aboutsummaryrefslogtreecommitdiffstats
path: root/fs/jbd/commit.c
blob: 34a4861c14b85d493a8b653c4ce700a4c580842e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
/*
 * linux/fs/jbd/commit.c
 *
 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
 *
 * Copyright 1998 Red Hat corp --- All Rights Reserved
 *
 * This file is part of the Linux kernel and is made available under
 * the terms of the GNU General Public License, version 2, or at your
 * option, any later version, incorporated herein by reference.
 *
 * Journal commit routines for the generic filesystem journaling code;
 * part of the ext2fs journaling system.
 */

#include <linux/time.h>
#include <linux/fs.h>
#include <linux/jbd.h>
#include <linux/errno.h>
#include <linux/mm.h>
#include <linux/pagemap.h>
#include <linux/bio.h>

/*
 * Default IO end handler for temporary BJ_IO buffer_heads.
 */
static void journal_end_buffer_io_sync(struct buffer_head *bh, int uptodate)
{
	BUFFER_TRACE(bh, "");
	if (uptodate)
		set_buffer_uptodate(bh);
	else
		clear_buffer_uptodate(bh);
	unlock_buffer(bh);
}

/*
 * When an ext3-ordered file is truncated, it is possible that many pages are
 * not successfully freed, because they are attached to a committing transaction.
 * After the transaction commits, these pages are left on the LRU, with no
 * ->mapping, and with attached buffers.  These pages are trivially reclaimable
 * by the VM, but their apparent absence upsets the VM accounting, and it makes
 * the numbers in /proc/meminfo look odd.
 *
 * So here, we have a buffer which has just come off the forget list.  Look to
 * see if we can strip all buffers from the backing page.
 *
 * Called under journal->j_list_lock.  The caller provided us with a ref
 * against the buffer, and we drop that here.
 */
static void release_buffer_page(struct buffer_head *bh)
{
	struct page *page;

	if (buffer_dirty(bh))
		goto nope;
	if (atomic_read(&bh->b_count) != 1)
		goto nope;
	page = bh->b_page;
	if (!page)
		goto nope;
	if (page->mapping)
		goto nope;

	/* OK, it's a truncated page */
	if (!trylock_page(page))
		goto nope;

	page_cache_get(page);
	__brelse(bh);
	try_to_free_buffers(page);
	unlock_page(page);
	page_cache_release(page);
	return;

nope:
	__brelse(bh);
}

/*
 * Decrement reference counter for data buffer. If it has been marked
 * 'BH_Freed', release it and the page to which it belongs if possible.
 */
static void release_data_buffer(struct buffer_head *bh)
{
	if (buffer_freed(bh)) {
		clear_buffer_freed(bh);
		release_buffer_page(bh);
	} else
		put_bh(bh);
}

/*
 * Try to acquire jbd_lock_bh_state() against the buffer, when j_list_lock is
 * held.  For ranking reasons we must trylock.  If we lose, schedule away and
 * return 0.  j_list_lock is dropped in this case.
 */
static int inverted_lock(journal_t *journal, struct buffer_head *bh)
{
	if (!jbd_trylock_bh_state(bh)) {
		spin_unlock(&journal->j_list_lock);
		schedule();
		return 0;
	}
	return 1;
}

/* Done it all: now write the commit record.  We should have
 * cleaned up our previous buffers by now, so if we are in abort
 * mode we can now just skip the rest of the journal write
 * entirely.
 *
 * Returns 1 if the journal needs to be aborted or 0 on success
 */
static int journal_write_commit_record(journal_t *journal,
					transaction_t *commit_transaction)
{
	struct journal_head *descriptor;
	struct buffer_head *bh;
	journal_header_t *header;
	int ret;

	if (is_journal_aborted(journal))
		return 0;

	descriptor = journal_get_descriptor_buffer(journal);
	if (!descriptor)
		return 1;

	bh = jh2bh(descriptor);

	header = (journal_header_t *)(bh->b_data);
	header->h_magic = cpu_to_be32(JFS_MAGIC_NUMBER);
	header->h_blocktype = cpu_to_be32(JFS_COMMIT_BLOCK);
	header->h_sequence = cpu_to_be32(commit_transaction->t_tid);

	JBUFFER_TRACE(descriptor, "write commit block");
	set_buffer_dirty(bh);

	if (journal->j_flags & JFS_BARRIER)
		ret = __sync_dirty_buffer(bh, WRITE_SYNC | WRITE_FLUSH_FUA);
	else
		ret = sync_dirty_buffer(bh);

	put_bh(bh);		/* One for getblk() */
	journal_put_journal_head(descriptor);

	return (ret == -EIO);
}

static void journal_do_submit_data(struct buffer_head **wbuf, int bufs,
				   int write_op)
{
	int i;

	for (i = 0; i < bufs; i++) {
		wbuf[i]->b_end_io = end_buffer_write_sync;
		/* We use-up our safety reference in submit_bh() */
		submit_bh(write_op, wbuf[i]);
	}
}

/*
 *  Submit all the data buffers to disk
 */
static int journal_submit_data_buffers(journal_t *journal,
				       transaction_t *commit_transaction,
				       int write_op)
{
	struct journal_head *jh;
	struct buffer_head *bh;
	int locked;
	int bufs = 0;
	struct buffer_head **wbuf = journal->j_wbuf;
	int err = 0;

	/*
	 * Whenever we unlock the journal and sleep, things can get added
	 * onto ->t_sync_datalist, so we have to keep looping back to
	 * write_out_data until we *know* that the list is empty.
	 *
	 * Cleanup any flushed data buffers from the data list.  Even in
	 * abort mode, we want to flush this out as soon as possible.
	 */
write_out_data:
	cond_resched();
	spin_lock(&journal->j_list_lock);

	while (commit_transaction->t_sync_datalist) {
		jh = commit_transaction->t_sync_datalist;
		bh = jh2bh(jh);
		locked = 0;

		/* Get reference just to make sure buffer does not disappear
		 * when we are forced to drop various locks */
		get_bh(bh);
		/* If the buffer is dirty, we need to submit IO and hence
		 * we need the buffer lock. We try to lock the buffer without
		 * blocking. If we fail, we need to drop j_list_lock and do
		 * blocking lock_buffer().
		 */
		if (buffer_dirty(bh)) {
			if (!trylock_buffer(bh)) {
				BUFFER_TRACE(bh, "needs blocking lock");
				spin_unlock(&journal->j_list_lock);
				/* Write out all data to prevent deadlocks */
				journal_do_submit_data(wbuf, bufs, write_op);
				bufs = 0;
				lock_buffer(bh);
				spin_lock(&journal->j_list_lock);
			}
			locked = 1;
		}
		/* We have to get bh_state lock. Again out of order, sigh. */
		if (!inverted_lock(journal, bh)) {
			jbd_lock_bh_state(bh);
			spin_lock(&journal->j_list_lock);
		}
		/* Someone already cleaned up the buffer? */
		if (!buffer_jbd(bh) || bh2jh(bh) != jh
			|| jh->b_transaction != commit_transaction
			|| jh->b_jlist != BJ_SyncData) {
			jbd_unlock_bh_state(bh);
			if (locked)
				unlock_buffer(bh);
			BUFFER_TRACE(bh, "already cleaned up");
			release_data_buffer(bh);
			continue;
		}
		if (locked && test_clear_buffer_dirty(bh)) {
			BUFFER_TRACE(bh, "needs writeout, adding to array");
			wbuf[bufs++] = bh;
			__journal_file_buffer(jh, commit_transaction,
						BJ_Locked);
			jbd_unlock_bh_state(bh);
			if (bufs == journal->j_wbufsize) {
				spin_unlock(&journal->j_list_lock);
				journal_do_submit_data(wbuf, bufs, write_op);
				bufs = 0;
				goto write_out_data;
			}
		} else if (!locked && buffer_locked(bh)) {
			__journal_file_buffer(jh, commit_transaction,
						BJ_Locked);
			jbd_unlock_bh_state(bh);
			put_bh(bh);
		} else {
			BUFFER_TRACE(bh, "writeout complete: unfile");
			if (unlikely(!buffer_uptodate(bh)))
				err = -EIO;
			__journal_unfile_buffer(jh);
			jbd_unlock_bh_state(bh);
			if (locked)
				unlock_buffer(bh);
			journal_remove_journal_head(bh);
			/* One for our safety reference, other for
			 * journal_remove_journal_head() */
			put_bh(bh);
			release_data_buffer(bh);
		}

		if (need_resched() || spin_needbreak(&journal->j_list_lock)) {
			spin_unlock(&journal->j_list_lock);
			goto write_out_data;
		}
	}
	spin_unlock(&journal->j_list_lock);
	journal_do_submit_data(wbuf, bufs, write_op);

	return err;
}

/*
 * journal_commit_transaction
 *
 * The primary function for committing a transaction to the log.  This
 * function is called by the journal thread to begin a complete commit.
 */
void journal_commit_transaction(journal_t *journal)
{
	transaction_t *commit_transaction;
	struct journal_head *jh, *new_jh, *descriptor;
	struct buffer_head **wbuf = journal->j_wbuf;
	int bufs;
	int flags;
	int err;
	unsigned int blocknr;
	ktime_t start_time;
	u64 commit_time;
	char *tagp = NULL;
	journal_header_t *header;
	journal_block_tag_t *tag = NULL;
	int space_left = 0;
	int first_tag = 0;
	int tag_flag;
	int i;
	int write_op = WRITE_SYNC;

