aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/power/ab8500_fg.c
blob: 2917def7621c98cd8780f6eac81fbd22bb538879 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
/*
 * Copyright (C) ST-Ericsson AB 2012
 *
 * Main and Back-up battery management driver.
 *
 * Note: Backup battery management is required in case of Li-Ion battery and not
 * for capacitive battery. HREF boards have capacitive battery and hence backup
 * battery management is not used and the supported code is available in this
 * driver.
 *
 * License Terms: GNU General Public License v2
 * Author:
 *	Johan Palsson <johan.palsson@stericsson.com>
 *	Karl Komierowski <karl.komierowski@stericsson.com>
 *	Arun R Murthy <arun.murthy@stericsson.com>
 */

#include <linux/init.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/power_supply.h>
#include <linux/kobject.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/time.h>
#include <linux/of.h>
#include <linux/completion.h>
#include <linux/mfd/core.h>
#include <linux/mfd/abx500.h>
#include <linux/mfd/abx500/ab8500.h>
#include <linux/mfd/abx500/ab8500-bm.h>
#include <linux/mfd/abx500/ab8500-gpadc.h>
#include <linux/kernel.h>

#define MILLI_TO_MICRO			1000
#define FG_LSB_IN_MA			1627
#define QLSB_NANO_AMP_HOURS_X10		1129
#define INS_CURR_TIMEOUT		(3 * HZ)

#define SEC_TO_SAMPLE(S)		(S * 4)

#define NBR_AVG_SAMPLES			20

#define LOW_BAT_CHECK_INTERVAL		(2 * HZ)

#define VALID_CAPACITY_SEC		(45 * 60) /* 45 minutes */
#define BATT_OK_MIN			2360 /* mV */
#define BATT_OK_INCREMENT		50 /* mV */
#define BATT_OK_MAX_NR_INCREMENTS	0xE

/* FG constants */
#define BATT_OVV			0x01

#define interpolate(x, x1, y1, x2, y2) \
	((y1) + ((((y2) - (y1)) * ((x) - (x1))) / ((x2) - (x1))));

#define to_ab8500_fg_device_info(x) container_of((x), \
	struct ab8500_fg, fg_psy);

/**
 * struct ab8500_fg_interrupts - ab8500 fg interupts
 * @name:	name of the interrupt
 * @isr		function pointer to the isr
 */
struct ab8500_fg_interrupts {
	char *name;
	irqreturn_t (*isr)(int irq, void *data);
};

enum ab8500_fg_discharge_state {
	AB8500_FG_DISCHARGE_INIT,
	AB8500_FG_DISCHARGE_INITMEASURING,
	AB8500_FG_DISCHARGE_INIT_RECOVERY,
	AB8500_FG_DISCHARGE_RECOVERY,
	AB8500_FG_DISCHARGE_READOUT_INIT,
	AB8500_FG_DISCHARGE_READOUT,
	AB8500_FG_DISCHARGE_WAKEUP,
};

static char *discharge_state[] = {
	"DISCHARGE_INIT",
	"DISCHARGE_INITMEASURING",
	"DISCHARGE_INIT_RECOVERY",
	"DISCHARGE_RECOVERY",
	"DISCHARGE_READOUT_INIT",
	"DISCHARGE_READOUT",
	"DISCHARGE_WAKEUP",
};

enum ab8500_fg_charge_state {
	AB8500_FG_CHARGE_INIT,
	AB8500_FG_CHARGE_READOUT,
};

static char *charge_state[] = {
	"CHARGE_INIT",
	"CHARGE_READOUT",
};

enum ab8500_fg_calibration_state {
	AB8500_FG_CALIB_INIT,
	AB8500_FG_CALIB_WAIT,
	AB8500_FG_CALIB_END,
};

struct ab8500_fg_avg_cap {
	int avg;
	int samples[NBR_AVG_SAMPLES];
	__kernel_time_t time_stamps[NBR_AVG_SAMPLES];
	int pos;
	int nbr_samples;
	int sum;
};

struct ab8500_fg_cap_scaling {
	bool enable;
	int cap_to_scale[2];
	int disable_cap_level;
	int scaled_cap;
};

struct ab8500_fg_battery_capacity {
	int max_mah_design;
	int max_mah;
	int mah;
	int permille;
	int level;
	int prev_mah;
	int prev_percent;
	int prev_level;
	int user_mah;
	struct ab8500_fg_cap_scaling cap_scale;
};

struct ab8500_fg_flags {
	bool fg_enabled;
	bool conv_done;
	bool charging;
	bool fully_charged;
	bool force_full;
	bool low_bat_delay;
	bool low_bat;
	bool bat_ovv;
	bool batt_unknown;
	bool calibrate;
	bool user_cap;
	bool batt_id_received;
};

struct inst_curr_result_list {
	struct list_head list;
	int *result;
};

/**
 * struct ab8500_fg - ab8500 FG device information
 * @dev:		Pointer to the structure device
 * @node:		a list of AB8500 FGs, hence prepared for reentrance
 * @irq			holds the CCEOC interrupt number
 * @vbat:		Battery voltage in mV
 * @vbat_nom:		Nominal battery voltage in mV
 * @inst_curr:		Instantenous battery current in mA
 * @avg_curr:		Average battery current in mA
 * @bat_temp		battery temperature
 * @fg_samples:		Number of samples used in the FG accumulation
 * @accu_charge:	Accumulated charge from the last conversion
 * @recovery_cnt:	Counter for recovery mode
 * @high_curr_cnt:	Counter for high current mode
 * @init_cnt:		Counter for init mode
 * @nbr_cceoc_irq_cnt	Counter for number of CCEOC irqs received since enabled
 * @recovery_needed:	Indicate if recovery is needed
 * @high_curr_mode:	Indicate if we're in high current mode
 * @init_capacity:	Indicate if initial capacity measuring should be done
 * @turn_off_fg:	True if fg was off before current measurement
 * @calib_state		State during offset calibration
 * @discharge_state:	Current discharge state
 * @charge_state:	Current charge state
 * @ab8500_fg_started	Completion struct used for the instant current start
 * @ab8500_fg_complete	Completion struct used for the instant current reading
 * @flags:		Structure for information about events triggered
 * @bat_cap:		Structure for battery capacity specific parameters
 * @avg_cap:		Average capacity filter
 * @parent:		Pointer to the struct ab8500
 * @gpadc:		Pointer to the struct gpadc
 * @bm:           	Platform specific battery management information
 * @fg_psy:		Structure that holds the FG specific battery properties
 * @fg_wq:		Work queue for running the FG algorithm
 * @fg_periodic_work:	Work to run the FG algorithm periodically
 * @fg_low_bat_work:	Work to check low bat condition
 * @fg_reinit_work	Work used to reset and reinitialise the FG algorithm
 * @fg_work:		Work to run the FG algorithm instantly
 * @fg_acc_cur_work:	Work to read the FG accumulator
 * @fg_check_hw_failure_work:	Work for checking HW state
 * @cc_lock:		Mutex for locking the CC
 * @fg_kobject:		Structure of type kobject
 */
struct ab8500_fg {
	struct device *dev;
	struct list_head node;
	int irq;
	int vbat;
	int vbat_nom;
	int inst_curr;
	int avg_curr;
	int bat_temp;
	int fg_samples;
	int accu_charge;
	int recovery_cnt;
	int high_curr_cnt;
	int init_cnt;
	int nbr_cceoc_irq_cnt;
	bool recovery_needed;
	bool high_curr_mode;
	bool init_capacity;
	bool turn_off_fg;
	enum ab8500_fg_calibration_state calib_state;
	enum ab8500_fg_discharge_state discharge_state;
	enum ab8500_fg_charge_state charge_state;
	struct completion ab8500_fg_started;
	struct completion ab8500_fg_complete;
	struct ab8500_fg_flags flags;
	struct ab8500_fg_battery_capacity bat_cap;
	struct ab8500_fg_avg_cap avg_cap;
	struct ab8500 *parent;
	struct ab8500_gpadc *gpadc;
	struct abx500_bm_data *bm;
	struct power_supply fg_psy;
	struct workqueue_struct *fg_wq;
	struct delayed_work fg_periodic_work;
	struct delayed_work fg_low_bat_work;
	struct delayed_work fg_reinit_work;
	struct work_struct fg_work;
	struct work_struct fg_acc_cur_work;
	struct delayed_work fg_check_hw_failure_work;
	struct mutex cc_lock;
	struct kobject fg_kobject;
};
static LIST_HEAD(ab8500_fg_list);

/**
 * ab8500_fg_get() - returns a reference to the primary AB8500 fuel gauge
 * (i.e. the first fuel gauge in the instance list)
 */
struct ab8500_fg *ab8500_fg_get(void)
{
	struct ab8500_fg *fg;

	if (list_empty(&ab8500_fg_list))
		return NULL;

	fg = list_first_entry(&ab8500_fg_list, struct ab8500_fg, node);
	return fg;
}

/* Main battery properties */
static enum power_supply_property ab8500_fg_props[] = {
	POWER_SUPPLY_PROP_VOLTAGE_NOW,
	POWER_SUPPLY_PROP_CURRENT_NOW,
	POWER_SUPPLY_PROP_CURRENT_AVG,
	POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
	POWER_SUPPLY_PROP_ENERGY_FULL,
	POWER_SUPPLY_PROP_ENERGY_NOW,
	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
	POWER_SUPPLY_PROP_CHARGE_FULL,
	POWER_SUPPLY_PROP_CHARGE_NOW,
	POWER_SUPPLY_PROP_CAPACITY,
	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
};

/*
 * This array maps the raw hex value to lowbat voltage used by the AB8500
 * Values taken from the UM0836
 */
static int ab8500_fg_lowbat_voltage_map[] = {
	2300 ,
	2325 ,
	2350 ,
	2375 ,
	2400 ,
	2425 ,
	2450 ,
	2475 ,
	2500 ,
	2525 ,
	2550 ,
	2575 ,
	2600 ,
	2625 ,
	2650 ,
	2675 ,
	2700 ,
	2725 ,
	2750 ,
	2775 ,
	2800 ,
	2825 ,
	2850 ,
	2875 ,
	2900 ,
	2925 ,
	2950 ,
	2975 ,
	3000 ,
	3025 ,
	3050 ,
	3075 ,
	3100 ,
	3125 ,
	3150 ,
	3175 ,
	3200 ,
	3225 ,
	3250 ,
	3275 ,
	3300 ,
	3325 ,
	3350 ,
	3375 ,
	3400 ,
	3425 ,
	3450 ,
	3475 ,
	3500 ,
	3525 ,
	3550 ,
	3575 ,
	3600 ,
	3625 ,
	3650 ,
	3675 ,
	3700 ,
	3725 ,
	3750 ,
	3775 ,
	3800 ,
	3825 ,
	3850 ,
	3850 ,
};

static u8 ab8500_volt_to_regval(int voltage)
{
	int i;

	if (voltage < ab8500_fg_lowbat_voltage_map[0])
		return 0;

	for (i = 0; i < ARRAY_SIZE(ab8500_fg_lowbat_voltage_map); i++) {
		if (voltage < ab8500_fg_lowbat_voltage_map[i])
			return (u8) i - 1;
	}

	/* If not captured above, return index of last element */
	return (u8) ARRAY_SIZE(ab8500_fg_lowbat_voltage_map) - 1;
}

