aboutsummaryrefslogtreecommitdiffstats
path: root/include/asm-avr32/io.h
blob: c08e810483936534ba6da061cde31a6050dfb904 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
#ifndef __ASM_AVR32_IO_H
#define __ASM_AVR32_IO_H

#include <linux/string.h>

#ifdef __KERNEL__

#include <asm/addrspace.h>
#include <asm/byteorder.h>

/* virt_to_phys will only work when address is in P1 or P2 */
static __inline__ unsigned long virt_to_phys(volatile void *address)
{
	return PHYSADDR(address);
}

static __inline__ void * phys_to_virt(unsigned long address)
{
	return (void *)P1SEGADDR(address);
}

#define cached_to_phys(addr)	((unsigned long)PHYSADDR(addr))
#define uncached_to_phys(addr)	((unsigned long)PHYSADDR(addr))
#define phys_to_cached(addr)	((void *)P1SEGADDR(addr))
#define phys_to_uncached(addr)	((void *)P2SEGADDR(addr))

/*
 * Generic IO read/write.  These perform native-endian accesses.  Note
 * that some architectures will want to re-define __raw_{read,write}w.
 */
extern void __raw_writesb(void __iomem *addr, const void *data, int bytelen);
extern void __raw_writesw(void __iomem *addr, const void *data, int wordlen);
extern void __raw_writesl(void __iomem *addr, const void *data, int longlen);

extern void __raw_readsb(const void __iomem *addr, void *data, int bytelen);
extern void __raw_readsw(const void __iomem *addr, void *data, int wordlen);
extern void __raw_readsl(const void __iomem *addr, void *data, int longlen);

static inline void writeb(unsigned char b, volatile void __iomem *addr)
{
	*(volatile unsigned char __force *)addr = b;
}
static inline void writew(unsigned short b, volatile void __iomem *addr)
{
	*(volatile unsigned short __force *)addr = b;
}
static inline void writel(unsigned int b, volatile void __iomem *addr)
{
	*(volatile unsigned int __force *)addr = b;
}
#define __raw_writeb writeb
#define __raw_writew writew
#define __raw_writel writel

static inline unsigned char readb(const volatile void __iomem *addr)
{
	return *(const volatile unsigned char __force *)addr;
}
static inline unsigned short readw(const volatile void __iomem *addr)
{
	return *(const volatile unsigned short __force *)addr;
}
static inline unsigned int readl(const volatile void __iomem *addr)
{
	return *(const volatile unsigned int __force *)addr;
}
#define __raw_readb readb
#define __raw_readw readw
#define __raw_readl readl

#define writesb(p, d, l)	__raw_writesb((unsigned int)p, d, l)
#define writesw(p, d, l)	__raw_writesw((unsigned int)p, d, l)
#define writesl(p, d, l)	__raw_writesl((unsigned int)p, d, l)

#define readsb(p, d, l)		__raw_readsb((unsigned int)p, d, l)
#define readsw(p, d, l)		__raw_readsw((unsigned int)p, d, l)
#define readsl(p, d, l)		__raw_readsl((unsigned int)p, d, l)


/*
 * io{read,write}{8,16,32} macros in both le (for PCI style consumers) and native be
 */
#ifndef ioread8

#define ioread8(p)	({ unsigned int __v = __raw_readb(p); __v; })

#define ioread16(p)	({ unsigned int __v = le16_to_cpu(__raw_readw(p)); __v; })
#define ioread16be(p)	({ unsigned int __v = be16_to_cpu(__raw_readw(p)); __v; })

#define ioread32(p)	({ unsigned int __v = le32_to_cpu(__raw_readl(p)); __v; })
#define ioread32be(p)	({ unsigned int __v = be32_to_cpu(__raw_readl(p)); __v; })

#define iowrite8(v,p)	__raw_writeb(v, p)

#define iowrite16(v,p)	__raw_writew(cpu_to_le16(v), p)
#define iowrite16be(v,p)	__raw_writew(cpu_to_be16(v), p)

#define iowrite32(v,p)	__raw_writel(cpu_to_le32(v), p)
#define iowrite32be(v,p)	__raw_writel(cpu_to_be32(v), p)

#define ioread8_rep(p,d,c)	__raw_readsb(p,d,c)
#define ioread16_rep(p,d,c)	__raw_readsw(p,d,c)
#define ioread32_rep(p,d,c)	__raw_readsl(p,d,c)

#define iowrite8_rep(p,s,c)	__raw_writesb(p,s,c)
#define iowrite16_rep(p,s,c)	__raw_writesw(p,s,c)
#define iowrite32_rep(p,s,c)	__raw_writesl(p,s,c)

#endif


/*
 * These two are only here because ALSA _thinks_ it needs them...
 */
static inline void memcpy_fromio(void * to, const volatile void __iomem *from,
				 unsigned long count)
{
	char *p = to;
	while (count) {
		count--;
		*p = readb(from);
		p++;
		from++;
	}
}

static inline void  memcpy_toio(volatile void __iomem *to, const void * from,
				unsigned long count)
{
	const char *p = from;
	while (count) {
		count--;
		writeb(*p, to);
		p++;
		to++;
	}
}

static inline void memset_io(volatile void __iomem *addr, unsigned char val,
			     unsigned long count)
{
	memset((void __force *)addr, val, count);
}

