aboutsummaryrefslogtreecommitdiffstats
path: root/fs/direct-io.c
blob: b6d43908ff7a890f741c3076308c1a9da965f59b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
/*
 * fs/direct-io.c
 *
 * Copyright (C) 2002, Linus Torvalds.
 *
 * O_DIRECT
 *
 * 04Jul2002	Andrew Morton
 *		Initial version
 * 11Sep2002	janetinc@us.ibm.com
 * 		added readv/writev support.
 * 29Oct2002	Andrew Morton
 *		rewrote bio_add_page() support.
 * 30Oct2002	pbadari@us.ibm.com
 *		added support for non-aligned IO.
 * 06Nov2002	pbadari@us.ibm.com
 *		added asynchronous IO support.
 * 21Jul2003	nathans@sgi.com
 *		added IO completion notifier.
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/highmem.h>
#include <linux/pagemap.h>
#include <linux/task_io_accounting_ops.h>
#include <linux/bio.h>
#include <linux/wait.h>
#include <linux/err.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>
#include <linux/rwsem.h>
#include <linux/uio.h>
#include <asm/atomic.h>

/*
 * How many user pages to map in one call to get_user_pages().  This determines
 * the size of a structure on the stack.
 */
#define DIO_PAGES	64

/*
 * This code generally works in units of "dio_blocks".  A dio_block is
 * somewhere between the hard sector size and the filesystem block size.  it
 * is determined on a per-invocation basis.   When talking to the filesystem
 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
 * down by dio->blkfactor.  Similarly, fs-blocksize quantities are converted
 * to bio_block quantities by shifting left by blkfactor.
 *
 * If blkfactor is zero then the user's request was aligned to the filesystem's
 * blocksize.
 *
 * lock_type is DIO_LOCKING for regular files on direct-IO-naive filesystems.
 * This determines whether we need to do the fancy locking which prevents
 * direct-IO from being able to read uninitialised disk blocks.  If its zero
 * (blockdev) this locking is not done, and if it is DIO_OWN_LOCKING i_mutex is
 * not held for the entire direct write (taken briefly, initially, during a
 * direct read though, but its never held for the duration of a direct-IO).
 */

struct dio {
	/* BIO submission state */
	struct bio *bio;		/* bio under assembly */
	struct inode *inode;
	int rw;
	loff_t i_size;			/* i_size when submitted */
	int lock_type;			/* doesn't change */
	unsigned blkbits;		/* doesn't change */
	unsigned blkfactor;		/* When we're using an alignment which
					   is finer than the filesystem's soft
					   blocksize, this specifies how much
					   finer.  blkfactor=2 means 1/4-block
					   alignment.  Does not change */
	unsigned start_zero_done;	/* flag: sub-blocksize zeroing has
					   been performed at the start of a
					   write */
	int pages_in_io;		/* approximate total IO pages */
	size_t	size;			/* total request size (doesn't change)*/
	sector_t block_in_file;		/* Current offset into the underlying
					   file in dio_block units. */
	unsigned blocks_available;	/* At block_in_file.  changes */
	sector_t final_block_in_request;/* doesn't change */
	unsigned first_block_in_page;	/* doesn't change, Used only once */
	int boundary;			/* prev block is at a boundary */
	int reap_counter;		/* rate limit reaping */
	get_block_t *get_block;		/* block mapping function */
	dio_iodone_t *end_io;		/* IO completion function */
	sector_t final_block_in_bio;	/* current final block in bio + 1 */
	sector_t next_block_for_io;	/* next block to be put under IO,
					   in dio_blocks units */
	struct buffer_head map_bh;	/* last get_block() result */

	/*
	 * Deferred addition of a page to the dio.  These variables are
	 * private to dio_send_cur_page(), submit_page_section() and
	 * dio_bio_add_page().
	 */
	struct page *cur_page;		/* The page */
	unsigned cur_page_offset;	/* Offset into it, in bytes */
	unsigned cur_page_len;		/* Nr of bytes at cur_page_offset */
	sector_t cur_page_block;	/* Where it starts */

	/*
	 * Page fetching state. These variables belong to dio_refill_pages().
	 */
	int curr_page;			/* changes */
	int total_pages;		/* doesn't change */
	unsigned long curr_user_address;/* changes */

	/*
	 * Page queue.  These variables belong to dio_refill_pages() and
	 * dio_get_page().
	 */
	struct page *pages[DIO_PAGES];	/* page buffer */
	unsigned head;			/* next page to process */
	unsigned tail;			/* last valid page + 1 */
	int page_errors;		/* errno from get_user_pages() */

	/* BIO completion state */
	spinlock_t bio_lock;		/* protects BIO fields below */
	unsigned long refcount;		/* direct_io_worker() and bios */
	struct bio *bio_list;		/* singly linked via bi_private */
	struct task_struct *waiter;	/* waiting task (NULL if none) */

	/* AIO related stuff */
	struct kiocb *iocb;		/* kiocb */
	int is_async;			/* is IO async ? */
	int io_error;			/* IO error in completion path */
	ssize_t result;                 /* IO result */
};

/*
 * How many pages are in the queue?
 */
static inline unsigned dio_pages_present(struct dio *dio)
{
	return dio->tail - dio->head;
}

/*
 * Go grab and pin some userspace pages.   Typically we'll get 64 at a time.
 */
static int dio_refill_pages(struct dio *dio)
{
	int ret;
	int nr_pages;

	nr_pages = min(dio->total_pages - dio->curr_page, DIO_PAGES);
	ret = get_user_pages_fast(
		dio->curr_user_address,		/* Where from? */
		nr_pages,			/* How many pages? */
		dio->rw == READ,		/* Write to memory? */
		&dio->pages[0]);		/* Put results here */

	if (ret < 0 && dio->blocks_available && (dio->rw & WRITE)) {
		struct page *page = ZERO_PAGE(0);
		/*
		 * A memory fault, but the filesystem has some outstanding
		 * mapped blocks.  We need to use those blocks up to avoid
		 * leaking stale data in the file.
		 */
		if (dio->page_errors == 0)
			dio->page_errors = ret;
		page_cache_get(page);
		dio->pages[0] = page;
		dio->head = 0;
		dio->tail = 1;
		ret = 0;
		goto out;
	}

	if (ret >= 0) {
		dio->curr_user_address += ret * PAGE_SIZE;
		dio->curr_page += ret;
		dio->head = 0;
		dio->tail = ret;
		ret = 0;
	}
out:
	return ret;	
}

/*
 * Get another userspace page.  Returns an ERR_PTR on error.  Pages are
 * buffered inside the dio so that we can call get_user_pages() against a
 * decent number of pages, less frequently.  To provide nicer use of the
 * L1 cache.
 */
static struct page *dio_get_page(struct dio *dio)
{
	if (dio_pages_present(dio) == 0) {
		int ret;

		ret = dio_refill_pages(dio);
		if (ret)
			return ERR_PTR(ret);
		BUG_ON(dio_pages_present(dio) == 0);
	}
	return dio->pages[dio->head++];
}

/**
 * dio_complete() - called when all DIO BIO I/O has been completed
 * @offset: the byte offset in the file of the completed operation
 *
 * This releases locks as dictated by the locking type, lets interested parties
 * know that a DIO operation has completed, and calculates the resulting return
 * code for the operation.
 *
 * It lets the filesystem know if it registered an interest earlier via
 * get_block.  Pass the private field of the map buffer_head so that
 * filesystems can use it to hold additional state between get_block calls and
 * dio_complete.
 */
static int dio_complete(struct dio *dio, loff_t offset, int ret)
{
	ssize_t transferred = 0;

	/*
	 * AIO submission can race with bio completion to get here while
	 * expecting to have the last io completed by bio completion.
	 * In that case -EIOCBQUEUED is in fact not an error we want
	 * to preserve through this call.
	 */
	if (ret == -EIOCBQUEUED)
		ret = 0;

	if (dio->result) {
		transferred = dio->result;

		/* Check for short read case */
		if ((dio->rw == READ) && ((offset + transferred) > dio->i_size))
			transferred = dio->i_size - offset;
	}

	if (dio->end_io && dio->result)
		dio->end_io(dio->iocb, offset, transferred,
			    dio->map_bh.b_private);
	if (dio->lock_type == DIO_LOCKING)
		/* lockdep: non-owner release */
		up_read_non_owner(&dio->inode->i_alloc_sem);

	if (ret == 0)
		ret = dio->page_errors;
	if (ret == 0)
		ret = dio->io_error;
	if (ret == 0)
		ret = transferred;

	return ret;
}

static int dio_bio_complete(struct dio *dio, struct bio *bio);
/*
 * Asynchronous IO callback. 
 */
static void dio_bio_end_aio(struct bio *bio, int error)
{
	struct dio *dio = bio->bi_private;
	unsigned long remaining;
	unsigned long flags;

	/* cleanup the bio */
	dio_bio_complete(dio, bio);

	spin_lock_irqsave(&dio->bio_lock, flags);
	remaining = --dio->refcount;
	if (remaining == 1 && dio->waiter)
		wake_up_process(dio->waiter);
	spin_unlock_irqrestore(&dio->bio_lock, flags);

	if (remaining == 0) {
		int ret = dio_complete(dio, dio->iocb->ki_pos, 0);
		aio_complete(dio->iocb, ret, 0);
		kfree(dio);
	}
}

/*
 * The BIO completion handler simply queues the BIO up for the process-context
 * handler.
 *
 * During I/O bi_private points at the dio.  After I/O, bi_private is used to
 * implement a singly-linked list of completed BIOs, at dio->bio_list.
 */
static void dio_bio_end_io(struct bio *bio, int error)
{
	struct dio *dio = bio->bi_private;
	unsigned long flags;

	spin_lock_irqsave(&dio->bio_lock, flags);
	bio->bi_private = dio->bio_list;
	dio->bio_list = bio;
	if (--dio->refcount == 1 && dio->waiter)
		wake_up_process(dio->waiter);
	spin_unlock_irqrestore(&dio->bio_lock, flags);
}

static int
dio_bio_alloc(struct dio *dio, struct block_device *bdev,
		sector_t first_sector, int nr_vecs)
{
	struct bio *bio;

	bio = bio_alloc(GFP_KERNEL, nr_vecs);
	if (bio == NULL)
		return -ENOMEM;

	bio->bi_bdev = bdev;
	bio->bi_sector = first_sector;
	if (dio->is_async)
		bio->bi_end_io = dio_bio_end_aio;
	else
		bio->bi_end_io = dio_bio_end_io;

	dio->bio = bio;
	return 0;
}

/*
 * In the AIO read case we speculatively dirty the pages before starting IO.
 * During IO completion, any of these pages which happen to have been written
 * back will be redirtied by bio_check_pages_dirty().
 *
 * bios hold a dio reference between submit_bio and ->end_io.
 */
static void dio_bio_submit(struct dio *dio)
{
	struct bio *bio = dio->bio;
	unsigned long flags;

	bio->bi_private = dio;

	spin_lock_irqsave(&dio->bio_lock, flags);
	dio->refcount++;
	spin_unlock_irqrestore(&dio->bio_lock, flags);

	if (dio->is_async && dio->rw == READ)
		bio_set_pages_dirty(bio);

	submit_bio(dio->rw, bio);

	dio->bio = NULL;
	dio->boundary = 0;
}

/*
 * Release any resources in case of a failure
 */
static void dio_cleanup(struct dio *dio)
{
	while (dio_pages_present(dio))
		page_cache_release(dio_get_page(dio));
}