/**
 * ab8500_fg_is_low_curr() - Low or high current mode
 * @di:		pointer to the ab8500_fg structure
 * @curr:	the current to base or our decision on
 *
 * Low current mode if the current consumption is below a certain threshold
 */
static int ab8500_fg_is_low_curr(struct ab8500_fg *di, int curr)
{
	/*
	 * We want to know if we're in low current mode
	 */
	if (curr > -di->bm->fg_params->high_curr_threshold)
		return true;
	else
		return false;
}

/**
 * ab8500_fg_add_cap_sample() - Add capacity to average filter
 * @di:		pointer to the ab8500_fg structure
 * @sample:	the capacity in mAh to add to the filter
 *
 * A capacity is added to the filter and a new mean capacity is calculated and
 * returned
 */
static int ab8500_fg_add_cap_sample(struct ab8500_fg *di, int sample)
{
	struct timespec ts;
	struct ab8500_fg_avg_cap *avg = &di->avg_cap;

	getnstimeofday(&ts);

	do {
		avg->sum += sample - avg->samples[avg->pos];
		avg->samples[avg->pos] = sample;
		avg->time_stamps[avg->pos] = ts.tv_sec;
		avg->pos++;

		if (avg->pos == NBR_AVG_SAMPLES)
			avg->pos = 0;

		if (avg->nbr_samples < NBR_AVG_SAMPLES)
			avg->nbr_samples++;

		/*
		 * Check the time stamp for each sample. If too old,
		 * replace with latest sample
		 */
	} while (ts.tv_sec - VALID_CAPACITY_SEC > avg->time_stamps[avg->pos]);

	avg->avg = avg->sum / avg->nbr_samples;

	return avg->avg;
}

/**
 * ab8500_fg_clear_cap_samples() - Clear average filter
 * @di:		pointer to the ab8500_fg structure
 *
 * The capacity filter is is reset to zero.
 */
static void ab8500_fg_clear_cap_samples(struct ab8500_fg *di)
{
	int i;
	struct ab8500_fg_avg_cap *avg = &di->avg_cap;

	avg->pos = 0;
	avg->nbr_samples = 0;
	avg->sum = 0;
	avg->avg = 0;

	for (i = 0; i < NBR_AVG_SAMPLES; i++) {
		avg->samples[i] = 0;
		avg->time_stamps[i] = 0;
	}
}

/**
 * ab8500_fg_fill_cap_sample() - Fill average filter
 * @di:		pointer to the ab8500_fg structure
 * @sample:	the capacity in mAh to fill the filter with
 *
 * The capacity filter is filled with a capacity in mAh
 */
static void ab8500_fg_fill_cap_sample(struct ab8500_fg *di, int sample)
{
	int i;
	struct timespec ts;
	struct ab8500_fg_avg_cap *avg = &di->avg_cap;

	getnstimeofday(&ts);

	for (i = 0; i < NBR_AVG_SAMPLES; i++) {
		avg->samples[i] = sample;
		avg->time_stamps[i] = ts.tv_sec;
	}

	avg->pos = 0;
	avg->nbr_samples = NBR_AVG_SAMPLES;
	avg->sum = sample * NBR_AVG_SAMPLES;
	avg->avg = sample;
}

/**
 * ab8500_fg_coulomb_counter() - enable coulomb counter
 * @di:		pointer to the ab8500_fg structure
 * @enable:	enable/disable
 *
 * Enable/Disable coulomb counter.
 * On failure returns negative value.
 */
static int ab8500_fg_coulomb_counter(struct ab8500_fg *di, bool enable)
{
	int ret = 0;
	mutex_lock(&di->cc_lock);
	if (enable) {
		/* To be able to reprogram the number of samples, we have to
		 * first stop the CC and then enable it again */
		ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
			AB8500_RTC_CC_CONF_REG, 0x00);
		if (ret)
			goto cc_err;

		/* Program the samples */
		ret = abx500_set_register_interruptible(di->dev,
			AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU,
			di->fg_samples);
		if (ret)
			goto cc_err;

		/* Start the CC */
		ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
			AB8500_RTC_CC_CONF_REG,
			(CC_DEEP_SLEEP_ENA | CC_PWR_UP_ENA));
		if (ret)
			goto cc_err;

		di->flags.fg_enabled = true;
	} else {
		/* Clear any pending read requests */
		ret = abx500_mask_and_set_register_interruptible(di->dev,
			AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
			(RESET_ACCU | READ_REQ), 0);
		if (ret)
			goto cc_err;

		ret = abx500_set_register_interruptible(di->dev,
			AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU_CTRL, 0);
		if (ret)
			goto cc_err;

		/* Stop the CC */
		ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
			AB8500_RTC_CC_CONF_REG, 0);
		if (ret)
			goto cc_err;

		di->flags.fg_enabled = false;

	}
	dev_dbg(di->dev, " CC enabled: %d Samples: %d\n",
		enable, di->fg_samples);

	mutex_unlock(&di->cc_lock);

	return ret;
cc_err:
	dev_err(di->dev, "%s Enabling coulomb counter failed\n", __func__);
	mutex_unlock(&di->cc_lock);
	return ret;
}

/**
 * ab8500_fg_inst_curr_start() - start battery instantaneous current
 * @di:         pointer to the ab8500_fg structure
 *
 * Returns 0 or error code
 * Note: This is part "one" and has to be called before
 * ab8500_fg_inst_curr_finalize()
 */
int ab8500_fg_inst_curr_start(struct ab8500_fg *di)
{
	u8 reg_val;
	int ret;

	mutex_lock(&di->cc_lock);

	di->nbr_cceoc_irq_cnt = 0;
	ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
		AB8500_RTC_CC_CONF_REG, &reg_val);
	if (ret < 0)
		goto fail;

	if (!(reg_val & CC_PWR_UP_ENA)) {
		dev_dbg(di->dev, "%s Enable FG\n", __func__);
		di->turn_off_fg = true;

		/* Program the samples */
		ret = abx500_set_register_interruptible(di->dev,
			AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU,
			SEC_TO_SAMPLE(10));
		if (ret)
			goto fail;

		/* Start the CC */
		ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
			AB8500_RTC_CC_CONF_REG,
			(CC_DEEP_SLEEP_ENA | CC_PWR_UP_ENA));
		if (ret)
			goto fail;
	} else {
		di->turn_off_fg = false;
	}

	/* Return and WFI */
	INIT_COMPLETION(di->ab8500_fg_started);
	INIT_COMPLETION(di->ab8500_fg_complete);
	enable_irq(di->irq);

	/* Note: cc_lock is still locked */
	return 0;
fail:
	mutex_unlock(&di->cc_lock);
	return ret;
}

/**
 * ab8500_fg_inst_curr_started() - check if fg conversion has started
 * @di:         pointer to the ab8500_fg structure
 *
 * Returns 1 if conversion started, 0 if still waiting
 */
int ab8500_fg_inst_curr_started(struct ab8500_fg *di)
{
	return completion_done(&di->ab8500_fg_started);
}

/**
 * ab8500_fg_inst_curr_done() - check if fg conversion is done
 * @di:         pointer to the ab8500_fg structure
 *
 * Returns 1 if conversion done, 0 if still waiting
 */
int ab8500_fg_inst_curr_done(struct ab8500_fg *di)
{
	return completion_done(&di->ab8500_fg_complete);
}

/**
 * ab8500_fg_inst_curr_finalize() - battery instantaneous current
 * @di:         pointer to the ab8500_fg structure
 * @res:	battery instantenous current(on success)
 *
 * Returns 0 or an error code
 * Note: This is part "two" and has to be called at earliest 250 ms
 * after ab8500_fg_inst_curr_start()
 */
int ab8500_fg_inst_curr_finalize(struct ab8500_fg *di, int *res)
{
	u8 low, high;
	int val;
	int ret;
	int timeout;

	if (!completion_done(&di->ab8500_fg_complete)) {
		timeout = wait_for_completion_timeout(
			&di->ab8500_fg_complete,
			INS_CURR_TIMEOUT);
		dev_dbg(di->dev, "Finalize time: %d ms\n",
			((INS_CURR_TIMEOUT - timeout) * 1000) / HZ);
		if (!timeout) {
			ret = -ETIME;
			disable_irq(di->irq);
			di->nbr_cceoc_irq_cnt = 0;
			dev_err(di->dev, "completion timed out [%d]\n",
				__LINE__);
			goto fail;
		}
	}

	disable_irq(di->irq);
	di->nbr_cceoc_irq_cnt = 0;

	ret = abx500_mask_and_set_register_interruptible(di->dev,
			AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
			READ_REQ, READ_REQ);

	/* 100uS between read request and read is needed */
	usleep_range(100, 100);

	/* Read CC Sample conversion value Low and high */
	ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
		AB8500_GASG_CC_SMPL_CNVL_REG,  &low);
	if (ret < 0)
		goto fail;

	ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
		AB8500_GASG_CC_SMPL_CNVH_REG,  &high);
	if (ret < 0)
		goto fail;

	/*
	 * negative value for Discharging
	 * convert 2's compliment into decimal
	 */
	if (high & 0x10)
		val = (low | (high << 8) | 0xFFFFE000);
	else
		val = (low | (high << 8));

	/*
	 * Convert to unit value in mA
	 * Full scale input voltage is
	 * 66.660mV => LSB = 66.660mV/(4096*res) = 1.627mA
	 * Given a 250ms conversion cycle time the LSB corresponds
	 * to 112.9 nAh. Convert to current by dividing by the conversion
	 * time in hours (250ms = 1 / (3600 * 4)h)
	 * 112.9nAh assumes 10mOhm, but fg_res is in 0.1mOhm
	 */
	val = (val * QLSB_NANO_AMP_HOURS_X10 * 36 * 4) /
		(1000 * di->bm->fg_res);

	if (di->turn_off_fg) {
		dev_dbg(di->dev, "%s Disable FG\n", __func__);

		/* Clear any pending read requests */
		ret = abx500_set_register_interruptible(di->dev,
			AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG, 0);
		if (ret)
			goto fail;

		/* Stop the CC */
		ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
			AB8500_RTC_CC_CONF_REG, 0);
		if (ret)
			goto fail;
	}
	mutex_unlock(&di->cc_lock);
	(*res) = val;

	return 0;
fail:
	mutex_unlock(&di->cc_lock);
	return ret;
}

/**
 * ab8500_fg_inst_curr_blocking() - battery instantaneous current
 * @di:         pointer to the ab8500_fg structure
 * @res:	battery instantenous current(on success)
 *
 * Returns 0 else error code
 */
int ab8500_fg_inst_curr_blocking(struct ab8500_fg *di)
{
	int ret;
	int timeout;
	int res = 0;

	ret = ab8500_fg_inst_curr_start(di);
	if (ret) {
		dev_err(di->dev, "Failed to initialize fg_inst\n");
		return 0;
	}

	/* Wait for CC to actually start */
	if (!completion_done(&di->ab8500_fg_started)) {
		timeout = wait_for_completion_timeout(
			&di->ab8500_fg_started,
			INS_CURR_TIMEOUT);
		dev_dbg(di->dev, "Start time: %d ms\n",
			((INS_CURR_TIMEOUT - timeout) * 1000) / HZ);
		if (!timeout) {
			ret = -ETIME;
			dev_err(di->dev, "completion timed out [%d]\n",
				__LINE__);
			goto fail;
		}
	}

	ret = ab8500_fg_inst_curr_finalize(di, &res);
	if (ret) {
		dev_err(di->dev, "Failed to finalize fg_inst\n");
		return 0;
	}

	dev_dbg(di->dev, "%s instant current: %d", __func__, res);
	return res;
fail:
	disable_irq(di->irq);
	mutex_unlock(&di->cc_lock);
	return ret;
}

