1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
|
/*
* litmus.c -- Implementation of the LITMUS syscalls,
* the LITMUS intialization code,
* and the procfs interface..
*/
#include <asm/uaccess.h>
#include <linux/uaccess.h>
#include <linux/sysrq.h>
#include <linux/sched.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/reboot.h>
#include <linux/stop_machine.h>
#include <litmus/litmus.h>
#include <litmus/bheap.h>
#include <litmus/trace.h>
#include <litmus/rt_domain.h>
#include <litmus/litmus_proc.h>
#include <litmus/sched_trace.h>
#ifdef CONFIG_SCHED_CPU_AFFINITY
#include <litmus/affinity.h>
#endif
#ifdef CONFIG_LITMUS_NVIDIA
#include <litmus/nvidia_info.h>
#endif
#ifdef CONFIG_REALTIME_AUX_TASKS
#include <litmus/aux_tasks.h>
#endif
/* Number of RT tasks that exist in the system */
atomic_t rt_task_count = ATOMIC_INIT(0);
/* Give log messages sequential IDs. */
atomic_t __log_seq_no = ATOMIC_INIT(0);
#ifdef CONFIG_RELEASE_MASTER
/* current master CPU for handling timer IRQs */
atomic_t release_master_cpu = ATOMIC_INIT(NO_CPU);
#endif
static struct kmem_cache * bheap_node_cache;
extern struct kmem_cache * release_heap_cache;
struct bheap_node* bheap_node_alloc(int gfp_flags)
{
return kmem_cache_alloc(bheap_node_cache, gfp_flags);
}
void bheap_node_free(struct bheap_node* hn)
{
kmem_cache_free(bheap_node_cache, hn);
}
struct release_heap* release_heap_alloc(int gfp_flags);
void release_heap_free(struct release_heap* rh);
/*
* sys_set_task_rt_param
* @pid: Pid of the task which scheduling parameters must be changed
* @param: New real-time extension parameters such as the execution cost and
* period
* Syscall for manipulating with task rt extension params
* Returns EFAULT if param is NULL.
* ESRCH if pid is not corrsponding
* to a valid task.
* EINVAL if either period or execution cost is <=0
* EPERM if pid is a real-time task
* 0 if success
*
* Only non-real-time tasks may be configured with this system call
* to avoid races with the scheduler. In practice, this means that a
* task's parameters must be set _before_ calling sys_prepare_rt_task()
*
* find_task_by_vpid() assumes that we are in the same namespace of the
* target.
*/
asmlinkage long sys_set_rt_task_param(pid_t pid, struct rt_task __user * param)
{
struct rt_task tp;
struct task_struct *target;
int retval = -EINVAL;
printk("Setting up rt task parameters for process %d.\n", pid);
if (pid < 0 || param == 0) {
goto out;
}
if (copy_from_user(&tp, param, sizeof(tp))) {
retval = -EFAULT;
goto out;
}
/* Task search and manipulation must be protected */
read_lock_irq(&tasklist_lock);
if (!(target = find_task_by_vpid(pid))) {
retval = -ESRCH;
goto out_unlock;
}
if (is_realtime(target)) {
/* The task is already a real-time task.
* We cannot not allow parameter changes at this point.