	/*
	 * First job: lock down the current transaction and wait for
	 * all outstanding updates to complete.
	 */

#ifdef COMMIT_STATS
	spin_lock(&journal->j_list_lock);
	summarise_journal_usage(journal);
	spin_unlock(&journal->j_list_lock);
#endif

	/* Do we need to erase the effects of a prior journal_flush? */
	if (journal->j_flags & JFS_FLUSHED) {
		jbd_debug(3, "super block updated\n");
		journal_update_superblock(journal, 1);
	} else {
		jbd_debug(3, "superblock not updated\n");
	}

	J_ASSERT(journal->j_running_transaction != NULL);
	J_ASSERT(journal->j_committing_transaction == NULL);

	commit_transaction = journal->j_running_transaction;
	J_ASSERT(commit_transaction->t_state == T_RUNNING);

	jbd_debug(1, "JBD: starting commit of transaction %d\n",
			commit_transaction->t_tid);

	spin_lock(&journal->j_state_lock);
	commit_transaction->t_state = T_LOCKED;

	/*
	 * Use plugged writes here, since we want to submit several before
	 * we unplug the device. We don't do explicit unplugging in here,
	 * instead we rely on sync_buffer() doing the unplug for us.
	 */
	if (commit_transaction->t_synchronous_commit)
		write_op = WRITE_SYNC_PLUG;
	spin_lock(&commit_transaction->t_handle_lock);
	while (commit_transaction->t_updates) {
		DEFINE_WAIT(wait);

		prepare_to_wait(&journal->j_wait_updates, &wait,
					TASK_UNINTERRUPTIBLE);
		if (commit_transaction->t_updates) {
			spin_unlock(&commit_transaction->t_handle_lock);
			spin_unlock(&journal->j_state_lock);
			schedule();
			spin_lock(&journal->j_state_lock);
			spin_lock(&commit_transaction->t_handle_lock);
		}
		finish_wait(&journal->j_wait_updates, &wait);
	}
	spin_unlock(&commit_transaction->t_handle_lock);

	J_ASSERT (commit_transaction->t_outstanding_credits <=
			journal->j_max_transaction_buffers);

	/*
	 * First thing we are allowed to do is to discard any remaining
	 * BJ_Reserved buffers.  Note, it is _not_ permissible to assume
	 * that there are no such buffers: if a large filesystem
	 * operation like a truncate needs to split itself over multiple
	 * transactions, then it may try to do a journal_restart() while
	 * there are still BJ_Reserved buffers outstanding.  These must
	 * be released cleanly from the current transaction.
	 *
	 * In this case, the filesystem must still reserve write access
	 * again before modifying the buffer in the new transaction, but
	 * we do not require it to remember exactly which old buffers it
	 * has reserved.  This is consistent with the existing behaviour
	 * that multiple journal_get_write_access() calls to the same
	 * buffer are perfectly permissable.
	 */
	while (commit_transaction->t_reserved_list) {
		jh = commit_transaction->t_reserved_list;
		JBUFFER_TRACE(jh, "reserved, unused: refile");
		/*
		 * A journal_get_undo_access()+journal_release_buffer() may
		 * leave undo-committed data.
		 */
		if (jh->b_committed_data) {
			struct buffer_head *bh = jh2bh(jh);

			jbd_lock_bh_state(bh);
			jbd_free(jh->b_committed_data, bh->b_size);
			jh->b_committed_data = NULL;
			jbd_unlock_bh_state(bh);
		}
		journal_refile_buffer(journal, jh);
	}

	/*
	 * Now try to drop any written-back buffers from the journal's
	 * checkpoint lists.  We do this *before* commit because it potentially
	 * frees some memory
	 */
	spin_lock(&journal->j_list_lock);
	__journal_clean_checkpoint_list(journal);
	spin_unlock(&journal->j_list_lock);

	jbd_debug (3, "JBD: commit phase 1\n");

	/*
	 * Switch to a new revoke table.
	 */
	journal_switch_revoke_table(journal);

	commit_transaction->t_state = T_FLUSH;
	journal->j_committing_transaction = commit_transaction;
	journal->j_running_transaction = NULL;
	start_time = ktime_get();
	commit_transaction->t_log_start = journal->j_head;
	wake_up(&journal->j_wait_transaction_locked);
	spin_unlock(&journal->j_state_lock);

	jbd_debug (3, "JBD: commit phase 2\n");

	/*
	 * Now start flushing things to disk, in the order they appear
	 * on the transaction lists.  Data blocks go first.
	 */
	err = journal_submit_data_buffers(journal, commit_transaction,
					  write_op);

	/*
	 * Wait for all previously submitted IO to complete.
	 */
	spin_lock(&journal->j_list_lock);
	while (commit_transaction->t_locked_list) {
		struct buffer_head *bh;

		jh = commit_transaction->t_locked_list->b_tprev;
		bh = jh2bh(jh);
		get_bh(bh);
		if (buffer_locked(bh)) {
			spin_unlock(&journal->j_list_lock);
			wait_on_buffer(bh);
			spin_lock(&journal->j_list_lock);
		}
		if (unlikely(!buffer_uptodate(bh))) {
			if (!trylock_page(bh->b_page)) {
				spin_unlock(&journal->j_list_lock);
				lock_page(bh->b_page);
				spin_lock(&journal->j_list_lock);
			}
			if (bh->b_page->mapping)
				set_bit(AS_EIO, &bh->b_page->mapping->flags);

			unlock_page(bh->b_page);
			SetPageError(bh->b_page);
			err = -EIO;
		}
		if (!inverted_lock(journal, bh)) {
			put_bh(bh);
			spin_lock(&journal->j_list_lock);
			continue;
		}
		if (buffer_jbd(bh) && bh2jh(bh) == jh &&
		    jh->b_transaction == commit_transaction &&
		    jh->b_jlist == BJ_Locked) {
			__journal_unfile_buffer(jh);
			jbd_unlock_bh_state(bh);
			journal_remove_journal_head(bh);
			put_bh(bh);
		} else {
			jbd_unlock_bh_state(bh);
		}
		release_data_buffer(bh);
		cond_resched_lock(&journal->j_list_lock);
	}
	spin_unlock(&journal->j_list_lock);

	if (err) {
		char b[BDEVNAME_SIZE];

		printk(KERN_WARNING
			"JBD: Detected IO errors while flushing file data "
			"on %s\n", bdevname(journal->j_fs_dev, b));
		if (journal->j_flags & JFS_ABORT_ON_SYNCDATA_ERR)
			journal_abort(journal, err);
		err = 0;
	}

	journal_write_revoke_records(journal, commit_transaction, write_op);

	/*
	 * If we found any dirty or locked buffers, then we should have
	 * looped back up to the write_out_data label.  If there weren't
	 * any then journal_clean_data_list should have wiped the list
	 * clean by now, so check that it is in fact empty.
	 */
	J_ASSERT (commit_transaction->t_sync_datalist == NULL);

	jbd_debug (3, "JBD: commit phase 3\n");

	/*
	 * Way to go: we have now written out all of the data for a
	 * transaction!  Now comes the tricky part: we need to write out
	 * metadata.  Loop over the transaction's entire buffer list:
	 */
	spin_lock(&journal->j_state_lock);
	commit_transaction->t_state = T_COMMIT;
	spin_unlock(&journal->j_state_lock);

	J_ASSERT(commit_transaction->t_nr_buffers <=
		 commit_transaction->t_outstanding_credits);

	descriptor = NULL;
	bufs = 0;
	while (commit_transaction->t_buffers) {

		/* Find the next buffer to be journaled... */

		jh = commit_transaction->t_buffers;

		/* If we're in abort mode, we just un-journal the buffer and
		   release it. */

		if (is_journal_aborted(journal)) {
			clear_buffer_jbddirty(jh2bh(jh));
			JBUFFER_TRACE(jh, "journal is aborting: refile");
			journal_refile_buffer(journal, jh);
			/* If that was the last one, we need to clean up
			 * any descriptor buffers which may have been
			 * already allocated, even if we are now
			 * aborting. */
			if (!commit_transaction->t_buffers)
				goto start_journal_io;
			continue;
		}

		/* Make sure we have a descriptor block in which to
		   record the metadata buffer. */

		if (!descriptor) {
			struct buffer_head *bh;

