aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/media/common/tuners/xc4000.c
blob: 5d1390c2f50da029a63b1e73b2c3bb2a7c67ec76 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
/*
 *  Driver for Xceive XC4000 "QAM/8VSB single chip tuner"
 *
 *  Copyright (c) 2007 Xceive Corporation
 *  Copyright (c) 2007 Steven Toth <stoth@linuxtv.org>
 *  Copyright (c) 2009 Devin Heitmueller <dheitmueller@kernellabs.com>
 *  Copyright (c) 2009 Davide Ferri <d.ferri@zero11.it>
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/videodev2.h>
#include <linux/delay.h>
#include <linux/dvb/frontend.h>
#include <linux/i2c.h>
#include <asm/unaligned.h>

#include "dvb_frontend.h"

#include "xc4000.h"
#include "tuner-i2c.h"
#include "tuner-xc2028-types.h"

static int debug;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off).");

static int no_poweroff;
module_param(no_poweroff, int, 0644);
MODULE_PARM_DESC(no_poweroff, "0 (default) powers device off when not used.\n"
	"\t\t1 keep device energized and with tuner ready all the times.\n"
	"\t\tFaster, but consumes more power and keeps the device hotter");

static DEFINE_MUTEX(xc4000_list_mutex);
static LIST_HEAD(hybrid_tuner_instance_list);

#define dprintk(level, fmt, arg...) if (debug >= level) \
	printk(KERN_INFO "%s: " fmt, "xc4000", ## arg)

#define XC4000_DEFAULT_FIRMWARE "xc4000-01.fw"
#define XC4000_DEFAULT_FIRMWARE_SIZE 8434


/* struct for storing firmware table */
struct firmware_description {
	unsigned int  type;
	v4l2_std_id   id;
	__u16         int_freq;
	unsigned char *ptr;
	unsigned int  size;
};

struct firmware_properties {
	unsigned int	type;
	v4l2_std_id	id;
	v4l2_std_id	std_req;
	__u16		int_freq;
	unsigned int	scode_table;
	int 		scode_nr;
};

struct xc4000_priv {
	struct tuner_i2c_props i2c_props;
	struct list_head hybrid_tuner_instance_list;
	struct firmware_description *firm;
	int			firm_size;
	__u16			firm_version;
	u32 if_khz;
	u32 freq_hz;
	u32 bandwidth;
	u8  video_standard;
	u8  rf_mode;
};

/* Misc Defines */
#define MAX_TV_STANDARD			23
#define XC_MAX_I2C_WRITE_LENGTH		64

/* Signal Types */
#define XC_RF_MODE_AIR			0
#define XC_RF_MODE_CABLE		1

/* Result codes */
#define XC_RESULT_SUCCESS		0
#define XC_RESULT_RESET_FAILURE		1
#define XC_RESULT_I2C_WRITE_FAILURE	2
#define XC_RESULT_I2C_READ_FAILURE	3
#define XC_RESULT_OUT_OF_RANGE		5

/* Product id */
#define XC_PRODUCT_ID_FW_NOT_LOADED	0x2000
#define XC_PRODUCT_ID_FW_LOADED 	0x0FA0 /* WAS: 0x1388*/

/* Registers */
#define XREG_INIT         0x00
#define XREG_VIDEO_MODE   0x01
#define XREG_AUDIO_MODE   0x02
#define XREG_RF_FREQ      0x03
#define XREG_D_CODE       0x04
#define XREG_IF_OUT       0x05 /* ?? */
#define XREG_SEEK_MODE    0x07 /* WAS: 0x06 */
#define XREG_POWER_DOWN   0x08 /* WAS: 0x0A Obsolete */
#define XREG_SIGNALSOURCE 0x0A /* WAS: 0x0D 0=Air, 1=Cable */
//#define XREG_SMOOTHEDCVBS 0x0E
//#define XREG_XTALFREQ     0x0F
//#define XREG_FINERFREQ    0x10
//#define XREG_DDIMODE      0x11

#define XREG_ADC_ENV      0x00
#define XREG_QUALITY      0x01
#define XREG_FRAME_LINES  0x02
#define XREG_HSYNC_FREQ   0x03
#define XREG_LOCK         0x04
#define XREG_FREQ_ERROR   0x05
#define XREG_SNR          0x06
#define XREG_VERSION      0x07
#define XREG_PRODUCT_ID   0x08
//#define XREG_BUSY         0x09
//#define XREG_BUILD        0x0D

/*
   Basic firmware description. This will remain with
   the driver for documentation purposes.

   This represents an I2C firmware file encoded as a
   string of unsigned char. Format is as follows:

   char[0  ]=len0_MSB  -> len = len_MSB * 256 + len_LSB
   char[1  ]=len0_LSB  -> length of first write transaction
   char[2  ]=data0 -> first byte to be sent
   char[3  ]=data1
   char[4  ]=data2
   char[   ]=...
   char[M  ]=dataN  -> last byte to be sent
   char[M+1]=len1_MSB  -> len = len_MSB * 256 + len_LSB
   char[M+2]=len1_LSB  -> length of second write transaction
   char[M+3]=data0
   char[M+4]=data1
   ...
   etc.

   The [len] value should be interpreted as follows:

   len= len_MSB _ len_LSB
   len=1111_1111_1111_1111   : End of I2C_SEQUENCE
   len=0000_0000_0000_0000   : Reset command: Do hardware reset
   len=0NNN_NNNN_NNNN_NNNN   : Normal transaction: number of bytes = {1:32767)
   len=1WWW_WWWW_WWWW_WWWW   : Wait command: wait for {1:32767} ms

   For the RESET and WAIT commands, the two following bytes will contain
   immediately the length of the following transaction.