*/
retval = -EBUSY;
goto out_unlock;
}
/* set relative deadline to be implicit if left unspecified */
if (tp.relative_deadline == 0)
tp.relative_deadline = tp.period;
if (tp.exec_cost <= 0)
goto out_unlock;
if (tp.period <= 0)
goto out_unlock;
if (!cpu_online(tp.cpu))
goto out_unlock;
if (min(tp.relative_deadline, tp.period) < tp.exec_cost) /*density check*/
{
printk(KERN_INFO "litmus: real-time task %d rejected "
"because task density > 1.0\n", pid);
goto out_unlock;
}
if (tp.cls != RT_CLASS_HARD &&
tp.cls != RT_CLASS_SOFT &&
tp.cls != RT_CLASS_BEST_EFFORT)
{
printk(KERN_INFO "litmus: real-time task %d rejected "
"because its class is invalid\n", pid);
goto out_unlock;
}
if (tp.budget_policy != NO_ENFORCEMENT &&
tp.budget_policy != QUANTUM_ENFORCEMENT &&
tp.budget_policy != PRECISE_ENFORCEMENT)
{
printk(KERN_INFO "litmus: real-time task %d rejected "
"because unsupported budget enforcement policy "
"specified (%d)\n",
pid, tp.budget_policy);
goto out_unlock;
}
if (tp.budget_signal_policy != NO_SIGNALS &&
tp.budget_signal_policy != QUANTUM_SIGNALS &&
tp.budget_signal_policy != PRECISE_SIGNALS)
{
printk(KERN_INFO "litmus: real-time task %d rejected "
"because unsupported budget signalling policy "
"specified (%d)\n",
pid, tp.budget_signal_policy);
goto out_unlock;
}
target->rt_param.task_params = tp;
retval = 0;
out_unlock:
read_unlock_irq(&tasklist_lock);
out:
return retval;
}
/*
* Getter of task's RT params
* returns EINVAL if param or pid is NULL
* returns ESRCH if pid does not correspond to a valid task
* returns EFAULT if copying of parameters has failed.
*
* find_task_by_vpid() assumes that we are in the same namespace of the
* target.
*/
asmlinkage long sys_get_rt_task_param(pid_t pid, struct rt_task __user * param)
{
int retval = -EINVAL;
struct task_struct *source;
struct rt_task lp;
if (param == 0 || pid < 0)
goto out;
read_lock(&tasklist_lock);
if (!(source = find_task_by_vpid(pid))) {
retval = -ESRCH;
goto out_unlock;
}
lp = source->rt_param.task_params;
read_unlock(&tasklist_lock);
/* Do copying outside the lock */
retval =
copy_to_user(param, &lp, sizeof(lp)) ? -EFAULT : 0;
return retval;
out_unlock:
read_unlock(&tasklist_lock);
out:
return retval;
}
/*
* This is the crucial function for periodic task implementation,
* It checks if a task is periodic, checks if such kind of sleep
* is permitted and calls plugin-specific sleep, which puts the
* task into a wait array.
* returns 0 on successful wakeup
* returns EPERM if current conditions do not permit such sleep
* returns EINVAL if current task is not able to go to sleep
*/
asmlinkage long sys_complete_job(void)
{
int retval = -EPERM;
if (!is_realtime(current)) {
retval = -EINVAL;
goto out;
}
/* Task with negative or zero period cannot sleep */
if (get_rt_period(current) <= 0) {
retval = -EINVAL;
goto out;
}
/* The plugin has to put the task into an
* appropriate queue and call schedule
*/
retval = litmus->complete_job();
out:
return retval;
}
/* This is an "improved" version of sys_complete_job that
* addresses the problem of unintentionally missing a job after
* an overrun.
*
* returns 0 on successful wakeup
* returns EPERM if current conditions do not permit such sleep
* returns EINVAL if current task is not able to go to sleep
*/
asmlinkage long sys_wait_for_job_release(unsigned int job)
{
int retval = -EPERM;
if (!is_realtime(current)) {
retval = -EINVAL;
goto out;
}
/* Task with negative or zero period cannot sleep */
if (get_rt_period(current) <= 0) {
retval = -EINVAL;
goto out;
}
retval = 0;
/* first wait until we have "reached" the desired job
*
* This implementation has at least two problems:
*
* 1) It doesn't gracefully handle the wrap around of
* job_no. Since LITMUS is a prototype, this is not much
* of a problem right now.
*
* 2) It is theoretically racy if a job release occurs
* between checking job_no and calling sleep_next_period().
* A proper solution would requiring adding another callback
* in the plugin structure and testing the condition with
* interrupts disabled.
*
* FIXME: At least problem 2 should be taken care of eventually.