/**
 * ab8500_fg_acc_cur_work() - average battery current
 * @work:	pointer to the work_struct structure
 *
 * Updated the average battery current obtained from the
 * coulomb counter.
 */
static void ab8500_fg_acc_cur_work(struct work_struct *work)
{
	int val;
	int ret;
	u8 low, med, high;

	struct ab8500_fg *di = container_of(work,
		struct ab8500_fg, fg_acc_cur_work);

	mutex_lock(&di->cc_lock);
	ret = abx500_set_register_interruptible(di->dev, AB8500_GAS_GAUGE,
		AB8500_GASG_CC_NCOV_ACCU_CTRL, RD_NCONV_ACCU_REQ);
	if (ret)
		goto exit;

	ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
		AB8500_GASG_CC_NCOV_ACCU_LOW,  &low);
	if (ret < 0)
		goto exit;

	ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
		AB8500_GASG_CC_NCOV_ACCU_MED,  &med);
	if (ret < 0)
		goto exit;

	ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
		AB8500_GASG_CC_NCOV_ACCU_HIGH, &high);
	if (ret < 0)
		goto exit;

	/* Check for sign bit in case of negative value, 2's compliment */
	if (high & 0x10)
		val = (low | (med << 8) | (high << 16) | 0xFFE00000);
	else
		val = (low | (med << 8) | (high << 16));

	/*
	 * Convert to uAh
	 * Given a 250ms conversion cycle time the LSB corresponds
	 * to 112.9 nAh.
	 * 112.9nAh assumes 10mOhm, but fg_res is in 0.1mOhm
	 */
	di->accu_charge = (val * QLSB_NANO_AMP_HOURS_X10) /
		(100 * di->bm->fg_res);

	/*
	 * Convert to unit value in mA
	 * Full scale input voltage is
	 * 66.660mV => LSB = 66.660mV/(4096*res) = 1.627mA
	 * Given a 250ms conversion cycle time the LSB corresponds
	 * to 112.9 nAh. Convert to current by dividing by the conversion
	 * time in hours (= samples / (3600 * 4)h)
	 * 112.9nAh assumes 10mOhm, but fg_res is in 0.1mOhm
	 */
	di->avg_curr = (val * QLSB_NANO_AMP_HOURS_X10 * 36) /
		(1000 * di->bm->fg_res * (di->fg_samples / 4));

	di->flags.conv_done = true;

	mutex_unlock(&di->cc_lock);

	queue_work(di->fg_wq, &di->fg_work);

	return;
exit:
	dev_err(di->dev,
		"Failed to read or write gas gauge registers\n");
	mutex_unlock(&di->cc_lock);
	queue_work(di->fg_wq, &di->fg_work);
}

/**
 * ab8500_fg_bat_voltage() - get battery voltage
 * @di:		pointer to the ab8500_fg structure
 *
 * Returns battery voltage(on success) else error code
 */
static int ab8500_fg_bat_voltage(struct ab8500_fg *di)
{
	int vbat;
	static int prev;

	vbat = ab8500_gpadc_convert(di->gpadc, MAIN_BAT_V);
	if (vbat < 0) {
		dev_err(di->dev,
			"%s gpadc conversion failed, using previous value\n",
			__func__);
		return prev;
	}

	prev = vbat;
	return vbat;
}

/**
 * ab8500_fg_volt_to_capacity() - Voltage based capacity
 * @di:		pointer to the ab8500_fg structure
 * @voltage:	The voltage to convert to a capacity
 *
 * Returns battery capacity in per mille based on voltage
 */
static int ab8500_fg_volt_to_capacity(struct ab8500_fg *di, int voltage)
{
	int i, tbl_size;
	struct abx500_v_to_cap *tbl;
	int cap = 0;

	tbl = di->bm->bat_type[di->bm->batt_id].v_to_cap_tbl,
	tbl_size = di->bm->bat_type[di->bm->batt_id].n_v_cap_tbl_elements;

	for (i = 0; i < tbl_size; ++i) {
		if (voltage > tbl[i].voltage)
			break;
	}

	if ((i > 0) && (i < tbl_size)) {
		cap = interpolate(voltage,
			tbl[i].voltage,
			tbl[i].capacity * 10,
			tbl[i-1].voltage,
			tbl[i-1].capacity * 10);
	} else if (i == 0) {
		cap = 1000;
	} else {
		cap = 0;
	}

	dev_dbg(di->dev, "%s Vbat: %d, Cap: %d per mille",
		__func__, voltage, cap);

	return cap;
}

/**
 * ab8500_fg_uncomp_volt_to_capacity() - Uncompensated voltage based capacity
 * @di:		pointer to the ab8500_fg structure
 *
 * Returns battery capacity based on battery voltage that is not compensated
 * for the voltage drop due to the load
 */
static int ab8500_fg_uncomp_volt_to_capacity(struct ab8500_fg *di)
{
	di->vbat = ab8500_fg_bat_voltage(di);
	return ab8500_fg_volt_to_capacity(di, di->vbat);
}

/**
 * ab8500_fg_battery_resistance() - Returns the battery inner resistance
 * @di:		pointer to the ab8500_fg structure
 *
 * Returns battery inner resistance added with the fuel gauge resistor value
 * to get the total resistance in the whole link from gnd to bat+ node.
 */
static int ab8500_fg_battery_resistance(struct ab8500_fg *di)
{
	int i, tbl_size;
	struct batres_vs_temp *tbl;
	int resist = 0;

	tbl = di->bm->bat_type[di->bm->batt_id].batres_tbl;
	tbl_size = di->bm->bat_type[di->bm->batt_id].n_batres_tbl_elements;

	for (i = 0; i < tbl_size; ++i) {
		if (di->bat_temp / 10 > tbl[i].temp)
			break;
	}

	if ((i > 0) && (i < tbl_size)) {
		resist = interpolate(di->bat_temp / 10,
			tbl[i].temp,
			tbl[i].resist,
			tbl[i-1].temp,
			tbl[i-1].resist);
	} else if (i == 0) {
		resist = tbl[0].resist;
	} else {
		resist = tbl[tbl_size - 1].resist;
	}

	dev_dbg(di->dev, "%s Temp: %d battery internal resistance: %d"
	    " fg resistance %d, total: %d (mOhm)\n",
		__func__, di->bat_temp, resist, di->bm->fg_res / 10,
		(di->bm->fg_res / 10) + resist);

	/* fg_res variable is in 0.1mOhm */
	resist += di->bm->fg_res / 10;

	return resist;
}

/**
 * ab8500_fg_load_comp_volt_to_capacity() - Load compensated voltage based capacity
 * @di:		pointer to the ab8500_fg structure
 *
 * Returns battery capacity based on battery voltage that is load compensated
 * for the voltage drop
 */
static int ab8500_fg_load_comp_volt_to_capacity(struct ab8500_fg *di)
{
	int vbat_comp, res;
	int i = 0;
	int vbat = 0;

	ab8500_fg_inst_curr_start(di);

	do {
		vbat += ab8500_fg_bat_voltage(di);
		i++;
		usleep_range(5000, 6000);
	} while (!ab8500_fg_inst_curr_done(di));

	ab8500_fg_inst_curr_finalize(di, &di->inst_curr);

	di->vbat = vbat / i;
	res = ab8500_fg_battery_resistance(di);

	/* Use Ohms law to get the load compensated voltage */
	vbat_comp = di->vbat - (di->inst_curr * res) / 1000;

	dev_dbg(di->dev, "%s Measured Vbat: %dmV,Compensated Vbat %dmV, "
		"R: %dmOhm, Current: %dmA Vbat Samples: %d\n",
		__func__, di->vbat, vbat_comp, res, di->inst_curr, i);

	return ab8500_fg_volt_to_capacity(di, vbat_comp);
}

/**
 * ab8500_fg_convert_mah_to_permille() - Capacity in mAh to permille
 * @di:		pointer to the ab8500_fg structure
 * @cap_mah:	capacity in mAh
 *
 * Converts capacity in mAh to capacity in permille
 */
static int ab8500_fg_convert_mah_to_permille(struct ab8500_fg *di, int cap_mah)
{
	return (cap_mah * 1000) / di->bat_cap.max_mah_design;
}

/**
 * ab8500_fg_convert_permille_to_mah() - Capacity in permille to mAh
 * @di:		pointer to the ab8500_fg structure
 * @cap_pm:	capacity in permille
 *
 * Converts capacity in permille to capacity in mAh
 */
static int ab8500_fg_convert_permille_to_mah(struct ab8500_fg *di, int cap_pm)
{
	return cap_pm * di->bat_cap.max_mah_design / 1000;
}

/**
 * ab8500_fg_convert_mah_to_uwh() - Capacity in mAh to uWh
 * @di:		pointer to the ab8500_fg structure
 * @cap_mah:	capacity in mAh
 *
 * Converts capacity in mAh to capacity in uWh
 */
static int ab8500_fg_convert_mah_to_uwh(struct ab8500_fg *di, int cap_mah)
{
	u64 div_res;
	u32 div_rem;

	div_res = ((u64) cap_mah) * ((u64) di->vbat_nom);
	div_rem = do_div(div_res, 1000);

	/* Make sure to round upwards if necessary */
	if (div_rem >= 1000 / 2)
		div_res++;

	return (int) div_res;
}

/**
 * ab8500_fg_calc_cap_charging() - Calculate remaining capacity while charging
 * @di:		pointer to the ab8500_fg structure
 *
 * Return the capacity in mAh based on previous calculated capcity and the FG
 * accumulator register value. The filter is filled with this capacity
 */
static int ab8500_fg_calc_cap_charging(struct ab8500_fg *di)
{
	dev_dbg(di->dev, "%s cap_mah %d accu_charge %d\n",
		__func__,
		di->bat_cap.mah,
		di->accu_charge);

	/* Capacity should not be less than 0 */
	if (di->bat_cap.mah + di->accu_charge > 0)
		di->bat_cap.mah += di->accu_charge;
	else
		di->bat_cap.mah = 0;
	/*
	 * We force capacity to 100% once when the algorithm
	 * reports that it's full.
	 */
	if (di->bat_cap.mah >= di->bat_cap.max_mah_design ||
		di->flags.force_full) {
		di->bat_cap.mah = di->bat_cap.max_mah_design;
	}

	ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
	di->bat_cap.permille =
		ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);