*/
struct XC_TV_STANDARD {
	char *Name;
	u16 AudioMode;
	u16 VideoMode;
};

/* Tuner standards */
#define MN_NTSC_PAL_BTSC	0
#define MN_NTSC_PAL_A2		1
#define MN_NTSC_PAL_EIAJ	2
#define MN_NTSC_PAL_Mono	3
#define BG_PAL_A2		4
#define BG_PAL_NICAM		5
#define BG_PAL_MONO		6
#define I_PAL_NICAM		7
#define I_PAL_NICAM_MONO	8
#define DK_PAL_A2		9
#define DK_PAL_NICAM		10
#define DK_PAL_MONO		11
#define DK_SECAM_A2DK1		12
#define DK_SECAM_A2LDK3 	13
#define DK_SECAM_A2MONO 	14
#define L_SECAM_NICAM		15
#define LC_SECAM_NICAM		16
#define FM_Radio_INPUT2 	21
#define FM_Radio_INPUT1 	22

/* WAS :
static struct XC_TV_STANDARD XC4000_Standard[MAX_TV_STANDARD] = {
	{"M/N-NTSC/PAL-BTSC", 0x0400, 0x8020},
	{"M/N-NTSC/PAL-A2",   0x0600, 0x8020},
	{"M/N-NTSC/PAL-EIAJ", 0x0440, 0x8020},
	{"M/N-NTSC/PAL-Mono", 0x0478, 0x8020},
	{"B/G-PAL-A2",        0x0A00, 0x8049},
	{"B/G-PAL-NICAM",     0x0C04, 0x8049},
	{"B/G-PAL-MONO",      0x0878, 0x8059},
	{"I-PAL-NICAM",       0x1080, 0x8009},
	{"I-PAL-NICAM-MONO",  0x0E78, 0x8009},
	{"D/K-PAL-A2",        0x1600, 0x8009},
	{"D/K-PAL-NICAM",     0x0E80, 0x8009},
	{"D/K-PAL-MONO",      0x1478, 0x8009},
	{"D/K-SECAM-A2 DK1",  0x1200, 0x8009},
	{"D/K-SECAM-A2 L/DK3", 0x0E00, 0x8009},
	{"D/K-SECAM-A2 MONO", 0x1478, 0x8009},
	{"L-SECAM-NICAM",     0x8E82, 0x0009},
	{"L'-SECAM-NICAM",    0x8E82, 0x4009},
	{"DTV6",              0x00C0, 0x8002},
	{"DTV8",              0x00C0, 0x800B},
	{"DTV7/8",            0x00C0, 0x801B},
	{"DTV7",              0x00C0, 0x8007},
	{"FM Radio-INPUT2",   0x9802, 0x9002},
	{"FM Radio-INPUT1",   0x0208, 0x9002}
};*/

static struct XC_TV_STANDARD XC4000_Standard[MAX_TV_STANDARD] = {
	{"M/N-NTSC/PAL-BTSC", 0x0000, 0x8020},
	{"M/N-NTSC/PAL-A2",   0x0000, 0x8020},
	{"M/N-NTSC/PAL-EIAJ", 0x0040, 0x8020},
	{"M/N-NTSC/PAL-Mono", 0x0078, 0x8020},
	{"B/G-PAL-A2",        0x0000, 0x8059},
	{"B/G-PAL-NICAM",     0x0004, 0x8059},
	{"B/G-PAL-MONO",      0x0078, 0x8059},
	{"I-PAL-NICAM",       0x0080, 0x8049},
	{"I-PAL-NICAM-MONO",  0x0078, 0x8049},
	{"D/K-PAL-A2",        0x0000, 0x8049},
	{"D/K-PAL-NICAM",     0x0080, 0x8049},
	{"D/K-PAL-MONO",      0x0078, 0x8049},
	{"D/K-SECAM-A2 DK1",  0x0000, 0x8049},
	{"D/K-SECAM-A2 L/DK3", 0x0000, 0x8049},
	{"D/K-SECAM-A2 MONO", 0x0078, 0x8049},
	{"L-SECAM-NICAM",     0x8080, 0x0009},
	{"L'-SECAM-NICAM",    0x8080, 0x4009},
	{"DTV6",              0x00C0, 0x8002},
	{"DTV8",              0x00C0, 0x800B},
	{"DTV7/8",            0x00C0, 0x801B},
	{"DTV7",              0x00C0, 0x8007},
	{"FM Radio-INPUT2",   0x0008, 0x9800},
	{"FM Radio-INPUT1",   0x0008, 0x9000}
};

static int xc_load_fw_and_init_tuner(struct dvb_frontend *fe);
static int xc4000_is_firmware_loaded(struct dvb_frontend *fe);
static int xc4000_readreg(struct xc4000_priv *priv, u16 reg, u16 *val);
static int xc4000_TunerReset(struct dvb_frontend *fe);

static int xc_send_i2c_data(struct xc4000_priv *priv, u8 *buf, int len)
{
	struct i2c_msg msg = { .addr = priv->i2c_props.addr,
			       .flags = 0, .buf = buf, .len = len };

	if (i2c_transfer(priv->i2c_props.adap, &msg, 1) != 1) {
		printk(KERN_ERR "xc4000: I2C write failed (len=%i)\n", len);
		return XC_RESULT_I2C_WRITE_FAILURE;
	}
	return XC_RESULT_SUCCESS;
}