*/
while (!retval && job > current->rt_param.job_params.job_no)
/* If the last job overran then job <= job_no and we
* don't send the task to sleep.
*/
retval = litmus->complete_job();
out:
return retval;
}
/* This is a helper syscall to query the current job sequence number.
*
* returns 0 on successful query
* returns EPERM if task is not a real-time task.
* returns EFAULT if &job is not a valid pointer.
*/
asmlinkage long sys_query_job_no(unsigned int __user *job)
{
int retval = -EPERM;
if (is_realtime(current))
retval = put_user(current->rt_param.job_params.job_no, job);
return retval;
}
/* sys_null_call() is only used for determining raw system call
* overheads (kernel entry, kernel exit). It has no useful side effects.
* If ts is non-NULL, then the current Feather-Trace time is recorded.
*/
asmlinkage long sys_null_call(cycles_t __user *ts)
{
long ret = 0;
cycles_t now;
if (ts) {
now = get_cycles();
ret = put_user(now, ts);
}
return ret;
}
asmlinkage long sys_sched_trace_event(int event, struct st_inject_args __user *__args)
{
long retval = 0;
struct task_struct* t = current;
struct st_inject_args args;
if ((event != ST_INJECT_ACTION) && is_realtime(t)) {
printk(KERN_WARNING "Only non-real-time tasks may inject sched_trace events (except for ST_INJECT_ACTION).\n");
retval = -EINVAL;
goto out;
}
if (__args && copy_from_user(&args, __args, sizeof(args))) {
retval = -EFAULT;
goto out;
}
switch(event) {
/*************************************/
/* events that don't need parameters */
/*************************************/
case ST_INJECT_NAME:
sched_trace_task_name(t);
break;
case ST_INJECT_PARAM:
/* presumes sporadic_task_ns() has already been called
* and valid data has been initialized even if the calling
* task is SCHED_NORMAL. */
sched_trace_task_param(t);
break;
/*******************************/
/* events that need parameters */
/*******************************/
case ST_INJECT_COMPLETION:
if (!__args) {
retval = -EINVAL;
goto out;
}
/* slam in the data */
tsk_rt(t)->job_params.job_no = args.job_no;
sched_trace_task_completion(t, 0);
break;
case ST_INJECT_RELEASE:
if (!__args) {
retval = -EINVAL;
goto out;
}
/* slam in the data */
get_release(t) = args.release;
get_deadline(t) = args.deadline;
tsk_rt(t)->job_params.job_no = args.job_no;
sched_trace_task_release(t);
break;
case ST_INJECT_ACTION:
if (!__args) {
retval = -EINVAL;
goto out;
}
sched_trace_action(t, args.action);
break;
#ifdef LITMUS_AFFINITY_AWARE_GPU_ASSINGMENT
case ST_INJECT_MIGRATION:
if (!__args) {
retval = -EINVAL;
goto out;
}
{
extern gpu_migration_dist_t gpu_migration_distance(int a, int b);
struct migration_info mig_info;
mig_info.observed = 0;
mig_info.estimated = 0;
mig_info.distance = gpu_migration_distance(args.to, args.from);
sched_trace_migration(t, &mig_info);
}
break;
#endif
/**********************/
/* unsupported events */
/**********************/
default:
retval = -EINVAL;
break;
}
out:
return retval;
}
#if defined(CONFIG_LITMUS_NVIDIA) && defined(CONFIG_LITMUS_AFFINITY_LOCKING)
void init_gpu_affinity_state(struct task_struct* p)
{
// under-damped
//p->rt_param.gpu_fb_param_a = _frac(14008, 10000);
//p->rt_param.gpu_fb_param_b = _frac(16024, 10000);
#if 0
// emperical;
p->rt_param.gpu_fb_param_a[0] = _frac(7550, 10000);
p->rt_param.gpu_fb_param_b[0] = _frac(45800, 10000);
p->rt_param.gpu_fb_param_a[1] = _frac(8600, 10000);
p->rt_param.gpu_fb_param_b[1] = _frac(40000, 10000);
p->rt_param.gpu_fb_param_a[2] = _frac(6890, 10000);
p->rt_param.gpu_fb_param_b[2] = _frac(40000, 10000);
p->rt_param.gpu_fb_param_a[3] = _frac(7580, 10000);
p->rt_param.gpu_fb_param_b[3] = _frac(34590, 10000);
#endif
p->rt_param.gpu_migration = MIG_NONE;
p->rt_param.last_gpu = -1;
}
#endif
/* p is a real-time task. Re-init its state as a best-effort task. */
static void reinit_litmus_state(struct task_struct* p, int restore)
{
struct rt_task user_config = {};
void* ctrl_page = NULL;
#ifdef CONFIG_LITMUS_NESTED_LOCKING
binheap_order_t prio_order = NULL;
#endif
TRACE_TASK(p, "reinit_litmus_state: restore = %d\n", restore);
if (restore) {
/* Safe user-space provided configuration data.