/*
 * Wait for the next BIO to complete.  Remove it and return it.  NULL is
 * returned once all BIOs have been completed.  This must only be called once
 * all bios have been issued so that dio->refcount can only decrease.  This
 * requires that that the caller hold a reference on the dio.
 */
static struct bio *dio_await_one(struct dio *dio)
{
	unsigned long flags;
	struct bio *bio = NULL;

	spin_lock_irqsave(&dio->bio_lock, flags);

	/*
	 * Wait as long as the list is empty and there are bios in flight.  bio
	 * completion drops the count, maybe adds to the list, and wakes while
	 * holding the bio_lock so we don't need set_current_state()'s barrier
	 * and can call it after testing our condition.
	 */
	while (dio->refcount > 1 && dio->bio_list == NULL) {
		__set_current_state(TASK_UNINTERRUPTIBLE);
		dio->waiter = current;
		spin_unlock_irqrestore(&dio->bio_lock, flags);
		io_schedule();
		/* wake up sets us TASK_RUNNING */
		spin_lock_irqsave(&dio->bio_lock, flags);
		dio->waiter = NULL;
	}
	if (dio->bio_list) {
		bio = dio->bio_list;
		dio->bio_list = bio->bi_private;
	}
	spin_unlock_irqrestore(&dio->bio_lock, flags);
	return bio;
}

/*
 * Process one completed BIO.  No locks are held.
 */
static int dio_bio_complete(struct dio *dio, struct bio *bio)
{
	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
	struct bio_vec *bvec = bio->bi_io_vec;
	int page_no;

	if (!uptodate)
		dio->io_error = -EIO;

	if (dio->is_async && dio->rw == READ) {
		bio_check_pages_dirty(bio);	/* transfers ownership */
	} else {
		for (page_no = 0; page_no < bio->bi_vcnt; page_no++) {
			struct page *page = bvec[page_no].bv_page;

			if (dio->rw == READ && !PageCompound(page))
				set_page_dirty_lock(page);
			page_cache_release(page);
		}
		bio_put(bio);
	}
	return uptodate ? 0 : -EIO;
}

/*
 * Wait on and process all in-flight BIOs.  This must only be called once
 * all bios have been issued so that the refcount can only decrease.
 * This just waits for all bios to make it through dio_bio_complete.  IO
 * errors are propagated through dio->io_error and should be propagated via
 * dio_complete().
 */
static void dio_await_completion(struct dio *dio)
{
	struct bio *bio;
	do {
		bio = dio_await_one(dio);
		if (bio)
			dio_bio_complete(dio, bio);
	} while (bio);
}

/*
 * A really large O_DIRECT read or write can generate a lot of BIOs.  So
 * to keep the memory consumption sane we periodically reap any completed BIOs
 * during the BIO generation phase.
 *
 * This also helps to limit the peak amount of pinned userspace memory.
 */
static int dio_bio_reap(struct dio *dio)
{
	int ret = 0;

	if (dio->reap_counter++ >= 64) {
		while (dio->bio_list) {
			unsigned long flags;
			struct bio *bio;
			int ret2;

			spin_lock_irqsave(&dio->bio_lock, flags);
			bio = dio->bio_list;
			dio->bio_list = bio->bi_private;
			spin_unlock_irqrestore(&dio->bio_lock, flags);
			ret2 = dio_bio_complete(dio, bio);
			if (ret == 0)
				ret = ret2;
		}
		dio->reap_counter = 0;
	}
	return ret;
}

/*
 * Call into the fs to map some more disk blocks.  We record the current number
 * of available blocks at dio->blocks_available.  These are in units of the
 * fs blocksize, (1 << inode->i_blkbits).
 *
 * The fs is allowed to map lots of blocks at once.  If it wants to do that,
 * it uses the passed inode-relative block number as the file offset, as usual.
 *
 * get_block() is passed the number of i_blkbits-sized blocks which direct_io
 * has remaining to do.  The fs should not map more than this number of blocks.
 *
 * If the fs has mapped a lot of blocks, it should populate bh->b_size to
 * indicate how much contiguous disk space has been made available at
 * bh->b_blocknr.
 *
 * If *any* of the mapped blocks are new, then the fs must set buffer_new().
 * This isn't very efficient...
 *
 * In the case of filesystem holes: the fs may return an arbitrarily-large
 * hole by returning an appropriate value in b_size and by clearing
 * buffer_mapped().  However the direct-io code will only process holes one
 * block at a time - it will repeatedly call get_block() as it walks the hole.
 */
static int get_more_blocks(struct dio *dio)
{
	int ret;
	struct buffer_head *map_bh = &dio->map_bh;
	sector_t fs_startblk;	/* Into file, in filesystem-sized blocks */
	unsigned long fs_count;	/* Number of filesystem-sized blocks */
	unsigned long dio_count;/* Number of dio_block-sized blocks */
	unsigned long blkmask;
	int create;

	/*
	 * If there was a memory error and we've overwritten all the
	 * mapped blocks then we can now return that memory error
	 */
	ret = dio->page_errors;
	if (ret == 0) {
		BUG_ON(dio->block_in_file >= dio->final_block_in_request);
		fs_startblk = dio->block_in_file >> dio->blkfactor;
		dio_count = dio->final_block_in_request - dio->block_in_file;
		fs_count = dio_count >> dio->blkfactor;
		blkmask = (1 << dio->blkfactor) - 1;
		if (dio_count & blkmask)	
			fs_count++;

		map_bh->b_state = 0;
		map_bh->b_size = fs_count << dio->inode->i_blkbits;

		create = dio->rw & WRITE;
		if (dio->lock_type == DIO_LOCKING) {
			if (dio->block_in_file < (i_size_read(dio->inode) >>
							dio->blkbits))
				create = 0;
		} else if (dio->lock_type == DIO_NO_LOCKING) {
			create = 0;
		}

		/*
		 * For writes inside i_size we forbid block creations: only
		 * overwrites are permitted.  We fall back to buffered writes
		 * at a higher level for inside-i_size block-instantiating
		 * writes.
		 */
		ret = (*dio->get_block)(dio->inode, fs_startblk,
						map_bh, create);
	}
	return ret;
}

/*
 * There is no bio.  Make one now.
 */
static int dio_new_bio(struct dio *dio, sector_t start_sector)
{
	sector_t sector;
	int ret, nr_pages;

	ret = dio_bio_reap(dio);
	if (ret)
		goto out;
	sector = start_sector << (dio->blkbits - 9);
	nr_pages = min(dio->pages_in_io, bio_get_nr_vecs(dio->map_bh.b_bdev));
	BUG_ON(nr_pages <= 0);
	ret = dio_bio_alloc(dio, dio->map_bh.b_bdev, sector, nr_pages);
	dio->boundary = 0;
out:
	return ret;
}

/*
 * Attempt to put the current chunk of 'cur_page' into the current BIO.  If
 * that was successful then update final_block_in_bio and take a ref against
 * the just-added page.
 *
 * Return zero on success.  Non-zero means the caller needs to start a new BIO.
 */
static int dio_bio_add_page(struct dio *dio)
{
	int ret;

	ret = bio_add_page(dio->bio, dio->cur_page,
			dio->cur_page_len, dio->cur_page_offset);
	if (ret == dio->cur_page_len) {
		/*
		 * Decrement count only, if we are done with this page
		 */
		if ((dio->cur_page_len + dio->cur_page_offset) == PAGE_SIZE)
			dio->pages_in_io--;
		page_cache_get(dio->cur_page);
		dio->final_block_in_bio = dio->cur_page_block +
			(dio->cur_page_len >> dio->blkbits);
		ret = 0;
	} else {
		ret = 1;
	}
	return ret;
}
		
/*
 * Put cur_page under IO.  The section of cur_page which is described by
 * cur_page_offset,cur_page_len is put into a BIO.  The section of cur_page
 * starts on-disk at cur_page_block.
 *
 * We take a ref against the page here (on behalf of its presence in the bio).
 *
 * The caller of this function is responsible for removing cur_page from the
 * dio, and for dropping the refcount which came from that presence.
 */
static int dio_send_cur_page(struct dio *dio)
{
	int ret = 0;

	if (dio->bio) {
		/*
		 * See whether this new request is contiguous with the old
		 */
		if (dio->final_block_in_bio != dio->cur_page_block)
			dio_bio_submit(dio);
		/*
		 * Submit now if the underlying fs is about to perform a
		 * metadata read
		 */
		if (dio->boundary)
			dio_bio_submit(dio);
	}

	if (dio->bio == NULL) {
		ret = dio_new_bio(dio, dio->cur_page_block);
		if (ret)
			goto out;
	}

	if (dio_bio_add_page(dio) != 0) {
		dio_bio_submit(dio);
		ret = dio_new_bio(dio, dio->cur_page_block);
		if (ret == 0) {
			ret = dio_bio_add_page(dio);
			BUG_ON(ret != 0);
		}
	}
out:
	return ret;
}

/*
 * An autonomous function to put a chunk of a page under deferred IO.
 *
 * The caller doesn't actually know (or care) whether this piece of page is in
 * a BIO, or is under IO or whatever.  We just take care of all possible 
 * situations here.  The separation between the logic of do_direct_IO() and
 * that of submit_page_section() is important for clarity.  Please don't break.
 *
 * The chunk of page starts on-disk at blocknr.
 *
 * We perform deferred IO, by recording the last-submitted page inside our
 * private part of the dio structure.  If possible, we just expand the IO
 * across that page here.
 *
 * If that doesn't work out then we put the old page into the bio and add this
 * page to the dio instead.
 */
static int
submit_page_section(struct dio *dio, struct page *page,
		unsigned offset, unsigned len, sector_t blocknr)
{
	int ret = 0;

	if (dio->rw & WRITE) {
		/*
		 * Read accounting is performed in submit_bio()
		 */
		task_io_account_write(len);
	}

	/*
	 * Can we just grow the current page's presence in the dio?
	 */
	if (	(dio->cur_page == page) &&
		(dio->cur_page_offset + dio->cur_page_len == offset) &&
		(dio->cur_page_block +
			(dio->cur_page_len >> dio->blkbits) == blocknr)) {
		dio->cur_page_len += len;