/* This routine is never used because the only time we read data from the
   i2c bus is when we read registers, and we want that to be an atomic i2c
   transaction in case we are on a multi-master bus */
static int xc_read_i2c_data(struct xc4000_priv *priv, u8 *buf, int len)
{
	struct i2c_msg msg = { .addr = priv->i2c_props.addr,
		.flags = I2C_M_RD, .buf = buf, .len = len };

	if (i2c_transfer(priv->i2c_props.adap, &msg, 1) != 1) {
		printk(KERN_ERR "xc4000 I2C read failed (len=%i)\n", len);
		return -EREMOTEIO;
	}
	return 0;
}

static void xc_wait(int wait_ms)
{
	msleep(wait_ms);
}

static int xc4000_TunerReset(struct dvb_frontend *fe)
{
	struct xc4000_priv *priv = fe->tuner_priv;
	int ret;

	dprintk(1, "%s()\n", __func__);

	if (fe->callback) {
		ret = fe->callback(((fe->dvb) && (fe->dvb->priv)) ?
					   fe->dvb->priv :
					   priv->i2c_props.adap->algo_data,
					   DVB_FRONTEND_COMPONENT_TUNER,
					   XC4000_TUNER_RESET, 0);
		if (ret) {
			printk(KERN_ERR "xc4000: reset failed\n");
			return XC_RESULT_RESET_FAILURE;
		}
	} else {
		printk(KERN_ERR "xc4000: no tuner reset callback function, fatal\n");
		return XC_RESULT_RESET_FAILURE;
	}
	return XC_RESULT_SUCCESS;
}

static int xc_write_reg(struct xc4000_priv *priv, u16 regAddr, u16 i2cData)
{
	u8 buf[4];
//	int WatchDogTimer = 100;
	int result;

	buf[0] = (regAddr >> 8) & 0xFF;
	buf[1] = regAddr & 0xFF;
	buf[2] = (i2cData >> 8) & 0xFF;
	buf[3] = i2cData & 0xFF;
	result = xc_send_i2c_data(priv, buf, 4);
//WAS THERE
//	if (result == XC_RESULT_SUCCESS) {
//		/* wait for busy flag to clear */
//		while ((WatchDogTimer > 0) && (result == XC_RESULT_SUCCESS)) {
//			buf[0] = 0;
//			buf[1] = XREG_BUSY;
//
//			result = xc_send_i2c_data(priv, buf, 2);
//			if (result == XC_RESULT_SUCCESS) {
//				result = xc_read_i2c_data(priv, buf, 2);
//				if (result == XC_RESULT_SUCCESS) {
//					if ((buf[0] == 0) && (buf[1] == 0)) {
//						/* busy flag cleared */
//					break;
//					} else {
//						xc_wait(5); /* wait 5 ms */
//						WatchDogTimer--;
//					}
//				}
//			}
//		}
//	}
//	if (WatchDogTimer < 0)
//		result = XC_RESULT_I2C_WRITE_FAILURE;

	return result;
}

static int xc_load_i2c_sequence(struct dvb_frontend *fe, const u8 *i2c_sequence)
{
	struct xc4000_priv *priv = fe->tuner_priv;

	int i, nbytes_to_send, result;
	unsigned int len, pos, index;
	u8 buf[XC_MAX_I2C_WRITE_LENGTH];

	index = 0;
	while ((i2c_sequence[index] != 0xFF) ||
		(i2c_sequence[index + 1] != 0xFF)) {
		len = i2c_sequence[index] * 256 + i2c_sequence[index+1];
		if (len == 0x0000) {
			/* RESET command */
			result = xc4000_TunerReset(fe);
			index += 2;
			if (result != XC_RESULT_SUCCESS)
				return result;
		} else if (len & 0x8000) {
			/* WAIT command */
			xc_wait(len & 0x7FFF);
			index += 2;
		} else {
			/* Send i2c data whilst ensuring individual transactions
			 * do not exceed XC_MAX_I2C_WRITE_LENGTH bytes.
			 */
			index += 2;
			buf[0] = i2c_sequence[index];
			buf[1] = i2c_sequence[index + 1];
			pos = 2;
			while (pos < len) {
				if ((len - pos) > XC_MAX_I2C_WRITE_LENGTH - 2)
					nbytes_to_send =
						XC_MAX_I2C_WRITE_LENGTH;
				else
					nbytes_to_send = (len - pos + 2);
				for (i = 2; i < nbytes_to_send; i++) {
					buf[i] = i2c_sequence[index + pos +
						i - 2];
				}
				result = xc_send_i2c_data(priv, buf,
					nbytes_to_send);

				if (result != XC_RESULT_SUCCESS)
					return result;

				pos += nbytes_to_send - 2;
			}
			index += len;
		}
	}
	return XC_RESULT_SUCCESS;
}

static int xc_initialize(struct xc4000_priv *priv)
{
	dprintk(1, "%s()\n", __func__);
	return xc_write_reg(priv, XREG_INIT, 0);
}

static int xc_SetTVStandard(struct xc4000_priv *priv,
	u16 VideoMode, u16 AudioMode)
{
	int ret;
	dprintk(1, "%s(0x%04x,0x%04x)\n", __func__, VideoMode, AudioMode);
	dprintk(1, "%s() Standard = %s\n",
		__func__,
		XC4000_Standard[priv->video_standard].Name);

	ret = xc_write_reg(priv, XREG_VIDEO_MODE, VideoMode);
	if (ret == XC_RESULT_SUCCESS)
		ret = xc_write_reg(priv, XREG_AUDIO_MODE, AudioMode);

	return ret;
}

static int xc_SetSignalSource(struct xc4000_priv *priv, u16 rf_mode)
{
	dprintk(1, "%s(%d) Source = %s\n", __func__, rf_mode,
		rf_mode == XC_RF_MODE_AIR ? "ANTENNA" : "CABLE");

	if ((rf_mode != XC_RF_MODE_AIR) && (rf_mode != XC_RF_MODE_CABLE)) {
		rf_mode = XC_RF_MODE_CABLE;
		printk(KERN_ERR
			"%s(), Invalid mode, defaulting to CABLE",
			__func__);
	}
	return xc_write_reg(priv, XREG_SIGNALSOURCE, rf_mode);
}

static const struct dvb_tuner_ops xc4000_tuner_ops;

static int xc_set_RF_frequency(struct xc4000_priv *priv, u32 freq_hz)
{
	u16 freq_code;

	dprintk(1, "%s(%u)\n", __func__, freq_hz);

	if ((freq_hz > xc4000_tuner_ops.info.frequency_max) ||
		(freq_hz < xc4000_tuner_ops.info.frequency_min))
		return XC_RESULT_OUT_OF_RANGE;

	freq_code = (u16)(freq_hz / 15625);

