aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/isdn
ModeNameSize
-rw-r--r--Kconfig2257logstatsplainblame
-rw-r--r--Makefile583logstatsplainblame
d---------act2000294logstatsplain
d---------capi436logstatsplain
d---------divert202logstatsplain
d---------gigaset488logstatsplain
d---------hardware165logstatsplain
d---------hisax3659logstatsplain
d---------hysdn548logstatsplain
d---------i4l869logstatsplain
d---------icn137logstatsplain
d---------isdnloop112logstatsplain
d---------mISDN1144logstatsplain
d---------pcbit463logstatsplain
d---------sc576logstatsplain
d='n432' href='#n432'>432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
/*
 * linux/kernel/workqueue.c
 *
 * Generic mechanism for defining kernel helper threads for running
 * arbitrary tasks in process context.
 *
 * Started by Ingo Molnar, Copyright (C) 2002
 *
 * Derived from the taskqueue/keventd code by:
 *
 *   David Woodhouse <dwmw2@infradead.org>
 *   Andrew Morton <andrewm@uow.edu.au>
 *   Kai Petzke <wpp@marie.physik.tu-berlin.de>
 *   Theodore Ts'o <tytso@mit.edu>
 *
 * Made to use alloc_percpu by Christoph Lameter <clameter@sgi.com>.
 */

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
#include <linux/hardirq.h>
#include <linux/mempolicy.h>
#include <linux/freezer.h>
#include <linux/kallsyms.h>
#include <linux/debug_locks.h>

/*
 * The per-CPU workqueue (if single thread, we always use the first
 * possible cpu).
 *
 * The sequence counters are for flush_scheduled_work().  It wants to wait
 * until all currently-scheduled works are completed, but it doesn't
 * want to be livelocked by new, incoming ones.  So it waits until
 * remove_sequence is >= the insert_sequence which pertained when
 * flush_scheduled_work() was called.
 */
struct cpu_workqueue_struct {

	spinlock_t lock;

	long remove_sequence;	/* Least-recently added (next to run) */
	long insert_sequence;	/* Next to add */

	struct list_head worklist;
	wait_queue_head_t more_work;
	wait_queue_head_t work_done;

	struct workqueue_struct *wq;
	struct task_struct *thread;

	int run_depth;		/* Detect run_workqueue() recursion depth */

	int freezeable;		/* Freeze the thread during suspend */
} ____cacheline_aligned;

/*
 * The externally visible workqueue abstraction is an array of
 * per-CPU workqueues:
 */
struct workqueue_struct {
	struct cpu_workqueue_struct *cpu_wq;
	const char *name;
	struct list_head list; 	/* Empty if single thread */
};

/* All the per-cpu workqueues on the system, for hotplug cpu to add/remove
   threads to each one as cpus come/go. */
static DEFINE_MUTEX(workqueue_mutex);
static LIST_HEAD(workqueues);

static int singlethread_cpu;

/* If it's single threaded, it isn't in the list of workqueues. */
static inline int is_single_threaded(struct workqueue_struct *wq)
{
	return list_empty(&wq->list);
}

static inline void set_wq_data(struct work_struct *work, void *wq)
{
	unsigned long new, old, res;

	/* assume the pending flag is already set and that the task has already
	 * been queued on this workqueue */
	new = (unsigned long) wq | (1UL << WORK_STRUCT_PENDING);
	res = work->management;
	if (res != new) {
		do {
			old = res;
			new = (unsigned long) wq;
			new |= (old & WORK_STRUCT_FLAG_MASK);
			res = cmpxchg(&work->management, old, new);
		} while (res != old);
	}
}

static inline void *get_wq_data(struct work_struct *work)
{
	return (void *) (work->management & WORK_STRUCT_WQ_DATA_MASK);
}

static int __run_work(struct cpu_workqueue_struct *cwq, struct work_struct *work)
{
	int ret = 0;
	unsigned long flags;

