aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/infiniband/hw/qib/qib_mr.c
blob: 08944e2ee33459576d4af1c4f55d611ed967cc28 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
/*
 * Copyright (c) 2006, 2007, 2008, 2009 QLogic Corporation. All rights reserved.
 * Copyright (c) 2005, 2006 PathScale, Inc. All rights reserved.
 *
 * This software is available to you under a choice of one of two
 * licenses.  You may choose to be licensed under the terms of the GNU
 * General Public License (GPL) Version 2, available from the file
 * COPYING in the main directory of this source tree, or the
 * OpenIB.org BSD license below:
 *
 *     Redistribution and use in source and binary forms, with or
 *     without modification, are permitted provided that the following
 *     conditions are met:
 *
 *      - Redistributions of source code must retain the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer.
 *
 *      - Redistributions in binary form must reproduce the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer in the documentation and/or other materials
 *        provided with the distribution.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include <rdma/ib_umem.h>
#include <rdma/ib_smi.h>

#include "qib.h"

/* Fast memory region */
struct qib_fmr {
	struct ib_fmr ibfmr;
	struct qib_mregion mr;        /* must be last */
};

static inline struct qib_fmr *to_ifmr(struct ib_fmr *ibfmr)
{
	return container_of(ibfmr, struct qib_fmr, ibfmr);
}

/**
 * qib_get_dma_mr - get a DMA memory region
 * @pd: protection domain for this memory region
 * @acc: access flags
 *
 * Returns the memory region on success, otherwise returns an errno.
 * Note that all DMA addresses should be created via the
 * struct ib_dma_mapping_ops functions (see qib_dma.c).
 */
struct ib_mr *qib_get_dma_mr(struct ib_pd *pd, int acc)
{
	struct qib_ibdev *dev = to_idev(pd->device);
	struct qib_mr *mr;
	struct ib_mr *ret;
	unsigned long flags;

	if (to_ipd(pd)->user) {
		ret = ERR_PTR(-EPERM);
		goto bail;
	}

	mr = kzalloc(sizeof *mr, GFP_KERNEL);
	if (!mr) {
		ret = ERR_PTR(-ENOMEM);
		goto bail;
	}

	mr->mr.access_flags = acc;
	atomic_set(&mr->mr.refcount, 0);

	spin_lock_irqsave(&dev->lk_table.lock, flags);
	if (!dev->dma_mr)
		dev->dma_mr = &mr->mr;
	spin_unlock_irqrestore(&dev->lk_table.lock, flags);

	ret = &mr->ibmr;

bail:
	return ret;
}

static struct qib_mr *alloc_mr(int count, struct qib_lkey_table *lk_table)
{
	struct qib_mr *mr;
	int m, i = 0;

	/* Allocate struct plus pointers to first level page tables. */
	m = (count + QIB_SEGSZ - 1) / QIB_SEGSZ;
	mr = kmalloc(sizeof *mr + m * sizeof mr->mr.map[0], GFP_KERNEL);
	if (!mr)
		goto done;

	/* Allocate first level page tables. */
	for (; i < m; i++) {
		mr->mr.map[i] = kmalloc(sizeof *mr->mr.map[0], GFP_KERNEL);
		if (!mr->mr.map[i])
			goto bail;
	}
	mr->mr.mapsz = m;
	mr->mr.page_shift = 0;
	mr->mr.max_segs = count;

	/*
	 * ib_reg_phys_mr() will initialize mr->ibmr except for
	 * lkey and rkey.
	 */
	if (!qib_alloc_lkey(lk_table, &mr->mr))
		goto bail;
	mr->ibmr.lkey = mr->mr.lkey;
	mr->ibmr.rkey = mr->mr.lkey;

	atomic_set(&mr->mr.refcount, 0);
	goto done;

bail:
	while (i)
		kfree(mr->mr.map[--i]);
	kfree(mr);
	mr = NULL;

done:
	return mr;
}

/**
 * qib_reg_phys_mr - register a physical memory region
 * @pd: protection domain for this memory region
 * @buffer_list: pointer to the list of physical buffers to register
 * @num_phys_buf: the number of physical buffers to register
 * @iova_start: the starting address passed over IB which maps to this MR
 *
 * Returns the memory region on success, otherwise returns an errno.
 */
struct ib_mr *qib_reg_phys_mr(struct ib_pd *pd,
			      struct ib_phys_buf *buffer_list,
			      int num_phys_buf, int acc, u64 *iova_start)
{
	struct qib_mr *mr;
	int n, m, i;
	struct ib_mr *ret;