		/*
		 * If dio->boundary then we want to schedule the IO now to
		 * avoid metadata seeks.
		 */
		if (dio->boundary) {
			ret = dio_send_cur_page(dio);
			page_cache_release(dio->cur_page);
			dio->cur_page = NULL;
		}
		goto out;
	}

	/*
	 * If there's a deferred page already there then send it.
	 */
	if (dio->cur_page) {
		ret = dio_send_cur_page(dio);
		page_cache_release(dio->cur_page);
		dio->cur_page = NULL;
		if (ret)
			goto out;
	}

	page_cache_get(page);		/* It is in dio */
	dio->cur_page = page;
	dio->cur_page_offset = offset;
	dio->cur_page_len = len;
	dio->cur_page_block = blocknr;
out:
	return ret;
}

/*
 * Clean any dirty buffers in the blockdev mapping which alias newly-created
 * file blocks.  Only called for S_ISREG files - blockdevs do not set
 * buffer_new
 */
static void clean_blockdev_aliases(struct dio *dio)
{
	unsigned i;
	unsigned nblocks;

	nblocks = dio->map_bh.b_size >> dio->inode->i_blkbits;

	for (i = 0; i < nblocks; i++) {
		unmap_underlying_metadata(dio->map_bh.b_bdev,
					dio->map_bh.b_blocknr + i);
	}
}

/*
 * If we are not writing the entire block and get_block() allocated
 * the block for us, we need to fill-in the unused portion of the
 * block with zeros. This happens only if user-buffer, fileoffset or
 * io length is not filesystem block-size multiple.
 *
 * `end' is zero if we're doing the start of the IO, 1 at the end of the
 * IO.
 */
static void dio_zero_block(struct dio *dio, int end)
{
	unsigned dio_blocks_per_fs_block;
	unsigned this_chunk_blocks;	/* In dio_blocks */
	unsigned this_chunk_bytes;
	struct page *page;

	dio->start_zero_done = 1;
	if (!dio->blkfactor || !buffer_new(&dio->map_bh))
		return;

	dio_blocks_per_fs_block = 1 << dio->blkfactor;
	this_chunk_blocks = dio->block_in_file & (dio_blocks_per_fs_block - 1);

	if (!this_chunk_blocks)
		return;

	/*
	 * We need to zero out part of an fs block.  It is either at the
	 * beginning or the end of the fs block.
	 */
	if (end) 
		this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;

	this_chunk_bytes = this_chunk_blocks << dio->blkbits;

	page = ZERO_PAGE(0);
	if (submit_page_section(dio, page, 0, this_chunk_bytes, 
				dio->next_block_for_io))
		return;

	dio->next_block_for_io += this_chunk_blocks;
}

/*
 * Walk the user pages, and the file, mapping blocks to disk and generating
 * a sequence of (page,offset,len,block) mappings.  These mappings are injected
 * into submit_page_section(), which takes care of the next stage of submission
 *
 * Direct IO against a blockdev is different from a file.  Because we can
 * happily perform page-sized but 512-byte aligned IOs.  It is important that
 * blockdev IO be able to have fine alignment and large sizes.
 *
 * So what we do is to permit the ->get_block function to populate bh.b_size
 * with the size of IO which is permitted at this offset and this i_blkbits.
 *
 * For best results, the blockdev should be set up with 512-byte i_blkbits and
 * it should set b_size to PAGE_SIZE or more inside get_block().  This gives
 * fine alignment but still allows this function to work in PAGE_SIZE units.
 */
static int do_direct_IO(struct dio *dio)
{
	const unsigned blkbits = dio->blkbits;
	const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
	struct page *page;
	unsigned block_in_page;
	struct buffer_head *map_bh = &dio->map_bh;
	int ret = 0;

	/* The I/O can start at any block offset within the first page */
	block_in_page = dio->first_block_in_page;

	while (dio->block_in_file < dio->final_block_in_request) {
		page = dio_get_page(dio);
		if (IS_ERR(page)) {
			ret = PTR_ERR(page);
			goto out;
		}

		while (block_in_page < blocks_per_page) {
			unsigned offset_in_page = block_in_page << blkbits;
			unsigned this_chunk_bytes;	/* # of bytes mapped */
			unsigned this_chunk_blocks;	/* # of blocks */
			unsigned u;

			if (dio->blocks_available == 0) {
				/*
				 * Need to go and map some more disk
				 */
				unsigned long blkmask;
				unsigned long dio_remainder;

				ret = get_more_blocks(dio);
				if (ret) {
					page_cache_release(page);
					goto out;
				}
				if (!buffer_mapped(map_bh))
					goto do_holes;

				dio->blocks_available =
						map_bh->b_size >> dio->blkbits;
				dio->next_block_for_io =
					map_bh->b_blocknr << dio->blkfactor;
				if (buffer_new(map_bh))
					clean_blockdev_aliases(dio);

				if (!dio->blkfactor)
					goto do_holes;

				blkmask = (1 << dio->blkfactor) - 1;
				dio_remainder = (dio->block_in_file & blkmask);

				/*
				 * If we are at the start of IO and that IO
				 * starts partway into a fs-block,
				 * dio_remainder will be non-zero.  If the IO
				 * is a read then we can simply advance the IO
				 * cursor to the first block which is to be
				 * read.  But if the IO is a write and the
				 * block was newly allocated we cannot do that;
				 * the start of the fs block must be zeroed out
				 * on-disk
				 */
				if (!buffer_new(map_bh))
					dio->next_block_for_io += dio_remainder;
				dio->blocks_available -= dio_remainder;
			}
do_holes:
			/* Handle holes */
			if (!buffer_mapped(map_bh)) {
				loff_t i_size_aligned;

				/* AKPM: eargh, -ENOTBLK is a hack */
				if (dio->rw & WRITE) {
					page_cache_release(page);
					return -ENOTBLK;
				}

				/*
				 * Be sure to account for a partial block as the
				 * last block in the file
				 */
				i_size_aligned = ALIGN(i_size_read(dio->inode),
							1 << blkbits);
				if (dio->block_in_file >=
						i_size_aligned >> blkbits) {
					/* We hit eof */
					page_cache_release(page);
					goto out;
				}
				zero_user(page, block_in_page << blkbits,
						1 << blkbits);
				dio->block_in_file++;
				block_in_page++;
				goto next_block;
			}

			/*
			 * If we're performing IO which has an alignment which
			 * is finer than the underlying fs, go check to see if
			 * we must zero out the start of this block.
			 */
			if (unlikely(dio->blkfactor && !dio->start_zero_done))
				dio_zero_block(dio, 0);

			/*
			 * Work out, in this_chunk_blocks, how much disk we
			 * can add to this page
			 */
			this_chunk_blocks = dio->blocks_available;
			u = (PAGE_SIZE - offset_in_page) >> blkbits;
			if (this_chunk_blocks > u)
				this_chunk_blocks = u;
			u = dio->final_block_in_request - dio->block_in_file;
			if (this_chunk_blocks > u)
				this_chunk_blocks = u;
			this_chunk_bytes = this_chunk_blocks << blkbits;
			BUG_ON(this_chunk_bytes == 0);

			dio->boundary = buffer_boundary(map_bh);
			ret = submit_page_section(dio, page, offset_in_page,
				this_chunk_bytes, dio->next_block_for_io);
			if (ret) {
				page_cache_release(page);
				goto out;
			}
			dio->next_block_for_io += this_chunk_blocks;

			dio->block_in_file += this_chunk_blocks;
			block_in_page += this_chunk_blocks;
			dio->blocks_available -= this_chunk_blocks;
next_block:
			BUG_ON(dio->block_in_file > dio->final_block_in_request);
			if (dio->block_in_file == dio->final_block_in_request)
				break;
		}

		/* Drop the ref which was taken in get_user_pages() */
		page_cache_release(page);
		block_in_page = 0;
	}
out:
	return ret;
}

/*
 * Releases both i_mutex and i_alloc_sem
 */
static ssize_t
direct_io_worker(int rw, struct kiocb *iocb, struct inode *inode, 
	const struct iovec *iov, loff_t offset, unsigned long nr_segs, 
	unsigned blkbits, get_block_t get_block, dio_iodone_t end_io,
	struct dio *dio)
{
	unsigned long user_addr; 
	unsigned long flags;
	int seg;
	ssize_t ret = 0;
	ssize_t ret2;
	size_t bytes;

	dio->inode = inode;
	dio->rw = rw;
	dio->blkbits = blkbits;
	dio->blkfactor = inode->i_blkbits - blkbits;
	dio->block_in_file = offset >> blkbits;

	dio->get_block = get_block;
	dio->end_io = end_io;
	dio->final_block_in_bio = -1;
	dio->next_block_for_io = -1;

	dio->iocb = iocb;
	dio->i_size = i_size_read(inode);

	spin_lock_init(&dio->bio_lock);
	dio->refcount = 1;

	/*
	 * In case of non-aligned buffers, we may need 2 more
	 * pages since we need to zero out first and last block.
	 */
	if (unlikely(dio->blkfactor))
		dio->pages_in_io = 2;

	for (seg = 0; seg < nr_segs; seg++) {
		user_addr = (unsigned long)iov[seg].iov_base;
		dio->pages_in_io +=
			((user_addr+iov[seg].iov_len +PAGE_SIZE-1)/PAGE_SIZE
				- user_addr/PAGE_SIZE);
	}

	for (seg = 0; seg < nr_segs; seg++) {
		user_addr = (unsigned long)iov[seg].iov_base;
		dio->size += bytes = iov[seg].iov_len;

		/* Index into the first page of the first block */
		dio->first_block_in_page = (user_addr & ~PAGE_MASK) >> blkbits;
		dio->final_block_in_request = dio->block_in_file +
						(bytes >> blkbits);
		/* Page fetching state */
		dio->head = 0;
		dio->tail = 0;
		dio->curr_page = 0;

		dio->total_pages = 0;
		if (user_addr & (PAGE_SIZE-1)) {
			dio->total_pages++;
			bytes -= PAGE_SIZE - (user_addr & (PAGE_SIZE - 1));
		}
		dio->total_pages += (bytes + PAGE_SIZE - 1) / PAGE_SIZE;
		dio->curr_user_address = user_addr;
	
		ret = do_direct_IO(dio);

		dio->result += iov[seg].iov_len -
			((dio->final_block_in_request - dio->block_in_file) <<
					blkbits);

		if (ret) {
			dio_cleanup(dio);
			break;
		}
	} /* end iovec loop */

	if (ret == -ENOTBLK && (rw & WRITE)) {
		/*
		 * The remaining part of the request will be
		 * be handled by buffered I/O when we return
		 */
		ret = 0;
	}
	/*
	 * There may be some unwritten disk at the end of a part-written
	 * fs-block-sized block.  Go zero that now.
	 */
	dio_zero_block(dio, 1);

	if (dio->cur_page) {
		ret2 = dio_send_cur_page(dio);
		if (ret == 0)
			ret = ret2;
		page_cache_release(dio->cur_page);
		dio->cur_page = NULL;
	}
	if (dio->bio)
		dio_bio_submit(dio);