	/* WAS: Starting in firmware version 1.1.44, Xceive recommends using the
	   FINERFREQ for all normal tuning (the doc indicates reg 0x03 should
	   only be used for fast scanning for channel lock) */
	return xc_write_reg(priv, XREG_RF_FREQ, freq_code); /* WAS: XREG_FINERFREQ */
}


static int xc_set_IF_frequency(struct xc4000_priv *priv, u32 freq_khz)
{
	u32 freq_code = (freq_khz * 1024)/1000;
	dprintk(1, "%s(freq_khz = %d) freq_code = 0x%x\n",
		__func__, freq_khz, freq_code);

	return xc_write_reg(priv, XREG_IF_OUT, freq_code);
}


static int xc_get_ADC_Envelope(struct xc4000_priv *priv, u16 *adc_envelope)
{
	return xc4000_readreg(priv, XREG_ADC_ENV, adc_envelope);
}

static int xc_get_frequency_error(struct xc4000_priv *priv, u32 *freq_error_hz)
{
	int result;
	u16 regData;
	u32 tmp;

	result = xc4000_readreg(priv, XREG_FREQ_ERROR, &regData);
	if (result != XC_RESULT_SUCCESS)
		return result;

	tmp = (u32)regData;
	(*freq_error_hz) = (tmp * 15625) / 1000;
	return result;
}

static int xc_get_lock_status(struct xc4000_priv *priv, u16 *lock_status)
{
	return xc4000_readreg(priv, XREG_LOCK, lock_status);
}

static int xc_get_version(struct xc4000_priv *priv,
	u8 *hw_majorversion, u8 *hw_minorversion,
	u8 *fw_majorversion, u8 *fw_minorversion)
{
	u16 data;
	int result;

	result = xc4000_readreg(priv, XREG_VERSION, &data);
	if (result != XC_RESULT_SUCCESS)
		return result;

	(*hw_majorversion) = (data >> 12) & 0x0F;
	(*hw_minorversion) = (data >>  8) & 0x0F;
	(*fw_majorversion) = (data >>  4) & 0x0F;
	(*fw_minorversion) = data & 0x0F;

	return 0;
}

/* WAS THERE
static int xc_get_buildversion(struct xc4000_priv *priv, u16 *buildrev)
{
	return xc4000_readreg(priv, XREG_BUILD, buildrev);
}*/

static int xc_get_hsync_freq(struct xc4000_priv *priv, u32 *hsync_freq_hz)
{
	u16 regData;
	int result;

	result = xc4000_readreg(priv, XREG_HSYNC_FREQ, &regData);
	if (result != XC_RESULT_SUCCESS)
		return result;

	(*hsync_freq_hz) = ((regData & 0x0fff) * 763)/100;
	return result;
}

static int xc_get_frame_lines(struct xc4000_priv *priv, u16 *frame_lines)
{
	return xc4000_readreg(priv, XREG_FRAME_LINES, frame_lines);
}

static int xc_get_quality(struct xc4000_priv *priv, u16 *quality)
{
	return xc4000_readreg(priv, XREG_QUALITY, quality);
}

static u16 WaitForLock(struct xc4000_priv *priv)
{
	u16 lockState = 0;
	int watchDogCount = 40;

	while ((lockState == 0) && (watchDogCount > 0)) {
		xc_get_lock_status(priv, &lockState);
		if (lockState != 1) {
			xc_wait(5);
			watchDogCount--;
		}
	}
	return lockState;
}

#define XC_TUNE_ANALOG  0
#define XC_TUNE_DIGITAL 1
static int xc_tune_channel(struct xc4000_priv *priv, u32 freq_hz, int mode)
{
	int found = 0;

	dprintk(1, "%s(%u)\n", __func__, freq_hz);

	if (xc_set_RF_frequency(priv, freq_hz) != XC_RESULT_SUCCESS)
		return 0;

	if (mode == XC_TUNE_ANALOG) {
		if (WaitForLock(priv) == 1)
			found = 1;
	}

	return found;
}

static int xc4000_readreg(struct xc4000_priv *priv, u16 reg, u16 *val)
{
	u8 buf[2] = { reg >> 8, reg & 0xff };
	u8 bval[2] = { 0, 0 };
	struct i2c_msg msg[2] = {
		{ .addr = priv->i2c_props.addr,
			.flags = 0, .buf = &buf[0], .len = 2 },
		{ .addr = priv->i2c_props.addr,
			.flags = I2C_M_RD, .buf = &bval[0], .len = 2 },
	};

	if (i2c_transfer(priv->i2c_props.adap, msg, 2) != 2) {
		printk(KERN_WARNING "xc4000: I2C read failed\n");
		return -EREMOTEIO;
	}

	*val = (bval[0] << 8) | bval[1];
	return XC_RESULT_SUCCESS;
}


static int seek_firmware(struct dvb_frontend *fe, unsigned int type,
			 v4l2_std_id *id)
{
	struct xc4000_priv *priv = fe->tuner_priv;
	int                 i, best_i = -1, best_nr_matches = 0;
	unsigned int        type_mask = 0;

	printk("%s called, want type=", __func__);
	if (debug) {
//		dump_firm_type(type);
		printk("(%x), id %016llx.\n", type, (unsigned long long)*id);
	}

	if (!priv->firm) {
		printk("Error! firmware not loaded\n");
		return -EINVAL;
	}

	if (((type & ~SCODE) == 0) && (*id == 0))
		*id = V4L2_STD_PAL;

	if (type & BASE)
		type_mask = BASE_TYPES;
	else if (type & SCODE) {
		type &= SCODE_TYPES;
		type_mask = SCODE_TYPES & ~HAS_IF;
	} else if (type & DTV_TYPES)
		type_mask = DTV_TYPES;
	else if (type & STD_SPECIFIC_TYPES)
		type_mask = STD_SPECIFIC_TYPES;

	type &= type_mask;

	if (!(type & SCODE))
		type_mask = ~0;

