aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/rtc/class.c
blob: 5143629dedbdcf9262240e98f6a9637d249c5679 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
/*
 * RTC subsystem, base class
 *
 * Copyright (C) 2005 Tower Technologies
 * Author: Alessandro Zummo <a.zummo@towertech.it>
 *
 * class skeleton from drivers/hwmon/hwmon.c
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
*/

#include <linux/module.h>
#include <linux/rtc.h>
#include <linux/kdev_t.h>
#include <linux/idr.h>
#include <linux/slab.h>
#include <linux/workqueue.h>

#include "rtc-core.h"


static DEFINE_IDA(rtc_ida);
struct class *rtc_class;

static void rtc_device_release(struct device *dev)
{
	struct rtc_device *rtc = to_rtc_device(dev);
	ida_simple_remove(&rtc_ida, rtc->id);
	kfree(rtc);
}

#ifdef CONFIG_RTC_HCTOSYS_DEVICE
/* Result of the last RTC to system clock attempt. */
int rtc_hctosys_ret = -ENODEV;
#endif

#if defined(CONFIG_PM) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
/*
 * On suspend(), measure the delta between one RTC and the
 * system's wall clock; restore it on resume().
 */

static struct timespec old_rtc, old_system, old_delta;


static int rtc_suspend(struct device *dev, pm_message_t mesg)
{
	struct rtc_device	*rtc = to_rtc_device(dev);
	struct rtc_time		tm;
	struct timespec		delta, delta_delta;
	if (strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE) != 0)
		return 0;

	/* snapshot the current RTC and system time at suspend*/
	rtc_read_time(rtc, &tm);
	getnstimeofday(&old_system);
	rtc_tm_to_time(&tm, &old_rtc.tv_sec);


	/*
	 * To avoid drift caused by repeated suspend/resumes,
	 * which each can add ~1 second drift error,
	 * try to compensate so the difference in system time
	 * and rtc time stays close to constant.
	 */
	delta = timespec_sub(old_system, old_rtc);
	delta_delta = timespec_sub(delta, old_delta);
	if (delta_delta.tv_sec < -2 || delta_delta.tv_sec >= 2) {
		/*
		 * if delta_delta is too large, assume time correction
		 * has occured and set old_delta to the current delta.
		 */
		old_delta = delta;
	} else {
		/* Otherwise try to adjust old_system to compensate */
		old_system = timespec_sub(old_system, delta_delta);
	}

	return 0;
}

static int rtc_resume(struct device *dev)
{
	struct rtc_device	*rtc = to_rtc_device(dev);
	struct rtc_time		tm;
	struct timespec		new_system, new_rtc;
	struct timespec		sleep_time;

	rtc_hctosys_ret = -ENODEV;
	if (strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE) != 0)
		return 0;

	/* snapshot the current rtc and system time at resume */
	getnstimeofday(&new_system);
	rtc_read_time(rtc, &tm);
	if (rtc_valid_tm(&tm) != 0) {
		pr_debug("%s:  bogus resume time\n", dev_name(&rtc->dev));
		return 0;
	}
	rtc_tm_to_time(&tm, &new_rtc.tv_sec);
	new_rtc.tv_nsec = 0;

	if (new_rtc.tv_sec < old_rtc.tv_sec) {
		pr_debug("%s:  time travel!\n", dev_name(&rtc->dev));
		return 0;
	}

	/* calculate the RTC time delta (sleep time)*/
	sleep_time = timespec_sub(new_rtc, old_rtc);

	/*
	 * Since these RTC suspend/resume handlers are not called
	 * at the very end of suspend or the start of resume,
	 * some run-time may pass on either sides of the sleep time
	 * so subtract kernel run-time between rtc_suspend to rtc_resume
	 * to keep things accurate.
	 */
	sleep_time = timespec_sub(sleep_time,
			timespec_sub(new_system, old_system));

	if (sleep_time.tv_sec >= 0)
		timekeeping_inject_sleeptime(&sleep_time);
	rtc_hctosys_ret = 0;
	return 0;
}

#else
#define rtc_suspend	NULL
#define rtc_resume	NULL
#endif


/**
 * rtc_device_register - register w/ RTC class
 * @dev: the device to register
 *
 * rtc_device_unregister() must be called when the class device is no
 * longer needed.
 *
 * Returns the pointer to the new struct class device.
 */
struct rtc_device *rtc_device_register(const char *name, struct device *dev,
					const struct rtc_class_ops *ops,
					struct module *owner)
{
	struct rtc_device *rtc;
	struct rtc_wkalrm alrm;
	int id, err;

	id = ida_simple_get(&rtc_ida, 0, 0, GFP_KERNEL);
	if (id < 0) {
		err = id;
		goto exit;
	}

	rtc = kzalloc(sizeof(struct rtc_device), GFP_KERNEL);
	if (rtc == NULL) {
		err = -ENOMEM;
		goto exit_ida;
	}

	rtc->id = id;
	rtc->ops = ops;
	rtc->owner = owner;
	rtc->irq_freq = 1;
	rtc->max_user_freq = 64;
	rtc->dev.parent = dev;
	rtc->dev.class = rtc_class;
	rtc->dev.release = rtc_device_release;

	mutex_init(&rtc->ops_lock);
	spin_lock_init(&rtc->irq_lock);
	spin_lock_init(&rtc->irq_task_lock);
	init_waitqueue_head(&rtc->irq_queue);

	/* Init timerqueue */
	timerqueue_init_head(&rtc->timerqueue);
	INIT_WORK(&rtc->irqwork, rtc_timer_do_work);
	/* Init aie timer */
	rtc_timer_init(&rtc->aie_timer, rtc_aie_update_irq, (void *)rtc);
	/* Init uie timer */
	rtc_timer_init(&rtc->uie_rtctimer, rtc_uie_update_irq, (void *)rtc);
	/* Init pie timer */
	hrtimer_init(&rtc->pie_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rtc->pie_timer.function = rtc_pie_update_irq;
	rtc->pie_enabled = 0;

	/* Check to see if there is an ALARM already set in hw */
	err = __rtc_read_alarm(rtc, &alrm);

	if (!err && !rtc_valid_tm(&alrm.time))
		rtc_initialize_alarm(rtc, &alrm);

	strlcpy(rtc->name, name, RTC_DEVICE_NAME_SIZE);
	dev_set_name(&rtc->dev, "rtc%d", id);

	rtc_dev_prepare(rtc);

	err = device_register(&rtc->dev);
	if (err) {
		put_device(&rtc->dev);
		goto exit_kfree;
	}

	rtc_dev_add_device(rtc);
	rtc_sysfs_add_device(rtc);
	rtc_proc_add_device(rtc);

	dev_info(dev, "rtc core: registered %s as %s\n",
			rtc->name, dev_name(&rtc->dev));

	return rtc;

exit_kfree:
	kfree(rtc);

exit_ida:
	ida_simple_remove(&rtc_ida, id);

exit:
	dev_err(dev, "rtc core: unable to register %s, err = %d\n",
			name, err);
	return ERR_PTR(err);
}
EXPORT_SYMBOL_GPL(rtc_device_register);


/**
 * rtc_device_unregister - removes the previously registered RTC class device
 *
 * @rtc: the RTC class device to destroy
 */
void rtc_device_unregister(struct rtc_device *rtc)
{
	if (get_device(&rtc->dev) != NULL) {
		mutex_lock(&rtc->ops_lock);
		/* remove innards of this RTC, then disable it, before
		 * letting any rtc_class_open() users access it again
		 */
		rtc_sysfs_del_device(rtc);
		rtc_dev_del_device(rtc);
		rtc_proc_del_device(rtc);
		device_unregister(&rtc->dev);
		rtc->ops = NULL;
		mutex_unlock(&rtc->ops_lock);
		put_device(&rtc->dev);
	}
}
EXPORT_SYMBOL_GPL(rtc_device_unregister);

static int __init rtc_init(void)
{
	rtc_class = class_create(THIS_MODULE, "rtc");
	if (IS_ERR(rtc_class)) {
		printk(KERN_ERR "%s: couldn't create class\n", __FILE__);
		return PTR_ERR(rtc_class);
	}
	rtc_class->suspend = rtc_suspend;
	rtc_class->resume = rtc_resume;
	rtc_dev_init();
	rtc_sysfs_init(rtc_class);
	return 0;
}

static void __exit rtc_exit(void)
{
	rtc_dev_exit();
	class_destroy(rtc_class);
	ida_destroy(&rtc_ida);
}

subsys_initcall(rtc_init);
module_exit(rtc_exit);

