aboutsummaryrefslogtreecommitdiffstats
path: root/lib/vsprintf.c
blob: 6438cd5599eefe583451b9b5bd858b9ab5a0ca38 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
/*
 *  linux/lib/vsprintf.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 */

/* vsprintf.c -- Lars Wirzenius & Linus Torvalds. */
/*
 * Wirzenius wrote this portably, Torvalds fucked it up :-)
 */

/* 
 * Fri Jul 13 2001 Crutcher Dunnavant <crutcher+kernel@datastacks.com>
 * - changed to provide snprintf and vsnprintf functions
 * So Feb  1 16:51:32 CET 2004 Juergen Quade <quade@hsnr.de>
 * - scnprintf and vscnprintf
 */

#include <stdarg.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/string.h>
#include <linux/ctype.h>
#include <linux/kernel.h>
#include <linux/kallsyms.h>
#include <linux/uaccess.h>
#include <linux/ioport.h>
#include <net/addrconf.h>

#include <asm/page.h>		/* for PAGE_SIZE */
#include <asm/div64.h>
#include <asm/sections.h>	/* for dereference_function_descriptor() */

/* Works only for digits and letters, but small and fast */
#define TOLOWER(x) ((x) | 0x20)

static unsigned int simple_guess_base(const char *cp)
{
	if (cp[0] == '0') {
		if (TOLOWER(cp[1]) == 'x' && isxdigit(cp[2]))
			return 16;
		else
			return 8;
	} else {
		return 10;
	}
}

/**
 * simple_strtoul - convert a string to an unsigned long
 * @cp: The start of the string
 * @endp: A pointer to the end of the parsed string will be placed here
 * @base: The number base to use
 */
unsigned long simple_strtoul(const char *cp, char **endp, unsigned int base)
{
	unsigned long result = 0;

	if (!base)
		base = simple_guess_base(cp);

	if (base == 16 && cp[0] == '0' && TOLOWER(cp[1]) == 'x')
		cp += 2;

	while (isxdigit(*cp)) {
		unsigned int value;

		value = isdigit(*cp) ? *cp - '0' : TOLOWER(*cp) - 'a' + 10;
		if (value >= base)
			break;
		result = result * base + value;
		cp++;
	}

	if (endp)
		*endp = (char *)cp;
	return result;
}
EXPORT_SYMBOL(simple_strtoul);

/**
 * simple_strtol - convert a string to a signed long
 * @cp: The start of the string
 * @endp: A pointer to the end of the parsed string will be placed here
 * @base: The number base to use
 */
long simple_strtol(const char *cp, char **endp, unsigned int base)
{
	if(*cp == '-')
		return -simple_strtoul(cp + 1, endp, base);
	return simple_strtoul(cp, endp, base);
}
EXPORT_SYMBOL(simple_strtol);

/**
 * simple_strtoull - convert a string to an unsigned long long
 * @cp: The start of the string
 * @endp: A pointer to the end of the parsed string will be placed here
 * @base: The number base to use
 */
unsigned long long simple_strtoull(const char *cp, char **endp, unsigned int base)
{
	unsigned long long result = 0;

	if (!base)
		base = simple_guess_base(cp);

	if (base == 16 && cp[0] == '0' && TOLOWER(cp[1]) == 'x')
		cp += 2;

	while (isxdigit(*cp)) {
		unsigned int value;

		value = isdigit(*cp) ? *cp - '0' : TOLOWER(*cp) - 'a' + 10;
		if (value >= base)
			break;
		result = result * base + value;
		cp++;
	}

	if (endp)
		*endp = (char *)cp;
	return result;
}
EXPORT_SYMBOL(simple_strtoull);

/**
 * simple_strtoll - convert a string to a signed long long
 * @cp: The start of the string
 * @endp: A pointer to the end of the parsed string will be placed here
 * @base: The number base to use
 */
long long simple_strtoll(const char *cp, char **endp, unsigned int base)
{
	if(*cp=='-')
		return -simple_strtoull(cp + 1, endp, base);
	return simple_strtoull(cp, endp, base);
}

/**
 * strict_strtoul - convert a string to an unsigned long strictly
 * @cp: The string to be converted
 * @base: The number base to use
 * @res: The converted result value
 *
 * strict_strtoul converts a string to an unsigned long only if the
 * string is really an unsigned long string, any string containing
 * any invalid char at the tail will be rejected and -EINVAL is returned,
 * only a newline char at the tail is acceptible because people generally
 * change a module parameter in the following way:
 *
 * 	echo 1024 > /sys/module/e1000/parameters/copybreak
 *
 * echo will append a newline to the tail.
 *
 * It returns 0 if conversion is successful and *res is set to the converted
 * value, otherwise it returns -EINVAL and *res is set to 0.
 *
 * simple_strtoul just ignores the successive invalid characters and
 * return the converted value of prefix part of the string.
 */
int strict_strtoul(const char *cp, unsigned int base, unsigned long *res)
{
	char *tail;
	unsigned long val;
	size_t len;

	*res = 0;
	len = strlen(cp);
	if (len == 0)
		return -EINVAL;

	val = simple_strtoul(cp, &tail, base);
	if (tail == cp)
		return -EINVAL;
	if ((*tail == '\0') ||
		((len == (size_t)(tail - cp) + 1) && (*tail == '\n'))) {
		*res = val;
		return 0;
	}

	return -EINVAL;
}
EXPORT_SYMBOL(strict_strtoul);

/**
 * strict_strtol - convert a string to a long strictly
 * @cp: The string to be converted
 * @base: The number base to use
 * @res: The converted result value
 *
 * strict_strtol is similiar to strict_strtoul, but it allows the first
 * character of a string is '-'.
 *
 * It returns 0 if conversion is successful and *res is set to the converted
 * value, otherwise it returns -EINVAL and *res is set to 0.
 */
int strict_strtol(const char *cp, unsigned int base, long *res)
{
	int ret;
	if (*cp == '-') {
		ret = strict_strtoul(cp + 1, base, (unsigned long *)res);
		if (!ret)
			*res = -(*res);
	} else {
		ret = strict_strtoul(cp, base, (unsigned long *)res);
	}

	return ret;
}
EXPORT_SYMBOL(strict_strtol);

/**
 * strict_strtoull - convert a string to an unsigned long long strictly
 * @cp: The string to be converted
 * @base: The number base to use
 * @res: The converted result value
 *
 * strict_strtoull converts a string to an unsigned long long only if the
 * string is really an unsigned long long string, any string containing
 * any invalid char at the tail will be rejected and -EINVAL is returned,
 * only a newline char at the tail is acceptible because people generally
 * change a module parameter in the following way:
 *
 * 	echo 1024 > /sys/module/e1000/parameters/copybreak
 *
 * echo will append a newline to the tail of the string.
 *
 * It returns 0 if conversion is successful and *res is set to the converted
 * value, otherwise it returns -EINVAL and *res is set to 0.
 *
 * simple_strtoull just ignores the successive invalid characters and
 * return the converted value of prefix part of the string.
 */
int strict_strtoull(const char *cp, unsigned int base, unsigned long long *res)
{
	char *tail;
	unsigned long long val;
	size_t len;

	*res = 0;
	len = strlen(cp);
	if (len == 0)
		return -EINVAL;

	val = simple_strtoull(cp, &tail, base);
	if (tail == cp)
		return -EINVAL;
	if ((*tail == '\0') ||
		((len == (size_t)(tail - cp) + 1) && (*tail == '\n'))) {
		*res = val;
		return 0;
	}

	return -EINVAL;
}
EXPORT_SYMBOL(strict_strtoull);

/**
 * strict_strtoll - convert a string to a long long strictly
 * @cp: The string to be converted
 * @base: The number base to use
 * @res: The converted result value
 *
 * strict_strtoll is similiar to strict_strtoull, but it allows the first
 * character of a string is '-'.
 *
 * It returns 0 if conversion is successful and *res is set to the converted
 * value, otherwise it returns -EINVAL and *res is set to 0.
 */
int strict_strtoll(const char *cp, unsigned int base, long long *res)
{
	int ret;
	if (*cp == '-') {
		ret = strict_strtoull(cp + 1, base, (unsigned long long *)res);
		if (!ret)
			*res = -(*res);
	} else {
		ret = strict_strtoull(cp, base, (unsigned long long *)res);
	}

	return ret;
}
EXPORT_SYMBOL(strict_strtoll);

static int skip_atoi(const char **s)
{
	int i=0;

	while (isdigit(**s))
		i = i*10 + *((*s)++) - '0';
	return i;
}

/* Decimal conversion is by far the most typical, and is used
 * for /proc and /sys data. This directly impacts e.g. top performance
 * with many processes running. We optimize it for speed
 * using code from
 * http://www.cs.uiowa.edu/~jones/bcd/decimal.html
 * (with permission from the author, Douglas W. Jones). */

/* Formats correctly any integer in [0,99999].
 * Outputs from one to five digits depending on input.
 * On i386 gcc 4.1.2 -O2: ~250 bytes of code. */
static char* put_dec_trunc(char *buf, unsigned q)
{
	unsigned d3, d2, d1, d0;
	d1 = (q>>4) & 0xf;
	d2 = (q>>8) & 0xf;
	d3 = (q>>12);

	d0 = 6*(d3 + d2 + d1) + (q & 0xf);
	q = (d0 * 0xcd) >> 11;
	d0 = d0 - 10*q;
	*buf++ = d0 + '0'; /* least significant digit */
	d1 = q + 9*d3 + 5*d2 + d1;
	if (d1 != 0) {
		q = (d1 * 0xcd) >> 11;
		d1 = d1 - 10*q;
		*buf++ = d1 + '0'; /* next digit */

		d2 = q + 2*d2;
		if ((d2 != 0) || (d3 != 0)) {
			q = (d2 * 0xd) >> 7;
			d2 = d2 - 10*q;
			*buf++ = d2 + '0'; /* next digit */

			d3 = q + 4*d3;
			if (d3 != 0) {
				q = (d3 * 0xcd) >> 11;
				d3 = d3 - 10*q;
				*buf++ = d3 + '0';  /* next digit */
				if (q != 0)
					*buf++ = q + '0';  /* most sign. digit */
			}
		}
	}
	return buf;
}
/* Same with if's removed. Always emits five digits */
static char* put_dec_full(char *buf, unsigned q)
{
	/* BTW, if q is in [0,9999], 8-bit ints will be enough, */
	/* but anyway, gcc produces better code with full-sized ints */
	unsigned d3, d2, d1, d0;
	d1 = (q>>4) & 0xf;
	d2 = (q>>8) & 0xf;
	d3 = (q>>12);

	/* Possible ways to approx. divide by 10 */
	/* gcc -O2 replaces multiply with shifts and adds */
	// (x * 0xcd) >> 11: 11001101 - shorter code than * 0x67 (on i386)
	// (x * 0x67) >> 10:  1100111
	// (x * 0x34) >> 9:    110100 - same
	// (x * 0x1a) >> 8:     11010 - same
	// (x * 0x0d) >> 7:      1101 - same, shortest code (on i386)

	d0 = 6*(d3 + d2 + d1) + (q & 0xf);
	q = (d0 * 0xcd) >> 11;
	d0 = d0 - 10*q;
	*buf++ = d0 + '0';
	d1 = q + 9*d3 + 5*d2 + d1;
		q = (d1 * 0xcd) >> 11;
		d1 = d1 - 10*q;
		*buf++ = d1 + '0';

		d2 = q + 2*d2;
			q = (d2 * 0xd) >> 7;
			d2 = d2 - 10*q;
			*buf++ = d2 + '0';

			d3 = q + 4*d3;
				q = (d3 * 0xcd) >> 11; /* - shorter code */
				/* q = (d3 * 0x67) >> 10; - would also work */
				d3 = d3 - 10*q;
				*buf++ = d3 + '0';
					*buf++ = q + '0';
	return buf;
}
/* No inlining helps gcc to use registers better */
static noinline char* put_dec(char *buf, unsigned long long num)
{
	while (1) {
		unsigned rem;
		if (num < 100000)
			return put_dec_trunc(buf, num);
		rem = do_div(num, 100000);
		buf = put_dec_full(buf, rem);
	}
}

#define ZEROPAD	1		/* pad with zero */
#define SIGN	2		/* unsigned/signed long */
#define PLUS	4		/* show plus */
#define SPACE	8		/* space if plus */
#define LEFT	16		/* left justified */
#define SMALL	32		/* Must be 32 == 0x20 */
#define SPECIAL	64		/* 0x */

enum format_type {
	FORMAT_TYPE_NONE, /* Just a string part */
	FORMAT_TYPE_WIDTH,
	FORMAT_TYPE_PRECISION,
	FORMAT_TYPE_CHAR,
	FORMAT_TYPE_STR,
	FORMAT_TYPE_PTR,
	FORMAT_TYPE_PERCENT_CHAR,
	FORMAT_TYPE_INVALID,
	FORMAT_TYPE_LONG_LONG,
	FORMAT_TYPE_ULONG,
	FORMAT_TYPE_LONG,
	FORMAT_TYPE_UBYTE,
	FORMAT_TYPE_BYTE,
	FORMAT_TYPE_USHORT,
	FORMAT_TYPE_SHORT,
	FORMAT_TYPE_UINT,
	FORMAT_TYPE_INT,
	FORMAT_TYPE_NRCHARS,
	FORMAT_TYPE_SIZE_T,
	FORMAT_TYPE_PTRDIFF
};

struct printf_spec {
	enum format_type	type;
	int			flags;		/* flags to number() */
	int			field_width;	/* width of output field */
	int			base;
	int			precision;	/* # of digits/chars */
	int			qualifier;
};

static char *number(char *buf, char *end, unsigned long long num,
			struct printf_spec spec)
{
	/* we are called with base 8, 10 or 16, only, thus don't need "G..."  */
	static const char digits[16] = "0123456789ABCDEF"; /* "GHIJKLMNOPQRSTUVWXYZ"; */

	char tmp[66];
	char sign;
	char locase;
	int need_pfx = ((spec.flags & SPECIAL) && spec.base != 10);
	int i;

	/* locase = 0 or 0x20. ORing digits or letters with 'locase'
	 * produces same digits or (maybe lowercased) letters */
	locase = (spec.flags & SMALL);
	if (spec.flags & LEFT)
		spec.flags &= ~ZEROPAD;
	sign = 0;
	if (spec.flags & SIGN) {
		if ((signed long long) num < 0) {
			sign = '-';
			num = - (signed long long) num;
			spec.field_width--;
		} else if (spec.flags & PLUS) {
			sign = '+';
			spec.field_width--;
		} else if (spec.flags & SPACE) {
			sign = ' ';
			spec.field_width--;
		}
	}
	if (need_pfx) {
		spec.field_width--;
		if (spec.base == 16)
			spec.field_width--;
	}

	/* generate full string in tmp[], in reverse order */
	i = 0;
	if (num == 0)
		tmp[i++] = '0';
	/* Generic code, for any base:
	else do {
		tmp[i++] = (digits[do_div(num,base)] | locase);
	} while (num != 0);
	*/
	else if (spec.base != 10) { /* 8 or 16 */
		int mask = spec.base - 1;
		int shift = 3;
		if (spec.base == 16) shift = 4;
		do {
			tmp[i++] = (digits[((unsigned char)num) & mask] | locase);
			num >>= shift;
		} while (num);
	} else { /* base 10 */
		i = put_dec(tmp, num) - tmp;
	}

	/* printing 100 using %2d gives "100", not "00" */
	if (i > spec.precision)
		spec.precision = i;
	/* leading space padding */
	spec.field_width -= spec.precision;
	if (!(spec.flags & (ZEROPAD+LEFT))) {
		while(--spec.field_width >= 0) {
			if (buf < end)
				*buf = ' ';
			++buf;
		}
	}
	/* sign */
	if (sign) {
		if (buf < end)
			*buf = sign;
		++buf;
	}
	/* "0x" / "0" prefix */
	if (need_pfx) {
		if (buf < end)
			*buf = '0';
		++buf;
		if (spec.base == 16) {
			if (buf < end)
				*buf = ('X' | locase);
			++buf;
		}
	}
	/* zero or space padding */
	if (!(spec.flags & LEFT)) {
		char c = (spec.flags & ZEROPAD) ? '0' : ' ';
		while (--spec.field_width >= 0) {
			if (buf < end)
				*buf = c;
			++buf;
		}
	}
	/* hmm even more zero padding? */
	while (i <= --spec.precision) {
		if (buf < end)
			*buf = '0';
		++buf;
	}
	/* actual digits of result */
	while (--i >= 0) {
		if (buf < end)
			*buf = tmp[i];
		++buf;
	}
	/* trailing space padding */
	while (--spec.field_width >= 0) {
		if (buf < end)
			*buf = ' ';
		++buf;
	}
	return buf;
}

static char *string(char *buf, char *end, char *s, struct printf_spec spec)
{
	int len, i;

	if ((unsigned long)s < PAGE_SIZE)
		s = "<NULL>";

	len = strnlen(s, spec.precision);

	if (!(spec.flags & LEFT)) {
		while (len < spec.field_width--) {
			if (buf < end)
				*buf = ' ';
			++buf;
		}
	}
	for (i = 0; i < len; ++i) {
		if (buf < end)
			*buf = *s;
		++buf; ++s;
	}
	while (len < spec.field_width--) {
		if (buf < end)
			*buf = ' ';
		++buf;
	}
	return buf;
}

static char *symbol_string(char *buf, char *end, void *ptr,
				struct printf_spec spec, char ext)
{
	unsigned long value = (unsigned long) ptr;
#ifdef CONFIG_KALLSYMS
	char sym[KSYM_SYMBOL_LEN];
	if (ext != 'f' && ext != 's')
		sprint_symbol(sym, value);
	else
		kallsyms_lookup(value, NULL, NULL, NULL, sym);
	return string(buf, end, sym, spec);
#else
	spec.field_width = 2*sizeof(void *);
	spec.flags |= SPECIAL | SMALL | ZEROPAD;
	spec.base = 16;
	return number(buf, end, value, spec);
#endif
}

static char *resource_string(char *buf, char *end, struct resource *res,
				struct printf_spec spec, const char *fmt)
{
#ifndef IO_RSRC_PRINTK_SIZE
#define IO_RSRC_PRINTK_SIZE	6
#endif

#ifndef MEM_RSRC_PRINTK_SIZE
#define MEM_RSRC_PRINTK_SIZE	10
#endif
	struct printf_spec hex_spec = {
		.base = 16,
		.precision = -1,
		.flags = SPECIAL | SMALL | ZEROPAD,
	};
	struct printf_spec dec_spec = {
		.base = 10,
		.precision = -1,
		.flags = 0,
	};
	struct printf_spec str_spec = {
		.field_width = -1,
		.precision = 10,
		.flags = LEFT,
	};
	struct printf_spec flag_spec = {
		.base = 16,
		.precision = -1,
		.flags = SPECIAL | SMALL,
	};

	/* 32-bit res (sizeof==4): 10 chars in dec, 10 in hex ("0x" + 8)
	 * 64-bit res (sizeof==8): 20 chars in dec, 18 in hex ("0x" + 16) */
#define RSRC_BUF_SIZE		((2 * sizeof(resource_size_t)) + 4)
#define FLAG_BUF_SIZE		(2 * sizeof(res->flags))
#define DECODED_BUF_SIZE	sizeof("[mem - 64bit pref disabled]")
#define RAW_BUF_SIZE		sizeof("[mem - flags 0x]")
	char sym[max(2*RSRC_BUF_SIZE + DECODED_BUF_SIZE,
		     2*RSRC_BUF_SIZE + FLAG_BUF_SIZE + RAW_BUF_SIZE)];

	char *p = sym, *pend = sym + sizeof(sym);
	int size = -1, addr = 0;
	int decode = (fmt[0] == 'R') ? 1 : 0;

	if (res->flags & IORESOURCE_IO) {
		size = IO_RSRC_PRINTK_SIZE;
		addr = 1;
	} else if (res->flags & IORESOURCE_MEM) {
		size = MEM_RSRC_PRINTK_SIZE;
		addr = 1;
	}

	*p++ = '[';
	if (res->flags & IORESOURCE_IO)
		p = string(p, pend, "io  ", str_spec);
	else if (res->flags & IORESOURCE_MEM)
		p = string(p, pend, "mem ", str_spec);
	else if (res->flags & IORESOURCE_IRQ)
		p = string(p, pend, "irq ", str_spec);
	else if (res->flags & IORESOURCE_DMA)
		p = string(p, pend, "dma ", str_spec);
	else {
		p = string(p, pend, "??? ", str_spec);
		decode = 0;
	}
	hex_spec.field_width = size;
	p = number(p, pend, res->start, addr ? hex_spec : dec_spec);
	if (res->start != res->end) {
		*p++ = '-';
		p = number(p, pend, res->end, addr ? hex_spec : dec_spec);
	}
	if (decode) {
		if (res->flags & IORESOURCE_MEM_64)
			p = string(p, pend, " 64bit", str_spec);
		if (res->flags & IORESOURCE_PREFETCH)
			p = string(p, pend, " pref", str_spec);
		if (res->flags & IORESOURCE_DISABLED)
			p = string(p, pend, " disabled", str_spec);
	} else {
		p = string(p, pend, " flags ", str_spec);
		p = number(p, pend, res->flags, flag_spec);
	}
	*p++ = ']';
	*p = '\0';

	return string(buf, end, sym, spec);
}

static char *mac_address_string(char *buf, char *end, u8 *addr,
				struct printf_spec spec, const char *fmt)
{
	char mac_addr[sizeof("xx:xx:xx:xx:xx:xx")];
	char *p = mac_addr;
	int i;

	for (i = 0; i < 6; i++) {
		p = pack_hex_byte(p, addr[i]);
		if (fmt[0] == 'M' && i != 5)
			*p++ = ':';
	}
	*p = '\0';

	return string(buf, end, mac_addr, spec);
}

static char *ip4_string(char *p, const u8 *addr, bool leading_zeros)
{
	int i;

	for (i = 0; i < 4; i++) {
		char temp[3];	/* hold each IP quad in reverse order */
		int digits = put_dec_trunc(temp, addr[i]) - temp;
		if (leading_zeros) {
			if (digits < 3)
				*p++ = '0';
			if (digits < 2)
				*p++ = '0';
		}
		/* reverse the digits in the quad */
		while (digits--)
			*p++ = temp[digits];
		if (i < 3)
			*p++ = '.';
	}

	*p = '\0';
	return p;
}

static char *ip6_compressed_string(char *p, const char *addr)
{
	int i;
	int j;
	int range;
	unsigned char zerolength[8];
	int longest = 1;
	int colonpos = -1;
	u16 word;
	u8 hi;
	u8 lo;
	bool needcolon = false;
	bool useIPv4;
	struct in6_addr in6;

	memcpy(&in6, addr, sizeof(struct in6_addr));

	useIPv4 = ipv6_addr_v4mapped(&in6) || ipv6_addr_is_isatap(&in6);

	memset(zerolength, 0, sizeof(zerolength));

	if (useIPv4)
		range = 6;
	else
		range = 8;

	/* find position of longest 0 run */
	for (i = 0; i < range; i++) {
		for (j = i; j < range; j++) {
			if (in6.s6_addr16[j] != 0)
				break;
			zerolength[i]++;
		}
	}
	for (i = 0; i < range; i++) {
		if (zerolength[i] > longest) {
			longest = zerolength[i];
			colonpos = i;
		}
	}

	/* emit address */
	for (i = 0; i < range; i++) {
		if (i == colonpos) {
			if (needcolon || i == 0)
				*p++ = ':';
			*p++ = ':';
			needcolon = false;
			i += longest - 1;
			continue;
		}
		if (needcolon) {
			*p++ = ':';
			needcolon = false;
		}
		/* hex u16 without leading 0s */
		word = ntohs(in6.s6_addr16[i]);
		hi = word >> 8;
		lo = word & 0xff;
		if (hi) {
			if (hi > 0x0f)
				p = pack_hex_byte(p, hi);
			else
				*p++ = hex_asc_lo(hi);
		}
		if (hi || lo > 0x0f)
			p = pack_hex_byte(p, lo);
		else
			*p++ = hex_asc_lo(lo);
		needcolon = true;
	}

	if (useIPv4) {
		if (needcolon)
			*p++ = ':';
		p = ip4_string(p, &in6.s6_addr[12], false);
	}

	*p = '\0';
	return p;
}

static char *ip6_string(char *p, const char *addr, const char *fmt)
{
	int i;
	for (i = 0; i < 8; i++) {
		p = pack_hex_byte(p, *addr++);
		p = pack_hex_byte(p, *addr++);
		if (fmt[0] == 'I' && i != 7)
			*p++ = ':';
	}

	*p = '\0';
	return p;
}

static char *ip6_addr_string(char *buf, char *end, const u8 *addr,
			     struct printf_spec spec, const char *fmt)
{
	char ip6_addr[sizeof("xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:255.255.255.255")];

	if (fmt[0] == 'I' && fmt[2] == 'c')
		ip6_compressed_string(ip6_addr, addr);
	else
		ip6_string(ip6_addr, addr, fmt);

	return string(buf, end, ip6_addr, spec);
}

static char *ip4_addr_string(char *buf, char *end, const u8 *addr,
			     struct printf_spec spec, const char *fmt)
{
	char ip4_addr[sizeof("255.255.255.255")];

	ip4_string(ip4_addr, addr, fmt[0] == 'i');

	return string(buf, end, ip4_addr, spec);
}

/*
 * Show a '%p' thing.  A kernel extension is that the '%p' is followed
 * by an extra set of alphanumeric characters that are extended format
 * specifiers.
 *
 * Right now we handle:
 *
 * - 'F' For symbolic function descriptor pointers with offset
 * - 'f' For simple symbolic function names without offset
 * - 'S' For symbolic direct pointers with offset
 * - 's' For symbolic direct pointers without offset
 * - 'R' For decoded struct resource, e.g., [mem 0x0-0x1f 64bit pref]
 * - 'r' For raw struct resource, e.g., [mem 0x0-0x1f flags 0x201]
 * - 'M' For a 6-byte MAC address, it prints the address in the
 *       usual colon-separated hex notation
 * - 'm' For a 6-byte MAC address, it prints the hex address without colons
 * - 'I' [46] for IPv4/IPv6 addresses printed in the usual way
 *       IPv4 uses dot-separated decimal without leading 0's (1.2.3.4)
 *       IPv6 uses colon separated network-order 16 bit hex with leading 0's
 * - 'i' [46] for 'raw' IPv4/IPv6 addresses
 *       IPv6 omits the colons (01020304...0f)
 *       IPv4 uses dot-separated decimal with leading 0's (010.123.045.006)
 * - 'I6c' for IPv6 addresses printed as specified by
 *       http://www.ietf.org/id/draft-kawamura-ipv6-text-representation-03.txt
 * Note: The difference between 'S' and 'F' is that on ia64 and ppc64
 * function pointers are really function descriptors, which contain a
 * pointer to the real address.
 */
static char *pointer(const char *fmt, char *buf, char *end, void *ptr,
			struct printf_spec spec)
{
	if (!ptr)
		return string(buf, end, "(null)", spec);

	switch (*fmt) {
	case 'F':
	case 'f':
		ptr = dereference_function_descriptor(ptr);
	case 's':
		/* Fallthrough */
	case 'S':
		return symbol_string(buf, end, ptr, spec, *fmt);
	case 'R':
	case 'r':
		return resource_string(buf, end, ptr, spec, fmt);
	case 'M':			/* Colon separated: 00:01:02:03:04:05 */
	case 'm':			/* Contiguous: 000102030405 */
		return mac_address_string(buf, end, ptr, spec, fmt);
	case 'I':			/* Formatted IP supported
					 * 4:	1.2.3.4
					 * 6:	0001:0203:...:0708
					 * 6c:	1::708 or 1::1.2.3.4
					 */
	case 'i':			/* Contiguous:
					 * 4:	001.002.003.004
					 * 6:   000102...0f
					 */
		switch (fmt[1]) {
		case '6':
			return ip6_addr_string(buf, end, ptr, spec, fmt);
		case '4':
			return ip4_addr_string(buf, end, ptr, spec, fmt);
		}
		break;
	}
	spec.flags |= SMALL;
	if (spec.field_width == -1) {
		spec.field_width = 2*sizeof(void *);
		spec.flags |= ZEROPAD;
	}
	spec.base = 16;

	return number(buf, end, (unsigned long) ptr, spec);
}

/*
 * Helper function to decode printf style format.
 * Each call decode a token from the format and return the
 * number of characters read (or likely the delta where it wants
 * to go on the next call).
 * The decoded token is returned through the parameters
 *
 * 'h', 'l', or 'L' for integer fields
 * 'z' support added 23/7/1999 S.H.
 * 'z' changed to 'Z' --davidm 1/25/99
 * 't' added for ptrdiff_t
 *
 * @fmt: the format string
 * @type of the token returned
 * @flags: various flags such as +, -, # tokens..
 * @field_width: overwritten width
 * @base: base of the number (octal, hex, ...)
 * @precision: precision of a number
 * @qualifier: qualifier of a number (long, size_t, ...)
 */
static int format_decode(const char *fmt, struct printf_spec *spec)
{
	const char *start = fmt;

	/* we finished early by reading the field width */
	if (spec->type == FORMAT_TYPE_WIDTH) {
		if (spec->field_width < 0) {
			spec->field_width = -spec->field_width;
			spec->flags |= LEFT;
		}
		spec->type = FORMAT_TYPE_NONE;
		goto precision;
	}

	/* we finished early by reading the precision */
	if (spec->type == FORMAT_TYPE_PRECISION) {
		if (spec->precision < 0)
			spec->precision = 0;

		spec->type = FORMAT_TYPE_NONE;
		goto qualifier;
	}

	/* By default */
	spec->type = FORMAT_TYPE_NONE;

	for (; *fmt ; ++fmt) {
		if (*fmt == '%')
			break;
	}

	/* Return the current non-format string */
	if (fmt != start || !*fmt)
		return fmt - start;

	/* Process flags */
	spec->flags = 0;

	while (1) { /* this also skips first '%' */
		bool found = true;

		++fmt;

		switch (*fmt) {
		case '-': spec->flags |= LEFT;    break;
		case '+': spec->flags |= PLUS;    break;
		case ' ': spec->flags |= SPACE;   break;
		case '#': spec->flags |= SPECIAL; break;
		case '0': spec->flags |= ZEROPAD; break;
		default:  found = false;
		}

		if (!found)
			break;
	}

	/* get field width */
	spec->field_width = -1;

	if (isdigit(*fmt))
		spec->field_width = skip_atoi(&fmt);
	else if (*fmt == '*') {
		/* it's the next argument */
		spec->type = FORMAT_TYPE_WIDTH;
		return ++fmt - start;
	}

precision:
	/* get the precision */
	spec->precision = -1;
	if (*fmt == '.') {
		++fmt;
		if (isdigit(*fmt)) {
			spec->precision = skip_atoi(&fmt);
			if (spec->precision < 0)
				spec->precision = 0;
		} else if (*fmt == '*') {
			/* it's the next argument */
			spec->type = FORMAT_TYPE_PRECISION;
			return ++fmt - start;
		}
	}

qualifier:
	/* get the conversion qualifier */
	spec->qualifier = -1;
	if (*fmt == 'h' || *fmt == 'l' || *fmt == 'L' ||
	    *fmt == 'Z' || *fmt == 'z' || *fmt == 't') {
		spec->qualifier = *fmt++;
		if (unlikely(spec->qualifier == *fmt)) {
			if (spec->qualifier == 'l') {
				spec->qualifier = 'L';
				++fmt;
			} else if (spec->qualifier == 'h') {
				spec->qualifier = 'H';
				++fmt;
			}
		}
	}

	/* default base */
	spec->base = 10;
	switch (*fmt) {
	case 'c':
		spec->type = FORMAT_TYPE_CHAR;
		return ++fmt - start;

	case 's':
		spec->type = FORMAT_TYPE_STR;
		return ++fmt - start;

	case 'p':
		spec->type = FORMAT_TYPE_PTR;
		return fmt - start;
		/* skip alnum */

	case 'n':
		spec->type = FORMAT_TYPE_NRCHARS;
		return ++fmt - start;

	case '%':
		spec->type = FORMAT_TYPE_PERCENT_CHAR;
		return ++fmt - start;

	/* integer number formats - set up the flags and "break" */
	case 'o':
		spec->base = 8;
		break;

	case 'x':
		spec->flags |= SMALL;

	case 'X':
		spec->base = 16;
		break;

	case 'd':
	case 'i':
		spec->flags |= SIGN;
	case 'u':
		break;

	default:
		spec->type = FORMAT_TYPE_INVALID;
		return fmt - start;
	}

	if (spec->qualifier == 'L')
		spec->type = FORMAT_TYPE_LONG_LONG;
	else if (spec->qualifier == 'l') {
		if (spec->flags & SIGN)
			spec->type = FORMAT_TYPE_LONG;
		else
			spec->type = FORMAT_TYPE_ULONG;
	} else if (spec->qualifier == 'Z' || spec->qualifier == 'z') {
		spec->type = FORMAT_TYPE_SIZE_T;
	} else if (spec->qualifier == 't') {
		spec->type = FORMAT_TYPE_PTRDIFF;
	} else if (spec->qualifier == 'H') {
		if (spec->flags & SIGN)
			spec->type = FORMAT_TYPE_BYTE;
		else
			spec->type = FORMAT_TYPE_UBYTE;
	} else if (spec->qualifier == 'h') {
		if (spec->flags & SIGN)
			spec->type = FORMAT_TYPE_SHORT;
		else
			spec->type = FORMAT_TYPE_USHORT;
	} else {
		if (spec->flags & SIGN)
			spec->type = FORMAT_TYPE_INT;
		else
			spec->type = FORMAT_TYPE_UINT;
	}

	return ++fmt - start;
}

/**
 * vsnprintf - Format a string and place it in a buffer
 * @buf: The buffer to place the result into
 * @size: The size of the buffer, including the trailing null space
 * @fmt: The format string to use
 * @args: Arguments for the format string
 *
 * This function follows C99 vsnprintf, but has some extensions:
 * %pS output the name of a text symbol with offset
 * %ps output the name of a text symbol without offset
 * %pF output the name of a function pointer with its offset
 * %pf output the name of a function pointer without its offset
 * %pR output the address range in a struct resource
 * %n is ignored
 *
 * The return value is the number of characters which would
 * be generated for the given input, excluding the trailing
 * '\0', as per ISO C99. If you want to have the exact
 * number of characters written into @buf as return value
 * (not including the trailing '\0'), use vscnprintf(). If the
 * return is greater than or equal to @size, the resulting
 * string is truncated.
 *
 * Call this function if you are already dealing with a va_list.
 * You probably want snprintf() instead.
 */
int vsnprintf(char *buf, size_t size, const char *fmt, va_list args)
{
	unsigned long long num;
	char *str, *end, c;
	int read;
	struct printf_spec spec = {0};

	/* Reject out-of-range values early.  Large positive sizes are
	   used for unknown buffer sizes. */
	if (WARN_ON_ONCE((int) size < 0))
		return 0;

	str = buf;
	end = buf + size;

	/* Make sure end is always >= buf */
	if (end < buf) {
		end = ((void *)-1);
		size = end - buf;
	}

	while (*fmt) {
		const char *old_fmt = fmt;

		read = format_decode(fmt, &spec);

		fmt += read;

		switch (spec.type) {
		case FORMAT_TYPE_NONE: {
			int copy = read;
			if (str < end) {
				if (copy > end - str)
					copy = end - str;
				memcpy(str, old_fmt, copy);
			}
			str += read;
			break;
		}

		case FORMAT_TYPE_WIDTH:
			spec.field_width = va_arg(args, int);
			break;

		case FORMAT_TYPE_PRECISION:
			spec.precision = va_arg(args, int);
			break;

		case FORMAT_TYPE_CHAR:
			if (!(spec.flags & LEFT)) {
				while (--spec.field_width > 0) {
					if (str < end)
						*str = ' ';
					++str;

				}
			}
			c = (unsigned char) va_arg(args, int);
			if (str < end)
				*str = c;
			++str;
			while (--spec.field_width > 0) {
				if (str < end)
					*str = ' ';
				++str;
			}
			break;

		case FORMAT_TYPE_STR:
			str = string(str, end, va_arg(args, char *), spec);
			break;

		case FORMAT_TYPE_PTR:
			str = pointer(fmt+1, str, end, va_arg(args, void *),
				      spec);
			while (isalnum(*fmt))
				fmt++;
			break;

		case FORMAT_TYPE_PERCENT_CHAR:
			if (str < end)
				*str = '%';
			++str;
			break;

		case FORMAT_TYPE_INVALID:
			if (str < end)
				*str = '%';
			++str;
			break;

		case FORMAT_TYPE_NRCHARS: {
			int qualifier = spec.qualifier;

			if (qualifier == 'l') {
				long *ip = va_arg(args, long *);
				*ip = (str - buf);
			} else if (qualifier == 'Z' ||
					qualifier == 'z') {
				size_t *ip = va_arg(args, size_t *);
				*ip = (str - buf);
			} else {
				int *ip = va_arg(args, int *);
				*ip = (str - buf);
			}
			break;
		}

		default:
			switch (spec.type) {
			case FORMAT_TYPE_LONG_LONG:
				num = va_arg(args, long long);
				break;
			case FORMAT_TYPE_ULONG:
				num = va_arg(args, unsigned long);
				break;
			case FORMAT_TYPE_LONG:
				num = va_arg(args, long);
				break;
			case FORMAT_TYPE_SIZE_T:
				num = va_arg(args, size_t);
				break;
			case FORMAT_TYPE_PTRDIFF:
				num = va_arg(args, ptrdiff_t);
				break;
			case FORMAT_TYPE_UBYTE:
				num = (unsigned char) va_arg(args, int);
				break;
			case FORMAT_TYPE_BYTE:
				num = (signed char) va_arg(args, int);
				break;
			case FORMAT_TYPE_USHORT:
				num = (unsigned short) va_arg(args, int);
				break;
			case FORMAT_TYPE_SHORT:
				num = (short) va_arg(args, int);
				break;
			case FORMAT_TYPE_INT:
				num = (int) va_arg(args, int);
				break;
			default:
				num = va_arg(args, unsigned int);
			}

			str = number(str, end, num, spec);
		}
	}

	if (size > 0) {
		if (str < end)
			*str = '\0';
		else
			end[-1] = '\0';
	}

	/* the trailing null byte doesn't count towards the total */
	return str-buf;

}
EXPORT_SYMBOL(vsnprintf);

/**
 * vscnprintf - Format a string and place it in a buffer
 * @buf: The buffer to place the result into
 * @size: The size of the buffer, including the trailing null space
 * @fmt: The format string to use
 * @args: Arguments for the format string
 *
 * The return value is the number of characters which have been written into
 * the @buf not including the trailing '\0'. If @size is <= 0 the function
 * returns 0.
 *
 * Call this function if you are already dealing with a va_list.
 * You probably want scnprintf() instead.
 *
 * See the vsnprintf() documentation for format string extensions over C99.
 */
int vscnprintf(char *buf, size_t size, const char *fmt, va_list args)
{
	int i;

	i=vsnprintf(buf,size,fmt,args);
	return (i >= size) ? (size - 1) : i;
}
EXPORT_SYMBOL(vscnprintf);

/**
 * snprintf - Format a string and place it in a buffer
 * @buf: The buffer to place the result into
 * @size: The size of the buffer, including the trailing null space
 * @fmt: The format string to use
 * @...: Arguments for the format string
 *
 * The return value is the number of characters which would be
 * generated for the given input, excluding the trailing null,
 * as per ISO C99.  If the return is greater than or equal to
 * @size, the resulting string is truncated.
 *
 * See the vsnprintf() documentation for format string extensions over C99.
 */
int snprintf(char * buf, size_t size, const char *fmt, ...)
{
	va_list args;
	int i;

	va_start(args, fmt);
	i=vsnprintf(buf,size,fmt,args);
	va_end(args);
	return i;
}
EXPORT_SYMBOL(snprintf);

/**
 * scnprintf - Format a string and place it in a buffer
 * @buf: The buffer to place the result into
 * @size: The size of the buffer, including the trailing null space
 * @fmt: The format string to use
 * @...: Arguments for the format string
 *
 * The return value is the number of characters written into @buf not including
 * the trailing '\0'. If @size is <= 0 the function returns 0.
 */

int scnprintf(char * buf, size_t size, const char *fmt, ...)
{
	va_list args;
	int i;

	va_start(args, fmt);
	i = vsnprintf(buf, size, fmt, args);
	va_end(args);
	return (i >= size) ? (size - 1) : i;
}
EXPORT_SYMBOL(scnprintf);

/**
 * vsprintf - Format a string and place it in a buffer
 * @buf: The buffer to place the result into
 * @fmt: The format string to use
 * @args: Arguments for the format string
 *
 * The function returns the number of characters written
 * into @buf. Use vsnprintf() or vscnprintf() in order to avoid
 * buffer overflows.
 *
 * Call this function if you are already dealing with a va_list.
 * You probably want sprintf() instead.
 *
 * See the vsnprintf() documentation for format string extensions over C99.
 */
int vsprintf(char *buf, const char *fmt, va_list args)
{
	return vsnprintf(buf, INT_MAX, fmt, args);
}
EXPORT_SYMBOL(vsprintf);

/**
 * sprintf - Format a string and place it in a buffer
 * @buf: The buffer to place the result into
 * @fmt: The format string to use
 * @...: Arguments for the format string
 *
 * The function returns the number of characters written
 * into @buf. Use snprintf() or scnprintf() in order to avoid
 * buffer overflows.
 *
 * See the vsnprintf() documentation for format string extensions over C99.
 */
int sprintf(char * buf, const char *fmt, ...)
{
	va_list args;
	int i;

	va_start(args, fmt);
	i=vsnprintf(buf, INT_MAX, fmt, args);
	va_end(args);
	return i;
}
EXPORT_SYMBOL(sprintf);

#ifdef CONFIG_BINARY_PRINTF
/*
 * bprintf service:
 * vbin_printf() - VA arguments to binary data
 * bstr_printf() - Binary data to text string
 */

/**
 * vbin_printf - Parse a format string and place args' binary value in a buffer
 * @bin_buf: The buffer to place args' binary value
 * @size: The size of the buffer(by words(32bits), not characters)
 * @fmt: The format string to use
 * @args: Arguments for the format string
 *
 * The format follows C99 vsnprintf, except %n is ignored, and its argument
 * is skiped.
 *
 * The return value is the number of words(32bits) which would be generated for
 * the given input.
 *
 * NOTE:
 * If the return value is greater than @size, the resulting bin_buf is NOT
 * valid for bstr_printf().
 */
int vbin_printf(u32 *bin_buf, size_t size, const char *fmt, va_list args)
{
	struct printf_spec spec = {0};
	char *str, *end;
	int read;

	str = (char *)bin_buf;
	end = (char *)(bin_buf + size);