	spin_lock_irqsave(&cwq->lock, flags);
	/*
	 * We need to re-validate the work info after we've gotten
	 * the cpu_workqueue lock. We can run the work now iff:
	 *
	 *  - the wq_data still matches the cpu_workqueue_struct
	 *  - AND the work is still marked pending
	 *  - AND the work is still on a list (which will be this
	 *    workqueue_struct list)
	 *
	 * All these conditions are important, because we
	 * need to protect against the work being run right
	 * now on another CPU (all but the last one might be
	 * true if it's currently running and has not been
	 * released yet, for example).
	 */
	if (get_wq_data(work) == cwq
	    && work_pending(work)
	    && !list_empty(&work->entry)) {
		work_func_t f = work->func;
		list_del_init(&work->entry);
		spin_unlock_irqrestore(&cwq->lock, flags);

		if (!test_bit(WORK_STRUCT_NOAUTOREL, &work->management))
			work_release(work);
		f(work);

		spin_lock_irqsave(&cwq->lock, flags);
		cwq->remove_sequence++;
		wake_up(&cwq->work_done);
		ret = 1;
	}
	spin_unlock_irqrestore(&cwq->lock, flags);
	return ret;
}

/**
 * run_scheduled_work - run scheduled work synchronously
 * @work: work to run
 *
 * This checks if the work was pending, and runs it
 * synchronously if so. It returns a boolean to indicate
 * whether it had any scheduled work to run or not.
 *
 * NOTE! This _only_ works for normal work_structs. You
 * CANNOT use this for delayed work, because the wq data
 * for delayed work will not point properly to the per-
 * CPU workqueue struct, but will change!
 */
int fastcall run_scheduled_work(struct work_struct *work)
{
	for (;;) {
		struct cpu_workqueue_struct *cwq;

		if (!work_pending(work))
			return 0;
		if (list_empty(&work->entry))
			return 0;
		/* NOTE! This depends intimately on __queue_work! */
		cwq = get_wq_data(work);
		if (!cwq)
			return 0;
		if (__run_work(cwq, work))
			return 1;
	}
}
EXPORT_SYMBOL(run_scheduled_work);

/* Preempt must be disabled. */
static void __queue_work(struct cpu_workqueue_struct *cwq,
			 struct work_struct *work)
{
	unsigned long flags;

	spin_lock_irqsave(&cwq->lock, flags);
	set_wq_data(work, cwq);
	list_add_tail(&work->entry, &cwq->worklist);
	cwq->insert_sequence++;
	wake_up(&cwq->more_work);
	spin_unlock_irqrestore(&cwq->lock, flags);
}

/**
 * queue_work - queue work on a workqueue
 * @wq: workqueue to use
 * @work: work to queue
 *
 * Returns 0 if @work was already on a queue, non-zero otherwise.
 *
 * We queue the work to the CPU it was submitted, but there is no
 * guarantee that it will be processed by that CPU.
 */
int fastcall queue_work(struct workqueue_struct *wq, struct work_struct *work)
{
	int ret = 0, cpu = get_cpu();

	if (!test_and_set_bit(WORK_STRUCT_PENDING, &work->management)) {
		if (unlikely(is_single_threaded(wq)))
			cpu = singlethread_cpu;
		BUG_ON(!list_empty(&work->entry));
		__queue_work(per_cpu_ptr(wq->cpu_wq, cpu), work);
		ret = 1;
	}
	put_cpu();
	return ret;
}
EXPORT_SYMBOL_GPL(queue_work);

static void delayed_work_timer_fn(unsigned long __data)
{
	struct delayed_work *dwork = (struct delayed_work *)__data;
	struct workqueue_struct *wq = get_wq_data(&dwork->work);
	int cpu = smp_processor_id();

	if (unlikely(is_single_threaded(wq)))
		cpu = singlethread_cpu;

	__queue_work(per_cpu_ptr(wq->cpu_wq, cpu), &dwork->work);
}

/**
 * queue_delayed_work - queue work on a workqueue after delay
 * @wq: workqueue to use
 * @work: delayable work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * Returns 0 if @work was already on a queue, non-zero otherwise.
 */
int fastcall queue_delayed_work(struct workqueue_struct *wq,
			struct delayed_work *dwork, unsigned long delay)
{
	int ret = 0;
	struct timer_list *timer = &dwork->timer;
	struct work_struct *work = &dwork->work;

	if (delay == 0)
		return queue_work(wq, work);

	if (!test_and_set_bit(WORK_STRUCT_PENDING, &work->management)) {
		BUG_ON(timer_pending(timer));
		BUG_ON(!list_empty(&work->entry));