MODULE_AUTHOR("Alessandro Zummo <a.zummo@towertech.it>");
MODULE_DESCRIPTION("RTC class support");
MODULE_LICENSE("GPL");
href='#n1198'>1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
/*
 * Virtual network driver for conversing with remote driver backends.
 *
 * Copyright (c) 2002-2005, K A Fraser
 * Copyright (c) 2005, XenSource Ltd
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License version 2
 * as published by the Free Software Foundation; or, when distributed
 * separately from the Linux kernel or incorporated into other
 * software packages, subject to the following license:
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this source file (the "Software"), to deal in the Software without
 * restriction, including without limitation the rights to use, copy, modify,
 * merge, publish, distribute, sublicense, and/or sell copies of the Software,
 * and to permit persons to whom the Software is furnished to do so, subject to
 * the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 */

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/ethtool.h>
#include <linux/if_ether.h>
#include <linux/tcp.h>
#include <linux/udp.h>
#include <linux/moduleparam.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <net/ip.h>

#include <xen/xen.h>
#include <xen/xenbus.h>
#include <xen/events.h>
#include <xen/page.h>
#include <xen/grant_table.h>

#include <xen/interface/io/netif.h>
#include <xen/interface/memory.h>
#include <xen/interface/grant_table.h>

static const struct ethtool_ops xennet_ethtool_ops;

struct netfront_cb {
	struct page *page;
	unsigned offset;
};

#define NETFRONT_SKB_CB(skb)	((struct netfront_cb *)((skb)->cb))

#define RX_COPY_THRESHOLD 256

#define GRANT_INVALID_REF	0

#define NET_TX_RING_SIZE __RING_SIZE((struct xen_netif_tx_sring *)0, PAGE_SIZE)
#define NET_RX_RING_SIZE __RING_SIZE((struct xen_netif_rx_sring *)0, PAGE_SIZE)
#define TX_MAX_TARGET min_t(int, NET_RX_RING_SIZE, 256)

struct netfront_info {
	struct list_head list;
	struct net_device *netdev;

	struct napi_struct napi;

	unsigned int evtchn;
	struct xenbus_device *xbdev;

	spinlock_t   tx_lock;
	struct xen_netif_tx_front_ring tx;
	int tx_ring_ref;

	/*
	 * {tx,rx}_skbs store outstanding skbuffs. Free tx_skb entries
	 * are linked from tx_skb_freelist through skb_entry.link.
	 *
	 *  NB. Freelist index entries are always going to be less than
	 *  PAGE_OFFSET, whereas pointers to skbs will always be equal or
	 *  greater than PAGE_OFFSET: we use this property to distinguish
	 *  them.
	 */
	union skb_entry {
		struct sk_buff *skb;
		unsigned long link;
	} tx_skbs[NET_TX_RING_SIZE];
	grant_ref_t gref_tx_head;
	grant_ref_t grant_tx_ref[NET_TX_RING_SIZE];
	unsigned tx_skb_freelist;

	spinlock_t   rx_lock ____cacheline_aligned_in_smp;
	struct xen_netif_rx_front_ring rx;
	int rx_ring_ref;

	/* Receive-ring batched refills. */
#define RX_MIN_TARGET 8
#define RX_DFL_MIN_TARGET 64
#define RX_MAX_TARGET min_t(int, NET_RX_RING_SIZE, 256)
	unsigned rx_min_target, rx_max_target, rx_target;
	struct sk_buff_head rx_batch;

	struct timer_list rx_refill_timer;

	struct sk_buff *rx_skbs[NET_RX_RING_SIZE];
	grant_ref_t gref_rx_head;
	grant_ref_t grant_rx_ref[NET_RX_RING_SIZE];

	unsigned long rx_pfn_array[NET_RX_RING_SIZE];
	struct multicall_entry rx_mcl[NET_RX_RING_SIZE+1];
	struct mmu_update rx_mmu[NET_RX_RING_SIZE];
};

struct netfront_rx_info {
	struct xen_netif_rx_response rx;
	struct xen_netif_extra_info extras[XEN_NETIF_EXTRA_TYPE_MAX - 1];
};

static void skb_entry_set_link(union skb_entry *list, unsigned short id)
{
	list->link = id;
}

static int skb_entry_is_link(const union skb_entry *list)
{
	BUILD_BUG_ON(sizeof(list->skb) != sizeof(list->link));
	return ((unsigned long)list->skb < PAGE_OFFSET);
}

/*
 * Access macros for acquiring freeing slots in tx_skbs[].
 */

static void add_id_to_freelist(unsigned *head, union skb_entry *list,
			       unsigned short id)
{
	skb_entry_set_link(&list[id], *head);
	*head = id;
}

static unsigned short get_id_from_freelist(unsigned *head,
					   union skb_entry *list)
{
	unsigned int id = *head;
	*head = list[id].link;
	return id;
}

static int xennet_rxidx(RING_IDX idx)
{
	return idx & (NET_RX_RING_SIZE - 1);
}

static struct sk_buff *xennet_get_rx_skb(struct netfront_info *np,
					 RING_IDX ri)
{
	int i = xennet_rxidx(ri);
	struct sk_buff *skb = np->rx_skbs[i];
	np->rx_skbs[i] = NULL;
	return skb;
}

static grant_ref_t xennet_get_rx_ref(struct netfront_info *np,
					    RING_IDX ri)
{
	int i = xennet_rxidx(ri);
	grant_ref_t ref = np->grant_rx_ref[i];
	np->grant_rx_ref[i] = GRANT_INVALID_REF;
	return ref;
}

#ifdef CONFIG_SYSFS
static int xennet_sysfs_addif(struct net_device *netdev);
static void xennet_sysfs_delif(struct net_device *netdev);
#else /* !CONFIG_SYSFS */
#define xennet_sysfs_addif(dev) (0)
#define xennet_sysfs_delif(dev) do { } while (0)
#endif

static int xennet_can_sg(struct net_device *dev)
{
	return dev->features & NETIF_F_SG;
}


static void rx_refill_timeout(unsigned long data)
{
	struct net_device *dev = (struct net_device *)data;
	struct netfront_info *np = netdev_priv(dev);
	napi_schedule(&np->napi);
}

static int netfront_tx_slot_available(struct netfront_info *np)
{
	return ((np->tx.req_prod_pvt - np->tx.rsp_cons) <
		(TX_MAX_TARGET - MAX_SKB_FRAGS - 2));
}

static void xennet_maybe_wake_tx(struct net_device *dev)
{
	struct netfront_info *np = netdev_priv(dev);

	if (unlikely(netif_queue_stopped(dev)) &&
	    netfront_tx_slot_available(np) &&
	    likely(netif_running(dev)))
		netif_wake_queue(dev);
}

static void xennet_alloc_rx_buffers(struct net_device *dev)
{
	unsigned short id;
	struct netfront_info *np = netdev_priv(dev);
	struct sk_buff *skb;
	struct page *page;
	int i, batch_target, notify;
	RING_IDX req_prod = np->rx.req_prod_pvt;
	grant_ref_t ref;
	unsigned long pfn;
	void *vaddr;
	struct xen_netif_rx_request *req;

	if (unlikely(!netif_carrier_ok(dev)))
		return;

	/*
	 * Allocate skbuffs greedily, even though we batch updates to the
	 * receive ring. This creates a less bursty demand on the memory
	 * allocator, so should reduce the chance of failed allocation requests
	 * both for ourself and for other kernel subsystems.
	 */
	batch_target = np->rx_target - (req_prod - np->rx.rsp_cons);
	for (i = skb_queue_len(&np->rx_batch); i < batch_target; i++) {
		skb = __netdev_alloc_skb(dev, RX_COPY_THRESHOLD + NET_IP_ALIGN,
					 GFP_ATOMIC | __GFP_NOWARN);
		if (unlikely(!skb))
			goto no_skb;

		/* Align ip header to a 16 bytes boundary */
		skb_reserve(skb, NET_IP_ALIGN);

		page = alloc_page(GFP_ATOMIC | __GFP_NOWARN);
		if (!page) {
			kfree_skb(skb);
no_skb:
			/* Any skbuffs queued for refill? Force them out. */
			if (i != 0)
				goto refill;
			/* Could not allocate any skbuffs. Try again later. */
			mod_timer(&np->rx_refill_timer,
				  jiffies + (HZ/10));
			break;
		}

		skb_shinfo(skb)->frags[0].page = page;
		skb_shinfo(skb)->nr_frags = 1;
		__skb_queue_tail(&np->rx_batch, skb);
	}