	mr = alloc_mr(num_phys_buf, &to_idev(pd->device)->lk_table);
	if (mr == NULL) {
		ret = ERR_PTR(-ENOMEM);
		goto bail;
	}

	mr->mr.pd = pd;
	mr->mr.user_base = *iova_start;
	mr->mr.iova = *iova_start;
	mr->mr.length = 0;
	mr->mr.offset = 0;
	mr->mr.access_flags = acc;
	mr->umem = NULL;

	m = 0;
	n = 0;
	for (i = 0; i < num_phys_buf; i++) {
		mr->mr.map[m]->segs[n].vaddr = (void *) buffer_list[i].addr;
		mr->mr.map[m]->segs[n].length = buffer_list[i].size;
		mr->mr.length += buffer_list[i].size;
		n++;
		if (n == QIB_SEGSZ) {
			m++;
			n = 0;
		}
	}

	ret = &mr->ibmr;

bail:
	return ret;
}

/**
 * qib_reg_user_mr - register a userspace memory region
 * @pd: protection domain for this memory region
 * @start: starting userspace address
 * @length: length of region to register
 * @virt_addr: virtual address to use (from HCA's point of view)
 * @mr_access_flags: access flags for this memory region
 * @udata: unused by the QLogic_IB driver
 *
 * Returns the memory region on success, otherwise returns an errno.
 */
struct ib_mr *qib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
			      u64 virt_addr, int mr_access_flags,
			      struct ib_udata *udata)
{
	struct qib_mr *mr;
	struct ib_umem *umem;
	struct ib_umem_chunk *chunk;
	int n, m, i;
	struct ib_mr *ret;

	if (length == 0) {
		ret = ERR_PTR(-EINVAL);
		goto bail;
	}

	umem = ib_umem_get(pd->uobject->context, start, length,
			   mr_access_flags, 0);
	if (IS_ERR(umem))
		return (void *) umem;

	n = 0;
	list_for_each_entry(chunk, &umem->chunk_list, list)
		n += chunk->nents;

	mr = alloc_mr(n, &to_idev(pd->device)->lk_table);
	if (!mr) {
		ret = ERR_PTR(-ENOMEM);
		ib_umem_release(umem);
		goto bail;
	}

	mr->mr.pd = pd;
	mr->mr.user_base = start;
	mr->mr.iova = virt_addr;
	mr->mr.length = length;
	mr->mr.offset = umem->offset;
	mr->mr.access_flags = mr_access_flags;
	mr->umem = umem;

	if (is_power_of_2(umem->page_size))
		mr->mr.page_shift = ilog2(umem->page_size);
	m = 0;
	n = 0;
	list_for_each_entry(chunk, &umem->chunk_list, list) {
		for (i = 0; i < chunk->nents; i++) {
			void *vaddr;

			vaddr = page_address(sg_page(&chunk->page_list[i]));
			if (!vaddr) {
				ret = ERR_PTR(-EINVAL);
				goto bail;
			}
			mr->mr.map[m]->segs[n].vaddr = vaddr;
			mr->mr.map[m]->segs[n].length = umem->page_size;
			n++;
			if (n == QIB_SEGSZ) {
				m++;
				n = 0;
			}
		}
	}
	ret = &mr->ibmr;

bail:
	return ret;
}

/**
 * qib_dereg_mr - unregister and free a memory region
 * @ibmr: the memory region to free
 *
 * Returns 0 on success.
 *
 * Note that this is called to free MRs created by qib_get_dma_mr()
 * or qib_reg_user_mr().
 */
int qib_dereg_mr(struct ib_mr *ibmr)
{
	struct qib_mr *mr = to_imr(ibmr);
	struct qib_ibdev *dev = to_idev(ibmr->device);
	int ret;
	int i;

	ret = qib_free_lkey(dev, &mr->mr);
	if (ret)
		return ret;

	i = mr->mr.mapsz;
	while (i)
		kfree(mr->mr.map[--i]);
	if (mr->umem)
		ib_umem_release(mr->umem);
	kfree(mr);
	return 0;
}