		/* This stores wq for the moment, for the timer_fn */
		set_wq_data(work, wq);
		timer->expires = jiffies + delay;
		timer->data = (unsigned long)dwork;
		timer->function = delayed_work_timer_fn;
		add_timer(timer);
		ret = 1;
	}
	return ret;
}
EXPORT_SYMBOL_GPL(queue_delayed_work);

/**
 * queue_delayed_work_on - queue work on specific CPU after delay
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @work: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * Returns 0 if @work was already on a queue, non-zero otherwise.
 */
int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
			struct delayed_work *dwork, unsigned long delay)
{
	int ret = 0;
	struct timer_list *timer = &dwork->timer;
	struct work_struct *work = &dwork->work;

	if (!test_and_set_bit(WORK_STRUCT_PENDING, &work->management)) {
		BUG_ON(timer_pending(timer));
		BUG_ON(!list_empty(&work->entry));

		/* This stores wq for the moment, for the timer_fn */
		set_wq_data(work, wq);
		timer->expires = jiffies + delay;
		timer->data = (unsigned long)dwork;
		timer->function = delayed_work_timer_fn;
		add_timer_on(timer, cpu);
		ret = 1;
	}
	return ret;
}
EXPORT_SYMBOL_GPL(queue_delayed_work_on);

static void run_workqueue(struct cpu_workqueue_struct *cwq)
{
	unsigned long flags;

	/*
	 * Keep taking off work from the queue until
	 * done.
	 */
	spin_lock_irqsave(&cwq->lock, flags);
	cwq->run_depth++;
	if (cwq->run_depth > 3) {
		/* morton gets to eat his hat */
		printk("%s: recursion depth exceeded: %d\n",
			__FUNCTION__, cwq->run_depth);
		dump_stack();
	}
	while (!list_empty(&cwq->worklist)) {
		struct work_struct *work = list_entry(cwq->worklist.next,
						struct work_struct, entry);
		work_func_t f = work->func;

		list_del_init(cwq->worklist.next);
		spin_unlock_irqrestore(&cwq->lock, flags);

		BUG_ON(get_wq_data(work) != cwq);
		if (!test_bit(WORK_STRUCT_NOAUTOREL, &work->management))
			work_release(work);
		f(work);

		if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
			printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
					"%s/0x%08x/%d\n",
					current->comm, preempt_count(),
				       	current->pid);
			printk(KERN_ERR "    last function: ");
			print_symbol("%s\n", (unsigned long)f);
			debug_show_held_locks(current);
			dump_stack();
		}

		spin_lock_irqsave(&cwq->lock, flags);
		cwq->remove_sequence++;
		wake_up(&cwq->work_done);
	}
	cwq->run_depth--;
	spin_unlock_irqrestore(&cwq->lock, flags);
}

static int worker_thread(void *__cwq)
{
	struct cpu_workqueue_struct *cwq = __cwq;
	DECLARE_WAITQUEUE(wait, current);
	struct k_sigaction sa;
	sigset_t blocked;

	if (!cwq->freezeable)
		current->flags |= PF_NOFREEZE;

	set_user_nice(current, -5);

	/* Block and flush all signals */
	sigfillset(&blocked);
	sigprocmask(SIG_BLOCK, &blocked, NULL);
	flush_signals(current);

	/*
	 * We inherited MPOL_INTERLEAVE from the booting kernel.
	 * Set MPOL_DEFAULT to insure node local allocations.
	 */
	numa_default_policy();

	/* SIG_IGN makes children autoreap: see do_notify_parent(). */
	sa.sa.sa_handler = SIG_IGN;
	sa.sa.sa_flags = 0;
	siginitset(&sa.sa.sa_mask, sigmask(SIGCHLD));
	do_sigaction(SIGCHLD, &sa, (struct k_sigaction *)0);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		if (cwq->freezeable)
			try_to_freeze();

		add_wait_queue(&cwq->more_work, &wait);
		if (list_empty(&cwq->worklist))
			schedule();
		else
			__set_current_state(TASK_RUNNING);
		remove_wait_queue(&cwq->more_work, &wait);