	/* Is the batch large enough to be worthwhile? */
	if (i < (np->rx_target/2)) {
		if (req_prod > np->rx.sring->req_prod)
			goto push;
		return;
	}

	/* Adjust our fill target if we risked running out of buffers. */
	if (((req_prod - np->rx.sring->rsp_prod) < (np->rx_target / 4)) &&
	    ((np->rx_target *= 2) > np->rx_max_target))
		np->rx_target = np->rx_max_target;

 refill:
	for (i = 0; ; i++) {
		skb = __skb_dequeue(&np->rx_batch);
		if (skb == NULL)
			break;

		skb->dev = dev;

		id = xennet_rxidx(req_prod + i);

		BUG_ON(np->rx_skbs[id]);
		np->rx_skbs[id] = skb;

		ref = gnttab_claim_grant_reference(&np->gref_rx_head);
		BUG_ON((signed short)ref < 0);
		np->grant_rx_ref[id] = ref;

		pfn = page_to_pfn(skb_shinfo(skb)->frags[0].page);
		vaddr = page_address(skb_shinfo(skb)->frags[0].page);

		req = RING_GET_REQUEST(&np->rx, req_prod + i);
		gnttab_grant_foreign_access_ref(ref,
						np->xbdev->otherend_id,
						pfn_to_mfn(pfn),
						0);

		req->id = id;
		req->gref = ref;
	}

	wmb();		/* barrier so backend seens requests */

	/* Above is a suitable barrier to ensure backend will see requests. */
	np->rx.req_prod_pvt = req_prod + i;
 push:
	RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&np->rx, notify);
	if (notify)
		notify_remote_via_irq(np->netdev->irq);
}

static int xennet_open(struct net_device *dev)
{
	struct netfront_info *np = netdev_priv(dev);

	napi_enable(&np->napi);

	spin_lock_bh(&np->rx_lock);
	if (netif_carrier_ok(dev)) {
		xennet_alloc_rx_buffers(dev);
		np->rx.sring->rsp_event = np->rx.rsp_cons + 1;
		if (RING_HAS_UNCONSUMED_RESPONSES(&np->rx))
			napi_schedule(&np->napi);
	}
	spin_unlock_bh(&np->rx_lock);

	netif_start_queue(dev);

	return 0;
}

static void xennet_tx_buf_gc(struct net_device *dev)
{
	RING_IDX cons, prod;
	unsigned short id;
	struct netfront_info *np = netdev_priv(dev);
	struct sk_buff *skb;

	BUG_ON(!netif_carrier_ok(dev));

	do {
		prod = np->tx.sring->rsp_prod;
		rmb(); /* Ensure we see responses up to 'rp'. */

		for (cons = np->tx.rsp_cons; cons != prod; cons++) {
			struct xen_netif_tx_response *txrsp;

			txrsp = RING_GET_RESPONSE(&np->tx, cons);
			if (txrsp->status == NETIF_RSP_NULL)
				continue;

			id  = txrsp->id;
			skb = np->tx_skbs[id].skb;
			if (unlikely(gnttab_query_foreign_access(
				np->grant_tx_ref[id]) != 0)) {
				printk(KERN_ALERT "xennet_tx_buf_gc: warning "
				       "-- grant still in use by backend "
				       "domain.\n");
				BUG();
			}
			gnttab_end_foreign_access_ref(
				np->grant_tx_ref[id], GNTMAP_readonly);
			gnttab_release_grant_reference(
				&np->gref_tx_head, np->grant_tx_ref[id]);
			np->grant_tx_ref[id] = GRANT_INVALID_REF;
			add_id_to_freelist(&np->tx_skb_freelist, np->tx_skbs, id);
			dev_kfree_skb_irq(skb);
		}

		np->tx.rsp_cons = prod;

		/*
		 * Set a new event, then check for race with update of tx_cons.
		 * Note that it is essential to schedule a callback, no matter
		 * how few buffers are pending. Even if there is space in the
		 * transmit ring, higher layers may be blocked because too much
		 * data is outstanding: in such cases notification from Xen is
		 * likely to be the only kick that we'll get.
		 */
		np->tx.sring->rsp_event =
			prod + ((np->tx.sring->req_prod - prod) >> 1) + 1;
		mb();		/* update shared area */
	} while ((cons == prod) && (prod != np->tx.sring->rsp_prod));

	xennet_maybe_wake_tx(dev);
}

static void xennet_make_frags(struct sk_buff *skb, struct net_device *dev,
			      struct xen_netif_tx_request *tx)
{
	struct netfront_info *np = netdev_priv(dev);
	char *data = skb->data;
	unsigned long mfn;
	RING_IDX prod = np->tx.req_prod_pvt;
	int frags = skb_shinfo(skb)->nr_frags;
	unsigned int offset = offset_in_page(data);
	unsigned int len = skb_headlen(skb);
	unsigned int id;
	grant_ref_t ref;
	int i;

	/* While the header overlaps a page boundary (including being
	   larger than a page), split it it into page-sized chunks. */
	while (len > PAGE_SIZE - offset) {
		tx->size = PAGE_SIZE - offset;
		tx->flags |= NETTXF_more_data;
		len -= tx->size;
		data += tx->size;
		offset = 0;

		id = get_id_from_freelist(&np->tx_skb_freelist, np->tx_skbs);
		np->tx_skbs[id].skb = skb_get(skb);
		tx = RING_GET_REQUEST(&np->tx, prod++);
		tx->id = id;
		ref = gnttab_claim_grant_reference(&np->gref_tx_head);
		BUG_ON((signed short)ref < 0);

		mfn = virt_to_mfn(data);
		gnttab_grant_foreign_access_ref(ref, np->xbdev->otherend_id,
						mfn, GNTMAP_readonly);

		tx->gref = np->grant_tx_ref[id] = ref;
		tx->offset = offset;
		tx->size = len;
		tx->flags = 0;
	}

	/* Grant backend access to each skb fragment page. */
	for (i = 0; i < frags; i++) {
		skb_frag_t *frag = skb_shinfo(skb)->frags + i;

		tx->flags |= NETTXF_more_data;

		id = get_id_from_freelist(&np->tx_skb_freelist, np->tx_skbs);
		np->tx_skbs[id].skb = skb_get(skb);
		tx = RING_GET_REQUEST(&np->tx, prod++);
		tx->id = id;
		ref = gnttab_claim_grant_reference(&np->gref_tx_head);
		BUG_ON((signed short)ref < 0);

		mfn = pfn_to_mfn(page_to_pfn(frag->page));
		gnttab_grant_foreign_access_ref(ref, np->xbdev->otherend_id,
						mfn, GNTMAP_readonly);

		tx->gref = np->grant_tx_ref[id] = ref;
		tx->offset = frag->page_offset;
		tx->size = frag->size;
		tx->flags = 0;
	}

	np->tx.req_prod_pvt = prod;
}

static int xennet_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
	unsigned short id;
	struct netfront_info *np = netdev_priv(dev);
	struct xen_netif_tx_request *tx;
	struct xen_netif_extra_info *extra;
	char *data = skb->data;
	RING_IDX i;
	grant_ref_t ref;
	unsigned long mfn;
	int notify;
	int frags = skb_shinfo(skb)->nr_frags;
	unsigned int offset = offset_in_page(data);
	unsigned int len = skb_headlen(skb);

	frags += DIV_ROUND_UP(offset + len, PAGE_SIZE);
	if (unlikely(frags > MAX_SKB_FRAGS + 1)) {
		printk(KERN_ALERT "xennet: skb rides the rocket: %d frags\n",
		       frags);
		dump_stack();
		goto drop;
	}

	spin_lock_irq(&np->tx_lock);

	if (unlikely(!netif_carrier_ok(dev) ||
		     (frags > 1 && !xennet_can_sg(dev)) ||
		     netif_needs_gso(dev, skb))) {
		spin_unlock_irq(&np->tx_lock);
		goto drop;
	}

	i = np->tx.req_prod_pvt;

	id = get_id_from_freelist(&np->tx_skb_freelist, np->tx_skbs);
	np->tx_skbs[id].skb = skb;

	tx = RING_GET_REQUEST(&np->tx, i);