#define save_arg(type)							\
do {									\
	if (sizeof(type) == 8) {					\
		unsigned long long value;				\
		str = PTR_ALIGN(str, sizeof(u32));			\
		value = va_arg(args, unsigned long long);		\
		if (str + sizeof(type) <= end) {			\
			*(u32 *)str = *(u32 *)&value;			\
			*(u32 *)(str + 4) = *((u32 *)&value + 1);	\
		}							\
	} else {							\
		unsigned long value;					\
		str = PTR_ALIGN(str, sizeof(type));			\
		value = va_arg(args, int);				\
		if (str + sizeof(type) <= end)				\
			*(typeof(type) *)str = (type)value;		\
	}								\
	str += sizeof(type);						\
} while (0)


	while (*fmt) {
		read = format_decode(fmt, &spec);

		fmt += read;

		switch (spec.type) {
		case FORMAT_TYPE_NONE:
			break;

		case FORMAT_TYPE_WIDTH:
		case FORMAT_TYPE_PRECISION:
			save_arg(int);
			break;

		case FORMAT_TYPE_CHAR:
			save_arg(char);
			break;

		case FORMAT_TYPE_STR: {
			const char *save_str = va_arg(args, char *);
			size_t len;
			if ((unsigned long)save_str > (unsigned long)-PAGE_SIZE
					|| (unsigned long)save_str < PAGE_SIZE)
				save_str = "<NULL>";
			len = strlen(save_str);
			if (str + len + 1 < end)
				memcpy(str, save_str, len + 1);
			str += len + 1;
			break;
		}

		case FORMAT_TYPE_PTR:
			save_arg(void *);
			/* skip all alphanumeric pointer suffixes */
			while (isalnum(*fmt))
				fmt++;
			break;

		case FORMAT_TYPE_PERCENT_CHAR:
			break;

		case FORMAT_TYPE_INVALID:
			break;

		case FORMAT_TYPE_NRCHARS: {
			/* skip %n 's argument */
			int qualifier = spec.qualifier;
			void *skip_arg;
			if (qualifier == 'l')
				skip_arg = va_arg(args, long *);
			else if (qualifier == 'Z' || qualifier == 'z')
				skip_arg = va_arg(args, size_t *);
			else
				skip_arg = va_arg(args, int *);
			break;
		}

		default:
			switch (spec.type) {

			case FORMAT_TYPE_LONG_LONG:
				save_arg(long long);
				break;
			case FORMAT_TYPE_ULONG:
			case FORMAT_TYPE_LONG:
				save_arg(unsigned long);
				break;
			case FORMAT_TYPE_SIZE_T:
				save_arg(size_t);
				break;
			case FORMAT_TYPE_PTRDIFF:
				save_arg(ptrdiff_t);
				break;
			case FORMAT_TYPE_UBYTE:
			case FORMAT_TYPE_BYTE:
				save_arg(char);
				break;
			case FORMAT_TYPE_USHORT:
			case FORMAT_TYPE_SHORT:
				save_arg(short);
				break;
			default:
				save_arg(int);
			}
		}
	}
	return (u32 *)(PTR_ALIGN(str, sizeof(u32))) - bin_buf;

#undef save_arg
}
EXPORT_SYMBOL_GPL(vbin_printf);

/**
 * bstr_printf - Format a string from binary arguments and place it in a buffer
 * @buf: The buffer to place the result into
 * @size: The size of the buffer, including the trailing null space
 * @fmt: The format string to use
 * @bin_buf: Binary arguments for the format string
 *
 * This function like C99 vsnprintf, but the difference is that vsnprintf gets
 * arguments from stack, and bstr_printf gets arguments from @bin_buf which is
 * a binary buffer that generated by vbin_printf.
 *
 * The format follows C99 vsnprintf, but has some extensions:
 *  see vsnprintf comment for details.
 *
 * The return value is the number of characters which would
 * be generated for the given input, excluding the trailing
 * '\0', as per ISO C99. If you want to have the exact
 * number of characters written into @buf as return value
 * (not including the trailing '\0'), use vscnprintf(). If the
 * return is greater than or equal to @size, the resulting
 * string is truncated.
 */
int bstr_printf(char *buf, size_t size, const char *fmt, const u32 *bin_buf)
{
	unsigned long long num;
	char *str, *end, c;
	const char *args = (const char *)bin_buf;

	struct printf_spec spec = {0};

	if (WARN_ON_ONCE((int) size < 0))
		return 0;

	str = buf;
	end = buf + size;

#define get_arg(type)							\
({									\
	typeof(type) value;						\
	if (sizeof(type) == 8) {					\
		args = PTR_ALIGN(args, sizeof(u32));			\
		*(u32 *)&value = *(u32 *)args;				\
		*((u32 *)&value + 1) = *(u32 *)(args + 4);		\
	} else {							\
		args = PTR_ALIGN(args, sizeof(type));			\
		value = *(typeof(type) *)args;				\
	}								\
	args += sizeof(type);						\
	value;								\
})

	/* Make sure end is always >= buf */
	if (end < buf) {
		end = ((void *)-1);
		size = end - buf;
	}

	while (*fmt) {
		int read;
		const char *old_fmt = fmt;

		read = format_decode(fmt, &spec);

		fmt += read;

		switch (spec.type) {
		case FORMAT_TYPE_NONE: {
			int copy = read;
			if (str < end) {
				if (copy > end - str)
					copy = end - str;
				memcpy(str, old_fmt, copy);
			}
			str += read;
			break;
		}

		case FORMAT_TYPE_WIDTH:
			spec.field_width = get_arg(int);
			break;

		case FORMAT_TYPE_PRECISION:
			spec.precision = get_arg(int);
			break;

		case FORMAT_TYPE_CHAR:
			if (!(spec.flags & LEFT)) {
				while (--spec.field_width > 0) {
					if (str < end)
						*str = ' ';
					++str;
				}
			}
			c = (unsigned char) get_arg(char);
			if (str < end)
				*str = c;
			++str;
			while (--spec.field_width > 0) {
				if (str < end)
					*str = ' ';
				++str;
			}
			break;

		case FORMAT_TYPE_STR: {
			const char *str_arg = args;
			size_t len = strlen(str_arg);
			args += len + 1;
			str = string(str, end, (char *)str_arg, spec);
			break;
		}

		case FORMAT_TYPE_PTR:
			str = pointer(fmt+1, str, end, get_arg(void *), spec);
			while (isalnum(*fmt))
				fmt++;
			break;

		case FORMAT_TYPE_PERCENT_CHAR:
			if (str < end)
				*str = '%';
			++str;
			break;

		case FORMAT_TYPE_INVALID:
			if (str < end)
				*str = '%';
			++str;
			break;

		case FORMAT_TYPE_NRCHARS:
			/* skip */
			break;

		default:
			switch (spec.type) {

			case FORMAT_TYPE_LONG_LONG:
				num = get_arg(long long);
				break;
			case FORMAT_TYPE_ULONG:
				num = get_arg(unsigned long);
				break;
			case FORMAT_TYPE_LONG:
				num = get_arg(unsigned long);
				break;
			case FORMAT_TYPE_SIZE_T:
				num = get_arg(size_t);
				break;
			case FORMAT_TYPE_PTRDIFF:
				num = get_arg(ptrdiff_t);
				break;
			case FORMAT_TYPE_UBYTE:
				num = get_arg(unsigned char);
				break;
			case FORMAT_TYPE_BYTE:
				num = get_arg(signed char);
				break;
			case FORMAT_TYPE_USHORT:
				num = get_arg(unsigned short);
				break;
			case FORMAT_TYPE_SHORT:
				num = get_arg(short);
				break;
			case FORMAT_TYPE_UINT:
				num = get_arg(unsigned int);
				break;
			default:
				num = get_arg(int);
			}

			str = number(str, end, num, spec);
		}
	}

	if (size > 0) {
		if (str < end)
			*str = '\0';
		else
			end[-1] = '\0';
	}

#undef get_arg

	/* the trailing null byte doesn't count towards the total */
	return str - buf;
}
EXPORT_SYMBOL_GPL(bstr_printf);

/**
 * bprintf - Parse a format string and place args' binary value in a buffer
 * @bin_buf: The buffer to place args' binary value
 * @size: The size of the buffer(by words(32bits), not characters)
 * @fmt: The format string to use
 * @...: Arguments for the format string
 *
 * The function returns the number of words(u32) written
 * into @bin_buf.
 */
int bprintf(u32 *bin_buf, size_t size, const char *fmt, ...)
{
	va_list args;
	int ret;

	va_start(args, fmt);
	ret = vbin_printf(bin_buf, size, fmt, args);
	va_end(args);
	return ret;
}
EXPORT_SYMBOL_GPL(bprintf);

#endif /* CONFIG_BINARY_PRINTF */

/**
 * vsscanf - Unformat a buffer into a list of arguments
 * @buf:	input buffer
 * @fmt:	format of buffer
 * @args:	arguments
 */
int vsscanf(const char * buf, const char * fmt, va_list args)
{
	const char *str = buf;
	char *next;
	char digit;
	int num = 0;
	int qualifier;
	int base;
	int field_width;
	int is_sign = 0;

	while(*fmt && *str) {
		/* skip any white space in format */
		/* white space in format matchs any amount of
		 * white space, including none, in the input.
		 */
		if (isspace(*fmt)) {
			while (isspace(*fmt))
				++fmt;
			while (isspace(*str))
				++str;
		}

		/* anything that is not a conversion must match exactly */
		if (*fmt != '%' && *fmt) {
			if (*fmt++ != *str++)
				break;
			continue;
		}

		if (!*fmt)
			break;
		++fmt;
		
		/* skip this conversion.
		 * advance both strings to next white space
		 */
		if (*fmt == '*') {
			while (!isspace(*fmt) && *fmt != '%' && *fmt)
				fmt++;
			while (!isspace(*str) && *str)
				str++;
			continue;
		}

		/* get field width */
		field_width = -1;
		if (isdigit(*fmt))
			field_width = skip_atoi(&fmt);

		/* get conversion qualifier */
		qualifier = -1;
		if (*fmt == 'h' || *fmt == 'l' || *fmt == 'L' ||
		    *fmt == 'Z' || *fmt == 'z') {
			qualifier = *fmt++;
			if (unlikely(qualifier == *fmt)) {
				if (qualifier == 'h') {
					qualifier = 'H';
					fmt++;
				} else if (qualifier == 'l') {
					qualifier = 'L';
					fmt++;
				}
			}
		}
		base = 10;
		is_sign = 0;

		if (!*fmt || !*str)
			break;

		switch(*fmt++) {
		case 'c':
		{
			char *s = (char *) va_arg(args,char*);
			if (field_width == -1)
				field_width = 1;
			do {
				*s++ = *str++;
			} while (--field_width > 0 && *str);
			num++;
		}
		continue;
		case 's':
		{
			char *s = (char *) va_arg(args, char *);
			if(field_width == -1)
				field_width = INT_MAX;
			/* first, skip leading white space in buffer */
			while (isspace(*str))
				str++;

			/* now copy until next white space */
			while (*str && !isspace(*str) && field_width--) {
				*s++ = *str++;
			}
			*s = '\0';
			num++;
		}
		continue;
		case 'n':
			/* return number of characters read so far */
		{
			int *i = (int *)va_arg(args,int*);
			*i = str - buf;
		}
		continue;
		case 'o':
			base = 8;
			break;
		case 'x':
		case 'X':
			base = 16;
			break;
		case 'i':
                        base = 0;
		case 'd':
			is_sign = 1;
		case 'u':
			break;
		case '%':
			/* looking for '%' in str */
			if (*str++ != '%') 
				return num;
			continue;
		default:
			/* invalid format; stop here */
			return num;
		}

		/* have some sort of integer conversion.
		 * first, skip white space in buffer.
		 */
		while (isspace(*str))
			str++;

		digit = *str;
		if (is_sign && digit == '-')
			digit = *(str + 1);

		if (!digit
                    || (base == 16 && !isxdigit(digit))
                    || (base == 10 && !isdigit(digit))
                    || (base == 8 && (!isdigit(digit) || digit > '7'))
                    || (base == 0 && !isdigit(digit)))
				break;

		switch(qualifier) {
		case 'H':	/* that's 'hh' in format */
			if (is_sign) {
				signed char *s = (signed char *) va_arg(args,signed char *);
				*s = (signed char) simple_strtol(str,&next,base);
			} else {
				unsigned char *s = (unsigned char *) va_arg(args, unsigned char *);
				*s = (unsigned char) simple_strtoul(str, &next, base);
			}
			break;
		case 'h':
			if (is_sign) {
				short *s = (short *) va_arg(args,short *);
				*s = (short) simple_strtol(str,&next,base);
			} else {
				unsigned short *s = (unsigned short *) va_arg(args, unsigned short *);
				*s = (unsigned short) simple_strtoul(str, &next, base);
			}
			break;
		case 'l':
			if (is_sign) {
				long *l = (long *) va_arg(args,long *);
				*l = simple_strtol(str,&next,base);
			} else {
				unsigned long *l = (unsigned long*) va_arg(args,unsigned long*);
				*l = simple_strtoul(str,&next,base);
			}
			break;
		case 'L':
			if (is_sign) {
				long long *l = (long long*) va_arg(args,long long *);
				*l = simple_strtoll(str,&next,base);
			} else {
				unsigned long long *l = (unsigned long long*) va_arg(args,unsigned long long*);
				*l = simple_strtoull(str,&next,base);
			}
			break;
		case 'Z':
		case 'z':
		{
			size_t *s = (size_t*) va_arg(args,size_t*);
			*s = (size_t) simple_strtoul(str,&next,base);
		}
		break;
		default:
			if (is_sign) {
				int *i = (int *) va_arg(args, int*);
				*i = (int) simple_strtol(str,&next,base);
			} else {
				unsigned int *i = (unsigned int*) va_arg(args, unsigned int*);
				*i = (unsigned int) simple_strtoul(str,&next,base);
			}
			break;
		}
		num++;

		if (!next)
			break;
		str = next;
	}

	/*
	 * Now we've come all the way through so either the input string or the
	 * format ended. In the former case, there can be a %n at the current
	 * position in the format that needs to be filled.
	 */
	if (*fmt == '%' && *(fmt + 1) == 'n') {
		int *p = (int *)va_arg(args, int *);
		*p = str - buf;
	}

	return num;
}
EXPORT_SYMBOL(vsscanf);

/**
 * sscanf - Unformat a buffer into a list of arguments
 * @buf:	input buffer
 * @fmt:	formatting of buffer
 * @...:	resulting arguments
 */
int sscanf(const char * buf, const char * fmt, ...)
{
	va_list args;
	int i;