			J_ASSERT (bufs == 0);

			jbd_debug(4, "JBD: get descriptor\n");

			descriptor = journal_get_descriptor_buffer(journal);
			if (!descriptor) {
				journal_abort(journal, -EIO);
				continue;
			}

			bh = jh2bh(descriptor);
			jbd_debug(4, "JBD: got buffer %llu (%p)\n",
				(unsigned long long)bh->b_blocknr, bh->b_data);
			header = (journal_header_t *)&bh->b_data[0];
			header->h_magic     = cpu_to_be32(JFS_MAGIC_NUMBER);
			header->h_blocktype = cpu_to_be32(JFS_DESCRIPTOR_BLOCK);
			header->h_sequence  = cpu_to_be32(commit_transaction->t_tid);

			tagp = &bh->b_data[sizeof(journal_header_t)];
			space_left = bh->b_size - sizeof(journal_header_t);
			first_tag = 1;
			set_buffer_jwrite(bh);
			set_buffer_dirty(bh);
			wbuf[bufs++] = bh;

			/* Record it so that we can wait for IO
                           completion later */
			BUFFER_TRACE(bh, "ph3: file as descriptor");
			journal_file_buffer(descriptor, commit_transaction,
					BJ_LogCtl);
		}

		/* Where is the buffer to be written? */

		err = journal_next_log_block(journal, &blocknr);
		/* If the block mapping failed, just abandon the buffer
		   and repeat this loop: we'll fall into the
		   refile-on-abort condition above. */
		if (err) {
			journal_abort(journal, err);
			continue;
		}

		/*
		 * start_this_handle() uses t_outstanding_credits to determine
		 * the free space in the log, but this counter is changed
		 * by journal_next_log_block() also.
		 */
		commit_transaction->t_outstanding_credits--;

		/* Bump b_count to prevent truncate from stumbling over
                   the shadowed buffer!  @@@ This can go if we ever get
                   rid of the BJ_IO/BJ_Shadow pairing of buffers. */
		get_bh(jh2bh(jh));

		/* Make a temporary IO buffer with which to write it out
                   (this will requeue both the metadata buffer and the
                   temporary IO buffer). new_bh goes on BJ_IO*/

		set_buffer_jwrite(jh2bh(jh));
		/*
		 * akpm: journal_write_metadata_buffer() sets
		 * new_bh->b_transaction to commit_transaction.
		 * We need to clean this up before we release new_bh
		 * (which is of type BJ_IO)
		 */
		JBUFFER_TRACE(jh, "ph3: write metadata");
		flags = journal_write_metadata_buffer(commit_transaction,
						      jh, &new_jh, blocknr);
		set_buffer_jwrite(jh2bh(new_jh));
		wbuf[bufs++] = jh2bh(new_jh);

		/* Record the new block's tag in the current descriptor
                   buffer */

		tag_flag = 0;
		if (flags & 1)
			tag_flag |= JFS_FLAG_ESCAPE;
		if (!first_tag)
			tag_flag |= JFS_FLAG_SAME_UUID;

		tag = (journal_block_tag_t *) tagp;
		tag->t_blocknr = cpu_to_be32(jh2bh(jh)->b_blocknr);
		tag->t_flags = cpu_to_be32(tag_flag);
		tagp += sizeof(journal_block_tag_t);
		space_left -= sizeof(journal_block_tag_t);

		if (first_tag) {
			memcpy (tagp, journal->j_uuid, 16);
			tagp += 16;
			space_left -= 16;
			first_tag = 0;
		}

		/* If there's no more to do, or if the descriptor is full,
		   let the IO rip! */

		if (bufs == journal->j_wbufsize ||
		    commit_transaction->t_buffers == NULL ||
		    space_left < sizeof(journal_block_tag_t) + 16) {

			jbd_debug(4, "JBD: Submit %d IOs\n", bufs);

			/* Write an end-of-descriptor marker before
                           submitting the IOs.  "tag" still points to
                           the last tag we set up. */

			tag->t_flags |= cpu_to_be32(JFS_FLAG_LAST_TAG);

start_journal_io:
			for (i = 0; i < bufs; i++) {
				struct buffer_head *bh = wbuf[i];
				lock_buffer(bh);
				clear_buffer_dirty(bh);
				set_buffer_uptodate(bh);
				bh->b_end_io = journal_end_buffer_io_sync;
				submit_bh(write_op, bh);
			}
			cond_resched();

			/* Force a new descriptor to be generated next
                           time round the loop. */
			descriptor = NULL;
			bufs = 0;
		}
	}

	/* Lo and behold: we have just managed to send a transaction to
           the log.  Before we can commit it, wait for the IO so far to
           complete.  Control buffers being written are on the
           transaction's t_log_list queue, and metadata buffers are on
           the t_iobuf_list queue.

	   Wait for the buffers in reverse order.  That way we are
	   less likely to be woken up until all IOs have completed, and
	   so we incur less scheduling load.
	*/

	jbd_debug(3, "JBD: commit phase 4\n");

	/*
	 * akpm: these are BJ_IO, and j_list_lock is not needed.
	 * See __journal_try_to_free_buffer.
	 */
wait_for_iobuf:
	while (commit_transaction->t_iobuf_list != NULL) {
		struct buffer_head *bh;

		jh = commit_transaction->t_iobuf_list->b_tprev;
		bh = jh2bh(jh);
		if (buffer_locked(bh)) {
			wait_on_buffer(bh);
			goto wait_for_iobuf;
		}
		if (cond_resched())
			goto wait_for_iobuf;

		if (unlikely(!buffer_uptodate(bh)))
			err = -EIO;

		clear_buffer_jwrite(bh);

		JBUFFER_TRACE(jh, "ph4: unfile after journal write");
		journal_unfile_buffer(journal, jh);

		/*
		 * ->t_iobuf_list should contain only dummy buffer_heads
		 * which were created by journal_write_metadata_buffer().
		 */
		BUFFER_TRACE(bh, "dumping temporary bh");
		journal_put_journal_head(jh);
		__brelse(bh);
		J_ASSERT_BH(bh, atomic_read(&bh->b_count) == 0);
		free_buffer_head(bh);

		/* We also have to unlock and free the corresponding
                   shadowed buffer */
		jh = commit_transaction->t_shadow_list->b_tprev;
		bh = jh2bh(jh);
		clear_buffer_jwrite(bh);
		J_ASSERT_BH(bh, buffer_jbddirty(bh));

		/* The metadata is now released for reuse, but we need
                   to remember it against this transaction so that when
                   we finally commit, we can do any checkpointing
                   required. */
		JBUFFER_TRACE(jh, "file as BJ_Forget");
		journal_file_buffer(jh, commit_transaction, BJ_Forget);
		/* Wake up any transactions which were waiting for this
		   IO to complete */
		wake_up_bit(&bh->b_state, BH_Unshadow);
		JBUFFER_TRACE(jh, "brelse shadowed buffer");
		__brelse(bh);
	}

	J_ASSERT (commit_transaction->t_shadow_list == NULL);

	jbd_debug(3, "JBD: commit phase 5\n");

	/* Here we wait for the revoke record and descriptor record buffers */
 wait_for_ctlbuf:
	while (commit_transaction->t_log_list != NULL) {
		struct buffer_head *bh;

		jh = commit_transaction->t_log_list->b_tprev;
		bh = jh2bh(jh);
		if (buffer_locked(bh)) {
			wait_on_buffer(bh);
			goto wait_for_ctlbuf;
		}
		if (cond_resched())
			goto wait_for_ctlbuf;

		if (unlikely(!buffer_uptodate(bh)))
			err = -EIO;

		BUFFER_TRACE(bh, "ph5: control buffer writeout done: unfile");
		clear_buffer_jwrite(bh);
		journal_unfile_buffer(journal, jh);
		journal_put_journal_head(jh);
		__brelse(bh);		/* One for getblk */
		/* AKPM: bforget here */
	}

	if (err)
		journal_abort(journal, err);

	jbd_debug(3, "JBD: commit phase 6\n");

	/* All metadata is written, now write commit record and do cleanup */
	spin_lock(&journal->j_state_lock);
	J_ASSERT(commit_transaction->t_state == T_COMMIT);
	commit_transaction->t_state = T_COMMIT_RECORD;
	spin_unlock(&journal->j_state_lock);

	if (journal_write_commit_record(journal, commit_transaction))
		err = -EIO;

	if (err)
		journal_abort(journal, err);

	/* End of a transaction!  Finally, we can do checkpoint
           processing: any buffers committed as a result of this
           transaction can be removed from any checkpoint list it was on
           before. */

	jbd_debug(3, "JBD: commit phase 7\n");