	tx->id   = id;
	ref = gnttab_claim_grant_reference(&np->gref_tx_head);
	BUG_ON((signed short)ref < 0);
	mfn = virt_to_mfn(data);
	gnttab_grant_foreign_access_ref(
		ref, np->xbdev->otherend_id, mfn, GNTMAP_readonly);
	tx->gref = np->grant_tx_ref[id] = ref;
	tx->offset = offset;
	tx->size = len;
	extra = NULL;

	tx->flags = 0;
	if (skb->ip_summed == CHECKSUM_PARTIAL)
		/* local packet? */
		tx->flags |= NETTXF_csum_blank | NETTXF_data_validated;
	else if (skb->ip_summed == CHECKSUM_UNNECESSARY)
		/* remote but checksummed. */
		tx->flags |= NETTXF_data_validated;

	if (skb_shinfo(skb)->gso_size) {
		struct xen_netif_extra_info *gso;

		gso = (struct xen_netif_extra_info *)
			RING_GET_REQUEST(&np->tx, ++i);

		if (extra)
			extra->flags |= XEN_NETIF_EXTRA_FLAG_MORE;
		else
			tx->flags |= NETTXF_extra_info;

		gso->u.gso.size = skb_shinfo(skb)->gso_size;
		gso->u.gso.type = XEN_NETIF_GSO_TYPE_TCPV4;
		gso->u.gso.pad = 0;
		gso->u.gso.features = 0;

		gso->type = XEN_NETIF_EXTRA_TYPE_GSO;
		gso->flags = 0;
		extra = gso;
	}

	np->tx.req_prod_pvt = i + 1;

	xennet_make_frags(skb, dev, tx);
	tx->size = skb->len;

	RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&np->tx, notify);
	if (notify)
		notify_remote_via_irq(np->netdev->irq);

	dev->stats.tx_bytes += skb->len;
	dev->stats.tx_packets++;

	/* Note: It is not safe to access skb after xennet_tx_buf_gc()! */
	xennet_tx_buf_gc(dev);

	if (!netfront_tx_slot_available(np))
		netif_stop_queue(dev);

	spin_unlock_irq(&np->tx_lock);

	return NETDEV_TX_OK;

 drop:
	dev->stats.tx_dropped++;
	dev_kfree_skb(skb);
	return NETDEV_TX_OK;
}

static int xennet_close(struct net_device *dev)
{
	struct netfront_info *np = netdev_priv(dev);
	netif_stop_queue(np->netdev);
	napi_disable(&np->napi);
	return 0;
}

static void xennet_move_rx_slot(struct netfront_info *np, struct sk_buff *skb,
				grant_ref_t ref)
{
	int new = xennet_rxidx(np->rx.req_prod_pvt);

	BUG_ON(np->rx_skbs[new]);
	np->rx_skbs[new] = skb;
	np->grant_rx_ref[new] = ref;
	RING_GET_REQUEST(&np->rx, np->rx.req_prod_pvt)->id = new;
	RING_GET_REQUEST(&np->rx, np->rx.req_prod_pvt)->gref = ref;
	np->rx.req_prod_pvt++;
}

static int xennet_get_extras(struct netfront_info *np,
			     struct xen_netif_extra_info *extras,
			     RING_IDX rp)

{
	struct xen_netif_extra_info *extra;
	struct device *dev = &np->netdev->dev;
	RING_IDX cons = np->rx.rsp_cons;
	int err = 0;

	do {
		struct sk_buff *skb;
		grant_ref_t ref;

		if (unlikely(cons + 1 == rp)) {
			if (net_ratelimit())
				dev_warn(dev, "Missing extra info\n");
			err = -EBADR;
			break;
		}

		extra = (struct xen_netif_extra_info *)
			RING_GET_RESPONSE(&np->rx, ++cons);

		if (unlikely(!extra->type ||
			     extra->type >= XEN_NETIF_EXTRA_TYPE_MAX)) {
			if (net_ratelimit())
				dev_warn(dev, "Invalid extra type: %d\n",
					extra->type);
			err = -EINVAL;
		} else {
			memcpy(&extras[extra->type - 1], extra,
			       sizeof(*extra));
		}

		skb = xennet_get_rx_skb(np, cons);
		ref = xennet_get_rx_ref(np, cons);
		xennet_move_rx_slot(np, skb, ref);
	} while (extra->flags & XEN_NETIF_EXTRA_FLAG_MORE);

	np->rx.rsp_cons = cons;
	return err;
}

static int xennet_get_responses(struct netfront_info *np,
				struct netfront_rx_info *rinfo, RING_IDX rp,
				struct sk_buff_head *list)
{
	struct xen_netif_rx_response *rx = &rinfo->rx;
	struct xen_netif_extra_info *extras = rinfo->extras;
	struct device *dev = &np->netdev->dev;
	RING_IDX cons = np->rx.rsp_cons;
	struct sk_buff *skb = xennet_get_rx_skb(np, cons);
	grant_ref_t ref = xennet_get_rx_ref(np, cons);
	int max = MAX_SKB_FRAGS + (rx->status <= RX_COPY_THRESHOLD);
	int frags = 1;
	int err = 0;
	unsigned long ret;

	if (rx->flags & NETRXF_extra_info) {
		err = xennet_get_extras(np, extras, rp);
		cons = np->rx.rsp_cons;
	}

	for (;;) {
		if (unlikely(rx->status < 0 ||
			     rx->offset + rx->status > PAGE_SIZE)) {
			if (net_ratelimit())
				dev_warn(dev, "rx->offset: %x, size: %u\n",
					 rx->offset, rx->status);
			xennet_move_rx_slot(np, skb, ref);
			err = -EINVAL;
			goto next;
		}

		/*
		 * This definitely indicates a bug, either in this driver or in
		 * the backend driver. In future this should flag the bad
		 * situation to the system controller to reboot the backed.
		 */
		if (ref == GRANT_INVALID_REF) {
			if (net_ratelimit())
				dev_warn(dev, "Bad rx response id %d.\n",
					 rx->id);
			err = -EINVAL;
			goto next;
		}

		ret = gnttab_end_foreign_access_ref(ref, 0);
		BUG_ON(!ret);

		gnttab_release_grant_reference(&np->gref_rx_head, ref);

		__skb_queue_tail(list, skb);

next:
		if (!(rx->flags & NETRXF_more_data))
			break;

		if (cons + frags == rp) {
			if (net_ratelimit())
				dev_warn(dev, "Need more frags\n");
			err = -ENOENT;
			break;
		}

		rx = RING_GET_RESPONSE(&np->rx, cons + frags);
		skb = xennet_get_rx_skb(np, cons + frags);
		ref = xennet_get_rx_ref(np, cons + frags);
		frags++;
	}

	if (unlikely(frags > max)) {
		if (net_ratelimit())
			dev_warn(dev, "Too many frags\n");
		err = -E2BIG;
	}

	if (unlikely(err))
		np->rx.rsp_cons = cons + frags;

	return err;
}

static int xennet_set_skb_gso(struct sk_buff *skb,
			      struct xen_netif_extra_info *gso)
{
	if (!gso->u.gso.size) {
		if (net_ratelimit())
			printk(KERN_WARNING "GSO size must not be zero.\n");
		return -EINVAL;
	}

	/* Currently only TCPv4 S.O. is supported. */
	if (gso->u.gso.type != XEN_NETIF_GSO_TYPE_TCPV4) {
		if (net_ratelimit())
			printk(KERN_WARNING "Bad GSO type %d.\n", gso->u.gso.type);
		return -EINVAL;
	}

	skb_shinfo(skb)->gso_size = gso->u.gso.size;
	skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;