		if (!list_empty(&cwq->worklist))
			run_workqueue(cwq);
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

static void flush_cpu_workqueue(struct cpu_workqueue_struct *cwq)
{
	if (cwq->thread == current) {
		/*
		 * Probably keventd trying to flush its own queue. So simply run
		 * it by hand rather than deadlocking.
		 */
		run_workqueue(cwq);
	} else {
		DEFINE_WAIT(wait);
		long sequence_needed;

		spin_lock_irq(&cwq->lock);
		sequence_needed = cwq->insert_sequence;

		while (sequence_needed - cwq->remove_sequence > 0) {
			prepare_to_wait(&cwq->work_done, &wait,
					TASK_UNINTERRUPTIBLE);
			spin_unlock_irq(&cwq->lock);
			schedule();
			spin_lock_irq(&cwq->lock);
		}
		finish_wait(&cwq->work_done, &wait);
		spin_unlock_irq(&cwq->lock);
	}
}

/**
 * flush_workqueue - ensure that any scheduled work has run to completion.
 * @wq: workqueue to flush
 *
 * Forces execution of the workqueue and blocks until its completion.
 * This is typically used in driver shutdown handlers.
 *
 * This function will sample each workqueue's current insert_sequence number and
 * will sleep until the head sequence is greater than or equal to that.  This
 * means that we sleep until all works which were queued on entry have been
 * handled, but we are not livelocked by new incoming ones.
 *
 * This function used to run the workqueues itself.  Now we just wait for the
 * helper threads to do it.
 */
void fastcall flush_workqueue(struct workqueue_struct *wq)
{
	might_sleep();

	if (is_single_threaded(wq)) {
		/* Always use first cpu's area. */
		flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, singlethread_cpu));
	} else {
		int cpu;

		mutex_lock(&workqueue_mutex);
		for_each_online_cpu(cpu)
			flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, cpu));
		mutex_unlock(&workqueue_mutex);
	}
}
EXPORT_SYMBOL_GPL(flush_workqueue);

static struct task_struct *create_workqueue_thread(struct workqueue_struct *wq,
						   int cpu, int freezeable)
{
	struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu);
	struct task_struct *p;

	spin_lock_init(&cwq->lock);
	cwq->wq = wq;
	cwq->thread = NULL;
	cwq->insert_sequence = 0;
	cwq->remove_sequence = 0;
	cwq->freezeable = freezeable;
	INIT_LIST_HEAD(&cwq->worklist);
	init_waitqueue_head(&cwq->more_work);
	init_waitqueue_head(&cwq->work_done);

	if (is_single_threaded(wq))
		p = kthread_create(worker_thread, cwq, "%s", wq->name);
	else
		p = kthread_create(worker_thread, cwq, "%s/%d", wq->name, cpu);
	if (IS_ERR(p))
		return NULL;
	cwq->thread = p;
	return p;
}

struct workqueue_struct *__create_workqueue(const char *name,
					    int singlethread, int freezeable)
{
	int cpu, destroy = 0;
	struct workqueue_struct *wq;
	struct task_struct *p;

	wq = kzalloc(sizeof(*wq), GFP_KERNEL);
	if (!wq)
		return NULL;

	wq->cpu_wq = alloc_percpu(struct cpu_workqueue_struct);
	if (!wq->cpu_wq) {
		kfree(wq);
		return NULL;
	}

	wq->name = name;
	mutex_lock(&workqueue_mutex);
	if (singlethread) {
		INIT_LIST_HEAD(&wq->list);
		p = create_workqueue_thread(wq, singlethread_cpu, freezeable);
		if (!p)
			destroy = 1;
		else
			wake_up_process(p);
	} else {
		list_add(&wq->list, &workqueues);
		for_each_online_cpu(cpu) {
			p = create_workqueue_thread(wq, cpu, freezeable);
			if (p) {
				kthread_bind(p, cpu);
				wake_up_process(p);
			} else
				destroy = 1;
		}
	}
	mutex_unlock(&workqueue_mutex);