	J_ASSERT(commit_transaction->t_sync_datalist == NULL);
	J_ASSERT(commit_transaction->t_buffers == NULL);
	J_ASSERT(commit_transaction->t_checkpoint_list == NULL);
	J_ASSERT(commit_transaction->t_iobuf_list == NULL);
	J_ASSERT(commit_transaction->t_shadow_list == NULL);
	J_ASSERT(commit_transaction->t_log_list == NULL);

restart_loop:
	/*
	 * As there are other places (journal_unmap_buffer()) adding buffers
	 * to this list we have to be careful and hold the j_list_lock.
	 */
	spin_lock(&journal->j_list_lock);
	while (commit_transaction->t_forget) {
		transaction_t *cp_transaction;
		struct buffer_head *bh;

		jh = commit_transaction->t_forget;
		spin_unlock(&journal->j_list_lock);
		bh = jh2bh(jh);
		jbd_lock_bh_state(bh);
		J_ASSERT_JH(jh,	jh->b_transaction == commit_transaction ||
			jh->b_transaction == journal->j_running_transaction);

		/*
		 * If there is undo-protected committed data against
		 * this buffer, then we can remove it now.  If it is a
		 * buffer needing such protection, the old frozen_data
		 * field now points to a committed version of the
		 * buffer, so rotate that field to the new committed
		 * data.
		 *
		 * Otherwise, we can just throw away the frozen data now.
		 */
		if (jh->b_committed_data) {
			jbd_free(jh->b_committed_data, bh->b_size);
			jh->b_committed_data = NULL;
			if (jh->b_frozen_data) {
				jh->b_committed_data = jh->b_frozen_data;
				jh->b_frozen_data = NULL;
			}
		} else if (jh->b_frozen_data) {
			jbd_free(jh->b_frozen_data, bh->b_size);
			jh->b_frozen_data = NULL;
		}

		spin_lock(&journal->j_list_lock);
		cp_transaction = jh->b_cp_transaction;
		if (cp_transaction) {
			JBUFFER_TRACE(jh, "remove from old cp transaction");
			__journal_remove_checkpoint(jh);
		}

		/* Only re-checkpoint the buffer_head if it is marked
		 * dirty.  If the buffer was added to the BJ_Forget list
		 * by journal_forget, it may no longer be dirty and
		 * there's no point in keeping a checkpoint record for
		 * it. */

		/* A buffer which has been freed while still being
		 * journaled by a previous transaction may end up still
		 * being dirty here, but we want to avoid writing back
		 * that buffer in the future after the "add to orphan"
		 * operation been committed,  That's not only a performance
		 * gain, it also stops aliasing problems if the buffer is
		 * left behind for writeback and gets reallocated for another
		 * use in a different page. */
		if (buffer_freed(bh) && !jh->b_next_transaction) {
			clear_buffer_freed(bh);
			clear_buffer_jbddirty(bh);
		}

		if (buffer_jbddirty(bh)) {
			JBUFFER_TRACE(jh, "add to new checkpointing trans");
			__journal_insert_checkpoint(jh, commit_transaction);
			if (is_journal_aborted(journal))
				clear_buffer_jbddirty(bh);
			JBUFFER_TRACE(jh, "refile for checkpoint writeback");
			__journal_refile_buffer(jh);
			jbd_unlock_bh_state(bh);
		} else {
			J_ASSERT_BH(bh, !buffer_dirty(bh));
			/* The buffer on BJ_Forget list and not jbddirty means
			 * it has been freed by this transaction and hence it
			 * could not have been reallocated until this
			 * transaction has committed. *BUT* it could be
			 * reallocated once we have written all the data to
			 * disk and before we process the buffer on BJ_Forget
			 * list. */
			JBUFFER_TRACE(jh, "refile or unfile freed buffer");
			__journal_refile_buffer(jh);
			if (!jh->b_transaction) {
				jbd_unlock_bh_state(bh);
				 /* needs a brelse */
				journal_remove_journal_head(bh);
				release_buffer_page(bh);
			} else
				jbd_unlock_bh_state(bh);
		}
		cond_resched_lock(&journal->j_list_lock);
	}
	spin_unlock(&journal->j_list_lock);
	/*
	 * This is a bit sleazy.  We use j_list_lock to protect transition
	 * of a transaction into T_FINISHED state and calling
	 * __journal_drop_transaction(). Otherwise we could race with
	 * other checkpointing code processing the transaction...
	 */
	spin_lock(&journal->j_state_lock);
	spin_lock(&journal->j_list_lock);
	/*
	 * Now recheck if some buffers did not get attached to the transaction
	 * while the lock was dropped...
	 */
	if (commit_transaction->t_forget) {
		spin_unlock(&journal->j_list_lock);
		spin_unlock(&journal->j_state_lock);
		goto restart_loop;
	}

	/* Done with this transaction! */

	jbd_debug(3, "JBD: commit phase 8\n");

	J_ASSERT(commit_transaction->t_state == T_COMMIT_RECORD);

	commit_transaction->t_state = T_FINISHED;
	J_ASSERT(commit_transaction == journal->j_committing_transaction);
	journal->j_commit_sequence = commit_transaction->t_tid;
	journal->j_committing_transaction = NULL;
	commit_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));

	/*
	 * weight the commit time higher than the average time so we don't
	 * react too strongly to vast changes in commit time
	 */
	if (likely(journal->j_average_commit_time))
		journal->j_average_commit_time = (commit_time*3 +
				journal->j_average_commit_time) / 4;
	else
		journal->j_average_commit_time = commit_time;

	spin_unlock(&journal->j_state_lock);

	if (commit_transaction->t_checkpoint_list == NULL &&
	    commit_transaction->t_checkpoint_io_list == NULL) {
		__journal_drop_transaction(journal, commit_transaction);
	} else {
		if (journal->j_checkpoint_transactions == NULL) {
			journal->j_checkpoint_transactions = commit_transaction;
			commit_transaction->t_cpnext = commit_transaction;
			commit_transaction->t_cpprev = commit_transaction;
		} else {
			commit_transaction->t_cpnext =
				journal->j_checkpoint_transactions;
			commit_transaction->t_cpprev =
				commit_transaction->t_cpnext->t_cpprev;
			commit_transaction->t_cpnext->t_cpprev =
				commit_transaction;
			commit_transaction->t_cpprev->t_cpnext =
				commit_transaction;
		}
	}
	spin_unlock(&journal->j_list_lock);

	jbd_debug(1, "JBD: commit %d complete, head %d\n",
		  journal->j_commit_sequence, journal->j_tail_sequence);