/*
 * Allocate a memory region usable with the
 * IB_WR_FAST_REG_MR send work request.
 *
 * Return the memory region on success, otherwise return an errno.
 */
struct ib_mr *qib_alloc_fast_reg_mr(struct ib_pd *pd, int max_page_list_len)
{
	struct qib_mr *mr;

	mr = alloc_mr(max_page_list_len, &to_idev(pd->device)->lk_table);
	if (mr == NULL)
		return ERR_PTR(-ENOMEM);

	mr->mr.pd = pd;
	mr->mr.user_base = 0;
	mr->mr.iova = 0;
	mr->mr.length = 0;
	mr->mr.offset = 0;
	mr->mr.access_flags = 0;
	mr->umem = NULL;

	return &mr->ibmr;
}

struct ib_fast_reg_page_list *
qib_alloc_fast_reg_page_list(struct ib_device *ibdev, int page_list_len)
{
	unsigned size = page_list_len * sizeof(u64);
	struct ib_fast_reg_page_list *pl;

	if (size > PAGE_SIZE)
		return ERR_PTR(-EINVAL);

	pl = kmalloc(sizeof *pl, GFP_KERNEL);
	if (!pl)
		return ERR_PTR(-ENOMEM);

	pl->page_list = kmalloc(size, GFP_KERNEL);
	if (!pl->page_list)
		goto err_free;

	return pl;

err_free:
	kfree(pl);
	return ERR_PTR(-ENOMEM);
}

void qib_free_fast_reg_page_list(struct ib_fast_reg_page_list *pl)
{
	kfree(pl->page_list);
	kfree(pl);
}

/**
 * qib_alloc_fmr - allocate a fast memory region
 * @pd: the protection domain for this memory region
 * @mr_access_flags: access flags for this memory region
 * @fmr_attr: fast memory region attributes
 *
 * Returns the memory region on success, otherwise returns an errno.
 */
struct ib_fmr *qib_alloc_fmr(struct ib_pd *pd, int mr_access_flags,
			     struct ib_fmr_attr *fmr_attr)
{
	struct qib_fmr *fmr;
	int m, i = 0;
	struct ib_fmr *ret;

	/* Allocate struct plus pointers to first level page tables. */
	m = (fmr_attr->max_pages + QIB_SEGSZ - 1) / QIB_SEGSZ;
	fmr = kmalloc(sizeof *fmr + m * sizeof fmr->mr.map[0], GFP_KERNEL);
	if (!fmr)
		goto bail;

	/* Allocate first level page tables. */
	for (; i < m; i++) {
		fmr->mr.map[i] = kmalloc(sizeof *fmr->mr.map[0],
					 GFP_KERNEL);
		if (!fmr->mr.map[i])
			goto bail;
	}
	fmr->mr.mapsz = m;

	/*
	 * ib_alloc_fmr() will initialize fmr->ibfmr except for lkey &
	 * rkey.
	 */
	if (!qib_alloc_lkey(&to_idev(pd->device)->lk_table, &fmr->mr))
		goto bail;
	fmr->ibfmr.rkey = fmr->mr.lkey;
	fmr->ibfmr.lkey = fmr->mr.lkey;
	/*
	 * Resources are allocated but no valid mapping (RKEY can't be
	 * used).
	 */
	fmr->mr.pd = pd;
	fmr->mr.user_base = 0;
	fmr->mr.iova = 0;
	fmr->mr.length = 0;
	fmr->mr.offset = 0;
	fmr->mr.access_flags = mr_access_flags;
	fmr->mr.max_segs = fmr_attr->max_pages;
	fmr->mr.page_shift = fmr_attr->page_shift;

	atomic_set(&fmr->mr.refcount, 0);
	ret = &fmr->ibfmr;
	goto done;

bail:
	while (i)
		kfree(fmr->mr.map[--i]);
	kfree(fmr);
	ret = ERR_PTR(-ENOMEM);

done:
	return ret;
}

/**
 * qib_map_phys_fmr - set up a fast memory region
 * @ibmfr: the fast memory region to set up
 * @page_list: the list of pages to associate with the fast memory region
 * @list_len: the number of pages to associate with the fast memory region
 * @iova: the virtual address of the start of the fast memory region
 *
 * This may be called from interrupt context.
 */

int qib_map_phys_fmr(struct ib_fmr *ibfmr, u64 *page_list,
		     int list_len, u64 iova)
{
	struct qib_fmr *fmr = to_ifmr(ibfmr);
	struct qib_lkey_table *rkt;
	unsigned long flags;
	int m, n, i;
	u32 ps;
	int ret;

	if (atomic_read(&fmr->mr.refcount))
		return -EBUSY;