	/* Header must be checked, and gso_segs computed. */
	skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
	skb_shinfo(skb)->gso_segs = 0;

	return 0;
}

static RING_IDX xennet_fill_frags(struct netfront_info *np,
				  struct sk_buff *skb,
				  struct sk_buff_head *list)
{
	struct skb_shared_info *shinfo = skb_shinfo(skb);
	int nr_frags = shinfo->nr_frags;
	RING_IDX cons = np->rx.rsp_cons;
	skb_frag_t *frag = shinfo->frags + nr_frags;
	struct sk_buff *nskb;

	while ((nskb = __skb_dequeue(list))) {
		struct xen_netif_rx_response *rx =
			RING_GET_RESPONSE(&np->rx, ++cons);

		frag->page = skb_shinfo(nskb)->frags[0].page;
		frag->page_offset = rx->offset;
		frag->size = rx->status;

		skb->data_len += rx->status;

		skb_shinfo(nskb)->nr_frags = 0;
		kfree_skb(nskb);

		frag++;
		nr_frags++;
	}

	shinfo->nr_frags = nr_frags;
	return cons;
}

static int skb_checksum_setup(struct sk_buff *skb)
{
	struct iphdr *iph;
	unsigned char *th;
	int err = -EPROTO;

	if (skb->protocol != htons(ETH_P_IP))
		goto out;

	iph = (void *)skb->data;
	th = skb->data + 4 * iph->ihl;
	if (th >= skb_tail_pointer(skb))
		goto out;

	skb->csum_start = th - skb->head;
	switch (iph->protocol) {
	case IPPROTO_TCP:
		skb->csum_offset = offsetof(struct tcphdr, check);
		break;
	case IPPROTO_UDP:
		skb->csum_offset = offsetof(struct udphdr, check);
		break;
	default:
		if (net_ratelimit())
			printk(KERN_ERR "Attempting to checksum a non-"
			       "TCP/UDP packet, dropping a protocol"
			       " %d packet", iph->protocol);
		goto out;
	}

	if ((th + skb->csum_offset + 2) > skb_tail_pointer(skb))
		goto out;

	err = 0;

out:
	return err;
}

static int handle_incoming_queue(struct net_device *dev,
				 struct sk_buff_head *rxq)
{
	int packets_dropped = 0;
	struct sk_buff *skb;

	while ((skb = __skb_dequeue(rxq)) != NULL) {
		struct page *page = NETFRONT_SKB_CB(skb)->page;
		void *vaddr = page_address(page);
		unsigned offset = NETFRONT_SKB_CB(skb)->offset;

		memcpy(skb->data, vaddr + offset,
		       skb_headlen(skb));

		if (page != skb_shinfo(skb)->frags[0].page)
			__free_page(page);

		/* Ethernet work: Delayed to here as it peeks the header. */
		skb->protocol = eth_type_trans(skb, dev);

		if (skb->ip_summed == CHECKSUM_PARTIAL) {
			if (skb_checksum_setup(skb)) {
				kfree_skb(skb);
				packets_dropped++;
				dev->stats.rx_errors++;
				continue;
			}
		}

		dev->stats.rx_packets++;
		dev->stats.rx_bytes += skb->len;

		/* Pass it up. */
		netif_receive_skb(skb);
	}

	return packets_dropped;
}

static int xennet_poll(struct napi_struct *napi, int budget)
{
	struct netfront_info *np = container_of(napi, struct netfront_info, napi);
	struct net_device *dev = np->netdev;
	struct sk_buff *skb;
	struct netfront_rx_info rinfo;
	struct xen_netif_rx_response *rx = &rinfo.rx;
	struct xen_netif_extra_info *extras = rinfo.extras;
	RING_IDX i, rp;
	int work_done;
	struct sk_buff_head rxq;
	struct sk_buff_head errq;
	struct sk_buff_head tmpq;
	unsigned long flags;
	unsigned int len;
	int err;

	spin_lock(&np->rx_lock);

	skb_queue_head_init(&rxq);
	skb_queue_head_init(&errq);
	skb_queue_head_init(&tmpq);

	rp = np->rx.sring->rsp_prod;
	rmb(); /* Ensure we see queued responses up to 'rp'. */

	i = np->rx.rsp_cons;
	work_done = 0;
	while ((i != rp) && (work_done < budget)) {
		memcpy(rx, RING_GET_RESPONSE(&np->rx, i), sizeof(*rx));
		memset(extras, 0, sizeof(rinfo.extras));

		err = xennet_get_responses(np, &rinfo, rp, &tmpq);

		if (unlikely(err)) {
err:
			while ((skb = __skb_dequeue(&tmpq)))
				__skb_queue_tail(&errq, skb);
			dev->stats.rx_errors++;
			i = np->rx.rsp_cons;
			continue;
		}

		skb = __skb_dequeue(&tmpq);

		if (extras[XEN_NETIF_EXTRA_TYPE_GSO - 1].type) {
			struct xen_netif_extra_info *gso;
			gso = &extras[XEN_NETIF_EXTRA_TYPE_GSO - 1];

			if (unlikely(xennet_set_skb_gso(skb, gso))) {
				__skb_queue_head(&tmpq, skb);
				np->rx.rsp_cons += skb_queue_len(&tmpq);
				goto err;
			}
		}

		NETFRONT_SKB_CB(skb)->page = skb_shinfo(skb)->frags[0].page;
		NETFRONT_SKB_CB(skb)->offset = rx->offset;

		len = rx->status;
		if (len > RX_COPY_THRESHOLD)
			len = RX_COPY_THRESHOLD;
		skb_put(skb, len);

		if (rx->status > len) {
			skb_shinfo(skb)->frags[0].page_offset =
				rx->offset + len;
			skb_shinfo(skb)->frags[0].size = rx->status - len;
			skb->data_len = rx->status - len;
		} else {
			skb_shinfo(skb)->frags[0].page = NULL;
			skb_shinfo(skb)->nr_frags = 0;
		}

		i = xennet_fill_frags(np, skb, &tmpq);

		/*
		 * Truesize approximates the size of true data plus
		 * any supervisor overheads. Adding hypervisor
		 * overheads has been shown to significantly reduce
		 * achievable bandwidth with the default receive
		 * buffer size. It is therefore not wise to account
		 * for it here.
		 *
		 * After alloc_skb(RX_COPY_THRESHOLD), truesize is set
		 * to RX_COPY_THRESHOLD + the supervisor
		 * overheads. Here, we add the size of the data pulled
		 * in xennet_fill_frags().
		 *
		 * We also adjust for any unused space in the main
		 * data area by subtracting (RX_COPY_THRESHOLD -
		 * len). This is especially important with drivers
		 * which split incoming packets into header and data,
		 * using only 66 bytes of the main data area (see the
		 * e1000 driver for example.)  On such systems,
		 * without this last adjustement, our achievable
		 * receive throughout using the standard receive
		 * buffer size was cut by 25%(!!!).
		 */
		skb->truesize += skb->data_len - (RX_COPY_THRESHOLD - len);
		skb->len += skb->data_len;

		if (rx->flags & NETRXF_csum_blank)
			skb->ip_summed = CHECKSUM_PARTIAL;
		else if (rx->flags & NETRXF_data_validated)
			skb->ip_summed = CHECKSUM_UNNECESSARY;

		__skb_queue_tail(&rxq, skb);

		np->rx.rsp_cons = ++i;
		work_done++;
	}

	__skb_queue_purge(&errq);

	work_done -= handle_incoming_queue(dev, &rxq);

	/* If we get a callback with very few responses, reduce fill target. */
	/* NB. Note exponential increase, linear decrease. */
	if (((np->rx.req_prod_pvt - np->rx.sring->rsp_prod) >
	     ((3*np->rx_target) / 4)) &&
	    (--np->rx_target < np->rx_min_target))
		np->rx_target = np->rx_min_target;

	xennet_alloc_rx_buffers(dev);

	if (work_done < budget) {
		int more_to_do = 0;

		local_irq_save(flags);

