1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
|
/*
* litmus/rt_domain.c
*
* LITMUS real-time infrastructure. This file contains the
* functions that manipulate RT domains. RT domains are an abstraction
* of a ready queue and a release queue.
*/
#include <linux/percpu.h>
#include <linux/sched.h>
#include <linux/list.h>
#include <linux/slab.h>
#include <litmus/litmus.h>
#include <litmus/sched_plugin.h>
#include <litmus/sched_trace.h>
#include <litmus/rt_domain.h>
#include <litmus/trace.h>
#include <litmus/bheap.h>
/* Uncomment when debugging timer races... */
#if 0
#define VTRACE_TASK TRACE_TASK
#define VTRACE TRACE
#else
#define VTRACE_TASK(t, fmt, args...) /* shut up */
#define VTRACE(fmt, args...) /* be quiet already */
#endif
static int dummy_resched(rt_domain_t *rt)
{
return 0;
}
static int dummy_order(struct bheap_node* a, struct bheap_node* b)
{
return 0;
}
/* default implementation: use default lock */
static void default_release_jobs(rt_domain_t* rt, struct bheap* tasks)
{
merge_ready(rt, tasks);
}
static unsigned int time2slot(lt_t time)
{
return (unsigned int) time2quanta(time, FLOOR) % RELEASE_QUEUE_SLOTS;
}
static enum hrtimer_restart on_release_timer(struct hrtimer *timer)
{
unsigned long flags;
struct release_heap* rh;
rh = container_of(timer, struct release_heap, timer);
TS_RELEASE_LATENCY(rh->release_time);
VTRACE("on_release_timer(0x%p) starts.\n", timer);
TS_RELEASE_START;
raw_spin_lock_irqsave(&rh->dom->release_lock, flags);
VTRACE("CB has the release_lock 0x%p\n", &rh->dom->release_lock);
/* remove from release queue */
list_del(&rh->list);
raw_spin_unlock_irqrestore(&rh->dom->release_lock, flags);
VTRACE("CB returned release_lock 0x%p\n", &rh->dom->release_lock);
/* call release callback */
rh->dom->release_jobs(rh->dom, &rh->heap);
/* WARNING: rh can be referenced from other CPUs from now on. */
TS_RELEASE_END;
VTRACE("on_release_timer(0x%p) ends.\n", timer);
return HRTIMER_NORESTART;
}
/* allocated in litmus.c */
struct kmem_cache * release_heap_cache;
struct release_heap* release_heap_alloc(int gfp_flags)
{
struct release_heap* rh;
rh= kmem_cache_alloc(release_heap_cache, gfp_flags);
if (rh) {
/* initialize timer */
hrtimer_init(&rh->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
rh->timer.function = on_release_timer;
}
return rh;
}
void release_heap_free(struct release_heap* rh)
{
/* make sure timer is no longer in use */
hrtimer_cancel(&rh->timer);
kmem_cache_free(release_heap_cache, rh);
}
/* Caller must hold release lock.
* Will return heap for given time. If no such heap exists prior to
* the invocation it will be created.
*/
static struct release_heap* get_release_heap(rt_domain_t *rt,
struct task_struct* t,
int use_task_heap)
{
struct list_head* pos;
struct release_heap* heap = NULL;
struct release_heap* rh;
lt_t release_time = get_release(t);
unsigned int slot = time2slot(release_time);
/* initialize pos for the case that the list is empty */
pos = rt->release_queue.slot[slot].next;
list_for_each(pos, &rt->release_queue.slot[slot]) {
rh = list_entry(pos, struct release_heap, list);
if (release_time == rh->release_time) {
/* perfect match -- this happens on hyperperiod
* boundaries
*/
heap = rh;
break;
} else if (lt_before(release_time, rh->release_time)) {
/* we need to insert a new node since rh is
* already in the future
*/
break;
}
}
if (!heap && use_task_heap) {
/* use pre-allocated release heap */
rh = tsk_rt(t)->rel_heap;
rh->dom = rt;
rh->release_time = release_time;
/* add to release queue */
list_add(&rh->list, pos->prev);
heap = rh;
}
return heap;
}
static void reinit_release_heap(struct task_struct* t)
{
struct release_heap* rh;
/* use pre-allocated release heap */
rh = tsk_rt(t)->rel_heap;
/* Make sure it is safe to use. The timer callback could still
* be executing on another CPU; hrtimer_cancel() will wait
* until the timer callback has completed. However, under no
* circumstances should the timer be active (= yet to be
* triggered).
*
* WARNING: If the CPU still holds the release_lock at this point,
* deadlock may occur!