	/* All IO is now issued, send it on its way */
	blk_run_address_space(inode->i_mapping);

	/*
	 * It is possible that, we return short IO due to end of file.
	 * In that case, we need to release all the pages we got hold on.
	 */
	dio_cleanup(dio);

	/*
	 * All block lookups have been performed. For READ requests
	 * we can let i_mutex go now that its achieved its purpose
	 * of protecting us from looking up uninitialized blocks.
	 */
	if ((rw == READ) && (dio->lock_type == DIO_LOCKING))
		mutex_unlock(&dio->inode->i_mutex);

	/*
	 * The only time we want to leave bios in flight is when a successful
	 * partial aio read or full aio write have been setup.  In that case
	 * bio completion will call aio_complete.  The only time it's safe to
	 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
	 * This had *better* be the only place that raises -EIOCBQUEUED.
	 */
	BUG_ON(ret == -EIOCBQUEUED);
	if (dio->is_async && ret == 0 && dio->result &&
	    ((rw & READ) || (dio->result == dio->size)))
		ret = -EIOCBQUEUED;

	if (ret != -EIOCBQUEUED)
		dio_await_completion(dio);

	/*
	 * Sync will always be dropping the final ref and completing the
	 * operation.  AIO can if it was a broken operation described above or
	 * in fact if all the bios race to complete before we get here.  In
	 * that case dio_complete() translates the EIOCBQUEUED into the proper
	 * return code that the caller will hand to aio_complete().
	 *
	 * This is managed by the bio_lock instead of being an atomic_t so that
	 * completion paths can drop their ref and use the remaining count to
	 * decide to wake the submission path atomically.
	 */
	spin_lock_irqsave(&dio->bio_lock, flags);
	ret2 = --dio->refcount;
	spin_unlock_irqrestore(&dio->bio_lock, flags);

	if (ret2 == 0) {
		ret = dio_complete(dio, offset, ret);
		kfree(dio);
	} else
		BUG_ON(ret != -EIOCBQUEUED);

	return ret;
}

/*
 * This is a library function for use by filesystem drivers.
 * The locking rules are governed by the dio_lock_type parameter.
 *
 * DIO_NO_LOCKING (no locking, for raw block device access)
 * For writes, i_mutex is not held on entry; it is never taken.
 *
 * DIO_LOCKING (simple locking for regular files)
 * For writes we are called under i_mutex and return with i_mutex held, even
 * though it is internally dropped.
 * For reads, i_mutex is not held on entry, but it is taken and dropped before
 * returning.
 *
 * DIO_OWN_LOCKING (filesystem provides synchronisation and handling of
 *	uninitialised data, allowing parallel direct readers and writers)
 * For writes we are called without i_mutex, return without it, never touch it.
 * For reads we are called under i_mutex and return with i_mutex held, even
 * though it may be internally dropped.
 *
 * Additional i_alloc_sem locking requirements described inline below.
 */
ssize_t
__blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode,
	struct block_device *bdev, const struct iovec *iov, loff_t offset, 
	unsigned long nr_segs, get_block_t get_block, dio_iodone_t end_io,
	int dio_lock_type)
{
	int seg;
	size_t size;
	unsigned long addr;
	unsigned blkbits = inode->i_blkbits;
	unsigned bdev_blkbits = 0;
	unsigned blocksize_mask = (1 << blkbits) - 1;
	ssize_t retval = -EINVAL;
	loff_t end = offset;
	struct dio *dio;
	int release_i_mutex = 0;
	int acquire_i_mutex = 0;

	if (rw & WRITE)
		rw = WRITE_SYNC;

	if (bdev)
		bdev_blkbits = blksize_bits(bdev_hardsect_size(bdev));

	if (offset & blocksize_mask) {
		if (bdev)
			 blkbits = bdev_blkbits;
		blocksize_mask = (1 << blkbits) - 1;
		if (offset & blocksize_mask)
			goto out;
	}

	/* Check the memory alignment.  Blocks cannot straddle pages */
	for (seg = 0; seg < nr_segs; seg++) {
		addr = (unsigned long)iov[seg].iov_base;
		size = iov[seg].iov_len;
		end += size;
		if ((addr & blocksize_mask) || (size & blocksize_mask))  {
			if (bdev)
				 blkbits = bdev_blkbits;
			blocksize_mask = (1 << blkbits) - 1;
			if ((addr & blocksize_mask) || (size & blocksize_mask))  
				goto out;
		}
	}

	dio = kzalloc(sizeof(*dio), GFP_KERNEL);
	retval = -ENOMEM;
	if (!dio)
		goto out;

	/*
	 * For block device access DIO_NO_LOCKING is used,
	 *	neither readers nor writers do any locking at all
	 * For regular files using DIO_LOCKING,
	 *	readers need to grab i_mutex and i_alloc_sem
	 *	writers need to grab i_alloc_sem only (i_mutex is already held)
	 * For regular files using DIO_OWN_LOCKING,
	 *	neither readers nor writers take any locks here
	 */
	dio->lock_type = dio_lock_type;
	if (dio_lock_type != DIO_NO_LOCKING) {
		/* watch out for a 0 len io from a tricksy fs */
		if (rw == READ && end > offset) {
			struct address_space *mapping;

			mapping = iocb->ki_filp->f_mapping;
			if (dio_lock_type != DIO_OWN_LOCKING) {
				mutex_lock(&inode->i_mutex);
				release_i_mutex = 1;
			}

			retval = filemap_write_and_wait_range(mapping, offset,
							      end - 1);
			if (retval) {
				kfree(dio);
				goto out;
			}

			if (dio_lock_type == DIO_OWN_LOCKING) {
				mutex_unlock(&inode->i_mutex);
				acquire_i_mutex = 1;
			}
		}

		if (dio_lock_type == DIO_LOCKING)
			/* lockdep: not the owner will release it */
			down_read_non_owner(&inode->i_alloc_sem);
	}

	/*
	 * For file extending writes updating i_size before data
	 * writeouts complete can expose uninitialized blocks. So
	 * even for AIO, we need to wait for i/o to complete before
	 * returning in this case.
	 */
	dio->is_async = !is_sync_kiocb(iocb) && !((rw & WRITE) &&
		(end > i_size_read(inode)));

	retval = direct_io_worker(rw, iocb, inode, iov, offset,
				nr_segs, blkbits, get_block, end_io, dio);

	/*
	 * In case of error extending write may have instantiated a few
	 * blocks outside i_size. Trim these off again for DIO_LOCKING.
	 * NOTE: DIO_NO_LOCK/DIO_OWN_LOCK callers have to handle this by
	 * it's own meaner.
	 */
	if (unlikely(retval < 0 && (rw & WRITE))) {
		loff_t isize = i_size_read(inode);

		if (end > isize && dio_lock_type == DIO_LOCKING)
			vmtruncate(inode, isize);
	}

	if (rw == READ && dio_lock_type == DIO_LOCKING)
		release_i_mutex = 0;