	va_start(args,fmt);
	i = vsscanf(buf,fmt,args);
	va_end(args);
	return i;
}
EXPORT_SYMBOL(sscanf);
memset(cpu_addr, 0, len); return true; } static void *slice_dma_loaf(struct dma_loaf *loaf, size_t len, dma_addr_t *dma_handle) { void *cpu_end = loaf->cpu_free + len; void *cpu_addr = loaf->cpu_free; BUG_ON(cpu_end > loaf->cpu_base + loaf->length); *dma_handle = loaf->dma_free; loaf->cpu_free = cpu_end; loaf->dma_free += len; return cpu_addr; } static void free_dma_loaf(struct pci_dev *dev, struct dma_loaf *loaf_handle) { if (loaf_handle->cpu_base != NULL) pci_free_consistent(dev, loaf_handle->length, loaf_handle->cpu_base, loaf_handle->dma_base); } /* DAC960_CreateAuxiliaryStructures allocates and initializes the auxiliary data structures for Controller. It returns true on success and false on failure. */ static bool DAC960_CreateAuxiliaryStructures(DAC960_Controller_T *Controller) { int CommandAllocationLength, CommandAllocationGroupSize; int CommandsRemaining = 0, CommandIdentifier, CommandGroupByteCount; void *AllocationPointer = NULL; void *ScatterGatherCPU = NULL; dma_addr_t ScatterGatherDMA; struct pci_pool *ScatterGatherPool; void *RequestSenseCPU = NULL; dma_addr_t RequestSenseDMA; struct pci_pool *RequestSensePool = NULL; if (Controller->FirmwareType == DAC960_V1_Controller) { CommandAllocationLength = offsetof(DAC960_Command_T, V1.EndMarker); CommandAllocationGroupSize = DAC960_V1_CommandAllocationGroupSize; ScatterGatherPool = pci_pool_create("DAC960_V1_ScatterGather", Controller->PCIDevice, DAC960_V1_ScatterGatherLimit * sizeof(DAC960_V1_ScatterGatherSegment_T), sizeof(DAC960_V1_ScatterGatherSegment_T), 0); if (ScatterGatherPool == NULL) return DAC960_Failure(Controller, "AUXILIARY STRUCTURE CREATION (SG)"); Controller->ScatterGatherPool = ScatterGatherPool; } else { CommandAllocationLength = offsetof(DAC960_Command_T, V2.EndMarker); CommandAllocationGroupSize = DAC960_V2_CommandAllocationGroupSize; ScatterGatherPool = pci_pool_create("DAC960_V2_ScatterGather", Controller->PCIDevice, DAC960_V2_ScatterGatherLimit * sizeof(DAC960_V2_ScatterGatherSegment_T), sizeof(DAC960_V2_ScatterGatherSegment_T), 0); if (ScatterGatherPool == NULL) return DAC960_Failure(Controller, "AUXILIARY STRUCTURE CREATION (SG)"); RequestSensePool = pci_pool_create("DAC960_V2_RequestSense", Controller->PCIDevice, sizeof(DAC960_SCSI_RequestSense_T), sizeof(int), 0); if (RequestSensePool == NULL) { pci_pool_destroy(ScatterGatherPool); return DAC960_Failure(Controller, "AUXILIARY STRUCTURE CREATION (SG)"); } Controller->ScatterGatherPool = ScatterGatherPool; Controller->V2.RequestSensePool = RequestSensePool; } Controller->CommandAllocationGroupSize = CommandAllocationGroupSize; Controller->FreeCommands = NULL; for (CommandIdentifier = 1; CommandIdentifier <= Controller->DriverQueueDepth; CommandIdentifier++) { DAC960_Command_T *Command; if (--CommandsRemaining <= 0) { CommandsRemaining = Controller->DriverQueueDepth - CommandIdentifier + 1; if (CommandsRemaining > CommandAllocationGroupSize) CommandsRemaining = CommandAllocationGroupSize; CommandGroupByteCount = CommandsRemaining * CommandAllocationLength; AllocationPointer = kzalloc(CommandGroupByteCount, GFP_ATOMIC); if (AllocationPointer == NULL) return DAC960_Failure(Controller, "AUXILIARY STRUCTURE CREATION"); } Command = (DAC960_Command_T *) AllocationPointer; AllocationPointer += CommandAllocationLength; Command->CommandIdentifier = CommandIdentifier; Command->Controller = Controller; Command->Next = Controller->FreeCommands; Controller->FreeCommands = Command; Controller->Commands[CommandIdentifier-1] = Command; ScatterGatherCPU = pci_pool_alloc(ScatterGatherPool, GFP_ATOMIC, &ScatterGatherDMA); if (ScatterGatherCPU == NULL) return DAC960_Failure(Controller, "AUXILIARY STRUCTURE CREATION"); if (RequestSensePool != NULL) { RequestSenseCPU = pci_pool_alloc(RequestSensePool, GFP_ATOMIC, &RequestSenseDMA); if (RequestSenseCPU == NULL) { pci_pool_free(ScatterGatherPool, ScatterGatherCPU, ScatterGatherDMA); return DAC960_Failure(Controller, "AUXILIARY STRUCTURE CREATION"); } } if (Controller->FirmwareType == DAC960_V1_Controller) { Command->cmd_sglist = Command->V1.ScatterList; Command->V1.ScatterGatherList = (DAC960_V1_ScatterGatherSegment_T *)ScatterGatherCPU; Command->V1.ScatterGatherListDMA = ScatterGatherDMA; sg_init_table(Command->cmd_sglist, DAC960_V1_ScatterGatherLimit); } else { Command->cmd_sglist = Command->V2.ScatterList; Command->V2.ScatterGatherList = (DAC960_V2_ScatterGatherSegment_T *)ScatterGatherCPU; Command->V2.ScatterGatherListDMA = ScatterGatherDMA; Command->V2.RequestSense = (DAC960_SCSI_RequestSense_T *)RequestSenseCPU; Command->V2.RequestSenseDMA = RequestSenseDMA; sg_init_table(Command->cmd_sglist, DAC960_V2_ScatterGatherLimit); } } return true; } /* DAC960_DestroyAuxiliaryStructures deallocates the auxiliary data structures for Controller. */ static void DAC960_DestroyAuxiliaryStructures(DAC960_Controller_T *Controller) { int i; struct pci_pool *ScatterGatherPool = Controller->ScatterGatherPool; struct pci_pool *RequestSensePool = NULL; void *ScatterGatherCPU; dma_addr_t ScatterGatherDMA; void *RequestSenseCPU; dma_addr_t RequestSenseDMA; DAC960_Command_T *CommandGroup = NULL; if (Controller->FirmwareType == DAC960_V2_Controller) RequestSensePool = Controller->V2.RequestSensePool; Controller->FreeCommands = NULL; for (i = 0; i < Controller->DriverQueueDepth; i++) { DAC960_Command_T *Command = Controller->Commands[i]; if (Command == NULL) continue; if (Controller->FirmwareType == DAC960_V1_Controller) { ScatterGatherCPU = (void *)Command->V1.ScatterGatherList; ScatterGatherDMA = Command->V1.ScatterGatherListDMA; RequestSenseCPU = NULL; RequestSenseDMA = (dma_addr_t)0; } else { ScatterGatherCPU = (void *)Command->V2.ScatterGatherList; ScatterGatherDMA = Command->V2.ScatterGatherListDMA; RequestSenseCPU = (void *)Command->V2.RequestSense; RequestSenseDMA = Command->V2.RequestSenseDMA; } if (ScatterGatherCPU != NULL) pci_pool_free(ScatterGatherPool, ScatterGatherCPU, ScatterGatherDMA); if (RequestSenseCPU != NULL) pci_pool_free(RequestSensePool, RequestSenseCPU, RequestSenseDMA); if ((Command->CommandIdentifier % Controller->CommandAllocationGroupSize) == 1) { /* * We can't free the group of commands until all of the * request sense and scatter gather dma structures are free. * Remember the beginning of the group, but don't free it * until we've reached the beginning of the next group. */ kfree(CommandGroup); CommandGroup = Command; } Controller->Commands[i] = NULL; } kfree(CommandGroup); if (Controller->CombinedStatusBuffer != NULL) { kfree(Controller->CombinedStatusBuffer); Controller->CombinedStatusBuffer = NULL; Controller->CurrentStatusBuffer = NULL; } if (ScatterGatherPool != NULL) pci_pool_destroy(ScatterGatherPool); if (Controller->FirmwareType == DAC960_V1_Controller) return; if (RequestSensePool != NULL) pci_pool_destroy(RequestSensePool); for (i = 0; i < DAC960_MaxLogicalDrives; i++) { kfree(Controller->V2.LogicalDeviceInformation[i]); Controller->V2.LogicalDeviceInformation[i] = NULL; } for (i = 0; i < DAC960_V2_MaxPhysicalDevices; i++) { kfree(Controller->V2.PhysicalDeviceInformation[i]); Controller->V2.PhysicalDeviceInformation[i] = NULL; kfree(Controller->V2.InquiryUnitSerialNumber[i]); Controller->V2.InquiryUnitSerialNumber[i] = NULL; } } /* DAC960_V1_ClearCommand clears critical fields of Command for DAC960 V1 Firmware Controllers. */ static inline void DAC960_V1_ClearCommand(DAC960_Command_T *Command) { DAC960_V1_CommandMailbox_T *CommandMailbox = &Command->V1.CommandMailbox; memset(CommandMailbox, 0, sizeof(DAC960_V1_CommandMailbox_T)); Command->V1.CommandStatus = 0; } /* DAC960_V2_ClearCommand clears critical fields of Command for DAC960 V2 Firmware Controllers. */ static inline void DAC960_V2_ClearCommand(DAC960_Command_T *Command) { DAC960_V2_CommandMailbox_T *CommandMailbox = &Command->V2.CommandMailbox; memset(CommandMailbox, 0, sizeof(DAC960_V2_CommandMailbox_T)); Command->V2.CommandStatus = 0; } /* DAC960_AllocateCommand allocates a Command structure from Controller's free list. During driver initialization, a special initialization command has been placed on the free list to guarantee that command allocation can never fail. */ static inline DAC960_Command_T *DAC960_AllocateCommand(DAC960_Controller_T *Controller) { DAC960_Command_T *Command = Controller->FreeCommands; if (Command == NULL) return NULL; Controller->FreeCommands = Command->Next; Command->Next = NULL; return Command; } /* DAC960_DeallocateCommand deallocates Command, returning it to Controller's free list. */ static inline void DAC960_DeallocateCommand(DAC960_Command_T *Command) { DAC960_Controller_T *Controller = Command->Controller; Command->Request = NULL; Command->Next = Controller->FreeCommands; Controller->FreeCommands = Command; } /* DAC960_WaitForCommand waits for a wake_up on Controller's Command Wait Queue. */ static void DAC960_WaitForCommand(DAC960_Controller_T *Controller) { spin_unlock_irq(&Controller->queue_lock); __wait_event(Controller->CommandWaitQueue, Controller->FreeCommands); spin_lock_irq(&Controller->queue_lock); } /* DAC960_GEM_QueueCommand queues Command for DAC960 GEM Series Controllers. */ static void DAC960_GEM_QueueCommand(DAC960_Command_T *Command) { DAC960_Controller_T *Controller = Command->Controller; void __iomem *ControllerBaseAddress = Controller->BaseAddress; DAC960_V2_CommandMailbox_T *CommandMailbox = &Command->V2.CommandMailbox; DAC960_V2_CommandMailbox_T *NextCommandMailbox = Controller->V2.NextCommandMailbox; CommandMailbox->Common.CommandIdentifier = Command->CommandIdentifier; DAC960_GEM_WriteCommandMailbox(NextCommandMailbox, CommandMailbox); if (Controller->V2.PreviousCommandMailbox1->Words[0] == 0 || Controller->V2.PreviousCommandMailbox2->Words[0] == 0) DAC960_GEM_MemoryMailboxNewCommand(ControllerBaseAddress); Controller->V2.PreviousCommandMailbox2 = Controller->V2.PreviousCommandMailbox1; Controller->V2.PreviousCommandMailbox1 = NextCommandMailbox; if (++NextCommandMailbox > Controller->V2.LastCommandMailbox) NextCommandMailbox = Controller->V2.FirstCommandMailbox; Controller->V2.NextCommandMailbox = NextCommandMailbox; } /* DAC960_BA_QueueCommand queues Command for DAC960 BA Series Controllers. */ static void DAC960_BA_QueueCommand(DAC960_Command_T *Command) { DAC960_Controller_T *Controller = Command->Controller; void __iomem *ControllerBaseAddress = Controller->BaseAddress; DAC960_V2_CommandMailbox_T *CommandMailbox = &Command->V2.CommandMailbox; DAC960_V2_CommandMailbox_T *NextCommandMailbox = Controller->V2.NextCommandMailbox; CommandMailbox->Common.CommandIdentifier = Command->CommandIdentifier; DAC960_BA_WriteCommandMailbox(NextCommandMailbox, CommandMailbox); if (Controller->V2.PreviousCommandMailbox1->Words[0] == 0 || Controller->V2.PreviousCommandMailbox2->Words[0] == 0) DAC960_BA_MemoryMailboxNewCommand(ControllerBaseAddress); Controller->V2.PreviousCommandMailbox2 = Controller->V2.PreviousCommandMailbox1; Controller->V2.PreviousCommandMailbox1 = NextCommandMailbox; if (++NextCommandMailbox > Controller->V2.LastCommandMailbox) NextCommandMailbox = Controller->V2.FirstCommandMailbox; Controller->V2.NextCommandMailbox = NextCommandMailbox; } /* DAC960_LP_QueueCommand queues Command for DAC960 LP Series Controllers. */ static void DAC960_LP_QueueCommand(DAC960_Command_T *Command) { DAC960_Controller_T *Controller = Command->Controller; void __iomem *ControllerBaseAddress = Controller->BaseAddress; DAC960_V2_CommandMailbox_T *CommandMailbox = &Command->V2.CommandMailbox; DAC960_V2_CommandMailbox_T *NextCommandMailbox = Controller->V2.NextCommandMailbox; CommandMailbox->Common.CommandIdentifier = Command->CommandIdentifier; DAC960_LP_WriteCommandMailbox(NextCommandMailbox, CommandMailbox); if (Controller->V2.PreviousCommandMailbox1->Words[0] == 0 || Controller->V2.PreviousCommandMailbox2->Words[0] == 0) DAC960_LP_MemoryMailboxNewCommand(ControllerBaseAddress); Controller->V2.PreviousCommandMailbox2 = Controller->V2.PreviousCommandMailbox1; Controller->V2.PreviousCommandMailbox1 = NextCommandMailbox; if (++NextCommandMailbox > Controller->V2.LastCommandMailbox) NextCommandMailbox = Controller->V2.FirstCommandMailbox; Controller->V2.NextCommandMailbox = NextCommandMailbox; } /* DAC960_LA_QueueCommandDualMode queues Command for DAC960 LA Series Controllers with Dual Mode Firmware. */ static void DAC960_LA_QueueCommandDualMode(DAC960_Command_T *Command) { DAC960_Controller_T *Controller = Command->Controller; void __iomem *ControllerBaseAddress = Controller->BaseAddress; DAC960_V1_CommandMailbox_T *CommandMailbox = &Command->V1.CommandMailbox; DAC960_V1_CommandMailbox_T *NextCommandMailbox = Controller->V1.NextCommandMailbox; CommandMailbox->Common.CommandIdentifier = Command->CommandIdentifier; DAC960_LA_WriteCommandMailbox(NextCommandMailbox, CommandMailbox); if (Controller->V1.PreviousCommandMailbox1->Words[0] == 0 || Controller->V1.PreviousCommandMailbox2->Words[0] == 0) DAC960_LA_MemoryMailboxNewCommand(ControllerBaseAddress); Controller->V1.PreviousCommandMailbox2 = Controller->V1.PreviousCommandMailbox1; Controller->V1.PreviousCommandMailbox1 = NextCommandMailbox; if (++NextCommandMailbox > Controller->V1.LastCommandMailbox) NextCommandMailbox = Controller->V1.FirstCommandMailbox; Controller->V1.NextCommandMailbox = NextCommandMailbox; } /* DAC960_LA_QueueCommandSingleMode queues Command for DAC960 LA Series Controllers with Single Mode Firmware. */ static void DAC960_LA_QueueCommandSingleMode(DAC960_Command_T *Command) { DAC960_Controller_T *Controller = Command->Controller; void __iomem *ControllerBaseAddress = Controller->BaseAddress; DAC960_V1_CommandMailbox_T *CommandMailbox = &Command->V1.CommandMailbox; DAC960_V1_CommandMailbox_T *NextCommandMailbox = Controller->V1.NextCommandMailbox; CommandMailbox->Common.CommandIdentifier = Command->CommandIdentifier; DAC960_LA_WriteCommandMailbox(NextCommandMailbox, CommandMailbox); if (Controller->V1.PreviousCommandMailbox1->Words[0] == 0 || Controller->V1.PreviousCommandMailbox2->Words[0] == 0) DAC960_LA_HardwareMailboxNewCommand(ControllerBaseAddress); Controller->V1.PreviousCommandMailbox2 = Controller->V1.PreviousCommandMailbox1; Controller->V1.PreviousCommandMailbox1 = NextCommandMailbox; if (++NextCommandMailbox > Controller->V1.LastCommandMailbox) NextCommandMailbox = Controller->V1.FirstCommandMailbox; Controller->V1.NextCommandMailbox = NextCommandMailbox; } /* DAC960_PG_QueueCommandDualMode queues Command for DAC960 PG Series Controllers with Dual Mode Firmware. */ static void DAC960_PG_QueueCommandDualMode(DAC960_Command_T *Command) { DAC960_Controller_T *Controller = Command->Controller; void __iomem *ControllerBaseAddress = Controller->BaseAddress; DAC960_V1_CommandMailbox_T *CommandMailbox = &Command->V1.CommandMailbox; DAC960_V1_CommandMailbox_T *NextCommandMailbox = Controller->V1.NextCommandMailbox; CommandMailbox->Common.CommandIdentifier = Command->CommandIdentifier; DAC960_PG_WriteCommandMailbox(NextCommandMailbox, CommandMailbox); if (Controller->V1.PreviousCommandMailbox1->Words[0] == 0 || Controller->V1.PreviousCommandMailbox2->Words[0] == 0) DAC960_PG_MemoryMailboxNewCommand(ControllerBaseAddress); Controller->V1.PreviousCommandMailbox2 = Controller->V1.PreviousCommandMailbox1; Controller->V1.PreviousCommandMailbox1 = NextCommandMailbox; if (++NextCommandMailbox > Controller->V1.LastCommandMailbox) NextCommandMailbox = Controller->V1.FirstCommandMailbox; Controller->V1.NextCommandMailbox = NextCommandMailbox; } /* DAC960_PG_QueueCommandSingleMode queues Command for DAC960 PG Series Controllers with Single Mode Firmware. */ static void DAC960_PG_QueueCommandSingleMode(DAC960_Command_T *Command) { DAC960_Controller_T *Controller = Command->Controller; void __iomem *ControllerBaseAddress = Controller->BaseAddress; DAC960_V1_CommandMailbox_T *CommandMailbox = &Command->V1.CommandMailbox; DAC960_V1_CommandMailbox_T *NextCommandMailbox = Controller->V1.NextCommandMailbox; CommandMailbox->Common.CommandIdentifier = Command->CommandIdentifier; DAC960_PG_WriteCommandMailbox(NextCommandMailbox, CommandMailbox); if (Controller->V1.PreviousCommandMailbox1->Words[0] == 0 || Controller->V1.PreviousCommandMailbox2->Words[0] == 0) DAC960_PG_HardwareMailboxNewCommand(ControllerBaseAddress); Controller->V1.PreviousCommandMailbox2 = Controller->V1.PreviousCommandMailbox1; Controller->V1.PreviousCommandMailbox1 = NextCommandMailbox; if (++NextCommandMailbox > Controller->V1.LastCommandMailbox) NextCommandMailbox = Controller->V1.FirstCommandMailbox; Controller->V1.NextCommandMailbox = NextCommandMailbox; } /* DAC960_PD_QueueCommand queues Command for DAC960 PD Series Controllers. */ static void DAC960_PD_QueueCommand(DAC960_Command_T *Command) { DAC960_Controller_T *Controller = Command->Controller; void __iomem *ControllerBaseAddress = Controller->BaseAddress; DAC960_V1_CommandMailbox_T *CommandMailbox = &Command->V1.CommandMailbox; CommandMailbox->Common.CommandIdentifier = Command->CommandIdentifier; while (DAC960_PD_MailboxFullP(ControllerBaseAddress)) udelay(1); DAC960_PD_WriteCommandMailbox(ControllerBaseAddress, CommandMailbox); DAC960_PD_NewCommand(ControllerBaseAddress); } /* DAC960_P_QueueCommand queues Command for DAC960 P Series Controllers. */ static void DAC960_P_QueueCommand(DAC960_Command_T *Command) { DAC960_Controller_T *Controller = Command->Controller; void __iomem *ControllerBaseAddress = Controller->BaseAddress; DAC960_V1_CommandMailbox_T *CommandMailbox = &Command->V1.CommandMailbox; CommandMailbox->Common.CommandIdentifier = Command->CommandIdentifier; switch (CommandMailbox->Common.CommandOpcode) { case DAC960_V1_Enquiry: CommandMailbox->Common.CommandOpcode = DAC960_V1_Enquiry_Old; break; case DAC960_V1_GetDeviceState: CommandMailbox->Common.CommandOpcode = DAC960_V1_GetDeviceState_Old; break; case DAC960_V1_Read: CommandMailbox->Common.CommandOpcode = DAC960_V1_Read_Old; DAC960_PD_To_P_TranslateReadWriteCommand(CommandMailbox); break; case DAC960_V1_Write: CommandMailbox->Common.CommandOpcode = DAC960_V1_Write_Old; DAC960_PD_To_P_TranslateReadWriteCommand(CommandMailbox); break; case DAC960_V1_ReadWithScatterGather: CommandMailbox->Common.CommandOpcode = DAC960_V1_ReadWithScatterGather_Old; DAC960_PD_To_P_TranslateReadWriteCommand(CommandMailbox); break; case DAC960_V1_WriteWithScatterGather: CommandMailbox->Common.CommandOpcode = DAC960_V1_WriteWithScatterGather_Old; DAC960_PD_To_P_TranslateReadWriteCommand(CommandMailbox); break; default: break; } while (DAC960_PD_MailboxFullP(ControllerBaseAddress)) udelay(1); DAC960_PD_WriteCommandMailbox(ControllerBaseAddress, CommandMailbox); DAC960_PD_NewCommand(ControllerBaseAddress); } /* DAC960_ExecuteCommand executes Command and waits for completion. */ static void DAC960_ExecuteCommand(DAC960_Command_T *Command) { DAC960_Controller_T *Controller = Command->Controller; DECLARE_COMPLETION_ONSTACK(Completion); unsigned long flags; Command->Completion = &Completion; spin_lock_irqsave(&Controller->queue_lock, flags); DAC960_QueueCommand(Command); spin_unlock_irqrestore(&Controller->queue_lock, flags); if (in_interrupt()) return; wait_for_completion(&Completion); } /* DAC960_V1_ExecuteType3 executes a DAC960 V1 Firmware Controller Type 3 Command and waits for completion. It returns true on success and false on failure. */ static bool DAC960_V1_ExecuteType3(DAC960_Controller_T *Controller, DAC960_V1_CommandOpcode_T CommandOpcode, dma_addr_t DataDMA) { DAC960_Command_T *Command = DAC960_AllocateCommand(Controller); DAC960_V1_CommandMailbox_T *CommandMailbox = &Command->V1.CommandMailbox; DAC960_V1_CommandStatus_T CommandStatus; DAC960_V1_ClearCommand(Command); Command->CommandType = DAC960_ImmediateCommand; CommandMailbox->Type3.CommandOpcode = CommandOpcode; CommandMailbox->Type3.BusAddress = DataDMA; DAC960_ExecuteCommand(Command); CommandStatus = Command->V1.CommandStatus; DAC960_DeallocateCommand(Command); return (CommandStatus == DAC960_V1_NormalCompletion); } /* DAC960_V1_ExecuteTypeB executes a DAC960 V1 Firmware Controller Type 3B Command and waits for completion. It returns true on success and false on failure. */ static bool DAC960_V1_ExecuteType3B(DAC960_Controller_T *Controller, DAC960_V1_CommandOpcode_T CommandOpcode, unsigned char CommandOpcode2, dma_addr_t DataDMA) { DAC960_Command_T *Command = DAC960_AllocateCommand(Controller); DAC960_V1_CommandMailbox_T *CommandMailbox = &Command->V1.CommandMailbox; DAC960_V1_CommandStatus_T CommandStatus; DAC960_V1_ClearCommand(Command); Command->CommandType = DAC960_ImmediateCommand; CommandMailbox->Type3B.CommandOpcode = CommandOpcode; CommandMailbox->Type3B.CommandOpcode2 = CommandOpcode2; CommandMailbox->Type3B.BusAddress = DataDMA; DAC960_ExecuteCommand(Command); CommandStatus = Command->V1.CommandStatus; DAC960_DeallocateCommand(Command); return (CommandStatus == DAC960_V1_NormalCompletion); } /* DAC960_V1_ExecuteType3D executes a DAC960 V1 Firmware Controller Type 3D Command and waits for completion. It returns true on success and false on failure. */ static bool DAC960_V1_ExecuteType3D(DAC960_Controller_T *Controller, DAC960_V1_CommandOpcode_T CommandOpcode, unsigned char Channel, unsigned char TargetID, dma_addr_t DataDMA) { DAC960_Command_T *Command = DAC960_AllocateCommand(Controller); DAC960_V1_CommandMailbox_T *CommandMailbox = &Command->V1.CommandMailbox; DAC960_V1_CommandStatus_T CommandStatus; DAC960_V1_ClearCommand(Command); Command->CommandType = DAC960_ImmediateCommand; CommandMailbox->Type3D.CommandOpcode = CommandOpcode; CommandMailbox->Type3D.Channel = Channel; CommandMailbox->Type3D.TargetID = TargetID; CommandMailbox->Type3D.BusAddress = DataDMA; DAC960_ExecuteCommand(Command); CommandStatus = Command->V1.CommandStatus; DAC960_DeallocateCommand(Command); return (CommandStatus == DAC960_V1_NormalCompletion); } /* DAC960_V2_GeneralInfo executes a DAC960 V2 Firmware General Information Reading IOCTL Command and waits for completion. It returns true on success and false on failure. Return data in The controller's HealthStatusBuffer, which is dma-able memory */ static bool DAC960_V2_GeneralInfo(DAC960_Controller_T *Controller) { DAC960_Command_T *Command = DAC960_AllocateCommand(Controller); DAC960_V2_CommandMailbox_T *CommandMailbox = &Command->V2.CommandMailbox; DAC960_V2_CommandStatus_T CommandStatus; DAC960_V2_ClearCommand(Command); Command->CommandType = DAC960_ImmediateCommand; CommandMailbox->Common.CommandOpcode = DAC960_V2_IOCTL; CommandMailbox->Common.CommandControlBits .DataTransferControllerToHost = true; CommandMailbox->Common.CommandControlBits .NoAutoRequestSense = true; CommandMailbox->Common.DataTransferSize = sizeof(DAC960_V2_HealthStatusBuffer_T); CommandMailbox->Common.IOCTL_Opcode = DAC960_V2_GetHealthStatus; CommandMailbox->Common.DataTransferMemoryAddress .ScatterGatherSegments[0] .SegmentDataPointer = Controller->V2.HealthStatusBufferDMA; CommandMailbox->Common.DataTransferMemoryAddress .ScatterGatherSegments[0] .SegmentByteCount = CommandMailbox->Common.DataTransferSize; DAC960_ExecuteCommand(Command); CommandStatus = Command->V2.CommandStatus; DAC960_DeallocateCommand(Command); return (CommandStatus == DAC960_V2_NormalCompletion); } /* DAC960_V2_ControllerInfo executes a DAC960 V2 Firmware Controller Information Reading IOCTL Command and waits for completion. It returns true on success and false on failure. Data is returned in the controller's V2.NewControllerInformation dma-able memory buffer. */ static bool DAC960_V2_NewControllerInfo(DAC960_Controller_T *Controller) { DAC960_Command_T *Command = DAC960_AllocateCommand(Controller); DAC960_V2_CommandMailbox_T *CommandMailbox = &Command->V2.CommandMailbox; DAC960_V2_CommandStatus_T CommandStatus; DAC960_V2_ClearCommand(Command); Command->CommandType = DAC960_ImmediateCommand; CommandMailbox->ControllerInfo.CommandOpcode = DAC960_V2_IOCTL; CommandMailbox->ControllerInfo.CommandControlBits .DataTransferControllerToHost = true; CommandMailbox->ControllerInfo.CommandControlBits .NoAutoRequestSense = true; CommandMailbox->ControllerInfo.DataTransferSize = sizeof(DAC960_V2_ControllerInfo_T); CommandMailbox->ControllerInfo.ControllerNumber = 0; CommandMailbox->ControllerInfo.IOCTL_Opcode = DAC960_V2_GetControllerInfo; CommandMailbox->ControllerInfo.DataTransferMemoryAddress .ScatterGatherSegments[0] .SegmentDataPointer = Controller->V2.NewControllerInformationDMA; CommandMailbox->ControllerInfo.DataTransferMemoryAddress .ScatterGatherSegments[0] .SegmentByteCount = CommandMailbox->ControllerInfo.DataTransferSize; DAC960_ExecuteCommand(Command); CommandStatus = Command->V2.CommandStatus; DAC960_DeallocateCommand(Command); return (CommandStatus == DAC960_V2_NormalCompletion); } /* DAC960_V2_LogicalDeviceInfo executes a DAC960 V2 Firmware Controller Logical Device Information Reading IOCTL Command and waits for completion. It returns true on success and false on failure. Data is returned in the controller's V2.NewLogicalDeviceInformation */ static bool DAC960_V2_NewLogicalDeviceInfo(DAC960_Controller_T *Controller, unsigned short LogicalDeviceNumber) { DAC960_Command_T *Command = DAC960_AllocateCommand(Controller); DAC960_V2_CommandMailbox_T *CommandMailbox = &Command->V2.CommandMailbox; DAC960_V2_CommandStatus_T CommandStatus; DAC960_V2_ClearCommand(Command); Command->CommandType = DAC960_ImmediateCommand; CommandMailbox->LogicalDeviceInfo.CommandOpcode = DAC960_V2_IOCTL; CommandMailbox->LogicalDeviceInfo.CommandControlBits .DataTransferControllerToHost = true; CommandMailbox->LogicalDeviceInfo.CommandControlBits .NoAutoRequestSense = true; CommandMailbox->LogicalDeviceInfo.DataTransferSize = sizeof(DAC960_V2_LogicalDeviceInfo_T); CommandMailbox->LogicalDeviceInfo.LogicalDevice.LogicalDeviceNumber = LogicalDeviceNumber; CommandMailbox->LogicalDeviceInfo.IOCTL_Opcode = DAC960_V2_GetLogicalDeviceInfoValid; CommandMailbox->LogicalDeviceInfo.DataTransferMemoryAddress .ScatterGatherSegments[0] .SegmentDataPointer = Controller->V2.NewLogicalDeviceInformationDMA; CommandMailbox->LogicalDeviceInfo.DataTransferMemoryAddress .ScatterGatherSegments[0] .SegmentByteCount = CommandMailbox->LogicalDeviceInfo.DataTransferSize; DAC960_ExecuteCommand(Command); CommandStatus = Command->V2.CommandStatus; DAC960_DeallocateCommand(Command); return (CommandStatus == DAC960_V2_NormalCompletion); } /* DAC960_V2_PhysicalDeviceInfo executes a DAC960 V2 Firmware Controller "Read Physical Device Information" IOCTL Command and waits for completion. It returns true on success and false on failure. The Channel, TargetID, LogicalUnit arguments should be 0 the first time this function is called for a given controller. This will return data for the "first" device on that controller. The returned data includes a Channel, TargetID, LogicalUnit that can be passed in to this routine to get data for the NEXT device on that controller. Data is stored in the controller's V2.NewPhysicalDeviceInfo dma-able memory buffer. */ static bool DAC960_V2_NewPhysicalDeviceInfo(DAC960_Controller_T *Controller, unsigned char Channel, unsigned char TargetID, unsigned char LogicalUnit) { DAC960_Command_T *Command = DAC960_AllocateCommand(Controller); DAC960_V2_CommandMailbox_T *CommandMailbox = &Command->V2.CommandMailbox; DAC960_V2_CommandStatus_T CommandStatus; DAC960_V2_ClearCommand(Command); Command->CommandType = DAC960_ImmediateCommand; CommandMailbox->PhysicalDeviceInfo.CommandOpcode = DAC960_V2_IOCTL; CommandMailbox->PhysicalDeviceInfo.CommandControlBits .DataTransferControllerToHost = true; CommandMailbox->PhysicalDeviceInfo.CommandControlBits .NoAutoRequestSense = true; CommandMailbox->PhysicalDeviceInfo.DataTransferSize = sizeof(DAC960_V2_PhysicalDeviceInfo_T); CommandMailbox->PhysicalDeviceInfo.PhysicalDevice.LogicalUnit = LogicalUnit; CommandMailbox->PhysicalDeviceInfo.PhysicalDevice.TargetID = TargetID; CommandMailbox->PhysicalDeviceInfo.PhysicalDevice.Channel = Channel; CommandMailbox->PhysicalDeviceInfo.IOCTL_Opcode = DAC960_V2_GetPhysicalDeviceInfoValid; CommandMailbox->PhysicalDeviceInfo.DataTransferMemoryAddress .ScatterGatherSegments[0] .SegmentDataPointer = Controller->V2.NewPhysicalDeviceInformationDMA; CommandMailbox->PhysicalDeviceInfo.DataTransferMemoryAddress .ScatterGatherSegments[0] .SegmentByteCount = CommandMailbox->PhysicalDeviceInfo.DataTransferSize; DAC960_ExecuteCommand(Command); CommandStatus = Command->V2.CommandStatus; DAC960_DeallocateCommand(Command); return (CommandStatus == DAC960_V2_NormalCompletion); } static void DAC960_V2_ConstructNewUnitSerialNumber( DAC960_Controller_T *Controller, DAC960_V2_CommandMailbox_T *CommandMailbox, int Channel, int TargetID, int LogicalUnit) { CommandMailbox->SCSI_10.CommandOpcode = DAC960_V2_SCSI_10_Passthru; CommandMailbox->SCSI_10.CommandControlBits .DataTransferControllerToHost = true; CommandMailbox->SCSI_10.CommandControlBits .NoAutoRequestSense = true; CommandMailbox->SCSI_10.DataTransferSize = sizeof(DAC960_SCSI_Inquiry_UnitSerialNumber_T); CommandMailbox->SCSI_10.PhysicalDevice.LogicalUnit = LogicalUnit; CommandMailbox->SCSI_10.PhysicalDevice.TargetID = TargetID; CommandMailbox->SCSI_10.PhysicalDevice.Channel = Channel; CommandMailbox->SCSI_10.CDBLength = 6; CommandMailbox->SCSI_10.SCSI_CDB[0] = 0x12; /* INQUIRY */ CommandMailbox->SCSI_10.SCSI_CDB[1] = 1; /* EVPD = 1 */ CommandMailbox->SCSI_10.SCSI_CDB[2] = 0x80; /* Page Code */ CommandMailbox->SCSI_10.SCSI_CDB[3] = 0; /* Reserved */ CommandMailbox->SCSI_10.SCSI_CDB[4] = sizeof(DAC960_SCSI_Inquiry_UnitSerialNumber_T); CommandMailbox->SCSI_10.SCSI_CDB[5] = 0; /* Control */ CommandMailbox->SCSI_10.DataTransferMemoryAddress .ScatterGatherSegments[0] .SegmentDataPointer = Controller->V2.NewInquiryUnitSerialNumberDMA; CommandMailbox->SCSI_10.DataTransferMemoryAddress .ScatterGatherSegments[0] .SegmentByteCount = CommandMailbox->SCSI_10.DataTransferSize; } /* DAC960_V2_NewUnitSerialNumber executes an SCSI pass-through Inquiry command to a SCSI device identified by Channel number, Target id, Logical Unit Number. This function Waits for completion of the command. The return data includes Unit Serial Number information for the specified device. Data is stored in the controller's V2.NewPhysicalDeviceInfo dma-able memory buffer. */ static bool DAC960_V2_NewInquiryUnitSerialNumber(DAC960_Controller_T *Controller, int Channel, int TargetID, int LogicalUnit) { DAC960_Command_T *Command; DAC960_V2_CommandMailbox_T *CommandMailbox; DAC960_V2_CommandStatus_T CommandStatus; Command = DAC960_AllocateCommand(Controller); CommandMailbox = &Command->V2.CommandMailbox; DAC960_V2_ClearCommand(Command); Command->CommandType = DAC960_ImmediateCommand; DAC960_V2_ConstructNewUnitSerialNumber(Controller, CommandMailbox, Channel, TargetID, LogicalUnit); DAC960_ExecuteCommand(Command); CommandStatus = Command->V2.CommandStatus; DAC960_DeallocateCommand(Command); return (CommandStatus == DAC960_V2_NormalCompletion); } /* DAC960_V2_DeviceOperation executes a DAC960 V2 Firmware Controller Device Operation IOCTL Command and waits for completion. It returns true on success and false on failure. */ static bool DAC960_V2_DeviceOperation(DAC960_Controller_T *Controller, DAC960_V2_IOCTL_Opcode_T IOCTL_Opcode, DAC960_V2_OperationDevice_T OperationDevice) { DAC960_Command_T *Command = DAC960_AllocateCommand(Controller); DAC960_V2_CommandMailbox_T *CommandMailbox = &Command->V2.CommandMailbox; DAC960_V2_CommandStatus_T CommandStatus; DAC960_V2_ClearCommand(Command); Command->CommandType = DAC960_ImmediateCommand; CommandMailbox->DeviceOperation.CommandOpcode = DAC960_V2_IOCTL; CommandMailbox->DeviceOperation.CommandControlBits .DataTransferControllerToHost = true; CommandMailbox->DeviceOperation.CommandControlBits .NoAutoRequestSense = true; CommandMailbox->DeviceOperation.IOCTL_Opcode = IOCTL_Opcode; CommandMailbox->DeviceOperation.OperationDevice = OperationDevice; DAC960_ExecuteCommand(Command); CommandStatus = Command->V2.CommandStatus; DAC960_DeallocateCommand(Command); return (CommandStatus == DAC960_V2_NormalCompletion); } /* DAC960_V1_EnableMemoryMailboxInterface enables the Memory Mailbox Interface for DAC960 V1 Firmware Controllers. PD and P controller types have no memory mailbox, but still need the other dma mapped memory. */ static bool DAC960_V1_EnableMemoryMailboxInterface(DAC960_Controller_T *Controller) { void __iomem *ControllerBaseAddress = Controller->BaseAddress; DAC960_HardwareType_T hw_type = Controller->HardwareType; struct pci_dev *PCI_Device = Controller->PCIDevice; struct dma_loaf *DmaPages = &Controller->DmaPages; size_t DmaPagesSize; size_t CommandMailboxesSize; size_t StatusMailboxesSize; DAC960_V1_CommandMailbox_T *CommandMailboxesMemory; dma_addr_t CommandMailboxesMemoryDMA; DAC960_V1_StatusMailbox_T *StatusMailboxesMemory; dma_addr_t StatusMailboxesMemoryDMA; DAC960_V1_CommandMailbox_T CommandMailbox; DAC960_V1_CommandStatus_T CommandStatus; int TimeoutCounter; int i; memset(&CommandMailbox, 0, sizeof(DAC960_V1_CommandMailbox_T)); if (pci_set_dma_mask(Controller->PCIDevice, DMA_BIT_MASK(32))) return DAC960_Failure(Controller, "DMA mask out of range"); Controller->BounceBufferLimit = DMA_BIT_MASK(32); if ((hw_type == DAC960_PD_Controller) || (hw_type == DAC960_P_Controller)) { CommandMailboxesSize = 0; StatusMailboxesSize = 0; } else { CommandMailboxesSize = DAC960_V1_CommandMailboxCount * sizeof(DAC960_V1_CommandMailbox_T); StatusMailboxesSize = DAC960_V1_StatusMailboxCount * sizeof(DAC960_V1_StatusMailbox_T); } DmaPagesSize = CommandMailboxesSize + StatusMailboxesSize + sizeof(DAC960_V1_DCDB_T) + sizeof(DAC960_V1_Enquiry_T) + sizeof(DAC960_V1_ErrorTable_T) + sizeof(DAC960_V1_EventLogEntry_T) + sizeof(DAC960_V1_RebuildProgress_T) + sizeof(DAC960_V1_LogicalDriveInformationArray_T) + sizeof(DAC960_V1_BackgroundInitializationStatus_T) + sizeof(DAC960_V1_DeviceState_T) + sizeof(DAC960_SCSI_Inquiry_T) + sizeof(DAC960_SCSI_Inquiry_UnitSerialNumber_T); if (!init_dma_loaf(PCI_Device, DmaPages, DmaPagesSize)) return false; if ((hw_type == DAC960_PD_Controller) || (hw_type == DAC960_P_Controller)) goto skip_mailboxes; CommandMailboxesMemory = slice_dma_loaf(DmaPages, CommandMailboxesSize, &CommandMailboxesMemoryDMA); /* These are the base addresses for the command memory mailbox array */ Controller->V1.FirstCommandMailbox = CommandMailboxesMemory; Controller->V1.FirstCommandMailboxDMA = CommandMailboxesMemoryDMA; CommandMailboxesMemory += DAC960_V1_CommandMailboxCount - 1; Controller->V1.LastCommandMailbox = CommandMailboxesMemory; Controller->V1.NextCommandMailbox = Controller->V1.FirstCommandMailbox; Controller->V1.PreviousCommandMailbox1 = Controller->V1.LastCommandMailbox; Controller->V1.PreviousCommandMailbox2 = Controller->V1.LastCommandMailbox - 1; /* These are the base addresses for the status memory mailbox array */ StatusMailboxesMemory = slice_dma_loaf(DmaPages, StatusMailboxesSize, &StatusMailboxesMemoryDMA); Controller->V1.FirstStatusMailbox = StatusMailboxesMemory; Controller->V1.FirstStatusMailboxDMA = StatusMailboxesMemoryDMA; StatusMailboxesMemory += DAC960_V1_StatusMailboxCount - 1; Controller->V1.LastStatusMailbox = StatusMailboxesMemory; Controller->V1.NextStatusMailbox = Controller->V1.FirstStatusMailbox; skip_mailboxes: Controller->V1.MonitoringDCDB = slice_dma_loaf(DmaPages, sizeof(DAC960_V1_DCDB_T), &Controller->V1.MonitoringDCDB_DMA); Controller->V1.NewEnquiry = slice_dma_loaf(DmaPages, sizeof(DAC960_V1_Enquiry_T), &Controller->V1.NewEnquiryDMA); Controller->V1.NewErrorTable = slice_dma_loaf(DmaPages, sizeof(DAC960_V1_ErrorTable_T), &Controller->V1.NewErrorTableDMA); Controller->V1.EventLogEntry = slice_dma_loaf(DmaPages, sizeof(DAC960_V1_EventLogEntry_T), &Controller->V1.EventLogEntryDMA); Controller->V1.RebuildProgress = slice_dma_loaf(DmaPages, sizeof(DAC960_V1_RebuildProgress_T), &Controller->V1.RebuildProgressDMA); Controller->V1.NewLogicalDriveInformation = slice_dma_loaf(DmaPages, sizeof(DAC960_V1_LogicalDriveInformationArray_T), &Controller->V1.NewLogicalDriveInformationDMA); Controller->V1.BackgroundInitializationStatus = slice_dma_loaf(DmaPages, sizeof(DAC960_V1_BackgroundInitializationStatus_T), &Controller->V1.BackgroundInitializationStatusDMA); Controller->V1.NewDeviceState = slice_dma_loaf(DmaPages, sizeof(DAC960_V1_DeviceState_T), &Controller->V1.NewDeviceStateDMA); Controller->V1.NewInquiryStandardData = slice_dma_loaf(DmaPages, sizeof(DAC960_SCSI_Inquiry_T), &Controller->V1.NewInquiryStandardDataDMA); Controller->V1.NewInquiryUnitSerialNumber = slice_dma_loaf(DmaPages, sizeof(DAC960_SCSI_Inquiry_UnitSerialNumber_T), &Controller->V1.NewInquiryUnitSerialNumberDMA); if ((hw_type == DAC960_PD_Controller) || (hw_type == DAC960_P_Controller)) return true; /* Enable the Memory Mailbox Interface. */ Controller->V1.DualModeMemoryMailboxInterface = true; CommandMailbox.TypeX.CommandOpcode = 0x2B; CommandMailbox.TypeX.CommandIdentifier = 0; CommandMailbox.TypeX.CommandOpcode2 = 0x14; CommandMailbox.TypeX.CommandMailboxesBusAddress = Controller->V1.FirstCommandMailboxDMA; CommandMailbox.TypeX.StatusMailboxesBusAddress = Controller->V1.FirstStatusMailboxDMA; #define TIMEOUT_COUNT 1000000 for (i = 0; i < 2; i++) switch (Controller->HardwareType) { case DAC960_LA_Controller: TimeoutCounter = TIMEOUT_COUNT; while (--TimeoutCounter >= 0) { if (!DAC960_LA_HardwareMailboxFullP(ControllerBaseAddress)) break; udelay(10); } if (TimeoutCounter < 0) return false; DAC960_LA_WriteHardwareMailbox(ControllerBaseAddress, &CommandMailbox); DAC960_LA_HardwareMailboxNewCommand(ControllerBaseAddress); TimeoutCounter = TIMEOUT_COUNT; while (--TimeoutCounter >= 0) { if (DAC960_LA_HardwareMailboxStatusAvailableP( ControllerBaseAddress)) break; udelay(10); } if (TimeoutCounter < 0) return false; CommandStatus = DAC960_LA_ReadStatusRegister(ControllerBaseAddress); DAC960_LA_AcknowledgeHardwareMailboxInterrupt(ControllerBaseAddress); DAC960_LA_AcknowledgeHardwareMailboxStatus(ControllerBaseAddress); if (CommandStatus == DAC960_V1_NormalCompletion) return true; Controller->V1.DualModeMemoryMailboxInterface = false; CommandMailbox.TypeX.CommandOpcode2 = 0x10; break; case DAC960_PG_Controller: TimeoutCounter = TIMEOUT_COUNT; while (--TimeoutCounter >= 0) { if (!DAC960_PG_HardwareMailboxFullP(ControllerBaseAddress)) break; udelay(10); } if (TimeoutCounter < 0) return false; DAC960_PG_WriteHardwareMailbox(ControllerBaseAddress, &CommandMailbox); DAC960_PG_HardwareMailboxNewCommand(ControllerBaseAddress); TimeoutCounter = TIMEOUT_COUNT; while (--TimeoutCounter >= 0) { if (DAC960_PG_HardwareMailboxStatusAvailableP( ControllerBaseAddress)) break; udelay(10); } if (TimeoutCounter < 0) return false; CommandStatus = DAC960_PG_ReadStatusRegister(ControllerBaseAddress); DAC960_PG_AcknowledgeHardwareMailboxInterrupt(ControllerBaseAddress); DAC960_PG_AcknowledgeHardwareMailboxStatus(ControllerBaseAddress); if (CommandStatus == DAC960_V1_NormalCompletion) return true; Controller->V1.DualModeMemoryMailboxInterface = false; CommandMailbox.TypeX.CommandOpcode2 = 0x10; break; default: DAC960_Failure(Controller, "Unknown Controller Type\n"); break; } return false; } /* DAC960_V2_EnableMemoryMailboxInterface enables the Memory Mailbox Interface for DAC960 V2 Firmware Controllers. Aggregate the space needed for the controller's memory mailbox and the other data structures that will be targets of dma transfers with the controller. Allocate a dma-mapped region of memory to hold these structures. Then, save CPU pointers and dma_addr_t values to reference the structures that are contained in that region. */ static bool DAC960_V2_EnableMemoryMailboxInterface(DAC960_Controller_T *Controller) { void __iomem *ControllerBaseAddress = Controller->BaseAddress; struct pci_dev *PCI_Device = Controller->PCIDevice; struct dma_loaf *DmaPages = &Controller->DmaPages; size_t DmaPagesSize; size_t CommandMailboxesSize; size_t StatusMailboxesSize; DAC960_V2_CommandMailbox_T *CommandMailboxesMemory; dma_addr_t CommandMailboxesMemoryDMA; DAC960_V2_StatusMailbox_T *StatusMailboxesMemory; dma_addr_t StatusMailboxesMemoryDMA; DAC960_V2_CommandMailbox_T *CommandMailbox; dma_addr_t CommandMailboxDMA; DAC960_V2_CommandStatus_T CommandStatus; if (!pci_set_dma_mask(Controller->PCIDevice, DMA_BIT_MASK(64))) Controller->BounceBufferLimit = DMA_BIT_MASK(64); else if (!pci_set_dma_mask(Controller->PCIDevice, DMA_BIT_MASK(32))) Controller->BounceBufferLimit = DMA_BIT_MASK(32); else return DAC960_Failure(Controller, "DMA mask out of range"); /* This is a temporary dma mapping, used only in the scope of this function */ CommandMailbox = pci_alloc_consistent(PCI_Device, sizeof(DAC960_V2_CommandMailbox_T), &CommandMailboxDMA); if (CommandMailbox == NULL) return false; CommandMailboxesSize = DAC960_V2_CommandMailboxCount * sizeof(DAC960_V2_CommandMailbox_T); StatusMailboxesSize = DAC960_V2_StatusMailboxCount * sizeof(DAC960_V2_StatusMailbox_T); DmaPagesSize = CommandMailboxesSize + StatusMailboxesSize + sizeof(DAC960_V2_HealthStatusBuffer_T) + sizeof(DAC960_V2_ControllerInfo_T) + sizeof(DAC960_V2_LogicalDeviceInfo_T) + sizeof(DAC960_V2_PhysicalDeviceInfo_T) + sizeof(DAC960_SCSI_Inquiry_UnitSerialNumber_T) + sizeof(DAC960_V2_Event_T) + sizeof(DAC960_V2_PhysicalToLogicalDevice_T); if (!init_dma_loaf(PCI_Device, DmaPages, DmaPagesSize)) { pci_free_consistent(PCI_Device, sizeof(DAC960_V2_CommandMailbox_T), CommandMailbox, CommandMailboxDMA); return false; } CommandMailboxesMemory = slice_dma_loaf(DmaPages, CommandMailboxesSize, &CommandMailboxesMemoryDMA); /* These are the base addresses for the command memory mailbox array */ Controller->V2.FirstCommandMailbox = CommandMailboxesMemory; Controller->V2.FirstCommandMailboxDMA = CommandMailboxesMemoryDMA; CommandMailboxesMemory += DAC960_V2_CommandMailboxCount - 1; Controller->V2.LastCommandMailbox = CommandMailboxesMemory; Controller->V2.NextCommandMailbox = Controller->V2.FirstCommandMailbox; Controller->V2.PreviousCommandMailbox1 = Controller->V2.LastCommandMailbox; Controller->V2.PreviousCommandMailbox2 = Controller->V2.LastCommandMailbox - 1; /* These are the base addresses for the status memory mailbox array */ StatusMailboxesMemory = slice_dma_loaf(DmaPages, StatusMailboxesSize, &StatusMailboxesMemoryDMA); Controller->V2.FirstStatusMailbox = StatusMailboxesMemory; Controller->V2.FirstStatusMailboxDMA = StatusMailboxesMemoryDMA; StatusMailboxesMemory += DAC960_V2_StatusMailboxCount - 1; Controller->V2.LastStatusMailbox = StatusMailboxesMemory; Controller->V2.NextStatusMailbox = Controller->V2.FirstStatusMailbox; Controller->V2.HealthStatusBuffer = slice_dma_loaf(DmaPages, sizeof(DAC960_V2_HealthStatusBuffer_T), &Controller->V2.HealthStatusBufferDMA); Controller->V2.NewControllerInformation = slice_dma_loaf(DmaPages, sizeof(DAC960_V2_ControllerInfo_T), &Controller->V2.NewControllerInformationDMA); Controller->V2.NewLogicalDeviceInformation = slice_dma_loaf(DmaPages, sizeof(DAC960_V2_LogicalDeviceInfo_T), &Controller->V2.NewLogicalDeviceInformationDMA); Controller->V2.NewPhysicalDeviceInformation = slice_dma_loaf(DmaPages, sizeof(DAC960_V2_PhysicalDeviceInfo_T), &Controller->V2.NewPhysicalDeviceInformationDMA); Controller->V2.NewInquiryUnitSerialNumber = slice_dma_loaf(DmaPages, sizeof(DAC960_SCSI_Inquiry_UnitSerialNumber_T), &Controller->V2.NewInquiryUnitSerialNumberDMA); Controller->V2.Event = slice_dma_loaf(DmaPages, sizeof(DAC960_V2_Event_T), &Controller->V2.EventDMA); Controller->V2.PhysicalToLogicalDevice = slice_dma_loaf(DmaPages, sizeof(DAC960_V2_PhysicalToLogicalDevice_T), &Controller->V2.PhysicalToLogicalDeviceDMA); /* Enable the Memory Mailbox Interface. I don't know why we can't just use one of the memory mailboxes we just allocated to do this, instead of using this temporary one. Try this change later. */ memset(CommandMailbox, 0, sizeof(DAC960_V2_CommandMailbox_T)); CommandMailbox->SetMemoryMailbox.CommandIdentifier = 1; CommandMailbox->SetMemoryMailbox.CommandOpcode = DAC960_V2_IOCTL; CommandMailbox->SetMemoryMailbox.CommandControlBits.NoAutoRequestSense = true; CommandMailbox->SetMemoryMailbox.FirstCommandMailboxSizeKB = (DAC960_V2_CommandMailboxCount * sizeof(DAC960_V2_CommandMailbox_T)) >> 10; CommandMailbox->SetMemoryMailbox.FirstStatusMailboxSizeKB = (DAC960_V2_StatusMailboxCount * sizeof(DAC960_V2_StatusMailbox_T)) >> 10; CommandMailbox->SetMemoryMailbox.SecondCommandMailboxSizeKB = 0; CommandMailbox->SetMemoryMailbox.SecondStatusMailboxSizeKB = 0; CommandMailbox->SetMemoryMailbox.RequestSenseSize = 0; CommandMailbox->SetMemoryMailbox.IOCTL_Opcode = DAC960_V2_SetMemoryMailbox; CommandMailbox->SetMemoryMailbox.HealthStatusBufferSizeKB = 1; CommandMailbox->SetMemoryMailbox.HealthStatusBufferBusAddress = Controller->V2.HealthStatusBufferDMA; CommandMailbox->SetMemoryMailbox.FirstCommandMailboxBusAddress = Controller->V2.FirstCommandMailboxDMA; CommandMailbox->SetMemoryMailbox.FirstStatusMailboxBusAddress = Controller->V2.FirstStatusMailboxDMA; switch (Controller->HardwareType) { case DAC960_GEM_Controller: while (DAC960_GEM_HardwareMailboxFullP(ControllerBaseAddress)) udelay(1); DAC960_GEM_WriteHardwareMailbox(ControllerBaseAddress, CommandMailboxDMA); DAC960_GEM_HardwareMailboxNewCommand(ControllerBaseAddress); while (!DAC960_GEM_HardwareMailboxStatusAvailableP(ControllerBaseAddress)) udelay(1); CommandStatus = DAC960_GEM_ReadCommandStatus(ControllerBaseAddress); DAC960_GEM_AcknowledgeHardwareMailboxInterrupt(ControllerBaseAddress); DAC960_GEM_AcknowledgeHardwareMailboxStatus(ControllerBaseAddress); break; case DAC960_BA_Controller: while (DAC960_BA_HardwareMailboxFullP(ControllerBaseAddress)) udelay(1); DAC960_BA_WriteHardwareMailbox(ControllerBaseAddress, CommandMailboxDMA); DAC960_BA_HardwareMailboxNewCommand(ControllerBaseAddress); while (!DAC960_BA_HardwareMailboxStatusAvailableP(ControllerBaseAddress)) udelay(1); CommandStatus = DAC960_BA_ReadCommandStatus(ControllerBaseAddress); DAC960_BA_AcknowledgeHardwareMailboxInterrupt(ControllerBaseAddress); DAC960_BA_AcknowledgeHardwareMailboxStatus(ControllerBaseAddress); break; case DAC960_LP_Controller: while (DAC960_LP_HardwareMailboxFullP(ControllerBaseAddress)) udelay(1); DAC960_LP_WriteHardwareMailbox(ControllerBaseAddress, CommandMailboxDMA); DAC960_LP_HardwareMailboxNewCommand(ControllerBaseAddress); while (!DAC960_LP_HardwareMailboxStatusAvailableP(ControllerBaseAddress)) udelay(1); CommandStatus = DAC960_LP_ReadCommandStatus(ControllerBaseAddress); DAC960_LP_AcknowledgeHardwareMailboxInterrupt(ControllerBaseAddress); DAC960_LP_AcknowledgeHardwareMailboxStatus(ControllerBaseAddress); break; default: DAC960_Failure(Controller, "Unknown Controller Type\n"); CommandStatus = DAC960_V2_AbormalCompletion; break; } pci_free_consistent(PCI_Device, sizeof(DAC960_V2_CommandMailbox_T), CommandMailbox, CommandMailboxDMA); return (CommandStatus == DAC960_V2_NormalCompletion); } /* DAC960_V1_ReadControllerConfiguration reads the Configuration Information from DAC960 V1 Firmware Controllers and initializes the Controller structure. */ static bool DAC960_V1_ReadControllerConfiguration(DAC960_Controller_T *Controller) { DAC960_V1_Enquiry2_T *Enquiry2; dma_addr_t Enquiry2DMA; DAC960_V1_Config2_T *Config2; dma_addr_t Config2DMA; int LogicalDriveNumber, Channel, TargetID; struct dma_loaf local_dma; if (!init_dma_loaf(Controller->PCIDevice, &local_dma, sizeof(DAC960_V1_Enquiry2_T) + sizeof(DAC960_V1_Config2_T))) return DAC960_Failure(Controller, "LOGICAL DEVICE ALLOCATION"); Enquiry2 = slice_dma_loaf(&local_dma, sizeof(DAC960_V1_Enquiry2_T), &Enquiry2DMA); Config2 = slice_dma_loaf(&local_dma, sizeof(DAC960_V1_Config2_T), &Config2DMA); if (!DAC960_V1_ExecuteType3(Controller, DAC960_V1_Enquiry, Controller->V1.NewEnquiryDMA)) { free_dma_loaf(Controller->PCIDevice, &local_dma); return DAC960_Failure(Controller, "ENQUIRY"); } memcpy(&Controller->V1.Enquiry, Controller->V1.NewEnquiry, sizeof(DAC960_V1_Enquiry_T)); if (!DAC960_V1_ExecuteType3(Controller, DAC960_V1_Enquiry2, Enquiry2DMA)) { free_dma_loaf(Controller->PCIDevice, &local_dma); return DAC960_Failure(Controller, "ENQUIRY2"); } if (!DAC960_V1_ExecuteType3(Controller, DAC960_V1_ReadConfig2, Config2DMA)) { free_dma_loaf(Controller->PCIDevice, &local_dma); return DAC960_Failure(Controller, "READ CONFIG2"); } if (!DAC960_V1_ExecuteType3(Controller, DAC960_V1_GetLogicalDriveInformation, Controller->V1.NewLogicalDriveInformationDMA)) { free_dma_loaf(Controller->PCIDevice, &local_dma); return DAC960_Failure(Controller, "GET LOGICAL DRIVE INFORMATION"); } memcpy(&Controller->V1.LogicalDriveInformation, Controller->V1.NewLogicalDriveInformation, sizeof(DAC960_V1_LogicalDriveInformationArray_T)); for (Channel = 0; Channel < Enquiry2->ActualChannels; Channel++) for (TargetID = 0; TargetID < Enquiry2->MaxTargets; TargetID++) { if (!DAC960_V1_ExecuteType3D(Controller, DAC960_V1_GetDeviceState, Channel, TargetID, Controller->V1.NewDeviceStateDMA)) { free_dma_loaf(Controller->PCIDevice, &local_dma); return DAC960_Failure(Controller, "GET DEVICE STATE"); } memcpy(&Controller->V1.DeviceState[Channel][TargetID], Controller->V1.NewDeviceState, sizeof(DAC960_V1_DeviceState_T)); } /* Initialize the Controller Model Name and Full Model Name fields. */ switch (Enquiry2->HardwareID.SubModel) { case DAC960_V1_P_PD_PU: if (Enquiry2->SCSICapability.BusSpeed == DAC960_V1_Ultra) strcpy(Controller->ModelName, "DAC960PU"); else strcpy(Controller->ModelName, "DAC960PD"); break; case DAC960_V1_PL: strcpy(Controller->ModelName, "DAC960PL"); break; case DAC960_V1_PG: strcpy(Controller->ModelName, "DAC960PG"); break; case DAC960_V1_PJ: strcpy(Controller->ModelName, "DAC960PJ"); break; case DAC960_V1_PR: strcpy(Controller->ModelName, "DAC960PR"); break; case DAC960_V1_PT: strcpy(Controller->ModelName, "DAC960PT"); break; case DAC960_V1_PTL0: strcpy(Controller->ModelName, "DAC960PTL0"); break; case DAC960_V1_PRL: strcpy(Controller->ModelName, "DAC960PRL"); break; case DAC960_V1_PTL1: strcpy(Controller->ModelName, "DAC960PTL1"); break; case DAC960_V1_1164P: strcpy(Controller->ModelName, "DAC1164P"); break; default: free_dma_loaf(Controller->PCIDevice, &local_dma); return DAC960_Failure(Controller, "MODEL VERIFICATION"); } strcpy(Controller->FullModelName, "Mylex "); strcat(Controller->FullModelName, Controller->ModelName); /* Initialize the Controller Firmware Version field and verify that it is a supported firmware version. The supported firmware versions are: DAC1164P 5.06 and above DAC960PTL/PRL/PJ/PG 4.06 and above DAC960PU/PD/PL 3.51 and above DAC960PU/PD/PL/P 2.73 and above */ #if defined(CONFIG_ALPHA) /* DEC Alpha machines were often equipped with DAC960 cards that were OEMed from Mylex, and had their own custom firmware. Version 2.70, the last custom FW revision to be released by DEC for these older controllers, appears to work quite well with this driver. Cards tested successfully were several versions each of the PD and PU, called by DEC the KZPSC and KZPAC, respectively, and having the Manufacturer Numbers (from Mylex), usually on a sticker on the back of the board, of: KZPSC: D040347 (1-channel) or D040348 (2-channel) or D040349 (3-channel) KZPAC: D040395 (1-channel) or D040396 (2-channel) or D040397 (3-channel) */ # define FIRMWARE_27X "2.70" #else # define FIRMWARE_27X "2.73" #endif if (Enquiry2->FirmwareID.MajorVersion == 0) { Enquiry2->FirmwareID.MajorVersion = Controller->V1.Enquiry.MajorFirmwareVersion; Enquiry2->FirmwareID.MinorVersion = Controller->V1.Enquiry.MinorFirmwareVersion; Enquiry2->FirmwareID.FirmwareType = '0'; Enquiry2->FirmwareID.TurnID = 0; } sprintf(Controller->FirmwareVersion, "%d.%02d-%c-%02d", Enquiry2->FirmwareID.MajorVersion, Enquiry2->FirmwareID.MinorVersion, Enquiry2->FirmwareID.FirmwareType, Enquiry2->FirmwareID.TurnID); if (!((Controller->FirmwareVersion[0] == '5' && strcmp(Controller->FirmwareVersion, "5.06") >= 0) || (Controller->FirmwareVersion[0] == '4' && strcmp(Controller->FirmwareVersion, "4.06") >= 0) || (Controller->FirmwareVersion[0] == '3' && strcmp(Controller->FirmwareVersion, "3.51") >= 0) || (Controller->FirmwareVersion[0] == '2' && strcmp(Controller->FirmwareVersion, FIRMWARE_27X) >= 0))) { DAC960_Failure(Controller, "FIRMWARE VERSION VERIFICATION"); DAC960_Error("Firmware Version = '%s'\n", Controller, Controller->FirmwareVersion); free_dma_loaf(Controller->PCIDevice, &local_dma); return false; } /* Initialize the Controller Channels, Targets, Memory Size, and SAF-TE Enclosure Management Enabled fields. */ Controller->Channels = Enquiry2->ActualChannels; Controller->Targets = Enquiry2->MaxTargets; Controller->MemorySize = Enquiry2->MemorySize >> 20; Controller->V1.SAFTE_EnclosureManagementEnabled = (Enquiry2->FaultManagementType == DAC960_V1_SAFTE); /* Initialize the Controller Queue Depth, Driver Queue Depth, Logical Drive Count, Maximum Blocks per Command, Controller Scatter/Gather Limit, and Driver Scatter/Gather Limit. The Driver Queue Depth must be at most one less than the Controller Queue Depth to allow for an automatic drive rebuild operation. */ Controller->ControllerQueueDepth = Controller->V1.Enquiry.MaxCommands; Controller->DriverQueueDepth = Controller->ControllerQueueDepth - 1; if (Controller->DriverQueueDepth > DAC960_MaxDriverQueueDepth) Controller->DriverQueueDepth = DAC960_MaxDriverQueueDepth; Controller->LogicalDriveCount = Controller->V1.Enquiry.NumberOfLogicalDrives; Controller->MaxBlocksPerCommand = Enquiry2->MaxBlocksPerCommand; Controller->ControllerScatterGatherLimit = Enquiry2->MaxScatterGatherEntries; Controller->DriverScatterGatherLimit = Controller->ControllerScatterGatherLimit; if (Controller->DriverScatterGatherLimit > DAC960_V1_ScatterGatherLimit) Controller->DriverScatterGatherLimit = DAC960_V1_ScatterGatherLimit; /* Initialize the Stripe Size, Segment Size, and Geometry Translation. */ Controller->V1.StripeSize = Config2->BlocksPerStripe * Config2->BlockFactor >> (10 - DAC960_BlockSizeBits); Controller->V1.SegmentSize = Config2->BlocksPerCacheLine * Config2->BlockFactor >> (10 - DAC960_BlockSizeBits); switch (Config2->DriveGeometry) { case DAC960_V1_Geometry_128_32: Controller->V1.GeometryTranslationHeads = 128; Controller->V1.GeometryTranslationSectors = 32; break; case DAC960_V1_Geometry_255_63: Controller->V1.GeometryTranslationHeads = 255; Controller->V1.GeometryTranslationSectors = 63; break; default: free_dma_loaf(Controller->PCIDevice, &local_dma); return DAC960_Failure(Controller, "CONFIG2 DRIVE GEOMETRY"); } /* Initialize the Background Initialization Status. */ if ((Controller->FirmwareVersion[0] == '4' && strcmp(Controller->FirmwareVersion, "4.08") >= 0) || (Controller->FirmwareVersion[0] == '5' && strcmp(Controller->FirmwareVersion, "5.08") >= 0)) { Controller->V1.BackgroundInitializationStatusSupported = true; DAC960_V1_ExecuteType3B(Controller, DAC960_V1_BackgroundInitializationControl, 0x20, Controller-> V1.BackgroundInitializationStatusDMA); memcpy(&Controller->V1.LastBackgroundInitializationStatus, Controller->V1.BackgroundInitializationStatus, sizeof(DAC960_V1_BackgroundInitializationStatus_T)); } /* Initialize the Logical Drive Initially Accessible flag. */ for (LogicalDriveNumber = 0; LogicalDriveNumber < Controller->LogicalDriveCount; LogicalDriveNumber++) if (Controller->V1.LogicalDriveInformation [LogicalDriveNumber].LogicalDriveState != DAC960_V1_LogicalDrive_Offline) Controller->LogicalDriveInitiallyAccessible[LogicalDriveNumber] = true; Controller->V1.LastRebuildStatus = DAC960_V1_NoRebuildOrCheckInProgress; free_dma_loaf(Controller->PCIDevice, &local_dma); return true; } /* DAC960_V2_ReadControllerConfiguration reads the Configuration Information from DAC960 V2 Firmware Controllers and initializes the Controller structure. */ static bool DAC960_V2_ReadControllerConfiguration(DAC960_Controller_T *Controller) { DAC960_V2_ControllerInfo_T *ControllerInfo = &Controller->V2.ControllerInformation; unsigned short LogicalDeviceNumber = 0; int ModelNameLength; /* Get data into dma-able area, then copy into permanent location */ if (!DAC960_V2_NewControllerInfo(Controller)) return DAC960_Failure(Controller, "GET CONTROLLER INFO"); memcpy(ControllerInfo, Controller->V2.NewControllerInformation, sizeof(DAC960_V2_ControllerInfo_T)); if (!DAC960_V2_GeneralInfo(Controller)) return DAC960_Failure(Controller, "GET HEALTH STATUS"); /* Initialize the Controller Model Name and Full Model Name fields. */ ModelNameLength = sizeof(ControllerInfo->ControllerName); if (ModelNameLength > sizeof(Controller->ModelName)-1) ModelNameLength = sizeof(Controller->ModelName)-1; memcpy(Controller->ModelName, ControllerInfo->ControllerName, ModelNameLength); ModelNameLength--; while (Controller->ModelName[ModelNameLength] == ' ' || Controller->ModelName[ModelNameLength] == '\0') ModelNameLength--; Controller->ModelName[++ModelNameLength] = '\0'; strcpy(Controller->FullModelName, "Mylex "); strcat(Controller->FullModelName, Controller->ModelName); /* Initialize the Controller Firmware Version field. */ sprintf(Controller->FirmwareVersion, "%d.%02d-%02d", ControllerInfo->FirmwareMajorVersion, ControllerInfo->FirmwareMinorVersion, ControllerInfo->FirmwareTurnNumber); if (ControllerInfo->FirmwareMajorVersion == 6 && ControllerInfo->FirmwareMinorVersion == 0 && ControllerInfo->FirmwareTurnNumber < 1) { DAC960_Info("FIRMWARE VERSION %s DOES NOT PROVIDE THE CONTROLLER\n", Controller, Controller->FirmwareVersion); DAC960_Info("STATUS MONITORING FUNCTIONALITY NEEDED BY THIS DRIVER.\n", Controller); DAC960_Info("PLEASE UPGRADE TO VERSION 6.00-01 OR ABOVE.\n", Controller); } /* Initialize the Controller Channels, Targets, and Memory Size. */ Controller->Channels = ControllerInfo->NumberOfPhysicalChannelsPresent; Controller->Targets = ControllerInfo->MaximumTargetsPerChannel [ControllerInfo->NumberOfPhysicalChannelsPresent-1]; Controller->MemorySize = ControllerInfo->MemorySizeMB; /* Initialize the Controller Queue Depth, Driver Queue Depth, Logical Drive Count, Maximum Blocks per Command, Controller Scatter/Gather Limit, and Driver Scatter/Gather Limit. The Driver Queue Depth must be at most one less than the Controller Queue Depth to allow for an automatic drive rebuild operation. */ Controller->ControllerQueueDepth = ControllerInfo->MaximumParallelCommands; Controller->DriverQueueDepth = Controller->ControllerQueueDepth - 1; if (Controller->DriverQueueDepth > DAC960_MaxDriverQueueDepth) Controller->DriverQueueDepth = DAC960_MaxDriverQueueDepth; Controller->LogicalDriveCount = ControllerInfo->LogicalDevicesPresent; Controller->MaxBlocksPerCommand = ControllerInfo->MaximumDataTransferSizeInBlocks; Controller->ControllerScatterGatherLimit = ControllerInfo->MaximumScatterGatherEntries; Controller->DriverScatterGatherLimit = Controller->ControllerScatterGatherLimit; if (Controller->DriverScatterGatherLimit > DAC960_V2_ScatterGatherLimit) Controller->DriverScatterGatherLimit = DAC960_V2_ScatterGatherLimit; /* Initialize the Logical Device Information. */ while (true) { DAC960_V2_LogicalDeviceInfo_T *NewLogicalDeviceInfo = Controller->V2.NewLogicalDeviceInformation; DAC960_V2_LogicalDeviceInfo_T *LogicalDeviceInfo; DAC960_V2_PhysicalDevice_T PhysicalDevice; if (!DAC960_V2_NewLogicalDeviceInfo(Controller, LogicalDeviceNumber)) break; LogicalDeviceNumber = NewLogicalDeviceInfo->LogicalDeviceNumber; if (LogicalDeviceNumber >= DAC960_MaxLogicalDrives) { DAC960_Error("DAC960: Logical Drive Number %d not supported\n", Controller, LogicalDeviceNumber); break; } if (NewLogicalDeviceInfo->DeviceBlockSizeInBytes != DAC960_BlockSize) { DAC960_Error("DAC960: Logical Drive Block Size %d not supported\n", Controller, NewLogicalDeviceInfo->DeviceBlockSizeInBytes); LogicalDeviceNumber++; continue; } PhysicalDevice.Controller = 0; PhysicalDevice.Channel = NewLogicalDeviceInfo->Channel; PhysicalDevice.TargetID = NewLogicalDeviceInfo->TargetID; PhysicalDevice.LogicalUnit = NewLogicalDeviceInfo->LogicalUnit; Controller->V2.LogicalDriveToVirtualDevice[LogicalDeviceNumber] = PhysicalDevice; if (NewLogicalDeviceInfo->LogicalDeviceState != DAC960_V2_LogicalDevice_Offline) Controller->LogicalDriveInitiallyAccessible[LogicalDeviceNumber] = true; LogicalDeviceInfo = kmalloc(sizeof(DAC960_V2_LogicalDeviceInfo_T), GFP_ATOMIC); if (LogicalDeviceInfo == NULL) return DAC960_Failure(Controller, "LOGICAL DEVICE ALLOCATION"); Controller->V2.LogicalDeviceInformation[LogicalDeviceNumber] = LogicalDeviceInfo; memcpy(LogicalDeviceInfo, NewLogicalDeviceInfo, sizeof(DAC960_V2_LogicalDeviceInfo_T)); LogicalDeviceNumber++; } return true; } /* DAC960_ReportControllerConfiguration reports the Configuration Information for Controller. */ static bool DAC960_ReportControllerConfiguration(DAC960_Controller_T *Controller) { DAC960_Info("Configuring Mylex %s PCI RAID Controller\n", Controller, Controller->ModelName); DAC960_Info(" Firmware Version: %s, Channels: %d, Memory Size: %dMB\n", Controller, Controller->FirmwareVersion, Controller->Channels, Controller->MemorySize); DAC960_Info(" PCI Bus: %d, Device: %d, Function: %d, I/O Address: ", Controller, Controller->Bus, Controller->Device, Controller->Function); if (Controller->IO_Address == 0) DAC960_Info("Unassigned\n", Controller); else DAC960_Info("0x%X\n", Controller, Controller->IO_Address); DAC960_Info(" PCI Address: 0x%X mapped at 0x%lX, IRQ Channel: %d\n", Controller, Controller->PCI_Address, (unsigned long) Controller->BaseAddress, Controller->IRQ_Channel); DAC960_Info(" Controller Queue Depth: %d, " "Maximum Blocks per Command: %d\n", Controller, Controller->ControllerQueueDepth, Controller->MaxBlocksPerCommand); DAC960_Info(" Driver Queue Depth: %d, " "Scatter/Gather Limit: %d of %d Segments\n", Controller, Controller->DriverQueueDepth, Controller->DriverScatterGatherLimit, Controller->ControllerScatterGatherLimit); if (Controller->FirmwareType == DAC960_V1_Controller) { DAC960_Info(" Stripe Size: %dKB, Segment Size: %dKB, " "BIOS Geometry: %d/%d\n", Controller, Controller->V1.StripeSize, Controller->V1.SegmentSize, Controller->V1.GeometryTranslationHeads, Controller->V1.GeometryTranslationSectors); if (Controller->V1.SAFTE_EnclosureManagementEnabled) DAC960_Info(" SAF-TE Enclosure Management Enabled\n", Controller); } return true; } /* DAC960_V1_ReadDeviceConfiguration reads the Device Configuration Information for DAC960 V1 Firmware Controllers by requesting the SCSI Inquiry and SCSI Inquiry Unit Serial Number information for each device connected to Controller. */ static bool DAC960_V1_ReadDeviceConfiguration(DAC960_Controller_T *Controller) { struct dma_loaf local_dma; dma_addr_t DCDBs_dma[DAC960_V1_MaxChannels]; DAC960_V1_DCDB_T *DCDBs_cpu[DAC960_V1_MaxChannels]; dma_addr_t SCSI_Inquiry_dma[DAC960_V1_MaxChannels]; DAC960_SCSI_Inquiry_T *SCSI_Inquiry_cpu[DAC960_V1_MaxChannels]; dma_addr_t SCSI_NewInquiryUnitSerialNumberDMA[DAC960_V1_MaxChannels]; DAC960_SCSI_Inquiry_UnitSerialNumber_T *SCSI_NewInquiryUnitSerialNumberCPU[DAC960_V1_MaxChannels]; struct completion Completions[DAC960_V1_MaxChannels]; unsigned long flags; int Channel, TargetID; if (!init_dma_loaf(Controller->PCIDevice, &local_dma, DAC960_V1_MaxChannels*(sizeof(DAC960_V1_DCDB_T) + sizeof(DAC960_SCSI_Inquiry_T) + sizeof(DAC960_SCSI_Inquiry_UnitSerialNumber_T)))) return DAC960_Failure(Controller, "DMA ALLOCATION FAILED IN ReadDeviceConfiguration"); for (Channel = 0; Channel < Controller->Channels; Channel++) { DCDBs_cpu[Channel] = slice_dma_loaf(&local_dma, sizeof(DAC960_V1_DCDB_T), DCDBs_dma + Channel); SCSI_Inquiry_cpu[Channel] = slice_dma_loaf(&local_dma, sizeof(DAC960_SCSI_Inquiry_T), SCSI_Inquiry_dma + Channel); SCSI_NewInquiryUnitSerialNumberCPU[Channel] = slice_dma_loaf(&local_dma, sizeof(DAC960_SCSI_Inquiry_UnitSerialNumber_T), SCSI_NewInquiryUnitSerialNumberDMA + Channel); } for (TargetID = 0; TargetID < Controller->Targets; TargetID++) { /* * For each channel, submit a probe for a device on that channel. * The timeout interval for a device that is present is 10 seconds. * With this approach, the timeout periods can elapse in parallel * on each channel. */ for (Channel = 0; Channel < Controller->Channels; Channel++) { dma_addr_t NewInquiryStandardDataDMA = SCSI_Inquiry_dma[Channel]; DAC960_V1_DCDB_T *DCDB = DCDBs_cpu[Channel]; dma_addr_t DCDB_dma = DCDBs_dma[Channel]; DAC960_Command_T *Command = Controller->Commands[Channel]; struct completion *Completion = &Completions[Channel]; init_completion(Completion); DAC960_V1_ClearCommand(Command); Command->CommandType = DAC960_ImmediateCommand; Command->Completion = Completion; Command->V1.CommandMailbox.Type3.CommandOpcode = DAC960_V1_DCDB; Command->V1.CommandMailbox.Type3.BusAddress = DCDB_dma; DCDB->Channel = Channel; DCDB->TargetID = TargetID; DCDB->Direction = DAC960_V1_DCDB_DataTransferDeviceToSystem; DCDB->EarlyStatus = false; DCDB->Timeout = DAC960_V1_DCDB_Timeout_10_seconds; DCDB->NoAutomaticRequestSense = false; DCDB->DisconnectPermitted = true; DCDB->TransferLength = sizeof(DAC960_SCSI_Inquiry_T); DCDB->BusAddress = NewInquiryStandardDataDMA; DCDB->CDBLength = 6; DCDB->TransferLengthHigh4 = 0; DCDB->SenseLength = sizeof(DCDB->SenseData); DCDB->CDB[0] = 0x12; /* INQUIRY */ DCDB->CDB[1] = 0; /* EVPD = 0 */ DCDB->CDB[2] = 0; /* Page Code */ DCDB->CDB[3] = 0; /* Reserved */ DCDB->CDB[4] = sizeof(DAC960_SCSI_Inquiry_T); DCDB->CDB[5] = 0; /* Control */ spin_lock_irqsave(&Controller->queue_lock, flags); DAC960_QueueCommand(Command); spin_unlock_irqrestore(&Controller->queue_lock, flags); } /* * Wait for the problems submitted in the previous loop * to complete. On the probes that are successful, * get the serial number of the device that was found. */ for (Channel = 0; Channel < Controller->Channels; Channel++) { DAC960_SCSI_Inquiry_T *InquiryStandardData = &Controller->V1.InquiryStandardData[Channel][TargetID]; DAC960_SCSI_Inquiry_T *NewInquiryStandardData = SCSI_Inquiry_cpu[Channel]; dma_addr_t NewInquiryUnitSerialNumberDMA = SCSI_NewInquiryUnitSerialNumberDMA[Channel]; DAC960_SCSI_Inquiry_UnitSerialNumber_T *NewInquiryUnitSerialNumber = SCSI_NewInquiryUnitSerialNumberCPU[Channel]; DAC960_SCSI_Inquiry_UnitSerialNumber_T *InquiryUnitSerialNumber = &Controller->V1.InquiryUnitSerialNumber[Channel][TargetID]; DAC960_Command_T *Command = Controller->Commands[Channel]; DAC960_V1_DCDB_T *DCDB = DCDBs_cpu[Channel]; struct completion *Completion = &Completions[Channel]; wait_for_completion(Completion); if (Command->V1.CommandStatus != DAC960_V1_NormalCompletion) { memset(InquiryStandardData, 0, sizeof(DAC960_SCSI_Inquiry_T)); InquiryStandardData->PeripheralDeviceType = 0x1F; continue; } else memcpy(InquiryStandardData, NewInquiryStandardData, sizeof(DAC960_SCSI_Inquiry_T)); /* Preserve Channel and TargetID values from the previous loop */ Command->Completion = Completion; DCDB->TransferLength = sizeof(DAC960_SCSI_Inquiry_UnitSerialNumber_T); DCDB->BusAddress = NewInquiryUnitSerialNumberDMA; DCDB->SenseLength = sizeof(DCDB->SenseData); DCDB->CDB[0] = 0x12; /* INQUIRY */ DCDB->CDB[1] = 1; /* EVPD = 1 */ DCDB->CDB[2] = 0x80; /* Page Code */ DCDB->CDB[3] = 0; /* Reserved */ DCDB->CDB[4] = sizeof(DAC960_SCSI_Inquiry_UnitSerialNumber_T); DCDB->CDB[5] = 0; /* Control */ spin_lock_irqsave(&Controller->queue_lock, flags); DAC960_QueueCommand(Command); spin_unlock_irqrestore(&Controller->queue_lock, flags); wait_for_completion(Completion); if (Command->V1.CommandStatus != DAC960_V1_NormalCompletion) { memset(InquiryUnitSerialNumber, 0, sizeof(DAC960_SCSI_Inquiry_UnitSerialNumber_T)); InquiryUnitSerialNumber->PeripheralDeviceType = 0x1F; } else memcpy(InquiryUnitSerialNumber, NewInquiryUnitSerialNumber, sizeof(DAC960_SCSI_Inquiry_UnitSerialNumber_T)); } } free_dma_loaf(Controller->PCIDevice, &local_dma); return true; } /* DAC960_V2_ReadDeviceConfiguration reads the Device Configuration Information for DAC960 V2 Firmware Controllers by requesting the Physical Device Information and SCSI Inquiry Unit Serial Number information for each device connected to Controller. */ static bool DAC960_V2_ReadDeviceConfiguration(DAC960_Controller_T *Controller) { unsigned char Channel = 0, TargetID = 0, LogicalUnit = 0; unsigned short PhysicalDeviceIndex = 0; while (true) { DAC960_V2_PhysicalDeviceInfo_T *NewPhysicalDeviceInfo = Controller->V2.NewPhysicalDeviceInformation; DAC960_V2_PhysicalDeviceInfo_T *PhysicalDeviceInfo; DAC960_SCSI_Inquiry_UnitSerialNumber_T *NewInquiryUnitSerialNumber = Controller->V2.NewInquiryUnitSerialNumber; DAC960_SCSI_Inquiry_UnitSerialNumber_T *InquiryUnitSerialNumber; if (!DAC960_V2_NewPhysicalDeviceInfo(Controller, Channel, TargetID, LogicalUnit)) break; PhysicalDeviceInfo = kmalloc(sizeof(DAC960_V2_PhysicalDeviceInfo_T), GFP_ATOMIC); if (PhysicalDeviceInfo == NULL) return DAC960_Failure(Controller, "PHYSICAL DEVICE ALLOCATION"); Controller->V2.PhysicalDeviceInformation[PhysicalDeviceIndex] = PhysicalDeviceInfo; memcpy(PhysicalDeviceInfo, NewPhysicalDeviceInfo, sizeof(DAC960_V2_PhysicalDeviceInfo_T)); InquiryUnitSerialNumber = kmalloc( sizeof(DAC960_SCSI_Inquiry_UnitSerialNumber_T), GFP_ATOMIC); if (InquiryUnitSerialNumber == NULL) { kfree(PhysicalDeviceInfo); return DAC960_Failure(Controller, "SERIAL NUMBER ALLOCATION"); } Controller->V2.InquiryUnitSerialNumber[PhysicalDeviceIndex] = InquiryUnitSerialNumber; Channel = NewPhysicalDeviceInfo->Channel; TargetID = NewPhysicalDeviceInfo->TargetID; LogicalUnit = NewPhysicalDeviceInfo->LogicalUnit; /* Some devices do NOT have Unit Serial Numbers. This command fails for them. But, we still want to remember those devices are there. Construct a UnitSerialNumber structure for the failure case. */ if (!DAC960_V2_NewInquiryUnitSerialNumber(Controller, Channel, TargetID, LogicalUnit)) { memset(InquiryUnitSerialNumber, 0, sizeof(DAC960_SCSI_Inquiry_UnitSerialNumber_T)); InquiryUnitSerialNumber->PeripheralDeviceType = 0x1F; } else memcpy(InquiryUnitSerialNumber, NewInquiryUnitSerialNumber, sizeof(DAC960_SCSI_Inquiry_UnitSerialNumber_T)); PhysicalDeviceIndex++; LogicalUnit++; } return true; } /* DAC960_SanitizeInquiryData sanitizes the Vendor, Model, Revision, and Product Serial Number fields of the Inquiry Standard Data and Inquiry Unit Serial Number structures. */ static void DAC960_SanitizeInquiryData(DAC960_SCSI_Inquiry_T *InquiryStandardData, DAC960_SCSI_Inquiry_UnitSerialNumber_T *InquiryUnitSerialNumber, unsigned char *Vendor, unsigned char *Model, unsigned char *Revision, unsigned char *SerialNumber) { int SerialNumberLength, i; if (InquiryStandardData->PeripheralDeviceType == 0x1F) return; for (i = 0; i < sizeof(InquiryStandardData->VendorIdentification); i++) { unsigned char VendorCharacter = InquiryStandardData->VendorIdentification[i]; Vendor[i] = (VendorCharacter >= ' ' && VendorCharacter <= '~' ? VendorCharacter : ' '); } Vendor[sizeof(InquiryStandardData->VendorIdentification)] = '\0'; for (i = 0; i < sizeof(InquiryStandardData->ProductIdentification); i++) { unsigned char ModelCharacter = InquiryStandardData->ProductIdentification[i]; Model[i] = (ModelCharacter >= ' ' && ModelCharacter <= '~' ? ModelCharacter : ' '); } Model[sizeof(InquiryStandardData->ProductIdentification)] = '\0'; for (i = 0; i < sizeof(InquiryStandardData->ProductRevisionLevel); i++) { unsigned char RevisionCharacter = InquiryStandardData->ProductRevisionLevel[i]; Revision[i] = (RevisionCharacter >= ' ' && RevisionCharacter <= '~' ? RevisionCharacter : ' '); } Revision[sizeof(InquiryStandardData->ProductRevisionLevel)] = '\0'; if (InquiryUnitSerialNumber->PeripheralDeviceType == 0x1F) return; SerialNumberLength = InquiryUnitSerialNumber->PageLength; if (SerialNumberLength > sizeof(InquiryUnitSerialNumber->ProductSerialNumber)) SerialNumberLength = sizeof(InquiryUnitSerialNumber->ProductSerialNumber); for (i = 0; i < SerialNumberLength; i++) { unsigned char SerialNumberCharacter = InquiryUnitSerialNumber->ProductSerialNumber[i]; SerialNumber[i] = (SerialNumberCharacter >= ' ' && SerialNumberCharacter <= '~' ? SerialNumberCharacter : ' '); } SerialNumber[SerialNumberLength] = '\0'; } /* DAC960_V1_ReportDeviceConfiguration reports the Device Configuration Information for DAC960 V1 Firmware Controllers. */ static bool DAC960_V1_ReportDeviceConfiguration(DAC960_Controller_T *Controller) { int LogicalDriveNumber, Channel, TargetID; DAC960_Info(" Physical Devices:\n", Controller); for (Channel = 0; Channel < Controller->Channels; Channel++) for (TargetID = 0; TargetID < Controller->Targets; TargetID++) { DAC960_SCSI_Inquiry_T *InquiryStandardData = &Controller->V1.InquiryStandardData[Channel][TargetID]; DAC960_SCSI_Inquiry_UnitSerialNumber_T *InquiryUnitSerialNumber = &Controller->V1.InquiryUnitSerialNumber[Channel][TargetID]; DAC960_V1_DeviceState_T *DeviceState = &Controller->V1.DeviceState[Channel][TargetID]; DAC960_V1_ErrorTableEntry_T *ErrorEntry = &Controller->V1.ErrorTable.ErrorTableEntries[Channel][TargetID]; char Vendor[1+sizeof(InquiryStandardData->VendorIdentification)]; char Model[1+sizeof(InquiryStandardData->ProductIdentification)]; char Revision[1+sizeof(InquiryStandardData->ProductRevisionLevel)]; char SerialNumber[1+sizeof(InquiryUnitSerialNumber ->ProductSerialNumber)]; if (InquiryStandardData->PeripheralDeviceType == 0x1F) continue; DAC960_SanitizeInquiryData(InquiryStandardData, InquiryUnitSerialNumber, Vendor, Model, Revision, SerialNumber); DAC960_Info(" %d:%d%s Vendor: %s Model: %s Revision: %s\n", Controller, Channel, TargetID, (TargetID < 10 ? " " : ""), Vendor, Model, Revision); if (InquiryUnitSerialNumber->PeripheralDeviceType != 0x1F) DAC960_Info(" Serial Number: %s\n", Controller, SerialNumber); if (DeviceState->Present && DeviceState->DeviceType == DAC960_V1_DiskType) { if (Controller->V1.DeviceResetCount[Channel][TargetID] > 0) DAC960_Info(" Disk Status: %s, %u blocks, %d resets\n", Controller, (DeviceState->DeviceState == DAC960_V1_Device_Dead ? "Dead" : DeviceState->DeviceState == DAC960_V1_Device_WriteOnly ? "Write-Only" : DeviceState->DeviceState == DAC960_V1_Device_Online ? "Online" : "Standby"), DeviceState->DiskSize, Controller->V1.DeviceResetCount[Channel][TargetID]); else DAC960_Info(" Disk Status: %s, %u blocks\n", Controller, (DeviceState->DeviceState == DAC960_V1_Device_Dead ? "Dead" : DeviceState->DeviceState == DAC960_V1_Device_WriteOnly ? "Write-Only" : DeviceState->DeviceState == DAC960_V1_Device_Online ? "Online" : "Standby"), DeviceState->DiskSize); } if (ErrorEntry->ParityErrorCount > 0 || ErrorEntry->SoftErrorCount > 0 || ErrorEntry->HardErrorCount > 0 || ErrorEntry->MiscErrorCount > 0) DAC960_Info(" Errors - Parity: %d, Soft: %d, " "Hard: %d, Misc: %d\n", Controller, ErrorEntry->ParityErrorCount, ErrorEntry->SoftErrorCount, ErrorEntry->HardErrorCount, ErrorEntry->MiscErrorCount); } DAC960_Info(" Logical Drives:\n", Controller); for (LogicalDriveNumber = 0; LogicalDriveNumber < Controller->LogicalDriveCount; LogicalDriveNumber++) { DAC960_V1_LogicalDriveInformation_T *LogicalDriveInformation = &Controller->V1.LogicalDriveInformation[LogicalDriveNumber]; DAC960_Info(" /dev/rd/c%dd%d: RAID-%d, %s, %u blocks, %s\n", Controller, Controller->ControllerNumber, LogicalDriveNumber, LogicalDriveInformation->RAIDLevel, (LogicalDriveInformation->LogicalDriveState == DAC960_V1_LogicalDrive_Online ? "Online" : LogicalDriveInformation->LogicalDriveState == DAC960_V1_LogicalDrive_Critical ? "Critical" : "Offline"), LogicalDriveInformation->LogicalDriveSize, (LogicalDriveInformation->WriteBack ? "Write Back" : "Write Thru")); } return true; } /* DAC960_V2_ReportDeviceConfiguration reports the Device Configuration Information for DAC960 V2 Firmware Controllers. */ static bool DAC960_V2_ReportDeviceConfiguration(DAC960_Controller_T *Controller) { int PhysicalDeviceIndex, LogicalDriveNumber; DAC960_Info(" Physical Devices:\n", Controller); for (PhysicalDeviceIndex = 0; PhysicalDeviceIndex < DAC960_V2_MaxPhysicalDevices; PhysicalDeviceIndex++) { DAC960_V2_PhysicalDeviceInfo_T *PhysicalDeviceInfo = Controller->V2.PhysicalDeviceInformation[PhysicalDeviceIndex]; DAC960_SCSI_Inquiry_T *InquiryStandardData = (DAC960_SCSI_Inquiry_T *) &PhysicalDeviceInfo->SCSI_InquiryData; DAC960_SCSI_Inquiry_UnitSerialNumber_T *InquiryUnitSerialNumber = Controller->V2.InquiryUnitSerialNumber[PhysicalDeviceIndex]; char Vendor[1+sizeof(InquiryStandardData->VendorIdentification)]; char Model[1+sizeof(InquiryStandardData->ProductIdentification)]; char Revision[1+sizeof(InquiryStandardData->ProductRevisionLevel)]; char SerialNumber[1+sizeof(InquiryUnitSerialNumber->ProductSerialNumber)]; if (PhysicalDeviceInfo == NULL) break; DAC960_SanitizeInquiryData(InquiryStandardData, InquiryUnitSerialNumber, Vendor, Model, Revision, SerialNumber); DAC960_Info(" %d:%d%s Vendor: %s Model: %s Revision: %s\n", Controller, PhysicalDeviceInfo->Channel, PhysicalDeviceInfo->TargetID, (PhysicalDeviceInfo->TargetID < 10 ? " " : ""), Vendor, Model, Revision); if (PhysicalDeviceInfo->NegotiatedSynchronousMegaTransfers == 0) DAC960_Info(" %sAsynchronous\n", Controller, (PhysicalDeviceInfo->NegotiatedDataWidthBits == 16 ? "Wide " :"")); else DAC960_Info(" %sSynchronous at %d MB/sec\n", Controller, (PhysicalDeviceInfo->NegotiatedDataWidthBits == 16 ? "Wide " :""), (PhysicalDeviceInfo->NegotiatedSynchronousMegaTransfers * PhysicalDeviceInfo->NegotiatedDataWidthBits/8)); if (InquiryUnitSerialNumber->PeripheralDeviceType != 0x1F) DAC960_Info(" Serial Number: %s\n", Controller, SerialNumber); if (PhysicalDeviceInfo->PhysicalDeviceState == DAC960_V2_Device_Unconfigured) continue; DAC960_Info(" Disk Status: %s, %u blocks\n", Controller, (PhysicalDeviceInfo->PhysicalDeviceState == DAC960_V2_Device_Online ? "Online" : PhysicalDeviceInfo->PhysicalDeviceState == DAC960_V2_Device_Rebuild ? "Rebuild" : PhysicalDeviceInfo->PhysicalDeviceState == DAC960_V2_Device_Missing ? "Missing" : PhysicalDeviceInfo->PhysicalDeviceState == DAC960_V2_Device_Critical ? "Critical" : PhysicalDeviceInfo->PhysicalDeviceState == DAC960_V2_Device_Dead ? "Dead" : PhysicalDeviceInfo->PhysicalDeviceState == DAC960_V2_Device_SuspectedDead ? "Suspected-Dead" : PhysicalDeviceInfo->PhysicalDeviceState == DAC960_V2_Device_CommandedOffline ? "Commanded-Offline" : PhysicalDeviceInfo->PhysicalDeviceState == DAC960_V2_Device_Standby ? "Standby" : "Unknown"), PhysicalDeviceInfo->ConfigurableDeviceSize); if (PhysicalDeviceInfo->ParityErrors == 0 && PhysicalDeviceInfo->SoftErrors == 0 && PhysicalDeviceInfo->HardErrors == 0 && PhysicalDeviceInfo->MiscellaneousErrors == 0 && PhysicalDeviceInfo->CommandTimeouts == 0 && PhysicalDeviceInfo->Retries == 0 && PhysicalDeviceInfo->Aborts == 0 && PhysicalDeviceInfo->PredictedFailuresDetected == 0) continue; DAC960_Info(" Errors - Parity: %d, Soft: %d, " "Hard: %d, Misc: %d\n", Controller, PhysicalDeviceInfo->ParityErrors, PhysicalDeviceInfo->SoftErrors, PhysicalDeviceInfo->HardErrors, PhysicalDeviceInfo->MiscellaneousErrors); DAC960_Info(" Timeouts: %d, Retries: %d, " "Aborts: %d, Predicted: %d\n", Controller, PhysicalDeviceInfo->CommandTimeouts, PhysicalDeviceInfo->Retries, PhysicalDeviceInfo->Aborts, PhysicalDeviceInfo->PredictedFailuresDetected); } DAC960_Info(" Logical Drives:\n", Controller); for (LogicalDriveNumber = 0; LogicalDriveNumber < DAC960_MaxLogicalDrives; LogicalDriveNumber++) { DAC960_V2_LogicalDeviceInfo_T *LogicalDeviceInfo = Controller->V2.LogicalDeviceInformation[LogicalDriveNumber]; unsigned char *ReadCacheStatus[] = { "Read Cache Disabled", "Read Cache Enabled", "Read Ahead Enabled", "Intelligent Read Ahead Enabled", "-", "-", "-", "-" }; unsigned char *WriteCacheStatus[] = { "Write Cache Disabled", "Logical Device Read Only", "Write Cache Enabled", "Intelligent Write Cache Enabled", "-", "-", "-", "-" }; unsigned char *GeometryTranslation; if (LogicalDeviceInfo == NULL) continue; switch (LogicalDeviceInfo->DriveGeometry) { case DAC960_V2_Geometry_128_32: GeometryTranslation = "128/32"; break; case DAC960_V2_Geometry_255_63: GeometryTranslation = "255/63"; break; default: GeometryTranslation = "Invalid"; DAC960_Error("Illegal Logical Device Geometry %d\n", Controller, LogicalDeviceInfo->DriveGeometry); break; } DAC960_Info(" /dev/rd/c%dd%d: RAID-%d, %s, %u blocks\n", Controller, Controller->ControllerNumber, LogicalDriveNumber, LogicalDeviceInfo->RAIDLevel, (LogicalDeviceInfo->LogicalDeviceState == DAC960_V2_LogicalDevice_Online ? "Online" : LogicalDeviceInfo->LogicalDeviceState == DAC960_V2_LogicalDevice_Critical ? "Critical" : "Offline"), LogicalDeviceInfo->ConfigurableDeviceSize); DAC960_Info(" Logical Device %s, BIOS Geometry: %s\n", Controller, (LogicalDeviceInfo->LogicalDeviceControl .LogicalDeviceInitialized ? "Initialized" : "Uninitialized"), GeometryTranslation); if (LogicalDeviceInfo->StripeSize == 0) { if (LogicalDeviceInfo->CacheLineSize == 0) DAC960_Info(" Stripe Size: N/A, " "Segment Size: N/A\n", Controller); else DAC960_Info(" Stripe Size: N/A, " "Segment Size: %dKB\n", Controller, 1 << (LogicalDeviceInfo->CacheLineSize - 2)); } else { if (LogicalDeviceInfo->CacheLineSize == 0) DAC960_Info(" Stripe Size: %dKB, " "Segment Size: N/A\n", Controller, 1 << (LogicalDeviceInfo->StripeSize - 2)); else DAC960_Info(" Stripe Size: %dKB, " "Segment Size: %dKB\n", Controller, 1 << (LogicalDeviceInfo->StripeSize - 2), 1 << (LogicalDeviceInfo->CacheLineSize - 2)); } DAC960_Info(" %s, %s\n", Controller, ReadCacheStatus[ LogicalDeviceInfo->LogicalDeviceControl.ReadCache], WriteCacheStatus[ LogicalDeviceInfo->LogicalDeviceControl.WriteCache]); if (LogicalDeviceInfo->SoftErrors > 0 || LogicalDeviceInfo->CommandsFailed > 0 || LogicalDeviceInfo->DeferredWriteErrors) DAC960_Info(" Errors - Soft: %d, Failed: %d, " "Deferred Write: %d\n", Controller, LogicalDeviceInfo->SoftErrors, LogicalDeviceInfo->CommandsFailed, LogicalDeviceInfo->DeferredWriteErrors); } return true; } /* DAC960_RegisterBlockDevice registers the Block Device structures associated with Controller. */ static bool DAC960_RegisterBlockDevice(DAC960_Controller_T *Controller) { int MajorNumber = DAC960_MAJOR + Controller->ControllerNumber; int n; /* Register the Block Device Major Number for this DAC960 Controller. */ if (register_blkdev(MajorNumber, "dac960") < 0) return false; for (n = 0; n < DAC960_MaxLogicalDrives; n++) { struct gendisk *disk = Controller->disks[n]; struct request_queue *RequestQueue; /* for now, let all request queues share controller's lock */ RequestQueue = blk_init_queue(DAC960_RequestFunction,&Controller->queue_lock); if (!RequestQueue) { printk("DAC960: failure to allocate request queue\n"); continue; } Controller->RequestQueue[n] = RequestQueue; blk_queue_bounce_limit(RequestQueue, Controller->BounceBufferLimit); RequestQueue->queuedata = Controller; blk_queue_max_segments(RequestQueue, Controller->DriverScatterGatherLimit); blk_queue_max_hw_sectors(RequestQueue, Controller->MaxBlocksPerCommand); disk->queue = RequestQueue; sprintf(disk->disk_name, "rd/c%dd%d", Controller->ControllerNumber, n); disk->major = MajorNumber; disk->first_minor = n << DAC960_MaxPartitionsBits; disk->fops = &DAC960_BlockDeviceOperations; } /* Indicate the Block Device Registration completed successfully, */ return true; } /* DAC960_UnregisterBlockDevice unregisters the Block Device structures associated with Controller. */ static void DAC960_UnregisterBlockDevice(DAC960_Controller_T *Controller) { int MajorNumber = DAC960_MAJOR + Controller->ControllerNumber; int disk; /* does order matter when deleting gendisk and cleanup in request queue? */ for (disk = 0; disk < DAC960_MaxLogicalDrives; disk++) { del_gendisk(Controller->disks[disk]); blk_cleanup_queue(Controller->RequestQueue[disk]); Controller->RequestQueue[disk] = NULL; } /* Unregister the Block Device Major Number for this DAC960 Controller. */ unregister_blkdev(MajorNumber, "dac960"); } /* DAC960_ComputeGenericDiskInfo computes the values for the Generic Disk Information Partition Sector Counts and Block Sizes. */ static void DAC960_ComputeGenericDiskInfo(DAC960_Controller_T *Controller) { int disk; for (disk = 0; disk < DAC960_MaxLogicalDrives; disk++) set_capacity(Controller->disks[disk], disk_size(Controller, disk)); } /* DAC960_ReportErrorStatus reports Controller BIOS Messages passed through the Error Status Register when the driver performs the BIOS handshaking. It returns true for fatal errors and false otherwise. */ static bool DAC960_ReportErrorStatus(DAC960_Controller_T *Controller, unsigned char ErrorStatus, unsigned char Parameter0, unsigned char Parameter1) { switch (ErrorStatus) { case 0x00: DAC960_Notice("Physical Device %d:%d Not Responding\n", Controller, Parameter1, Parameter0); break; case 0x08: if (Controller->DriveSpinUpMessageDisplayed) break; DAC960_Notice("Spinning Up Drives\n", Controller); Controller->DriveSpinUpMessageDisplayed = true; break; case 0x30: DAC960_Notice("Configuration Checksum Error\n", Controller); break; case 0x60: DAC960_Notice("Mirror Race Recovery Failed\n", Controller); break; case 0x70: DAC960_Notice("Mirror Race Recovery In Progress\n", Controller); break; case 0x90: DAC960_Notice("Physical Device %d:%d COD Mismatch\n", Controller, Parameter1, Parameter0); break; case 0xA0: DAC960_Notice("Logical Drive Installation Aborted\n", Controller); break; case 0xB0: DAC960_Notice("Mirror Race On A Critical Logical Drive\n", Controller); break; case 0xD0: DAC960_Notice("New Controller Configuration Found\n", Controller); break; case 0xF0: DAC960_Error("Fatal Memory Parity Error for Controller at\n", Controller); return true; default: DAC960_Error("Unknown Initialization Error %02X for Controller at\n", Controller, ErrorStatus); return true; } return false; } /* * DAC960_DetectCleanup releases the resources that were allocated * during DAC960_DetectController(). DAC960_DetectController can * has several internal failure points, so not ALL resources may * have been allocated. It's important to free only * resources that HAVE been allocated. The code below always * tests that the resource has been allocated before attempting to * free it. */ static void DAC960_DetectCleanup(DAC960_Controller_T *Controller) { int i; /* Free the memory mailbox, status, and related structures */ free_dma_loaf(Controller->PCIDevice, &Controller->DmaPages); if (Controller->MemoryMappedAddress) { switch(Controller->HardwareType) { case DAC960_GEM_Controller: DAC960_GEM_DisableInterrupts(Controller->BaseAddress); break; case DAC960_BA_Controller: DAC960_BA_DisableInterrupts(Controller->BaseAddress); break; case DAC960_LP_Controller: DAC960_LP_DisableInterrupts(Controller->BaseAddress); break; case DAC960_LA_Controller: DAC960_LA_DisableInterrupts(Controller->BaseAddress); break; case DAC960_PG_Controller: DAC960_PG_DisableInterrupts(Controller->BaseAddress); break; case DAC960_PD_Controller: DAC960_PD_DisableInterrupts(Controller->BaseAddress); break; case DAC960_P_Controller: DAC960_PD_DisableInterrupts(Controller->BaseAddress); break; } iounmap(Controller->MemoryMappedAddress); } if (Controller->IRQ_Channel) free_irq(Controller->IRQ_Channel, Controller); if (Controller->IO_Address) release_region(Controller->IO_Address, 0x80); pci_disable_device(Controller->PCIDevice); for (i = 0; (i < DAC960_MaxLogicalDrives) && Controller->disks[i]; i++) put_disk(Controller->disks[i]); DAC960_Controllers[Controller->ControllerNumber] = NULL; kfree(Controller); } /* DAC960_DetectController detects Mylex DAC960/AcceleRAID/eXtremeRAID PCI RAID Controllers by interrogating the PCI Configuration Space for Controller Type. */ static DAC960_Controller_T * DAC960_DetectController(struct pci_dev *PCI_Device, const struct pci_device_id *entry) { struct DAC960_privdata *privdata = (struct DAC960_privdata *)entry->driver_data; irq_handler_t InterruptHandler = privdata->InterruptHandler; unsigned int MemoryWindowSize = privdata->MemoryWindowSize; DAC960_Controller_T *Controller = NULL; unsigned char DeviceFunction = PCI_Device->devfn; unsigned char ErrorStatus, Parameter0, Parameter1; unsigned int IRQ_Channel; void __iomem *BaseAddress; int i; Controller = kzalloc(sizeof(DAC960_Controller_T), GFP_ATOMIC); if (Controller == NULL) { DAC960_Error("Unable to allocate Controller structure for " "Controller at\n", NULL); return NULL; } Controller->ControllerNumber = DAC960_ControllerCount; DAC960_Controllers[DAC960_ControllerCount++] = Controller; Controller->Bus = PCI_Device->bus->number; Controller->FirmwareType = privdata->FirmwareType; Controller->HardwareType = privdata->HardwareType; Controller->Device = DeviceFunction >> 3; Controller->Function = DeviceFunction & 0x7; Controller->PCIDevice = PCI_Device; strcpy(Controller->FullModelName, "DAC960"); if (pci_enable_device(PCI_Device)) goto Failure; switch (Controller->HardwareType) { case DAC960_GEM_Controller: Controller->PCI_Address = pci_resource_start(PCI_Device, 0); break; case DAC960_BA_Controller: Controller->PCI_Address = pci_resource_start(PCI_Device, 0); break; case DAC960_LP_Controller: Controller->PCI_Address = pci_resource_start(PCI_Device, 0); break; case DAC960_LA_Controller: Controller->PCI_Address = pci_resource_start(PCI_Device, 0); break; case DAC960_PG_Controller: Controller->PCI_Address = pci_resource_start(PCI_Device, 0); break; case DAC960_PD_Controller: Controller->IO_Address = pci_resource_start(PCI_Device, 0); Controller->PCI_Address = pci_resource_start(PCI_Device, 1); break; case DAC960_P_Controller: Controller->IO_Address = pci_resource_start(PCI_Device, 0); Controller->PCI_Address = pci_resource_start(PCI_Device, 1); break; } pci_set_drvdata(PCI_Device, (void *)((long)Controller->ControllerNumber)); for (i = 0; i < DAC960_MaxLogicalDrives; i++) { Controller->disks[i] = alloc_disk(1<<DAC960_MaxPartitionsBits); if (!Controller->disks[i]) goto Failure; Controller->disks[i]->private_data = (void *)((long)i); } init_waitqueue_head(&Controller->CommandWaitQueue); init_waitqueue_head(&Controller->HealthStatusWaitQueue); spin_lock_init(&Controller->queue_lock); DAC960_AnnounceDriver(Controller); /* Map the Controller Register Window. */ if (MemoryWindowSize < PAGE_SIZE) MemoryWindowSize = PAGE_SIZE; Controller->MemoryMappedAddress = ioremap_nocache(Controller->PCI_Address & PAGE_MASK, MemoryWindowSize); Controller->BaseAddress = Controller->MemoryMappedAddress + (Controller->PCI_Address & ~PAGE_MASK); if (Controller->MemoryMappedAddress == NULL) { DAC960_Error("Unable to map Controller Register Window for " "Controller at\n", Controller); goto Failure; } BaseAddress = Controller->BaseAddress; switch (Controller->HardwareType) { case DAC960_GEM_Controller: DAC960_GEM_DisableInterrupts(BaseAddress); DAC960_GEM_AcknowledgeHardwareMailboxStatus(BaseAddress); udelay(1000); while (DAC960_GEM_InitializationInProgressP(BaseAddress)) { if (DAC960_GEM_ReadErrorStatus(BaseAddress, &ErrorStatus, &Parameter0, &Parameter1) && DAC960_ReportErrorStatus(Controller, ErrorStatus, Parameter0, Parameter1)) goto Failure; udelay(10); } if (!DAC960_V2_EnableMemoryMailboxInterface(Controller)) { DAC960_Error("Unable to Enable Memory Mailbox Interface " "for Controller at\n", Controller); goto Failure; } DAC960_GEM_EnableInterrupts(BaseAddress); Controller->QueueCommand = DAC960_GEM_QueueCommand; Controller->ReadControllerConfiguration = DAC960_V2_ReadControllerConfiguration; Controller->ReadDeviceConfiguration = DAC960_V2_ReadDeviceConfiguration; Controller->ReportDeviceConfiguration = DAC960_V2_ReportDeviceConfiguration; Controller->QueueReadWriteCommand = DAC960_V2_QueueReadWriteCommand; break; case DAC960_BA_Controller: DAC960_BA_DisableInterrupts(BaseAddress); DAC960_BA_AcknowledgeHardwareMailboxStatus(BaseAddress); udelay(1000); while (DAC960_BA_InitializationInProgressP(BaseAddress)) { if (DAC960_BA_ReadErrorStatus(BaseAddress, &ErrorStatus, &Parameter0, &Parameter1) && DAC960_ReportErrorStatus(Controller, ErrorStatus, Parameter0, Parameter1)) goto Failure; udelay(10); } if (!DAC960_V2_EnableMemoryMailboxInterface(Controller)) { DAC960_Error("Unable to Enable Memory Mailbox Interface " "for Controller at\n", Controller); goto Failure; } DAC960_BA_EnableInterrupts(BaseAddress); Controller->QueueCommand = DAC960_BA_QueueCommand; Controller->ReadControllerConfiguration = DAC960_V2_ReadControllerConfiguration; Controller->ReadDeviceConfiguration = DAC960_V2_ReadDeviceConfiguration; Controller->ReportDeviceConfiguration = DAC960_V2_ReportDeviceConfiguration; Controller->QueueReadWriteCommand = DAC960_V2_QueueReadWriteCommand; break; case DAC960_LP_Controller: DAC960_LP_DisableInterrupts(BaseAddress); DAC960_LP_AcknowledgeHardwareMailboxStatus(BaseAddress); udelay(1000); while (DAC960_LP_InitializationInProgressP(BaseAddress)) { if (DAC960_LP_ReadErrorStatus(BaseAddress, &ErrorStatus, &Parameter0, &Parameter1) && DAC960_ReportErrorStatus(Controller, ErrorStatus, Parameter0, Parameter1)) goto Failure; udelay(10); } if (!DAC960_V2_EnableMemoryMailboxInterface(Controller)) { DAC960_Error("Unable to Enable Memory Mailbox Interface " "for Controller at\n", Controller); goto Failure; } DAC960_LP_EnableInterrupts(BaseAddress); Controller->QueueCommand = DAC960_LP_QueueCommand; Controller->ReadControllerConfiguration = DAC960_V2_ReadControllerConfiguration; Controller->ReadDeviceConfiguration = DAC960_V2_ReadDeviceConfiguration; Controller->ReportDeviceConfiguration = DAC960_V2_ReportDeviceConfiguration; Controller->QueueReadWriteCommand = DAC960_V2_QueueReadWriteCommand; break; case DAC960_LA_Controller: DAC960_LA_DisableInterrupts(BaseAddress); DAC960_LA_AcknowledgeHardwareMailboxStatus(BaseAddress); udelay(1000); while (DAC960_LA_InitializationInProgressP(BaseAddress)) { if (DAC960_LA_ReadErrorStatus(BaseAddress, &ErrorStatus, &Parameter0, &Parameter1) && DAC960_ReportErrorStatus(Controller, ErrorStatus, Parameter0, Parameter1)) goto Failure; udelay(10); } if (!DAC960_V1_EnableMemoryMailboxInterface(Controller)) { DAC960_Error("Unable to Enable Memory Mailbox Interface " "for Controller at\n", Controller); goto Failure; } DAC960_LA_EnableInterrupts(BaseAddress); if (Controller->V1.DualModeMemoryMailboxInterface) Controller->QueueCommand = DAC960_LA_QueueCommandDualMode; else Controller->QueueCommand = DAC960_LA_QueueCommandSingleMode; Controller->ReadControllerConfiguration = DAC960_V1_ReadControllerConfiguration; Controller->ReadDeviceConfiguration = DAC960_V1_ReadDeviceConfiguration; Controller->ReportDeviceConfiguration = DAC960_V1_ReportDeviceConfiguration; Controller->QueueReadWriteCommand = DAC960_V1_QueueReadWriteCommand; break; case DAC960_PG_Controller: DAC960_PG_DisableInterrupts(BaseAddress); DAC960_PG_AcknowledgeHardwareMailboxStatus(BaseAddress); udelay(1000); while (DAC960_PG_InitializationInProgressP(BaseAddress)) { if (DAC960_PG_ReadErrorStatus(BaseAddress, &ErrorStatus, &Parameter0, &Parameter1) && DAC960_ReportErrorStatus(Controller, ErrorStatus, Parameter0, Parameter1)) goto Failure; udelay(10); } if (!DAC960_V1_EnableMemoryMailboxInterface(Controller)) { DAC960_Error("Unable to Enable Memory Mailbox Interface " "for Controller at\n", Controller); goto Failure; } DAC960_PG_EnableInterrupts(BaseAddress); if (Controller->V1.DualModeMemoryMailboxInterface) Controller->QueueCommand = DAC960_PG_QueueCommandDualMode; else Controller->QueueCommand = DAC960_PG_QueueCommandSingleMode; Controller->ReadControllerConfiguration = DAC960_V1_ReadControllerConfiguration; Controller->ReadDeviceConfiguration = DAC960_V1_ReadDeviceConfiguration; Controller->ReportDeviceConfiguration = DAC960_V1_ReportDeviceConfiguration; Controller->QueueReadWriteCommand = DAC960_V1_QueueReadWriteCommand; break; case DAC960_PD_Controller: if (!request_region(Controller->IO_Address, 0x80, Controller->FullModelName)) { DAC960_Error("IO port 0x%d busy for Controller at\n", Controller, Controller->IO_Address); goto Failure; } DAC960_PD_DisableInterrupts(BaseAddress); DAC960_PD_AcknowledgeStatus(BaseAddress); udelay(1000); while (DAC960_PD_InitializationInProgressP(BaseAddress)) { if (DAC960_PD_ReadErrorStatus(BaseAddress, &ErrorStatus, &Parameter0, &Parameter1) && DAC960_ReportErrorStatus(Controller, ErrorStatus, Parameter0, Parameter1)) goto Failure; udelay(10); } if (!DAC960_V1_EnableMemoryMailboxInterface(Controller)) { DAC960_Error("Unable to allocate DMA mapped memory " "for Controller at\n", Controller); goto Failure; } DAC960_PD_EnableInterrupts(BaseAddress); Controller->QueueCommand = DAC960_PD_QueueCommand; Controller->ReadControllerConfiguration = DAC960_V1_ReadControllerConfiguration; Controller->ReadDeviceConfiguration = DAC960_V1_ReadDeviceConfiguration; Controller->ReportDeviceConfiguration = DAC960_V1_ReportDeviceConfiguration; Controller->QueueReadWriteCommand = DAC960_V1_QueueReadWriteCommand; break; case DAC960_P_Controller: if (!request_region(Controller->IO_Address, 0x80, Controller->FullModelName)){ DAC960_Error("IO port 0x%d busy for Controller at\n", Controller, Controller->IO_Address); goto Failure; } DAC960_PD_DisableInterrupts(BaseAddress); DAC960_PD_AcknowledgeStatus(BaseAddress); udelay(1000); while (DAC960_PD_InitializationInProgressP(BaseAddress)) { if (DAC960_PD_ReadErrorStatus(BaseAddress, &ErrorStatus, &Parameter0, &Parameter1) && DAC960_ReportErrorStatus(Controller, ErrorStatus, Parameter0, Parameter1)) goto Failure; udelay(10); } if (!DAC960_V1_EnableMemoryMailboxInterface(Controller)) { DAC960_Error("Unable to allocate DMA mapped memory" "for Controller at\n", Controller); goto Failure; } DAC960_PD_EnableInterrupts(BaseAddress); Controller->QueueCommand = DAC960_P_QueueCommand; Controller->ReadControllerConfiguration = DAC960_V1_ReadControllerConfiguration; Controller->ReadDeviceConfiguration = DAC960_V1_ReadDeviceConfiguration; Controller->ReportDeviceConfiguration = DAC960_V1_ReportDeviceConfiguration; Controller->QueueReadWriteCommand = DAC960_V1_QueueReadWriteCommand; break; } /* Acquire shared access to the IRQ Channel. */ IRQ_Channel = PCI_Device->irq; if (request_irq(IRQ_Channel, InterruptHandler, IRQF_SHARED, Controller->FullModelName, Controller) < 0) { DAC960_Error("Unable to acquire IRQ Channel %d for Controller at\n", Controller, Controller->IRQ_Channel); goto Failure; } Controller->IRQ_Channel = IRQ_Channel; Controller->InitialCommand.CommandIdentifier = 1; Controller->InitialCommand.Controller = Controller; Controller->Commands[0] = &Controller->InitialCommand; Controller->FreeCommands = &Controller->InitialCommand; return Controller; Failure: if (Controller->IO_Address == 0) DAC960_Error("PCI Bus %d Device %d Function %d I/O Address N/A " "PCI Address 0x%X\n", Controller, Controller->Bus, Controller->Device, Controller->Function, Controller->PCI_Address); else DAC960_Error("PCI Bus %d Device %d Function %d I/O Address " "0x%X PCI Address 0x%X\n", Controller, Controller->Bus, Controller->Device, Controller->Function, Controller->IO_Address, Controller->PCI_Address); DAC960_DetectCleanup(Controller); DAC960_ControllerCount--; return NULL; } /* DAC960_InitializeController initializes Controller. */ static bool DAC960_InitializeController(DAC960_Controller_T *Controller) { if (DAC960_ReadControllerConfiguration(Controller) && DAC960_ReportControllerConfiguration(Controller) && DAC960_CreateAuxiliaryStructures(Controller) && DAC960_ReadDeviceConfiguration(Controller) && DAC960_ReportDeviceConfiguration(Controller) && DAC960_RegisterBlockDevice(Controller)) { /* Initialize the Monitoring Timer. */ init_timer(&Controller->MonitoringTimer); Controller->MonitoringTimer.expires = jiffies + DAC960_MonitoringTimerInterval; Controller->MonitoringTimer.data = (unsigned long) Controller; Controller->MonitoringTimer.function = DAC960_MonitoringTimerFunction; add_timer(&Controller->MonitoringTimer); Controller->ControllerInitialized = true; return true; } return false; } /* DAC960_FinalizeController finalizes Controller. */ static void DAC960_FinalizeController(DAC960_Controller_T *Controller) { if (Controller->ControllerInitialized) { unsigned long flags; /* * Acquiring and releasing lock here eliminates * a very low probability race. * * The code below allocates controller command structures * from the free list without holding the controller lock. * This is safe assuming there is no other activity on * the controller at the time. * * But, there might be a monitoring command still * in progress. Setting the Shutdown flag while holding * the lock ensures that there is no monitoring command * in the interrupt handler currently, and any monitoring * commands that complete from this time on will NOT return * their command structure to the free list. */ spin_lock_irqsave(&Controller->queue_lock, flags); Controller->ShutdownMonitoringTimer = 1; spin_unlock_irqrestore(&Controller->queue_lock, flags); del_timer_sync(&Controller->MonitoringTimer); if (Controller->FirmwareType == DAC960_V1_Controller) { DAC960_Notice("Flushing Cache...", Controller); DAC960_V1_ExecuteType3(Controller, DAC960_V1_Flush, 0); DAC960_Notice("done\n", Controller); if (Controller->HardwareType == DAC960_PD_Controller) release_region(Controller->IO_Address, 0x80); } else { DAC960_Notice("Flushing Cache...", Controller); DAC960_V2_DeviceOperation(Controller, DAC960_V2_PauseDevice, DAC960_V2_RAID_Controller); DAC960_Notice("done\n", Controller); } } DAC960_UnregisterBlockDevice(Controller); DAC960_DestroyAuxiliaryStructures(Controller); DAC960_DestroyProcEntries(Controller); DAC960_DetectCleanup(Controller); } /* DAC960_Probe verifies controller's existence and initializes the DAC960 Driver for that controller. */ static int DAC960_Probe(struct pci_dev *dev, const struct pci_device_id *entry) { int disk; DAC960_Controller_T *Controller; if (DAC960_ControllerCount == DAC960_MaxControllers) { DAC960_Error("More than %d DAC960 Controllers detected - " "ignoring from Controller at\n", NULL, DAC960_MaxControllers); return -ENODEV; } Controller = DAC960_DetectController(dev, entry); if (!Controller) return -ENODEV; if (!DAC960_InitializeController(Controller)) { DAC960_FinalizeController(Controller); return -ENODEV; } for (disk = 0; disk < DAC960_MaxLogicalDrives; disk++) { set_capacity(Controller->disks[disk], disk_size(Controller, disk)); add_disk(Controller->disks[disk]); } DAC960_CreateProcEntries(Controller); return 0; } /* DAC960_Finalize finalizes the DAC960 Driver. */ static void DAC960_Remove(struct pci_dev *PCI_Device) { int Controller_Number = (long)pci_get_drvdata(PCI_Device); DAC960_Controller_T *Controller = DAC960_Controllers[Controller_Number]; if (Controller != NULL) DAC960_FinalizeController(Controller); } /* DAC960_V1_QueueReadWriteCommand prepares and queues a Read/Write Command for DAC960 V1 Firmware Controllers. */ static void DAC960_V1_QueueReadWriteCommand(DAC960_Command_T *Command) { DAC960_Controller_T *Controller = Command->Controller; DAC960_V1_CommandMailbox_T *CommandMailbox = &Command->V1.CommandMailbox; DAC960_V1_ScatterGatherSegment_T *ScatterGatherList = Command->V1.ScatterGatherList; struct scatterlist *ScatterList = Command->V1.ScatterList; DAC960_V1_ClearCommand(Command); if (Command->SegmentCount == 1) { if (Command->DmaDirection == PCI_DMA_FROMDEVICE) CommandMailbox->Type5.CommandOpcode = DAC960_V1_Read; else CommandMailbox->Type5.CommandOpcode = DAC960_V1_Write; CommandMailbox->Type5.LD.TransferLength = Command->BlockCount; CommandMailbox->Type5.LD.LogicalDriveNumber = Command->LogicalDriveNumber; CommandMailbox->Type5.LogicalBlockAddress = Command->BlockNumber; CommandMailbox->Type5.BusAddress = (DAC960_BusAddress32_T)sg_dma_address(ScatterList); } else { int i; if (Command->DmaDirection == PCI_DMA_FROMDEVICE) CommandMailbox->Type5.CommandOpcode = DAC960_V1_ReadWithScatterGather; else CommandMailbox->Type5.CommandOpcode = DAC960_V1_WriteWithScatterGather; CommandMailbox->Type5.LD.TransferLength = Command->BlockCount; CommandMailbox->Type5.LD.LogicalDriveNumber = Command->LogicalDriveNumber; CommandMailbox->Type5.LogicalBlockAddress = Command->BlockNumber; CommandMailbox->Type5.BusAddress = Command->V1.ScatterGatherListDMA; CommandMailbox->Type5.ScatterGatherCount = Command->SegmentCount; for (i = 0; i < Command->SegmentCount; i++, ScatterList++, ScatterGatherList++) { ScatterGatherList->SegmentDataPointer = (DAC960_BusAddress32_T)sg_dma_address(ScatterList); ScatterGatherList->SegmentByteCount = (DAC960_ByteCount32_T)sg_dma_len(ScatterList); } } DAC960_QueueCommand(Command); } /* DAC960_V2_QueueReadWriteCommand prepares and queues a Read/Write Command for DAC960 V2 Firmware Controllers. */ static void DAC960_V2_QueueReadWriteCommand(DAC960_Command_T *Command) { DAC960_Controller_T *Controller = Command->Controller; DAC960_V2_CommandMailbox_T *CommandMailbox = &Command->V2.CommandMailbox; struct scatterlist *ScatterList = Command->V2.ScatterList; DAC960_V2_ClearCommand(Command); CommandMailbox->SCSI_10.CommandOpcode = DAC960_V2_SCSI_10; CommandMailbox->SCSI_10.CommandControlBits.DataTransferControllerToHost = (Command->DmaDirection == PCI_DMA_FROMDEVICE); CommandMailbox->SCSI_10.DataTransferSize = Command->BlockCount << DAC960_BlockSizeBits; CommandMailbox->SCSI_10.RequestSenseBusAddress = Command->V2.RequestSenseDMA; CommandMailbox->SCSI_10.PhysicalDevice = Controller->V2.LogicalDriveToVirtualDevice[Command->LogicalDriveNumber]; CommandMailbox->SCSI_10.RequestSenseSize = sizeof(DAC960_SCSI_RequestSense_T); CommandMailbox->SCSI_10.CDBLength = 10; CommandMailbox->SCSI_10.SCSI_CDB[0] = (Command->DmaDirection == PCI_DMA_FROMDEVICE ? 0x28 : 0x2A); CommandMailbox->SCSI_10.SCSI_CDB[2] = Command->BlockNumber >> 24; CommandMailbox->SCSI_10.SCSI_CDB[3] = Command->BlockNumber >> 16; CommandMailbox->SCSI_10.SCSI_CDB[4] = Command->BlockNumber >> 8; CommandMailbox->SCSI_10.SCSI_CDB[5] = Command->BlockNumber; CommandMailbox->SCSI_10.SCSI_CDB[7] = Command->BlockCount >> 8; CommandMailbox->SCSI_10.SCSI_CDB[8] = Command->BlockCount; if (Command->SegmentCount == 1) { CommandMailbox->SCSI_10.DataTransferMemoryAddress .ScatterGatherSegments[0] .SegmentDataPointer = (DAC960_BusAddress64_T)sg_dma_address(ScatterList); CommandMailbox->SCSI_10.DataTransferMemoryAddress .ScatterGatherSegments[0] .SegmentByteCount = CommandMailbox->SCSI_10.DataTransferSize; } else { DAC960_V2_ScatterGatherSegment_T *ScatterGatherList; int i; if (Command->SegmentCount > 2) { ScatterGatherList = Command->V2.ScatterGatherList; CommandMailbox->SCSI_10.CommandControlBits .AdditionalScatterGatherListMemory = true; CommandMailbox->SCSI_10.DataTransferMemoryAddress .ExtendedScatterGather.ScatterGatherList0Length = Command->SegmentCount; CommandMailbox->SCSI_10.DataTransferMemoryAddress .ExtendedScatterGather.ScatterGatherList0Address = Command->V2.ScatterGatherListDMA; } else ScatterGatherList = CommandMailbox->SCSI_10.DataTransferMemoryAddress .ScatterGatherSegments; for (i = 0; i < Command->SegmentCount; i++, ScatterList++, ScatterGatherList++) { ScatterGatherList->SegmentDataPointer = (DAC960_BusAddress64_T)sg_dma_address(ScatterList); ScatterGatherList->SegmentByteCount = (DAC960_ByteCount64_T)sg_dma_len(ScatterList); } } DAC960_QueueCommand(Command); } static int DAC960_process_queue(DAC960_Controller_T *Controller, struct request_queue *req_q) { struct request *Request; DAC960_Command_T *Command; while(1) { Request = blk_peek_request(req_q); if (!Request) return 1; Command = DAC960_AllocateCommand(Controller); if (Command == NULL) return 0; if (rq_data_dir(Request) == READ) { Command->DmaDirection = PCI_DMA_FROMDEVICE; Command->CommandType = DAC960_ReadCommand; } else { Command->DmaDirection = PCI_DMA_TODEVICE; Command->CommandType = DAC960_WriteCommand; } Command->Completion = Request->end_io_data; Command->LogicalDriveNumber = (long)Request->rq_disk->private_data; Command->BlockNumber = blk_rq_pos(Request); Command->BlockCount = blk_rq_sectors(Request); Command->Request = Request; blk_start_request(Request); Command->SegmentCount = blk_rq_map_sg(req_q, Command->Request, Command->cmd_sglist); /* pci_map_sg MAY change the value of SegCount */ Command->SegmentCount = pci_map_sg(Controller->PCIDevice, Command->cmd_sglist, Command->SegmentCount, Command->DmaDirection); DAC960_QueueReadWriteCommand(Command); } } /* DAC960_ProcessRequest attempts to remove one I/O Request from Controller's I/O Request Queue and queues it to the Controller. WaitForCommand is true if this function should wait for a Command to become available if necessary. This function returns true if an I/O Request was queued and false otherwise. */ static void DAC960_ProcessRequest(DAC960_Controller_T *controller) { int i; if (!controller->ControllerInitialized) return; /* Do this better later! */ for (i = controller->req_q_index; i < DAC960_MaxLogicalDrives; i++) { struct request_queue *req_q = controller->RequestQueue[i]; if (req_q == NULL) continue; if (!DAC960_process_queue(controller, req_q)) { controller->req_q_index = i; return; } } if (controller->req_q_index == 0) return; for (i = 0; i < controller->req_q_index; i++) { struct request_queue *req_q = controller->RequestQueue[i]; if (req_q == NULL) continue; if (!DAC960_process_queue(controller, req_q)) { controller->req_q_index = i; return; } } } /* DAC960_queue_partial_rw extracts one bio from the request already associated with argument command, and construct a new command block to retry I/O only on that bio. Queue that command to the controller. This function re-uses a previously-allocated Command, there is no failure mode from trying to allocate a command. */ static void DAC960_queue_partial_rw(DAC960_Command_T *Command) { DAC960_Controller_T *Controller = Command->Controller; struct request *Request = Command->Request; struct request_queue *req_q = Controller->RequestQueue[Command->LogicalDriveNumber]; if (Command->DmaDirection == PCI_DMA_FROMDEVICE) Command->CommandType = DAC960_ReadRetryCommand; else Command->CommandType = DAC960_WriteRetryCommand; /* * We could be more efficient with these mapping requests * and map only the portions that we need. But since this * code should almost never be called, just go with a * simple coding. */ (void)blk_rq_map_sg(req_q, Command->Request, Command->cmd_sglist); (void)pci_map_sg(Controller->PCIDevice, Command->cmd_sglist, 1, Command->DmaDirection); /* * Resubmitting the request sector at a time is really tedious. * But, this should almost never happen. So, we're willing to pay * this price so that in the end, as much of the transfer is completed * successfully as possible. */ Command->SegmentCount = 1; Command->BlockNumber = blk_rq_pos(Request); Command->BlockCount = 1; DAC960_QueueReadWriteCommand(Command); return; } /* DAC960_RequestFunction is the I/O Request Function for DAC960 Controllers. */ static void DAC960_RequestFunction(struct request_queue *RequestQueue) { DAC960_ProcessRequest(RequestQueue->queuedata); } /* DAC960_ProcessCompletedBuffer performs completion processing for an individual Buffer. */ static inline bool DAC960_ProcessCompletedRequest(DAC960_Command_T *Command, bool SuccessfulIO) { struct request *Request = Command->Request; int Error = SuccessfulIO ? 0 : -EIO; pci_unmap_sg(Command->Controller->PCIDevice, Command->cmd_sglist, Command->SegmentCount, Command->DmaDirection); if (!__blk_end_request(Request, Error, Command->BlockCount << 9)) { if (Command->Completion) { complete(Command->Completion); Command->Completion = NULL; } return true; } return false; } /* DAC960_V1_ReadWriteError prints an appropriate error message for Command when an error occurs on a Read or Write operation. */ static void DAC960_V1_ReadWriteError(DAC960_Command_T *Command) { DAC960_Controller_T *Controller = Command->Controller; unsigned char *CommandName = "UNKNOWN"; switch (Command->CommandType) { case DAC960_ReadCommand: case DAC960_ReadRetryCommand: CommandName = "READ"; break; case DAC960_WriteCommand: case DAC960_WriteRetryCommand: CommandName = "WRITE"; break; case DAC960_MonitoringCommand: case DAC960_ImmediateCommand: case DAC960_QueuedCommand: break; } switch (Command->V1.CommandStatus) { case DAC960_V1_IrrecoverableDataError: DAC960_Error("Irrecoverable Data Error on %s:\n", Controller, CommandName); break; case DAC960_V1_LogicalDriveNonexistentOrOffline: DAC960_Error("Logical Drive Nonexistent or Offline on %s:\n", Controller, CommandName); break; case DAC960_V1_AccessBeyondEndOfLogicalDrive: DAC960_Error("Attempt to Access Beyond End of Logical Drive " "on %s:\n", Controller, CommandName); break; case DAC960_V1_BadDataEncountered: DAC960_Error("Bad Data Encountered on %s:\n", Controller, CommandName); break; default: DAC960_Error("Unexpected Error Status %04X on %s:\n", Controller, Command->V1.CommandStatus, CommandName); break; } DAC960_Error(" /dev/rd/c%dd%d: absolute blocks %u..%u\n", Controller, Controller->ControllerNumber, Command->LogicalDriveNumber, Command->BlockNumber, Command->BlockNumber + Command->BlockCount - 1); } /* DAC960_V1_ProcessCompletedCommand performs completion processing for Command for DAC960 V1 Firmware Controllers. */ static void DAC960_V1_ProcessCompletedCommand(DAC960_Command_T *Command) { DAC960_Controller_T *Controller = Command->Controller; DAC960_CommandType_T CommandType = Command->CommandType; DAC960_V1_CommandOpcode_T CommandOpcode = Command->V1.CommandMailbox.Common.CommandOpcode; DAC960_V1_CommandStatus_T CommandStatus = Command->V1.CommandStatus; if (CommandType == DAC960_ReadCommand || CommandType == DAC960_WriteCommand) { #ifdef FORCE_RETRY_DEBUG CommandStatus = DAC960_V1_IrrecoverableDataError; #endif if (CommandStatus == DAC960_V1_NormalCompletion) { if (!DAC960_ProcessCompletedRequest(Command, true)) BUG(); } else if (CommandStatus == DAC960_V1_IrrecoverableDataError || CommandStatus == DAC960_V1_BadDataEncountered) { /* * break the command down into pieces and resubmit each * piece, hoping that some of them will succeed. */ DAC960_queue_partial_rw(Command); return; } else { if (CommandStatus != DAC960_V1_LogicalDriveNonexistentOrOffline) DAC960_V1_ReadWriteError(Command); if (!DAC960_ProcessCompletedRequest(Command, false)) BUG(); } } else if (CommandType == DAC960_ReadRetryCommand || CommandType == DAC960_WriteRetryCommand) { bool normal_completion; #ifdef FORCE_RETRY_FAILURE_DEBUG static int retry_count = 1; #endif /* Perform completion processing for the portion that was retried, and submit the next portion, if any. */ normal_completion = true; if (CommandStatus != DAC960_V1_NormalCompletion) { normal_completion = false; if (CommandStatus != DAC960_V1_LogicalDriveNonexistentOrOffline) DAC960_V1_ReadWriteError(Command); } #ifdef FORCE_RETRY_FAILURE_DEBUG if (!