* and allocated page. */
user_config = p->rt_param.task_params;
ctrl_page = p->rt_param.ctrl_page;
}
#ifdef CONFIG_LITMUS_NVIDIA
WARN_ON(p->rt_param.held_gpus != 0);
#endif
#ifdef CONFIG_LITMUS_LOCKING
/* We probably should not be inheriting any task's priority
* at this point in time.
*/
WARN_ON(p->rt_param.inh_task);
#endif
#ifdef CONFIG_LITMUS_NESTED_LOCKING
prio_order = p->rt_param.hp_blocked_tasks.compare;
#endif
/* Cleanup everything else. */
memset(&p->rt_param, 0, sizeof(p->rt_param));
#ifdef CONFIG_REALTIME_AUX_TASKS
/* also clear out the aux_data. the !restore case is only called on
* fork (initial thread creation). */
if (!restore) {
memset(&p->aux_data, 0, sizeof(p->aux_data));
}
#endif
/* Restore preserved fields. */
if (restore) {
p->rt_param.task_params = user_config;
p->rt_param.ctrl_page = ctrl_page;
}
#ifdef CONFIG_LITMUS_NVIDIA
INIT_BINHEAP_NODE(&p->rt_param.gpu_owner_node);
#endif
#if defined(CONFIG_LITMUS_NVIDIA) && defined(CONFIG_LITMUS_AFFINITY_LOCKING)
init_gpu_affinity_state(p);
#endif
#ifdef CONFIG_LITMUS_NESTED_LOCKING
INIT_BINHEAP_HANDLE(&p->rt_param.hp_blocked_tasks, prio_order);
raw_spin_lock_init(&p->rt_param.hp_blocked_tasks_lock);
#endif
}
long __litmus_admit_task(struct task_struct* tsk)
{
long retval = 0;
INIT_LIST_HEAD(&tsk_rt(tsk)->list);
/* allocate heap node for this task */
tsk_rt(tsk)->heap_node = bheap_node_alloc(GFP_ATOMIC);
tsk_rt(tsk)->rel_heap = release_heap_alloc(GFP_ATOMIC);
if (!tsk_rt(tsk)->heap_node || !tsk_rt(tsk)->rel_heap) {
printk(KERN_WARNING "litmus: no more heap node memory!?\n");
retval = -ENOMEM;
goto out;
} else {
bheap_node_init(&tsk_rt(tsk)->heap_node, tsk);
}
#if defined(CONFIG_LITMUS_NVIDIA) && defined(CONFIG_LITMUS_AFFINITY_LOCKING)
init_gpu_affinity_state(tsk);
#endif
#ifdef CONFIG_LITMUS_NESTED_LOCKING
tsk_rt(tsk)->blocked_lock = NULL;
raw_spin_lock_init(&tsk_rt(tsk)->hp_blocked_tasks_lock);
#endif
preempt_disable();
retval = litmus->admit_task(tsk);
if (!retval) {
sched_trace_task_name(tsk);
sched_trace_task_param(tsk);
atomic_inc(&rt_task_count);
}
preempt_enable();
if (retval) {
bheap_node_free(tsk_rt(tsk)->heap_node);
release_heap_free(tsk_rt(tsk)->rel_heap);
}
out:
return retval;
}
long litmus_admit_task(struct task_struct* tsk)
{
long retval = 0;
BUG_ON(is_realtime(tsk));
if (get_rt_relative_deadline(tsk) == 0 ||
get_exec_cost(tsk) >
min(get_rt_relative_deadline(tsk), get_rt_period(tsk)) ) {
TRACE_TASK(tsk,
"litmus admit: invalid task parameters "
"(e = %lu, p = %lu, d = %lu)\n",
get_exec_cost(tsk), get_rt_period(tsk),
get_rt_relative_deadline(tsk));
retval = -EINVAL;
goto out;