		RING_FINAL_CHECK_FOR_RESPONSES(&np->rx, more_to_do);
		if (!more_to_do)
			__napi_complete(napi);

		local_irq_restore(flags);
	}

	spin_unlock(&np->rx_lock);

	return work_done;
}

static int xennet_change_mtu(struct net_device *dev, int mtu)
{
	int max = xennet_can_sg(dev) ? 65535 - ETH_HLEN : ETH_DATA_LEN;

	if (mtu > max)
		return -EINVAL;
	dev->mtu = mtu;
	return 0;
}

static void xennet_release_tx_bufs(struct netfront_info *np)
{
	struct sk_buff *skb;
	int i;

	for (i = 0; i < NET_TX_RING_SIZE; i++) {
		/* Skip over entries which are actually freelist references */
		if (skb_entry_is_link(&np->tx_skbs[i]))
			continue;

		skb = np->tx_skbs[i].skb;
		gnttab_end_foreign_access_ref(np->grant_tx_ref[i],
					      GNTMAP_readonly);
		gnttab_release_grant_reference(&np->gref_tx_head,
					       np->grant_tx_ref[i]);
		np->grant_tx_ref[i] = GRANT_INVALID_REF;
		add_id_to_freelist(&np->tx_skb_freelist, np->tx_skbs, i);
		dev_kfree_skb_irq(skb);
	}
}

static void xennet_release_rx_bufs(struct netfront_info *np)
{
	struct mmu_update      *mmu = np->rx_mmu;
	struct multicall_entry *mcl = np->rx_mcl;
	struct sk_buff_head free_list;
	struct sk_buff *skb;
	unsigned long mfn;
	int xfer = 0, noxfer = 0, unused = 0;
	int id, ref;

	dev_warn(&np->netdev->dev, "%s: fix me for copying receiver.\n",
			 __func__);
	return;

	skb_queue_head_init(&free_list);

	spin_lock_bh(&np->rx_lock);

	for (id = 0; id < NET_RX_RING_SIZE; id++) {
		ref = np->grant_rx_ref[id];
		if (ref == GRANT_INVALID_REF) {
			unused++;
			continue;
		}

		skb = np->rx_skbs[id];
		mfn = gnttab_end_foreign_transfer_ref(ref);
		gnttab_release_grant_reference(&np->gref_rx_head, ref);
		np->grant_rx_ref[id] = GRANT_INVALID_REF;

		if (0 == mfn) {
			skb_shinfo(skb)->nr_frags = 0;
			dev_kfree_skb(skb);
			noxfer++;
			continue;
		}

		if (!xen_feature(XENFEAT_auto_translated_physmap)) {
			/* Remap the page. */
			struct page *page = skb_shinfo(skb)->frags[0].page;
			unsigned long pfn = page_to_pfn(page);
			void *vaddr = page_address(page);

			MULTI_update_va_mapping(mcl, (unsigned long)vaddr,
						mfn_pte(mfn, PAGE_KERNEL),
						0);
			mcl++;
			mmu->ptr = ((u64)mfn << PAGE_SHIFT)
				| MMU_MACHPHYS_UPDATE;
			mmu->val = pfn;
			mmu++;

			set_phys_to_machine(pfn, mfn);
		}
		__skb_queue_tail(&free_list, skb);
		xfer++;
	}

	dev_info(&np->netdev->dev, "%s: %d xfer, %d noxfer, %d unused\n",
		 __func__, xfer, noxfer, unused);

	if (xfer) {
		if (!xen_feature(XENFEAT_auto_translated_physmap)) {
			/* Do all the remapping work and M2P updates. */
			MULTI_mmu_update(mcl, np->rx_mmu, mmu - np->rx_mmu,
					 NULL, DOMID_SELF);
			mcl++;
			HYPERVISOR_multicall(np->rx_mcl, mcl - np->rx_mcl);
		}
	}

	__skb_queue_purge(&free_list);

	spin_unlock_bh(&np->rx_lock);
}

static void xennet_uninit(struct net_device *dev)
{
	struct netfront_info *np = netdev_priv(dev);
	xennet_release_tx_bufs(np);
	xennet_release_rx_bufs(np);
	gnttab_free_grant_references(np->gref_tx_head);
	gnttab_free_grant_references(np->gref_rx_head);
}

static const struct net_device_ops xennet_netdev_ops = {
	.ndo_open            = xennet_open,
	.ndo_uninit          = xennet_uninit,
	.ndo_stop            = xennet_close,
	.ndo_start_xmit      = xennet_start_xmit,
	.ndo_change_mtu	     = xennet_change_mtu,
	.ndo_set_mac_address = eth_mac_addr,
	.ndo_validate_addr   = eth_validate_addr,
};

static struct net_device * __devinit xennet_create_dev(struct xenbus_device *dev)
{
	int i, err;
	struct net_device *netdev;
	struct netfront_info *np;

	netdev = alloc_etherdev(sizeof(struct netfront_info));
	if (!netdev) {
		printk(KERN_WARNING "%s> alloc_etherdev failed.\n",
		       __func__);
		return ERR_PTR(-ENOMEM);
	}

	np                   = netdev_priv(netdev);
	np->xbdev            = dev;

	spin_lock_init(&np->tx_lock);
	spin_lock_init(&np->rx_lock);

	skb_queue_head_init(&np->rx_batch);
	np->rx_target     = RX_DFL_MIN_TARGET;
	np->rx_min_target = RX_DFL_MIN_TARGET;
	np->rx_max_target = RX_MAX_TARGET;

	init_timer(&np->rx_refill_timer);
	np->rx_refill_timer.data = (unsigned long)netdev;
	np->rx_refill_timer.function = rx_refill_timeout;

	/* Initialise tx_skbs as a free chain containing every entry. */
	np->tx_skb_freelist = 0;
	for (i = 0; i < NET_TX_RING_SIZE; i++) {
		skb_entry_set_link(&np->tx_skbs[i], i+1);
		np->grant_tx_ref[i] = GRANT_INVALID_REF;
	}

	/* Clear out rx_skbs */
	for (i = 0; i < NET_RX_RING_SIZE; i++) {
		np->rx_skbs[i] = NULL;
		np->grant_rx_ref[i] = GRANT_INVALID_REF;
	}

	/* A grant for every tx ring slot */
	if (gnttab_alloc_grant_references(TX_MAX_TARGET,
					  &np->gref_tx_head) < 0) {
		printk(KERN_ALERT "#### netfront can't alloc tx grant refs\n");
		err = -ENOMEM;
		goto exit;
	}
	/* A grant for every rx ring slot */
	if (gnttab_alloc_grant_references(RX_MAX_TARGET,
					  &np->gref_rx_head) < 0) {
		printk(KERN_ALERT "#### netfront can't alloc rx grant refs\n");
		err = -ENOMEM;
		goto exit_free_tx;
	}

	netdev->netdev_ops	= &xennet_netdev_ops;

	netif_napi_add(netdev, &np->napi, xennet_poll, 64);
	netdev->features        = NETIF_F_IP_CSUM;

	SET_ETHTOOL_OPS(netdev, &xennet_ethtool_ops);
	SET_NETDEV_DEV(netdev, &dev->dev);

	np->netdev = netdev;

	netif_carrier_off(netdev);

	return netdev;

 exit_free_tx:
	gnttab_free_grant_references(np->gref_tx_head);
 exit:
	free_netdev(netdev);
	return ERR_PTR(err);
}

/**
 * Entry point to this code when a new device is created.  Allocate the basic
 * structures and the ring buffers for communication with the backend, and
 * inform the backend of the appropriate details for those.
 */
static int __devinit netfront_probe(struct xenbus_device *dev,
				    const struct xenbus_device_id *id)
{
	int err;
	struct net_device *netdev;
	struct netfront_info *info;

	netdev = xennet_create_dev(dev);
	if (IS_ERR(netdev)) {
		err = PTR_ERR(netdev);
		xenbus_dev_fatal(dev, err, "creating netdev");
		return err;
	}

	info = netdev_priv(netdev);
	dev_set_drvdata(&dev->dev, info);

	err = register_netdev(info->netdev);
	if (err) {
		printk(KERN_WARNING "%s: register_netdev err=%d\n",
		       __func__, err);
		goto fail;
	}

	err = xennet_sysfs_addif(info->netdev);
	if (err) {
		unregister_netdev(info->netdev);
		printk(KERN_WARNING "%s: add sysfs failed err=%d\n",
		       __func__, err);
		goto fail;
	}

	return 0;

 fail:
	free_netdev(netdev);
	dev_set_drvdata(&dev->dev, NULL);
	return err;
}

static void xennet_end_access(int ref, void *page)
{
	/* This frees the page as a side-effect */
	if (ref != GRANT_INVALID_REF)
		gnttab_end_foreign_access(ref, 0, (unsigned long)page);
}

static void xennet_disconnect_backend(struct netfront_info *info)
{
	/* Stop old i/f to prevent errors whilst we rebuild the state. */
	spin_lock_bh(&info->rx_lock);
	spin_lock_irq(&info->tx_lock);
	netif_carrier_off(info->netdev);
	spin_unlock_irq(&info->tx_lock);
	spin_unlock_bh(&info->rx_lock);

	if (info->netdev->irq)
		unbind_from_irqhandler(info->netdev->irq, info->netdev);
	info->evtchn = info->netdev->irq = 0;

	/* End access and free the pages */
	xennet_end_access(info->tx_ring_ref, info->tx.sring);
	xennet_end_access(info->rx_ring_ref, info->rx.sring);

	info->tx_ring_ref = GRANT_INVALID_REF;
	info->rx_ring_ref = GRANT_INVALID_REF;
	info->tx.sring = NULL;
	info->rx.sring = NULL;
}