(++retry_count % 10000)) { printk("V1 error retry failure test\n"); normal_completion = false; DAC960_V1_ReadWriteError(Command); } #endif if (!DAC960_ProcessCompletedRequest(Command, normal_completion)) { DAC960_queue_partial_rw(Command); return; } } else if (CommandType == DAC960_MonitoringCommand) { if (Controller->ShutdownMonitoringTimer) return; if (CommandOpcode == DAC960_V1_Enquiry) { DAC960_V1_Enquiry_T *OldEnquiry = &Controller->V1.Enquiry; DAC960_V1_Enquiry_T *NewEnquiry = Controller->V1.NewEnquiry; unsigned int OldCriticalLogicalDriveCount = OldEnquiry->CriticalLogicalDriveCount; unsigned int NewCriticalLogicalDriveCount = NewEnquiry->CriticalLogicalDriveCount; if (NewEnquiry->NumberOfLogicalDrives > Controller->LogicalDriveCount) { int LogicalDriveNumber = Controller->LogicalDriveCount - 1; while (++LogicalDriveNumber < NewEnquiry->NumberOfLogicalDrives) DAC960_Critical("Logical Drive %d (/dev/rd/c%dd%d) " "Now Exists\n", Controller, LogicalDriveNumber, Controller->ControllerNumber, LogicalDriveNumber); Controller->LogicalDriveCount = NewEnquiry->NumberOfLogicalDrives; DAC960_ComputeGenericDiskInfo(Controller); } if (NewEnquiry->NumberOfLogicalDrives < Controller->LogicalDriveCount) { int LogicalDriveNumber = NewEnquiry->NumberOfLogicalDrives - 1; while (++LogicalDriveNumber < Controller->LogicalDriveCount) DAC960_Critical("Logical Drive %d (/dev/rd/c%dd%d) " "No Longer Exists\n", Controller, LogicalDriveNumber, Controller->ControllerNumber, LogicalDriveNumber); Controller->LogicalDriveCount = NewEnquiry->NumberOfLogicalDrives; DAC960_ComputeGenericDiskInfo(Controller); } if (NewEnquiry->StatusFlags.DeferredWriteError != OldEnquiry->StatusFlags.DeferredWriteError) DAC960_Critical("Deferred Write Error Flag is now %s\n", Controller, (NewEnquiry->StatusFlags.DeferredWriteError ? "TRUE" : "FALSE")); if ((NewCriticalLogicalDriveCount > 0 || NewCriticalLogicalDriveCount != OldCriticalLogicalDriveCount) || (NewEnquiry->OfflineLogicalDriveCount > 0 || NewEnquiry->OfflineLogicalDriveCount != OldEnquiry->OfflineLogicalDriveCount) || (NewEnquiry->DeadDriveCount > 0 || NewEnquiry->DeadDriveCount != OldEnquiry->DeadDriveCount) || (NewEnquiry->EventLogSequenceNumber != OldEnquiry->EventLogSequenceNumber) || Controller->MonitoringTimerCount == 0 || time_after_eq(jiffies, Controller->SecondaryMonitoringTime + DAC960_SecondaryMonitoringInterval)) { Controller->V1.NeedLogicalDriveInformation = true; Controller->V1.NewEventLogSequenceNumber = NewEnquiry->EventLogSequenceNumber; Controller->V1.NeedErrorTableInformation = true; Controller->V1.NeedDeviceStateInformation = true; Controller->V1.StartDeviceStateScan = true; Controller->V1.NeedBackgroundInitializationStatus = Controller->V1.BackgroundInitializationStatusSupported; Controller->SecondaryMonitoringTime = jiffies; } if (NewEnquiry->RebuildFlag == DAC960_V1_StandbyRebuildInProgress || NewEnquiry->RebuildFlag == DAC960_V1_BackgroundRebuildInProgress || OldEnquiry->RebuildFlag == DAC960_V1_StandbyRebuildInProgress || OldEnquiry->RebuildFlag == DAC960_V1_BackgroundRebuildInProgress) { Controller->V1.NeedRebuildProgress = true; Controller->V1.RebuildProgressFirst = (NewEnquiry->CriticalLogicalDriveCount < OldEnquiry->CriticalLogicalDriveCount); } if (OldEnquiry->RebuildFlag == DAC960_V1_BackgroundCheckInProgress) switch (NewEnquiry->RebuildFlag) { case DAC960_V1_NoStandbyRebuildOrCheckInProgress: DAC960_Progress("Consistency Check Completed Successfully\n", Controller); break; case DAC960_V1_StandbyRebuildInProgress: case DAC960_V1_BackgroundRebuildInProgress: break; case DAC960_V1_BackgroundCheckInProgress: Controller->V1.NeedConsistencyCheckProgress = true; break; case DAC960_V1_StandbyRebuildCompletedWithError: DAC960_Progress("Consistency Check Completed with Error\n", Controller); break; case DAC960_V1_BackgroundRebuildOrCheckFailed_DriveFailed: DAC960_Progress("Consistency Check Failed - " "Physical Device Failed\n", Controller); break; case DAC960_V1_BackgroundRebuildOrCheckFailed_LogicalDriveFailed: DAC960_Progress("Consistency Check Failed - " "Logical Drive Failed\n", Controller); break; case DAC960_V1_BackgroundRebuildOrCheckFailed_OtherCauses: DAC960_Progress("Consistency Check Failed - Other Causes\n", Controller); break; case DAC960_V1_BackgroundRebuildOrCheckSuccessfullyTerminated: DAC960_Progress("Consistency Check Successfully Terminated\n", Controller); break; } else if (NewEnquiry->RebuildFlag == DAC960_V1_BackgroundCheckInProgress) Controller->V1.NeedConsistencyCheckProgress = true; Controller->MonitoringAlertMode = (NewEnquiry->CriticalLogicalDriveCount > 0 || NewEnquiry->OfflineLogicalDriveCount > 0 || NewEnquiry->DeadDriveCount > 0); if (NewEnquiry->RebuildFlag > DAC960_V1_BackgroundCheckInProgress) { Controller->V1.PendingRebuildFlag = NewEnquiry->RebuildFlag; Controller->V1.RebuildFlagPending = true; } memcpy(&Controller->V1.Enquiry, &Controller->V1.NewEnquiry, sizeof(DAC960_V1_Enquiry_T)); } else if (CommandOpcode == DAC960_V1_PerformEventLogOperation) { static char *DAC960_EventMessages[] = { "killed because write recovery failed", "killed because of SCSI bus reset failure", "killed because of double check condition", "killed because it was removed", "killed because of gross error on SCSI chip", "killed because of bad tag returned from drive", "killed because of timeout on SCSI command", "killed because of reset SCSI command issued from system", "killed because busy or parity error count exceeded limit", "killed because of 'kill drive' command from system", "killed because of selection timeout", "killed due to SCSI phase sequence error", "killed due to unknown status" }; DAC960_V1_EventLogEntry_T *EventLogEntry = Controller->V1.EventLogEntry; if (EventLogEntry->SequenceNumber == Controller->V1.OldEventLogSequenceNumber) { unsigned char SenseKey = EventLogEntry->SenseKey; unsigned char AdditionalSenseCode = EventLogEntry->AdditionalSenseCode; unsigned char AdditionalSenseCodeQualifier = EventLogEntry->AdditionalSenseCodeQualifier; if (SenseKey == DAC960_SenseKey_VendorSpecific && AdditionalSenseCode == 0x80 && AdditionalSenseCodeQualifier < ARRAY_SIZE(DAC960_EventMessages)) DAC960_Critical("Physical Device %d:%d %s\n", Controller, EventLogEntry->Channel, EventLogEntry->TargetID, DAC960_EventMessages[ AdditionalSenseCodeQualifier]); else if (SenseKey == DAC960_SenseKey_UnitAttention && AdditionalSenseCode == 0x29) { if (Controller->MonitoringTimerCount > 0) Controller->V1.DeviceResetCount[EventLogEntry->Channel] [EventLogEntry->TargetID]++; } else if (!(SenseKey == DAC960_SenseKey_NoSense || (SenseKey == DAC960_SenseKey_NotReady && AdditionalSenseCode == 0x04 && (AdditionalSenseCodeQualifier == 0x01 || AdditionalSenseCodeQualifier == 0x02)))) { DAC960_Critical("Physical Device %d:%d Error Log: " "Sense Key = %X, ASC = %02X, ASCQ = %02X\n", Controller, EventLogEntry->Channel, EventLogEntry->TargetID, SenseKey, AdditionalSenseCode, AdditionalSenseCodeQualifier); DAC960_Critical("Physical Device %d:%d Error Log: " "Information = %02X%02X%02X%02X " "%02X%02X%02X%02X\n", Controller, EventLogEntry->Channel, EventLogEntry->TargetID, EventLogEntry->Information[0], EventLogEntry->Information[1], EventLogEntry->Information[2], EventLogEntry->Information[3], EventLogEntry->CommandSpecificInformation[0], EventLogEntry->CommandSpecificInformation[1], EventLogEntry->CommandSpecificInformation[2], EventLogEntry->CommandSpecificInformation[3]); } } Controller->V1.OldEventLogSequenceNumber++; } else if (CommandOpcode == DAC960_V1_GetErrorTable) { DAC960_V1_ErrorTable_T *OldErrorTable = &Controller->V1.ErrorTable; DAC960_V1_ErrorTable_T *NewErrorTable = Controller->V1.NewErrorTable; int Channel, TargetID; for (Channel = 0; Channel < Controller->Channels; Channel++) for (TargetID = 0; TargetID < Controller->Targets; TargetID++) { DAC960_V1_ErrorTableEntry_T *NewErrorEntry = &NewErrorTable->ErrorTableEntries[Channel][TargetID]; DAC960_V1_ErrorTableEntry_T *OldErrorEntry = &OldErrorTable->ErrorTableEntries[Channel][TargetID]; if ((NewErrorEntry->ParityErrorCount != OldErrorEntry->ParityErrorCount) || (NewErrorEntry->SoftErrorCount != OldErrorEntry->SoftErrorCount) || (NewErrorEntry->HardErrorCount != OldErrorEntry->HardErrorCount) || (NewErrorEntry->MiscErrorCount != OldErrorEntry->MiscErrorCount)) DAC960_Critical("Physical Device %d:%d Errors: " "Parity = %d, Soft = %d, " "Hard = %d, Misc = %d\n", Controller, Channel, TargetID, NewErrorEntry->ParityErrorCount, NewErrorEntry->SoftErrorCount, NewErrorEntry->HardErrorCount, NewErrorEntry->MiscErrorCount); } memcpy(&Controller->V1.ErrorTable, Controller->V1.NewErrorTable, sizeof(DAC960_V1_ErrorTable_T)); } else if (CommandOpcode == DAC960_V1_GetDeviceState) { DAC960_V1_DeviceState_T *OldDeviceState = &Controller->V1.DeviceState[Controller->V1.DeviceStateChannel] [Controller->V1.DeviceStateTargetID]; DAC960_V1_DeviceState_T *NewDeviceState = Controller->V1.NewDeviceState; if (NewDeviceState->DeviceState != OldDeviceState->DeviceState) DAC960_Critical("Physical Device %d:%d is now %s\n", Controller, Controller->V1.DeviceStateChannel, Controller->V1.DeviceStateTargetID, (NewDeviceState->DeviceState == DAC960_V1_Device_Dead ? "DEAD" : NewDeviceState->DeviceState == DAC960_V1_Device_WriteOnly ? "WRITE-ONLY" : NewDeviceState->DeviceState == DAC960_V1_Device_Online ? "ONLINE" : "STANDBY")); if (OldDeviceState->DeviceState == DAC960_V1_Device_Dead && NewDeviceState->DeviceState != DAC960_V1_Device_Dead) { Controller->V1.NeedDeviceInquiryInformation = true; Controller->V1.NeedDeviceSerialNumberInformation = true; Controller->V1.DeviceResetCount [Controller->V1.DeviceStateChannel] [Controller->V1.DeviceStateTargetID] = 0; } memcpy(OldDeviceState, NewDeviceState, sizeof(DAC960_V1_DeviceState_T)); } else if (CommandOpcode == DAC960_V1_GetLogicalDriveInformation) { int LogicalDriveNumber; for (LogicalDriveNumber = 0; LogicalDriveNumber < Controller->LogicalDriveCount; LogicalDriveNumber++) { DAC960_V1_LogicalDriveInformation_T *OldLogicalDriveInformation = &Controller->V1.LogicalDriveInformation[LogicalDriveNumber]; DAC960_V1_LogicalDriveInformation_T *NewLogicalDriveInformation = &(*Controller->V1.NewLogicalDriveInformation)[LogicalDriveNumber]; if (NewLogicalDriveInformation->LogicalDriveState != OldLogicalDriveInformation->LogicalDriveState) DAC960_Critical("Logical Drive %d (/dev/rd/c%dd%d) " "is now %s\n", Controller, LogicalDriveNumber, Controller->ControllerNumber, LogicalDriveNumber, (NewLogicalDriveInformation->LogicalDriveState == DAC960_V1_LogicalDrive_Online ? "ONLINE" : NewLogicalDriveInformation->LogicalDriveState == DAC960_V1_LogicalDrive_Critical ? "CRITICAL" : "OFFLINE")); if (NewLogicalDriveInformation->WriteBack != OldLogicalDriveInformation->WriteBack) DAC960_Critical("Logical Drive %d (/dev/rd/c%dd%d) " "is now %s\n", Controller, LogicalDriveNumber, Controller->ControllerNumber, LogicalDriveNumber, (NewLogicalDriveInformation->WriteBack ? "WRITE BACK" : "WRITE THRU")); } memcpy(&Controller->V1.LogicalDriveInformation, Controller->V1.NewLogicalDriveInformation, sizeof(DAC960_V1_LogicalDriveInformationArray_T)); } else if (CommandOpcode == DAC960_V1_GetRebuildProgress) { unsigned int LogicalDriveNumber = Controller->V1.RebuildProgress->LogicalDriveNumber; unsigned int LogicalDriveSize = Controller->V1.RebuildProgress->LogicalDriveSize; unsigned int BlocksCompleted = LogicalDriveSize - Controller->V1.RebuildProgress->RemainingBlocks; if (CommandStatus == DAC960_V1_NoRebuildOrCheckInProgress && Controller->V1.LastRebuildStatus == DAC960_V1_NormalCompletion) CommandStatus = DAC960_V1_RebuildSuccessful; switch (CommandStatus) { case DAC960_V1_NormalCompletion: Controller->EphemeralProgressMessage = true; DAC960_Progress("Rebuild in Progress: " "Logical Drive %d (/dev/rd/c%dd%d) " "%d%% completed\n", Controller, LogicalDriveNumber, Controller->ControllerNumber, LogicalDriveNumber, (100 * (BlocksCompleted >> 7)) / (LogicalDriveSize >> 7)); Controller->EphemeralProgressMessage = false; break; case DAC960_V1_RebuildFailed_LogicalDriveFailure: DAC960_Progress("Rebuild Failed due to " "Logical Drive Failure\n", Controller); break; case DAC960_V1_RebuildFailed_BadBlocksOnOther: DAC960_Progress("Rebuild Failed due to " "Bad Blocks on Other Drives\n", Controller); break; case DAC960_V1_RebuildFailed_NewDriveFailed: DAC960_Progress("Rebuild Failed due to " "Failure of Drive Being Rebuilt\n", Controller); break; case DAC960_V1_NoRebuildOrCheckInProgress: break; case DAC960_V1_RebuildSuccessful: DAC960_Progress("Rebuild Completed Successfully\n", Controller); break; case DAC960_V1_RebuildSuccessfullyTerminated: DAC960_Progress("Rebuild Successfully Terminated\n", Controller); break; } Controller->V1.LastRebuildStatus = CommandStatus; if (CommandType != DAC960_MonitoringCommand && Controller->V1.RebuildStatusPending) { Command->V1.CommandStatus = Controller->V1.PendingRebuildStatus; Controller->V1.RebuildStatusPending = false; } else if (CommandType == DAC960_MonitoringCommand && CommandStatus != DAC960_V1_NormalCompletion && CommandStatus != DAC960_V1_NoRebuildOrCheckInProgress) { Controller->V1.PendingRebuildStatus = CommandStatus; Controller->V1.RebuildStatusPending = true; } } else if (CommandOpcode == DAC960_V1_RebuildStat) { unsigned int LogicalDriveNumber = Controller->V1.RebuildProgress->LogicalDriveNumber; unsigned int LogicalDriveSize = Controller->V1.RebuildProgress->LogicalDriveSize; unsigned int BlocksCompleted = LogicalDriveSize - Controller->V1.RebuildProgress->RemainingBlocks; if (CommandStatus == DAC960_V1_NormalCompletion) { Controller->EphemeralProgressMessage = true; DAC960_Progress("Consistency Check in Progress: " "Logical Drive %d (/dev/rd/c%dd%d) " "%d%% completed\n", Controller, LogicalDriveNumber, Controller->ControllerNumber, LogicalDriveNumber, (100 * (BlocksCompleted >> 7)) / (LogicalDriveSize >> 7)); Controller->EphemeralProgressMessage = false; } } else if (CommandOpcode == DAC960_V1_BackgroundInitializationControl) { unsigned int LogicalDriveNumber = Controller->V1.BackgroundInitializationStatus->LogicalDriveNumber; unsigned int LogicalDriveSize = Controller->V1.BackgroundInitializationStatus->LogicalDriveSize; unsigned int BlocksCompleted = Controller->V1.BackgroundInitializationStatus->BlocksCompleted; switch (CommandStatus) { case DAC960_V1_NormalCompletion: switch (Controller->V1.BackgroundInitializationStatus->Status) { case DAC960_V1_BackgroundInitializationInvalid: break; case DAC960_V1_BackgroundInitializationStarted: DAC960_Progress("Background Initialization Started\n", Controller); break; case DAC960_V1_BackgroundInitializationInProgress: if (BlocksCompleted == Controller->V1.LastBackgroundInitializationStatus. BlocksCompleted && LogicalDriveNumber == Controller->V1.LastBackgroundInitializationStatus. LogicalDriveNumber) break; Controller->EphemeralProgressMessage = true; DAC960_Progress("Background Initialization in Progress: " "Logical Drive %d (/dev/rd/c%dd%d) " "%d%% completed\n", Controller, LogicalDriveNumber, Controller->ControllerNumber, LogicalDriveNumber, (100 * (BlocksCompleted >> 7)) / (LogicalDriveSize >> 7)); Controller->EphemeralProgressMessage = false; break; case DAC960_V1_BackgroundInitializationSuspended: DAC960_Progress("Background Initialization Suspended\n", Controller); break; case DAC960_V1_BackgroundInitializationCancelled: DAC960_Progress("Background Initialization Cancelled\n", Controller); break; } memcpy(&Controller->V1.LastBackgroundInitializationStatus, Controller->V1.BackgroundInitializationStatus, sizeof(DAC960_V1_BackgroundInitializationStatus_T)); break; case DAC960_V1_BackgroundInitSuccessful: if (Controller->V1.BackgroundInitializationStatus->Status == DAC960_V1_BackgroundInitializationInProgress) DAC960_Progress("Background Initialization " "Completed Successfully\n", Controller); Controller->V1.BackgroundInitializationStatus->Status = DAC960_V1_BackgroundInitializationInvalid; break; case DAC960_V1_BackgroundInitAborted: if (Controller->V1.BackgroundInitializationStatus->Status == DAC960_V1_BackgroundInitializationInProgress) DAC960_Progress("Background Initialization Aborted\n", Controller); Controller->V1.BackgroundInitializationStatus->Status = DAC960_V1_BackgroundInitializationInvalid; break; case DAC960_V1_NoBackgroundInitInProgress: break; } } else if (CommandOpcode == DAC960_V1_DCDB) { /* This is a bit ugly. The InquiryStandardData and the InquiryUntitSerialNumber information retrieval operations BOTH use the DAC960_V1_DCDB commands. the test above can't distinguish between these two cases. Instead, we rely on the order of code later in this function to ensure that DeviceInquiryInformation commands are submitted before DeviceSerialNumber commands. */ if (Controller->V1.NeedDeviceInquiryInformation) { DAC960_SCSI_Inquiry_T *InquiryStandardData = &Controller->V1.InquiryStandardData [Controller->V1.DeviceStateChannel] [Controller->V1.DeviceStateTargetID]; if (CommandStatus != DAC960_V1_NormalCompletion) { memset(InquiryStandardData, 0, sizeof(DAC960_SCSI_Inquiry_T)); InquiryStandardData->PeripheralDeviceType = 0x1F; } else memcpy(InquiryStandardData, Controller->V1.NewInquiryStandardData, sizeof(DAC960_SCSI_Inquiry_T)); Controller->V1.NeedDeviceInquiryInformation = false; } else if (Controller->V1.NeedDeviceSerialNumberInformation) { DAC960_SCSI_Inquiry_UnitSerialNumber_T *InquiryUnitSerialNumber = &Controller->V1.InquiryUnitSerialNumber [Controller->V1.DeviceStateChannel] [Controller->V1.DeviceStateTargetID]; if (CommandStatus != DAC960_V1_NormalCompletion) { memset(InquiryUnitSerialNumber, 0, sizeof(DAC960_SCSI_Inquiry_UnitSerialNumber_T)); InquiryUnitSerialNumber->PeripheralDeviceType = 0x1F; } else memcpy(InquiryUnitSerialNumber, Controller->V1.NewInquiryUnitSerialNumber, sizeof(DAC960_SCSI_Inquiry_UnitSerialNumber_T)); Controller->V1.NeedDeviceSerialNumberInformation = false; } } /* Begin submitting new monitoring commands. */ if (Controller->V1.NewEventLogSequenceNumber - Controller->V1.OldEventLogSequenceNumber > 0) { Command->V1.CommandMailbox.Type3E.CommandOpcode = DAC960_V1_PerformEventLogOperation; Command->V1.CommandMailbox.Type3E.OperationType = DAC960_V1_GetEventLogEntry; Command->V1.CommandMailbox.Type3E.OperationQualifier = 1; Command->V1.CommandMailbox.Type3E.SequenceNumber = Controller->V1.OldEventLogSequenceNumber; Command->V1.CommandMailbox.Type3E.BusAddress = Controller->V1.EventLogEntryDMA; DAC960_QueueCommand(Command); return; } if (Controller->V1.NeedErrorTableInformation) { Controller->V1.NeedErrorTableInformation = false; Command->V1.CommandMailbox.Type3.CommandOpcode = DAC960_V1_GetErrorTable; Command->V1.CommandMailbox.Type3.BusAddress = Controller->V1.NewErrorTableDMA; DAC960_QueueCommand(Command); return; } if (Controller->V1.NeedRebuildProgress && Controller->V1.RebuildProgressFirst) { Controller->V1.NeedRebuildProgress = false; Command->V1.CommandMailbox.Type3.CommandOpcode = DAC960_V1_GetRebuildProgress; Command->V1.CommandMailbox.Type3.BusAddress = Controller->V1.RebuildProgressDMA; DAC960_QueueCommand(Command); return; } if (Controller->V1.NeedDeviceStateInformation) { if (Controller->V1.NeedDeviceInquiryInformation) { DAC960_V1_DCDB_T *DCDB = Controller->V1.MonitoringDCDB; dma_addr_t DCDB_DMA = Controller->V1.MonitoringDCDB_DMA; dma_addr_t NewInquiryStandardDataDMA = Controller->V1.NewInquiryStandardDataDMA; Command->V1.CommandMailbox.Type3.CommandOpcode = DAC960_V1_DCDB; Command->V1.CommandMailbox.Type3.BusAddress = DCDB_DMA; DCDB->Channel = Controller->V1.DeviceStateChannel; DCDB->TargetID = Controller->V1.DeviceStateTargetID; DCDB->Direction = DAC960_V1_DCDB_DataTransferDeviceToSystem; DCDB->EarlyStatus = false; DCDB->Timeout = DAC960_V1_DCDB_Timeout_10_seconds; DCDB->NoAutomaticRequestSense = false; DCDB->DisconnectPermitted = true; DCDB->TransferLength = sizeof(DAC960_SCSI_Inquiry_T); DCDB->BusAddress = NewInquiryStandardDataDMA; DCDB->CDBLength = 6; DCDB->TransferLengthHigh4 = 0; DCDB->SenseLength = sizeof(DCDB->SenseData); DCDB->CDB[0] = 0x12; /* INQUIRY */ DCDB->CDB[1] = 0; /* EVPD = 0 */ DCDB->CDB[2] = 0; /* Page Code */ DCDB->CDB[3] = 0; /* Reserved */ DCDB->CDB[4] = sizeof(DAC960_SCSI_Inquiry_T); DCDB->CDB[5] = 0; /* Control */ DAC960_QueueCommand(Command); return; } if (Controller->V1.NeedDeviceSerialNumberInformation) { DAC960_V1_DCDB_T *DCDB = Controller->V1.MonitoringDCDB; dma_addr_t DCDB_DMA = Controller->V1.MonitoringDCDB_DMA; dma_addr_t NewInquiryUnitSerialNumberDMA = Controller->V1.NewInquiryUnitSerialNumberDMA; Command->V1.CommandMailbox.Type3.CommandOpcode = DAC960_V1_DCDB; Command->V1.CommandMailbox.Type3.BusAddress = DCDB_DMA; DCDB->Channel = Controller->V1.DeviceStateChannel; DCDB->TargetID = Controller->V1.DeviceStateTargetID; DCDB->Direction = DAC960_V1_DCDB_DataTransferDeviceToSystem; DCDB->EarlyStatus = false; DCDB->Timeout = DAC960_V1_DCDB_Timeout_10_seconds; DCDB->NoAutomaticRequestSense = false; DCDB->DisconnectPermitted = true; DCDB->TransferLength = sizeof(DAC960_SCSI_Inquiry_UnitSerialNumber_T); DCDB->BusAddress = NewInquiryUnitSerialNumberDMA; DCDB->CDBLength = 6; DCDB->TransferLengthHigh4 = 0; DCDB->SenseLength = sizeof(DCDB->SenseData); DCDB->CDB[0] = 0x12; /* INQUIRY */ DCDB->CDB[1] = 1; /* EVPD = 1 */ DCDB->CDB[2] = 0x80; /* Page Code */ DCDB->CDB[3] = 0; /* Reserved */ DCDB->CDB[4] = sizeof(DAC960_SCSI_Inquiry_UnitSerialNumber_T); DCDB->CDB[5] = 0; /* Control */ DAC960_QueueCommand(Command); return; } if (Controller->V1.StartDeviceStateScan) { Controller->V1.DeviceStateChannel = 0; Controller->V1.DeviceStateTargetID = 0; Controller->V1.StartDeviceStateScan = false; } else if (++Controller->V1.DeviceStateTargetID == Controller->Targets) { Controller->V1.DeviceStateChannel++; Controller->V1.DeviceStateTargetID = 0; } if (Controller->V1.DeviceStateChannel < Controller->Channels) { Controller->V1.NewDeviceState->DeviceState = DAC960_V1_Device_Dead; Command->V1.CommandMailbox.Type3D.CommandOpcode = DAC960_V1_GetDeviceState; Command->V1.CommandMailbox.Type3D.Channel = Controller->V1.DeviceStateChannel; Command->V1.CommandMailbox.Type3D.TargetID = Controller->V1.DeviceStateTargetID; Command->V1.CommandMailbox.Type3D.BusAddress = Controller->V1.NewDeviceStateDMA; DAC960_QueueCommand(Command); return; } Controller->V1.NeedDeviceStateInformation = false; } if (Controller->V1.NeedLogicalDriveInformation) { Controller->V1.NeedLogicalDriveInformation = false; Command->V1.CommandMailbox.Type3.CommandOpcode = DAC960_V1_GetLogicalDriveInformation; Command->V1.CommandMailbox.Type3.BusAddress = Controller->V1.NewLogicalDriveInformationDMA; DAC960_QueueCommand(Command); return; } if (Controller->V1.NeedRebuildProgress) { Controller->V1.NeedRebuildProgress = false; Command->V1.CommandMailbox.Type3.CommandOpcode = DAC960_V1_GetRebuildProgress; Command->V1.CommandMailbox.Type3.BusAddress = Controller->V1.RebuildProgressDMA; DAC960_QueueCommand(Command); return; } if (Controller->V1.NeedConsistencyCheckProgress) { Controller->V1.NeedConsistencyCheckProgress = false; Command->V1.CommandMailbox.Type3.CommandOpcode = DAC960_V1_RebuildStat; Command->V1.CommandMailbox.Type3.BusAddress = Controller->V1.RebuildProgressDMA; DAC960_QueueCommand(Command); return; } if (Controller->V1.NeedBackgroundInitializationStatus) { Controller->V1.NeedBackgroundInitializationStatus = false; Command->V1.CommandMailbox.Type3B.CommandOpcode = DAC960_V1_BackgroundInitializationControl; Command->V1.CommandMailbox.Type3B.CommandOpcode2 = 0x20; Command->V1.CommandMailbox.Type3B.BusAddress = Controller->V1.BackgroundInitializationStatusDMA; DAC960_QueueCommand(Command); return; } Controller->MonitoringTimerCount++; Controller->MonitoringTimer.expires = jiffies + DAC960_MonitoringTimerInterval; add_timer(&Controller->MonitoringTimer); } if (CommandType == DAC960_ImmediateCommand) { complete(Command->Completion); Command->Completion = NULL; return; } if (CommandType == DAC960_QueuedCommand) { DAC960_V1_KernelCommand_T *KernelCommand = Command->V1.KernelCommand; KernelCommand->CommandStatus = Command->V1.CommandStatus; Command->V1.KernelCommand = NULL; if (CommandOpcode == DAC960_V1_DCDB) Controller->V1.DirectCommandActive[KernelCommand->DCDB->Channel] [KernelCommand->DCDB->TargetID] = false; DAC960_DeallocateCommand(Command); KernelCommand->CompletionFunction(KernelCommand); return; } /* Queue a Status Monitoring Command to the Controller using the just completed Command if one was deferred previously due to lack of a free Command when the Monitoring Timer Function was called. */ if (Controller->MonitoringCommandDeferred) { Controller->MonitoringCommandDeferred = false; DAC960_V1_QueueMonitoringCommand(Command); return; } /* Deallocate the Command. */ DAC960_DeallocateCommand(Command); /* Wake up any processes waiting on a free Command. */ wake_up(&Controller->CommandWaitQueue); } /* DAC960_V2_ReadWriteError prints an appropriate error message for Command when an error occurs on a Read or Write operation. */ static void DAC960_V2_ReadWriteError(DAC960_Command_T *Command) { DAC960_Controller_T *Controller = Command->Controller; unsigned char *SenseErrors[] = { "NO SENSE", "RECOVERED ERROR", "NOT READY", "MEDIUM ERROR", "HARDWARE ERROR", "ILLEGAL REQUEST", "UNIT ATTENTION", "DATA PROTECT", "BLANK CHECK", "VENDOR-SPECIFIC", "COPY ABORTED", "ABORTED COMMAND", "EQUAL", "VOLUME OVERFLOW", "MISCOMPARE", "RESERVED" }; unsigned char *CommandName = "UNKNOWN"; switch (Command->CommandType) { case DAC960_ReadCommand: case DAC960_ReadRetryCommand: CommandName = "READ"; break; case DAC960_WriteCommand: case DAC960_WriteRetryCommand: CommandName = "WRITE"; break; case DAC960_MonitoringCommand: case DAC960_ImmediateCommand: case DAC960_QueuedCommand: break; } DAC960_Error("Error Condition %s on %s:\n", Controller, SenseErrors[Command->V2.RequestSense->SenseKey], CommandName); DAC960_Error(" /dev/rd/c%dd%d: absolute blocks %u..%u\n", Controller, Controller->ControllerNumber, Command->LogicalDriveNumber, Command->BlockNumber, Command->BlockNumber + Command->BlockCount - 1); } /* DAC960_V2_ReportEvent prints an appropriate message when a Controller Event occurs. */ static void DAC960_V2_ReportEvent(DAC960_Controller_T *Controller, DAC960_V2_Event_T *Event) { DAC960_SCSI_RequestSense_T *RequestSense = (DAC960_SCSI_RequestSense_T *) &Event->RequestSenseData; unsigned char MessageBuffer[DAC960_LineBufferSize]; static struct { int EventCode; unsigned char *EventMessage; } EventList[] = { /* Physical Device Events (0x0000 - 0x007F) */ { 0x0001, "P Online" }, { 0x0002, "P Standby" }, { 0x0005, "P Automatic Rebuild Started" }, { 0x0006, "P Manual Rebuild Started" }, { 0x0007, "P Rebuild Completed" }, { 0x0008, "P Rebuild Cancelled" }, { 0x0009, "P Rebuild Failed for Unknown Reasons" }, { 0x000A, "P Rebuild Failed due to New Physical Device" }, { 0x000B, "P Rebuild Failed due to Logical Drive Failure" }, { 0x000C, "S Offline" }, { 0x000D, "P Found" }, { 0x000E, "P Removed" }, { 0x000F, "P Unconfigured" }, { 0x0010, "P Expand Capacity Started" }, { 0x0011, "P Expand Capacity Completed" }, { 0x0012, "P Expand Capacity Failed" }, { 0x0013, "P Command Timed Out" }, { 0x0014, "P Command Aborted" }, { 0x0015, "P Command Retried" }, { 0x0016, "P Parity Error" }, { 0x0017, "P Soft Error" }, { 0x0018, "P Miscellaneous Error" }, { 0x0019, "P Reset" }, { 0x001A, "P Active Spare Found" }, { 0x001B, "P Warm Spare Found" }, { 0x001C, "S Sense Data Received" }, { 0x001D, "P Initialization Started" }, { 0x001E, "P Initialization Completed" }, { 0x001F, "P Initialization Failed" }, { 0x0020, "P Initialization Cancelled" }, { 0x0021, "P Failed because Write Recovery Failed" }, { 0x0022, "P Failed because SCSI Bus Reset Failed" }, { 0x0023, "P Failed because of Double Check Condition" }, { 0x0024, "P Failed because Device Cannot Be Accessed" }, { 0x0025, "P Failed because of Gross Error on SCSI Processor" }, { 0x0026, "P Failed because of Bad Tag from Device" }, { 0x0027, "P Failed because of Command Timeout" }, { 0x0028, "P Failed because of System Reset" }, { 0x0029, "P Failed because of Busy Status or Parity Error" }, { 0x002A, "P Failed because Host Set Device to Failed State" }, { 0x002B, "P Failed because of Selection Timeout" }, { 0x002C, "P Failed because of SCSI Bus Phase Error" }, { 0x002D, "P Failed because Device Returned Unknown Status" }, { 0x002E, "P Failed because Device Not Ready" }, { 0x002F, "P Failed because Device Not Found at Startup" }, { 0x0030, "P Failed because COD Write Operation Failed" }, { 0x0031, "P Failed because BDT Write Operation Failed" }, { 0x0039, "P Missing at Startup" }, { 0x003A, "P Start Rebuild Failed due to Physical Drive Too Small" }, { 0x003C, "P Temporarily Offline Device Automatically Made Online" }, { 0x003D, "P Standby Rebuild Started" }, /* Logical Device Events (0x0080 - 0x00FF) */ { 0x0080, "M Consistency Check Started" }, { 0x0081, "M Consistency Check Completed" }, { 0x0082, "M Consistency Check Cancelled" }, { 0x0083, "M Consistency Check Completed With Errors" }, { 0x0084, "M Consistency Check Failed due to Logical Drive Failure" }, { 0x0085, "M Consistency Check Failed due to Physical Device Failure" }, { 0x0086, "L Offline" }, { 0x0087, "L Critical" }, { 0x0088, "L Online" }, { 0x0089, "M Automatic Rebuild Started" }, { 0x008A, "M Manual Rebuild Started" }, { 0x008B, "M Rebuild Completed" }, { 0x008C, "M Rebuild Cancelled" }, { 0x008D, "M Rebuild Failed for Unknown Reasons" }, { 0x008E, "M Rebuild Failed due to New Physical Device" }, { 0x008F, "M Rebuild Failed due to Logical Drive Failure" }, { 0x0090, "M Initialization Started" }, { 0x0091, "M Initialization Completed" }, { 0x0092, "M Initialization Cancelled" }, { 0x0093, "M Initialization Failed" }, { 0x0094, "L Found" }, { 0x0095, "L Deleted" }, { 0x0096, "M Expand Capacity Started" }, { 0x0097, "M Expand Capacity Completed" }, { 0x0098, "M Expand Capacity Failed" }, { 0x0099, "L Bad Block Found" }, { 0x009A, "L Size Changed" }, { 0x009B, "L Type Changed" }, { 0x009C, "L Bad Data Block Found" }, { 0x009E, "L Read of Data Block in BDT" }, { 0x009F, "L Write Back Data for Disk Block Lost" }, { 0x00A0, "L Temporarily Offline RAID-5/3 Drive Made Online" }, { 0x00A1, "L Temporarily Offline RAID-6/1/0/7 Drive Made Online" }, { 0x00A2, "L Standby Rebuild Started" }, /* Fault Management Events (0x0100 - 0x017F) */ { 0x0140, "E Fan %d Failed" }, { 0x0141, "E Fan %d OK" }, { 0x0142, "E Fan %d Not Present" }, { 0x0143, "E Power Supply %d Failed" }, { 0x0144, "E Power Supply %d OK" }, { 0x0145, "E Power Supply %d Not Present" }, { 0x0146, "E Temperature Sensor %d Temperature Exceeds Safe Limit" }, { 0x0147, "E Temperature Sensor %d Temperature Exceeds Working Limit" }, { 0x0148, "E Temperature Sensor %d Temperature Normal" }, { 0x0149, "E Temperature Sensor %d Not Present" }, { 0x014A, "E Enclosure Management Unit %d Access Critical" }, { 0x014B, "E Enclosure Management Unit %d Access OK" }, { 0x014C, "E Enclosure Management Unit %d Access Offline" }, /* Controller Events (0x0180 - 0x01FF) */ { 0x0181, "C Cache Write Back Error" }, { 0x0188, "C Battery Backup Unit Found" }, { 0x0189, "C Battery Backup Unit Charge Level Low" }, { 0x018A, "C Battery Backup Unit Charge Level OK" }, { 0x0193, "C Installation Aborted" }, { 0x0195, "C Battery Backup Unit Physically Removed" }, { 0x0196, "C Memory Error During Warm Boot" }, { 0x019E, "C Memory Soft ECC Error Corrected" }, { 0x019F, "C Memory Hard ECC Error Corrected" }, { 0x01A2, "C Battery Backup Unit Failed" }, { 0x01AB, "C Mirror Race Recovery Failed" }, { 0x01AC, "C Mirror Race on Critical Drive" }, /* Controller Internal Processor Events */ { 0x0380, "C Internal Controller Hung" }, { 0x0381, "C Internal Controller Firmware Breakpoint" }, { 0x0390, "C Internal Controller i960 Processor Specific Error" }, { 0x03A0, "C Internal Controller StrongARM Processor Specific Error" }, { 0, "" } }; int EventListIndex = 0, EventCode; unsigned char EventType, *EventMessage; if (Event->EventCode == 0x1C && RequestSense->SenseKey == DAC960_SenseKey_VendorSpecific && (RequestSense->AdditionalSenseCode == 0x80 || RequestSense->AdditionalSenseCode == 0x81)) Event->EventCode = ((RequestSense->AdditionalSenseCode - 0x80) << 8) | RequestSense->AdditionalSenseCodeQualifier; while (true) { EventCode = EventList[EventListIndex].EventCode; if (EventCode == Event->EventCode || EventCode == 0) break; EventListIndex++; } EventType = EventList[EventListIndex].EventMessage[0]; EventMessage = &EventList[EventListIndex].EventMessage[2]; if (EventCode == 0) { DAC960_Critical("Unknown Controller Event Code %04X\n", Controller, Event->EventCode); return; } switch (EventType) { case 'P': DAC960_Critical("Physical Device %d:%d %s\n", Controller, Event->Channel, Event->TargetID, EventMessage); break; case 'L': DAC960_Critical("Logical Drive %d (/dev/rd/c%dd%d) %s\n", Controller, Event->LogicalUnit, Controller->ControllerNumber, Event->LogicalUnit, EventMessage); break; case 'M': DAC960_Progress("Logical Drive %d (/dev/rd/c%dd%d) %s\n", Controller, Event->LogicalUnit, Controller->ControllerNumber, Event->LogicalUnit, EventMessage); break; case 'S': if (RequestSense->SenseKey == DAC960_SenseKey_NoSense || (RequestSense->SenseKey == DAC960_SenseKey_NotReady && RequestSense->AdditionalSenseCode == 0x04 && (RequestSense->AdditionalSenseCodeQualifier == 0x01 || RequestSense->AdditionalSenseCodeQualifier == 0x02))) break; DAC960_Critical("Physical Device %d:%d %s\n", Controller, Event->Channel, Event->TargetID, EventMessage); DAC960_Critical("Physical Device %d:%d Request Sense: " "Sense Key = %X, ASC = %02X, ASCQ = %02X\n", Controller, Event->Channel, Event->TargetID, RequestSense->SenseKey, RequestSense->AdditionalSenseCode, RequestSense->AdditionalSenseCodeQualifier); DAC960_Critical("Physical Device %d:%d Request Sense: " "Information = %02X%02X%02X%02X " "%02X%02X%02X%02X\n", Controller, Event->Channel, Event->TargetID, RequestSense->Information[0], RequestSense->Information[1], RequestSense->Information[2], RequestSense->Information[3], RequestSense->CommandSpecificInformation[0], RequestSense->CommandSpecificInformation[1], RequestSense->CommandSpecificInformation[2], RequestSense->CommandSpecificInformation[3]); break; case 'E': if (Controller->SuppressEnclosureMessages) break; sprintf(MessageBuffer, EventMessage, Event->LogicalUnit); DAC960_Critical("Enclosure %d %s\n", Controller, Event->TargetID, MessageBuffer); break; case 'C': DAC960_Critical("Controller %s\n", Controller, EventMessage); break; default: DAC960_Critical("Unknown Controller Event Code %04X\n", Controller, Event->EventCode); break; } } /* DAC960_V2_ReportProgress prints an appropriate progress message for Logical Device Long Operations. */ static void DAC960_V2_ReportProgress(DAC960_Controller_T *Controller, unsigned char *MessageString, unsigned int LogicalDeviceNumber, unsigned long BlocksCompleted, unsigned long LogicalDeviceSize) { Controller->EphemeralProgressMessage = true; DAC960_Progress("%s in Progress: Logical Drive %d (/dev/rd/c%dd%d) " "%d%% completed\n", Controller, MessageString, LogicalDeviceNumber, Controller->ControllerNumber, LogicalDeviceNumber, (100 * (BlocksCompleted >> 7)) / (LogicalDeviceSize >> 7)); Controller->EphemeralProgressMessage = false; } /* DAC960_V2_ProcessCompletedCommand performs completion processing for Command for DAC960 V2 Firmware Controllers. */ static void DAC960_V2_ProcessCompletedCommand(DAC960_Command_T *Command) { DAC960_Controller_T *Controller = Command->Controller; DAC960_CommandType_T CommandType = Command->CommandType; DAC960_V2_CommandMailbox_T *CommandMailbox = &Command->V2.CommandMailbox; DAC960_V2_IOCTL_Opcode_T IOCTLOpcode = CommandMailbox->Common.IOCTL_Opcode; DAC960_V2_CommandOpcode_T CommandOpcode = CommandMailbox->SCSI_10.CommandOpcode; DAC960_V2_CommandStatus_T CommandStatus = Command->V2.CommandStatus; if (CommandType == DAC960_ReadCommand || CommandType == DAC960_WriteCommand) { #ifdef FORCE_RETRY_DEBUG CommandStatus = DAC960_V2_AbormalCompletion; #endif Command->V2.RequestSense->SenseKey = DAC960_SenseKey_MediumError; if (CommandStatus == DAC960_V2_NormalCompletion) { if (!DAC960_ProcessCompletedRequest(Command, true)) BUG(); } else if (Command->V2.RequestSense->SenseKey == DAC960_SenseKey_MediumError) { /* * break the command down into pieces and resubmit each * piece, hoping that some of them will succeed. */ DAC960_queue_partial_rw(Command); return; } else { if (Command->V2.RequestSense->SenseKey != DAC960_SenseKey_NotReady) DAC960_V2_ReadWriteError(Command); /* Perform completion processing for all buffers in this I/O Request. */ (void)DAC960_ProcessCompletedRequest(Command, false); } } else if (CommandType == DAC960_ReadRetryCommand || CommandType == DAC960_WriteRetryCommand) { bool normal_completion; #ifdef FORCE_RETRY_FAILURE_DEBUG static int retry_count = 1; #endif /* Perform completion processing for the portion that was retried, and submit the next portion, if any. */ normal_completion = true; if (CommandStatus != DAC960_V2_NormalCompletion) { normal_completion = false; if (Command->V2.RequestSense->SenseKey != DAC960_SenseKey_NotReady) DAC960_V2_ReadWriteError(Command); } #ifdef FORCE_RETRY_FAILURE_DEBUG if (!