aboutsummaryrefslogtreecommitdiffstats
path: root/include/linux/rculist.h
blob: e649bd3f2c976c3f5bed58c067c351a336403e75 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
#ifndef _LINUX_RCULIST_H
#define _LINUX_RCULIST_H

#ifdef __KERNEL__

/*
 * RCU-protected list version
 */
#include <linux/list.h>
#include <linux/rcupdate.h>

/*
 * Insert a new entry between two known consecutive entries.
 *
 * This is only for internal list manipulation where we know
 * the prev/next entries already!
 */
static inline void __list_add_rcu(struct list_head *new,
		struct list_head *prev, struct list_head *next)
{
	new->next = next;
	new->prev = prev;
	rcu_assign_pointer(prev->next, new);
	next->prev = new;
}

/**
 * list_add_rcu - add a new entry to rcu-protected list
 * @new: new entry to be added
 * @head: list head to add it after
 *
 * Insert a new entry after the specified head.
 * This is good for implementing stacks.
 *
 * The caller must take whatever precautions are necessary
 * (such as holding appropriate locks) to avoid racing
 * with another list-mutation primitive, such as list_add_rcu()
 * or list_del_rcu(), running on this same list.
 * However, it is perfectly legal to run concurrently with
 * the _rcu list-traversal primitives, such as
 * list_for_each_entry_rcu().
 */
static inline void list_add_rcu(struct list_head *new, struct list_head *head)
{
	__list_add_rcu(new, head, head->next);
}

/**
 * list_add_tail_rcu - add a new entry to rcu-protected list
 * @new: new entry to be added
 * @head: list head to add it before
 *
 * Insert a new entry before the specified head.
 * This is useful for implementing queues.
 *
 * The caller must take whatever precautions are necessary
 * (such as holding appropriate locks) to avoid racing
 * with another list-mutation primitive, such as list_add_tail_rcu()
 * or list_del_rcu(), running on this same list.
 * However, it is perfectly legal to run concurrently with
 * the _rcu list-traversal primitives, such as
 * list_for_each_entry_rcu().
 */
static inline void list_add_tail_rcu(struct list_head *new,
					struct list_head *head)
{
	__list_add_rcu(new, head->prev, head);
}

/**
 * list_del_rcu - deletes entry from list without re-initialization
 * @entry: the element to delete from the list.
 *
 * Note: list_empty() on entry does not return true after this,
 * the entry is in an undefined state. It is useful for RCU based
 * lockfree traversal.
 *
 * In particular, it means that we can not poison the forward
 * pointers that may still be used for walking the list.
 *
 * The caller must take whatever precautions are necessary
 * (such as holding appropriate locks) to avoid racing
 * with another list-mutation primitive, such as list_del_rcu()
 * or list_add_rcu(), running on this same list.
 * However, it is perfectly legal to run concurrently with
 * the _rcu list-traversal primitives, such as
 * list_for_each_entry_rcu().
 *
 * Note that the caller is not permitted to immediately free
 * the newly deleted entry.  Instead, either synchronize_rcu()
 * or call_rcu() must be used to defer freeing until an RCU
 * grace period has elapsed.
 */
static inline void list_del_rcu(struct list_head *entry)
{
	__list_del(entry->prev, entry->next);
	entry->prev = LIST_POISON2;
}

/**
 * hlist_del_init_rcu - deletes entry from hash list with re-initialization
 * @n: the element to delete from the hash list.
 *
 * Note: list_unhashed() on the node return true after this. It is
 * useful for RCU based read lockfree traversal if the writer side
 * must know if the list entry is still hashed or already unhashed.
 *
 * In particular, it means that we can not poison the forward pointers
 * that may still be used for walking the hash list and we can only
 * zero the pprev pointer so list_unhashed() will return true after
 * this.
 *
 * The caller must take whatever precautions are necessary (such as
 * holding appropriate locks) to avoid racing with another
 * list-mutation primitive, such as hlist_add_head_rcu() or
 * hlist_del_rcu(), running on this same list.  However, it is
 * perfectly legal to run concurrently with the _rcu list-traversal
 * primitives, such as hlist_for_each_entry_rcu().
 */
static inline void hlist_del_init_rcu(struct hlist_node *n)
{
	if (!hlist_unhashed(n)) {
		__hlist_del(n);
		n->pprev = NULL;
	}
}