}
if (!cpu_online(get_partition(tsk))) {
TRACE_TASK(tsk, "litmus admit: cpu %d is not online\n",
get_partition(tsk));
retval = -EINVAL;
goto out;
}
retval = __litmus_admit_task(tsk);
out:
return retval;
}
void litmus_pre_exit_task(struct task_struct* tsk)
{
#ifdef CONFIG_LITMUS_AFFINITY_LOCKING
if (is_realtime(tsk)) {
if (tsk_rt(tsk)->rsrc_exit_cb) {
int ret = tsk_rt(tsk)->rsrc_exit_cb(tsk);
WARN_ON(ret != 0);
}
}
#endif
}
void litmus_exit_task(struct task_struct* tsk)
{
if (is_realtime(tsk)) {
sched_trace_task_completion(tsk, 1);
litmus->task_exit(tsk);
BUG_ON(bheap_node_in_heap(tsk_rt(tsk)->heap_node));
bheap_node_free(tsk_rt(tsk)->heap_node);
release_heap_free(tsk_rt(tsk)->rel_heap);
atomic_dec(&rt_task_count);
reinit_litmus_state(tsk, 1);
}
}
static int do_plugin_switch(void *_plugin)
{
int ret;
struct sched_plugin* plugin = _plugin;
/* don't switch if there are active real-time tasks */
if (atomic_read(&rt_task_count) == 0) {
ret = litmus->deactivate_plugin();
if (0 != ret)
goto out;
litmus = plugin; /* optimistic switch */
mb();
ret = litmus->activate_plugin();
if (0 != ret) {
printk(KERN_INFO "Can't activate %s (%d).\n",
litmus->plugin_name, ret);
litmus = &linux_sched_plugin; /* fail to Linux */
ret = litmus->activate_plugin();
BUG_ON(ret);
}
printk(KERN_INFO "Switched to LITMUS^RT plugin %s.\n", litmus->plugin_name);
} else
ret = -EBUSY;
out:
return ret;
}
/* Switching a plugin in use is tricky.
* We must watch out that no real-time tasks exists
* (and that none is created in parallel) and that the plugin is not
* currently in use on any processor (in theory).
*/
int switch_sched_plugin(struct sched_plugin* plugin)
{
BUG_ON(!plugin);
#ifdef CONFIG_LITMUS_SOFTIRQD
if (!klmirqd_is_dead()) {
kill_klmirqd();
}
#endif
if (atomic_read(&rt_task_count) == 0)
return stop_machine(do_plugin_switch, plugin, NULL);
else
return -EBUSY;
}
/* Called upon fork.
* p is the newly forked task.
*/
void litmus_fork(struct task_struct* p)
{
if (is_realtime(p)) {
TRACE_TASK(p, "fork, is real-time\n");
/* clean out any litmus related state, don't preserve anything */
reinit_litmus_state(p, 0);
/* Don't let the child be a real-time task. */
p->sched_reset_on_fork = 1;
} else {
/* non-rt tasks might have ctrl_page set */
tsk_rt(p)->ctrl_page = NULL;
reinit_litmus_state(p, 0);
}
/* od tables are never inherited across a fork */
p->od_table = NULL;
}
/* Called right before copy_process() returns a forked thread. */
void litmus_post_fork_thread(struct task_struct* p)
{
#ifdef CONFIG_REALTIME_AUX_TASKS
make_aux_task_if_required(p);
#endif
}
/* Called upon execve().