/**
 * We are reconnecting to the backend, due to a suspend/resume, or a backend
 * driver restart.  We tear down our netif structure and recreate it, but
 * leave the device-layer structures intact so that this is transparent to the
 * rest of the kernel.
 */
static int netfront_resume(struct xenbus_device *dev)
{
	struct netfront_info *info = dev_get_drvdata(&dev->dev);

	dev_dbg(&dev->dev, "%s\n", dev->nodename);

	xennet_disconnect_backend(info);
	return 0;
}

static int xen_net_read_mac(struct xenbus_device *dev, u8 mac[])
{
	char *s, *e, *macstr;
	int i;

	macstr = s = xenbus_read(XBT_NIL, dev->nodename, "mac", NULL);
	if (IS_ERR(macstr))
		return PTR_ERR(macstr);

	for (i = 0; i < ETH_ALEN; i++) {
		mac[i] = simple_strtoul(s, &e, 16);
		if ((s == e) || (*e != ((i == ETH_ALEN-1) ? '\0' : ':'))) {
			kfree(macstr);
			return -ENOENT;
		}
		s = e+1;
	}

	kfree(macstr);
	return 0;
}

static irqreturn_t xennet_interrupt(int irq, void *dev_id)
{
	struct net_device *dev = dev_id;
	struct netfront_info *np = netdev_priv(dev);
	unsigned long flags;

	spin_lock_irqsave(&np->tx_lock, flags);

	if (likely(netif_carrier_ok(dev))) {
		xennet_tx_buf_gc(dev);
		/* Under tx_lock: protects access to rx shared-ring indexes. */
		if (RING_HAS_UNCONSUMED_RESPONSES(&np->rx))
			napi_schedule(&np->napi);
	}

	spin_unlock_irqrestore(&np->tx_lock, flags);

	return IRQ_HANDLED;
}

static int setup_netfront(struct xenbus_device *dev, struct netfront_info *info)
{
	struct xen_netif_tx_sring *txs;
	struct xen_netif_rx_sring *rxs;
	int err;
	struct net_device *netdev = info->netdev;

	info->tx_ring_ref = GRANT_INVALID_REF;
	info->rx_ring_ref = GRANT_INVALID_REF;
	info->rx.sring = NULL;
	info->tx.sring = NULL;
	netdev->irq = 0;

	err = xen_net_read_mac(dev, netdev->dev_addr);
	if (err) {
		xenbus_dev_fatal(dev, err, "parsing %s/mac", dev->nodename);
		goto fail;
	}

	txs = (struct xen_netif_tx_sring *)get_zeroed_page(GFP_NOIO | __GFP_HIGH);
	if (!txs) {
		err = -ENOMEM;
		xenbus_dev_fatal(dev, err, "allocating tx ring page");
		goto fail;
	}
	SHARED_RING_INIT(txs);
	FRONT_RING_INIT(&info->tx, txs, PAGE_SIZE);

	err = xenbus_grant_ring(dev, virt_to_mfn(txs));
	if (err < 0) {
		free_page((unsigned long)txs);
		goto fail;
	}

	info->tx_ring_ref = err;
	rxs = (struct xen_netif_rx_sring *)get_zeroed_page(GFP_NOIO | __GFP_HIGH);
	if (!rxs) {
		err = -ENOMEM;
		xenbus_dev_fatal(dev, err, "allocating rx ring page");
		goto fail;
	}
	SHARED_RING_INIT(rxs);
	FRONT_RING_INIT(&info->rx, rxs, PAGE_SIZE);

	err = xenbus_grant_ring(dev, virt_to_mfn(rxs));
	if (err < 0) {
		free_page((unsigned long)rxs);
		goto fail;
	}
	info->rx_ring_ref = err;

	err = xenbus_alloc_evtchn(dev, &info->evtchn);
	if (err)
		goto fail;

	err = bind_evtchn_to_irqhandler(info->evtchn, xennet_interrupt,
					IRQF_SAMPLE_RANDOM, netdev->name,
					netdev);
	if (err < 0)
		goto fail;
	netdev->irq = err;
	return 0;

 fail:
	return err;
}

/* Common code used when first setting up, and when resuming. */
static int talk_to_backend(struct xenbus_device *dev,
			   struct netfront_info *info)
{
	const char *message;
	struct xenbus_transaction xbt;
	int err;

	/* Create shared ring, alloc event channel. */
	err = setup_netfront(dev, info);
	if (err)
		goto out;

again:
	err = xenbus_transaction_start(&xbt);
	if (err) {
		xenbus_dev_fatal(dev, err, "starting transaction");
		goto destroy_ring;
	}

	err = xenbus_printf(xbt, dev->nodename, "tx-ring-ref", "%u",
			    info->tx_ring_ref);
	if (err) {
		message = "writing tx ring-ref";
		goto abort_transaction;
	}
	err = xenbus_printf(xbt, dev->nodename, "rx-ring-ref", "%u",
			    info->rx_ring_ref);
	if (err) {
		message = "writing rx ring-ref";
		goto abort_transaction;
	}
	err = xenbus_printf(xbt, dev->nodename,
			    "event-channel", "%u", info->evtchn);
	if (err) {
		message = "writing event-channel";
		goto abort_transaction;
	}

	err = xenbus_printf(xbt, dev->nodename, "request-rx-copy", "%u",
			    1);
	if (err) {
		message = "writing request-rx-copy";
		goto abort_transaction;
	}

	err = xenbus_printf(xbt, dev->nodename, "feature-rx-notify", "%d", 1);
	if (err) {
		message = "writing feature-rx-notify";
		goto abort_transaction;
	}

	err = xenbus_printf(xbt, dev->nodename, "feature-sg", "%d", 1);
	if (err) {
		message = "writing feature-sg";
		goto abort_transaction;
	}

	err = xenbus_printf(xbt, dev->nodename, "feature-gso-tcpv4", "%d", 1);
	if (err) {
		message = "writing feature-gso-tcpv4";
		goto abort_transaction;
	}

	err = xenbus_transaction_end(xbt, 0);
	if (err) {
		if (err == -EAGAIN)
			goto again;
		xenbus_dev_fatal(dev, err, "completing transaction");
		goto destroy_ring;
	}

	return 0;

 abort_transaction:
	xenbus_transaction_end(xbt, 1);
	xenbus_dev_fatal(dev, err, "%s", message);
 destroy_ring:
	xennet_disconnect_backend(info);
 out:
	return err;
}

static int xennet_set_sg(struct net_device *dev, u32 data)
{
	if (data) {
		struct netfront_info *np = netdev_priv(dev);
		int val;

		if (xenbus_scanf(XBT_NIL, np->xbdev->otherend, "feature-sg",
				 "%d", &val) < 0)
			val = 0;
		if (!val)
			return -ENOSYS;
	} else if (dev->mtu > ETH_DATA_LEN)
		dev->mtu = ETH_DATA_LEN;

	return ethtool_op_set_sg(dev, data);
}

static int xennet_set_tso(struct net_device *dev, u32 data)
{
	if (data) {
		struct netfront_info *np = netdev_priv(dev);
		int val;

		if (xenbus_scanf(XBT_NIL, np->xbdev->otherend,
				 "feature-gso-tcpv4", "%d", &val) < 0)
			val = 0;
		if (!val)
			return -ENOSYS;
	}

	return ethtool_op_set_tso(dev, data);
}

static void xennet_set_features(struct net_device *dev)
{
	/* Turn off all GSO bits except ROBUST. */
	dev->features &= ~NETIF_F_GSO_MASK;
	dev->features |= NETIF_F_GSO_ROBUST;
	xennet_set_sg(dev, 0);

	/* We need checksum offload to enable scatter/gather and TSO. */
	if (!(dev->features & NETIF_F_IP_CSUM))
		return;

	if (!xennet_set_sg(dev, 1))
		xennet_set_tso(dev, 1);
}

static int xennet_connect(struct net_device *dev)
{
	struct netfront_info *np = netdev_priv(dev);
	int i, requeue_idx, err;
	struct sk_buff *skb;
	grant_ref_t ref;
	struct xen_netif_rx_request *req;
	unsigned int feature_rx_copy;

	err = xenbus_scanf(XBT_NIL, np->xbdev->otherend,
			   "feature-rx-copy", "%u", &feature_rx_copy);
	if (err != 1)
		feature_rx_copy = 0;

	if (!feature_rx_copy) {
		dev_info(&dev->dev,
			 "backend does not support copying receive path\n");
		return -ENODEV;
	}

	err = talk_to_backend(np->xbdev, np);
	if (err)
		return err;

	xennet_set_features(dev);

	spin_lock_bh(&np->rx_lock);
	spin_lock_irq(&np->tx_lock);