	if (list_len > fmr->mr.max_segs) {
		ret = -EINVAL;
		goto bail;
	}
	rkt = &to_idev(ibfmr->device)->lk_table;
	spin_lock_irqsave(&rkt->lock, flags);
	fmr->mr.user_base = iova;
	fmr->mr.iova = iova;
	ps = 1 << fmr->mr.page_shift;
	fmr->mr.length = list_len * ps;
	m = 0;
	n = 0;
	for (i = 0; i < list_len; i++) {
		fmr->mr.map[m]->segs[n].vaddr = (void *) page_list[i];
		fmr->mr.map[m]->segs[n].length = ps;
		if (++n == QIB_SEGSZ) {
			m++;
			n = 0;
		}
	}
	spin_unlock_irqrestore(&rkt->lock, flags);
	ret = 0;

bail:
	return ret;
}

/**
 * qib_unmap_fmr - unmap fast memory regions
 * @fmr_list: the list of fast memory regions to unmap
 *
 * Returns 0 on success.
 */
int qib_unmap_fmr(struct list_head *fmr_list)
{
	struct qib_fmr *fmr;
	struct qib_lkey_table *rkt;
	unsigned long flags;

	list_for_each_entry(fmr, fmr_list, ibfmr.list) {
		rkt = &to_idev(fmr->ibfmr.device)->lk_table;
		spin_lock_irqsave(&rkt->lock, flags);
		fmr->mr.user_base = 0;
		fmr->mr.iova = 0;
		fmr->mr.length = 0;
		spin_unlock_irqrestore(&rkt->lock, flags);
	}
	return 0;
}

/**
 * qib_dealloc_fmr - deallocate a fast memory region
 * @ibfmr: the fast memory region to deallocate
 *
 * Returns 0 on success.
 */
int qib_dealloc_fmr(struct ib_fmr *ibfmr)
{
	struct qib_fmr *fmr = to_ifmr(ibfmr);
	int ret;
	int i;

	ret = qib_free_lkey(to_idev(ibfmr->device), &fmr->mr);
	if (ret)
		return ret;