*/
BUG_ON(hrtimer_cancel(&rh->timer));
/* initialize */
bheap_init(&rh->heap);
#ifdef CONFIG_RELEASE_MASTER
atomic_set(&rh->info.state, HRTIMER_START_ON_INACTIVE);
#endif
}
/* arm_release_timer() - start local release timer or trigger
* remote timer (pull timer)
*
* Called by add_release() with:
* - tobe_lock taken
* - IRQ disabled
*/
#ifdef CONFIG_RELEASE_MASTER
#define arm_release_timer(t) arm_release_timer_on((t), NO_CPU)
static void arm_release_timer_on(rt_domain_t *_rt , int target_cpu)
#else
static void arm_release_timer(rt_domain_t *_rt)
#endif
{
rt_domain_t *rt = _rt;
struct list_head list;
struct list_head *pos, *safe;
struct task_struct* t;
struct release_heap* rh;
VTRACE("arm_release_timer() at %llu\n", litmus_clock());
list_replace_init(&rt->tobe_released, &list);
list_for_each_safe(pos, safe, &list) {
/* pick task of work list */
t = list_entry(pos, struct task_struct, rt_param.list);
sched_trace_task_release(t);
list_del(pos);
/* put into release heap while holding release_lock */
raw_spin_lock(&rt->release_lock);
VTRACE_TASK(t, "I have the release_lock 0x%p\n", &rt->release_lock);
rh = get_release_heap(rt, t, 0);
if (!rh) {
/* need to use our own, but drop lock first */
raw_spin_unlock(&rt->release_lock);
VTRACE_TASK(t, "Dropped release_lock 0x%p\n",
&rt->release_lock);
reinit_release_heap(t);
VTRACE_TASK(t, "release_heap ready\n");
raw_spin_lock(&rt->release_lock);
VTRACE_TASK(t, "Re-acquired release_lock 0x%p\n",
&rt->release_lock);
rh = get_release_heap(rt, t, 1);
}
bheap_insert(rt->order, &rh->heap, tsk_rt(t)->heap_node);
VTRACE_TASK(t, "arm_release_timer(): added to release heap\n");
raw_spin_unlock(&rt->release_lock);
VTRACE_TASK(t, "Returned the release_lock 0x%p\n", &rt->release_lock);
/* To avoid arming the timer multiple times, we only let the
* owner do the arming (which is the "first" task to reference
* this release_heap anyway).
*/
if (rh == tsk_rt(t)->rel_heap) {
VTRACE_TASK(t, "arming timer 0x%p\n", &rh->timer);
if (!hrtimer_is_hres_active(&rh->timer)) {
TRACE_TASK(t, "WARNING: no hires timer!!!\n");
}
/* we cannot arm the timer using hrtimer_start()
* as it may deadlock on rq->lock
*
* PINNED mode is ok on both local and remote CPU
*/
#ifdef CONFIG_RELEASE_MASTER
if (rt->release_master == NO_CPU &&
target_cpu == NO_CPU)
#endif
__hrtimer_start_range_ns(&rh->timer,
ns_to_ktime(rh->release_time),
0, HRTIMER_MODE_ABS_PINNED, 0);
#ifdef CONFIG_RELEASE_MASTER
else
hrtimer_start_on(
/* target_cpu overrides release master */
(target_cpu != NO_CPU ?
target_cpu : rt->release_master),
&rh->info, &rh->timer,
ns_to_ktime(rh->release_time),
HRTIMER_MODE_ABS_PINNED);
#endif
} else
VTRACE_TASK(t, "0x%p is not my timer\n", &rh->timer);
}
}
void rt_domain_init(rt_domain_t *rt,
bheap_prio_t order,
check_resched_needed_t check,
release_jobs_t release
)
{
int i;
BUG_ON(!rt);
if (!check)
check = dummy_resched;
if (!release)
release = default_release_jobs;
if (!order)
order = dummy_order;
#ifdef CONFIG_RELEASE_MASTER
rt->release_master = NO_CPU;
#endif
bheap_init(&rt->ready_queue);
INIT_LIST_HEAD(&rt->tobe_released);
for (i = 0; i < RELEASE_QUEUE_SLOTS; i++)
INIT_LIST_HEAD(&rt->release_queue.slot[i]);
raw_spin_lock_init(&rt->ready_lock);
raw_spin_lock_init(&rt->release_lock);
raw_spin_lock_init(&rt->tobe_lock);
rt->check_resched = check;
rt->release_jobs = release;
rt->order = order;
}
/* add_ready - add a real-time task to the rt ready queue. It must be runnable.
* @new: the newly released task
*/
void __add_ready(rt_domain_t* rt, struct task_struct *new)
{
TRACE("rt: adding %s/%d (%llu, %llu, %llu) rel=%llu "
"to ready queue at %llu\n",
new->comm, new->pid,
get_exec_cost(new), get_rt_period(new), get_rt_relative_deadline(new),
get_release(new), litmus_clock());
BUG_ON(bheap_node_in_heap(tsk_rt(new)->heap_node));
bheap_insert(rt->order, &rt->ready_queue, tsk_rt(new)->heap_node);
rt->check_resched(rt);
}
/* merge_ready - Add a sorted set of tasks to the rt ready queue. They must be runnable.
* @tasks - the newly released tasks
*/
void __merge_ready(rt_domain_t* rt, struct bheap* tasks)
{
bheap_union(rt->order, &rt->ready_queue, tasks);
rt->check_resched(rt);
}
#ifdef CONFIG_RELEASE_MASTER
void __add_release_on(rt_domain_t* rt, struct task_struct *task,
int target_cpu)
{
TRACE_TASK(task, "add_release_on(), rel=%llu, target=%d\n",
get_release(task), target_cpu);
list_add(&tsk_rt(task)->list, &rt->tobe_released);
task->rt_param.domain = rt;
arm_release_timer_on(rt, target_cpu);
}
#endif
/* add_release - add a real-time task to the rt release queue.
* @task: the sleeping task
*/
void __add_release(rt_domain_t* rt, struct task_struct *task)
{
TRACE_TASK(task, "add_release(), rel=%llu\n", get_release(task));
list_add(&tsk_rt(task)->list, &rt->tobe_released);
task->rt_param.domain = rt;
arm_release_timer(rt);
}
|