	/* We need to update battery voltage and inst current when charging */
	di->vbat = ab8500_fg_bat_voltage(di);
	di->inst_curr = ab8500_fg_inst_curr_blocking(di);

	return di->bat_cap.mah;
}

/**
 * ab8500_fg_calc_cap_discharge_voltage() - Capacity in discharge with voltage
 * @di:		pointer to the ab8500_fg structure
 * @comp:	if voltage should be load compensated before capacity calc
 *
 * Return the capacity in mAh based on the battery voltage. The voltage can
 * either be load compensated or not. This value is added to the filter and a
 * new mean value is calculated and returned.
 */
static int ab8500_fg_calc_cap_discharge_voltage(struct ab8500_fg *di, bool comp)
{
	int permille, mah;

	if (comp)
		permille = ab8500_fg_load_comp_volt_to_capacity(di);
	else
		permille = ab8500_fg_uncomp_volt_to_capacity(di);

	mah = ab8500_fg_convert_permille_to_mah(di, permille);

	di->bat_cap.mah = ab8500_fg_add_cap_sample(di, mah);
	di->bat_cap.permille =
		ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);

	return di->bat_cap.mah;
}

/**
 * ab8500_fg_calc_cap_discharge_fg() - Capacity in discharge with FG
 * @di:		pointer to the ab8500_fg structure
 *
 * Return the capacity in mAh based on previous calculated capcity and the FG
 * accumulator register value. This value is added to the filter and a
 * new mean value is calculated and returned.
 */
static int ab8500_fg_calc_cap_discharge_fg(struct ab8500_fg *di)
{
	int permille_volt, permille;

	dev_dbg(di->dev, "%s cap_mah %d accu_charge %d\n",
		__func__,
		di->bat_cap.mah,
		di->accu_charge);

	/* Capacity should not be less than 0 */
	if (di->bat_cap.mah + di->accu_charge > 0)
		di->bat_cap.mah += di->accu_charge;
	else
		di->bat_cap.mah = 0;

	if (di->bat_cap.mah >= di->bat_cap.max_mah_design)
		di->bat_cap.mah = di->bat_cap.max_mah_design;

	/*
	 * Check against voltage based capacity. It can not be lower
	 * than what the uncompensated voltage says
	 */
	permille = ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
	permille_volt = ab8500_fg_uncomp_volt_to_capacity(di);

	if (permille < permille_volt) {
		di->bat_cap.permille = permille_volt;
		di->bat_cap.mah = ab8500_fg_convert_permille_to_mah(di,
			di->bat_cap.permille);

		dev_dbg(di->dev, "%s voltage based: perm %d perm_volt %d\n",
			__func__,
			permille,
			permille_volt);

		ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
	} else {
		ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
		di->bat_cap.permille =
			ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
	}

	return di->bat_cap.mah;
}

/**
 * ab8500_fg_capacity_level() - Get the battery capacity level
 * @di:		pointer to the ab8500_fg structure
 *
 * Get the battery capacity level based on the capacity in percent
 */
static int ab8500_fg_capacity_level(struct ab8500_fg *di)
{
	int ret, percent;

	percent = DIV_ROUND_CLOSEST(di->bat_cap.permille, 10);

	if (percent <= di->bm->cap_levels->critical ||
		di->flags.low_bat)
		ret = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
	else if (percent <= di->bm->cap_levels->low)
		ret = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
	else if (percent <= di->bm->cap_levels->normal)
		ret = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
	else if (percent <= di->bm->cap_levels->high)
		ret = POWER_SUPPLY_CAPACITY_LEVEL_HIGH;
	else
		ret = POWER_SUPPLY_CAPACITY_LEVEL_FULL;

	return ret;
}

/**
 * ab8500_fg_calculate_scaled_capacity() - Capacity scaling
 * @di:		pointer to the ab8500_fg structure
 *
 * Calculates the capacity to be shown to upper layers. Scales the capacity
 * to have 100% as a reference from the actual capacity upon removal of charger
 * when charging is in maintenance mode.
 */
static int ab8500_fg_calculate_scaled_capacity(struct ab8500_fg *di)
{
	struct ab8500_fg_cap_scaling *cs = &di->bat_cap.cap_scale;
	int capacity = di->bat_cap.prev_percent;

	if (!cs->enable)
		return capacity;

	/*
	 * As long as we are in fully charge mode scale the capacity
	 * to show 100%.
	 */
	if (di->flags.fully_charged) {
		cs->cap_to_scale[0] = 100;
		cs->cap_to_scale[1] =
			max(capacity, di->bm->fg_params->maint_thres);
		dev_dbg(di->dev, "Scale cap with %d/%d\n",
			 cs->cap_to_scale[0], cs->cap_to_scale[1]);
	}

	/* Calculates the scaled capacity. */
	if ((cs->cap_to_scale[0] != cs->cap_to_scale[1])
					&& (cs->cap_to_scale[1] > 0))
		capacity = min(100,
				 DIV_ROUND_CLOSEST(di->bat_cap.prev_percent *
						 cs->cap_to_scale[0],
						 cs->cap_to_scale[1]));

	if (di->flags.charging) {
		if (capacity < cs->disable_cap_level) {
			cs->disable_cap_level = capacity;
			dev_dbg(di->dev, "Cap to stop scale lowered %d%%\n",
				cs->disable_cap_level);
		} else if (!di->flags.fully_charged) {
			if (di->bat_cap.prev_percent >=
			    cs->disable_cap_level) {
				dev_dbg(di->dev, "Disabling scaled capacity\n");
				cs->enable = false;
				capacity = di->bat_cap.prev_percent;
			} else {
				dev_dbg(di->dev,
					"Waiting in cap to level %d%%\n",
					cs->disable_cap_level);
				capacity = cs->disable_cap_level;
			}
		}
	}

	return capacity;
}

/**
 * ab8500_fg_update_cap_scalers() - Capacity scaling
 * @di:		pointer to the ab8500_fg structure
 *
 * To be called when state change from charge<->discharge to update
 * the capacity scalers.
 */
static void ab8500_fg_update_cap_scalers(struct ab8500_fg *di)
{
	struct ab8500_fg_cap_scaling *cs = &di->bat_cap.cap_scale;

	if (!cs->enable)
		return;
	if (di->flags.charging) {
		di->bat_cap.cap_scale.disable_cap_level =
			di->bat_cap.cap_scale.scaled_cap;
		dev_dbg(di->dev, "Cap to stop scale at charge %d%%\n",
				di->bat_cap.cap_scale.disable_cap_level);
	} else {
		if (cs->scaled_cap != 100) {
			cs->cap_to_scale[0] = cs->scaled_cap;
			cs->cap_to_scale[1] = di->bat_cap.prev_percent;
		} else {
			cs->cap_to_scale[0] = 100;
			cs->cap_to_scale[1] =
				max(di->bat_cap.prev_percent,
				    di->bm->fg_params->maint_thres);
		}

		dev_dbg(di->dev, "Cap to scale at discharge %d/%d\n",
				cs->cap_to_scale[0], cs->cap_to_scale[1]);
	}
}

/**
 * ab8500_fg_check_capacity_limits() - Check if capacity has changed
 * @di:		pointer to the ab8500_fg structure
 * @init:	capacity is allowed to go up in init mode
 *
 * Check if capacity or capacity limit has changed and notify the system
 * about it using the power_supply framework
 */
static void ab8500_fg_check_capacity_limits(struct ab8500_fg *di, bool init)
{
	bool changed = false;
	int percent = DIV_ROUND_CLOSEST(di->bat_cap.permille, 10);

	di->bat_cap.level = ab8500_fg_capacity_level(di);

	if (di->bat_cap.level != di->bat_cap.prev_level) {
		/*
		 * We do not allow reported capacity level to go up
		 * unless we're charging or if we're in init
		 */
		if (!(!di->flags.charging && di->bat_cap.level >
			di->bat_cap.prev_level) || init) {
			dev_dbg(di->dev, "level changed from %d to %d\n",
				di->bat_cap.prev_level,
				di->bat_cap.level);
			di->bat_cap.prev_level = di->bat_cap.level;
			changed = true;
		} else {
			dev_dbg(di->dev, "level not allowed to go up "
				"since no charger is connected: %d to %d\n",
				di->bat_cap.prev_level,
				di->bat_cap.level);
		}
	}

	/*
	 * If we have received the LOW_BAT IRQ, set capacity to 0 to initiate
	 * shutdown
	 */
	if (di->flags.low_bat) {
		dev_dbg(di->dev, "Battery low, set capacity to 0\n");
		di->bat_cap.prev_percent = 0;
		di->bat_cap.permille = 0;
		percent = 0;
		di->bat_cap.prev_mah = 0;
		di->bat_cap.mah = 0;
		changed = true;
	} else if (di->flags.fully_charged) {
		/*
		 * We report 100% if algorithm reported fully charged
		 * and show 100% during maintenance charging (scaling).
		 */
		if (di->flags.force_full) {
			di->bat_cap.prev_percent = percent;
			di->bat_cap.prev_mah = di->bat_cap.mah;

			changed = true;

			if (!di->bat_cap.cap_scale.enable &&
						di->bm->capacity_scaling) {
				di->bat_cap.cap_scale.enable = true;
				di->bat_cap.cap_scale.cap_to_scale[0] = 100;
				di->bat_cap.cap_scale.cap_to_scale[1] =
						di->bat_cap.prev_percent;
				di->bat_cap.cap_scale.disable_cap_level = 100;
			}
		} else if (di->bat_cap.prev_percent != percent) {
			dev_dbg(di->dev,
				"battery reported full "
				"but capacity dropping: %d\n",
				percent);
			di->bat_cap.prev_percent = percent;
			di->bat_cap.prev_mah = di->bat_cap.mah;

			changed = true;
		}
	} else if (di->bat_cap.prev_percent != percent) {
		if (percent == 0) {
			/*
			 * We will not report 0% unless we've got
			 * the LOW_BAT IRQ, no matter what the FG
			 * algorithm says.
			 */
			di->bat_cap.prev_percent = 1;
			di->bat_cap.permille = 1;
			di->bat_cap.prev_mah = 1;
			di->bat_cap.mah = 1;
			percent = 1;

			changed = true;
		} else if (!(!di->flags.charging &&
			percent > di->bat_cap.prev_percent) || init) {
			/*
			 * We do not allow reported capacity to go up
			 * unless we're charging or if we're in init
			 */
			dev_dbg(di->dev,
				"capacity changed from %d to %d (%d)\n",
				di->bat_cap.prev_percent,
				percent,
				di->bat_cap.permille);
			di->bat_cap.prev_percent = percent;
			di->bat_cap.prev_mah = di->bat_cap.mah;

			changed = true;
		} else {
			dev_dbg(di->dev, "capacity not allowed to go up since "
				"no charger is connected: %d to %d (%d)\n",
				di->bat_cap.prev_percent,
				percent,
				di->bat_cap.permille);
		}
	}

	if (changed) {
		if (di->bm->capacity_scaling) {
			di->bat_cap.cap_scale.scaled_cap =
				ab8500_fg_calculate_scaled_capacity(di);

			dev_info(di->dev, "capacity=%d (%d)\n",
				di->bat_cap.prev_percent,
				di->bat_cap.cap_scale.scaled_cap);
		}
		power_supply_changed(&di->fg_psy);
		if (di->flags.fully_charged && di->flags.force_full) {
			dev_dbg(di->dev, "Battery full, notifying.\n");
			di->flags.force_full = false;
			sysfs_notify(&di->fg_kobject, NULL, "charge_full");
		}
		sysfs_notify(&di->fg_kobject, NULL, "charge_now");
	}
}

static void ab8500_fg_charge_state_to(struct ab8500_fg *di,
	enum ab8500_fg_charge_state new_state)
{
	dev_dbg(di->dev, "Charge state from %d [%s] to %d [%s]\n",
		di->charge_state,
		charge_state[di->charge_state],
		new_state,
		charge_state[new_state]);

