1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
|
/*
* kernel/edf_split_common.c
*
* Common functions for EDF based scheduler with split jobs.
*/
#include <linux/percpu.h>
#include <linux/sched.h>
#include <linux/list.h>
#include <litmus/litmus.h>
#include <litmus/sched_plugin.h>
#include <litmus/sched_trace.h>
#include <litmus/edf_split_common.h>
#ifdef CONFIG_EDF_TIE_BREAK_LATENESS_NORM
#include <litmus/fpmath.h>
#endif
#ifdef CONFIG_EDF_TIE_BREAK_HASH
#include <linux/hash.h>
static inline long edf_split_hash(struct task_struct *t)
{
/* pid is 32 bits, so normally we would shove that into the
* upper 32-bits and and put the job number in the bottom
* and hash the 64-bit number with hash_64(). Sadly,
* in testing, hash_64() doesn't distribute keys were the
* upper bits are close together (as would be the case with
* pids) and job numbers are equal (as would be the case with
* synchronous task sets with all relative deadlines equal).
*
* A 2006 Linux patch proposed the following solution
* (but for some reason it wasn't accepted...).
*
* At least this workaround works for 32-bit systems as well.
*/
return hash_32(hash_32((u32)tsk_rt(t)->job_params.job_no, 32) ^ t->pid, 32);
}
#endif
/* edf_higher_prio - returns true if first has a higher EDF priority
* than second. Deadline ties are broken by PID.
*
* both first and second may be NULL
*/
int edf_split_higher_prio(struct task_struct* first,
struct task_struct* second)
{
struct task_struct *first_task = first;
struct task_struct *second_task = second;
/* There is no point in comparing a task to itself. */
if (first && first == second) {
TRACE_TASK(first,
"WARNING: pointless edf priority comparison.\n");
return 0;
}
/* check for NULL tasks */
if (!first || !second)
return first && !second;
if (earlier_deadline(first_task, second_task)) {
return 1;
}
else if (get_deadline(first_task) == get_deadline(second_task)) {
/* Need to tie break. All methods must set pid_break to 0/1 if
* first_task does not have priority over second_task.
*/
int pid_break;
#if defined(CONFIG_EDF_TIE_BREAK_LATENESS)
/* Tie break by lateness. Jobs with greater lateness get
* priority. This should spread tardiness across all tasks,
* especially in task sets where all tasks have the same
* period and relative deadlines.
*/
if (get_lateness(first_task) > get_lateness(second_task)) {
return 1;
}
pid_break = (get_lateness(first_task) == get_lateness(second_task));
#elif defined(CONFIG_EDF_TIE_BREAK_LATENESS_NORM)
/* Tie break by lateness, normalized by relative deadline. Jobs with
* greater normalized lateness get priority.
*
* Note: Considered using the algebraically equivalent
* lateness(first)*relative_deadline(second) >
lateness(second)*relative_deadline(first)
* to avoid fixed-point math, but values are prone to overflow if inputs
* are on the order of several seconds, even in 64-bit.
*/
fp_t fnorm = _frac(get_lateness(first_task),
get_rt_relative_deadline(first_task));
fp_t snorm = _frac(get_lateness(second_task),
get_rt_relative_deadline(second_task));
if (_gt(fnorm, snorm)) {
return 1;
}
pid_break = _eq(fnorm, snorm);
#elif defined(CONFIG_EDF_TIE_BREAK_HASH)
/* Tie break by comparing hashs of (pid, job#) tuple. There should be
* a 50% chance that first_task has a higher priority than second_task.
*/
long fhash = edf_hash(first_task);
long shash = edf_hash(second_task);
if (fhash < shash) {
return 1;
}
pid_break = (fhash == shash);
#else
/* CONFIG_EDF_PID_TIE_BREAK */
pid_break = 1; // fall through to tie-break by pid;
#endif
/* Tie break by pid */
if(pid_break) {
if (first_task->pid < second_task->pid) {
return 1;
}
else if (first_task->pid == second_task->pid) {
/* If the PIDs are the same then the task with the
* inherited priority wins.
*/
if (!second->rt_param.inh_task) {
return 1;
}
}
}
}
return 0; /* fall-through. prio(second_task) > prio(first_task) */
}
int edf_split_ready_order(struct bheap_node* a, struct bheap_node* b)
{
return edf_split_higher_prio(bheap2task(a), bheap2task(b));
}
void edf_split_domain_init(rt_domain_t* rt, check_resched_needed_t resched,
release_jobs_t release)
{
rt_domain_init(rt, edf_split_ready_order, resched, release);
}
/* need_to_preempt - check whether the task t needs to be preempted
* call only with irqs disabled and with ready_lock acquired
* THIS DOES NOT TAKE NON-PREEMPTIVE SECTIONS INTO ACCOUNT!
*/
int edf_split_preemption_needed(rt_domain_t* rt, struct task_struct *t)
{
/* we need the read lock for edf_ready_queue */
/* no need to preempt if there is nothing pending */
if (!__jobs_pending(rt))
return 0;
/* we need to reschedule if t doesn't exist */
if (!t)
return 1;
/* NOTE: We cannot check for non-preemptibility since we
* don't know what address space we're currently in.
*/
/* make sure to get non-rt stuff out of the way */
return !is_realtime(t) || edf_split_higher_prio(__next_ready(rt), t);
}
|