out:
	if (release_i_mutex)
		mutex_unlock(&inode->i_mutex);
	else if (acquire_i_mutex)
		mutex_lock(&inode->i_mutex);
	return retval;
}
EXPORT_SYMBOL(__blockdev_direct_IO);
pan> { BUG_TRAP(sk_unhashed(sk)); sk_add_node(sk, list); } static inline void unix_remove_socket(struct sock *sk) { spin_lock(&unix_table_lock); __unix_remove_socket(sk); spin_unlock(&unix_table_lock); } static inline void unix_insert_socket(struct hlist_head *list, struct sock *sk) { spin_lock(&unix_table_lock); __unix_insert_socket(list, sk); spin_unlock(&unix_table_lock); } static struct sock *__unix_find_socket_byname(struct sockaddr_un *sunname, int len, int type, unsigned hash) { struct sock *s; struct hlist_node *node; sk_for_each(s, node, &unix_socket_table[hash ^ type]) { struct unix_sock *u = unix_sk(s); if (u->addr->len == len && !memcmp(u->addr->name, sunname, len)) goto found; } s = NULL; found: return s; } static inline struct sock *unix_find_socket_byname(struct sockaddr_un *sunname, int len, int type, unsigned hash) { struct sock *s; spin_lock(&unix_table_lock); s = __unix_find_socket_byname(sunname, len, type, hash); if (s) sock_hold(s); spin_unlock(&unix_table_lock); return s; } static struct sock *unix_find_socket_byinode(struct inode *i) { struct sock *s; struct hlist_node *node; spin_lock(&unix_table_lock); sk_for_each(s, node, &unix_socket_table[i->i_ino & (UNIX_HASH_SIZE - 1)]) { struct dentry *dentry = unix_sk(s)->dentry; if(dentry && dentry->d_inode == i) { sock_hold(s); goto found; } } s = NULL; found: spin_unlock(&unix_table_lock); return s; } static inline int unix_writable(struct sock *sk) { return (atomic_read(&sk->sk_wmem_alloc) << 2) <= sk->sk_sndbuf; } static void unix_write_space(struct sock *sk) { read_lock(&sk->sk_callback_lock); if (unix_writable(sk)) { if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) wake_up_interruptible(sk->sk_sleep); sk_wake_async(sk, 2, POLL_OUT); } read_unlock(&sk->sk_callback_lock); } /* When dgram socket disconnects (or changes its peer), we clear its receive * queue of packets arrived from previous peer. First, it allows to do * flow control based only on wmem_alloc; second, sk connected to peer * may receive messages only from that peer. */ static void unix_dgram_disconnected(struct sock *sk, struct sock *other) { if (!skb_queue_empty(&sk->sk_receive_queue)) { skb_queue_purge(&sk->sk_receive_queue); wake_up_interruptible_all(&unix_sk(sk)->peer_wait); /* If one link of bidirectional dgram pipe is disconnected, * we signal error. Messages are lost. Do not make this, * when peer was not connected to us. */ if (!sock_flag(other, SOCK_DEAD) && unix_peer(other) == sk) { other->sk_err = ECONNRESET; other->sk_error_report(other); } } } static void unix_sock_destructor(struct sock *sk) { struct unix_sock *u = unix_sk(sk); skb_queue_purge(&sk->sk_receive_queue); BUG_TRAP(!atomic_read(&sk->sk_wmem_alloc)); BUG_TRAP(sk_unhashed(sk)); BUG_TRAP(!sk->sk_socket); if (!sock_flag(sk, SOCK_DEAD)) { printk("Attempt to release alive unix socket: %p\n", sk); return; } if (u->addr) unix_release_addr(u->addr); atomic_dec(&unix_nr_socks); #ifdef UNIX_REFCNT_DEBUG printk(KERN_DEBUG "UNIX %p is destroyed, %d are still alive.\n", sk, atomic_read(&unix_nr_socks)); #endif } static int unix_release_sock (struct sock *sk, int embrion) { struct unix_sock *u = unix_sk(sk); struct dentry *dentry; struct vfsmount *mnt; struct sock *skpair; struct sk_buff *skb; int state; unix_remove_socket(sk); /* Clear state */ unix_state_wlock(sk); sock_orphan(sk); sk->sk_shutdown = SHUTDOWN_MASK; dentry = u->dentry; u->dentry = NULL; mnt = u->mnt; u->mnt = NULL; state = sk->sk_state; sk->sk_state = TCP_CLOSE; unix_state_wunlock(sk); wake_up_interruptible_all(&u->peer_wait); skpair=unix_peer(sk); if (skpair!=NULL) { if (sk->sk_type == SOCK_STREAM || sk->sk_type == SOCK_SEQPACKET) { unix_state_wlock(skpair); /* No more writes */ skpair->sk_shutdown = SHUTDOWN_MASK; if (!skb_queue_empty(&sk->sk_receive_queue) || embrion) skpair->sk_err = ECONNRESET; unix_state_wunlock(skpair); skpair->sk_state_change(skpair); read_lock(&skpair->sk_callback_lock); sk_wake_async(skpair,1,POLL_HUP); read_unlock(&skpair->sk_callback_lock); } sock_put(skpair); /* It may now die */ unix_peer(sk) = NULL; } /* Try to flush out this socket. Throw out buffers at least */ while ((skb = skb_dequeue(&sk->sk_receive_queue)) != NULL) { if (state==TCP_LISTEN) unix_release_sock(skb->sk, 1); /* passed fds are erased in the kfree_skb hook */ kfree_skb(skb); } if (dentry) { dput(dentry); mntput(mnt); } sock_put(sk); /* ---- Socket is dead now and most probably destroyed ---- */ /* * Fixme: BSD difference: In BSD all sockets connected to use get * ECONNRESET and we die on the spot. In Linux we behave * like files and pipes do and wait for the last * dereference. * * Can't we simply set sock->err? * * What the above comment does talk about? --ANK(980817) */ if (atomic_read(&unix_tot_inflight)) unix_gc(); /* Garbage collect fds */ return 0; } static int unix_listen(struct socket *sock, int backlog) { int err; struct sock *sk = sock->sk; struct unix_sock *u = unix_sk(sk); err = -EOPNOTSUPP; if (sock->type!=SOCK_STREAM && sock->type!=SOCK_SEQPACKET) goto out; /* Only stream/seqpacket sockets accept */ err = -EINVAL; if (!u->addr) goto out; /* No listens on an unbound socket */ unix_state_wlock(sk); if (sk->sk_state != TCP_CLOSE && sk->sk_state != TCP_LISTEN) goto out_unlock; if (backlog > sk->sk_max_ack_backlog) wake_up_interruptible_all(&u->peer_wait); sk->sk_max_ack_backlog = backlog; sk->sk_state = TCP_LISTEN; /* set credentials so connect can copy them */ sk->sk_peercred.pid = current->tgid; sk->sk_peercred.uid = current->euid; sk->sk_peercred.gid = current->egid; err = 0; out_unlock: unix_state_wunlock(sk); out: return err; } static int unix_release(struct socket *); static int unix_bind(struct socket *, struct sockaddr *, int); static int unix_stream_connect(struct socket *, struct sockaddr *, int addr_len, int flags); static int unix_socketpair(struct socket *, struct socket *); static int unix_accept(struct socket *, struct socket *, int); static int unix_getname(struct socket *, struct sockaddr *, int *, int); static unsigned int unix_poll(struct file *, struct socket *, poll_table *); static int unix_ioctl(struct socket *, unsigned int, unsigned long); static int unix_shutdown(struct socket *, int); static int unix_stream_sendmsg(struct kiocb *, struct socket *, struct msghdr *, size_t); static int unix_stream_recvmsg(struct kiocb *, struct socket *, struct msghdr *, size_t, int); static int unix_dgram_sendmsg(struct kiocb *, struct socket *, struct msghdr *, size_t); static int unix_dgram_recvmsg(struct kiocb *, struct socket *, struct msghdr *, size_t, int); static int unix_dgram_connect(struct socket *, struct sockaddr *, int, int); static int unix_seqpacket_sendmsg(struct kiocb *, struct socket *, struct msghdr *, size_t); static const struct proto_ops unix_stream_ops = { .family = PF_UNIX, .owner = THIS_MODULE, .release = unix_release, .bind = unix_bind, .connect = unix_stream_connect, .socketpair = unix_socketpair, .accept = unix_accept, .getname = unix_getname, .poll = unix_poll, .ioctl = unix_ioctl, .listen = unix_listen, .shutdown = unix_shutdown, .setsockopt = sock_no_setsockopt, .getsockopt = sock_no_getsockopt, .sendmsg = unix_stream_sendmsg, .recvmsg = unix_stream_recvmsg, .mmap = sock_no_mmap, .sendpage = sock_no_sendpage, }; static const struct proto_ops unix_dgram_ops = { .family = PF_UNIX, .owner = THIS_MODULE, .release = unix_release, .bind = unix_bind, .connect = unix_dgram_connect, .socketpair = unix_socketpair, .accept = sock_no_accept, .getname = unix_getname, .poll = datagram_poll, .ioctl = unix_ioctl, .listen = sock_no_listen, .shutdown = unix_shutdown, .setsockopt = sock_no_setsockopt, .getsockopt = sock_no_getsockopt, .sendmsg = unix_dgram_sendmsg, .recvmsg = unix_dgram_recvmsg, .mmap = sock_no_mmap, .sendpage = sock_no_sendpage, }; static const struct proto_ops unix_seqpacket_ops = { .family = PF_UNIX, .owner = THIS_MODULE, .release = unix_release, .bind = unix_bind, .connect = unix_stream_connect, .socketpair = unix_socketpair, .accept = unix_accept, .getname = unix_getname, .poll = datagram_poll, .ioctl = unix_ioctl, .listen = unix_listen, .shutdown = unix_shutdown, .setsockopt = sock_no_setsockopt, .getsockopt = sock_no_getsockopt, .sendmsg = unix_seqpacket_sendmsg, .recvmsg = unix_dgram_recvmsg, .mmap = sock_no_mmap, .sendpage = sock_no_sendpage, }; static struct proto unix_proto = { .name = "UNIX", .owner = THIS_MODULE, .obj_size = sizeof(struct unix_sock), }; /* * AF_UNIX sockets do not interact with hardware, hence they * dont trigger interrupts - so it's safe for them to have * bh-unsafe locking for their sk_receive_queue.lock. Split off * this special lock-class by reinitializing the spinlock key: */ static struct lock_class_key af_unix_sk_receive_queue_lock_key; static struct sock * unix_create1(struct socket *sock) { struct sock *sk = NULL; struct unix_sock *u; if (atomic_read(&unix_nr_socks) >= 2*get_max_files()) goto out; sk = sk_alloc(PF_UNIX, GFP_KERNEL, &unix_proto, 1); if (!sk) goto out; atomic_inc(&unix_nr_socks); sock_init_data(sock,sk); lockdep_set_class(&sk->sk_receive_queue.lock, &af_unix_sk_receive_queue_lock_key); sk->sk_write_space = unix_write_space; sk->sk_max_ack_backlog = sysctl_unix_max_dgram_qlen; sk->sk_destruct = unix_sock_destructor; u = unix_sk(sk); u->dentry = NULL; u->mnt = NULL; spin_lock_init(&u->lock); atomic_set(&u->inflight, sock ? 