(++retry_count % 10000)) { printk("V2 error retry failure test\n"); normal_completion = false; DAC960_V2_ReadWriteError(Command); } #endif if (!DAC960_ProcessCompletedRequest(Command, normal_completion)) { DAC960_queue_partial_rw(Command); return; } } else if (CommandType == DAC960_MonitoringCommand) { if (Controller->ShutdownMonitoringTimer) return; if (IOCTLOpcode == DAC960_V2_GetControllerInfo) { DAC960_V2_ControllerInfo_T *NewControllerInfo = Controller->V2.NewControllerInformation; DAC960_V2_ControllerInfo_T *ControllerInfo = &Controller->V2.ControllerInformation; Controller->LogicalDriveCount = NewControllerInfo->LogicalDevicesPresent; Controller->V2.NeedLogicalDeviceInformation = true; Controller->V2.NeedPhysicalDeviceInformation = true; Controller->V2.StartLogicalDeviceInformationScan = true; Controller->V2.StartPhysicalDeviceInformationScan = true; Controller->MonitoringAlertMode = (NewControllerInfo->LogicalDevicesCritical > 0 || NewControllerInfo->LogicalDevicesOffline > 0 || NewControllerInfo->PhysicalDisksCritical > 0 || NewControllerInfo->PhysicalDisksOffline > 0); memcpy(ControllerInfo, NewControllerInfo, sizeof(DAC960_V2_ControllerInfo_T)); } else if (IOCTLOpcode == DAC960_V2_GetEvent) { if (CommandStatus == DAC960_V2_NormalCompletion) { DAC960_V2_ReportEvent(Controller, Controller->V2.Event); } Controller->V2.NextEventSequenceNumber++; } else if (IOCTLOpcode == DAC960_V2_GetPhysicalDeviceInfoValid && CommandStatus == DAC960_V2_NormalCompletion) { DAC960_V2_PhysicalDeviceInfo_T *NewPhysicalDeviceInfo = Controller->V2.NewPhysicalDeviceInformation; unsigned int PhysicalDeviceIndex = Controller->V2.PhysicalDeviceIndex; DAC960_V2_PhysicalDeviceInfo_T *PhysicalDeviceInfo = Controller->V2.PhysicalDeviceInformation[PhysicalDeviceIndex]; DAC960_SCSI_Inquiry_UnitSerialNumber_T *InquiryUnitSerialNumber = Controller->V2.InquiryUnitSerialNumber[PhysicalDeviceIndex]; unsigned int DeviceIndex; while (PhysicalDeviceInfo != NULL && (NewPhysicalDeviceInfo->Channel > PhysicalDeviceInfo->Channel || (NewPhysicalDeviceInfo->Channel == PhysicalDeviceInfo->Channel && (NewPhysicalDeviceInfo->TargetID > PhysicalDeviceInfo->TargetID || (NewPhysicalDeviceInfo->TargetID == PhysicalDeviceInfo->TargetID && NewPhysicalDeviceInfo->LogicalUnit > PhysicalDeviceInfo->LogicalUnit))))) { DAC960_Critical("Physical Device %d:%d No Longer Exists\n", Controller, PhysicalDeviceInfo->Channel, PhysicalDeviceInfo->TargetID); Controller->V2.PhysicalDeviceInformation [PhysicalDeviceIndex] = NULL; Controller->V2.InquiryUnitSerialNumber [PhysicalDeviceIndex] = NULL; kfree(PhysicalDeviceInfo); kfree(InquiryUnitSerialNumber); for (DeviceIndex = PhysicalDeviceIndex; DeviceIndex < DAC960_V2_MaxPhysicalDevices - 1; DeviceIndex++) { Controller->V2.PhysicalDeviceInformation[DeviceIndex] = Controller->V2.PhysicalDeviceInformation[DeviceIndex+1]; Controller->V2.InquiryUnitSerialNumber[DeviceIndex] = Controller->V2.InquiryUnitSerialNumber[DeviceIndex+1]; } Controller->V2.PhysicalDeviceInformation [DAC960_V2_MaxPhysicalDevices-1] = NULL; Controller->V2.InquiryUnitSerialNumber [DAC960_V2_MaxPhysicalDevices-1] = NULL; PhysicalDeviceInfo = Controller->V2.PhysicalDeviceInformation[PhysicalDeviceIndex]; InquiryUnitSerialNumber = Controller->V2.InquiryUnitSerialNumber[PhysicalDeviceIndex]; } if (PhysicalDeviceInfo == NULL || (NewPhysicalDeviceInfo->Channel != PhysicalDeviceInfo->Channel) || (NewPhysicalDeviceInfo->TargetID != PhysicalDeviceInfo->TargetID) || (NewPhysicalDeviceInfo->LogicalUnit != PhysicalDeviceInfo->LogicalUnit)) { PhysicalDeviceInfo = kmalloc(sizeof(DAC960_V2_PhysicalDeviceInfo_T), GFP_ATOMIC); InquiryUnitSerialNumber = kmalloc(sizeof(DAC960_SCSI_Inquiry_UnitSerialNumber_T), GFP_ATOMIC); if (InquiryUnitSerialNumber == NULL || PhysicalDeviceInfo == NULL) { kfree(InquiryUnitSerialNumber); InquiryUnitSerialNumber = NULL; kfree(PhysicalDeviceInfo); PhysicalDeviceInfo = NULL; } DAC960_Critical("Physical Device %d:%d Now Exists%s\n", Controller, NewPhysicalDeviceInfo->Channel, NewPhysicalDeviceInfo->TargetID, (PhysicalDeviceInfo != NULL ? "" : " - Allocation Failed")); if (PhysicalDeviceInfo != NULL) { memset(PhysicalDeviceInfo, 0, sizeof(DAC960_V2_PhysicalDeviceInfo_T)); PhysicalDeviceInfo->PhysicalDeviceState = DAC960_V2_Device_InvalidState; memset(InquiryUnitSerialNumber, 0, sizeof(DAC960_SCSI_Inquiry_UnitSerialNumber_T)); InquiryUnitSerialNumber->PeripheralDeviceType = 0x1F; for (DeviceIndex = DAC960_V2_MaxPhysicalDevices - 1; DeviceIndex > PhysicalDeviceIndex; DeviceIndex--) { Controller->V2.PhysicalDeviceInformation[DeviceIndex] = Controller->V2.PhysicalDeviceInformation[DeviceIndex-1]; Controller->V2.InquiryUnitSerialNumber[DeviceIndex] = Controller->V2.InquiryUnitSerialNumber[DeviceIndex-1]; } Controller->V2.PhysicalDeviceInformation [PhysicalDeviceIndex] = PhysicalDeviceInfo; Controller->V2.InquiryUnitSerialNumber [PhysicalDeviceIndex] = InquiryUnitSerialNumber; Controller->V2.NeedDeviceSerialNumberInformation = true; } } if (PhysicalDeviceInfo != NULL) { if (NewPhysicalDeviceInfo->PhysicalDeviceState != PhysicalDeviceInfo->PhysicalDeviceState) DAC960_Critical( "Physical Device %d:%d is now %s\n", Controller, NewPhysicalDeviceInfo->Channel, NewPhysicalDeviceInfo->TargetID, (NewPhysicalDeviceInfo->PhysicalDeviceState == DAC960_V2_Device_Online ? "ONLINE" : NewPhysicalDeviceInfo->PhysicalDeviceState == DAC960_V2_Device_Rebuild ? "REBUILD" : NewPhysicalDeviceInfo->PhysicalDeviceState == DAC960_V2_Device_Missing ? "MISSING" : NewPhysicalDeviceInfo->PhysicalDeviceState == DAC960_V2_Device_Critical ? "CRITICAL" : NewPhysicalDeviceInfo->PhysicalDeviceState == DAC960_V2_Device_Dead ? "DEAD" : NewPhysicalDeviceInfo->PhysicalDeviceState == DAC960_V2_Device_SuspectedDead ? "SUSPECTED-DEAD" : NewPhysicalDeviceInfo->PhysicalDeviceState == DAC960_V2_Device_CommandedOffline ? "COMMANDED-OFFLINE" : NewPhysicalDeviceInfo->PhysicalDeviceState == DAC960_V2_Device_Standby ? "STANDBY" : "UNKNOWN")); if ((NewPhysicalDeviceInfo->ParityErrors != PhysicalDeviceInfo->ParityErrors) || (NewPhysicalDeviceInfo->SoftErrors != PhysicalDeviceInfo->SoftErrors) || (NewPhysicalDeviceInfo->HardErrors != PhysicalDeviceInfo->HardErrors) || (NewPhysicalDeviceInfo->MiscellaneousErrors != PhysicalDeviceInfo->MiscellaneousErrors) || (NewPhysicalDeviceInfo->CommandTimeouts != PhysicalDeviceInfo->CommandTimeouts) || (NewPhysicalDeviceInfo->Retries != PhysicalDeviceInfo->Retries) || (NewPhysicalDeviceInfo->Aborts != PhysicalDeviceInfo->Aborts) || (NewPhysicalDeviceInfo->PredictedFailuresDetected != PhysicalDeviceInfo->PredictedFailuresDetected)) { DAC960_Critical("Physical Device %d:%d Errors: " "Parity = %d, Soft = %d, " "Hard = %d, Misc = %d\n", Controller, NewPhysicalDeviceInfo->Channel, NewPhysicalDeviceInfo->TargetID, NewPhysicalDeviceInfo->ParityErrors, NewPhysicalDeviceInfo->SoftErrors, NewPhysicalDeviceInfo->HardErrors, NewPhysicalDeviceInfo->MiscellaneousErrors); DAC960_Critical("Physical Device %d:%d Errors: " "Timeouts = %d, Retries = %d, " "Aborts = %d, Predicted = %d\n", Controller, NewPhysicalDeviceInfo->Channel, NewPhysicalDeviceInfo->TargetID, NewPhysicalDeviceInfo->CommandTimeouts, NewPhysicalDeviceInfo->Retries, NewPhysicalDeviceInfo->Aborts, NewPhysicalDeviceInfo ->PredictedFailuresDetected); } if ((PhysicalDeviceInfo->PhysicalDeviceState == DAC960_V2_Device_Dead || PhysicalDeviceInfo->PhysicalDeviceState == DAC960_V2_Device_InvalidState) && NewPhysicalDeviceInfo->PhysicalDeviceState != DAC960_V2_Device_Dead) Controller->V2.NeedDeviceSerialNumberInformation = true; memcpy(PhysicalDeviceInfo, NewPhysicalDeviceInfo, sizeof(DAC960_V2_PhysicalDeviceInfo_T)); } NewPhysicalDeviceInfo->LogicalUnit++; Controller->V2.PhysicalDeviceIndex++; } else if (IOCTLOpcode == DAC960_V2_GetPhysicalDeviceInfoValid) { unsigned int DeviceIndex; for (DeviceIndex = Controller->V2.PhysicalDeviceIndex; DeviceIndex < DAC960_V2_MaxPhysicalDevices; DeviceIndex++) { DAC960_V2_PhysicalDeviceInfo_T *PhysicalDeviceInfo = Controller->V2.PhysicalDeviceInformation[DeviceIndex]; DAC960_SCSI_Inquiry_UnitSerialNumber_T *InquiryUnitSerialNumber = Controller->V2.InquiryUnitSerialNumber[DeviceIndex]; if (PhysicalDeviceInfo == NULL) break; DAC960_Critical("Physical Device %d:%d No Longer Exists\n", Controller, PhysicalDeviceInfo->Channel, PhysicalDeviceInfo->TargetID); Controller->V2.PhysicalDeviceInformation[DeviceIndex] = NULL; Controller->V2.InquiryUnitSerialNumber[DeviceIndex] = NULL; kfree(PhysicalDeviceInfo); kfree(InquiryUnitSerialNumber); } Controller->V2.NeedPhysicalDeviceInformation = false; } else if (IOCTLOpcode == DAC960_V2_GetLogicalDeviceInfoValid && CommandStatus == DAC960_V2_NormalCompletion) { DAC960_V2_LogicalDeviceInfo_T *NewLogicalDeviceInfo = Controller->V2.NewLogicalDeviceInformation; unsigned short LogicalDeviceNumber = NewLogicalDeviceInfo->LogicalDeviceNumber; DAC960_V2_LogicalDeviceInfo_T *LogicalDeviceInfo = Controller->V2.LogicalDeviceInformation[LogicalDeviceNumber]; if (LogicalDeviceInfo == NULL) { DAC960_V2_PhysicalDevice_T PhysicalDevice; PhysicalDevice.Controller = 0; PhysicalDevice.Channel = NewLogicalDeviceInfo->Channel; PhysicalDevice.TargetID = NewLogicalDeviceInfo->TargetID; PhysicalDevice.LogicalUnit = NewLogicalDeviceInfo->LogicalUnit; Controller->V2.LogicalDriveToVirtualDevice[LogicalDeviceNumber] = PhysicalDevice; LogicalDeviceInfo = kmalloc(sizeof(DAC960_V2_LogicalDeviceInfo_T), GFP_ATOMIC); Controller->V2.LogicalDeviceInformation[LogicalDeviceNumber] = LogicalDeviceInfo; DAC960_Critical("Logical Drive %d (/dev/rd/c%dd%d) " "Now Exists%s\n", Controller, LogicalDeviceNumber, Controller->ControllerNumber, LogicalDeviceNumber, (LogicalDeviceInfo != NULL ? "" : " - Allocation Failed")); if (LogicalDeviceInfo != NULL) { memset(LogicalDeviceInfo, 0, sizeof(DAC960_V2_LogicalDeviceInfo_T)); DAC960_ComputeGenericDiskInfo(Controller); } } if (LogicalDeviceInfo != NULL) { unsigned long LogicalDeviceSize = NewLogicalDeviceInfo->ConfigurableDeviceSize; if (NewLogicalDeviceInfo->LogicalDeviceState != LogicalDeviceInfo->LogicalDeviceState) DAC960_Critical("Logical Drive %d (/dev/rd/c%dd%d) " "is now %s\n", Controller, LogicalDeviceNumber, Controller->ControllerNumber, LogicalDeviceNumber, (NewLogicalDeviceInfo->LogicalDeviceState == DAC960_V2_LogicalDevice_Online ? "ONLINE" : NewLogicalDeviceInfo->LogicalDeviceState == DAC960_V2_LogicalDevice_Critical ? "CRITICAL" : "OFFLINE")); if ((NewLogicalDeviceInfo->SoftErrors != LogicalDeviceInfo->SoftErrors) || (NewLogicalDeviceInfo->CommandsFailed != LogicalDeviceInfo->CommandsFailed) || (NewLogicalDeviceInfo->DeferredWriteErrors != LogicalDeviceInfo->DeferredWriteErrors)) DAC960_Critical("Logical Drive %d (/dev/rd/c%dd%d) Errors: " "Soft = %d, Failed = %d, Deferred Write = %d\n", Controller, LogicalDeviceNumber, Controller->ControllerNumber, LogicalDeviceNumber, NewLogicalDeviceInfo->SoftErrors, NewLogicalDeviceInfo->CommandsFailed, NewLogicalDeviceInfo->DeferredWriteErrors); if (NewLogicalDeviceInfo->ConsistencyCheckInProgress) DAC960_V2_ReportProgress(Controller, "Consistency Check", LogicalDeviceNumber, NewLogicalDeviceInfo ->ConsistencyCheckBlockNumber, LogicalDeviceSize); else if (NewLogicalDeviceInfo->RebuildInProgress) DAC960_V2_ReportProgress(Controller, "Rebuild", LogicalDeviceNumber, NewLogicalDeviceInfo ->RebuildBlockNumber, LogicalDeviceSize); else if (NewLogicalDeviceInfo->BackgroundInitializationInProgress) DAC960_V2_ReportProgress(Controller, "Background Initialization", LogicalDeviceNumber, NewLogicalDeviceInfo ->BackgroundInitializationBlockNumber, LogicalDeviceSize); else if (NewLogicalDeviceInfo->ForegroundInitializationInProgress) DAC960_V2_ReportProgress(Controller, "Foreground Initialization", LogicalDeviceNumber, NewLogicalDeviceInfo ->ForegroundInitializationBlockNumber, LogicalDeviceSize); else if (NewLogicalDeviceInfo->DataMigrationInProgress) DAC960_V2_ReportProgress(Controller, "Data Migration", LogicalDeviceNumber, NewLogicalDeviceInfo ->DataMigrationBlockNumber, LogicalDeviceSize); else if (NewLogicalDeviceInfo->PatrolOperationInProgress) DAC960_V2_ReportProgress(Controller, "Patrol Operation", LogicalDeviceNumber, NewLogicalDeviceInfo ->PatrolOperationBlockNumber, LogicalDeviceSize); if (LogicalDeviceInfo->BackgroundInitializationInProgress && !NewLogicalDeviceInfo->BackgroundInitializationInProgress) DAC960_Progress("Logical Drive %d (/dev/rd/c%dd%d) " "Background Initialization %s\n", Controller, LogicalDeviceNumber, Controller->ControllerNumber, LogicalDeviceNumber, (NewLogicalDeviceInfo->LogicalDeviceControl .LogicalDeviceInitialized ? "Completed" : "Failed")); memcpy(LogicalDeviceInfo, NewLogicalDeviceInfo, sizeof(DAC960_V2_LogicalDeviceInfo_T)); } Controller->V2.LogicalDriveFoundDuringScan [LogicalDeviceNumber] = true; NewLogicalDeviceInfo->LogicalDeviceNumber++; } else if (IOCTLOpcode == DAC960_V2_GetLogicalDeviceInfoValid) { int LogicalDriveNumber; for (LogicalDriveNumber = 0; LogicalDriveNumber < DAC960_MaxLogicalDrives; LogicalDriveNumber++) { DAC960_V2_LogicalDeviceInfo_T *LogicalDeviceInfo = Controller->V2.LogicalDeviceInformation[LogicalDriveNumber]; if (LogicalDeviceInfo == NULL || Controller->V2.LogicalDriveFoundDuringScan [LogicalDriveNumber]) continue; DAC960_Critical("Logical Drive %d (/dev/rd/c%dd%d) " "No Longer Exists\n", Controller, LogicalDriveNumber, Controller->ControllerNumber, LogicalDriveNumber); Controller->V2.LogicalDeviceInformation [LogicalDriveNumber] = NULL; kfree(LogicalDeviceInfo); Controller->LogicalDriveInitiallyAccessible [LogicalDriveNumber] = false; DAC960_ComputeGenericDiskInfo(Controller); } Controller->V2.NeedLogicalDeviceInformation = false; } else if (CommandOpcode == DAC960_V2_SCSI_10_Passthru) { DAC960_SCSI_Inquiry_UnitSerialNumber_T *InquiryUnitSerialNumber = Controller->V2.InquiryUnitSerialNumber[Controller->V2.PhysicalDeviceIndex - 1]; if (CommandStatus != DAC960_V2_NormalCompletion) { memset(InquiryUnitSerialNumber, 0, sizeof(DAC960_SCSI_Inquiry_UnitSerialNumber_T)); InquiryUnitSerialNumber->PeripheralDeviceType = 0x1F; } else memcpy(InquiryUnitSerialNumber, Controller->V2.NewInquiryUnitSerialNumber, sizeof(DAC960_SCSI_Inquiry_UnitSerialNumber_T)); Controller->V2.NeedDeviceSerialNumberInformation = false; } if (Controller->V2.HealthStatusBuffer->NextEventSequenceNumber - Controller->V2.NextEventSequenceNumber > 0) { CommandMailbox->GetEvent.CommandOpcode = DAC960_V2_IOCTL; CommandMailbox->GetEvent.DataTransferSize = sizeof(DAC960_V2_Event_T); CommandMailbox->GetEvent.EventSequenceNumberHigh16 = Controller->V2.NextEventSequenceNumber >> 16; CommandMailbox->GetEvent.ControllerNumber = 0; CommandMailbox->GetEvent.IOCTL_Opcode = DAC960_V2_GetEvent; CommandMailbox->GetEvent.EventSequenceNumberLow16 = Controller->V2.NextEventSequenceNumber & 0xFFFF; CommandMailbox->GetEvent.DataTransferMemoryAddress .ScatterGatherSegments[0] .SegmentDataPointer = Controller->V2.EventDMA; CommandMailbox->GetEvent.DataTransferMemoryAddress .ScatterGatherSegments[0] .SegmentByteCount = CommandMailbox->GetEvent.DataTransferSize; DAC960_QueueCommand(Command); return; } if (Controller->V2.NeedPhysicalDeviceInformation) { if (Controller->V2.NeedDeviceSerialNumberInformation) { DAC960_SCSI_Inquiry_UnitSerialNumber_T *InquiryUnitSerialNumber = Controller->V2.NewInquiryUnitSerialNumber; InquiryUnitSerialNumber->PeripheralDeviceType = 0x1F; DAC960_V2_ConstructNewUnitSerialNumber(Controller, CommandMailbox, Controller->V2.NewPhysicalDeviceInformation->Channel, Controller->V2.NewPhysicalDeviceInformation->TargetID, Controller->V2.NewPhysicalDeviceInformation->LogicalUnit - 1); DAC960_QueueCommand(Command); return; } if (Controller->V2.StartPhysicalDeviceInformationScan) { Controller->V2.PhysicalDeviceIndex = 0; Controller->V2.NewPhysicalDeviceInformation->Channel = 0; Controller->V2.NewPhysicalDeviceInformation->TargetID = 0; Controller->V2.NewPhysicalDeviceInformation->LogicalUnit = 0; Controller->V2.StartPhysicalDeviceInformationScan = false; } CommandMailbox->PhysicalDeviceInfo.CommandOpcode = DAC960_V2_IOCTL; CommandMailbox->PhysicalDeviceInfo.DataTransferSize = sizeof(DAC960_V2_PhysicalDeviceInfo_T); CommandMailbox->PhysicalDeviceInfo.PhysicalDevice.LogicalUnit = Controller->V2.NewPhysicalDeviceInformation->LogicalUnit; CommandMailbox->PhysicalDeviceInfo.PhysicalDevice.TargetID = Controller->V2.NewPhysicalDeviceInformation->TargetID; CommandMailbox->PhysicalDeviceInfo.PhysicalDevice.Channel = Controller->V2.NewPhysicalDeviceInformation->Channel; CommandMailbox->PhysicalDeviceInfo.IOCTL_Opcode = DAC960_V2_GetPhysicalDeviceInfoValid; CommandMailbox->PhysicalDeviceInfo.DataTransferMemoryAddress .ScatterGatherSegments[0] .SegmentDataPointer = Controller->V2.NewPhysicalDeviceInformationDMA; CommandMailbox->PhysicalDeviceInfo.DataTransferMemoryAddress .ScatterGatherSegments[0] .SegmentByteCount = CommandMailbox->PhysicalDeviceInfo.DataTransferSize; DAC960_QueueCommand(Command); return; } if (Controller->V2.NeedLogicalDeviceInformation) { if (Controller->V2.StartLogicalDeviceInformationScan) { int LogicalDriveNumber; for (LogicalDriveNumber = 0; LogicalDriveNumber < DAC960_MaxLogicalDrives; LogicalDriveNumber++) Controller->V2.LogicalDriveFoundDuringScan [LogicalDriveNumber] = false; Controller->V2.NewLogicalDeviceInformation->LogicalDeviceNumber = 0; Controller->V2.StartLogicalDeviceInformationScan = false; } CommandMailbox->LogicalDeviceInfo.CommandOpcode = DAC960_V2_IOCTL; CommandMailbox->LogicalDeviceInfo.DataTransferSize = sizeof(DAC960_V2_LogicalDeviceInfo_T); CommandMailbox->LogicalDeviceInfo.LogicalDevice.LogicalDeviceNumber = Controller->V2.NewLogicalDeviceInformation->LogicalDeviceNumber; CommandMailbox->LogicalDeviceInfo.IOCTL_Opcode = DAC960_V2_GetLogicalDeviceInfoValid; CommandMailbox->LogicalDeviceInfo.DataTransferMemoryAddress .ScatterGatherSegments[0] .SegmentDataPointer = Controller->V2.NewLogicalDeviceInformationDMA; CommandMailbox->LogicalDeviceInfo.DataTransferMemoryAddress .ScatterGatherSegments[0] .SegmentByteCount = CommandMailbox->LogicalDeviceInfo.DataTransferSize; DAC960_QueueCommand(Command); return; } Controller->MonitoringTimerCount++; Controller->MonitoringTimer.expires = jiffies + DAC960_HealthStatusMonitoringInterval; add_timer(&Controller->MonitoringTimer); } if (CommandType == DAC960_ImmediateCommand) { complete(Command->Completion); Command->Completion = NULL; return; } if (CommandType == DAC960_QueuedCommand) { DAC960_V2_KernelCommand_T *KernelCommand = Command->V2.KernelCommand; KernelCommand->CommandStatus = CommandStatus; KernelCommand->RequestSenseLength = Command->V2.RequestSenseLength; KernelCommand->DataTransferLength = Command->V2.DataTransferResidue; Command->V2.KernelCommand = NULL; DAC960_DeallocateCommand(Command); KernelCommand->CompletionFunction(KernelCommand); return; } /* Queue a Status Monitoring Command to the Controller using the just completed Command if one was deferred previously due to lack of a free Command when the Monitoring Timer Function was called. */ if (Controller->MonitoringCommandDeferred) { Controller->MonitoringCommandDeferred = false; DAC960_V2_QueueMonitoringCommand(Command); return; } /* Deallocate the Command. */ DAC960_DeallocateCommand(Command); /* Wake up any processes waiting on a free Command. */ wake_up(&Controller->CommandWaitQueue); } /* DAC960_GEM_InterruptHandler handles hardware interrupts from DAC960 GEM Series Controllers. */ static irqreturn_t DAC960_GEM_InterruptHandler(int IRQ_Channel, void *DeviceIdentifier) { DAC960_Controller_T *Controller = DeviceIdentifier; void __iomem *ControllerBaseAddress = Controller->BaseAddress; DAC960_V2_StatusMailbox_T *NextStatusMailbox; unsigned long flags; spin_lock_irqsave(&Controller->queue_lock, flags); DAC960_GEM_AcknowledgeInterrupt(ControllerBaseAddress); NextStatusMailbox = Controller->V2.NextStatusMailbox; while (NextStatusMailbox->Fields.CommandIdentifier > 0) { DAC960_V2_CommandIdentifier_T CommandIdentifier = NextStatusMailbox->Fields.CommandIdentifier; DAC960_Command_T *Command = Controller->Commands[CommandIdentifier-1]; Command->V2.CommandStatus = NextStatusMailbox->Fields.CommandStatus; Command->V2.RequestSenseLength = NextStatusMailbox->Fields.RequestSenseLength; Command->V2.DataTransferResidue = NextStatusMailbox->Fields.DataTransferResidue; NextStatusMailbox->Words[0] = 0; if (++NextStatusMailbox > Controller->V2.LastStatusMailbox) NextStatusMailbox = Controller->V2.FirstStatusMailbox; DAC960_V2_ProcessCompletedCommand(Command); } Controller->V2.NextStatusMailbox = NextStatusMailbox; /* Attempt to remove additional I/O Requests from the Controller's I/O Request Queue and queue them to the Controller. */ DAC960_ProcessRequest(Controller); spin_unlock_irqrestore(&Controller->queue_lock, flags); return IRQ_HANDLED; } /* DAC960_BA_InterruptHandler handles hardware interrupts from DAC960 BA Series Controllers. */ static irqreturn_t DAC960_BA_InterruptHandler(int IRQ_Channel, void *DeviceIdentifier) { DAC960_Controller_T *Controller = DeviceIdentifier; void __iomem *ControllerBaseAddress = Controller->BaseAddress; DAC960_V2_StatusMailbox_T *NextStatusMailbox; unsigned long flags; spin_lock_irqsave(&Controller->queue_lock, flags); DAC960_BA_AcknowledgeInterrupt(ControllerBaseAddress); NextStatusMailbox = Controller->V2.NextStatusMailbox; while (NextStatusMailbox->Fields.CommandIdentifier > 0) { DAC960_V2_CommandIdentifier_T CommandIdentifier = NextStatusMailbox->Fields.CommandIdentifier; DAC960_Command_T *Command = Controller->Commands[CommandIdentifier-1]; Command->V2.CommandStatus = NextStatusMailbox->Fields.CommandStatus; Command->V2.RequestSenseLength = NextStatusMailbox->Fields.RequestSenseLength; Command->V2.DataTransferResidue = NextStatusMailbox->Fields.DataTransferResidue; NextStatusMailbox->Words[0] = 0; if (++NextStatusMailbox > Controller->V2.LastStatusMailbox) NextStatusMailbox = Controller->V2.FirstStatusMailbox; DAC960_V2_ProcessCompletedCommand(Command); } Controller->V2.NextStatusMailbox = NextStatusMailbox; /* Attempt to remove additional I/O Requests from the Controller's I/O Request Queue and queue them to the Controller. */ DAC960_ProcessRequest(Controller); spin_unlock_irqrestore(&Controller->queue_lock, flags); return IRQ_HANDLED; } /* DAC960_LP_InterruptHandler handles hardware interrupts from DAC960 LP Series Controllers. */ static irqreturn_t DAC960_LP_InterruptHandler(int IRQ_Channel, void *DeviceIdentifier) { DAC960_Controller_T *Controller = DeviceIdentifier; void __iomem *ControllerBaseAddress = Controller->BaseAddress; DAC960_V2_StatusMailbox_T *NextStatusMailbox; unsigned long flags; spin_lock_irqsave(&Controller->queue_lock, flags); DAC960_LP_AcknowledgeInterrupt(ControllerBaseAddress); NextStatusMailbox = Controller->V2.NextStatusMailbox; while (NextStatusMailbox->Fields.CommandIdentifier > 0) { DAC960_V2_CommandIdentifier_T CommandIdentifier = NextStatusMailbox->Fields.CommandIdentifier; DAC960_Command_T *Command = Controller->Commands[CommandIdentifier-1]; Command->V2.CommandStatus = NextStatusMailbox->Fields.CommandStatus; Command->V2.RequestSenseLength = NextStatusMailbox->Fields.RequestSenseLength; Command->V2.DataTransferResidue = NextStatusMailbox->Fields.DataTransferResidue; NextStatusMailbox->Words[0] = 0; if (++NextStatusMailbox > Controller->V2.LastStatusMailbox) NextStatusMailbox = Controller->V2.FirstStatusMailbox; DAC960_V2_ProcessCompletedCommand(Command); } Controller->V2.NextStatusMailbox = NextStatusMailbox; /* Attempt to remove additional I/O Requests from the Controller's I/O Request Queue and queue them to the Controller. */ DAC960_ProcessRequest(Controller); spin_unlock_irqrestore(&Controller->queue_lock, flags); return IRQ_HANDLED; } /* DAC960_LA_InterruptHandler handles hardware interrupts from DAC960 LA Series Controllers. */ static irqreturn_t DAC960_LA_InterruptHandler(int IRQ_Channel, void *DeviceIdentifier) { DAC960_Controller_T *Controller = DeviceIdentifier; void __iomem *ControllerBaseAddress = Controller->BaseAddress; DAC960_V1_StatusMailbox_T *NextStatusMailbox; unsigned long flags; spin_lock_irqsave(&Controller->queue_lock, flags); DAC960_LA_AcknowledgeInterrupt(ControllerBaseAddress); NextStatusMailbox = Controller->V1.NextStatusMailbox; while (NextStatusMailbox->Fields.Valid) { DAC960_V1_CommandIdentifier_T CommandIdentifier = NextStatusMailbox->Fields.CommandIdentifier; DAC960_Command_T *Command = Controller->Commands[CommandIdentifier-1]; Command->V1.CommandStatus = NextStatusMailbox->Fields.CommandStatus; NextStatusMailbox->Word = 0; if (++NextStatusMailbox > Controller->V1.LastStatusMailbox) NextStatusMailbox = Controller->V1.FirstStatusMailbox; DAC960_V1_ProcessCompletedCommand(Command); } Controller->V1.NextStatusMailbox = NextStatusMailbox; /* Attempt to remove additional I/O Requests from the Controller's I/O Request Queue and queue them to the Controller. */ DAC960_ProcessRequest(Controller); spin_unlock_irqrestore(&Controller->queue_lock, flags); return IRQ_HANDLED; } /* DAC960_PG_InterruptHandler handles hardware interrupts from DAC960 PG Series Controllers. */ static irqreturn_t DAC960_PG_InterruptHandler(int IRQ_Channel, void *DeviceIdentifier) { DAC960_Controller_T *Controller = DeviceIdentifier; void __iomem *ControllerBaseAddress = Controller->BaseAddress; DAC960_V1_StatusMailbox_T *NextStatusMailbox; unsigned long flags; spin_lock_irqsave(&Controller->queue_lock, flags); DAC960_PG_AcknowledgeInterrupt(ControllerBaseAddress); NextStatusMailbox = Controller->V1.NextStatusMailbox; while (NextStatusMailbox->Fields.Valid) { DAC960_V1_CommandIdentifier_T CommandIdentifier = NextStatusMailbox->Fields.CommandIdentifier; DAC960_Command_T *Command = Controller->Commands[CommandIdentifier-1]; Command->V1.CommandStatus = NextStatusMailbox->Fields.CommandStatus; NextStatusMailbox->Word = 0; if (++NextStatusMailbox > Controller->V1.LastStatusMailbox) NextStatusMailbox = Controller->V1.FirstStatusMailbox; DAC960_V1_ProcessCompletedCommand(Command); } Controller->V1.NextStatusMailbox = NextStatusMailbox; /* Attempt to remove additional I/O Requests from the Controller's I/O Request Queue and queue them to the Controller. */ DAC960_ProcessRequest(Controller); spin_unlock_irqrestore(&Controller->queue_lock, flags); return IRQ_HANDLED; } /* DAC960_PD_InterruptHandler handles hardware interrupts from DAC960 PD Series Controllers. */ static irqreturn_t DAC960_PD_InterruptHandler(int IRQ_Channel, void *DeviceIdentifier) { DAC960_Controller_T *Controller = DeviceIdentifier; void __iomem *ControllerBaseAddress = Controller->BaseAddress; unsigned long flags; spin_lock_irqsave(&Controller->queue_lock, flags); while (DAC960_PD_StatusAvailableP(ControllerBaseAddress)) { DAC960_V1_CommandIdentifier_T CommandIdentifier = DAC960_PD_ReadStatusCommandIdentifier(ControllerBaseAddress); DAC960_Command_T *Command = Controller->Commands[CommandIdentifier-1]; Command->V1.CommandStatus = DAC960_PD_ReadStatusRegister(ControllerBaseAddress); DAC960_PD_AcknowledgeInterrupt(ControllerBaseAddress); DAC960_PD_AcknowledgeStatus(ControllerBaseAddress); DAC960_V1_ProcessCompletedCommand(Command); } /* Attempt to remove additional I/O Requests from the Controller's I/O Request Queue and queue them to the Controller. */ DAC960_ProcessRequest(Controller); spin_unlock_irqrestore(&Controller->queue_lock, flags); return IRQ_HANDLED; } /* DAC960_P_InterruptHandler handles hardware interrupts from DAC960 P Series Controllers. Translations of DAC960_V1_Enquiry and DAC960_V1_GetDeviceState rely on the data having been placed into DAC960_Controller_T, rather than an arbitrary buffer. */ static irqreturn_t DAC960_P_InterruptHandler(int IRQ_Channel, void *DeviceIdentifier) { DAC960_Controller_T *Controller = DeviceIdentifier; void __iomem *ControllerBaseAddress = Controller->BaseAddress; unsigned long flags; spin_lock_irqsave(&Controller->queue_lock, flags); while (DAC960_PD_StatusAvailableP(ControllerBaseAddress)) { DAC960_V1_CommandIdentifier_T CommandIdentifier = DAC960_PD_ReadStatusCommandIdentifier(ControllerBaseAddress); DAC960_Command_T *Command = Controller->Commands[CommandIdentifier-1]; DAC960_V1_CommandMailbox_T *CommandMailbox = &Command->V1.CommandMailbox; DAC960_V1_CommandOpcode_T CommandOpcode = CommandMailbox->Common.CommandOpcode; Command->V1.CommandStatus = DAC960_PD_ReadStatusRegister(ControllerBaseAddress); DAC960_PD_AcknowledgeInterrupt(ControllerBaseAddress); DAC960_PD_AcknowledgeStatus(ControllerBaseAddress); switch (CommandOpcode) { case DAC960_V1_Enquiry_Old: Command->V1.CommandMailbox.Common.CommandOpcode = DAC960_V1_Enquiry; DAC960_P_To_PD_TranslateEnquiry(Controller->V1.NewEnquiry); break; case DAC960_V1_GetDeviceState_Old: Command->V1.CommandMailbox.Common.CommandOpcode = DAC960_V1_GetDeviceState; DAC960_P_To_PD_TranslateDeviceState(Controller->V1.NewDeviceState); break; case DAC960_V1_Read_Old: Command->V1.CommandMailbox.Common.CommandOpcode = DAC960_V1_Read; DAC960_P_To_PD_TranslateReadWriteCommand(CommandMailbox); break; case DAC960_V1_Write_Old: Command->V1.CommandMailbox.Common.CommandOpcode = DAC960_V1_Write; DAC960_P_To_PD_TranslateReadWriteCommand(CommandMailbox); break; case DAC960_V1_ReadWithScatterGather_Old: Command->V1.CommandMailbox.Common.CommandOpcode = DAC960_V1_ReadWithScatterGather; DAC960_P_To_PD_TranslateReadWriteCommand(CommandMailbox); break; case DAC960_V1_WriteWithScatterGather_Old: Command->V1.CommandMailbox.Common.CommandOpcode = DAC960_V1_WriteWithScatterGather; DAC960_P_To_PD_TranslateReadWriteCommand(CommandMailbox); break; default: break; } DAC960_V1_ProcessCompletedCommand(Command); } /* Attempt to remove additional I/O Requests from the Controller's I/O Request Queue and queue them to the Controller. */ DAC960_ProcessRequest(Controller); spin_unlock_irqrestore(&Controller->queue_lock, flags); return IRQ_HANDLED; } /* DAC960_V1_QueueMonitoringCommand queues a Monitoring Command to DAC960 V1 Firmware Controllers. */ static void DAC960_V1_QueueMonitoringCommand(DAC960_Command_T *Command) { DAC960_Controller_T *Controller = Command->Controller; DAC960_V1_CommandMailbox_T *CommandMailbox = &Command->V1.CommandMailbox; DAC960_V1_ClearCommand(Command); Command->CommandType = DAC960_MonitoringCommand; CommandMailbox->Type3.CommandOpcode = DAC960_V1_Enquiry; CommandMailbox->Type3.BusAddress = Controller->V1.NewEnquiryDMA; DAC960_QueueCommand(Command); } /* DAC960_V2_QueueMonitoringCommand queues a Monitoring Command to DAC960 V2 Firmware Controllers. */ static void DAC960_V2_QueueMonitoringCommand(DAC960_Command_T *Command) { DAC960_Controller_T *Controller = Command->Controller; DAC960_V2_CommandMailbox_T *CommandMailbox = &Command->V2.CommandMailbox; DAC960_V2_ClearCommand(Command); Command->CommandType = DAC960_MonitoringCommand; CommandMailbox->ControllerInfo.CommandOpcode = DAC960_V2_IOCTL; CommandMailbox->ControllerInfo.CommandControlBits .DataTransferControllerToHost = true; CommandMailbox->ControllerInfo.CommandControlBits .NoAutoRequestSense = true; CommandMailbox->ControllerInfo.DataTransferSize = sizeof(DAC960_V2_ControllerInfo_T); CommandMailbox->ControllerInfo.ControllerNumber = 0; CommandMailbox->ControllerInfo.IOCTL_Opcode = DAC960_V2_GetControllerInfo; CommandMailbox->ControllerInfo.DataTransferMemoryAddress .ScatterGatherSegments[0] .SegmentDataPointer = Controller->V2.NewControllerInformationDMA; CommandMailbox->ControllerInfo.DataTransferMemoryAddress .ScatterGatherSegments[0] .SegmentByteCount = CommandMailbox->ControllerInfo.DataTransferSize; DAC960_QueueCommand(Command); } /* DAC960_MonitoringTimerFunction is the timer function for monitoring the status of DAC960 Controllers. */ static void DAC960_MonitoringTimerFunction(unsigned long TimerData) { DAC960_Controller_T *Controller = (DAC960_Controller_T *) TimerData; DAC960_Command_T *Command; unsigned long flags; if (Controller->FirmwareType == DAC960_V1_Controller) { spin_lock_irqsave(&Controller->queue_lock, flags); /* Queue a Status Monitoring Command to Controller. */ Command = DAC960_AllocateCommand(Controller); if (Command != NULL) DAC960_V1_QueueMonitoringCommand(Command); else Controller->MonitoringCommandDeferred = true; spin_unlock_irqrestore(&Controller->queue_lock, flags); } else { DAC960_V2_ControllerInfo_T *ControllerInfo = &Controller->V2.ControllerInformation; unsigned int StatusChangeCounter = Controller->V2.HealthStatusBuffer->StatusChangeCounter; bool ForceMonitoringCommand = false; if (time_after(jiffies, Controller->SecondaryMonitoringTime + DAC960_SecondaryMonitoringInterval)) { int LogicalDriveNumber; for (LogicalDriveNumber = 0; LogicalDriveNumber < DAC960_MaxLogicalDrives; LogicalDriveNumber++) { DAC960_V2_LogicalDeviceInfo_T *LogicalDeviceInfo = Controller->V2.LogicalDeviceInformation[LogicalDriveNumber]; if (LogicalDeviceInfo == NULL) continue; if (!LogicalDeviceInfo->LogicalDeviceControl .LogicalDeviceInitialized) { ForceMonitoringCommand = true; break; } } Controller->SecondaryMonitoringTime = jiffies; } if (StatusChangeCounter == Controller->V2.StatusChangeCounter && Controller->V2.HealthStatusBuffer->NextEventSequenceNumber == Controller->V2.NextEventSequenceNumber && (ControllerInfo->BackgroundInitializationsActive + ControllerInfo->LogicalDeviceInitializationsActive + ControllerInfo->PhysicalDeviceInitializationsActive + ControllerInfo->ConsistencyChecksActive + ControllerInfo->RebuildsActive + ControllerInfo->OnlineExpansionsActive == 0 || time_before(jiffies, Controller->PrimaryMonitoringTime + DAC960_MonitoringTimerInterval)) && !ForceMonitoringCommand) { Controller->MonitoringTimer.expires = jiffies + DAC960_HealthStatusMonitoringInterval; add_timer(&Controller->MonitoringTimer); return; } Controller->V2.StatusChangeCounter = StatusChangeCounter; Controller->PrimaryMonitoringTime = jiffies; spin_lock_irqsave(&Controller->queue_lock, flags); /* Queue a Status Monitoring Command to Controller. */ Command = DAC960_AllocateCommand(Controller); if (Command != NULL) DAC960_V2_QueueMonitoringCommand(Command); else Controller->MonitoringCommandDeferred = true; spin_unlock_irqrestore(&Controller->queue_lock, flags); /* Wake up any processes waiting on a Health Status Buffer change. */ wake_up(&Controller->HealthStatusWaitQueue); } } /* DAC960_CheckStatusBuffer verifies that there is room to hold ByteCount additional bytes in the Combined Status Buffer and grows the buffer if necessary. It returns true if there is enough room and false otherwise. */ static bool DAC960_CheckStatusBuffer(DAC960_Controller_T *Controller, unsigned int ByteCount) { unsigned char *NewStatusBuffer; if (Controller->InitialStatusLength + 1 + Controller->CurrentStatusLength + ByteCount + 1 <= Controller->CombinedStatusBufferLength) return true; if (Controller->CombinedStatusBufferLength == 0) { unsigned int NewStatusBufferLength = DAC960_InitialStatusBufferSize; while (NewStatusBufferLength < ByteCount) NewStatusBufferLength *= 2; Controller->CombinedStatusBuffer = kmalloc(NewStatusBufferLength, GFP_ATOMIC); if (Controller->CombinedStatusBuffer == NULL) return false; Controller->CombinedStatusBufferLength = NewStatusBufferLength; return true; } NewStatusBuffer = kmalloc(2 * Controller->CombinedStatusBufferLength, GFP_ATOMIC); if (NewStatusBuffer == NULL) { DAC960_Warning("Unable to expand Combined Status Buffer - Truncating\n", Controller); return false; } memcpy(NewStatusBuffer, Controller->CombinedStatusBuffer, Controller->CombinedStatusBufferLength); kfree(Controller->CombinedStatusBuffer); Controller->CombinedStatusBuffer = NewStatusBuffer; Controller->CombinedStatusBufferLength *= 2; Controller->CurrentStatusBuffer = &NewStatusBuffer[Controller->InitialStatusLength + 1]; return true; } /* DAC960_Message prints Driver Messages. */ static void DAC960_Message(DAC960_MessageLevel_T MessageLevel, unsigned char *Format, DAC960_Controller_T *Controller, ...) { static unsigned char Buffer[DAC960_LineBufferSize]; static bool BeginningOfLine = true; va_list Arguments; int Length = 0; va_start(Arguments, Controller); Length = vsprintf(Buffer, Format, Arguments); va_end(Arguments); if (Controller == NULL) printk("%sDAC960#%d: %s", DAC960_MessageLevelMap[MessageLevel], DAC960_ControllerCount, Buffer); else if (MessageLevel == DAC960_AnnounceLevel || MessageLevel == DAC960_InfoLevel) { if (!Controller->ControllerInitialized) { if (DAC960_CheckStatusBuffer(Controller, Length)) { strcpy(&Controller->CombinedStatusBuffer [Controller->InitialStatusLength], Buffer); Controller->InitialStatusLength += Length; Controller->CurrentStatusBuffer = &Controller->CombinedStatusBuffer [Controller->InitialStatusLength + 1]; } if (MessageLevel == DAC960_AnnounceLevel) { static int AnnouncementLines = 0; if (++AnnouncementLines <= 2) printk("%sDAC960: %s", DAC960_MessageLevelMap[MessageLevel], Buffer); } else { if (BeginningOfLine) { if (Buffer[0] != '\n' || Length > 1) printk("%sDAC960#%d: %s", DAC960_MessageLevelMap[MessageLevel], Controller->ControllerNumber, Buffer); } else printk("%s", Buffer); } } else if (DAC960_CheckStatusBuffer(Controller, Length)) { strcpy(&Controller->CurrentStatusBuffer[ Controller->CurrentStatusLength], Buffer); Controller->CurrentStatusLength += Length; } } else if (MessageLevel == DAC960_ProgressLevel) { strcpy(Controller->ProgressBuffer, Buffer); Controller->ProgressBufferLength = Length; if (Controller->EphemeralProgressMessage) { if (time_after_eq(jiffies, Controller->LastProgressReportTime + DAC960_ProgressReportingInterval)) { printk("%sDAC960#%d: %s", DAC960_MessageLevelMap[MessageLevel], Controller->ControllerNumber, Buffer); Controller->LastProgressReportTime = jiffies; } } else printk("%sDAC960#%d: %s", DAC960_MessageLevelMap[MessageLevel], Controller->ControllerNumber, Buffer); } else if (MessageLevel == DAC960_UserCriticalLevel) { strcpy(&Controller->UserStatusBuffer[Controller->UserStatusLength], Buffer); Controller->UserStatusLength += Length; if (Buffer[0] != '\n' || Length > 1) printk("%sDAC960#%d: %s", DAC960_MessageLevelMap[MessageLevel], Controller->ControllerNumber, Buffer); } else { if (BeginningOfLine) printk("%sDAC960#%d: %s", DAC960_MessageLevelMap[MessageLevel], Controller->ControllerNumber, Buffer); else printk("%s", Buffer); } BeginningOfLine = (Buffer[Length-1] == '\n'); } /* DAC960_ParsePhysicalDevice parses spaces followed by a Physical Device Channel:TargetID specification from a User Command string. It updates Channel and TargetID and returns true on success and false on failure. */ static bool DAC960_ParsePhysicalDevice(DAC960_Controller_T *Controller, char *UserCommandString, unsigned char *Channel, unsigned char *TargetID) { char *NewUserCommandString = UserCommandString; unsigned long XChannel, XTargetID; while (*UserCommandString == ' ') UserCommandString++; if (UserCommandString == NewUserCommandString) return false; XChannel = simple_strtoul(UserCommandString, &NewUserCommandString, 10); if (NewUserCommandString == UserCommandString || *NewUserCommandString != ':' || XChannel >= Controller->Channels) return false; UserCommandString = ++NewUserCommandString; XTargetID = simple_strtoul(UserCommandString, &NewUserCommandString, 10); if (NewUserCommandString == UserCommandString || *NewUserCommandString != '\0' || XTargetID >= Controller->Targets) return false; *Channel = XChannel; *TargetID = XTargetID; return true; } /* DAC960_ParseLogicalDrive parses spaces followed by a Logical Drive Number specification from a User Command string. It updates LogicalDriveNumber and returns true on success and false on failure. */ static bool DAC960_ParseLogicalDrive(DAC960_Controller_T *Controller, char *UserCommandString, unsigned char *LogicalDriveNumber) { char *NewUserCommandString = UserCommandString; unsigned long XLogicalDriveNumber; while (*UserCommandString == ' ') UserCommandString++; if (UserCommandString == NewUserCommandString) return false; XLogicalDriveNumber = simple_strtoul(UserCommandString, &NewUserCommandString, 10); if (NewUserCommandString == UserCommandString || *NewUserCommandString != '\0' || XLogicalDriveNumber > DAC960_MaxLogicalDrives - 1) return false; *LogicalDriveNumber = XLogicalDriveNumber; return true; } /* DAC960_V1_SetDeviceState sets the Device State for a Physical Device for DAC960 V1 Firmware Controllers. */ static void DAC960_V1_SetDeviceState(DAC960_Controller_T *Controller, DAC960_Command_T *Command, unsigned char Channel, unsigned char TargetID, DAC960_V1_PhysicalDeviceState_T DeviceState, const unsigned char *DeviceStateString) { DAC960_V1_CommandMailbox_T *CommandMailbox = &Command->V1.CommandMailbox; CommandMailbox->Type3D.CommandOpcode = DAC960_V1_StartDevice; CommandMailbox->Type3D.Channel = Channel; CommandMailbox->Type3D.TargetID = TargetID; CommandMailbox->Type3D.DeviceState = DeviceState; CommandMailbox->Type3D.Modifier = 0; DAC960_ExecuteCommand(Command); switch (Command->V1.CommandStatus) { case DAC960_V1_NormalCompletion: DAC960_UserCritical("%s of Physical Device %d:%d Succeeded\n", Controller, DeviceStateString, Channel, TargetID); break; case DAC960_V1_UnableToStartDevice: DAC960_UserCritical("%s of Physical Device %d:%d Failed - " "Unable to Start Device\n", Controller, DeviceStateString, Channel, TargetID); break; case DAC960_V1_NoDeviceAtAddress: DAC960_UserCritical("%s of Physical Device %d:%d Failed - " "No Device at Address\n", Controller, DeviceStateString, Channel, TargetID); break; case DAC960_V1_InvalidChannelOrTargetOrModifier: DAC960_UserCritical("%s of Physical Device %d:%d Failed - " "Invalid Channel or Target or Modifier\n", Controller, DeviceStateString, Channel, TargetID); break; case DAC960_V1_ChannelBusy: DAC960_UserCritical("%s of Physical Device %d:%d Failed - " "Channel Busy\n", Controller, DeviceStateString, Channel, TargetID); break; default: DAC960_UserCritical("%s of Physical Device %d:%d Failed - " "Unexpected Status %04X\n", Controller, DeviceStateString, Channel, TargetID, Command->V1.CommandStatus); break; } } /* DAC960_V1_ExecuteUserCommand executes a User Command for DAC960 V1 Firmware Controllers. */ static bool DAC960_V1_ExecuteUserCommand(DAC960_Controller_T *Controller, unsigned char *UserCommand) { DAC960_Command_T *Command; DAC960_V1_CommandMailbox_T *CommandMailbox; unsigned long flags; unsigned char Channel, TargetID, LogicalDriveNumber; spin_lock_irqsave(&Controller->queue_lock, flags); while ((Command = DAC960_AllocateCommand(Controller)) == NULL) DAC960_WaitForCommand(Controller); spin_unlock_irqrestore(&Controller->queue_lock, flags); Controller->UserStatusLength = 0; DAC960_V1_ClearCommand(Command); Command->CommandType = DAC960_ImmediateCommand; CommandMailbox = &Command->V1.CommandMailbox; if (strcmp(UserCommand, "flush-cache") == 0) { CommandMailbox->Type3.CommandOpcode = DAC960_V1_Flush; DAC960_ExecuteCommand(Command); DAC960_UserCritical("Cache Flush