	wake_up(&journal->j_wait_done_commit);
}
= unix_poll, .ioctl = unix_ioctl, .listen = unix_listen, .shutdown = unix_shutdown, .setsockopt = sock_no_setsockopt, .getsockopt = sock_no_getsockopt, .sendmsg = unix_stream_sendmsg, .recvmsg = unix_stream_recvmsg, .mmap = sock_no_mmap, .sendpage = sock_no_sendpage, }; static const struct proto_ops unix_dgram_ops = { .family = PF_UNIX, .owner = THIS_MODULE, .release = unix_release, .bind = unix_bind, .connect = unix_dgram_connect, .socketpair = unix_socketpair, .accept = sock_no_accept, .getname = unix_getname, .poll = datagram_poll, .ioctl = unix_ioctl, .listen = sock_no_listen, .shutdown = unix_shutdown, .setsockopt = sock_no_setsockopt, .getsockopt = sock_no_getsockopt, .sendmsg = unix_dgram_sendmsg, .recvmsg = unix_dgram_recvmsg, .mmap = sock_no_mmap, .sendpage = sock_no_sendpage, }; static const struct proto_ops unix_seqpacket_ops = { .family = PF_UNIX, .owner = THIS_MODULE, .release = unix_release, .bind = unix_bind, .connect = unix_stream_connect, .socketpair = unix_socketpair, .accept = unix_accept, .getname = unix_getname, .poll = datagram_poll, .ioctl = unix_ioctl, .listen = unix_listen, .shutdown = unix_shutdown, .setsockopt = sock_no_setsockopt, .getsockopt = sock_no_getsockopt, .sendmsg = unix_seqpacket_sendmsg, .recvmsg = unix_dgram_recvmsg, .mmap = sock_no_mmap, .sendpage = sock_no_sendpage, }; static struct proto unix_proto = { .name = "UNIX", .owner = THIS_MODULE, .obj_size = sizeof(struct unix_sock), }; /* * AF_UNIX sockets do not interact with hardware, hence they * dont trigger interrupts - so it's safe for them to have * bh-unsafe locking for their sk_receive_queue.lock. Split off * this special lock-class by reinitializing the spinlock key: */ static struct lock_class_key af_unix_sk_receive_queue_lock_key; static struct sock * unix_create1(struct socket *sock) { struct sock *sk = NULL; struct unix_sock *u; if (atomic_read(&unix_nr_socks) >= 2*get_max_files()) goto out; sk = sk_alloc(PF_UNIX, GFP_KERNEL, &unix_proto, 1); if (!sk) goto out; atomic_inc(&unix_nr_socks); sock_init_data(sock,sk); lockdep_set_class(&sk->sk_receive_queue.lock, &af_unix_sk_receive_queue_lock_key); sk->sk_write_space = unix_write_space; sk->sk_max_ack_backlog = sysctl_unix_max_dgram_qlen; sk->sk_destruct = unix_sock_destructor; u = unix_sk(sk); u->dentry = NULL; u->mnt = NULL; spin_lock_init(&u->lock); atomic_set(&u->inflight, sock ? 0 : -1); mutex_init(&u->readlock); /* single task reading lock */ init_waitqueue_head(&u->peer_wait); unix_insert_socket(unix_sockets_unbound, sk); out: return sk; } static int unix_create(struct socket *sock, int protocol) { if (protocol && protocol != PF_UNIX) return -EPROTONOSUPPORT; sock->state = SS_UNCONNECTED; switch (sock->type) { case SOCK_STREAM: sock->ops = &unix_stream_ops; break; /* * Believe it or not BSD has AF_UNIX, SOCK_RAW though * nothing uses it. */ case SOCK_RAW: sock->type=SOCK_DGRAM; case SOCK_DGRAM: sock->ops = &unix_dgram_ops; break; case SOCK_SEQPACKET: sock->ops = &unix_seqpacket_ops; break; default: return -ESOCKTNOSUPPORT; } return unix_create1(sock) ? 0 : -ENOMEM; } static int unix_release(struct socket *sock) { struct sock *sk = sock->sk; if (!sk) return 0; sock->sk = NULL; return unix_release_sock (sk, 0); } static int unix_autobind(struct socket *sock) { struct sock *sk = sock->sk; struct unix_sock *u = unix_sk(sk); static u32 ordernum = 1; struct unix_address * addr; int err; mutex_lock(&u->readlock); err = 0; if (u->addr) goto out; err = -ENOMEM; addr = kzalloc(sizeof(*addr) + sizeof(short) + 16, GFP_KERNEL); if (!addr) goto out; addr->name->sun_family = AF_UNIX; atomic_set(&addr->refcnt, 1); retry: addr->len = sprintf(addr->name->sun_path+1, "%05x", ordernum) + 1 + sizeof(short); addr->hash = unix_hash_fold(csum_partial((void*)addr->name, addr->len, 0)); spin_lock(&unix_table_lock); ordernum = (ordernum+1)&0xFFFFF; if (__unix_find_socket_byname(addr->name, addr->len, sock->type, addr->hash)) { spin_unlock(&unix_table_lock); /* Sanity yield. It is unusual case, but yet... */ if (!(ordernum&0xFF)) yield(); goto retry; } addr->hash ^= sk->sk_type; __unix_remove_socket(sk); u->addr = addr; __unix_insert_socket(&unix_socket_table[addr->hash], sk); spin_unlock(&unix_table_lock); err = 0; out: mutex_unlock(&u->readlock); return err; } static struct sock *unix_find_other(struct sockaddr_un *sunname, int len, int type, unsigned hash, int *error) { struct sock *u; struct nameidata nd; int err = 0; if (sunname->sun_path[0]) { err = path_lookup(sunname->sun_path, LOOKUP_FOLLOW, &nd); if (err) goto fail; err = vfs_permission(&nd, MAY_WRITE); if (err) goto put_fail; err = -ECONNREFUSED; if (!S_ISSOCK(nd.dentry->d_inode->i_mode)) goto put_fail; u=unix_find_socket_byinode(nd.dentry->d_inode); if (!u) goto put_fail; if (u->sk_type == type) touch_atime(nd.mnt, nd.dentry); path_release(&nd); err=-EPROTOTYPE; if (u->sk_type != type) { sock_put(u); goto fail; } } else { err = -ECONNREFUSED; u=unix_find_socket_byname(sunname, len, type, hash); if (u) { struct dentry *dentry; dentry = unix_sk(u)->dentry; if (dentry) touch_atime(unix_sk(u)->mnt, dentry); } else goto fail; } return u; put_fail: path_release(&nd); fail: *error=err; return NULL; } static int unix_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) { struct sock *sk = sock->sk; struct unix_sock *u = unix_sk(sk); struct sockaddr_un *sunaddr=(struct sockaddr_un *)uaddr; struct dentry * dentry = NULL; struct nameidata nd; int err; unsigned hash; struct unix_address *addr; struct hlist_head *list; err = -EINVAL; if (sunaddr->sun_family != AF_UNIX) goto out; if (addr_len==sizeof(short)) { err = unix_autobind(sock); goto out; } err = unix_mkname(sunaddr, addr_len, &hash); if (err < 0) goto out; addr_len = err; mutex_lock(&u->readlock); err = -EINVAL; if (u->addr) goto out_up; err = -ENOMEM; addr = kmalloc(sizeof(*addr)+addr_len, GFP_KERNEL); if (!addr) goto out_up; memcpy(addr->name, sunaddr, addr_len); addr->len = addr_len; addr->hash = hash ^ sk->sk_type; atomic_set(&addr->refcnt, 1); if (sunaddr->sun_path[0]) { unsigned int mode; err = 0; /* * Get the parent directory, calculate the hash for last * component. */ err = path_lookup(sunaddr->sun_path, LOOKUP_PARENT, &nd); if (err) goto out_mknod_parent; dentry = lookup_create(&nd, 0); err = PTR_ERR(dentry); if (IS_ERR(dentry)) goto out_mknod_unlock; /* * All right, let's create it. */ mode = S_IFSOCK | (SOCK_INODE(sock)->i_mode & ~current->fs->umask); err = vfs_mknod(nd.dentry->d_inode, dentry, mode, 0); if (err) goto out_mknod_dput; mutex_unlock(&nd.dentry->d_inode->i_mutex); dput(nd.dentry); nd.dentry = dentry; addr->hash = UNIX_HASH_SIZE; } spin_lock(&unix_table_lock); if (!sunaddr->sun_path[0]) { err = -EADDRINUSE; if (__unix_find_socket_byname(sunaddr, addr_len, sk->sk_type, hash)) { unix_release_addr(addr); goto out_unlock; } list = &unix_socket_table[addr->hash]; } else { list = &unix_socket_table[dentry->d_inode->i_ino & (UNIX_HASH_SIZE-1)]; u->dentry = nd.dentry; u->mnt = nd.mnt; } err = 0; __unix_remove_socket(sk); u->addr = addr; __unix_insert_socket(list, sk); out_unlock: spin_unlock(&unix_table_lock); out_up: mutex_unlock(&u->readlock); out: return err; out_mknod_dput: dput(dentry); out_mknod_unlock: mutex_unlock(&nd.dentry->d_inode->i_mutex); path_release(&nd); out_mknod_parent: if (err==-EEXIST) err=-EADDRINUSE; unix_release_addr(addr); goto out_up; } static int unix_dgram_connect(struct socket *sock, struct sockaddr *addr, int alen, int flags) { struct sock *sk = sock->sk; struct sockaddr_un *sunaddr=(struct sockaddr_un*)addr; struct sock *other; unsigned hash; int err; if (addr->sa_family != AF_UNSPEC) { err = unix_mkname(sunaddr, alen, &hash); if (err < 0) goto out; alen = err; if (test_bit(SOCK_PASSCRED, &sock->flags) && !unix_sk(sk)->addr && (err = unix_autobind(sock)) != 0) goto out; other=unix_find_other(sunaddr, alen, sock->type, hash, &err); if (!other) goto out; unix_state_wlock(sk); err = -EPERM; if (!unix_may_send(sk, other)) goto out_unlock; err = security_unix_may_send(sk->sk_socket, other->sk_socket); if (err) goto out_unlock; } else { /* * 1003.1g breaking connected state with AF_UNSPEC */ other = NULL; unix_state_wlock(sk); } /* * If it was connected, reconnect. */ if (unix_peer(sk)) { struct sock *old_peer = unix_peer(sk); unix_peer(sk)=other; unix_state_wunlock(sk); if (other != old_peer) unix_dgram_disconnected(sk, old_peer); sock_put(old_peer); } else { unix_peer(sk)=other; unix_state_wunlock(sk); } return 0; out_unlock: unix_state_wunlock(sk); sock_put(other); out: return err; } static long unix_wait_for_peer(struct sock *other, long timeo) { struct unix_sock *u = unix_sk(other); int sched; DEFINE_WAIT(wait); prepare_to_wait_exclusive(&u->peer_wait, &wait, TASK_INTERRUPTIBLE); sched = !sock_flag(other, SOCK_DEAD) && !