0 : -1); mutex_init(&u->readlock); /* single task reading lock */ init_waitqueue_head(&u->peer_wait); unix_insert_socket(unix_sockets_unbound, sk); out: return sk; } static int unix_create(struct socket *sock, int protocol) { if (protocol && protocol != PF_UNIX) return -EPROTONOSUPPORT; sock->state = SS_UNCONNECTED; switch (sock->type) { case SOCK_STREAM: sock->ops = &unix_stream_ops; break; /* * Believe it or not BSD has AF_UNIX, SOCK_RAW though * nothing uses it. */ case SOCK_RAW: sock->type=SOCK_DGRAM; case SOCK_DGRAM: sock->ops = &unix_dgram_ops; break; case SOCK_SEQPACKET: sock->ops = &unix_seqpacket_ops; break; default: return -ESOCKTNOSUPPORT; } return unix_create1(sock) ? 0 : -ENOMEM; } static int unix_release(struct socket *sock) { struct sock *sk = sock->sk; if (!sk) return 0; sock->sk = NULL; return unix_release_sock (sk, 0); } static int unix_autobind(struct socket *sock) { struct sock *sk = sock->sk; struct unix_sock *u = unix_sk(sk); static u32 ordernum = 1; struct unix_address * addr; int err; mutex_lock(&u->readlock); err = 0; if (u->addr) goto out; err = -ENOMEM; addr = kzalloc(sizeof(*addr) + sizeof(short) + 16, GFP_KERNEL); if (!addr) goto out; addr->name->sun_family = AF_UNIX; atomic_set(&addr->refcnt, 1); retry: addr->len = sprintf(addr->name->sun_path+1, "%05x", ordernum) + 1 + sizeof(short); addr->hash = unix_hash_fold(csum_partial((void*)addr->name, addr->len, 0)); spin_lock(&unix_table_lock); ordernum = (ordernum+1)&0xFFFFF; if (__unix_find_socket_byname(addr->name, addr->len, sock->type, addr->hash)) { spin_unlock(&unix_table_lock); /* Sanity yield. It is unusual case, but yet... */ if (!(ordernum&0xFF)) yield(); goto retry; } addr->hash ^= sk->sk_type; __unix_remove_socket(sk); u->addr = addr; __unix_insert_socket(&unix_socket_table[addr->hash], sk); spin_unlock(&unix_table_lock); err = 0; out: mutex_unlock(&u->readlock); return err; } static struct sock *unix_find_other(struct sockaddr_un *sunname, int len, int type, unsigned hash, int *error) { struct sock *u; struct nameidata nd; int err = 0; if (sunname->sun_path[0]) { err = path_lookup(sunname->sun_path, LOOKUP_FOLLOW, &nd); if (err) goto fail; err = vfs_permission(&nd, MAY_WRITE); if (err) goto put_fail; err = -ECONNREFUSED; if (!S_ISSOCK(nd.dentry->d_inode->i_mode)) goto put_fail; u=unix_find_socket_byinode(nd.dentry->d_inode); if (!u) goto put_fail; if (u->sk_type == type) touch_atime(nd.mnt, nd.dentry); path_release(&nd); err=-EPROTOTYPE; if (u->sk_type != type) { sock_put(u); goto fail; } } else { err = -ECONNREFUSED; u=unix_find_socket_byname(sunname, len, type, hash); if (u) { struct dentry *dentry; dentry = unix_sk(u)->dentry; if (dentry) touch_atime(unix_sk(u)->mnt, dentry); } else goto fail; } return u; put_fail: path_release(&nd); fail: *error=err; return NULL; } static int unix_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) { struct sock *sk = sock->sk; struct unix_sock *u = unix_sk(sk); struct sockaddr_un *sunaddr=(struct sockaddr_un *)uaddr; struct dentry * dentry = NULL; struct nameidata nd; int err; unsigned hash; struct unix_address *addr; struct hlist_head *list; err = -EINVAL; if (sunaddr->sun_family != AF_UNIX) goto out; if (addr_len==sizeof(short)) { err = unix_autobind(sock); goto out; } err = unix_mkname(sunaddr, addr_len, &hash); if (err < 0) goto out; addr_len = err; mutex_lock(&u->readlock); err = -EINVAL; if (u->addr) goto out_up; err = -ENOMEM; addr = kmalloc(sizeof(*addr)+addr_len, GFP_KERNEL); if (!addr) goto out_up; memcpy(addr->name, sunaddr, addr_len); addr->len = addr_len; addr->hash = hash ^ sk->sk_type; atomic_set(&addr->refcnt, 1); if (sunaddr->sun_path[0]) { unsigned int mode; err = 0; /* * Get the parent directory, calculate the hash for last * component. */ err = path_lookup(sunaddr->sun_path, LOOKUP_PARENT, &nd); if (err) goto out_mknod_parent; dentry = lookup_create(&nd, 0); err = PTR_ERR(dentry); if (IS_ERR(dentry)) goto out_mknod_unlock; /* * All right, let's create it. */ mode = S_IFSOCK | (SOCK_INODE(sock)->i_mode & ~current->fs->umask); err = vfs_mknod(nd.dentry->d_inode, dentry, mode, 0); if (err) goto out_mknod_dput; mutex_unlock(&nd.dentry->d_inode->i_mutex); dput(nd.dentry); nd.dentry = dentry; addr->hash = UNIX_HASH_SIZE; } spin_lock(&unix_table_lock); if (!sunaddr->sun_path[0]) { err = -EADDRINUSE; if (__unix_find_socket_byname(sunaddr, addr_len, sk->sk_type, hash)) { unix_release_addr(addr); goto out_unlock; } list = &unix_socket_table[addr->hash]; } else { list = &unix_socket_table[dentry->d_inode->i_ino & (UNIX_HASH_SIZE-1)]; u->dentry = nd.dentry; u->mnt = nd.mnt; } err = 0; __unix_remove_socket(sk); u->addr = addr; __unix_insert_socket(list, sk); out_unlock: spin_unlock(&unix_table_lock); out_up: mutex_unlock(&u->readlock); out: return err; out_mknod_dput: dput(dentry); out_mknod_unlock: mutex_unlock(&nd.dentry->d_inode->i_mutex); path_release(&nd); out_mknod_parent: if (err==-EEXIST) err=-EADDRINUSE; unix_release_addr(addr); goto out_up; } static int unix_dgram_connect(struct socket *sock, struct sockaddr *addr, int alen, int flags) { struct sock *sk = sock->sk; struct sockaddr_un *sunaddr=(struct sockaddr_un*)addr; struct sock *other; unsigned hash; int err; if (addr->sa_family != AF_UNSPEC) { err = unix_mkname(sunaddr, alen, &hash); if (err < 0) goto out; alen = err; if (test_bit(SOCK_PASSCRED, &sock->flags) && !unix_sk(sk)->addr && (err = unix_autobind(sock)) != 0) goto out; other=unix_find_other(sunaddr, alen, sock->type, hash, &err); if (!other) goto out; unix_state_wlock(sk); err = -EPERM; if (!unix_may_send(sk, other)) goto out_unlock; err = security_unix_may_send(sk->sk_socket, other->sk_socket); if (err) goto out_unlock; } else { /* * 1003.1g breaking connected state with AF_UNSPEC */ other = NULL; unix_state_wlock(sk); } /* * If it was connected, reconnect. */ if (unix_peer(sk)) { struct sock *old_peer = unix_peer(sk); unix_peer(sk)=other; unix_state_wunlock(sk); if (other != old_peer) unix_dgram_disconnected(sk, old_peer); sock_put(old_peer); } else { unix_peer(sk)=other; unix_state_wunlock(sk); } return 0; out_unlock: unix_state_wunlock(sk); sock_put(other); out: return err; } static long unix_wait_for_peer(struct sock *other, long timeo) { struct unix_sock *u = unix_sk(other); int sched; DEFINE_WAIT(wait); prepare_to_wait_exclusive(&u->peer_wait, &wait, TASK_INTERRUPTIBLE); sched = !sock_flag(other, SOCK_DEAD) && !(other->sk_shutdown & RCV_SHUTDOWN) && (skb_queue_len(&other->sk_receive_queue) > other->sk_max_ack_backlog); unix_state_runlock(other); if (sched) timeo = schedule_timeout(timeo); finish_wait(&u->peer_wait, &wait); return timeo; } static int unix_stream_connect(struct socket *sock, struct sockaddr *uaddr, int addr_len, int flags) { struct sockaddr_un *sunaddr=(struct sockaddr_un *)uaddr; struct sock *sk = sock->sk; struct unix_sock *u = unix_sk(sk), *newu, *otheru; struct sock *newsk = NULL; struct sock *other = NULL; struct sk_buff *skb = NULL; unsigned hash; int st; int err; long timeo; err = unix_mkname(sunaddr, addr_len, &hash); if (err < 0) goto out; addr_len = err; if (test_bit(SOCK_PASSCRED, &sock->flags) && !u->addr && (err = unix_autobind(sock)) != 0) goto out; timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); /* First of all allocate resources. If we will make it after state is locked, we will have to recheck all again in any case. */ err = -ENOMEM; /* create new sock for complete connection */ newsk = unix_create1(NULL); if (newsk == NULL) goto out; /* Allocate skb for sending to listening sock */ skb = sock_wmalloc(newsk, 1, 0, GFP_KERNEL); if (skb == NULL) goto out; restart: /* Find listening sock. */ other = unix_find_other(sunaddr, addr_len, sk->sk_type, hash, &err); if (!other) goto out; /* Latch state of peer */ unix_state_rlock(other); /* Apparently VFS overslept socket death. Retry. */ if (sock_flag(other, SOCK_DEAD)) { unix_state_runlock(other); sock_put(other); goto restart; } err = -ECONNREFUSED; if (other->sk_state != TCP_LISTEN) goto out_unlock; if (skb_queue_len(&other->sk_receive_queue) > other->sk_max_ack_backlog) { err = -EAGAIN; if (!timeo) goto out_unlock; timeo = unix_wait_for_peer(other, timeo); err = sock_intr_errno(timeo); if (signal_pending(current)) goto out; sock_put(other); goto restart; } /* Latch our state. It is tricky place. We need to grab write lock and cannot drop lock on peer. It is dangerous because deadlock is possible. Connect to self case and simultaneous attempt to connect are eliminated by checking socket state. other is TCP_LISTEN, if sk is TCP_LISTEN we check this before attempt to grab lock. Well, and we have to recheck the state after socket locked. */ st = sk->sk_state; switch (st) { case TCP_CLOSE: /* This is ok... continue with connect */ break; case TCP_ESTABLISHED: /* Socket is already connected */ err = -EISCONN; goto out_unlock; default: err = -EINVAL; goto out_unlock; } unix_state_wlock_nested(sk); if (sk->sk_state != st) { unix_state_wunlock(sk); unix_state_runlock(other); sock_put(other); goto restart; } err = security_unix_stream_connect(sock, other->sk_socket, newsk); if (err) { unix_state_wunlock(sk); goto out_unlock; } /* The way is open! Fastly set all the necessary fields... */ sock_hold(sk); unix_peer(newsk) = sk; newsk->sk_state = TCP_ESTABLISHED; newsk->sk_type = sk->sk_type; newsk->sk_peercred.pid = current->tgid; newsk->sk_peercred.uid = current->euid; newsk->sk_peercred.gid = current->egid; newu = unix_sk(newsk); newsk->sk_sleep = &newu->peer_wait; otheru = unix_sk(other); /* copy address information from listening to new sock*/ if (otheru->addr) { atomic_inc(&otheru->addr->refcnt); newu->addr = otheru->addr; } if (otheru->dentry) { newu->dentry = dget(otheru->dentry); newu->mnt = mntget(otheru->mnt); } /* Set credentials */ sk->sk_peercred = other->sk_peercred; sock->state = SS_CONNECTED; sk->sk_state = TCP_ESTABLISHED; sock_hold(newsk); smp_mb__after_atomic_inc(); /* sock_hold() does an atomic_inc() */ unix_peer(sk) = newsk; unix_state_wunlock(sk); /* take ten and and send info to listening sock */ spin_lock(&other->sk_receive_queue.lock); __skb_queue_tail(&other->sk_receive_queue, skb); /* Undo artificially decreased inflight after embrion * is installed to listening socket. */ atomic_inc(&newu->inflight); spin_unlock(&other->sk_receive_queue.lock); unix_state_runlock(other); other->sk_data_ready(other, 0); sock_put(other); return 0; out_unlock: if (other) unix_state_runlock(other); out: if (skb) kfree_skb(skb); if (newsk) unix_release_sock(newsk, 0); if (other) sock_put(other); return err; } static int unix_socketpair(struct socket *socka, struct socket *sockb) { struct sock *ska=socka->sk, *skb = sockb->sk; /* Join our sockets back to back */ sock_hold(ska); sock_hold(skb); unix_peer(ska)=skb; unix_peer(skb)=ska; ska->sk_peercred.pid = skb->sk_peercred.pid = current->tgid; ska->sk_peercred.uid = skb->sk_peercred.uid = current->euid; ska->sk_peercred.gid = skb->sk_peercred.gid = current->egid; if (ska->sk_type != SOCK_DGRAM) { ska->sk_state = TCP_ESTABLISHED; skb->sk_state = TCP_ESTABLISHED; socka->state = SS_CONNECTED; sockb->state = SS_CONNECTED; } return 0; } static int unix_accept(struct socket *sock, struct socket *newsock, int flags) { struct sock *sk = sock->sk; struct sock *tsk; struct sk_buff *skb; int err; err = -EOPNOTSUPP; if (sock->type!=SOCK_STREAM && sock->type!=SOCK_SEQPACKET) goto out; err = -EINVAL; if (sk->sk_state != TCP_LISTEN) goto out; /* If socket state is TCP_LISTEN it cannot change (for now...), * so that no locks are necessary. */ skb = skb_recv_datagram(sk, 0, flags&O_NONBLOCK, &err); if (!skb) { /* This means receive shutdown. */ if (err == 0) err = -EINVAL; goto out; } tsk = skb->sk; skb_free_datagram(sk, skb); wake_up_interruptible(&unix_sk(sk)->peer_wait); /* attach accepted sock to socket */ unix_state_wlock(tsk); newsock->state = SS_CONNECTED; sock_graft(tsk, newsock); unix_state_wunlock(tsk); return 0; out: return err; } static int unix_getname(struct socket *sock, struct sockaddr *uaddr, int *uaddr_len, int peer) { struct sock *sk = sock->sk; struct unix_sock *u; struct sockaddr_un *sunaddr=(struct sockaddr_un *)uaddr; int err = 0; if (peer) { sk = unix_peer_get(sk); err = -ENOTCONN; if (!sk) goto out; err = 0; } else { sock_hold(sk); } u = unix_sk(sk); unix_state_rlock(sk); if (!u->addr) { sunaddr->sun_family = AF_UNIX; sunaddr->sun_path[0] = 0; *uaddr_len = sizeof(short); } else { struct unix_address *addr = u->addr; *uaddr_len = addr->len; memcpy(sunaddr, addr->name, *uaddr_len); } unix_state_runlock(sk); sock_put(sk); out: return err; } static void unix_detach_fds(struct scm_cookie *scm, struct sk_buff *skb) { int i; scm->fp = UNIXCB(skb).fp; skb->destructor = sock_wfree; UNIXCB(skb).fp = NULL; for (i=scm->fp->count-1; i>=0; i--) unix_notinflight(scm->fp->fp[i]); } static void unix_destruct_fds(struct sk_buff *skb) { struct scm_cookie scm; memset(&scm, 0, sizeof(scm)); unix_detach_fds(&scm, skb); /* Alas, it calls VFS */ /* So fscking what? fput() had been SMP-safe since the last Summer */ scm_destroy(&scm); sock_wfree(skb); } static void unix_attach_fds(struct scm_cookie *scm, struct sk_buff *skb) { int i; for (i=scm->fp->count-1; i>=0; i--) unix_inflight(scm->fp->fp[i]); UNIXCB(skb).fp = scm->fp; skb->destructor = unix_destruct_fds; scm->fp = NULL; } /* * Send AF_UNIX data. */ static int unix_dgram_sendmsg(struct kiocb *kiocb, struct socket *sock, struct msghdr *msg, size_t len) { struct sock_iocb *siocb = kiocb_to_siocb(kiocb); struct sock *sk = sock->sk; struct unix_sock *u = unix_sk(sk); struct sockaddr_un *sunaddr=msg->msg_name; struct sock *other = NULL; int namelen = 0; /* fake GCC */ int err; unsigned hash; struct sk_buff *skb; long timeo; struct scm_cookie tmp_scm; if (NULL == siocb->scm) siocb->scm = &tmp_scm; err = scm_send(sock, msg, siocb->scm); if (err < 0) return err; err = -EOPNOTSUPP; if (msg->msg_flags&MSG_OOB) goto out; if (msg->msg_namelen) { err = unix_mkname(sunaddr, msg->msg_namelen, &hash); if (err < 0) goto out; namelen = err; } else { sunaddr = NULL; err = -ENOTCONN; other = unix_peer_get(sk); if (!other) goto out; } if (test_bit(SOCK_PASSCRED, &sock->flags) && !u->addr && (err = unix_autobind(sock)) != 0) goto out; err = -EMSGSIZE; if (len > sk->sk_sndbuf - 32) goto out; skb = sock_alloc_send_skb(sk, len, msg->msg_flags&MSG_DONTWAIT, &err); if (skb==NULL) goto out; memcpy(UNIXCREDS(skb), &siocb->scm->creds, sizeof(struct ucred)); if (siocb->scm->fp) unix_attach_fds(siocb->scm, skb); unix_get_secdata(siocb->scm, skb); skb->h.raw = skb->data; err = memcpy_fromiovec(skb_put(skb,len), msg->msg_iov, len); if (err) goto out_free; timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); restart: if (!other) { err = -ECONNRESET; if (sunaddr == NULL) goto out_free; other = unix_find_other(sunaddr, namelen, sk->sk_type, hash, &err); if (other==NULL) goto out_free; } unix_state_rlock(other); err = -EPERM; if (!unix_may_send(sk, other)) goto out_unlock; if (sock_flag(other, SOCK_DEAD)) { /* * Check with 1003.1g - what should * datagram error */ unix_state_runlock(other); sock_put(other); err = 0; unix_state_wlock(sk); if (unix_peer(sk) == other) { unix_peer(sk)=NULL; unix_state_wunlock(sk); unix_dgram_disconnected(sk, other); sock_put(other); err = -ECONNREFUSED; } else { unix_state_wunlock(sk); } other = NULL; if (err) goto out_free; goto restart; } err = -EPIPE; if (other->sk_shutdown & RCV_SHUTDOWN) goto out_unlock; if (sk->sk_type != SOCK_SEQPACKET) { err = security_unix_may_send(sk->sk_socket, other->sk_socket); if (err) goto out_unlock; } if (unix_peer(other) != sk && (skb_queue_len(&other->sk_receive_queue) > other->sk_max_ack_backlog)) { if (!timeo) { err = -EAGAIN; goto out_unlock; } timeo = unix_wait_for_peer(other, timeo); err = sock_intr_errno(timeo); if (signal_pending(current)) goto out_free; goto restart; } skb_queue_tail(&other->sk_receive_queue, skb); unix_state_runlock(other); other->sk_data_ready(other, len); sock_put(other); scm_destroy(siocb->scm); return len; out_unlock: unix_state_runlock(other); out_free: kfree_skb(skb); out: if (other) sock_put(other); scm_destroy(siocb->scm); return err; } static int unix_stream_sendmsg(struct kiocb *kiocb, struct socket *sock, struct msghdr *msg, size_t len) { struct sock_iocb *siocb = kiocb_to_siocb(kiocb); struct sock *sk = sock->sk; struct sock *other = NULL; struct sockaddr_un *sunaddr=msg->msg_name; int err,size; struct sk_buff *skb; int sent=0; struct scm_cookie tmp_scm; if (NULL == siocb->scm) siocb->scm = &tmp_scm; err = scm_send(sock, msg, siocb->scm); if (err < 0) return err; err = -EOPNOTSUPP; if (msg->msg_flags&MSG_OOB) goto out_err; if (msg->msg_namelen) { err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP; goto out_err; } else { sunaddr = NULL; err = -ENOTCONN; other = unix_peer(sk); if (!other) goto out_err; } if (sk->sk_shutdown & SEND_SHUTDOWN) goto pipe_err; while(sent < len) { /* * Optimisation for the fact that under 0.01% of X * messages typically need breaking up. */ size = len-sent; /* Keep two messages in the pipe so it schedules better */ if (size > ((sk->sk_sndbuf >> 1) - 64)) size = (sk->sk_sndbuf >> 1) - 64; if (size > SKB_MAX_ALLOC) size = SKB_MAX_ALLOC; /* * Grab a buffer */ skb=sock_alloc_send_skb(sk,size,msg->msg_flags&MSG_DONTWAIT, &err); if (skb==NULL) goto out_err; /* * If you pass two values to the sock_alloc_send_skb * it tries to grab the large buffer with GFP_NOFS * (which can fail easily), and if it fails grab the * fallback size buffer which is under a page and will * succeed. [Alan] */ size = min_t(int, size, skb_tailroom(skb)); memcpy(UNIXCREDS(skb), &siocb->scm->creds, sizeof(struct ucred)); if (siocb->scm->fp) unix_attach_fds(siocb->scm, skb); if ((err = memcpy_fromiovec(skb_put(skb,size), msg->msg_iov, size)) != 0) { kfree_skb(skb); goto out_err; } unix_state_rlock(other); if (sock_flag(other, SOCK_DEAD) || (other->sk_shutdown & RCV_SHUTDOWN)) goto pipe_err_free; skb_queue_tail(&other->sk_receive_queue, skb); unix_state_runlock(other); other->sk_data_ready(other, size); sent+=size; } scm_destroy(siocb->scm); siocb->scm = NULL; return sent; pipe_err_free: unix_state_runlock(other); kfree_skb(skb); pipe_err: if (sent==0 && !(msg->msg_flags&MSG_NOSIGNAL)) send_sig(SIGPIPE,current,0); err = -EPIPE; out_err: scm_destroy(siocb->scm); siocb->scm = NULL; return sent ? : err; } static int unix_seqpacket_sendmsg(struct kiocb *kiocb, struct socket *sock, struct msghdr *msg, size_t len) { int err; struct sock *sk = sock->sk; err = sock_error(sk); if (err) return err; if (sk->sk_state != TCP_ESTABLISHED) return -ENOTCONN; if (msg->msg_namelen) msg->msg_namelen = 0; return unix_dgram_sendmsg(kiocb, sock, msg, len); } static void unix_copy_addr(struct msghdr *msg, struct sock *sk) { struct unix_sock *u = unix_sk(sk); msg->msg_namelen = 0; if (u->addr) { msg->msg_namelen = u->addr->len; memcpy(msg->msg_name, u->addr->name, u->addr->len); } } static int unix_dgram_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg, size_t size, int flags) { struct sock_iocb *siocb = kiocb_to_siocb(iocb); struct scm_cookie tmp_scm; struct sock *sk = sock->sk; struct unix_sock *u = unix_sk(sk); int noblock = flags & MSG_DONTWAIT; struct sk_buff *skb; int err; err = -EOPNOTSUPP; if (flags&MSG_OOB) goto out; msg->msg_namelen = 0; mutex_lock(&u->readlock); skb = skb_recv_datagram(sk, flags, noblock, &err); if (!skb) goto out_unlock; wake_up_interruptible(&u->peer_wait); if (msg->msg_name) unix_copy_addr(msg, skb->sk); if (size > skb->len) size = skb->len; else if (size < skb->len) msg->msg_flags |= MSG_TRUNC; err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, size); if (err) goto out_free; if (!siocb->scm) { siocb->scm = &tmp_scm; memset(&tmp_scm, 0, sizeof(tmp_scm)); } siocb->scm->creds = *UNIXCREDS(skb); unix_set_secdata(siocb->scm, skb); if (!