	i = fmr->mr.mapsz;
	while (i)
		kfree(fmr->mr.map[--i]);
	kfree(fmr);
	return 0;
}
t">; pte = pte_offset_map(pmd, address); /* Make a quick check before getting the lock */ if (!sync && !pte_present(*pte)) { pte_unmap(pte); return NULL; } ptl = pte_lockptr(mm, pmd); spin_lock(ptl); if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) { *ptlp = ptl; return pte; } pte_unmap_unlock(pte, ptl); return NULL; } /** * page_mapped_in_vma - check whether a page is really mapped in a VMA * @page: the page to test * @vma: the VMA to test * * Returns 1 if the page is mapped into the page tables of the VMA, 0 * if the page is not mapped into the page tables of this VMA. Only * valid for normal file or anonymous VMAs. */ static int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma) { unsigned long address; pte_t *pte; spinlock_t *ptl; address = vma_address(page, vma); if (address == -EFAULT) /* out of vma range */ return 0; pte = page_check_address(page, vma->vm_mm, address, &ptl, 1); if (!pte) /* the page is not in this mm */ return 0; pte_unmap_unlock(pte, ptl); return 1; } /* * Subfunctions of page_referenced: page_referenced_one called * repeatedly from either page_referenced_anon or page_referenced_file. */ static int page_referenced_one(struct page *page, struct vm_area_struct *vma, unsigned int *mapcount) { struct mm_struct *mm = vma->vm_mm; unsigned long address; pte_t *pte; spinlock_t *ptl; int referenced = 0; address = vma_address(page, vma); if (address == -EFAULT) goto out; pte = page_check_address(page, mm, address, &ptl, 0); if (!pte) goto out; /* * Don't want to elevate referenced for mlocked page that gets this far, * in order that it progresses to try_to_unmap and is moved to the * unevictable list. */ if (vma->vm_flags & VM_LOCKED) { *mapcount = 1; /* break early from loop */ goto out_unmap; } if (ptep_clear_flush_young_notify(vma, address, pte)) { /* * Don't treat a reference through a sequentially read * mapping as such. If the page has been used in * another mapping, we will catch it; if this other * mapping is already gone, the unmap path will have * set PG_referenced or activated the page. */ if (likely(!VM_SequentialReadHint(vma))) referenced++; } /* Pretend the page is referenced if the task has the swap token and is in the middle of a page fault. */ if (mm != current->mm && has_swap_token(mm) && rwsem_is_locked(&mm->mmap_sem)) referenced++; out_unmap: (*mapcount)--; pte_unmap_unlock(pte, ptl); out: return referenced; } static int page_referenced_anon(struct page *page, struct mem_cgroup *mem_cont) { unsigned int mapcount; struct anon_vma *anon_vma; struct vm_area_struct *vma; int referenced = 0; anon_vma = page_lock_anon_vma(page); if (!anon_vma) return referenced; mapcount = page_mapcount(page); list_for_each_entry(vma, &anon_vma->head, anon_vma_node) { /* * If we are reclaiming on behalf of a cgroup, skip * counting on behalf of references from different * cgroups */ if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont)) continue; referenced += page_referenced_one(page, vma, &mapcount); if (!mapcount) break; } page_unlock_anon_vma(anon_vma); return referenced; } /** * page_referenced_file - referenced check for object-based rmap * @page: the page we're checking references on. * @mem_cont: target memory controller * * For an object-based mapped page, find all the places it is mapped and * check/clear the referenced flag. This is done by following the page->mapping * pointer, then walking the chain of vmas it holds. It returns the number * of references it found. * * This function is only called from page_referenced for object-based pages. */ static int page_referenced_file(struct page *page, struct mem_cgroup *mem_cont) { unsigned int mapcount; struct address_space *mapping = page->mapping; pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); struct vm_area_struct *vma; struct prio_tree_iter iter; int referenced = 0; /* * The caller's checks on page->mapping and !PageAnon have made * sure that this is a file page: the check for page->mapping * excludes the case just before it gets set on an anon page. */ BUG_ON(PageAnon(page)); /* * The page lock not only makes sure that page->mapping cannot * suddenly be NULLified by truncation, it makes sure that the * structure at mapping cannot be freed and reused yet, * so we can safely take mapping->i_mmap_lock. */ BUG_ON(!PageLocked(page)); spin_lock(&mapping->i_mmap_lock); /* * i_mmap_lock does not stabilize mapcount at all, but mapcount * is more likely to be accurate if we note it after spinning. */ mapcount = page_mapcount(page); vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { /* * If we are reclaiming on behalf of a cgroup, skip * counting on behalf of references from different * cgroups */ if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont)) continue; referenced += page_referenced_one(page, vma, &mapcount); if (!mapcount) break; } spin_unlock(&mapping->i_mmap_lock); return referenced; } /** * page_referenced - test if the page was referenced * @page: the page to test * @is_locked: caller holds lock on the page * @mem_cont: target memory controller * * Quick test_and_clear_referenced for all mappings to a page, * returns the number of ptes which referenced the page. */ int page_referenced(struct page *page, int is_locked, struct mem_cgroup *mem_cont) { int referenced = 0; if (TestClearPageReferenced(page)) referenced++; if (page_mapped(page) && page->mapping) { if (PageAnon(page)) referenced += page_referenced_anon(page, mem_cont); else if (is_locked) referenced += page_referenced_file(page, mem_cont); else if (!trylock_page(page)) referenced++; else { if (page->mapping) referenced += page_referenced_file(page, mem_cont); unlock_page(page); } } if (page_test_and_clear_young(page)) referenced++; return referenced; } static int page_mkclean_one(struct page *page, struct vm_area_struct *vma) { struct mm_struct *mm = vma->vm_mm; unsigned long address; pte_t *pte; spinlock_t *ptl; int ret = 0; address = vma_address(page, vma); if (address == -EFAULT) goto out; pte = page_check_address(page, mm, address, &ptl, 1); if (!pte) goto out; if (pte_dirty(*pte) || pte_write(*pte)) { pte_t entry; flush_cache_page(vma, address, pte_pfn(*pte)); entry = ptep_clear_flush_notify(vma, address, pte); entry = pte_wrprotect(entry); entry = pte_mkclean(entry); set_pte_at(mm, address, pte, entry); ret = 1; } pte_unmap_unlock(pte, ptl); out: return ret; } static int page_mkclean_file(struct address_space *mapping, struct page *page) { pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); struct vm_area_struct *vma; struct prio_tree_iter iter; int ret = 0; BUG_ON(PageAnon(page)); spin_lock(&mapping->i_mmap_lock); vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { if (vma->vm_flags & VM_SHARED) ret += page_mkclean_one(page, vma); } spin_unlock(&mapping->i_mmap_lock); return ret; } int page_mkclean(struct page *page) { int ret = 0; BUG_ON(!PageLocked(page)); if (page_mapped(page)) { struct address_space *mapping = page_mapping(page); if (mapping) { ret = page_mkclean_file(mapping, page); if (page_test_dirty(page)) { page_clear_dirty(page); ret = 1; } } } return ret; } EXPORT_SYMBOL_GPL(page_mkclean); /** * __page_set_anon_rmap - setup new anonymous rmap * @page: the page to add the mapping to * @vma: the vm area in which the mapping is added * @address: the user virtual address mapped */ static void __page_set_anon_rmap(struct page *page, struct vm_area_struct *vma, unsigned long address) { struct anon_vma *anon_vma = vma->anon_vma; BUG_ON(!anon_vma); anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; page->mapping = (struct address_space *) anon_vma; page->index = linear_page_index(vma, address); /* * nr_mapped state can be updated without turning off * interrupts because it is not modified via interrupt. */ __inc_zone_page_state(page, NR_ANON_PAGES); } /** * __page_check_anon_rmap - sanity check anonymous rmap addition * @page: the page to add the mapping to * @vma: the vm area in which the mapping is added * @address: the user virtual address mapped */ static void __page_check_anon_rmap(struct page *page, struct vm_area_struct *vma, unsigned long address) { #ifdef CONFIG_DEBUG_VM /* * The page's anon-rmap details (mapping and index) are guaranteed to * be set up correctly at this point. * * We have exclusion against page_add_anon_rmap because the caller * always holds the page locked, except if called from page_dup_rmap, * in which case the page is already known to be setup. * * We have exclusion against page_add_new_anon_rmap because those pages * are initially only visible via the pagetables, and the pte is locked * over the call to page_add_new_anon_rmap. */ struct anon_vma *anon_vma = vma->anon_vma; anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; BUG_ON(page->mapping != (struct address_space *)anon_vma); BUG_ON(page->index != linear_page_index(vma, address)); #endif } /** * page_add_anon_rmap - add pte mapping to an anonymous page * @page: the page to add the mapping to * @vma: the vm area in which the mapping is added * @address: the user virtual address mapped * * The caller needs to hold the pte lock and the page must be locked. */ void page_add_anon_rmap(struct page *page, struct vm_area_struct *vma, unsigned long address) { VM_BUG_ON(!PageLocked(page)); VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end); if (atomic_inc_and_test(&page->_mapcount)) __page_set_anon_rmap(page, vma, address); else __page_check_anon_rmap(page, vma, address); } /** * page_add_new_anon_rmap - add pte mapping to a new anonymous page * @page: the page to add the mapping to * @vma: the vm area in which the mapping is added * @address: the user virtual address mapped * * Same as page_add_anon_rmap but must only be called on *new* pages. * This means the inc-and-test can be bypassed. * Page does not have to be locked. */ void page_add_new_anon_rmap(struct page *page, struct vm_area_struct *vma, unsigned long address) { VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end); SetPageSwapBacked(page); atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */ __page_set_anon_rmap(page, vma, address); if (page_evictable(page, vma)) lru_cache_add_lru(page, LRU_ACTIVE_ANON); else