left out */
printk(KERN_ERR "C-EDF: Trying to group %d cpus in %d!\n",
num_online_cpus(), cluster_size);
return -1;
}
num_clusters = num_online_cpus() / cluster_size;
printk(KERN_INFO "C-EDF: %d cluster(s) of size = %d\n",
num_clusters, cluster_size);
/* initialize clusters */
cedf = kmalloc(num_clusters * sizeof(cedf_domain_t), GFP_ATOMIC);
for (i = 0; i < num_clusters; i++) {
cedf[i].cpus = kmalloc(cluster_size * sizeof(cpu_entry_t),
GFP_ATOMIC);
cedf[i].heap_node = kmalloc(
cluster_size * sizeof(struct bheap_node),
GFP_ATOMIC);
bheap_init(&(cedf[i].cpu_heap));
edf_domain_init(&(cedf[i].domain), NULL, cedf_release_jobs);
if(!zalloc_cpumask_var(&cedf[i].cpu_map, GFP_ATOMIC))
return -ENOMEM;
}
/* cycle through cluster and add cpus to them */
for (i = 0; i < num_clusters; i++) {
for_each_online_cpu(cpu) {
/* check if the cpu is already in a cluster */
for (j = 0; j < num_clusters; j++)
if (cpumask_test_cpu(cpu, cedf[j].cpu_map))
break;
/* if it is in a cluster go to next cpu */
if (j < num_clusters &&
cpumask_test_cpu(cpu, cedf[j].cpu_map))
continue;
/* this cpu isn't in any cluster */
/* get the shared cpus */
if (unlikely(cluster_config == GLOBAL_CLUSTER))
cpumask_copy(mask, cpu_online_mask);
else
get_shared_cpu_map(mask, cpu, cluster_config);
cpumask_copy(cedf[i].cpu_map, mask);
#ifdef VERBOSE_INIT
print_cluster_topology(mask, cpu);
#endif
/* add cpus to current cluster and init cpu_entry_t */
cpu_count = 0;
for_each_cpu(ccpu, cedf[i].cpu_map) {
entry = &per_cpu(cedf_cpu_entries, ccpu);
cedf[i].cpus[cpu_count] = entry;
atomic_set(&entry->will_schedule, 0);
entry->cpu = ccpu;
entry->cluster = &cedf[i];
entry->hn = &(cedf[i].heap_node[cpu_count]);
bheap_node_init(&entry->hn, entry);
cpu_count++;
entry->linked = NULL;
entry->scheduled = NULL;
update_cpu_position(entry);
}
/* done with this cluster */
break;
}
}
free_cpumask_var(mask);
clusters_allocated = 1;
return 0;
}
/* Plugin object */
static struct sched_plugin cedf_plugin __cacheline_aligned_in_smp = {
.plugin_name = "C-EDF",
.finish_switch = cedf_finish_switch,
.tick = cedf_tick,
.task_new = cedf_task_new,
.complete_job = complete_job,
.task_exit = cedf_task_exit,
.schedule = cedf_schedule,
.task_wake_up = cedf_task_wake_up,
.task_block = cedf_task_block,
.admit_task = cedf_admit_task,
.activate_plugin = cedf_activate_plugin,
};
static struct proc_dir_entry *cluster_file = NULL, *cedf_dir = NULL;
static int __init init_cedf(void)
{
int err, fs;
err = register_sched_plugin(&cedf_plugin);
if (!err) {
fs = make_plugin_proc_dir(&cedf_plugin, &cedf_dir);
if (!fs)
cluster_file = create_cluster_file(cedf_dir, &cluster_config);
else
printk(KERN_ERR "Could not allocate C-EDF procfs dir.\n");
}
return err;
}
static void clean_cedf(void)
{
cleanup_cedf();
if (cluster_file)
remove_proc_entry("cluster", cedf_dir);
if (cedf_dir)
remove_plugin_proc_dir(&cedf_plugin);
}
module_init(init_cedf);
module_exit(clean_cedf);
|