	di->charge_state = new_state;
}

static void ab8500_fg_discharge_state_to(struct ab8500_fg *di,
	enum ab8500_fg_discharge_state new_state)
{
	dev_dbg(di->dev, "Disharge state from %d [%s] to %d [%s]\n",
		di->discharge_state,
		discharge_state[di->discharge_state],
		new_state,
		discharge_state[new_state]);

	di->discharge_state = new_state;
}

/**
 * ab8500_fg_algorithm_charging() - FG algorithm for when charging
 * @di:		pointer to the ab8500_fg structure
 *
 * Battery capacity calculation state machine for when we're charging
 */
static void ab8500_fg_algorithm_charging(struct ab8500_fg *di)
{
	/*
	 * If we change to discharge mode
	 * we should start with recovery
	 */
	if (di->discharge_state != AB8500_FG_DISCHARGE_INIT_RECOVERY)
		ab8500_fg_discharge_state_to(di,
			AB8500_FG_DISCHARGE_INIT_RECOVERY);

	switch (di->charge_state) {
	case AB8500_FG_CHARGE_INIT:
		di->fg_samples = SEC_TO_SAMPLE(
			di->bm->fg_params->accu_charging);

		ab8500_fg_coulomb_counter(di, true);
		ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_READOUT);

		break;

	case AB8500_FG_CHARGE_READOUT:
		/*
		 * Read the FG and calculate the new capacity
		 */
		mutex_lock(&di->cc_lock);
		if (!di->flags.conv_done && !di->flags.force_full) {
			/* Wasn't the CC IRQ that got us here */
			mutex_unlock(&di->cc_lock);
			dev_dbg(di->dev, "%s CC conv not done\n",
				__func__);

			break;
		}
		di->flags.conv_done = false;
		mutex_unlock(&di->cc_lock);

		ab8500_fg_calc_cap_charging(di);

		break;

	default:
		break;
	}

	/* Check capacity limits */
	ab8500_fg_check_capacity_limits(di, false);
}

static void force_capacity(struct ab8500_fg *di)
{
	int cap;

	ab8500_fg_clear_cap_samples(di);
	cap = di->bat_cap.user_mah;
	if (cap > di->bat_cap.max_mah_design) {
		dev_dbg(di->dev, "Remaining cap %d can't be bigger than total"
			" %d\n", cap, di->bat_cap.max_mah_design);
		cap = di->bat_cap.max_mah_design;
	}
	ab8500_fg_fill_cap_sample(di, di->bat_cap.user_mah);
	di->bat_cap.permille = ab8500_fg_convert_mah_to_permille(di, cap);
	di->bat_cap.mah = cap;
	ab8500_fg_check_capacity_limits(di, true);
}

static bool check_sysfs_capacity(struct ab8500_fg *di)
{
	int cap, lower, upper;
	int cap_permille;

	cap = di->bat_cap.user_mah;

	cap_permille = ab8500_fg_convert_mah_to_permille(di,
		di->bat_cap.user_mah);

	lower = di->bat_cap.permille - di->bm->fg_params->user_cap_limit * 10;
	upper = di->bat_cap.permille + di->bm->fg_params->user_cap_limit * 10;

	if (lower < 0)
		lower = 0;
	/* 1000 is permille, -> 100 percent */
	if (upper > 1000)
		upper = 1000;

	dev_dbg(di->dev, "Capacity limits:"
		" (Lower: %d User: %d Upper: %d) [user: %d, was: %d]\n",
		lower, cap_permille, upper, cap, di->bat_cap.mah);

	/* If within limits, use the saved capacity and exit estimation...*/
	if (cap_permille > lower && cap_permille < upper) {
		dev_dbg(di->dev, "OK! Using users cap %d uAh now\n", cap);
		force_capacity(di);
		return true;
	}
	dev_dbg(di->dev, "Capacity from user out of limits, ignoring");
	return false;
}

/**
 * ab8500_fg_algorithm_discharging() - FG algorithm for when discharging
 * @di:		pointer to the ab8500_fg structure
 *
 * Battery capacity calculation state machine for when we're discharging
 */
static void ab8500_fg_algorithm_discharging(struct ab8500_fg *di)
{
	int sleep_time;

	/* If we change to charge mode we should start with init */
	if (di->charge_state != AB8500_FG_CHARGE_INIT)
		ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);

	switch (di->discharge_state) {
	case AB8500_FG_DISCHARGE_INIT:
		/* We use the FG IRQ to work on */
		di->init_cnt = 0;
		di->fg_samples = SEC_TO_SAMPLE(di->bm->fg_params->init_timer);
		ab8500_fg_coulomb_counter(di, true);
		ab8500_fg_discharge_state_to(di,
			AB8500_FG_DISCHARGE_INITMEASURING);

		/* Intentional fallthrough */
	case AB8500_FG_DISCHARGE_INITMEASURING:
		/*
		 * Discard a number of samples during startup.
		 * After that, use compensated voltage for a few
		 * samples to get an initial capacity.
		 * Then go to READOUT
		 */
		sleep_time = di->bm->fg_params->init_timer;

		/* Discard the first [x] seconds */
		if (di->init_cnt > di->bm->fg_params->init_discard_time) {
			ab8500_fg_calc_cap_discharge_voltage(di, true);

			ab8500_fg_check_capacity_limits(di, true);
		}

		di->init_cnt += sleep_time;
		if (di->init_cnt > di->bm->fg_params->init_total_time)
			ab8500_fg_discharge_state_to(di,
				AB8500_FG_DISCHARGE_READOUT_INIT);

		break;

	case AB8500_FG_DISCHARGE_INIT_RECOVERY:
		di->recovery_cnt = 0;
		di->recovery_needed = true;
		ab8500_fg_discharge_state_to(di,
			AB8500_FG_DISCHARGE_RECOVERY);

		/* Intentional fallthrough */

	case AB8500_FG_DISCHARGE_RECOVERY:
		sleep_time = di->bm->fg_params->recovery_sleep_timer;

		/*
		 * We should check the power consumption
		 * If low, go to READOUT (after x min) or
		 * RECOVERY_SLEEP if time left.
		 * If high, go to READOUT
		 */
		di->inst_curr = ab8500_fg_inst_curr_blocking(di);

		if (ab8500_fg_is_low_curr(di, di->inst_curr)) {
			if (di->recovery_cnt >
				di->bm->fg_params->recovery_total_time) {
				di->fg_samples = SEC_TO_SAMPLE(
					di->bm->fg_params->accu_high_curr);
				ab8500_fg_coulomb_counter(di, true);
				ab8500_fg_discharge_state_to(di,
					AB8500_FG_DISCHARGE_READOUT);
				di->recovery_needed = false;
			} else {
				queue_delayed_work(di->fg_wq,
					&di->fg_periodic_work,
					sleep_time * HZ);
			}
			di->recovery_cnt += sleep_time;
		} else {
			di->fg_samples = SEC_TO_SAMPLE(
				di->bm->fg_params->accu_high_curr);
			ab8500_fg_coulomb_counter(di, true);
			ab8500_fg_discharge_state_to(di,
				AB8500_FG_DISCHARGE_READOUT);
		}
		break;

	case AB8500_FG_DISCHARGE_READOUT_INIT:
		di->fg_samples = SEC_TO_SAMPLE(
			di->bm->fg_params->accu_high_curr);
		ab8500_fg_coulomb_counter(di, true);
		ab8500_fg_discharge_state_to(di,
				AB8500_FG_DISCHARGE_READOUT);
		break;

	case AB8500_FG_DISCHARGE_READOUT:
		di->inst_curr = ab8500_fg_inst_curr_blocking(di);

		if (ab8500_fg_is_low_curr(di, di->inst_curr)) {
			/* Detect mode change */
			if (di->high_curr_mode) {
				di->high_curr_mode = false;
				di->high_curr_cnt = 0;
			}

			if (di->recovery_needed) {
				ab8500_fg_discharge_state_to(di,
					AB8500_FG_DISCHARGE_RECOVERY);

				queue_delayed_work(di->fg_wq,
					&di->fg_periodic_work, 0);

				break;
			}

			ab8500_fg_calc_cap_discharge_voltage(di, true);
		} else {
			mutex_lock(&di->cc_lock);
			if (!di->flags.conv_done) {
				/* Wasn't the CC IRQ that got us here */
				mutex_unlock(&di->cc_lock);
				dev_dbg(di->dev, "%s CC conv not done\n",
					__func__);

				break;
			}
			di->flags.conv_done = false;
			mutex_unlock(&di->cc_lock);

			/* Detect mode change */
			if (!di->high_curr_mode) {
				di->high_curr_mode = true;
				di->high_curr_cnt = 0;
			}

			di->high_curr_cnt +=
				di->bm->fg_params->accu_high_curr;
			if (di->high_curr_cnt >
				di->bm->fg_params->high_curr_time)
				di->recovery_needed = true;

			ab8500_fg_calc_cap_discharge_fg(di);
		}

		ab8500_fg_check_capacity_limits(di, false);

		break;

	case AB8500_FG_DISCHARGE_WAKEUP:
		ab8500_fg_coulomb_counter(di, true);
		ab8500_fg_calc_cap_discharge_voltage(di, true);

		di->fg_samples = SEC_TO_SAMPLE(
			di->bm->fg_params->accu_high_curr);
		ab8500_fg_coulomb_counter(di, true);
		ab8500_fg_discharge_state_to(di,
				AB8500_FG_DISCHARGE_READOUT);

		ab8500_fg_check_capacity_limits(di, false);

		break;

	default:
		break;
	}
}

/**
 * ab8500_fg_algorithm_calibrate() - Internal columb counter offset calibration
 * @di:		pointer to the ab8500_fg structure
 *
 */
static void ab8500_fg_algorithm_calibrate(struct ab8500_fg *di)
{
	int ret;

	switch (di->calib_state) {
	case AB8500_FG_CALIB_INIT:
		dev_dbg(di->dev, "Calibration ongoing...\n");

		ret = abx500_mask_and_set_register_interruptible(di->dev,
			AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
			CC_INT_CAL_N_AVG_MASK, CC_INT_CAL_SAMPLES_8);
		if (ret < 0)
			goto err;

		ret = abx500_mask_and_set_register_interruptible(di->dev,
			AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
			CC_INTAVGOFFSET_ENA, CC_INTAVGOFFSET_ENA);
		if (ret < 0)
			goto err;
		di->calib_state = AB8500_FG_CALIB_WAIT;
		break;
	case AB8500_FG_CALIB_END:
		ret = abx500_mask_and_set_register_interruptible(di->dev,
			AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
			CC_MUXOFFSET, CC_MUXOFFSET);
		if (ret < 0)
			goto err;
		di->flags.calibrate = false;
		dev_dbg(di->dev, "Calibration done...\n");
		queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
		break;
	case AB8500_FG_CALIB_WAIT:
		dev_dbg(di->dev, "Calibration WFI\n");
	default:
		break;
	}
	return;
err:
	/* Something went wrong, don't calibrate then */
	dev_err(di->dev, "failed to calibrate the CC\n");
	di->flags.calibrate = false;
	di->calib_state = AB8500_FG_CALIB_INIT;
	queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
}