	/* Step 1: Discard all pending TX packet fragments. */
	xennet_release_tx_bufs(np);

	/* Step 2: Rebuild the RX buffer freelist and the RX ring itself. */
	for (requeue_idx = 0, i = 0; i < NET_RX_RING_SIZE; i++) {
		if (!np->rx_skbs[i])
			continue;

		skb = np->rx_skbs[requeue_idx] = xennet_get_rx_skb(np, i);
		ref = np->grant_rx_ref[requeue_idx] = xennet_get_rx_ref(np, i);
		req = RING_GET_REQUEST(&np->rx, requeue_idx);

		gnttab_grant_foreign_access_ref(
			ref, np->xbdev->otherend_id,
			pfn_to_mfn(page_to_pfn(skb_shinfo(skb)->
					       frags->page)),
			0);
		req->gref = ref;
		req->id   = requeue_idx;

		requeue_idx++;
	}

	np->rx.req_prod_pvt = requeue_idx;

	/*
	 * Step 3: All public and private state should now be sane.  Get
	 * ready to start sending and receiving packets and give the driver
	 * domain a kick because we've probably just requeued some
	 * packets.
	 */
	netif_carrier_on(np->netdev);
	notify_remote_via_irq(np->netdev->irq);
	xennet_tx_buf_gc(dev);
	xennet_alloc_rx_buffers(dev);

	spin_unlock_irq(&np->tx_lock);
	spin_unlock_bh(&np->rx_lock);

	return 0;
}

/**
 * Callback received when the backend's state changes.
 */
static void backend_changed(struct xenbus_device *dev,
			    enum xenbus_state backend_state)
{
	struct netfront_info *np = dev_get_drvdata(&dev->dev);
	struct net_device *netdev = np->netdev;

	dev_dbg(&dev->dev, "%s\n", xenbus_strstate(backend_state));

	switch (backend_state) {
	case XenbusStateInitialising:
	case XenbusStateInitialised:
	case XenbusStateConnected:
	case XenbusStateUnknown:
	case XenbusStateClosed:
		break;

	case XenbusStateInitWait:
		if (dev->state != XenbusStateInitialising)
			break;
		if (xennet_connect(netdev) != 0)
			break;
		xenbus_switch_state(dev, XenbusStateConnected);
		netif_notify_peers(netdev);
		break;

	case XenbusStateClosing:
		xenbus_frontend_closed(dev);
		break;
	}
}

static const struct ethtool_ops xennet_ethtool_ops =
{
	.set_tx_csum = ethtool_op_set_tx_csum,
	.set_sg = xennet_set_sg,
	.set_tso = xennet_set_tso,
	.get_link = ethtool_op_get_link,
};

#ifdef CONFIG_SYSFS
static ssize_t show_rxbuf_min(struct device *dev,
			      struct device_attribute *attr, char *buf)
{
	struct net_device *netdev = to_net_dev(dev);
	struct netfront_info *info = netdev_priv(netdev);

	return sprintf(buf, "%u\n", info->rx_min_target);
}

static ssize_t store_rxbuf_min(struct device *dev,
			       struct device_attribute *attr,
			       const char *buf, size_t len)
{
	struct net_device *netdev = to_net_dev(dev);
	struct netfront_info *np = netdev_priv(netdev);
	char *endp;
	unsigned long target;

	if (!capable(CAP_NET_ADMIN))
		return -EPERM;

	target = simple_strtoul(buf, &endp, 0);
	if (endp == buf)
		return -EBADMSG;

	if (target < RX_MIN_TARGET)
		target = RX_MIN_TARGET;
	if (target > RX_MAX_TARGET)
		target = RX_MAX_TARGET;

	spin_lock_bh(&np->rx_lock);
	if (target > np->rx_max_target)
		np->rx_max_target = target;
	np->rx_min_target = target;
	if (target > np->rx_target)
		np->rx_target = target;

	xennet_alloc_rx_buffers(netdev);

	spin_unlock_bh(&np->rx_lock);
	return len;
}

static ssize_t show_rxbuf_max(struct device *dev,
			      struct device_attribute *attr, char *buf)
{
	struct net_device *netdev = to_net_dev(dev);
	struct netfront_info *info = netdev_priv(netdev);

	return sprintf(buf, "%u\n", info->rx_max_target);
}

static ssize_t store_rxbuf_max(struct device *dev,
			       struct device_attribute *attr,
			       const char *buf, size_t len)
{
	struct net_device *netdev = to_net_dev(dev);
	struct netfront_info *np = netdev_priv(netdev);
	char *endp;
	unsigned long target;

	if (!capable(CAP_NET_ADMIN))
		return -EPERM;

	target = simple_strtoul(buf, &endp, 0);
	if (endp == buf)
		return -EBADMSG;

	if (target < RX_MIN_TARGET)
		target = RX_MIN_TARGET;
	if (target > RX_MAX_TARGET)
		target = RX_MAX_TARGET;

	spin_lock_bh(&np->rx_lock);
	if (target < np->rx_min_target)
		np->rx_min_target = target;
	np->rx_max_target = target;
	if (target < np->rx_target)
		np->rx_target = target;

	xennet_alloc_rx_buffers(netdev);

	spin_unlock_bh(&np->rx_lock);
	return len;
}

static ssize_t show_rxbuf_cur(struct device *dev,
			      struct device_attribute *attr, char *buf)
{
	struct net_device *netdev = to_net_dev(dev);
	struct netfront_info *info = netdev_priv(netdev);

	return sprintf(buf, "%u\n", info->rx_target);
}

static struct device_attribute xennet_attrs[] = {
	__ATTR(rxbuf_min, S_IRUGO|S_IWUSR, show_rxbuf_min, store_rxbuf_min),
	__ATTR(rxbuf_max, S_IRUGO|S_IWUSR, show_rxbuf_max, store_rxbuf_max),
	__ATTR(rxbuf_cur, S_IRUGO, show_rxbuf_cur, NULL),
};

static int xennet_sysfs_addif(struct net_device *netdev)
{
	int i;
	int err;

	for (i = 0; i < ARRAY_SIZE(xennet_attrs); i++) {
		err = device_create_file(&netdev->dev,
					   &xennet_attrs[i]);
		if (err)
			goto fail;
	}
	return 0;

 fail:
	while (--i >= 0)
		device_remove_file(&netdev->dev, &xennet_attrs[i]);
	return err;
}

static void xennet_sysfs_delif(struct net_device *netdev)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(xennet_attrs); i++)
		device_remove_file(&netdev->dev, &xennet_attrs[i]);
}

#endif /* CONFIG_SYSFS */

static struct xenbus_device_id netfront_ids[] = {
	{ "vif" },
	{ "" }
};


static int __devexit xennet_remove(struct xenbus_device *dev)
{
	struct netfront_info *info = dev_get_drvdata(&dev->dev);

	dev_dbg(&dev->dev, "%s\n", dev->nodename);

	unregister_netdev(info->netdev);

	xennet_disconnect_backend(info);

	del_timer_sync(&info->rx_refill_timer);

	xennet_sysfs_delif(info->netdev);

	free_netdev(info->netdev);

	return 0;
}

static struct xenbus_driver netfront_driver = {
	.name = "vif",
	.owner = THIS_MODULE,
	.ids = netfront_ids,
	.probe = netfront_probe,
	.remove = __devexit_p(xennet_remove),
	.resume = netfront_resume,
	.otherend_changed = backend_changed,
};

static int __init netif_init(void)
{
	if (!xen_domain())
		return -ENODEV;

	if (xen_initial_domain())
		return 0;

	printk(KERN_INFO "Initialising Xen virtual ethernet driver.\n");

	return xenbus_register_frontend(&netfront_driver);
}
module_init(netif_init);


static void __exit netif_exit(void)
{
	if (xen_initial_domain())
		return;

	xenbus_unregister_driver(&netfront_driver);
}
module_exit(netif_exit);

MODULE_DESCRIPTION("Xen virtual network device frontend");
MODULE_LICENSE("GPL");
MODULE_ALIAS("xen:vif");
MODULE_ALIAS("xennet");