/**
 * list_replace_rcu - replace old entry by new one
 * @old : the element to be replaced
 * @new : the new element to insert
 *
 * The @old entry will be replaced with the @new entry atomically.
 * Note: @old should not be empty.
 */
static inline void list_replace_rcu(struct list_head *old,
				struct list_head *new)
{
	new->next = old->next;
	new->prev = old->prev;
	rcu_assign_pointer(new->prev->next, new);
	new->next->prev = new;
	old->prev = LIST_POISON2;
}

/**
 * list_splice_init_rcu - splice an RCU-protected list into an existing list.
 * @list:	the RCU-protected list to splice
 * @head:	the place in the list to splice the first list into
 * @sync:	function to sync: synchronize_rcu(), synchronize_sched(), ...
 *
 * @head can be RCU-read traversed concurrently with this function.
 *
 * Note that this function blocks.
 *
 * Important note: the caller must take whatever action is necessary to
 *	prevent any other updates to @head.  In principle, it is possible
 *	to modify the list as soon as sync() begins execution.
 *	If this sort of thing becomes necessary, an alternative version
 *	based on call_rcu() could be created.  But only if -really-
 *	needed -- there is no shortage of RCU API members.
 */
static inline void list_splice_init_rcu(struct list_head *list,
					struct list_head *head,
					void (*sync)(void))
{
	struct list_head *first = list->next;
	struct list_head *last = list->prev;
	struct list_head *at = head->next;

	if (list_empty(head))
		return;

	/* "first" and "last" tracking list, so initialize it. */

	INIT_LIST_HEAD(list);

	/*
	 * At this point, the list body still points to the source list.
	 * Wait for any readers to finish using the list before splicing
	 * the list body into the new list.  Any new readers will see
	 * an empty list.
	 */

	sync();

	/*
	 * Readers are finished with the source list, so perform splice.
	 * The order is important if the new list is global and accessible
	 * to concurrent RCU readers.  Note that RCU readers are not
	 * permitted to traverse the prev pointers without excluding
	 * this function.
	 */

	last->next = at;
	rcu_assign_pointer(head->next, first);
	first->prev = head;
	at->prev = last;
}

#define __list_for_each_rcu(pos, head) \
	for (pos = rcu_dereference((head)->next); \
		pos != (head); \
		pos = rcu_dereference(pos->next))

/**
 * list_for_each_entry_rcu	-	iterate over rcu list of given type
 * @pos:	the type * to use as a loop cursor.
 * @head:	the head for your list.
 * @member:	the name of the list_struct within the struct.
 *
 * This list-traversal primitive may safely run concurrently with
 * the _rcu list-mutation primitives such as list_add_rcu()
 * as long as the traversal is guarded by rcu_read_lock().
 */
#define list_for_each_entry_rcu(pos, head, member) \
	for (pos = list_entry(rcu_dereference((head)->next), typeof(*pos), member); \
		prefetch(pos->member.next), &pos->member != (head); \
		pos = list_entry(rcu_dereference(pos->member.next), typeof(*pos), member))


/**
 * list_for_each_continue_rcu
 * @pos:	the &struct list_head to use as a loop cursor.
 * @head:	the head for your list.
 *
 * Iterate over an rcu-protected list, continuing after current point.
 *
 * This list-traversal primitive may safely run concurrently with
 * the _rcu list-mutation primitives such as list_add_rcu()
 * as long as the traversal is guarded by rcu_read_lock().
 */
#define list_for_each_continue_rcu(pos, head) \
	for ((pos) = rcu_dereference((pos)->next); \
		prefetch((pos)->next), (pos) != (head); \
		(pos) = rcu_dereference((pos)->next))

/**
 * hlist_del_rcu - deletes entry from hash list without re-initialization
 * @n: the element to delete from the hash list.
 *
 * Note: list_unhashed() on entry does not return true after this,
 * the entry is in an undefined state. It is useful for RCU based
 * lockfree traversal.
 *
 * In particular, it means that we can not poison the forward
 * pointers that may still be used for walking the hash list.
 *
 * The caller must take whatever precautions are necessary
 * (such as holding appropriate locks) to avoid racing
 * with another list-mutation primitive, such as hlist_add_head_rcu()
 * or hlist_del_rcu(), running on this same list.
 * However, it is perfectly legal to run concurrently with
 * the _rcu list-traversal primitives, such as
 * hlist_for_each_entry().
 */
static inline void hlist_del_rcu(struct hlist_node *n)
{
	__hlist_del(n);
	n->pprev = LIST_POISON2;
}