	/* Seek for exact match */
	for (i = 0; i < priv->firm_size; i++) {
		if ((type == (priv->firm[i].type & type_mask)) &&
		    (*id == priv->firm[i].id))
			goto found;
	}

	/* Seek for generic video standard match */
	for (i = 0; i < priv->firm_size; i++) {
		v4l2_std_id match_mask;
		int nr_matches;

		if (type != (priv->firm[i].type & type_mask))
			continue;

		match_mask = *id & priv->firm[i].id;
		if (!match_mask)
			continue;

		if ((*id & match_mask) == *id)
			goto found; /* Supports all the requested standards */

		nr_matches = hweight64(match_mask);
		if (nr_matches > best_nr_matches) {
			best_nr_matches = nr_matches;
			best_i = i;
		}
	}

	if (best_nr_matches > 0) {
		printk("Selecting best matching firmware (%d bits) for "
			  "type=", best_nr_matches);
//		dump_firm_type(type);
		printk("(%x), id %016llx:\n", type, (unsigned long long)*id);
		i = best_i;
		goto found;
	}

	/*FIXME: Would make sense to seek for type "hint" match ? */

	i = -ENOENT;
	goto ret;

found:
	*id = priv->firm[i].id;

ret:
	printk("%s firmware for type=", (i < 0) ? "Can't find" : "Found");
	if (debug) {
//		dump_firm_type(type);
		printk("(%x), id %016llx.\n", type, (unsigned long long)*id);
	}
	return i;
}

static int load_firmware(struct dvb_frontend *fe, unsigned int type,
			 v4l2_std_id *id)
{
	struct xc4000_priv *priv = fe->tuner_priv;
	int                pos, rc;
	unsigned char      *p;

	printk("%s called\n", __func__);

	pos = seek_firmware(fe, type, id);
	if (pos < 0)
		return pos;

	printk("Loading firmware for type=");
//	dump_firm_type(priv->firm[pos].type);
	printk("(%x), id %016llx.\n", priv->firm[pos].type,
	       (unsigned long long)*id);

	p = priv->firm[pos].ptr;

	rc = xc_load_i2c_sequence(fe, p);
	printk("load i2c sequence result=%d\n", rc);

	return rc;
}

//static int load_all_firmwares(struct dvb_frontend *fe)
static int xc4000_fwupload(struct dvb_frontend *fe)
{
	struct xc4000_priv *priv = fe->tuner_priv;
	const struct firmware *fw   = NULL;
	const unsigned char   *p, *endp;
	int                   rc = 0;
	int		      n, n_array;
	char		      name[33];
	char		      *fname;

	printk("%s called\n", __func__);

	fname = XC4000_DEFAULT_FIRMWARE;

	printk("Reading firmware %s\n",  fname);
	rc = request_firmware(&fw, fname, priv->i2c_props.adap->dev.parent);
	if (rc < 0) {
		if (rc == -ENOENT)
			printk("Error: firmware %s not found.\n",
				   fname);
		else
			printk("Error %d while requesting firmware %s \n",
				   rc, fname);

		return rc;
	}
	p = fw->data;
	endp = p + fw->size;

	if (fw->size < sizeof(name) - 1 + 2 + 2) {
		printk("Error: firmware file %s has invalid size!\n",
			  fname);
		goto corrupt;
	}

	memcpy(name, p, sizeof(name) - 1);
	name[sizeof(name) - 1] = 0;
	p += sizeof(name) - 1;

	priv->firm_version = get_unaligned_le16(p);
	p += 2;

	n_array = get_unaligned_le16(p);
	p += 2;

	printk("Loading %d firmware images from %s, type: %s, ver %d.%d\n",
		   n_array, fname, name,
		   priv->firm_version >> 8, priv->firm_version & 0xff);

	priv->firm = kzalloc(sizeof(*priv->firm) * n_array, GFP_KERNEL);
	if (priv->firm == NULL) {
		printk("Not enough memory to load firmware file.\n");
		rc = -ENOMEM;
		goto err;
	}
	priv->firm_size = n_array;

	n = -1;
	while (p < endp) {
		__u32 type, size;
		v4l2_std_id id;
		__u16 int_freq = 0;

		n++;
		if (n >= n_array) {
			printk("More firmware images in file than "
				  "were expected!\n");
			goto corrupt;
		}

		/* Checks if there's enough bytes to read */
		if (endp - p < sizeof(type) + sizeof(id) + sizeof(size))
			goto header;

		type = get_unaligned_le32(p);
		p += sizeof(type);

		id = get_unaligned_le64(p);
		p += sizeof(id);

		if (type & HAS_IF) {
			int_freq = get_unaligned_le16(p);
			p += sizeof(int_freq);
			if (endp - p < sizeof(size))
				goto header;
		}

		size = get_unaligned_le32(p);
		p += sizeof(size);

		if (!size || size > endp - p) {
			printk("Firmware type ");
//			dump_firm_type(type);
			printk("(%x), id %llx is corrupted "
			       "(size=%d, expected %d)\n",
			       type, (unsigned long long)id,
			       (unsigned)(endp - p), size);
			goto corrupt;
		}

		priv->firm[n].ptr = kzalloc(size, GFP_KERNEL);
		if (priv->firm[n].ptr == NULL) {
			printk("Not enough memory to load firmware file.\n");
			rc = -ENOMEM;
			goto err;
		}
		printk("Reading firmware type ");
		if (debug) {
//			dump_firm_type_and_int_freq(type, int_freq);
			printk("(%x), id %llx, size=%d.\n",
			       type, (unsigned long long)id, size);
		}

		memcpy(priv->firm[n].ptr, p, size);
		priv->firm[n].type = type;
		priv->firm[n].id   = id;
		priv->firm[n].size = size;
		priv->firm[n].int_freq = int_freq;