/**
 * ab8500_fg_algorithm() - Entry point for the FG algorithm
 * @di:		pointer to the ab8500_fg structure
 *
 * Entry point for the battery capacity calculation state machine
 */
static void ab8500_fg_algorithm(struct ab8500_fg *di)
{
	if (di->flags.calibrate)
		ab8500_fg_algorithm_calibrate(di);
	else {
		if (di->flags.charging)
			ab8500_fg_algorithm_charging(di);
		else
			ab8500_fg_algorithm_discharging(di);
	}

	dev_dbg(di->dev, "[FG_DATA] %d %d %d %d %d %d %d %d %d "
		"%d %d %d %d %d %d %d\n",
		di->bat_cap.max_mah_design,
		di->bat_cap.mah,
		di->bat_cap.permille,
		di->bat_cap.level,
		di->bat_cap.prev_mah,
		di->bat_cap.prev_percent,
		di->bat_cap.prev_level,
		di->vbat,
		di->inst_curr,
		di->avg_curr,
		di->accu_charge,
		di->flags.charging,
		di->charge_state,
		di->discharge_state,
		di->high_curr_mode,
		di->recovery_needed);
}

/**
 * ab8500_fg_periodic_work() - Run the FG state machine periodically
 * @work:	pointer to the work_struct structure
 *
 * Work queue function for periodic work
 */
static void ab8500_fg_periodic_work(struct work_struct *work)
{
	struct ab8500_fg *di = container_of(work, struct ab8500_fg,
		fg_periodic_work.work);

	if (di->init_capacity) {
		/* Get an initial capacity calculation */
		ab8500_fg_calc_cap_discharge_voltage(di, true);
		ab8500_fg_check_capacity_limits(di, true);
		di->init_capacity = false;

		queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
	} else if (di->flags.user_cap) {
		if (check_sysfs_capacity(di)) {
			ab8500_fg_check_capacity_limits(di, true);
			if (di->flags.charging)
				ab8500_fg_charge_state_to(di,
					AB8500_FG_CHARGE_INIT);
			else
				ab8500_fg_discharge_state_to(di,
					AB8500_FG_DISCHARGE_READOUT_INIT);
		}
		di->flags.user_cap = false;
		queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
	} else
		ab8500_fg_algorithm(di);

}

/**
 * ab8500_fg_check_hw_failure_work() - Check OVV_BAT condition
 * @work:	pointer to the work_struct structure
 *
 * Work queue function for checking the OVV_BAT condition
 */
static void ab8500_fg_check_hw_failure_work(struct work_struct *work)
{
	int ret;
	u8 reg_value;

	struct ab8500_fg *di = container_of(work, struct ab8500_fg,
		fg_check_hw_failure_work.work);

	/*
	 * If we have had a battery over-voltage situation,
	 * check ovv-bit to see if it should be reset.
	 */
	ret = abx500_get_register_interruptible(di->dev,
		AB8500_CHARGER, AB8500_CH_STAT_REG,
		&reg_value);
	if (ret < 0) {
		dev_err(di->dev, "%s ab8500 read failed\n", __func__);
		return;
	}
	if ((reg_value & BATT_OVV) == BATT_OVV) {
		if (!di->flags.bat_ovv) {
			dev_dbg(di->dev, "Battery OVV\n");
			di->flags.bat_ovv = true;
			power_supply_changed(&di->fg_psy);
		}
		/* Not yet recovered from ovv, reschedule this test */
		queue_delayed_work(di->fg_wq, &di->fg_check_hw_failure_work,
				   round_jiffies(HZ));
		} else {
			dev_dbg(di->dev, "Battery recovered from OVV\n");
			di->flags.bat_ovv = false;
			power_supply_changed(&di->fg_psy);
	}
}

/**
 * ab8500_fg_low_bat_work() - Check LOW_BAT condition
 * @work:	pointer to the work_struct structure
 *
 * Work queue function for checking the LOW_BAT condition
 */
static void ab8500_fg_low_bat_work(struct work_struct *work)
{
	int vbat;

	struct ab8500_fg *di = container_of(work, struct ab8500_fg,
		fg_low_bat_work.work);

	vbat = ab8500_fg_bat_voltage(di);

	/* Check if LOW_BAT still fulfilled */
	if (vbat < di->bm->fg_params->lowbat_threshold) {
		di->flags.low_bat = true;
		dev_warn(di->dev, "Battery voltage still LOW\n");

		/*
		 * We need to re-schedule this check to be able to detect
		 * if the voltage increases again during charging
		 */
		queue_delayed_work(di->fg_wq, &di->fg_low_bat_work,
			round_jiffies(LOW_BAT_CHECK_INTERVAL));
	} else {
		di->flags.low_bat = false;
		dev_warn(di->dev, "Battery voltage OK again\n");
	}

	/* This is needed to dispatch LOW_BAT */
	ab8500_fg_check_capacity_limits(di, false);

	/* Set this flag to check if LOW_BAT IRQ still occurs */
	di->flags.low_bat_delay = false;
}

/**
 * ab8500_fg_battok_calc - calculate the bit pattern corresponding
 * to the target voltage.
 * @di:       pointer to the ab8500_fg structure
 * @target    target voltage
 *
 * Returns bit pattern closest to the target voltage
 * valid return values are 0-14. (0-BATT_OK_MAX_NR_INCREMENTS)
 */

static int ab8500_fg_battok_calc(struct ab8500_fg *di, int target)
{
	if (target > BATT_OK_MIN +
		(BATT_OK_INCREMENT * BATT_OK_MAX_NR_INCREMENTS))
		return BATT_OK_MAX_NR_INCREMENTS;
	if (target < BATT_OK_MIN)
		return 0;
	return (target - BATT_OK_MIN) / BATT_OK_INCREMENT;
}

/**
 * ab8500_fg_battok_init_hw_register - init battok levels
 * @di:       pointer to the ab8500_fg structure
 *
 */

static int ab8500_fg_battok_init_hw_register(struct ab8500_fg *di)
{
	int selected;
	int sel0;
	int sel1;
	int cbp_sel0;
	int cbp_sel1;
	int ret;
	int new_val;

	sel0 = di->bm->fg_params->battok_falling_th_sel0;
	sel1 = di->bm->fg_params->battok_raising_th_sel1;

	cbp_sel0 = ab8500_fg_battok_calc(di, sel0);
	cbp_sel1 = ab8500_fg_battok_calc(di, sel1);

	selected = BATT_OK_MIN + cbp_sel0 * BATT_OK_INCREMENT;

	if (selected != sel0)
		dev_warn(di->dev, "Invalid voltage step:%d, using %d %d\n",
			sel0, selected, cbp_sel0);

	selected = BATT_OK_MIN + cbp_sel1 * BATT_OK_INCREMENT;

	if (selected != sel1)
		dev_warn(di->dev, "Invalid voltage step:%d, using %d %d\n",
			sel1, selected, cbp_sel1);

	new_val = cbp_sel0 | (cbp_sel1 << 4);

	dev_dbg(di->dev, "using: %x %d %d\n", new_val, cbp_sel0, cbp_sel1);
	ret = abx500_set_register_interruptible(di->dev, AB8500_SYS_CTRL2_BLOCK,
		AB8500_BATT_OK_REG, new_val);
	return ret;
}

/**
 * ab8500_fg_instant_work() - Run the FG state machine instantly
 * @work:	pointer to the work_struct structure
 *
 * Work queue function for instant work
 */
static void ab8500_fg_instant_work(struct work_struct *work)
{
	struct ab8500_fg *di = container_of(work, struct ab8500_fg, fg_work);

	ab8500_fg_algorithm(di);
}

/**
 * ab8500_fg_cc_data_end_handler() - isr to get battery avg current.
 * @irq:       interrupt number
 * @_di:       pointer to the ab8500_fg structure
 *
 * Returns IRQ status(IRQ_HANDLED)
 */
static irqreturn_t ab8500_fg_cc_data_end_handler(int irq, void *_di)
{
	struct ab8500_fg *di = _di;
	if (!di->nbr_cceoc_irq_cnt) {
		di->nbr_cceoc_irq_cnt++;
		complete(&di->ab8500_fg_started);
	} else {
		di->nbr_cceoc_irq_cnt = 0;
		complete(&di->ab8500_fg_complete);
	}
	return IRQ_HANDLED;
}

/**
 * ab8500_fg_cc_convend_handler() - isr to get battery avg current.
 * @irq:       interrupt number
 * @_di:       pointer to the ab8500_fg structure
 *
 * Returns IRQ status(IRQ_HANDLED)
 */
static irqreturn_t ab8500_fg_cc_int_calib_handler(int irq, void *_di)
{
	struct ab8500_fg *di = _di;
	di->calib_state = AB8500_FG_CALIB_END;
	queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
	return IRQ_HANDLED;
}

/**
 * ab8500_fg_cc_convend_handler() - isr to get battery avg current.
 * @irq:       interrupt number
 * @_di:       pointer to the ab8500_fg structure
 *
 * Returns IRQ status(IRQ_HANDLED)
 */
static irqreturn_t ab8500_fg_cc_convend_handler(int irq, void *_di)
{
	struct ab8500_fg *di = _di;

	queue_work(di->fg_wq, &di->fg_acc_cur_work);

	return IRQ_HANDLED;
}

/**
 * ab8500_fg_batt_ovv_handler() - Battery OVV occured
 * @irq:       interrupt number
 * @_di:       pointer to the ab8500_fg structure
 *
 * Returns IRQ status(IRQ_HANDLED)
 */
static irqreturn_t ab8500_fg_batt_ovv_handler(int irq, void *_di)
{
	struct ab8500_fg *di = _di;

	dev_dbg(di->dev, "Battery OVV\n");

	/* Schedule a new HW failure check */
	queue_delayed_work(di->fg_wq, &di->fg_check_hw_failure_work, 0);

	return IRQ_HANDLED;
}

/**
 * ab8500_fg_lowbatf_handler() - Battery voltage is below LOW threshold
 * @irq:       interrupt number
 * @_di:       pointer to the ab8500_fg structure
 *
 * Returns IRQ status(IRQ_HANDLED)
 */
static irqreturn_t ab8500_fg_lowbatf_handler(int irq, void *_di)
{
	struct ab8500_fg *di = _di;

	if (!di->flags.low_bat_delay) {
		dev_warn(di->dev, "Battery voltage is below LOW threshold\n");
		di->flags.low_bat_delay = true;
		/*
		 * Start a timer to check LOW_BAT again after some time
		 * This is done to avoid shutdown on single voltage dips
		 */
		queue_delayed_work(di->fg_wq, &di->fg_low_bat_work,
			round_jiffies(LOW_BAT_CHECK_INTERVAL));
	}
	return IRQ_HANDLED;
}

/**
 * ab8500_fg_get_property() - get the fg properties
 * @psy:	pointer to the power_supply structure
 * @psp:	pointer to the power_supply_property structure
 * @val:	pointer to the power_supply_propval union
 *
 * This function gets called when an application tries to get the
 * fg properties by reading the sysfs files.
 * voltage_now:		battery voltage
 * current_now:		battery instant current
 * current_avg:		battery average current
 * charge_full_design:	capacity where battery is considered full
 * charge_now:		battery capacity in nAh
 * capacity:		capacity in percent
 * capacity_level:	capacity level
 *
 * Returns error code in case of failure else 0 on success
 */
static int ab8500_fg_get_property(struct power_supply *psy,
	enum power_supply_property psp,
	union power_supply_propval *val)
{
	struct ab8500_fg *di;

	di = to_ab8500_fg_device_info(psy);

