blob: d55754fe8925c537ac2ff5e117007c0370a41ee0 (
plain) (
blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
|
/*
* JFFS2 -- Journalling Flash File System, Version 2.
*
* Copyright (C) 2001, 2002 Red Hat, Inc.
*
* Created by David Woodhouse <dwmw2@infradead.org>
*
* For licensing information, see the file 'LICENCE' in this directory.
*
* $Id: symlink.c,v 1.19 2005/11/07 11:14:42 gleixner Exp $
*
*/
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/fs.h>
#include <linux/namei.h>
#include "nodelist.h"
static void *jffs2_follow_link(struct dentry *dentry, struct nameidata *nd);
struct inode_operations jffs2_symlink_inode_operations =
{
.readlink = generic_readlink,
.follow_link = jffs2_follow_link,
.setattr = jffs2_setattr
};
static void *jffs2_follow_link(struct dentry *dentry, struct nameidata *nd)
{
struct jffs2_inode_info *f = JFFS2_INODE_INFO(dentry->d_inode);
char *p = (char *)f->target;
/*
* We don't acquire the f->sem mutex here since the only data we
* use is f->target.
*
* 1. If we are here the inode has already built and f->target has
* to point to the target path.
* 2. Nobody uses f->target (if the inode is symlink's inode). The
* exception is inode freeing function which frees f->target. But
* it can't be called while we are here and before VFS has
* stopped using our f->target string which we provide by means of
* nd_set_link() call.
*/
if (!p) {
printk(KERN_ERR "jffs2_follow_link(): can't find symlink taerget\n");
p = ERR_PTR(-EIO);
}
D1(printk(KERN_DEBUG "jffs2_follow_link(): target path is '%s'\n", (char *) f->target));
nd_set_link(nd, p);
/*
* We will unlock the f->sem mutex but VFS will use the f->target string. This is safe
* since the only way that may cause f->target to be changed is iput() operation.
* But VFS will not use f->target after iput() has been called.
*/
return NULL;
}
|