(other->sk_shutdown & RCV_SHUTDOWN) && (skb_queue_len(&other->sk_receive_queue) > other->sk_max_ack_backlog); unix_state_runlock(other); if (sched) timeo = schedule_timeout(timeo); finish_wait(&u->peer_wait, &wait); return timeo; } static int unix_stream_connect(struct socket *sock, struct sockaddr *uaddr, int addr_len, int flags) { struct sockaddr_un *sunaddr=(struct sockaddr_un *)uaddr; struct sock *sk = sock->sk; struct unix_sock *u = unix_sk(sk), *newu, *otheru; struct sock *newsk = NULL; struct sock *other = NULL; struct sk_buff *skb = NULL; unsigned hash; int st; int err; long timeo; err = unix_mkname(sunaddr, addr_len, &hash); if (err < 0) goto out; addr_len = err; if (test_bit(SOCK_PASSCRED, &sock->flags) && !u->addr && (err = unix_autobind(sock)) != 0) goto out; timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); /* First of all allocate resources. If we will make it after state is locked, we will have to recheck all again in any case. */ err = -ENOMEM; /* create new sock for complete connection */ newsk = unix_create1(NULL); if (newsk == NULL) goto out; /* Allocate skb for sending to listening sock */ skb = sock_wmalloc(newsk, 1, 0, GFP_KERNEL); if (skb == NULL) goto out; restart: /* Find listening sock. */ other = unix_find_other(sunaddr, addr_len, sk->sk_type, hash, &err); if (!other) goto out; /* Latch state of peer */ unix_state_rlock(other); /* Apparently VFS overslept socket death. Retry. */ if (sock_flag(other, SOCK_DEAD)) { unix_state_runlock(other); sock_put(other); goto restart; } err = -ECONNREFUSED; if (other->sk_state != TCP_LISTEN) goto out_unlock; if (skb_queue_len(&other->sk_receive_queue) > other->sk_max_ack_backlog) { err = -EAGAIN; if (!timeo) goto out_unlock; timeo = unix_wait_for_peer(other, timeo); err = sock_intr_errno(timeo); if (signal_pending(current)) goto out; sock_put(other); goto restart; } /* Latch our state. It is tricky place. We need to grab write lock and cannot drop lock on peer. It is dangerous because deadlock is possible. Connect to self case and simultaneous attempt to connect are eliminated by checking socket state. other is TCP_LISTEN, if sk is TCP_LISTEN we check this before attempt to grab lock. Well, and we have to recheck the state after socket locked. */ st = sk->sk_state; switch (st) { case TCP_CLOSE: /* This is ok... continue with connect */ break; case TCP_ESTABLISHED: /* Socket is already connected */ err = -EISCONN; goto out_unlock; default: err = -EINVAL; goto out_unlock; } unix_state_wlock_nested(sk); if (sk->sk_state != st) { unix_state_wunlock(sk); unix_state_runlock(other); sock_put(other); goto restart; } err = security_unix_stream_connect(sock, other->sk_socket, newsk); if (err) { unix_state_wunlock(sk); goto out_unlock; } /* The way is open! Fastly set all the necessary fields... */ sock_hold(sk); unix_peer(newsk) = sk; newsk->sk_state = TCP_ESTABLISHED; newsk->sk_type = sk->sk_type; newsk->sk_peercred.pid = current->tgid; newsk->sk_peercred.uid = current->euid; newsk->sk_peercred.gid = current->egid; newu = unix_sk(newsk); newsk->sk_sleep = &newu->peer_wait; otheru = unix_sk(other); /* copy address information from listening to new sock*/ if (otheru->addr) { atomic_inc(&otheru->addr->refcnt); newu->addr = otheru->addr; } if (otheru->dentry) { newu->dentry = dget(otheru->dentry); newu->mnt = mntget(otheru->mnt); } /* Set credentials */ sk->sk_peercred = other->sk_peercred; sock->state = SS_CONNECTED; sk->sk_state = TCP_ESTABLISHED; sock_hold(newsk); smp_mb__after_atomic_inc(); /* sock_hold() does an atomic_inc() */ unix_peer(sk) = newsk; unix_state_wunlock(sk); /* take ten and and send info to listening sock */ spin_lock(&other->sk_receive_queue.lock); __skb_queue_tail(&other->sk_receive_queue, skb); /* Undo artificially decreased inflight after embrion * is installed to listening socket. */ atomic_inc(&newu->inflight); spin_unlock(&other->sk_receive_queue.lock); unix_state_runlock(other); other->sk_data_ready(other, 0); sock_put(other); return 0; out_unlock: if (other) unix_state_runlock(other); out: if (skb) kfree_skb(skb); if (newsk) unix_release_sock(newsk, 0); if (other) sock_put(other); return err; } static int unix_socketpair(struct socket *socka, struct socket *sockb) { struct sock *ska=socka->sk, *skb = sockb->sk; /* Join our sockets back to back */ sock_hold(ska); sock_hold(skb); unix_peer(ska)=skb; unix_peer(skb)=ska; ska->sk_peercred.pid = skb->sk_peercred.pid = current->tgid; ska->sk_peercred.uid = skb->sk_peercred.uid = current->euid; ska->sk_peercred.gid = skb->sk_peercred.gid = current->egid; if (ska->sk_type != SOCK_DGRAM) { ska->sk_state = TCP_ESTABLISHED; skb->sk_state = TCP_ESTABLISHED; socka->state = SS_CONNECTED; sockb->state = SS_CONNECTED; } return 0; } static int unix_accept(struct socket *sock, struct socket *newsock, int flags) { struct sock *sk = sock->sk; struct sock *tsk; struct sk_buff *skb; int err; err = -EOPNOTSUPP; if (sock->type!=SOCK_STREAM && sock->type!=SOCK_SEQPACKET) goto out; err = -EINVAL; if (sk->sk_state != TCP_LISTEN) goto out; /* If socket state is TCP_LISTEN it cannot change (for now...), * so that no locks are necessary. */ skb = skb_recv_datagram(sk, 0, flags&O_NONBLOCK, &err); if (!skb) { /* This means receive shutdown. */ if (err == 0) err = -EINVAL; goto out; } tsk = skb->sk; skb_free_datagram(sk, skb); wake_up_interruptible(&unix_sk(sk)->peer_wait); /* attach accepted sock to socket */ unix_state_wlock(tsk); newsock->state = SS_CONNECTED; sock_graft(tsk, newsock); unix_state_wunlock(tsk); return 0; out: return err; } static int unix_getname(struct socket *sock, struct sockaddr *uaddr, int *uaddr_len, int peer) { struct sock *sk = sock->sk; struct unix_sock *u; struct sockaddr_un *sunaddr=(struct sockaddr_un *)uaddr; int err = 0; if (peer) { sk = unix_peer_get(sk); err = -ENOTCONN; if (!sk) goto out; err = 0; } else { sock_hold(sk); } u = unix_sk(sk); unix_state_rlock(sk); if (!u->addr) { sunaddr->sun_family = AF_UNIX; sunaddr->sun_path[0] = 0; *uaddr_len = sizeof(short); } else { struct unix_address *addr = u->addr; *uaddr_len = addr->len; memcpy(sunaddr, addr->name, *uaddr_len); } unix_state_runlock(sk); sock_put(sk); out: return err; } static void unix_detach_fds(struct scm_cookie *scm, struct sk_buff *skb) { int i; scm->fp = UNIXCB(skb).fp; skb->destructor = sock_wfree; UNIXCB(skb).fp = NULL; for (i=scm->fp->count-1; i>=0; i--) unix_notinflight(scm->fp->fp[i]); } static void unix_destruct_fds(struct sk_buff *skb) { struct scm_cookie scm; memset(&scm, 0, sizeof(scm)); unix_detach_fds(&scm, skb); /* Alas, it calls VFS */ /* So fscking what? fput() had been SMP-safe since the last Summer */ scm_destroy(&scm); sock_wfree(skb); } static void unix_attach_fds(struct scm_cookie *scm, struct sk_buff *skb) { int i; for (i=scm->fp->count-1; i>=0; i--) unix_inflight(scm->fp->fp[i]); UNIXCB(skb).fp = scm->fp; skb->destructor = unix_destruct_fds; scm->fp = NULL; } /* * Send