		p += size;
	}

	if (n + 1 != priv->firm_size) {
		printk("Firmware file is incomplete!\n");
		goto corrupt;
	}

	goto done;

header:
	printk("Firmware header is incomplete!\n");
corrupt:
	rc = -EINVAL;
	printk("Error: firmware file is corrupted!\n");

err:
	printk("Releasing partially loaded firmware file.\n");
//	free_firmware(priv);

done:
	release_firmware(fw);
	if (rc == 0)
		printk("Firmware files loaded.\n");

	return rc;
}


static void xc_debug_dump(struct xc4000_priv *priv)
{
	u16 adc_envelope;
	u32 freq_error_hz = 0;
	u16 lock_status;
	u32 hsync_freq_hz = 0;
	u16 frame_lines;
	u16 quality;
	u8 hw_majorversion = 0, hw_minorversion = 0;
	u8 fw_majorversion = 0, fw_minorversion = 0;
//	u16 fw_buildversion = 0;

	/* Wait for stats to stabilize.
	 * Frame Lines needs two frame times after initial lock
	 * before it is valid.
	 */
	xc_wait(100);

	xc_get_ADC_Envelope(priv,  &adc_envelope);
	dprintk(1, "*** ADC envelope (0-1023) = %d\n", adc_envelope);

	xc_get_frequency_error(priv, &freq_error_hz);
	dprintk(1, "*** Frequency error = %d Hz\n", freq_error_hz);

	xc_get_lock_status(priv,  &lock_status);
	dprintk(1, "*** Lock status (0-Wait, 1-Locked, 2-No-signal) = %d\n",
		lock_status);

	xc_get_version(priv,  &hw_majorversion, &hw_minorversion,
		&fw_majorversion, &fw_minorversion);
// WAS:
//	xc_get_buildversion(priv,  &fw_buildversion);
//	dprintk(1, "*** HW: V%02x.%02x, FW: V%02x.%02x.%04x\n",
//		hw_majorversion, hw_minorversion,
//		fw_majorversion, fw_minorversion, fw_buildversion);
// NOW:
	dprintk(1, "*** HW: V%02x.%02x, FW: V%02x.%02x\n",
		hw_majorversion, hw_minorversion,
		fw_majorversion, fw_minorversion);

	xc_get_hsync_freq(priv,  &hsync_freq_hz);
	dprintk(1, "*** Horizontal sync frequency = %d Hz\n", hsync_freq_hz);

	xc_get_frame_lines(priv,  &frame_lines);
	dprintk(1, "*** Frame lines = %d\n", frame_lines);

	xc_get_quality(priv,  &quality);
	dprintk(1, "*** Quality (0:<8dB, 7:>56dB) = %d\n", quality);
}

static int xc4000_set_params(struct dvb_frontend *fe,
	struct dvb_frontend_parameters *params)
{
	struct xc4000_priv *priv = fe->tuner_priv;
	int ret;

	if (xc4000_is_firmware_loaded(fe) != XC_RESULT_SUCCESS)
		xc_load_fw_and_init_tuner(fe);

	dprintk(1, "%s() frequency=%d (Hz)\n", __func__, params->frequency);

	if (fe->ops.info.type == FE_ATSC) {
		dprintk(1, "%s() ATSC\n", __func__);
		switch (params->u.vsb.modulation) {
		case VSB_8:
		case VSB_16:
			dprintk(1, "%s() VSB modulation\n", __func__);
			priv->rf_mode = XC_RF_MODE_AIR;
			priv->freq_hz = params->frequency - 1750000;
			priv->bandwidth = BANDWIDTH_6_MHZ;
			priv->video_standard = DTV6;
			break;
		case QAM_64:
		case QAM_256:
		case QAM_AUTO:
			dprintk(1, "%s() QAM modulation\n", __func__);
			priv->rf_mode = XC_RF_MODE_CABLE;
			priv->freq_hz = params->frequency - 1750000;
			priv->bandwidth = BANDWIDTH_6_MHZ;
			priv->video_standard = DTV6;
			break;
		default:
			return -EINVAL;
		}
	} else if (fe->ops.info.type == FE_OFDM) {
		dprintk(1, "%s() OFDM\n", __func__);
		switch (params->u.ofdm.bandwidth) {
		case BANDWIDTH_6_MHZ:
			priv->bandwidth = BANDWIDTH_6_MHZ;
			priv->video_standard = DTV6;
			priv->freq_hz = params->frequency - 1750000;
			break;
		case BANDWIDTH_7_MHZ:
			printk(KERN_ERR "xc4000 bandwidth 7MHz not supported\n");
			return -EINVAL;
		case BANDWIDTH_8_MHZ:
			priv->bandwidth = BANDWIDTH_8_MHZ;
			priv->video_standard = DTV8;
			priv->freq_hz = params->frequency - 2750000;
			break;
		default:
			printk(KERN_ERR "xc4000 bandwidth not set!\n");
			return -EINVAL;
		}
		priv->rf_mode = XC_RF_MODE_AIR;
	} else {
		printk(KERN_ERR "xc4000 modulation type not supported!\n");
		return -EINVAL;
	}

	dprintk(1, "%s() frequency=%d (compensated)\n",
		__func__, priv->freq_hz);

	ret = xc_SetSignalSource(priv, priv->rf_mode);
	if (ret != XC_RESULT_SUCCESS) {
		printk(KERN_ERR
			"xc4000: xc_SetSignalSource(%d) failed\n",
			priv->rf_mode);
		return -EREMOTEIO;
	}

	ret = xc_SetTVStandard(priv,
		XC4000_Standard[priv->video_standard].VideoMode,
		XC4000_Standard[priv->video_standard].AudioMode);
	if (ret != XC_RESULT_SUCCESS) {
		printk(KERN_ERR "xc4000: xc_SetTVStandard failed\n");
		return -EREMOTEIO;
	}