	/*
	 * If battery is identified as unknown and charging of unknown
	 * batteries is disabled, we always report 100% capacity and
	 * capacity level UNKNOWN, since we can't calculate
	 * remaining capacity
	 */

	switch (psp) {
	case POWER_SUPPLY_PROP_VOLTAGE_NOW:
		if (di->flags.bat_ovv)
			val->intval = BATT_OVV_VALUE * 1000;
		else
			val->intval = di->vbat * 1000;
		break;
	case POWER_SUPPLY_PROP_CURRENT_NOW:
		val->intval = di->inst_curr * 1000;
		break;
	case POWER_SUPPLY_PROP_CURRENT_AVG:
		val->intval = di->avg_curr * 1000;
		break;
	case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
		val->intval = ab8500_fg_convert_mah_to_uwh(di,
				di->bat_cap.max_mah_design);
		break;
	case POWER_SUPPLY_PROP_ENERGY_FULL:
		val->intval = ab8500_fg_convert_mah_to_uwh(di,
				di->bat_cap.max_mah);
		break;
	case POWER_SUPPLY_PROP_ENERGY_NOW:
		if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
				di->flags.batt_id_received)
			val->intval = ab8500_fg_convert_mah_to_uwh(di,
					di->bat_cap.max_mah);
		else
			val->intval = ab8500_fg_convert_mah_to_uwh(di,
					di->bat_cap.prev_mah);
		break;
	case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
		val->intval = di->bat_cap.max_mah_design;
		break;
	case POWER_SUPPLY_PROP_CHARGE_FULL:
		val->intval = di->bat_cap.max_mah;
		break;
	case POWER_SUPPLY_PROP_CHARGE_NOW:
		if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
				di->flags.batt_id_received)
			val->intval = di->bat_cap.max_mah;
		else
			val->intval = di->bat_cap.prev_mah;
		break;
	case POWER_SUPPLY_PROP_CAPACITY:
		if (di->bm->capacity_scaling)
			val->intval = di->bat_cap.cap_scale.scaled_cap;
		else if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
				di->flags.batt_id_received)
			val->intval = 100;
		else
			val->intval = di->bat_cap.prev_percent;
		break;
	case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
		if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
				di->flags.batt_id_received)
			val->intval = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
		else
			val->intval = di->bat_cap.prev_level;
		break;
	default:
		return -EINVAL;
	}
	return 0;
}

static int ab8500_fg_get_ext_psy_data(struct device *dev, void *data)
{
	struct power_supply *psy;
	struct power_supply *ext;
	struct ab8500_fg *di;
	union power_supply_propval ret;
	int i, j;
	bool psy_found = false;

	psy = (struct power_supply *)data;
	ext = dev_get_drvdata(dev);
	di = to_ab8500_fg_device_info(psy);

	/*
	 * For all psy where the name of your driver
	 * appears in any supplied_to
	 */
	for (i = 0; i < ext->num_supplicants; i++) {
		if (!strcmp(ext->supplied_to[i], psy->name))
			psy_found = true;
	}

	if (!psy_found)
		return 0;

	/* Go through all properties for the psy */
	for (j = 0; j < ext->num_properties; j++) {
		enum power_supply_property prop;
		prop = ext->properties[j];

		if (ext->get_property(ext, prop, &ret))
			continue;

		switch (prop) {
		case POWER_SUPPLY_PROP_STATUS:
			switch (ext->type) {
			case POWER_SUPPLY_TYPE_BATTERY:
				switch (ret.intval) {
				case POWER_SUPPLY_STATUS_UNKNOWN:
				case POWER_SUPPLY_STATUS_DISCHARGING:
				case POWER_SUPPLY_STATUS_NOT_CHARGING:
					if (!di->flags.charging)
						break;
					di->flags.charging = false;
					di->flags.fully_charged = false;
					if (di->bm->capacity_scaling)
						ab8500_fg_update_cap_scalers(di);
					queue_work(di->fg_wq, &di->fg_work);
					break;
				case POWER_SUPPLY_STATUS_FULL:
					if (di->flags.fully_charged)
						break;
					di->flags.fully_charged = true;
					di->flags.force_full = true;
					/* Save current capacity as maximum */
					di->bat_cap.max_mah = di->bat_cap.mah;
					queue_work(di->fg_wq, &di->fg_work);
					break;
				case POWER_SUPPLY_STATUS_CHARGING:
					if (di->flags.charging &&
						!di->flags.fully_charged)
						break;
					di->flags.charging = true;
					di->flags.fully_charged = false;
					if (di->bm->capacity_scaling)
						ab8500_fg_update_cap_scalers(di);
					queue_work(di->fg_wq, &di->fg_work);
					break;
				};
			default:
				break;
			};
			break;
		case POWER_SUPPLY_PROP_TECHNOLOGY:
			switch (ext->type) {
			case POWER_SUPPLY_TYPE_BATTERY:
				if (!di->flags.batt_id_received) {
					const struct abx500_battery_type *b;

					b = &(di->bm->bat_type[di->bm->batt_id]);

					di->flags.batt_id_received = true;

					di->bat_cap.max_mah_design =
						MILLI_TO_MICRO *
						b->charge_full_design;

					di->bat_cap.max_mah =
						di->bat_cap.max_mah_design;

					di->vbat_nom = b->nominal_voltage;
				}

				if (ret.intval)
					di->flags.batt_unknown = false;
				else
					di->flags.batt_unknown = true;
				break;
			default:
				break;
			}
			break;
		case POWER_SUPPLY_PROP_TEMP:
			switch (ext->type) {
			case POWER_SUPPLY_TYPE_BATTERY:
				if (di->flags.batt_id_received)
					di->bat_temp = ret.intval;
				break;
			default:
				break;
			}
			break;
		default:
			break;
		}
	}
	return 0;
}

/**
 * ab8500_fg_init_hw_registers() - Set up FG related registers
 * @di:		pointer to the ab8500_fg structure
 *
 * Set up battery OVV, low battery voltage registers
 */
static int ab8500_fg_init_hw_registers(struct ab8500_fg *di)
{
	int ret;

	/* Set VBAT OVV threshold */
	ret = abx500_mask_and_set_register_interruptible(di->dev,
		AB8500_CHARGER,
		AB8500_BATT_OVV,
		BATT_OVV_TH_4P75,
		BATT_OVV_TH_4P75);
	if (ret) {
		dev_err(di->dev, "failed to set BATT_OVV\n");
		goto out;
	}

	/* Enable VBAT OVV detection */
	ret = abx500_mask_and_set_register_interruptible(di->dev,
		AB8500_CHARGER,
		AB8500_BATT_OVV,
		BATT_OVV_ENA,
		BATT_OVV_ENA);
	if (ret) {
		dev_err(di->dev, "failed to enable BATT_OVV\n");
		goto out;
	}

	/* Low Battery Voltage */
	ret = abx500_set_register_interruptible(di->dev,
		AB8500_SYS_CTRL2_BLOCK,
		AB8500_LOW_BAT_REG,
		ab8500_volt_to_regval(
			di->bm->fg_params->lowbat_threshold) << 1 |
		LOW_BAT_ENABLE);
	if (ret) {
		dev_err(di->dev, "%s write failed\n", __func__);
		goto out;
	}

	/* Battery OK threshold */
	ret = ab8500_fg_battok_init_hw_register(di);
	if (ret) {
		dev_err(di->dev, "BattOk init write failed.\n");
		goto out;
	}
out:
	return ret;
}

/**
 * ab8500_fg_external_power_changed() - callback for power supply changes
 * @psy:       pointer to the structure power_supply
 *
 * This function is the entry point of the pointer external_power_changed
 * of the structure power_supply.
 * This function gets executed when there is a change in any external power
 * supply that this driver needs to be notified of.
 */
static void ab8500_fg_external_power_changed(struct power_supply *psy)
{
	struct ab8500_fg *di = to_ab8500_fg_device_info(psy);

	class_for_each_device(power_supply_class, NULL,
		&di->fg_psy, ab8500_fg_get_ext_psy_data);
}

/**
 * abab8500_fg_reinit_work() - work to reset the FG algorithm
 * @work:	pointer to the work_struct structure
 *
 * Used to reset the current battery capacity to be able to
 * retrigger a new voltage base capacity calculation. For
 * test and verification purpose.
 */
static void ab8500_fg_reinit_work(struct work_struct *work)
{
	struct ab8500_fg *di = container_of(work, struct ab8500_fg,
		fg_reinit_work.work);

	if (di->flags.calibrate == false) {
		dev_dbg(di->dev, "Resetting FG state machine to init.\n");
		ab8500_fg_clear_cap_samples(di);
		ab8500_fg_calc_cap_discharge_voltage(di, true);
		ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
		ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INIT);
		queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);

	} else {
		dev_err(di->dev, "Residual offset calibration ongoing "
			"retrying..\n");
		/* Wait one second until next try*/
		queue_delayed_work(di->fg_wq, &di->fg_reinit_work,
			round_jiffies(1));
	}
}

/**
 * ab8500_fg_reinit() - forces FG algorithm to reinitialize with current values
 *
 * This function can be used to force the FG algorithm to recalculate a new
 * voltage based battery capacity.
 */
void ab8500_fg_reinit(void)
{
	struct ab8500_fg *di = ab8500_fg_get();
	/* User won't be notified if a null pointer returned. */
	if (di != NULL)
		queue_delayed_work(di->fg_wq, &di->fg_reinit_work, 0);
}

/* Exposure to the sysfs interface */

struct ab8500_fg_sysfs_entry {
	struct attribute attr;
	ssize_t (*show)(struct ab8500_fg *, char *);
	ssize_t (*store)(struct ab8500_fg *, const char *, size_t);
};

static ssize_t charge_full_show(struct ab8500_fg *di, char *buf)
{
	return sprintf(buf, "%d\n", di->bat_cap.max_mah);
}

static ssize_t charge_full_store(struct ab8500_fg *di, const char *buf,
				 size_t count)
{
	unsigned long charge_full;
	ssize_t ret = -EINVAL;

	ret = strict_strtoul(buf, 10, &charge_full);

	dev_dbg(di->dev, "Ret %zd charge_full %lu", ret, charge_full);

	if (!ret) {
		di->bat_cap.max_mah = (int) charge_full;
		ret = count;
	}
	return ret;
}

static ssize_t charge_now_show(struct ab8500_fg *di, char *buf)
{
	return sprintf(buf, "%d\n", di->bat_cap.prev_mah);
}

static ssize_t charge_now_store(struct ab8500_fg *di, const char *buf,
				 size_t count)
{
	unsigned long charge_now;
	ssize_t ret;

	ret = strict_strtoul(buf, 10, &charge_now);

	dev_dbg(di->dev, "Ret %zd charge_now %lu was %d",
		ret, charge_now, di->bat_cap.prev_mah);

	if (!ret) {
		di->bat_cap.user_mah = (int) charge_now;
		di->flags.user_cap = true;
		ret = count;
		queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
	}
	return ret;
}

static struct ab8500_fg_sysfs_entry charge_full_attr =
	__ATTR(charge_full, 0644, charge_full_show, charge_full_store);

static struct ab8500_fg_sysfs_entry charge_now_attr =
	__ATTR(charge_now, 0644, charge_now_show, charge_now_store);

static ssize_t
ab8500_fg_show(struct kobject *kobj, struct attribute *attr, char *buf)
{
	struct ab8500_fg_sysfs_entry *entry;
	struct ab8500_fg *di;

	entry = container_of(attr, struct ab8500_fg_sysfs_entry, attr);
	di = container_of(kobj, struct ab8500_fg, fg_kobject);

	if (!entry->show)
		return -EIO;

	return entry->show(di, buf);
}
static ssize_t
ab8500_fg_store(struct kobject *kobj, struct attribute *attr, const char *buf,
		size_t count)
{
	struct ab8500_fg_sysfs_entry *entry;
	struct ab8500_fg *di;

	entry = container_of(attr, struct ab8500_fg_sysfs_entry, attr);
	di = container_of(kobj, struct ab8500_fg, fg_kobject);

	if (!entry->store)
		return -EIO;

	return entry->store(di, buf, count);
}

static const struct sysfs_ops ab8500_fg_sysfs_ops = {
	.show = ab8500_fg_show,
	.store = ab8500_fg_store,
};

static struct attribute *ab8500_fg_attrs[] = {
	&charge_full_attr.attr,
	&charge_now_attr.attr,
	NULL,
};

static struct kobj_type ab8500_fg_ktype = {
	.sysfs_ops = &ab8500_fg_sysfs_ops,
	.default_attrs = ab8500_fg_attrs,
};