add_page_to_unevictable_list(page); } /** * page_add_file_rmap - add pte mapping to a file page * @page: the page to add the mapping to * * The caller needs to hold the pte lock. */ void page_add_file_rmap(struct page *page) { if (atomic_inc_and_test(&page->_mapcount)) __inc_zone_page_state(page, NR_FILE_MAPPED); } #ifdef CONFIG_DEBUG_VM /** * page_dup_rmap - duplicate pte mapping to a page * @page: the page to add the mapping to * @vma: the vm area being duplicated * @address: the user virtual address mapped * * For copy_page_range only: minimal extract from page_add_file_rmap / * page_add_anon_rmap, avoiding unnecessary tests (already checked) so it's * quicker. * * The caller needs to hold the pte lock. */ void page_dup_rmap(struct page *page, struct vm_area_struct *vma, unsigned long address) { if (PageAnon(page)) __page_check_anon_rmap(page, vma, address); atomic_inc(&page->_mapcount); } #endif /** * page_remove_rmap - take down pte mapping from a page * @page: page to remove mapping from * * The caller needs to hold the pte lock. */ void page_remove_rmap(struct page *page) { if (atomic_add_negative(-1, &page->_mapcount)) { /* * Now that the last pte has gone, s390 must transfer dirty * flag from storage key to struct page. We can usually skip * this if the page is anon, so about to be freed; but perhaps * not if it's in swapcache - there might be another pte slot * containing the swap entry, but page not yet written to swap. */ if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) { page_clear_dirty(page); set_page_dirty(page); } if (PageAnon(page)) mem_cgroup_uncharge_page(page); __dec_zone_page_state(page, PageAnon(page) ? NR_ANON_PAGES : NR_FILE_MAPPED); /* * It would be tidy to reset the PageAnon mapping here, * but that might overwrite a racing page_add_anon_rmap * which increments mapcount after us but sets mapping * before us: so leave the reset to free_hot_cold_page, * and remember that it's only reliable while mapped. * Leaving it set also helps swapoff to reinstate ptes * faster for those pages still in swapcache. */ } } /* * Subfunctions of try_to_unmap: try_to_unmap_one called * repeatedly from either try_to_unmap_anon or try_to_unmap_file. */ static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma, int migration) { struct mm_struct *mm = vma->vm_mm; unsigned long address; pte_t *pte; pte_t pteval; spinlock_t *ptl; int ret = SWAP_AGAIN; address = vma_address(page, vma); if (address == -EFAULT) goto out; pte = page_check_address(page, mm, address, &ptl, 0); if (!pte) goto out; /* * If the page is mlock()d, we cannot swap it out. * If it's recently referenced (perhaps page_referenced * skipped over this mm) then we should reactivate it. */ if (!migration) { if (vma->vm_flags & VM_LOCKED) { ret = SWAP_MLOCK; goto out_unmap; } if (ptep_clear_flush_young_notify(vma, address, pte)) { ret = SWAP_FAIL; goto out_unmap; } } /* Nuke the page table entry. */ flush_cache_page(vma, address, page_to_pfn(page)); pteval = ptep_clear_flush_notify(vma, address, pte); /* Move the dirty bit to the physical page now the pte is gone. */ if (pte_dirty(pteval)) set_page_dirty(page); /* Update high watermark before we lower rss */ update_hiwater_rss(mm); if (PageAnon(page)) { swp_entry_t entry = { .val = page_private(page) }; if (PageSwapCache(page)) { /* * Store the swap location in the pte. * See handle_pte_fault() ... */ swap_duplicate(entry); if (list_empty(&mm->mmlist)) { spin_lock(&mmlist_lock); if (list_empty(&mm->mmlist)) list_add(&mm->mmlist, &init_mm.mmlist); spin_unlock(&mmlist_lock); } dec_mm_counter(mm, anon_rss); } else if (PAGE_MIGRATION) { /* * Store the pfn of the page in a special migration * pte. do_swap_page() will wait until the migration * pte is removed and then restart fault handling. */ BUG_ON(!migration); entry = make_migration_entry(page, pte_write(pteval)); } set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); BUG_ON(pte_file(*pte)); } else if (PAGE_MIGRATION && migration) { /* Establish migration entry for a file page */ swp_entry_t entry; entry = make_migration_entry(page, pte_write(pteval)); set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); } else dec_mm_counter(mm, file_rss); page_remove_rmap(page); page_cache_release(page); out_unmap: pte_unmap_unlock(pte, ptl); out: return ret; } /* * objrmap doesn't work for nonlinear VMAs because the assumption that * offset-into-file correlates with offset-into-virtual-addresses does not hold. * Consequently, given a particular page and its ->index, we cannot locate the * ptes which are mapping that page without an exhaustive linear search. * * So what this code does is a mini "virtual scan" of each nonlinear VMA which * maps the file to which the target page belongs. The ->vm_private_data field * holds the current cursor into that scan. Successive searches will circulate * around the vma's virtual address space. * * So as more replacement pressure is applied to the pages in a nonlinear VMA, * more scanning pressure is placed against them as well. Eventually pages * will become fully unmapped and are eligible for eviction. * * For very sparsely populated VMAs this is a