	ret = xc_set_IF_frequency(priv, priv->if_khz);
	if (ret != XC_RESULT_SUCCESS) {
		printk(KERN_ERR "xc4000: xc_Set_IF_frequency(%d) failed\n",
		       priv->if_khz);
		return -EIO;
	}

	xc_tune_channel(priv, priv->freq_hz, XC_TUNE_DIGITAL);

	if (debug)
		xc_debug_dump(priv);

	return 0;
}

static int xc4000_is_firmware_loaded(struct dvb_frontend *fe)
{
	struct xc4000_priv *priv = fe->tuner_priv;
	int ret;
	u16 id;

	ret = xc4000_readreg(priv, XREG_PRODUCT_ID, &id);
	if (ret == XC_RESULT_SUCCESS) {
		if (id == XC_PRODUCT_ID_FW_NOT_LOADED)
			ret = XC_RESULT_RESET_FAILURE;
		else
			ret = XC_RESULT_SUCCESS;
	}

	dprintk(1, "%s() returns %s id = 0x%x\n", __func__,
		ret == XC_RESULT_SUCCESS ? "True" : "False", id);
	return ret;
}

static int xc4000_set_analog_params(struct dvb_frontend *fe,
	struct analog_parameters *params)
{
	struct xc4000_priv *priv = fe->tuner_priv;
	int ret;

	if (xc4000_is_firmware_loaded(fe) != XC_RESULT_SUCCESS)
		xc_load_fw_and_init_tuner(fe);

	dprintk(1, "%s() frequency=%d (in units of 62.5khz)\n",
		__func__, params->frequency);

	/* Fix me: it could be air. */
	priv->rf_mode = params->mode;
	if (params->mode > XC_RF_MODE_CABLE)
		priv->rf_mode = XC_RF_MODE_CABLE;

	/* params->frequency is in units of 62.5khz */
	priv->freq_hz = params->frequency * 62500;

	/* FIX ME: Some video standards may have several possible audio
		   standards. We simply default to one of them here.
	 */
	if (params->std & V4L2_STD_MN) {
		/* default to BTSC audio standard */
		priv->video_standard = MN_NTSC_PAL_BTSC;
		goto tune_channel;
	}

	if (params->std & V4L2_STD_PAL_BG) {
		/* default to NICAM audio standard */
		priv->video_standard = BG_PAL_NICAM;
		goto tune_channel;
	}

	if (params->std & V4L2_STD_PAL_I) {
		/* default to NICAM audio standard */
		priv->video_standard = I_PAL_NICAM;
		goto tune_channel;
	}

	if (params->std & V4L2_STD_PAL_DK) {
		/* default to NICAM audio standard */
		priv->video_standard = DK_PAL_NICAM;
		goto tune_channel;
	}

	if (params->std & V4L2_STD_SECAM_DK) {
		/* default to A2 DK1 audio standard */
		priv->video_standard = DK_SECAM_A2DK1;
		goto tune_channel;
	}

	if (params->std & V4L2_STD_SECAM_L) {
		priv->video_standard = L_SECAM_NICAM;
		goto tune_channel;
	}

	if (params->std & V4L2_STD_SECAM_LC) {
		priv->video_standard = LC_SECAM_NICAM;
		goto tune_channel;
	}

tune_channel:
	ret = xc_SetSignalSource(priv, priv->rf_mode);
	if (ret != XC_RESULT_SUCCESS) {
		printk(KERN_ERR
			"xc4000: xc_SetSignalSource(%d) failed\n",
			priv->rf_mode);
		return -EREMOTEIO;
	}

	ret = xc_SetTVStandard(priv,
		XC4000_Standard[priv->video_standard].VideoMode,
		XC4000_Standard[priv->video_standard].AudioMode);
	if (ret != XC_RESULT_SUCCESS) {
		printk(KERN_ERR "xc4000: xc_SetTVStandard failed\n");
		return -EREMOTEIO;
	}

	xc_tune_channel(priv, priv->freq_hz, XC_TUNE_ANALOG);

	if (debug)
		xc_debug_dump(priv);

	return 0;
}

static int xc4000_get_frequency(struct dvb_frontend *fe, u32 *freq)
{
	struct xc4000_priv *priv = fe->tuner_priv;
	dprintk(1, "%s()\n", __func__);
	*freq = priv->freq_hz;
	return 0;
}

static int xc4000_get_bandwidth(struct dvb_frontend *fe, u32 *bw)
{
	struct xc4000_priv *priv = fe->tuner_priv;
	dprintk(1, "%s()\n", __func__);

	*bw = priv->bandwidth;
	return 0;
}

static int xc4000_get_status(struct dvb_frontend *fe, u32 *status)
{
	struct xc4000_priv *priv = fe->tuner_priv;
	u16 lock_status = 0;

	xc_get_lock_status(priv, &lock_status);

	dprintk(1, "%s() lock_status = 0x%08x\n", __func__, lock_status);

	*status = lock_status;

	return 0;
}

static int xc_load_fw_and_init_tuner(struct dvb_frontend *fe)
{
	struct xc4000_priv *priv = fe->tuner_priv;
	int ret = 0;

	if (xc4000_is_firmware_loaded(fe) != XC_RESULT_SUCCESS) {
		ret = xc4000_fwupload(fe);
		if (ret != XC_RESULT_SUCCESS)
			return ret;
	}

	/* Start the tuner self-calibration process */
	ret |= xc_initialize(priv);

	/* Wait for calibration to complete.
	 * We could continue but XC4000 will clock stretch subsequent
	 * I2C transactions until calibration is complete.  This way we
	 * don't have to rely on clock stretching working.
	 */
	xc_wait(100);

	/* Default to "CABLE" mode */
	ret |= xc_write_reg(priv, XREG_SIGNALSOURCE, XC_RF_MODE_CABLE);

	return ret;
}

static int xc4000_sleep(struct dvb_frontend *fe)
{
	int ret;

	dprintk(1, "%s()\n", __func__);

