aboutsummaryrefslogtreecommitdiffstats
path: root/include/linux/oom.h
blob: 647395a1a5508f7f138e80ad24afea4fd09638d3 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
#ifndef __INCLUDE_LINUX_OOM_H
#define __INCLUDE_LINUX_OOM_H


#include <linux/sched.h>
#include <linux/types.h>
#include <linux/nodemask.h>
#include <uapi/linux/oom.h>

struct zonelist;
struct notifier_block;
struct mem_cgroup;
struct task_struct;

/*
 * Types of limitations to the nodes from which allocations may occur
 */
enum oom_constraint {
	CONSTRAINT_NONE,
	CONSTRAINT_CPUSET,
	CONSTRAINT_MEMORY_POLICY,
	CONSTRAINT_MEMCG,
};

enum oom_scan_t {
	OOM_SCAN_OK,		/* scan thread and find its badness */
	OOM_SCAN_CONTINUE,	/* do not consider thread for oom kill */
	OOM_SCAN_ABORT,		/* abort the iteration and return */
	OOM_SCAN_SELECT,	/* always select this thread first */
};

/* Thread is the potential origin of an oom condition; kill first on oom */
#define OOM_FLAG_ORIGIN		((__force oom_flags_t)0x1)

static inline void set_current_oom_origin(void)
{
	current->signal->oom_flags |= OOM_FLAG_ORIGIN;
}

static inline void clear_current_oom_origin(void)
{
	current->signal->oom_flags &= ~OOM_FLAG_ORIGIN;
}

static inline bool oom_task_origin(const struct task_struct *p)
{
	return !!(p->signal->oom_flags & OOM_FLAG_ORIGIN);
}

extern unsigned long oom_badness(struct task_struct *p,
		struct mem_cgroup *memcg, const nodemask_t *nodemask,
		unsigned long totalpages);
extern void oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order,
			     unsigned int points, unsigned long totalpages,
			     struct mem_cgroup *memcg, nodemask_t *nodemask,
			     const char *message);

extern bool oom_zonelist_trylock(struct zonelist *zonelist, gfp_t gfp_flags);
extern void oom_zonelist_unlock(struct zonelist *zonelist, gfp_t gfp_flags);

extern void check_panic_on_oom(enum oom_constraint constraint, gfp_t gfp_mask,
			       int order, const nodemask_t *nodemask);

extern enum oom_scan_t oom_scan_process_thread(struct task_struct *task,
		unsigned long totalpages, const nodemask_t *nodemask,
		bool force_kill);

extern void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask,
		int order, nodemask_t *mask, bool force_kill);
extern int register_oom_notifier(struct notifier_block *nb);
extern int unregister_oom_notifier(struct notifier_block *nb);

extern bool oom_killer_disabled;

static inline void oom_killer_disable(void)
{
	oom_killer_disabled = true;
}

static inline void oom_killer_enable(void)
{
	oom_killer_disabled = false;
}

static inline bool oom_gfp_allowed(gfp_t gfp_mask)
{
	return (gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY);
}

extern struct task_struct *find_lock_task_mm(struct task_struct *p);

/* sysctls */
extern int sysctl_oom_dump_tasks;
extern int sysctl_oom_kill_allocating_task;
extern int sysctl_panic_on_oom;
#endif /* _INCLUDE_LINUX_OOM_H */
">= dm355evm_msp_read(DM355EVM_MSP_RTC_2); if (status < 0) return status; if (tries && time.bytes[2] == status) break; time.bytes[2] = status; status = dm355evm_msp_read(DM355EVM_MSP_RTC_3); if (status < 0) return status; if (tries && time.bytes[3] == status) break; time.bytes[3] = status; } while (++tries < 5); dev_dbg(dev, "read timestamp %08x\n", time.value); rtc_time_to_tm(le32_to_cpu(time.value), tm); return 0; } static int dm355evm_rtc_set_time(struct device *dev, struct rtc_time *tm) { union evm_time time; unsigned long value; int status; rtc_tm_to_time(tm, &value); time.value = cpu_to_le32(value); dev_dbg(dev, "write timestamp %08x\n", time.value); /* * REVISIT handle non-atomic writes ... maybe just retry until * byte[1] sticks (no rollover)? */ status = dm355evm_msp_write(time.bytes[0], DM355EVM_MSP_RTC_0); if (status < 0) return status; status = dm355evm_msp_write(time.bytes[1], DM355EVM_MSP_RTC_1); if (status < 0) return status; status = dm355evm_msp_write(time.bytes[2], DM355EVM_MSP_RTC_2); if (status < 0) return status; status = dm355evm_msp_write(time.bytes[3], DM355EVM_MSP_RTC_3); if (status < 0) return status; return 0; } static const struct rtc_class_ops dm355evm_rtc_ops = { .read_time = dm355evm_rtc_read_time, .set_time = dm355evm_rtc_set_time, }; /*----------------------------------------------------------------------*/ static int dm355evm_rtc_probe(struct platform_device *pdev) { struct rtc_device *rtc; rtc = devm_rtc_device_register(&pdev->dev, pdev->name, &dm355evm_rtc_ops, THIS_MODULE); if (IS_ERR(rtc)) { dev_err(&pdev->dev, "can't register RTC device, err %ld\n", PTR_ERR(rtc)); return PTR_ERR(rtc); } platform_set_drvdata(pdev, rtc); return 0; } /* * I2C is used to talk to the MSP430, but this platform device is * exposed by an MFD driver that manages I2C communications. */ static struct platform_driver rtc_dm355evm_driver = { .probe = dm355evm_rtc_probe, .driver = { .name = "rtc-dm355evm", }, }; module_platform_driver(rtc_dm355evm_driver); MODULE_LICENSE("GPL");