AF_UNIX data. */ static int unix_dgram_sendmsg(struct kiocb *kiocb, struct socket *sock, struct msghdr *msg, size_t len) { struct sock_iocb *siocb = kiocb_to_siocb(kiocb); struct sock *sk = sock->sk; struct unix_sock *u = unix_sk(sk); struct sockaddr_un *sunaddr=msg->msg_name; struct sock *other = NULL; int namelen = 0; /* fake GCC */ int err; unsigned hash; struct sk_buff *skb; long timeo; struct scm_cookie tmp_scm; if (NULL == siocb->scm) siocb->scm = &tmp_scm; err = scm_send(sock, msg, siocb->scm); if (err < 0) return err; err = -EOPNOTSUPP; if (msg->msg_flags&MSG_OOB) goto out; if (msg->msg_namelen) { err = unix_mkname(sunaddr, msg->msg_namelen, &hash); if (err < 0) goto out; namelen = err; } else { sunaddr = NULL; err = -ENOTCONN; other = unix_peer_get(sk); if (!other) goto out; } if (test_bit(SOCK_PASSCRED, &sock->flags) && !u->addr && (err = unix_autobind(sock)) != 0) goto out; err = -EMSGSIZE; if (len > sk->sk_sndbuf - 32) goto out; skb = sock_alloc_send_skb(sk, len, msg->msg_flags&MSG_DONTWAIT, &err); if (skb==NULL) goto out; memcpy(UNIXCREDS(skb), &siocb->scm->creds, sizeof(struct ucred)); if (siocb->scm->fp) unix_attach_fds(siocb->scm, skb); unix_get_secdata(siocb->scm, skb); skb->h.raw = skb->data; err = memcpy_fromiovec(skb_put(skb,len), msg->msg_iov, len); if (err) goto out_free; timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); restart: if (!other) { err = -ECONNRESET; if (sunaddr == NULL) goto out_free; other = unix_find_other(sunaddr, namelen, sk->sk_type, hash, &err); if (other==NULL) goto out_free; } unix_state_rlock(other); err = -EPERM; if (!unix_may_send(sk, other)) goto out_unlock; if (sock_flag(other, SOCK_DEAD)) { /* * Check with 1003.1g - what should * datagram error */ unix_state_runlock(other); sock_put(other); err = 0; unix_state_wlock(sk); if (unix_peer(sk) == other) { unix_peer(sk)=NULL; unix_state_wunlock(sk); unix_dgram_disconnected(sk, other); sock_put(other); err = -ECONNREFUSED; } else { unix_state_wunlock(sk); } other = NULL; if (err) goto out_free; goto restart; } err = -EPIPE; if (other->sk_shutdown & RCV_SHUTDOWN) goto out_unlock; if (sk->sk_type != SOCK_SEQPACKET) { err = security_unix_may_send(sk->sk_socket, other->sk_socket); if (err) goto out_unlock; } if (unix_peer(other) != sk && (skb_queue_len(&other->sk_receive_queue) > other->sk_max_ack_backlog)) { if (!timeo) { err = -EAGAIN; goto out_unlock; } timeo = unix_wait_for_peer(other, timeo); err = sock_intr_errno(timeo); if (signal_pending(current)) goto out_free; goto restart; } skb_queue_tail(&other->sk_receive_queue, skb); unix_state_runlock(other); other->sk_data_ready(other, len); sock_put(other); scm_destroy(siocb->scm); return len; out_unlock: unix_state_runlock(other); out_free: kfree_skb(skb); out: if (other) sock_put(other); scm_destroy(siocb->scm); return err; } static int unix_stream_sendmsg(struct kiocb *kiocb, struct socket *sock, struct msghdr *msg, size_t len) { struct sock_iocb *siocb = kiocb_to_siocb(kiocb); struct sock *sk = sock->sk; struct sock *other = NULL; struct sockaddr_un *sunaddr=msg->msg_name; int err,size; struct sk_buff *skb; int sent=0; struct scm_cookie tmp_scm; if (NULL == siocb->scm) siocb->scm = &tmp_scm; err = scm_send(sock, msg, siocb->scm); if (err < 0) return err; err = -EOPNOTSUPP; if (msg->msg_flags&MSG_OOB) goto out_err; if (msg->msg_namelen) { err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP; goto out_err; } else { sunaddr = NULL; err = -ENOTCONN; other = unix_peer(sk); if (!other) goto out_err; } if (sk->sk_shutdown & SEND_SHUTDOWN) goto pipe_err; while(sent < len) { /* * Optimisation for the fact that under 0.01% of X * messages typically need breaking up. */ size = len-sent; /* Keep two messages in the pipe so it schedules better */ if (size > ((sk->sk_sndbuf >> 1) - 64)) size = (sk->sk_sndbuf >> 1) - 64; if (size > SKB_MAX_ALLOC) size = SKB_MAX_ALLOC; /* * Grab a buffer */ skb=sock_alloc_send_skb(sk,size,msg->msg_flags&MSG_DONTWAIT, &err); if (skb==NULL) goto out_err; /* * If you pass two values to the sock_alloc_send_skb * it tries to grab the large buffer with GFP_NOFS * (which can fail easily), and if it fails grab the * fallback size buffer which is under a page and will * succeed. [Alan] */ size = min_t(int, size, skb_tailroom(skb)); memcpy(UNIXCREDS(skb), &siocb->scm->creds, sizeof(struct ucred)); if (siocb->scm->fp) unix_attach_fds(siocb->scm, skb); if ((err = memcpy_fromiovec(skb_put(skb,size), msg->msg_iov, size)) != 0) { kfree_skb(skb); goto out_err; } unix_state_rlock(other); if (sock_flag(other, SOCK_DEAD) || (other->sk_shutdown & RCV_SHUTDOWN)) goto pipe_err_free; skb_queue_tail(&other->sk_receive_queue, skb); unix_state_runlock(other); other->sk_data_ready(other, size); sent+=size; } scm_destroy(siocb->scm); siocb->scm = NULL; return sent; pipe_err_free: unix_state_runlock(other); kfree_skb(skb); pipe_err: if (sent==0 && !(msg->msg_flags&MSG_NOSIGNAL)) send_sig(SIGPIPE,current,0); err = -EPIPE; out_err: scm_destroy(siocb->scm); siocb->scm = NULL; return sent ? : err; } static int unix_seqpacket_sendmsg(struct kiocb *kiocb, struct socket *sock, struct msghdr *msg, size_t len) { int err; struct sock *sk = sock->sk; err = sock_error(sk); if (err) return err; if (sk->sk_state != TCP_ESTABLISHED) return -ENOTCONN; if (msg->msg_namelen) msg->msg_namelen = 0; return unix_dgram_sendmsg(kiocb, sock, msg, len); } static void unix_copy_addr(struct msghdr *msg, struct sock *sk) { struct unix_sock *u = unix_sk(sk); msg->msg_namelen = 0; if (u->addr) { msg->msg_namelen = u->addr->len; memcpy(msg->msg_name, u->addr->name, u->addr->len); } } static int unix_dgram_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg, size_t size, int flags) { struct sock_iocb *siocb = kiocb_to_siocb(iocb); struct scm_cookie tmp_scm; struct sock *sk = sock->sk; struct unix_sock *u = unix_sk(sk); int noblock = flags & MSG_DONTWAIT; struct sk_buff *skb; int err; err = -EOPNOTSUPP; if (flags&MSG_OOB) goto out; msg->msg_namelen = 0; mutex_lock(&u->readlock); skb = skb_recv_datagram(sk, flags, noblock, &err); if (!skb) goto out_unlock; wake_up_interruptible(&u->peer_wait); if (msg->msg_name) unix_copy_addr(msg, skb->sk); if (size > skb->len) size = skb->len; else if (size < skb->len) msg->msg_flags |= MSG_TRUNC; err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, size); if (err) goto out_free; if (!siocb->scm) { siocb->scm = &tmp_scm; memset(&tmp_scm, 0, sizeof(tmp_scm)); } siocb->scm->creds = *UNIXCREDS(skb); unix_set_secdata(siocb->scm, skb); if (!(flags & MSG_PEEK)) { if (UNIXCB(skb).fp) unix_detach_fds(siocb->scm, skb); } else { /* It is questionable: on PEEK we could: - do not return fds - good, but too simple 8) - return fds, and do not return them on read (old strategy, apparently wrong) - clone fds (I chose it for now, it is the most universal solution) POSIX 1003.1g does not actually define this clearly at all. POSIX 1003.1g doesn't define a lot of things clearly however! */ if (UNIXCB(skb).fp) siocb->scm->fp = scm_fp_dup(UNIXCB(skb).fp); } err = size; scm_recv(sock, msg, siocb->scm, flags); out_free: skb_free_datagram(sk,skb); out_unlock: mutex_unlock(&u->readlock); out: return err; } /* * Sleep until data has arrive. But check for races.. */ static long unix_stream_data_wait(struct sock * sk, long timeo) { DEFINE_WAIT(wait); unix_state_rlock(sk); for (;;) { prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE); if (!skb_queue_empty(&sk->sk_receive_queue) || sk->sk_err || (sk->sk_shutdown & RCV_SHUTDOWN) || signal_pending(current) || !timeo) break; set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags); unix_state_runlock(sk); timeo = schedule_timeout(timeo); unix_state_rlock(sk); clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags); } finish_wait(sk->sk_sleep, &wait); unix_state_runlock(sk); return timeo; } static int