	/* Avoid firmware reload on slow devices */
	if (no_poweroff)
		return 0;

	/* According to Xceive technical support, the "powerdown" register
	   was removed in newer versions of the firmware.  The "supported"
	   way to sleep the tuner is to pull the reset pin low for 10ms */
	ret = xc4000_TunerReset(fe);
	if (ret != XC_RESULT_SUCCESS) {
		printk(KERN_ERR
			"xc4000: %s() unable to shutdown tuner\n",
			__func__);
		return -EREMOTEIO;
	} else
		return XC_RESULT_SUCCESS;
}

static int xc4000_init(struct dvb_frontend *fe)
{
	struct xc4000_priv *priv = fe->tuner_priv;
	dprintk(1, "%s()\n", __func__);

	if (xc_load_fw_and_init_tuner(fe) != XC_RESULT_SUCCESS) {
		printk(KERN_ERR "xc4000: Unable to initialise tuner\n");
		return -EREMOTEIO;
	}

	if (debug)
		xc_debug_dump(priv);

	return 0;
}

static int xc4000_release(struct dvb_frontend *fe)
{
	struct xc4000_priv *priv = fe->tuner_priv;

	dprintk(1, "%s()\n", __func__);

	mutex_lock(&xc4000_list_mutex);

	if (priv)
		hybrid_tuner_release_state(priv);

	mutex_unlock(&xc4000_list_mutex);

	fe->tuner_priv = NULL;

	return 0;
}

static const struct dvb_tuner_ops xc4000_tuner_ops = {
	.info = {
		.name           = "Xceive XC4000",
		.frequency_min  =    1000000,
		.frequency_max  = 1023000000,
		.frequency_step =      50000,
	},

	.release	   = xc4000_release,
	.init		   = xc4000_init,
	.sleep		   = xc4000_sleep,

	.set_params	   = xc4000_set_params,
	.set_analog_params = xc4000_set_analog_params,
	.get_frequency	   = xc4000_get_frequency,
	.get_bandwidth	   = xc4000_get_bandwidth,
	.get_status	   = xc4000_get_status
};

struct dvb_frontend *xc4000_attach(struct dvb_frontend *fe,
				   struct i2c_adapter *i2c,
				   struct xc4000_config *cfg)
{
	struct xc4000_priv *priv = NULL;
	int instance;
	v4l2_std_id std0;
	u16 id = 0;
	int rc;

	dprintk(1, "%s(%d-%04x)\n", __func__,
		i2c ? i2c_adapter_id(i2c) : -1,
		cfg ? cfg->i2c_address : -1);

	mutex_lock(&xc4000_list_mutex);

	instance = hybrid_tuner_request_state(struct xc4000_priv, priv,
					      hybrid_tuner_instance_list,
					      i2c, cfg->i2c_address, "xc4000");
	switch (instance) {
	case 0:
		goto fail;
		break;
	case 1:
		/* new tuner instance */
		priv->bandwidth = BANDWIDTH_6_MHZ;
		fe->tuner_priv = priv;
		break;
	default:
		/* existing tuner instance */
		fe->tuner_priv = priv;
		break;
	}

	if (priv->if_khz == 0) {
		/* If the IF hasn't been set yet, use the value provided by
		   the caller (occurs in hybrid devices where the analog
		   call to xc4000_attach occurs before the digital side) */
		priv->if_khz = cfg->if_khz;
	}

	/* Check if firmware has been loaded. It is possible that another
	   instance of the driver has loaded the firmware.
	 */

	if (xc4000_readreg(priv, XREG_PRODUCT_ID, &id) != XC_RESULT_SUCCESS)
			goto fail;

	switch (id) {
	case XC_PRODUCT_ID_FW_LOADED:
		printk(KERN_INFO
			"xc4000: Successfully identified at address 0x%02x\n",
			cfg->i2c_address);
		printk(KERN_INFO
			"xc4000: Firmware has been loaded previously\n");
		break;
	case XC_PRODUCT_ID_FW_NOT_LOADED:
		printk(KERN_INFO
			"xc4000: Successfully identified at address 0x%02x\n",
			cfg->i2c_address);
		printk(KERN_INFO
			"xc4000: Firmware has not been loaded previously\n");
		break;
	default:
		printk(KERN_ERR
			"xc4000: Device not found at addr 0x%02x (0x%x)\n",
			cfg->i2c_address, id);
		goto fail;
	}

	mutex_unlock(&xc4000_list_mutex);

	memcpy(&fe->ops.tuner_ops, &xc4000_tuner_ops,
		sizeof(struct dvb_tuner_ops));

	/* FIXME: For now, load the firmware at startup.  We will remove this
	   before the code goes to production... */
	xc4000_fwupload(fe);
	printk("xc4000_fwupload done\n");

	std0 = 0;
//	rc = load_firmware(fe, BASE | new_fw.type, &std0);
	rc = load_firmware(fe, BASE, &std0);
	if (rc != XC_RESULT_SUCCESS) {
		tuner_err("Error %d while loading base firmware\n",
			  rc);
		goto fail;
	}

	/* Load INIT1, if needed */
	tuner_dbg("Load init1 firmware, if exists\n");

//	rc = load_firmware(fe, BASE | INIT1 | new_fw.type, &std0);
	rc = load_firmware(fe, INIT1, &std0);
	printk("init1 load result %x\n", rc);

	if (xc4000_readreg(priv, XREG_PRODUCT_ID, &id) != XC_RESULT_SUCCESS)
			goto fail;
	printk("djh id is now %x\n", id);

	return fe;
fail:
	mutex_unlock(&xc4000_list_mutex);

	xc4000_release(fe);
	return NULL;
}
EXPORT_SYMBOL(xc4000_attach);

MODULE_AUTHOR("Steven Toth, Davide Ferri");
MODULE_DESCRIPTION("Xceive xc4000 silicon tuner driver");
MODULE_LICENSE("GPL");