/*
 * Bad read/write accesses...
 */
extern void __readwrite_bug(const char *fn);

#define IO_SPACE_LIMIT	0xffffffff

/* Convert I/O port address to virtual address */
#define __io(p)		((void __iomem *)phys_to_uncached(p))

/*
 *  IO port access primitives
 *  -------------------------
 *
 * The AVR32 doesn't have special IO access instructions; all IO is memory
 * mapped. Note that these are defined to perform little endian accesses
 * only. Their primary purpose is to access PCI and ISA peripherals.
 *
 * Note that for a big endian machine, this implies that the following
 * big endian mode connectivity is in place.
 *
 * The machine specific io.h include defines __io to translate an "IO"
 * address to a memory address.
 *
 * Note that we prevent GCC re-ordering or caching values in expressions
 * by introducing sequence points into the in*() definitions.  Note that
 * __raw_* do not guarantee this behaviour.
 *
 * The {in,out}[bwl] macros are for emulating x86-style PCI/ISA IO space.
 */
#define outb(v, p)		__raw_writeb(v, __io(p))
#define outw(v, p)		__raw_writew(cpu_to_le16(v), __io(p))
#define outl(v, p)		__raw_writel(cpu_to_le32(v), __io(p))

#define inb(p)			__raw_readb(__io(p))
#define inw(p)			le16_to_cpu(__raw_readw(__io(p)))
#define inl(p)			le32_to_cpu(__raw_readl(__io(p)))

static inline void __outsb(unsigned long port, void *addr, unsigned int count)
{
	while (count--) {
		outb(*(u8 *)addr, port);
		addr++;
	}
}

static inline void __insb(unsigned long port, void *addr, unsigned int count)
{
	while (count--) {
		*(u8 *)addr = inb(port);
		addr++;
	}
}

static inline void __outsw(unsigned long port, void *addr, unsigned int count)
{
	while (count--) {
		outw(*(u16 *)addr, port);
		addr += 2;
	}
}

static inline void __insw(unsigned long port, void *addr, unsigned int count)
{
	while (count--) {
		*(u16 *)addr = inw(port);
		addr += 2;
	}
}

static inline void __outsl(unsigned long port, void *addr, unsigned int count)
{
	while (count--) {
		outl(*(u32 *)addr, port);
		addr += 4;
	}
}

static inline void __insl(unsigned long port, void *addr, unsigned int count)
{
	while (count--) {
		*(u32 *)addr = inl(port);
		addr += 4;
	}
}

#define outsb(port, addr, count)	__outsb(port, addr, count)
#define insb(port, addr, count)		__insb(port, addr, count)
#define outsw(port, addr, count)	__outsw(port, addr, count)
#define insw(port, addr, count)		__insw(port, addr, count)
#define outsl(port, addr, count)	__outsl(port, addr, count)
#define insl(port, addr, count)		__insl(port, addr, count)

extern void __iomem *__ioremap(unsigned long offset, size_t size,
			       unsigned long flags);
extern void __iounmap(void __iomem *addr);

/*
 * ioremap	-   map bus memory into CPU space
 * @offset	bus address of the memory
 * @size	size of the resource to map
 *
 * ioremap performs a platform specific sequence of operations to make
 * bus memory CPU accessible via the readb/.../writel functions and
 * the other mmio helpers. The returned address is not guaranteed to
 * be usable directly as a virtual address.
 */
#define ioremap(offset, size)			\
	__ioremap((offset), (size), 0)

#define ioremap_nocache(offset, size)		\
	__ioremap((offset), (size), 0)

#define iounmap(addr)				\
	__iounmap(addr)

#define cached(addr) P1SEGADDR(addr)
#define uncached(addr) P2SEGADDR(addr)

#define virt_to_bus virt_to_phys
#define bus_to_virt phys_to_virt
#define page_to_bus page_to_phys
#define bus_to_page phys_to_page

/*
 * Create a virtual mapping cookie for an IO port range.  There exists
 * no such thing as port-based I/O on AVR32, so a regular ioremap()
 * should do what we need.
 */
#define ioport_map(port, nr)	ioremap(port, nr)
#define ioport_unmap(port)	iounmap(port)

#define dma_cache_wback_inv(_start, _size)	\
	flush_dcache_region(_start, _size)
#define dma_cache_inv(_start, _size)		\
	invalidate_dcache_region(_start, _size)
#define dma_cache_wback(_start, _size)		\
	clean_dcache_region(_start, _size)

/*
 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
 * access
 */
#define xlate_dev_mem_ptr(p)    __va(p)

/*
 * Convert a virtual cached pointer to an uncached pointer
 */
#define xlate_dev_kmem_ptr(p)   p

#endif /* __KERNEL__ */

#endif /* __ASM_AVR32_IO_H */