	/*
	 * Was there any error during startup? If yes then clean up:
	 */
	if (destroy) {
		destroy_workqueue(wq);
		wq = NULL;
	}
	return wq;
}
EXPORT_SYMBOL_GPL(__create_workqueue);

static void cleanup_workqueue_thread(struct workqueue_struct *wq, int cpu)
{
	struct cpu_workqueue_struct *cwq;
	unsigned long flags;
	struct task_struct *p;

	cwq = per_cpu_ptr(wq->cpu_wq, cpu);
	spin_lock_irqsave(&cwq->lock, flags);
	p = cwq->thread;
	cwq->thread = NULL;
	spin_unlock_irqrestore(&cwq->lock, flags);
	if (p)
		kthread_stop(p);
}

/**
 * destroy_workqueue - safely terminate a workqueue
 * @wq: target workqueue
 *
 * Safely destroy a workqueue. All work currently pending will be done first.
 */
void destroy_workqueue(struct workqueue_struct *wq)
{
	int cpu;

	flush_workqueue(wq);

	/* We don't need the distraction of CPUs appearing and vanishing. */
	mutex_lock(&workqueue_mutex);
	if (is_single_threaded(wq))
		cleanup_workqueue_thread(wq, singlethread_cpu);
	else {
		for_each_online_cpu(cpu)
			cleanup_workqueue_thread(wq, cpu);
		list_del(&wq->list);
	}
	mutex_unlock(&workqueue_mutex);
	free_percpu(wq->cpu_wq);
	kfree(wq);
}
EXPORT_SYMBOL_GPL(destroy_workqueue);

static struct workqueue_struct *keventd_wq;

/**
 * schedule_work - put work task in global workqueue
 * @work: job to be done
 *
 * This puts a job in the kernel-global workqueue.
 */
int fastcall schedule_work(struct work_struct *work)
{
	return queue_work(keventd_wq, work);
}
EXPORT_SYMBOL(schedule_work);

/**
 * schedule_delayed_work - put work task in global workqueue after delay
 * @dwork: job to be done
 * @delay: number of jiffies to wait or 0 for immediate execution
 *
 * After waiting for a given time this puts a job in the kernel-global
 * workqueue.
 */
int fastcall schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
{
	return queue_delayed_work(keventd_wq, dwork, delay);
}
EXPORT_SYMBOL(schedule_delayed_work);

/**
 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
 * @cpu: cpu to use
 * @dwork: job to be done
 * @delay: number of jiffies to wait
 *
 * After waiting for a given time this puts a job in the kernel-global
 * workqueue on the specified CPU.
 */
int schedule_delayed_work_on(int cpu,
			struct delayed_work *dwork, unsigned long delay)
{
	return queue_delayed_work_on(cpu, keventd_wq, dwork, delay);
}
EXPORT_SYMBOL(schedule_delayed_work_on);

/**
 * schedule_on_each_cpu - call a function on each online CPU from keventd
 * @func: the function to call
 *
 * Returns zero on success.
 * Returns -ve errno on failure.
 *
 * Appears to be racy against CPU hotplug.
 *
 * schedule_on_each_cpu() is very slow.
 */
int schedule_on_each_cpu(work_func_t func)
{
	int cpu;
	struct work_struct *works;

	works = alloc_percpu(struct work_struct);
	if (!works)
		return -ENOMEM;

	mutex_lock(&workqueue_mutex);
	for_each_online_cpu(cpu) {
		INIT_WORK(per_cpu_ptr(works, cpu), func);
		__queue_work(per_cpu_ptr(keventd_wq->cpu_wq, cpu),
				per_cpu_ptr(works, cpu));
	}
	mutex_unlock(&workqueue_mutex);
	flush_workqueue(keventd_wq);
	free_percpu(works);
	return 0;
}

void flush_scheduled_work(void)
{
	flush_workqueue(keventd_wq);
}
EXPORT_SYMBOL(flush_scheduled_work);

/**
 * cancel_rearming_delayed_workqueue - reliably kill off a delayed
 *			work whose handler rearms the delayed work.
 * @wq:   the controlling workqueue structure
 * @dwork: the delayed work struct
 */
void cancel_rearming_delayed_workqueue(struct workqueue_struct *wq,
				       struct delayed_work *dwork)
{
	while (!cancel_delayed_work(dwork))
		flush_workqueue(wq);
}
EXPORT_SYMBOL(cancel_rearming_delayed_workqueue);

/**