unix_stream_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg, size_t size, int flags) { struct sock_iocb *siocb = kiocb_to_siocb(iocb); struct scm_cookie tmp_scm; struct sock *sk = sock->sk; struct unix_sock *u = unix_sk(sk); struct sockaddr_un *sunaddr=msg->msg_name; int copied = 0; int check_creds = 0; int target; int err = 0; long timeo; err = -EINVAL; if (sk->sk_state != TCP_ESTABLISHED) goto out; err = -EOPNOTSUPP; if (flags&MSG_OOB) goto out; target = sock_rcvlowat(sk, flags&MSG_WAITALL, size); timeo = sock_rcvtimeo(sk, flags&MSG_DONTWAIT); msg->msg_namelen = 0; /* Lock the socket to prevent queue disordering * while sleeps in memcpy_tomsg */ if (!siocb->scm) { siocb->scm = &tmp_scm; memset(&tmp_scm, 0, sizeof(tmp_scm)); } mutex_lock(&u->readlock); do { int chunk; struct sk_buff *skb; skb = skb_dequeue(&sk->sk_receive_queue); if (skb==NULL) { if (copied >= target) break; /* * POSIX 1003.1g mandates this order. */ if ((err = sock_error(sk)) != 0) break; if (sk->sk_shutdown & RCV_SHUTDOWN) break; err = -EAGAIN; if (!timeo) break; mutex_unlock(&u->readlock); timeo = unix_stream_data_wait(sk, timeo); if (signal_pending(current)) { err = sock_intr_errno(timeo); goto out; } mutex_lock(&u->readlock); continue; } if (check_creds) { /* Never glue messages from different writers */ if (memcmp(UNIXCREDS(skb), &siocb->scm->creds, sizeof(siocb->scm->creds)) != 0) { skb_queue_head(&sk->sk_receive_queue, skb); break; } } else { /* Copy credentials */ siocb->scm->creds = *UNIXCREDS(skb); check_creds = 1; } /* Copy address just once */ if (sunaddr) { unix_copy_addr(msg, skb->sk); sunaddr = NULL; } chunk = min_t(unsigned int, skb->len, size); if (memcpy_toiovec(msg->msg_iov, skb->data, chunk)) { skb_queue_head(&sk->sk_receive_queue, skb); if (copied == 0) copied = -EFAULT; break; } copied += chunk; size -= chunk; /* Mark read part of skb as used */ if (!(flags & MSG_PEEK)) { skb_pull(skb, chunk); if (UNIXCB(skb).fp) unix_detach_fds(siocb->scm, skb); /* put the skb back if we didn't use it up.. */ if (skb->len) { skb_queue_head(&sk->sk_receive_queue, skb); break; } kfree_skb(skb); if (siocb->scm->fp) break; } else { /* It is questionable, see note in unix_dgram_recvmsg. */ if (UNIXCB(skb).fp) siocb->scm->fp = scm_fp_dup(UNIXCB(skb).fp); /* put message back and return */ skb_queue_head(&sk->sk_receive_queue, skb); break; } } while (size); mutex_unlock(&u->readlock); scm_recv(sock, msg, siocb->scm, flags); out: return copied ? : err; } static int unix_shutdown(struct socket *sock, int mode) { struct sock *sk = sock->sk; struct sock *other; mode = (mode+1)&(RCV_SHUTDOWN|SEND_SHUTDOWN); if (mode) { unix_state_wlock(sk); sk->sk_shutdown |= mode; other=unix_peer(sk); if (other) sock_hold(other); unix_state_wunlock(sk); sk->sk_state_change(sk); if (other && (sk->sk_type == SOCK_STREAM || sk->sk_type == SOCK_SEQPACKET)) { int peer_mode = 0; if (mode&RCV_SHUTDOWN) peer_mode |= SEND_SHUTDOWN; if (mode&SEND_SHUTDOWN) peer_mode |= RCV_SHUTDOWN; unix_state_wlock(other); other->sk_shutdown |= peer_mode; unix_state_wunlock(other); other->sk_state_change(other); read_lock(&other->sk_callback_lock); if (peer_mode == SHUTDOWN_MASK) sk_wake_async(other,1,POLL_HUP); else if (peer_mode & RCV_SHUTDOWN) sk_wake_async(other,1,POLL_IN); read_unlock(&other->sk_callback_lock); } if (other) sock_put(other); } return 0; } static int unix_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) { struct sock *sk = sock->sk; long amount=0; int err; switch(cmd) { case SIOCOUTQ: amount = atomic_read(&sk->sk_wmem_alloc); err = put_user(amount, (int __user *)arg); break; case SIOCINQ: { struct sk_buff *skb; if (sk->sk_state == TCP_LISTEN) { err = -EINVAL; break; } spin_lock(&sk->sk_receive_queue.lock); if (sk->sk_type == SOCK_STREAM || sk->sk_type == SOCK_SEQPACKET) { skb_queue_walk(&sk->sk_receive_queue, skb) amount += skb->len; } else { skb = skb_peek(&sk->sk_receive_queue); if (skb) amount=skb->len; } spin_unlock(&sk->sk_receive_queue.lock); err = put_user(amount, (int __user *)arg); break; } default: err = -ENOIOCTLCMD; break; } return err; } static unsigned int unix_poll(struct file * file, struct socket *sock, poll_table *wait) { struct sock *sk = sock->sk; unsigned int mask; poll_wait(file, sk->sk_sleep, wait); mask = 0; /* exceptional events? */ if (sk->sk_err) mask |= POLLERR; if (sk->sk_shutdown == SHUTDOWN_MASK) mask |= POLLHUP; if (sk->sk_shutdown & RCV_SHUTDOWN) mask |= POLLRDHUP; /* readable? */ if (!skb_queue_empty(&sk->sk_receive_queue) || (sk->sk_shutdown & RCV_SHUTDOWN)) mask |= POLLIN | POLLRDNORM; /* Connection-based need to check for termination and startup */ if ((sk->sk_type == SOCK_STREAM || sk->sk_type == SOCK_SEQPACKET) && sk->sk_state == TCP_CLOSE) mask |= POLLHUP; /* * we set writable also when the other side has shut down the * connection. This prevents stuck sockets. */ if (unix_writable(sk)) mask |= POLLOUT | POLLWRNORM | POLLWRBAND; return mask; } #ifdef CONFIG_PROC_FS static struct sock *unix_seq_idx(int *iter, loff_t pos) { loff_t off = 0; struct sock *s; for (s = first_unix_socket(iter); s; s = next_unix_socket(iter, s)) { if (off == pos) return s; ++off; } return NULL; } static void *unix_seq_start(struct seq_file *seq, loff_t *pos) { spin_lock(&unix_table_lock); return *pos ? unix_seq_idx(seq->private, *pos - 1) : ((void *) 1); } static void *unix_seq_next(struct seq_file *seq, void *v, loff_t *pos) { ++*pos; if (v == (void *)1) return first_unix_socket(seq->private); return next_unix_socket(seq->private, v); } static void unix_seq_stop(struct seq_file *seq, void *v) { spin_unlock(&unix_table_lock); } static int unix_seq_show(struct seq_file *seq, void *v) { if (v == (void *)1) seq_puts(seq, "Num RefCount Protocol Flags Type St " "Inode Path\n"); else { struct sock *s = v; struct unix_sock *u = unix_sk(s); unix_state_rlock(s); seq_printf(seq, "%p: %08X %08X %08X %04X %02X %5lu", s, atomic_read(&s->sk_refcnt), 0, s->sk_state == TCP_LISTEN ? __SO_ACCEPTCON : 0, s->sk_type, s->sk_socket ? (s->sk_state == TCP_ESTABLISHED ? SS_CONNECTED : SS_UNCONNECTED) : (s->sk_state == TCP_ESTABLISHED ? SS_CONNECTING : SS_DISCONNECTING), sock_i_ino(s)); if (u->addr) { int i, len; seq_putc(seq, ' '); i = 0; len = u->addr->len - sizeof(short); if (!UNIX_ABSTRACT(s)) len--; else { seq_putc(seq, '@'); i++; } for ( ; i < len; i++) seq_putc(seq, u->addr->name->sun_path[i]); } unix_state_runlock(s); seq_putc(seq, '\n'); } return 0; } static struct seq_operations unix_seq_ops = { .start = unix_seq_start, .next = unix_seq_next, .stop = unix_seq_stop, .show = unix_seq_show, }; static int unix_seq_open(struct inode *inode, struct file *file) { struct seq_file *seq; int rc = -ENOMEM; int *iter = kmalloc(sizeof(int), GFP_KERNEL); if (!iter) goto out; rc = seq_open(file, &unix_seq_ops); if (rc) goto out_kfree; seq = file->private_data; seq->private = iter; *iter = 0; out: return rc; out_kfree: kfree(iter); goto out; } static struct file_operations unix_seq_fops = { .owner = THIS_MODULE, .open = unix_seq_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release_private, }; #endif static struct net_proto_family unix_family_ops = { .family = PF_UNIX, .create = unix_create, .owner = THIS_MODULE, }; static int __init af_unix_init(void) { int rc = -1; struct sk_buff *dummy_skb; BUILD_BUG_ON(sizeof(struct unix_skb_parms) > sizeof(dummy_skb->cb)); rc = proto_register(&unix_proto, 1); if (rc != 0) { printk(KERN_CRIT "%s: Cannot create unix_sock SLAB cache!\n", __FUNCTION__); goto out; } sock_register(&unix_family_ops); #ifdef CONFIG_PROC_FS proc_net_fops_create("unix", 0, &unix_seq_fops); #endif unix_sysctl_register(); out: return rc; } static void __exit af_unix_exit(void) { sock_unregister(PF_UNIX); unix_sysctl_unregister(); proc_net_remove("unix"); proto_unregister(&unix_proto); } module_init(af_unix_init); module_exit(af_unix_exit); MODULE_LICENSE("GPL"); MODULE_ALIAS_NETPROTO(PF_UNIX);