* current is doing the exec.
* Don't let address space specific stuff leak.
*/
void litmus_exec(void)
{
struct task_struct* p = current;
if (is_realtime(p)) {
WARN_ON(p->rt_param.inh_task);
if (tsk_rt(p)->ctrl_page) {
free_page((unsigned long) tsk_rt(p)->ctrl_page);
tsk_rt(p)->ctrl_page = NULL;
}
}
}
void exit_litmus(struct task_struct *dead_tsk)
{
/* We also allow non-RT tasks to
* allocate control pages to allow
* measurements with non-RT tasks.
* So check if we need to free the page
* in any case.
*/
if (tsk_rt(dead_tsk)->ctrl_page) {
TRACE_TASK(dead_tsk,
"freeing ctrl_page %p\n",
tsk_rt(dead_tsk)->ctrl_page);
free_page((unsigned long) tsk_rt(dead_tsk)->ctrl_page);
}
/* main cleanup only for RT tasks */
if (is_realtime(dead_tsk)) {
litmus_pre_exit_task(dead_tsk); /* todo: double check that no Linux rq lock is held */
litmus_exit_task(dead_tsk);
}
}
#ifdef CONFIG_MAGIC_SYSRQ
int sys_kill(int pid, int sig);
static void sysrq_handle_kill_rt_tasks(int key)
{
struct task_struct *t;
read_lock(&tasklist_lock);
for_each_process(t) {
if (is_realtime(t)) {
sys_kill(t->pid, SIGKILL);
}
}
read_unlock(&tasklist_lock);
}
static struct sysrq_key_op sysrq_kill_rt_tasks_op = {
.handler = sysrq_handle_kill_rt_tasks,
.help_msg = "quit-rt-tasks(X)",
.action_msg = "sent SIGKILL to all LITMUS^RT real-time tasks",
};
#endif
extern struct sched_plugin linux_sched_plugin;
static int litmus_shutdown_nb(struct notifier_block *unused1,
unsigned long unused2, void *unused3)
{
/* Attempt to switch back to regular Linux scheduling.
* Forces the active plugin to clean up.
*/
if (litmus != &linux_sched_plugin) {
int ret = switch_sched_plugin(&linux_sched_plugin);
if (ret) {
printk(KERN_EMERG "Auto-shutdown of active Litmus plugin failed.\n");
}
}
return NOTIFY_DONE;
}
static struct notifier_block shutdown_notifier = {
.notifier_call = litmus_shutdown_nb,
};
static int __init _init_litmus(void)
{
/* Common initializers,
* mode change lock is used to enforce single mode change
* operation.
*/
printk("Starting LITMUS^RT kernel\n");
register_sched_plugin(&linux_sched_plugin);
bheap_node_cache = KMEM_CACHE(bheap_node, SLAB_PANIC);
release_heap_cache = KMEM_CACHE(release_heap, SLAB_PANIC);
#ifdef CONFIG_MAGIC_SYSRQ
/* offer some debugging help */
if (!register_sysrq_key('x', &sysrq_kill_rt_tasks_op))
printk("Registered kill rt tasks magic sysrq.\n");
else
printk("Could not register kill rt tasks magic sysrq.\n");
#endif
init_litmus_proc();
#ifdef CONFIG_SCHED_CPU_AFFINITY
init_topology();
#endif
register_reboot_notifier(&shutdown_notifier);
return 0;
}
static void _exit_litmus(void)
{
unregister_reboot_notifier(&shutdown_notifier);
exit_litmus_proc();
kmem_cache_destroy(bheap_node_cache);
kmem_cache_destroy(release_heap_cache);
}
module_init(_init_litmus);
module_exit(_exit_litmus);
|