(flags & MSG_PEEK)) { if (UNIXCB(skb).fp) unix_detach_fds(siocb->scm, skb); } else { /* It is questionable: on PEEK we could: - do not return fds - good, but too simple 8) - return fds, and do not return them on read (old strategy, apparently wrong) - clone fds (I chose it for now, it is the most universal solution) POSIX 1003.1g does not actually define this clearly at all. POSIX 1003.1g doesn't define a lot of things clearly however! */ if (UNIXCB(skb).fp) siocb->scm->fp = scm_fp_dup(UNIXCB(skb).fp); } err = size; scm_recv(sock, msg, siocb->scm, flags); out_free: skb_free_datagram(sk,skb); out_unlock: mutex_unlock(&u->readlock); out: return err; } /* * Sleep until data has arrive. But check for races.. */ static long unix_stream_data_wait(struct sock * sk, long timeo) { DEFINE_WAIT(wait); unix_state_rlock(sk); for (;;) { prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE); if (!skb_queue_empty(&sk->sk_receive_queue) || sk->sk_err || (sk->sk_shutdown & RCV_SHUTDOWN) || signal_pending(current) || !timeo) break; set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags); unix_state_runlock(sk); timeo = schedule_timeout(timeo); unix_state_rlock(sk); clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags); } finish_wait(sk->sk_sleep, &wait); unix_state_runlock(sk); return timeo; } static int unix_stream_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg, size_t size, int flags) { struct sock_iocb *siocb = kiocb_to_siocb(iocb); struct scm_cookie tmp_scm; struct sock *sk = sock->sk; struct unix_sock *u = unix_sk(sk); struct sockaddr_un *sunaddr=msg->msg_name; int copied = 0; int check_creds = 0; int target; int err = 0; long timeo; err = -EINVAL; if (sk->sk_state != TCP_ESTABLISHED) goto out; err = -EOPNOTSUPP; if (flags&MSG_OOB) goto out; target = sock_rcvlowat(sk, flags&MSG_WAITALL, size); timeo = sock_rcvtimeo(sk, flags&MSG_DONTWAIT); msg->msg_namelen = 0; /* Lock the socket to prevent queue disordering * while sleeps in memcpy_tomsg */ if (!siocb->scm) { siocb->scm = &tmp_scm; memset(&tmp_scm, 0, sizeof(tmp_scm)); } mutex_lock(&u->readlock); do { int chunk; struct sk_buff *skb; skb = skb_dequeue(&sk->sk_receive_queue); if (skb==NULL) { if (copied >= target) break; /* * POSIX 1003.1g mandates this order. */ if ((err = sock_error(sk)) != 0) break; if (sk->sk_shutdown & RCV_SHUTDOWN) break; err = -EAGAIN; if (!timeo) break; mutex_unlock(&u->readlock); timeo = unix_stream_data_wait(sk, timeo); if (signal_pending(current)) { err = sock_intr_errno(timeo); goto out; } mutex_lock(&u->readlock); continue; } if (check_creds) { /* Never glue messages from different writers */ if (memcmp(UNIXCREDS(skb), &siocb->scm->creds, sizeof(siocb->scm->creds)) != 0) { skb_queue_head(&sk->sk_receive_queue, skb); break; } } else { /* Copy credentials */ siocb->scm->creds = *UNIXCREDS(skb); check_creds = 1; } /* Copy address just once */ if (sunaddr) { unix_copy_addr(msg, skb->sk); sunaddr = NULL; } chunk = min_t(unsigned int, skb->len, size); if (memcpy_toiovec(msg->msg_iov, skb->data, chunk)) { skb_queue_head(&sk->sk_receive_queue, skb); if (copied == 0) copied = -EFAULT; break; } copied += chunk; size -= chunk; /* Mark read part of skb as used */ if (!(flags & MSG_PEEK)) { skb_pull(skb, chunk); if (UNIXCB(skb).fp) unix_detach_fds(siocb->scm, skb); /* put the skb back if we didn't use it up.. */ if (skb->len) { skb_queue_head(&sk->sk_receive_queue, skb); break; } kfree_skb(skb); if (siocb->scm->fp) break; } else { /* It is questionable, see note in unix_dgram_recvmsg. */ if (UNIXCB(skb).fp) siocb->scm->fp = scm_fp_dup(UNIXCB(skb).fp); /* put message back and return */ skb_queue_head(&sk->sk_receive_queue, skb); break; } } while (size); mutex_unlock(&u->readlock); scm_recv(sock, msg, siocb->scm, flags); out: return copied ? : err; } static int unix_shutdown(struct socket *sock, int mode) { struct sock *sk = sock->sk; struct sock *other; mode = (mode+1)&(RCV_SHUTDOWN|SEND_SHUTDOWN); if (mode) { unix_state_wlock(sk); sk->sk_shutdown |= mode; other=unix_peer(sk); if (other) sock_hold(other); unix_state_wunlock(sk); sk->sk_state_change(sk); if (other && (sk->sk_type == SOCK_STREAM || sk->sk_type == SOCK_SEQPACKET)) { int peer_mode = 0; if (mode&RCV_SHUTDOWN) peer_mode |= SEND_SHUTDOWN; if (mode&SEND_SHUTDOWN) peer_mode |= RCV_SHUTDOWN; unix_state_wlock(other); other->sk_shutdown |= peer_mode; unix_state_wunlock(other); other->sk_state_change(other); read_lock(&other->sk_callback_lock); if (peer_mode == SHUTDOWN_MASK) sk_wake_async(other,1,POLL_HUP); else if (peer_mode & RCV_SHUTDOWN) sk_wake_async(other,1,POLL_IN); read_unlock(&other->sk_callback_lock); } if (other) sock_put(other); } return 0; } static int unix_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) { struct sock *sk = sock->sk; long amount=0; int err; switch(cmd) { case SIOCOUTQ: amount = atomic_read(&sk->sk_wmem_alloc); err = put_user(amount, (int __user *)arg); break; case SIOCINQ: { struct sk_buff *skb; if (sk->sk_state == TCP_LISTEN) { err = -EINVAL; break; } spin_lock(&sk->sk_receive_queue.lock); if (sk->sk_type == SOCK_STREAM || sk->sk_type == SOCK_SEQPACKET) { skb_queue_walk(&sk->sk_receive_queue, skb) amount += skb->len; } else { skb = skb_peek(&sk->sk_receive_queue); if (skb) amount=skb->len; } spin_unlock(&sk->sk_receive_queue.lock); err = put_user(amount, (int __user *)arg); break; } default: err = -ENOIOCTLCMD; break; } return err; } static unsigned int unix_poll(struct file * file, struct socket *sock, poll_table *wait) { struct sock *sk = sock->sk; unsigned int mask; poll_wait(file, sk->sk_sleep, wait); mask = 0; /* exceptional events? */ if (sk->sk_err) mask |= POLLERR; if (sk->sk_shutdown == SHUTDOWN_MASK) mask |= POLLHUP; if (sk->sk_shutdown & RCV_SHUTDOWN) mask |= POLLRDHUP; /* readable? */ if (!skb_queue_empty(&sk->sk_receive_queue) || (sk->sk_shutdown & RCV_SHUTDOWN)) mask |= POLLIN | POLLRDNORM; /* Connection-based need to check for termination and startup */ if ((sk->sk_type == SOCK_STREAM || sk->sk_type == SOCK_SEQPACKET) && sk->sk_state == TCP_CLOSE) mask |= POLLHUP; /* * we set writable also when the other side has shut down the * connection. This prevents stuck sockets. */ if (unix_writable(sk)) mask |= POLLOUT | POLLWRNORM | POLLWRBAND; return mask; } #ifdef CONFIG_PROC_FS static struct sock *unix_seq_idx(int *iter, loff_t pos) { loff_t off = 0; struct sock *s; for (s = first_unix_socket(iter); s; s = next_unix_socket(iter, s)) { if (off == pos) return s; ++off; } return NULL; } static void *unix_seq_start(struct seq_file *seq, loff_t *pos) { spin_lock(&unix_table_lock); return *pos ? unix_seq_idx(seq->private, *pos - 1) : ((void *) 1); } static void *unix_seq_next(struct seq_file *seq, void *v, loff_t *pos) { ++*pos; if (v == (void *)1) return first_unix_socket(seq->private); return next_unix_socket(seq->private, v); } static void unix_seq_stop(struct seq_file *seq, void *v) { spin_unlock(&unix_table_lock); } static int unix_seq_show(struct seq_file *seq, void *v) { if (v == (void *)1) seq_puts(seq, "Num RefCount Protocol Flags Type St " "Inode Path\n"); else { struct sock *s = v; struct unix_sock *u = unix_sk(s); unix_state_rlock(s); seq_printf(seq, "%p: %08X %08X %08X %04X %02X %5lu", s, atomic_read(&s->sk_refcnt), 0, s->sk_state == TCP_LISTEN ? __SO_ACCEPTCON : 0, s->sk_type, s->sk_socket ? (s->sk_state == TCP_ESTABLISHED ? SS_CONNECTED : SS_UNCONNECTED) : (s->sk_state == TCP_ESTABLISHED ? SS_CONNECTING : SS_DISCONNECTING), sock_i_ino(s)); if (u->addr) { int i, len; seq_putc(seq, ' '); i = 0; len = u->addr->len - sizeof(short); if (!UNIX_ABSTRACT(s)) len--; else { seq_putc(seq, '@'); i++; } for ( ; i < len; i++) seq_putc(seq, u->addr->name->sun_path[i]); } unix_state_runlock(s); seq_putc(seq, '\n'); } return 0; } static struct seq_operations unix_seq_ops = { .start = unix_seq_start, .next = unix_seq_next, .stop = unix_seq_stop, .show = unix_seq_show, }; static int unix_seq_open(struct inode *inode, struct file *file) { struct seq_file *seq; int rc = -ENOMEM; int *iter = kmalloc(sizeof(int), GFP_KERNEL); if (!iter) goto out; rc = seq_open(file, &unix_seq_ops); if (rc) goto out_kfree; seq = file->private_data; seq->private = iter; *iter = 0; out: return rc; out_kfree: kfree(iter); goto out; } static struct file_operations unix_seq_fops = { .owner = THIS_MODULE, .open = unix_seq_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release_private, }; #endif static struct net_proto_family unix_family_ops = { .family = PF_UNIX, .create = unix_create, .owner = THIS_MODULE, }; static int __init af_unix_init(void) { int rc = -1; struct sk_buff *dummy_skb; if (sizeof(struct unix_skb_parms) > sizeof(dummy_skb->cb)) { printk(KERN_CRIT "%s: panic\n", __FUNCTION__); goto out; } rc = proto_register(&unix_proto, 1); if (rc != 0) { printk(KERN_CRIT "%s: Cannot create unix_sock SLAB cache!\n", __FUNCTION__); goto out; } sock_register(&unix_family_ops); #ifdef CONFIG_PROC_FS proc_net_fops_create("unix", 0, &unix_seq_fops); #endif unix_sysctl_register(); out: return rc; } static void __exit af_unix_exit(void) { sock_unregister(PF_UNIX); unix_sysctl_unregister(); proc_net_remove("unix"); proto_unregister(&unix_proto); } module_init(af_unix_init); module_exit(af_unix_exit); MODULE_LICENSE("GPL"); MODULE_ALIAS_NETPROTO(PF_UNIX);