/**
 * hlist_replace_rcu - replace old entry by new one
 * @old : the element to be replaced
 * @new : the new element to insert
 *
 * The @old entry will be replaced with the @new entry atomically.
 */
static inline void hlist_replace_rcu(struct hlist_node *old,
					struct hlist_node *new)
{
	struct hlist_node *next = old->next;

	new->next = next;
	new->pprev = old->pprev;
	rcu_assign_pointer(*new->pprev, new);
	if (next)
		new->next->pprev = &new->next;
	old->pprev = LIST_POISON2;
}

/**
 * hlist_add_head_rcu
 * @n: the element to add to the hash list.
 * @h: the list to add to.
 *
 * Description:
 * Adds the specified element to the specified hlist,
 * while permitting racing traversals.
 *
 * The caller must take whatever precautions are necessary
 * (such as holding appropriate locks) to avoid racing
 * with another list-mutation primitive, such as hlist_add_head_rcu()
 * or hlist_del_rcu(), running on this same list.
 * However, it is perfectly legal to run concurrently with
 * the _rcu list-traversal primitives, such as
 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
 * problems on Alpha CPUs.  Regardless of the type of CPU, the
 * list-traversal primitive must be guarded by rcu_read_lock().
 */
static inline void hlist_add_head_rcu(struct hlist_node *n,
					struct hlist_head *h)
{
	struct hlist_node *first = h->first;

	n->next = first;
	n->pprev = &h->first;
	rcu_assign_pointer(h->first, n);
	if (first)
		first->pprev = &n->next;
}

/**
 * hlist_add_before_rcu
 * @n: the new element to add to the hash list.
 * @next: the existing element to add the new element before.
 *
 * Description:
 * Adds the specified element to the specified hlist
 * before the specified node while permitting racing traversals.
 *
 * The caller must take whatever precautions are necessary
 * (such as holding appropriate locks) to avoid racing
 * with another list-mutation primitive, such as hlist_add_head_rcu()
 * or hlist_del_rcu(), running on this same list.
 * However, it is perfectly legal to run concurrently with
 * the _rcu list-traversal primitives, such as
 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
 * problems on Alpha CPUs.
 */
static inline void hlist_add_before_rcu(struct hlist_node *n,
					struct hlist_node *next)
{
	n->pprev = next->pprev;
	n->next = next;
	rcu_assign_pointer(*(n->pprev), n);
	next->pprev = &n->next;
}

/**
 * hlist_add_after_rcu
 * @prev: the existing element to add the new element after.
 * @n: the new element to add to the hash list.
 *
 * Description:
 * Adds the specified element to the specified hlist
 * after the specified node while permitting racing traversals.
 *
 * The caller must take whatever precautions are necessary
 * (such as holding appropriate locks) to avoid racing
 * with another list-mutation primitive, such as hlist_add_head_rcu()
 * or hlist_del_rcu(), running on this same list.
 * However, it is perfectly legal to run concurrently with
 * the _rcu list-traversal primitives, such as
 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
 * problems on Alpha CPUs.
 */
static inline void hlist_add_after_rcu(struct hlist_node *prev,
				       struct hlist_node *n)
{
	n->next = prev->next;
	n->pprev = &prev->next;
	rcu_assign_pointer(prev->next, n);
	if (n->next)
		n->next->pprev = &n->next;
}

/**
 * hlist_for_each_entry_rcu - iterate over rcu list of given type
 * @tpos:	the type * to use as a loop cursor.
 * @pos:	the &struct hlist_node to use as a loop cursor.
 * @head:	the head for your list.
 * @member:	the name of the hlist_node within the struct.
 *
 * This list-traversal primitive may safely run concurrently with
 * the _rcu list-mutation primitives such as hlist_add_head_rcu()
 * as long as the traversal is guarded by rcu_read_lock().
 */
#define hlist_for_each_entry_rcu(tpos, pos, head, member)		 \
	for (pos = rcu_dereference((head)->first);			 \
		pos && ({ prefetch(pos->next); 1; }) &&			 \
		({ tpos = hlist_entry(pos, typeof(*tpos), member); 1; }); \
		pos = rcu_dereference(pos->next))

#endif	/* __KERNEL__ */
#endif