Completed\n", Controller); } else if (strncmp(UserCommand, "kill", 4) == 0 && DAC960_ParsePhysicalDevice(Controller, &UserCommand[4], &Channel, &TargetID)) { DAC960_V1_DeviceState_T *DeviceState = &Controller->V1.DeviceState[Channel][TargetID]; if (DeviceState->Present && DeviceState->DeviceType == DAC960_V1_DiskType && DeviceState->DeviceState != DAC960_V1_Device_Dead) DAC960_V1_SetDeviceState(Controller, Command, Channel, TargetID, DAC960_V1_Device_Dead, "Kill"); else DAC960_UserCritical("Kill of Physical Device %d:%d Illegal\n", Controller, Channel, TargetID); } else if (strncmp(UserCommand, "make-online", 11) == 0 && DAC960_ParsePhysicalDevice(Controller, &UserCommand[11], &Channel, &TargetID)) { DAC960_V1_DeviceState_T *DeviceState = &Controller->V1.DeviceState[Channel][TargetID]; if (DeviceState->Present && DeviceState->DeviceType == DAC960_V1_DiskType && DeviceState->DeviceState == DAC960_V1_Device_Dead) DAC960_V1_SetDeviceState(Controller, Command, Channel, TargetID, DAC960_V1_Device_Online, "Make Online"); else DAC960_UserCritical("Make Online of Physical Device %d:%d Illegal\n", Controller, Channel, TargetID); } else if (strncmp(UserCommand, "make-standby", 12) == 0 && DAC960_ParsePhysicalDevice(Controller, &UserCommand[12], &Channel, &TargetID)) { DAC960_V1_DeviceState_T *DeviceState = &Controller->V1.DeviceState[Channel][TargetID]; if (DeviceState->Present && DeviceState->DeviceType == DAC960_V1_DiskType && DeviceState->DeviceState == DAC960_V1_Device_Dead) DAC960_V1_SetDeviceState(Controller, Command, Channel, TargetID, DAC960_V1_Device_Standby, "Make Standby"); else DAC960_UserCritical("Make Standby of Physical " "Device %d:%d Illegal\n", Controller, Channel, TargetID); } else if (strncmp(UserCommand, "rebuild", 7) == 0 && DAC960_ParsePhysicalDevice(Controller, &UserCommand[7], &Channel, &TargetID)) { CommandMailbox->Type3D.CommandOpcode = DAC960_V1_RebuildAsync; CommandMailbox->Type3D.Channel = Channel; CommandMailbox->Type3D.TargetID = TargetID; DAC960_ExecuteCommand(Command); switch (Command->V1.CommandStatus) { case DAC960_V1_NormalCompletion: DAC960_UserCritical("Rebuild of Physical Device %d:%d Initiated\n", Controller, Channel, TargetID); break; case DAC960_V1_AttemptToRebuildOnlineDrive: DAC960_UserCritical("Rebuild of Physical Device %d:%d Failed - " "Attempt to Rebuild Online or " "Unresponsive Drive\n", Controller, Channel, TargetID); break; case DAC960_V1_NewDiskFailedDuringRebuild: DAC960_UserCritical("Rebuild of Physical Device %d:%d Failed - " "New Disk Failed During Rebuild\n", Controller, Channel, TargetID); break; case DAC960_V1_InvalidDeviceAddress: DAC960_UserCritical("Rebuild of Physical Device %d:%d Failed - " "Invalid Device Address\n", Controller, Channel, TargetID); break; case DAC960_V1_RebuildOrCheckAlreadyInProgress: DAC960_UserCritical("Rebuild of Physical Device %d:%d Failed - " "Rebuild or Consistency Check Already " "in Progress\n", Controller, Channel, TargetID); break; default: DAC960_UserCritical("Rebuild of Physical Device %d:%d Failed - " "Unexpected Status %04X\n", Controller, Channel, TargetID, Command->V1.CommandStatus); break; } } else if (strncmp(UserCommand, "check-consistency", 17) == 0 && DAC960_ParseLogicalDrive(Controller, &UserCommand[17], &LogicalDriveNumber)) { CommandMailbox->Type3C.CommandOpcode = DAC960_V1_CheckConsistencyAsync; CommandMailbox->Type3C.LogicalDriveNumber = LogicalDriveNumber; CommandMailbox->Type3C.AutoRestore = true; DAC960_ExecuteCommand(Command); switch (Command->V1.CommandStatus) { case DAC960_V1_NormalCompletion: DAC960_UserCritical("Consistency Check of Logical Drive %d " "(/dev/rd/c%dd%d) Initiated\n", Controller, LogicalDriveNumber, Controller->ControllerNumber, LogicalDriveNumber); break; case DAC960_V1_DependentDiskIsDead: DAC960_UserCritical("Consistency Check of Logical Drive %d " "(/dev/rd/c%dd%d) Failed - " "Dependent Physical Device is DEAD\n", Controller, LogicalDriveNumber, Controller->ControllerNumber, LogicalDriveNumber); break; case DAC960_V1_InvalidOrNonredundantLogicalDrive: DAC960_UserCritical("Consistency Check of Logical Drive %d " "(/dev/rd/c%dd%d) Failed - " "Invalid or Nonredundant Logical Drive\n", Controller, LogicalDriveNumber, Controller->ControllerNumber, LogicalDriveNumber); break; case DAC960_V1_RebuildOrCheckAlreadyInProgress: DAC960_UserCritical("Consistency Check of Logical Drive %d " "(/dev/rd/c%dd%d) Failed - Rebuild or " "Consistency Check Already in Progress\n", Controller, LogicalDriveNumber, Controller->ControllerNumber, LogicalDriveNumber); break; default: DAC960_UserCritical("Consistency Check of Logical Drive %d " "(/dev/rd/c%dd%d) Failed - " "Unexpected Status %04X\n", Controller, LogicalDriveNumber, Controller->ControllerNumber, LogicalDriveNumber, Command->V1.CommandStatus); break; } } else if (strcmp(UserCommand, "cancel-rebuild") == 0 || strcmp(UserCommand, "cancel-consistency-check") == 0) { /* the OldRebuildRateConstant is never actually used once its value is retrieved from the controller. */ unsigned char *OldRebuildRateConstant; dma_addr_t OldRebuildRateConstantDMA; OldRebuildRateConstant = pci_alloc_consistent( Controller->PCIDevice, sizeof(char), &OldRebuildRateConstantDMA); if (OldRebuildRateConstant == NULL) { DAC960_UserCritical("Cancellation of Rebuild or " "Consistency Check Failed - " "Out of Memory", Controller); goto failure; } CommandMailbox->Type3R.CommandOpcode = DAC960_V1_RebuildControl; CommandMailbox->Type3R.RebuildRateConstant = 0xFF; CommandMailbox->Type3R.BusAddress = OldRebuildRateConstantDMA; DAC960_ExecuteCommand(Command); switch (Command->V1.CommandStatus) { case DAC960_V1_NormalCompletion: DAC960_UserCritical("Rebuild or Consistency Check Cancelled\n", Controller); break; default: DAC960_UserCritical("Cancellation of Rebuild or " "Consistency Check Failed - " "Unexpected Status %04X\n", Controller, Command->V1.CommandStatus); break; } failure: pci_free_consistent(Controller->PCIDevice, sizeof(char), OldRebuildRateConstant, OldRebuildRateConstantDMA); } else DAC960_UserCritical("Illegal User Command: '%s'\n", Controller, UserCommand); spin_lock_irqsave(&Controller->queue_lock, flags); DAC960_DeallocateCommand(Command); spin_unlock_irqrestore(&Controller->queue_lock, flags); return true; } /* DAC960_V2_TranslatePhysicalDevice translates a Physical Device Channel and TargetID into a Logical Device. It returns true on success and false on failure. */ static bool DAC960_V2_TranslatePhysicalDevice(DAC960_Command_T *Command, unsigned char Channel, unsigned char TargetID, unsigned short *LogicalDeviceNumber) { DAC960_V2_CommandMailbox_T SavedCommandMailbox, *CommandMailbox; DAC960_Controller_T *Controller = Command->Controller; CommandMailbox = &Command->V2.CommandMailbox; memcpy(&SavedCommandMailbox, CommandMailbox, sizeof(DAC960_V2_CommandMailbox_T)); CommandMailbox->PhysicalDeviceInfo.CommandOpcode = DAC960_V2_IOCTL; CommandMailbox->PhysicalDeviceInfo.CommandControlBits .DataTransferControllerToHost = true; CommandMailbox->PhysicalDeviceInfo.CommandControlBits .NoAutoRequestSense = true; CommandMailbox->PhysicalDeviceInfo.DataTransferSize = sizeof(DAC960_V2_PhysicalToLogicalDevice_T); CommandMailbox->PhysicalDeviceInfo.PhysicalDevice.TargetID = TargetID; CommandMailbox->PhysicalDeviceInfo.PhysicalDevice.Channel = Channel; CommandMailbox->PhysicalDeviceInfo.IOCTL_Opcode = DAC960_V2_TranslatePhysicalToLogicalDevice; CommandMailbox->Common.DataTransferMemoryAddress .ScatterGatherSegments[0] .SegmentDataPointer = Controller->V2.PhysicalToLogicalDeviceDMA; CommandMailbox->Common.DataTransferMemoryAddress .ScatterGatherSegments[0] .SegmentByteCount = CommandMailbox->Common.DataTransferSize; DAC960_ExecuteCommand(Command); *LogicalDeviceNumber = Controller->V2.PhysicalToLogicalDevice->LogicalDeviceNumber; memcpy(CommandMailbox, &SavedCommandMailbox, sizeof(DAC960_V2_CommandMailbox_T)); return (Command->V2.CommandStatus == DAC960_V2_NormalCompletion); } /* DAC960_V2_ExecuteUserCommand executes a User Command for DAC960 V2 Firmware Controllers. */ static bool DAC960_V2_ExecuteUserCommand(DAC960_Controller_T *Controller, unsigned char *UserCommand) { DAC960_Command_T *Command; DAC960_V2_CommandMailbox_T *CommandMailbox; unsigned long flags; unsigned char Channel, TargetID, LogicalDriveNumber; unsigned short LogicalDeviceNumber; spin_lock_irqsave(&Controller->queue_lock, flags); while ((Command = DAC960_AllocateCommand(Controller)) == NULL) DAC960_WaitForCommand(Controller); spin_unlock_irqrestore(&Controller->queue_lock, flags); Controller->UserStatusLength = 0; DAC960_V2_ClearCommand(Command); Command->CommandType = DAC960_ImmediateCommand; CommandMailbox = &Command->V2.CommandMailbox; CommandMailbox->Common.CommandOpcode = DAC960_V2_IOCTL; CommandMailbox->Common.CommandControlBits.DataTransferControllerToHost = true; CommandMailbox->Common.CommandControlBits.NoAutoRequestSense = true; if (strcmp(UserCommand, "flush-cache") == 0) { CommandMailbox->DeviceOperation.IOCTL_Opcode = DAC960_V2_PauseDevice; CommandMailbox->DeviceOperation.OperationDevice = DAC960_V2_RAID_Controller; DAC960_ExecuteCommand(Command); DAC960_UserCritical("Cache Flush Completed\n", Controller); } else if (strncmp(UserCommand, "kill", 4) == 0 && DAC960_ParsePhysicalDevice(Controller, &UserCommand[4], &Channel, &TargetID) && DAC960_V2_TranslatePhysicalDevice(Command, Channel, TargetID, &LogicalDeviceNumber)) { CommandMailbox->SetDeviceState.LogicalDevice.LogicalDeviceNumber = LogicalDeviceNumber; CommandMailbox->SetDeviceState.IOCTL_Opcode = DAC960_V2_SetDeviceState; CommandMailbox->SetDeviceState.DeviceState.PhysicalDeviceState = DAC960_V2_Device_Dead; DAC960_ExecuteCommand(Command); DAC960_UserCritical("Kill of Physical Device %d:%d %s\n", Controller, Channel, TargetID, (Command->V2.CommandStatus == DAC960_V2_NormalCompletion ? "Succeeded" : "Failed")); } else if (strncmp(UserCommand, "make-online", 11) == 0 && DAC960_ParsePhysicalDevice(Controller, &UserCommand[11], &Channel, &TargetID) && DAC960_V2_TranslatePhysicalDevice(Command, Channel, TargetID, &LogicalDeviceNumber)) { CommandMailbox->SetDeviceState.LogicalDevice.LogicalDeviceNumber = LogicalDeviceNumber; CommandMailbox->SetDeviceState.IOCTL_Opcode = DAC960_V2_SetDeviceState; CommandMailbox->SetDeviceState.DeviceState.PhysicalDeviceState = DAC960_V2_Device_Online; DAC960_ExecuteCommand(Command); DAC960_UserCritical("Make Online of Physical Device %d:%d %s\n", Controller, Channel, TargetID, (Command->V2.CommandStatus == DAC960_V2_NormalCompletion ? "Succeeded" : "Failed")); } else if (strncmp(UserCommand, "make-standby", 12) == 0 && DAC960_ParsePhysicalDevice(Controller, &UserCommand[12], &Channel, &TargetID) && DAC960_V2_TranslatePhysicalDevice(Command, Channel, TargetID, &LogicalDeviceNumber)) { CommandMailbox->SetDeviceState.LogicalDevice.LogicalDeviceNumber = LogicalDeviceNumber; CommandMailbox->SetDeviceState.IOCTL_Opcode = DAC960_V2_SetDeviceState; CommandMailbox->SetDeviceState.DeviceState.PhysicalDeviceState = DAC960_V2_Device_Standby; DAC960_ExecuteCommand(Command); DAC960_UserCritical("Make Standby of Physical Device %d:%d %s\n", Controller, Channel, TargetID, (Command->V2.CommandStatus == DAC960_V2_NormalCompletion ? "Succeeded" : "Failed")); } else if (strncmp(UserCommand, "rebuild", 7) == 0 && DAC960_ParsePhysicalDevice(Controller, &UserCommand[7], &Channel, &TargetID) && DAC960_V2_TranslatePhysicalDevice(Command, Channel, TargetID, &LogicalDeviceNumber)) { CommandMailbox->LogicalDeviceInfo.LogicalDevice.LogicalDeviceNumber = LogicalDeviceNumber; CommandMailbox->LogicalDeviceInfo.IOCTL_Opcode = DAC960_V2_RebuildDeviceStart; DAC960_ExecuteCommand(Command); DAC960_UserCritical("Rebuild of Physical Device %d:%d %s\n", Controller, Channel, TargetID, (Command->V2.CommandStatus == DAC960_V2_NormalCompletion ? "Initiated" : "Not Initiated")); } else if (strncmp(UserCommand, "cancel-rebuild", 14) == 0 && DAC960_ParsePhysicalDevice(Controller, &UserCommand[14], &Channel, &TargetID) && DAC960_V2_TranslatePhysicalDevice(Command, Channel, TargetID, &LogicalDeviceNumber)) { CommandMailbox->LogicalDeviceInfo.LogicalDevice.LogicalDeviceNumber = LogicalDeviceNumber; CommandMailbox->LogicalDeviceInfo.IOCTL_Opcode = DAC960_V2_RebuildDeviceStop; DAC960_ExecuteCommand(Command); DAC960_UserCritical("Rebuild of Physical Device %d:%d %s\n", Controller, Channel, TargetID, (Command->V2.CommandStatus == DAC960_V2_NormalCompletion ? "Cancelled" : "Not Cancelled")); } else if (strncmp(UserCommand, "check-consistency", 17) == 0 && DAC960_ParseLogicalDrive(Controller, &UserCommand[17], &LogicalDriveNumber)) { CommandMailbox->ConsistencyCheck.LogicalDevice.LogicalDeviceNumber = LogicalDriveNumber; CommandMailbox->ConsistencyCheck.IOCTL_Opcode = DAC960_V2_ConsistencyCheckStart; CommandMailbox->ConsistencyCheck.RestoreConsistency = true; CommandMailbox->ConsistencyCheck.InitializedAreaOnly = false; DAC960_ExecuteCommand(Command); DAC960_UserCritical("Consistency Check of Logical Drive %d " "(/dev/rd/c%dd%d) %s\n", Controller, LogicalDriveNumber, Controller->ControllerNumber, LogicalDriveNumber, (Command->V2.CommandStatus == DAC960_V2_NormalCompletion ? "Initiated" : "Not Initiated")); } else if (strncmp(UserCommand, "cancel-consistency-check", 24) == 0 && DAC960_ParseLogicalDrive(Controller, &UserCommand[24], &LogicalDriveNumber)) { CommandMailbox->ConsistencyCheck.LogicalDevice.LogicalDeviceNumber = LogicalDriveNumber; CommandMailbox->ConsistencyCheck.IOCTL_Opcode = DAC960_V2_ConsistencyCheckStop; DAC960_ExecuteCommand(Command); DAC960_UserCritical("Consistency Check of Logical Drive %d " "(/dev/rd/c%dd%d) %s\n", Controller, LogicalDriveNumber, Controller->ControllerNumber, LogicalDriveNumber, (Command->V2.CommandStatus == DAC960_V2_NormalCompletion ? "Cancelled" : "Not Cancelled")); } else if (strcmp(UserCommand, "perform-discovery") == 0) { CommandMailbox->Common.IOCTL_Opcode = DAC960_V2_StartDiscovery; DAC960_ExecuteCommand(Command); DAC960_UserCritical("Discovery %s\n", Controller, (Command->V2.CommandStatus == DAC960_V2_NormalCompletion ? "Initiated" : "Not Initiated")); if (Command->V2.CommandStatus == DAC960_V2_NormalCompletion) { CommandMailbox->ControllerInfo.CommandOpcode = DAC960_V2_IOCTL; CommandMailbox->ControllerInfo.CommandControlBits .DataTransferControllerToHost = true; CommandMailbox->ControllerInfo.CommandControlBits .NoAutoRequestSense = true; CommandMailbox->ControllerInfo.DataTransferSize = sizeof(DAC960_V2_ControllerInfo_T); CommandMailbox->ControllerInfo.ControllerNumber = 0; CommandMailbox->ControllerInfo.IOCTL_Opcode = DAC960_V2_GetControllerInfo; /* * How does this NOT race with the queued Monitoring * usage of this structure? */ CommandMailbox->ControllerInfo.DataTransferMemoryAddress .ScatterGatherSegments[0] .SegmentDataPointer = Controller->V2.NewControllerInformationDMA; CommandMailbox->ControllerInfo.DataTransferMemoryAddress .ScatterGatherSegments[0] .SegmentByteCount = CommandMailbox->ControllerInfo.DataTransferSize; while (1) { DAC960_ExecuteCommand(Command); if (!Controller->V2.NewControllerInformation->PhysicalScanActive) break; msleep(1000); } DAC960_UserCritical("Discovery Completed\n", Controller); } } else if (strcmp(UserCommand, "suppress-enclosure-messages") == 0) Controller->SuppressEnclosureMessages = true; else DAC960_UserCritical("Illegal User Command: '%s'\n", Controller, UserCommand); spin_lock_irqsave(&Controller->queue_lock, flags); DAC960_DeallocateCommand(Command); spin_unlock_irqrestore(&Controller->queue_lock, flags); return true; } static int dac960_proc_show(struct seq_file *m, void *v) { unsigned char *StatusMessage = "OK\n"; int ControllerNumber; for (ControllerNumber = 0; ControllerNumber < DAC960_ControllerCount; ControllerNumber++) { DAC960_Controller_T *Controller = DAC960_Controllers[ControllerNumber]; if (Controller == NULL) continue; if (Controller->MonitoringAlertMode) { StatusMessage = "ALERT\n"; break; } } seq_puts(m, StatusMessage); return 0; } static int dac960_proc_open(struct inode *inode, struct file *file) { return single_open(file, dac960_proc_show, NULL); } static const struct file_operations dac960_proc_fops = { .owner = THIS_MODULE, .open = dac960_proc_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static int dac960_initial_status_proc_show(struct seq_file *m, void *v) { DAC960_Controller_T *Controller = (DAC960_Controller_T *)m->private; seq_printf(m, "%.*s", Controller->InitialStatusLength, Controller->CombinedStatusBuffer); return 0; } static int dac960_initial_status_proc_open(struct inode *inode, struct file *file) { return single_open(file, dac960_initial_status_proc_show, PDE_DATA(inode)); } static const struct file_operations dac960_initial_status_proc_fops = { .owner = THIS_MODULE, .open = dac960_initial_status_proc_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static int dac960_current_status_proc_show(struct seq_file *m, void *v) { DAC960_Controller_T *Controller = (DAC960_Controller_T *) m->private; unsigned char *StatusMessage = "No Rebuild or Consistency Check in Progress\n"; int ProgressMessageLength = strlen(StatusMessage); if (jiffies != Controller->LastCurrentStatusTime) { Controller->CurrentStatusLength = 0; DAC960_AnnounceDriver(Controller); DAC960_ReportControllerConfiguration(Controller); DAC960_ReportDeviceConfiguration(Controller); if (Controller->ProgressBufferLength > 0) ProgressMessageLength = Controller->ProgressBufferLength; if (DAC960_CheckStatusBuffer(Controller, 2 + ProgressMessageLength)) { unsigned char *CurrentStatusBuffer = Controller->CurrentStatusBuffer; CurrentStatusBuffer[Controller->CurrentStatusLength++] = ' '; CurrentStatusBuffer[Controller->CurrentStatusLength++] = ' '; if (Controller->ProgressBufferLength > 0) strcpy(&CurrentStatusBuffer[Controller->CurrentStatusLength], Controller->ProgressBuffer); else strcpy(&CurrentStatusBuffer[Controller->CurrentStatusLength], StatusMessage); Controller->CurrentStatusLength += ProgressMessageLength; } Controller->LastCurrentStatusTime = jiffies; } seq_printf(m, "%.*s", Controller->CurrentStatusLength, Controller->CurrentStatusBuffer); return 0; } static int dac960_current_status_proc_open(struct inode *inode, struct file *file) { return single_open(file, dac960_current_status_proc_show, PDE_DATA(inode)); } static const struct file_operations dac960_current_status_proc_fops = { .owner = THIS_MODULE, .open = dac960_current_status_proc_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static int dac960_user_command_proc_show(struct seq_file *m, void *v) { DAC960_Controller_T *Controller = (DAC960_Controller_T *)m->private; seq_printf(m, "%.*s", Controller->UserStatusLength, Controller->UserStatusBuffer); return 0; } static int dac960_user_command_proc_open(struct inode *inode, struct file *file) { return single_open(file, dac960_user_command_proc_show, PDE_DATA(inode)); } static ssize_t dac960_user_command_proc_write(struct file *file, const char __user *Buffer, size_t Count, loff_t *pos) { DAC960_Controller_T *Controller = PDE_DATA(file_inode(file)); unsigned char CommandBuffer[80]; int Length; if (Count > sizeof(CommandBuffer)-1) return -EINVAL; if (copy_from_user(CommandBuffer, Buffer, Count)) return -EFAULT; CommandBuffer[Count] = '\0'; Length = strlen(CommandBuffer); if (Length > 0 && CommandBuffer[Length-1] == '\n') CommandBuffer[--Length] = '\0'; if (Controller->FirmwareType == DAC960_V1_Controller) return (DAC960_V1_ExecuteUserCommand(Controller, CommandBuffer) ? Count : -EBUSY); else return (DAC960_V2_ExecuteUserCommand(Controller, CommandBuffer) ? Count : -EBUSY); } static const struct file_operations dac960_user_command_proc_fops = { .owner = THIS_MODULE, .open = dac960_user_command_proc_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, .write = dac960_user_command_proc_write, }; /* DAC960_CreateProcEntries creates the /proc/rd/... entries for the DAC960 Driver. */ static void DAC960_CreateProcEntries(DAC960_Controller_T *Controller) { struct proc_dir_entry *ControllerProcEntry; if (DAC960_ProcDirectoryEntry == NULL) { DAC960_ProcDirectoryEntry = proc_mkdir("rd", NULL); proc_create("status", 0, DAC960_ProcDirectoryEntry, &dac960_proc_fops); } sprintf(Controller->ControllerName, "c%d", Controller->ControllerNumber); ControllerProcEntry = proc_mkdir(Controller->ControllerName, DAC960_ProcDirectoryEntry); proc_create_data("initial_status", 0, ControllerProcEntry, &dac960_initial_status_proc_fops, Controller); proc_create_data("current_status", 0, ControllerProcEntry, &dac960_current_status_proc_fops, Controller); proc_create_data("user_command", S_IWUSR | S_IRUSR, ControllerProcEntry, &dac960_user_command_proc_fops, Controller); Controller->ControllerProcEntry = ControllerProcEntry; } /* DAC960_DestroyProcEntries destroys the /proc/rd/... entries for the DAC960 Driver. */ static void DAC960_DestroyProcEntries(DAC960_Controller_T *Controller) { if (Controller->ControllerProcEntry == NULL) return; remove_proc_entry("initial_status", Controller->ControllerProcEntry); remove_proc_entry("current_status", Controller->ControllerProcEntry); remove_proc_entry("user_command", Controller->ControllerProcEntry); remove_proc_entry(Controller->ControllerName, DAC960_ProcDirectoryEntry); Controller->ControllerProcEntry = NULL; } #ifdef DAC960_GAM_MINOR /* * DAC960_gam_ioctl is the ioctl function for performing RAID operations. */ static long DAC960_gam_ioctl(struct file *file, unsigned int Request, unsigned long Argument) { long ErrorCode = 0; if (!capable(CAP_SYS_ADMIN)) return -EACCES; mutex_lock(&DAC960_mutex); switch (Request) { case DAC960_IOCTL_GET_CONTROLLER_COUNT: ErrorCode = DAC960_ControllerCount; break; case DAC960_IOCTL_GET_CONTROLLER_INFO: { DAC960_ControllerInfo_T __user *UserSpaceControllerInfo = (DAC960_ControllerInfo_T __user *) Argument; DAC960_ControllerInfo_T ControllerInfo; DAC960_Controller_T *Controller; int ControllerNumber; if (UserSpaceControllerInfo == NULL) ErrorCode = -EINVAL; else ErrorCode = get_user(ControllerNumber, &UserSpaceControllerInfo->ControllerNumber); if (ErrorCode != 0) break; ErrorCode = -ENXIO; if (ControllerNumber < 0 || ControllerNumber > DAC960_ControllerCount - 1) { break; } Controller = DAC960_Controllers[ControllerNumber]; if (Controller == NULL) break; memset(&ControllerInfo, 0, sizeof(DAC960_ControllerInfo_T)); ControllerInfo.ControllerNumber = ControllerNumber; ControllerInfo.FirmwareType = Controller->FirmwareType; ControllerInfo.Channels = Controller->Channels; ControllerInfo.Targets = Controller->Targets; ControllerInfo.PCI_Bus = Controller->Bus; ControllerInfo.PCI_Device = Controller->Device; ControllerInfo.PCI_Function = Controller->Function; ControllerInfo.IRQ_Channel = Controller->IRQ_Channel; ControllerInfo.PCI_Address = Controller->PCI_Address; strcpy(ControllerInfo.ModelName, Controller->ModelName); strcpy(ControllerInfo.FirmwareVersion, Controller->FirmwareVersion); ErrorCode = (copy_to_user(UserSpaceControllerInfo, &ControllerInfo, sizeof(DAC960_ControllerInfo_T)) ? -EFAULT : 0); break; } case DAC960_IOCTL_V1_EXECUTE_COMMAND: { DAC960_V1_UserCommand_T __user *UserSpaceUserCommand = (DAC960_V1_UserCommand_T __user *) Argument; DAC960_V1_UserCommand_T UserCommand; DAC960_Controller_T *Controller; DAC960_Command_T *Command = NULL; DAC960_V1_CommandOpcode_T CommandOpcode; DAC960_V1_CommandStatus_T CommandStatus; DAC960_V1_DCDB_T DCDB; DAC960_V1_DCDB_T *DCDB_IOBUF = NULL; dma_addr_t DCDB_IOBUFDMA; unsigned long flags; int ControllerNumber, DataTransferLength; unsigned char *DataTransferBuffer = NULL; dma_addr_t DataTransferBufferDMA; if (UserSpaceUserCommand == NULL) { ErrorCode = -EINVAL; break; } if (copy_from_user(&UserCommand, UserSpaceUserCommand, sizeof(DAC960_V1_UserCommand_T))) { ErrorCode = -EFAULT; break; } ControllerNumber = UserCommand.ControllerNumber; ErrorCode = -ENXIO; if (ControllerNumber < 0 || ControllerNumber > DAC960_ControllerCount - 1) break; Controller = DAC960_Controllers[ControllerNumber]; if (Controller == NULL) break; ErrorCode = -EINVAL; if (Controller->FirmwareType != DAC960_V1_Controller) break; CommandOpcode = UserCommand.CommandMailbox.Common.CommandOpcode; DataTransferLength = UserCommand.DataTransferLength; if (CommandOpcode & 0x80) break; if (CommandOpcode == DAC960_V1_DCDB) { if (copy_from_user(&DCDB, UserCommand.DCDB, sizeof(DAC960_V1_DCDB_T))) { ErrorCode = -EFAULT; break; } if (DCDB.Channel >= DAC960_V1_MaxChannels) break; if (!((DataTransferLength == 0 && DCDB.Direction == DAC960_V1_DCDB_NoDataTransfer) || (DataTransferLength > 0 && DCDB.Direction == DAC960_V1_DCDB_DataTransferDeviceToSystem) || (DataTransferLength < 0 && DCDB.Direction == DAC960_V1_DCDB_DataTransferSystemToDevice))) break; if (((DCDB.TransferLengthHigh4 << 16) | DCDB.TransferLength) != abs(DataTransferLength)) break; DCDB_IOBUF = pci_alloc_consistent(Controller->PCIDevice, sizeof(DAC960_V1_DCDB_T), &DCDB_IOBUFDMA); if (DCDB_IOBUF == NULL) { ErrorCode = -ENOMEM; break; } } ErrorCode = -ENOMEM; if (DataTransferLength > 0) { DataTransferBuffer = pci_zalloc_consistent(Controller->PCIDevice, DataTransferLength, &DataTransferBufferDMA); if (DataTransferBuffer == NULL) break; } else if (DataTransferLength < 0) { DataTransferBuffer = pci_alloc_consistent(Controller->PCIDevice, -DataTransferLength, &DataTransferBufferDMA); if (DataTransferBuffer == NULL) break; if (copy_from_user(DataTransferBuffer, UserCommand.DataTransferBuffer, -DataTransferLength)) { ErrorCode = -EFAULT; break; } } if (CommandOpcode == DAC960_V1_DCDB) { spin_lock_irqsave(&Controller->queue_lock, flags); while ((Command = DAC960_AllocateCommand(Controller)) == NULL) DAC960_WaitForCommand(Controller); while (Controller->V1.DirectCommandActive[DCDB.Channel] [DCDB.TargetID]) { spin_unlock_irq(&Controller->queue_lock); __wait_event(Controller->CommandWaitQueue, !Controller->V1.DirectCommandActive [DCDB.Channel][DCDB.TargetID]); spin_lock_irq(&Controller->queue_lock); } Controller->V1.DirectCommandActive[DCDB.Channel] [DCDB.TargetID] = true; spin_unlock_irqrestore(&Controller->queue_lock, flags); DAC960_V1_ClearCommand(Command); Command->CommandType = DAC960_ImmediateCommand; memcpy(&Command->V1.CommandMailbox, &UserCommand.CommandMailbox, sizeof(DAC960_V1_CommandMailbox_T)); Command->V1.CommandMailbox.Type3.BusAddress = DCDB_IOBUFDMA; DCDB.BusAddress = DataTransferBufferDMA; memcpy(DCDB_IOBUF, &DCDB, sizeof(DAC960_V1_DCDB_T)); } else { spin_lock_irqsave(&Controller->queue_lock, flags); while ((Command = DAC960_AllocateCommand(Controller)) == NULL) DAC960_WaitForCommand(Controller); spin_unlock_irqrestore(&Controller->queue_lock, flags); DAC960_V1_ClearCommand(Command); Command->CommandType = DAC960_ImmediateCommand; memcpy(&Command->V1.CommandMailbox, &UserCommand.CommandMailbox, sizeof(DAC960_V1_CommandMailbox_T)); if (DataTransferBuffer != NULL) Command->V1.CommandMailbox.Type3.BusAddress = DataTransferBufferDMA; } DAC960_ExecuteCommand(Command); CommandStatus = Command->V1.CommandStatus; spin_lock_irqsave(&Controller->queue_lock, flags); DAC960_DeallocateCommand(Command); spin_unlock_irqrestore(&Controller->queue_lock, flags); if (DataTransferLength > 0) { if (copy_to_user(UserCommand.DataTransferBuffer, DataTransferBuffer, DataTransferLength)) { ErrorCode = -EFAULT; goto Failure1; } } if (CommandOpcode == DAC960_V1_DCDB) { /* I don't believe Target or Channel in the DCDB_IOBUF should be any different from the contents of DCDB. */ Controller->V1.DirectCommandActive[DCDB.Channel] [DCDB.TargetID] = false; if (copy_to_user(UserCommand.DCDB, DCDB_IOBUF, sizeof(DAC960_V1_DCDB_T))) { ErrorCode = -EFAULT; goto Failure1; } } ErrorCode = CommandStatus; Failure1: if (DataTransferBuffer != NULL) pci_free_consistent(Controller->PCIDevice, abs(DataTransferLength), DataTransferBuffer, DataTransferBufferDMA); if (DCDB_IOBUF != NULL) pci_free_consistent(Controller->PCIDevice, sizeof(DAC960_V1_DCDB_T), DCDB_IOBUF, DCDB_IOBUFDMA); break; } case DAC960_IOCTL_V2_EXECUTE_COMMAND: { DAC960_V2_UserCommand_T __user *UserSpaceUserCommand = (DAC960_V2_UserCommand_T __user *) Argument; DAC960_V2_UserCommand_T UserCommand; DAC960_Controller_T *Controller; DAC960_Command_T *Command = NULL; DAC960_V2_CommandMailbox_T *CommandMailbox; DAC960_V2_CommandStatus_T CommandStatus; unsigned long flags; int ControllerNumber, DataTransferLength; int DataTransferResidue, RequestSenseLength; unsigned char *DataTransferBuffer = NULL; dma_addr_t DataTransferBufferDMA; unsigned char *RequestSenseBuffer = NULL; dma_addr_t RequestSenseBufferDMA; ErrorCode = -EINVAL; if (UserSpaceUserCommand == NULL) break; if (copy_from_user(&UserCommand, UserSpaceUserCommand, sizeof(DAC960_V2_UserCommand_T))) { ErrorCode = -EFAULT; break; } ErrorCode = -ENXIO; ControllerNumber = UserCommand.ControllerNumber; if (ControllerNumber < 0 || ControllerNumber > DAC960_ControllerCount - 1) break; Controller = DAC960_Controllers[ControllerNumber]; if (Controller == NULL) break; if (Controller->FirmwareType != DAC960_V2_Controller){ ErrorCode = -EINVAL; break; } DataTransferLength = UserCommand.DataTransferLength; ErrorCode = -ENOMEM; if (DataTransferLength > 0) { DataTransferBuffer = pci_zalloc_consistent(Controller->PCIDevice, DataTransferLength, &DataTransferBufferDMA); if (DataTransferBuffer == NULL) break; } else if (DataTransferLength < 0) { DataTransferBuffer = pci_alloc_consistent(Controller->PCIDevice, -DataTransferLength, &DataTransferBufferDMA); if (DataTransferBuffer == NULL) break; if (copy_from_user(DataTransferBuffer, UserCommand.DataTransferBuffer, -DataTransferLength)) { ErrorCode = -EFAULT; goto Failure2; } } RequestSenseLength = UserCommand.RequestSenseLength; if (RequestSenseLength > 0) { RequestSenseBuffer = pci_zalloc_consistent(Controller->PCIDevice, RequestSenseLength, &RequestSenseBufferDMA); if (RequestSenseBuffer == NULL) { ErrorCode = -ENOMEM; goto Failure2; } } spin_lock_irqsave(&Controller->queue_lock, flags); while ((Command = DAC960_AllocateCommand(Controller)) == NULL) DAC960_WaitForCommand(Controller); spin_unlock_irqrestore(&Controller->queue_lock, flags); DAC960_V2_ClearCommand(Command); Command->CommandType = DAC960_ImmediateCommand; CommandMailbox = &Command->V2.CommandMailbox; memcpy(CommandMailbox, &UserCommand.CommandMailbox, sizeof(DAC960_V2_CommandMailbox_T)); CommandMailbox->Common.CommandControlBits .AdditionalScatterGatherListMemory = false; CommandMailbox->Common.CommandControlBits .NoAutoRequestSense = true; CommandMailbox->Common.DataTransferSize = 0; CommandMailbox->Common.DataTransferPageNumber = 0; memset(&CommandMailbox->Common.DataTransferMemoryAddress, 0, sizeof(DAC960_V2_DataTransferMemoryAddress_T)); if (DataTransferLength != 0) { if (DataTransferLength > 0) { CommandMailbox->Common.CommandControlBits .DataTransferControllerToHost = true; CommandMailbox->Common.DataTransferSize = DataTransferLength; } else { CommandMailbox->Common.CommandControlBits .DataTransferControllerToHost = false; CommandMailbox->Common.DataTransferSize = -DataTransferLength; } CommandMailbox->Common.DataTransferMemoryAddress .ScatterGatherSegments[0] .SegmentDataPointer = DataTransferBufferDMA; CommandMailbox->Common.DataTransferMemoryAddress .ScatterGatherSegments[0] .SegmentByteCount = CommandMailbox->Common.DataTransferSize; } if (RequestSenseLength > 0) { CommandMailbox->Common.CommandControlBits .NoAutoRequestSense = false; CommandMailbox->Common.RequestSenseSize = RequestSenseLength; CommandMailbox->Common.RequestSenseBusAddress = RequestSenseBufferDMA; } DAC960_ExecuteCommand(Command); CommandStatus = Command->V2.CommandStatus; RequestSenseLength = Command->V2.RequestSenseLength; DataTransferResidue = Command->V2.DataTransferResidue; spin_lock_irqsave(&Controller->queue_lock, flags); DAC960_DeallocateCommand(Command); spin_unlock_irqrestore(&Controller->queue_lock, flags); if (RequestSenseLength > UserCommand.RequestSenseLength) RequestSenseLength = UserCommand.RequestSenseLength; if (copy_to_user(&UserSpaceUserCommand->DataTransferLength, &DataTransferResidue, sizeof(DataTransferResidue))) { ErrorCode = -EFAULT; goto Failure2; } if (copy_to_user(&UserSpaceUserCommand->RequestSenseLength, &RequestSenseLength, sizeof(RequestSenseLength))) { ErrorCode = -EFAULT; goto Failure2; } if (DataTransferLength > 0) { if (copy_to_user(UserCommand.DataTransferBuffer, DataTransferBuffer, DataTransferLength)) { ErrorCode = -EFAULT; goto Failure2; } } if (RequestSenseLength > 0) { if (copy_to_user(UserCommand.RequestSenseBuffer, RequestSenseBuffer, RequestSenseLength)) { ErrorCode = -EFAULT; goto Failure2; } } ErrorCode = CommandStatus; Failure2: pci_free_consistent(Controller->PCIDevice, abs(DataTransferLength), DataTransferBuffer, DataTransferBufferDMA); if (RequestSenseBuffer != NULL) pci_free_consistent(Controller->PCIDevice, RequestSenseLength, RequestSenseBuffer, RequestSenseBufferDMA); break; } case DAC960_IOCTL_V2_GET_HEALTH_STATUS: { DAC960_V2_GetHealthStatus_T __user *UserSpaceGetHealthStatus = (DAC960_V2_GetHealthStatus_T __user *) Argument; DAC960_V2_GetHealthStatus_T GetHealthStatus; DAC960_V2_HealthStatusBuffer_T HealthStatusBuffer; DAC960_Controller_T *Controller; int ControllerNumber; if (UserSpaceGetHealthStatus == NULL) { ErrorCode = -EINVAL; break; } if (copy_from_user(&GetHealthStatus, UserSpaceGetHealthStatus, sizeof(DAC960_V2_GetHealthStatus_T))) { ErrorCode = -EFAULT; break; } ErrorCode = -ENXIO; ControllerNumber = GetHealthStatus.ControllerNumber; if (ControllerNumber < 0 || ControllerNumber > DAC960_ControllerCount - 1) break; Controller = DAC960_Controllers[ControllerNumber]; if (Controller == NULL) break; if (Controller->FirmwareType != DAC960_V2_Controller) { ErrorCode = -EINVAL; break; } if (copy_from_user(&HealthStatusBuffer, GetHealthStatus.HealthStatusBuffer, sizeof(DAC960_V2_HealthStatusBuffer_T))) { ErrorCode = -EFAULT; break; } ErrorCode = wait_event_interruptible_timeout(Controller->HealthStatusWaitQueue, !(Controller->V2.HealthStatusBuffer->StatusChangeCounter == HealthStatusBuffer.StatusChangeCounter && Controller->V2.HealthStatusBuffer->NextEventSequenceNumber == HealthStatusBuffer.NextEventSequenceNumber), DAC960_MonitoringTimerInterval); if (ErrorCode == -ERESTARTSYS) { ErrorCode = -EINTR; break; } if (copy_to_user(GetHealthStatus.HealthStatusBuffer, Controller->V2.HealthStatusBuffer, sizeof(DAC960_V2_HealthStatusBuffer_T))) ErrorCode = -EFAULT; else ErrorCode = 0; } break; default: ErrorCode = -ENOTTY; } mutex_unlock(&DAC960_mutex); return ErrorCode; } static const struct file_operations DAC960_gam_fops = { .owner = THIS_MODULE, .unlocked_ioctl = DAC960_gam_ioctl, .llseek = noop_llseek, }; static struct miscdevice DAC960_gam_dev = { DAC960_GAM_MINOR, "dac960_gam", &DAC960_gam_fops }; static int DAC960_gam_init(void) { int ret; ret = misc_register(&DAC960_gam_dev); if (ret) printk(KERN_ERR "DAC960_gam: can't misc_register on minor %d\n", DAC960_GAM_MINOR); return ret; } static void DAC960_gam_cleanup(void) { misc_deregister(&DAC960_gam_dev); } #endif /* DAC960_GAM_MINOR */ static struct DAC960_privdata DAC960_GEM_privdata = { .HardwareType = DAC960_GEM_Controller, .FirmwareType = DAC960_V2_Controller, .InterruptHandler = DAC960_GEM_InterruptHandler, .MemoryWindowSize = DAC960_GEM_RegisterWindowSize, }; static struct DAC960_privdata DAC960_BA_privdata = { .HardwareType = DAC960_BA_Controller, .FirmwareType = DAC960_V2_Controller, .InterruptHandler = DAC960_BA_InterruptHandler, .MemoryWindowSize = DAC960_BA_RegisterWindowSize, }; static struct DAC960_privdata DAC960_LP_privdata = { .HardwareType = DAC960_LP_Controller, .FirmwareType = DAC960_V2_Controller, .InterruptHandler = DAC960_LP_InterruptHandler, .MemoryWindowSize = DAC960_LP_RegisterWindowSize, }; static struct DAC960_privdata DAC960_LA_privdata = { .HardwareType = DAC960_LA_Controller, .FirmwareType = DAC960_V1_Controller, .InterruptHandler = DAC960_LA_InterruptHandler, .MemoryWindowSize = DAC960_LA_RegisterWindowSize, }; static struct DAC960_privdata DAC960_PG_privdata = { .HardwareType = DAC960_PG_Controller, .FirmwareType = DAC960_V1_Controller, .InterruptHandler = DAC960_PG_InterruptHandler, .MemoryWindowSize = DAC960_PG_RegisterWindowSize, }; static struct DAC960_privdata DAC960_PD_privdata = { .HardwareType = DAC960_PD_Controller, .FirmwareType = DAC960_V1_Controller, .InterruptHandler = DAC960_PD_InterruptHandler, .MemoryWindowSize = DAC960_PD_RegisterWindowSize, }; static struct DAC960_privdata DAC960_P_privdata = { .HardwareType = DAC960_P_Controller, .FirmwareType = DAC960_V1_Controller, .InterruptHandler = DAC960_P_InterruptHandler, .MemoryWindowSize = DAC960_PD_RegisterWindowSize, }; static const struct pci_device_id DAC960_id_table[] = { { .vendor = PCI_VENDOR_ID_MYLEX, .device = PCI_DEVICE_ID_MYLEX_DAC960_GEM, .subvendor = PCI_VENDOR_ID_MYLEX, .subdevice = PCI_ANY_ID, .driver_data = (unsigned long) &DAC960_GEM_privdata, }, { .vendor = PCI_VENDOR_ID_MYLEX, .device = PCI_DEVICE_ID_MYLEX_DAC960_BA, .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID, .driver_data = (unsigned long) &DAC960_BA_privdata, }, { .vendor = PCI_VENDOR_ID_MYLEX, .device = PCI_DEVICE_ID_MYLEX_DAC960_LP, .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID, .driver_data = (unsigned long) &DAC960_LP_privdata, }, { .vendor = PCI_VENDOR_ID_DEC, .device = PCI_DEVICE_ID_DEC_21285, .subvendor = PCI_VENDOR_ID_MYLEX, .subdevice = PCI_DEVICE_ID_MYLEX_DAC960_LA, .driver_data = (unsigned long) &DAC960_LA_privdata, }, { .vendor = PCI_VENDOR_ID_MYLEX, .device = PCI_DEVICE_ID_MYLEX_DAC960_PG, .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID, .driver_data = (unsigned long) &DAC960_PG_privdata, }, { .vendor = PCI_VENDOR_ID_MYLEX, .device = PCI_DEVICE_ID_MYLEX_DAC960_PD, .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID, .driver_data = (unsigned long) &DAC960_PD_privdata, }, { .vendor = PCI_VENDOR_ID_MYLEX, .device = PCI_DEVICE_ID_MYLEX_DAC960_P, .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID, .driver_data = (unsigned long) &DAC960_P_privdata, }, {0, }, }; MODULE_DEVICE_TABLE(pci, DAC960_id_table); static struct pci_driver DAC960_pci_driver = { .name = "DAC960", .id_table = DAC960_id_table, .probe = DAC960_Probe, .remove = DAC960_Remove, }; static int __init DAC960_init_module(void) { int ret; ret = pci_register_driver(&DAC960_pci_driver); #ifdef DAC960_GAM_MINOR if (!ret) DAC960_gam_init(); #endif return ret; } static void __exit DAC960_cleanup_module(void) { int i; #ifdef DAC960_GAM_MINOR DAC960_gam_cleanup(); #endif for (i = 0; i < DAC960_ControllerCount; i++) { DAC960_Controller_T *Controller = DAC960_Controllers[i]; if (Controller == NULL) continue; DAC960_FinalizeController(Controller); } if (DAC960_ProcDirectoryEntry != NULL) { remove_proc_entry("rd/status", NULL); remove_proc_entry("rd", NULL); } DAC960_ControllerCount = 0; pci_unregister_driver(&DAC960_pci_driver); } module_init(DAC960_init_module); module_exit(DAC960_cleanup_module); MODULE_LICENSE("GPL");