/**
 * ab8500_chargalg_sysfs_exit() - de-init of sysfs entry
 * @di:                pointer to the struct ab8500_chargalg
 *
 * This function removes the entry in sysfs.
 */
static void ab8500_fg_sysfs_exit(struct ab8500_fg *di)
{
	kobject_del(&di->fg_kobject);
}

/**
 * ab8500_chargalg_sysfs_init() - init of sysfs entry
 * @di:                pointer to the struct ab8500_chargalg
 *
 * This function adds an entry in sysfs.
 * Returns error code in case of failure else 0(on success)
 */
static int ab8500_fg_sysfs_init(struct ab8500_fg *di)
{
	int ret = 0;

	ret = kobject_init_and_add(&di->fg_kobject,
		&ab8500_fg_ktype,
		NULL, "battery");
	if (ret < 0)
		dev_err(di->dev, "failed to create sysfs entry\n");

	return ret;
}
/* Exposure to the sysfs interface <<END>> */

#if defined(CONFIG_PM)
static int ab8500_fg_resume(struct platform_device *pdev)
{
	struct ab8500_fg *di = platform_get_drvdata(pdev);

	/*
	 * Change state if we're not charging. If we're charging we will wake
	 * up on the FG IRQ
	 */
	if (!di->flags.charging) {
		ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_WAKEUP);
		queue_work(di->fg_wq, &di->fg_work);
	}

	return 0;
}

static int ab8500_fg_suspend(struct platform_device *pdev,
	pm_message_t state)
{
	struct ab8500_fg *di = platform_get_drvdata(pdev);

	flush_delayed_work(&di->fg_periodic_work);

	/*
	 * If the FG is enabled we will disable it before going to suspend
	 * only if we're not charging
	 */
	if (di->flags.fg_enabled && !di->flags.charging)
		ab8500_fg_coulomb_counter(di, false);

	return 0;
}
#else
#define ab8500_fg_suspend      NULL
#define ab8500_fg_resume       NULL
#endif

static int ab8500_fg_remove(struct platform_device *pdev)
{
	int ret = 0;
	struct ab8500_fg *di = platform_get_drvdata(pdev);

	list_del(&di->node);

	/* Disable coulomb counter */
	ret = ab8500_fg_coulomb_counter(di, false);
	if (ret)
		dev_err(di->dev, "failed to disable coulomb counter\n");

	destroy_workqueue(di->fg_wq);
	ab8500_fg_sysfs_exit(di);

	flush_scheduled_work();
	power_supply_unregister(&di->fg_psy);
	platform_set_drvdata(pdev, NULL);
	return ret;
}

/* ab8500 fg driver interrupts and their respective isr */
static struct ab8500_fg_interrupts ab8500_fg_irq[] = {
	{"NCONV_ACCU", ab8500_fg_cc_convend_handler},
	{"BATT_OVV", ab8500_fg_batt_ovv_handler},
	{"LOW_BAT_F", ab8500_fg_lowbatf_handler},
	{"CC_INT_CALIB", ab8500_fg_cc_int_calib_handler},
	{"CCEOC", ab8500_fg_cc_data_end_handler},
};

static char *supply_interface[] = {
	"ab8500_chargalg",
	"ab8500_usb",
};

static int ab8500_fg_probe(struct platform_device *pdev)
{
	struct device_node *np = pdev->dev.of_node;
	struct abx500_bm_data *plat = pdev->dev.platform_data;
	struct ab8500_fg *di;
	int i, irq;
	int ret = 0;

	di = devm_kzalloc(&pdev->dev, sizeof(*di), GFP_KERNEL);
	if (!di) {
		dev_err(&pdev->dev, "%s no mem for ab8500_fg\n", __func__);
		return -ENOMEM;
	}

	if (!plat) {
		dev_err(&pdev->dev, "no battery management data supplied\n");
		return -EINVAL;
	}
	di->bm = plat;

	if (np) {
		ret = ab8500_bm_of_probe(&pdev->dev, np, di->bm);
		if (ret) {
			dev_err(&pdev->dev, "failed to get battery information\n");
			return ret;
		}
	}

	mutex_init(&di->cc_lock);

	/* get parent data */
	di->dev = &pdev->dev;
	di->parent = dev_get_drvdata(pdev->dev.parent);
	di->gpadc = ab8500_gpadc_get("ab8500-gpadc.0");

	di->fg_psy.name = "ab8500_fg";
	di->fg_psy.type = POWER_SUPPLY_TYPE_BATTERY;
	di->fg_psy.properties = ab8500_fg_props;
	di->fg_psy.num_properties = ARRAY_SIZE(ab8500_fg_props);
	di->fg_psy.get_property = ab8500_fg_get_property;
	di->fg_psy.supplied_to = supply_interface;
	di->fg_psy.num_supplicants = ARRAY_SIZE(supply_interface),
	di->fg_psy.external_power_changed = ab8500_fg_external_power_changed;

	di->bat_cap.max_mah_design = MILLI_TO_MICRO *
		di->bm->bat_type[di->bm->batt_id].charge_full_design;

	di->bat_cap.max_mah = di->bat_cap.max_mah_design;

	di->vbat_nom = di->bm->bat_type[di->bm->batt_id].nominal_voltage;

	di->init_capacity = true;

	ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
	ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INIT);

	/* Create a work queue for running the FG algorithm */
	di->fg_wq = create_singlethread_workqueue("ab8500_fg_wq");
	if (di->fg_wq == NULL) {
		dev_err(di->dev, "failed to create work queue\n");
		return -ENOMEM;
	}

	/* Init work for running the fg algorithm instantly */
	INIT_WORK(&di->fg_work, ab8500_fg_instant_work);

	/* Init work for getting the battery accumulated current */
	INIT_WORK(&di->fg_acc_cur_work, ab8500_fg_acc_cur_work);

	/* Init work for reinitialising the fg algorithm */
	INIT_DEFERRABLE_WORK(&di->fg_reinit_work,
		ab8500_fg_reinit_work);

	/* Work delayed Queue to run the state machine */
	INIT_DEFERRABLE_WORK(&di->fg_periodic_work,
		ab8500_fg_periodic_work);

	/* Work to check low battery condition */
	INIT_DEFERRABLE_WORK(&di->fg_low_bat_work,
		ab8500_fg_low_bat_work);

	/* Init work for HW failure check */
	INIT_DEFERRABLE_WORK(&di->fg_check_hw_failure_work,
		ab8500_fg_check_hw_failure_work);

	/* Initialize OVV, and other registers */
	ret = ab8500_fg_init_hw_registers(di);
	if (ret) {
		dev_err(di->dev, "failed to initialize registers\n");
		goto free_inst_curr_wq;
	}

	/* Consider battery unknown until we're informed otherwise */
	di->flags.batt_unknown = true;
	di->flags.batt_id_received = false;

	/* Register FG power supply class */
	ret = power_supply_register(di->dev, &di->fg_psy);
	if (ret) {
		dev_err(di->dev, "failed to register FG psy\n");
		goto free_inst_curr_wq;
	}

	di->fg_samples = SEC_TO_SAMPLE(di->bm->fg_params->init_timer);
	ab8500_fg_coulomb_counter(di, true);

	/*
	 * Initialize completion used to notify completion and start
	 * of inst current
	 */
	init_completion(&di->ab8500_fg_started);
	init_completion(&di->ab8500_fg_complete);

	/* Register interrupts */
	for (i = 0; i < ARRAY_SIZE(ab8500_fg_irq); i++) {
		irq = platform_get_irq_byname(pdev, ab8500_fg_irq[i].name);
		ret = request_threaded_irq(irq, NULL, ab8500_fg_irq[i].isr,
			IRQF_SHARED | IRQF_NO_SUSPEND,
			ab8500_fg_irq[i].name, di);

		if (ret != 0) {
			dev_err(di->dev, "failed to request %s IRQ %d: %d\n"
				, ab8500_fg_irq[i].name, irq, ret);
			goto free_irq;
		}
		dev_dbg(di->dev, "Requested %s IRQ %d: %d\n",
			ab8500_fg_irq[i].name, irq, ret);
	}
	di->irq = platform_get_irq_byname(pdev, "CCEOC");
	disable_irq(di->irq);
	di->nbr_cceoc_irq_cnt = 0;

	platform_set_drvdata(pdev, di);

	ret = ab8500_fg_sysfs_init(di);
	if (ret) {
		dev_err(di->dev, "failed to create sysfs entry\n");
		goto free_irq;
	}

	/* Calibrate the fg first time */
	di->flags.calibrate = true;
	di->calib_state = AB8500_FG_CALIB_INIT;

	/* Use room temp as default value until we get an update from driver. */
	di->bat_temp = 210;

	/* Run the FG algorithm */
	queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);

	list_add_tail(&di->node, &ab8500_fg_list);

	return ret;

free_irq:
	power_supply_unregister(&di->fg_psy);

	/* We also have to free all successfully registered irqs */
	for (i = i - 1; i >= 0; i--) {
		irq = platform_get_irq_byname(pdev, ab8500_fg_irq[i].name);
		free_irq(irq, di);
	}
free_inst_curr_wq:
	destroy_workqueue(di->fg_wq);
	return ret;
}

static const struct of_device_id ab8500_fg_match[] = {
	{ .compatible = "stericsson,ab8500-fg", },
	{ },
};

static struct platform_driver ab8500_fg_driver = {
	.probe = ab8500_fg_probe,
	.remove = ab8500_fg_remove,
	.suspend = ab8500_fg_suspend,
	.resume = ab8500_fg_resume,
	.driver = {
		.name = "ab8500-fg",
		.owner = THIS_MODULE,
		.of_match_table = ab8500_fg_match,
	},
};

static int __init ab8500_fg_init(void)
{
	return platform_driver_register(&ab8500_fg_driver);
}

static void __exit ab8500_fg_exit(void)
{
	platform_driver_unregister(&ab8500_fg_driver);
}

subsys_initcall_sync(ab8500_fg_init);
module_exit(ab8500_fg_exit);

MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Johan Palsson, Karl Komierowski");
MODULE_ALIAS("platform:ab8500-fg");
MODULE_DESCRIPTION("AB8500 Fuel Gauge driver");