little inefficient - chances are * there there won't be many ptes located within the scan cluster. In this case * maybe we could scan further - to the end of the pte page, perhaps. * * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can * acquire it without blocking. If vma locked, mlock the pages in the cluster, * rather than unmapping them. If we encounter the "check_page" that vmscan is * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN. */ #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE) #define CLUSTER_MASK (~(CLUSTER_SIZE - 1)) static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount, struct vm_area_struct *vma, struct page *check_page) { struct mm_struct *mm = vma->vm_mm; pgd_t *pgd; pud_t *pud; pmd_t *pmd; pte_t *pte; pte_t pteval; spinlock_t *ptl; struct page *page; unsigned long address; unsigned long end; int ret = SWAP_AGAIN; int locked_vma = 0; address = (vma->vm_start + cursor) & CLUSTER_MASK; end = address + CLUSTER_SIZE; if (address < vma->vm_start) address = vma->vm_start; if (end > vma->vm_end) end = vma->vm_end; pgd = pgd_offset(mm, address); if (!pgd_present(*pgd)) return ret; pud = pud_offset(pgd, address); if (!pud_present(*pud)) return ret; pmd = pmd_offset(pud, address); if (!pmd_present(*pmd)) return ret; /* * MLOCK_PAGES => feature is configured. * if we can acquire the mmap_sem for read, and vma is VM_LOCKED, * keep the sem while scanning the cluster for mlocking pages. */ if (MLOCK_PAGES && down_read_trylock(&vma->vm_mm->mmap_sem)) { locked_vma = (vma->vm_flags & VM_LOCKED); if (!locked_vma) up_read(&vma->vm_mm->mmap_sem); /* don't need it */ } pte = pte_offset_map_lock(mm, pmd, address, &ptl); /* Update high watermark before we lower rss */ update_hiwater_rss(mm); for (; address < end; pte++, address += PAGE_SIZE) { if (!pte_present(*pte)) continue; page = vm_normal_page(vma, address, *pte); BUG_ON(!page || PageAnon(page)); if (locked_vma) { mlock_vma_page(page); /* no-op if already mlocked */ if (page == check_page) ret = SWAP_MLOCK; continue; /* don't unmap */ } if (ptep_clear_flush_young_notify(vma, address, pte)) continue; /* Nuke the page table entry. */ flush_cache_page(vma, address, pte_pfn(*pte)); pteval = ptep_clear_flush_notify(vma, address, pte); /* If nonlinear, store the file page offset in the pte. */ if (page->index != linear_page_index(vma, address)) set_pte_at(mm, address, pte, pgoff_to_pte(page->index)); /* Move the dirty bit to the physical page now the pte is gone. */ if (pte_dirty(pteval)) set_page_dirty(page); page_remove_rmap(page); page_cache_release(page); dec_mm_counter(mm, file_rss); (*mapcount)--; } pte_unmap_unlock(pte - 1, ptl); if (locked_vma) up_read(&vma->vm_mm->mmap_sem); return ret; } /* * common handling for pages mapped in VM_LOCKED vmas */ static int try_to_mlock_page(struct page *page, struct vm_area_struct *vma) { int mlocked = 0; if (down_read_trylock(&vma->vm_mm->mmap_sem)) { if (vma->vm_flags & VM_LOCKED) { mlock_vma_page(page); mlocked++; /* really mlocked the page */ } up_read(&vma->vm_mm->mmap_sem); } return mlocked; } /** * try_to_unmap_anon - unmap or unlock anonymous page using the object-based * rmap method * @page: the page to unmap/unlock * @unlock: request for unlock rather than unmap [unlikely] * @migration: unmapping for migration - ignored if @unlock * * Find all the mappings of a page using the mapping pointer and the vma chains * contained in the anon_vma struct it points to. * * This function is only called from try_to_unmap/try_to_munlock for * anonymous pages. * When called from try_to_munlock(), the mmap_sem of the mm containing the vma * where the page was found will be held for write. So, we won't recheck * vm_flags for that VMA. That should be OK, because that vma shouldn't be * 'LOCKED. */ static int try_to_unmap_anon(struct page *page, int unlock, int migration) { struct anon_vma *anon_vma; struct vm_area_struct *vma; unsigned int mlocked = 0; int ret = SWAP_AGAIN; if (MLOCK_PAGES && unlikely(unlock)) ret = SWAP_SUCCESS; /* default for try_to_munlock() */ anon_vma = page_lock_anon_vma(page); if (!anon_vma) return ret; list_for_each_entry(vma, &anon_vma->head, anon_vma_node) { if (MLOCK_PAGES && unlikely(unlock)) { if (!((vma->vm_flags & VM_LOCKED) && page_mapped_in_vma(page, vma))) continue; /* must visit all unlocked vmas */ ret = SWAP_MLOCK; /* saw at least one mlocked vma */ } else { ret = try_to_unmap_one(page, vma, migration); if (ret == SWAP_FAIL || !page_mapped(page)) break; } if (ret == SWAP_MLOCK) { mlocked = try_to_mlock_page(page, vma); if (mlocked) break; /* stop if actually mlocked page */ } } page_unlock_anon_vma(anon_vma); if (mlocked) ret = SWAP_MLOCK; /* actually mlocked the page */ else if (ret == SWAP_MLOCK) ret = SWAP_AGAIN; /* saw VM_LOCKED vma */ return ret; } /** * try_to_unmap_file - unmap/unlock file page using the object-based rmap method * @page: the page to unmap/unlock * @unlock: request for unlock rather than unmap [unlikely] * @migration: unmapping for migration - ignored if @unlock * * Find all the mappings of a page using the mapping pointer and the vma chains * contained in the address_space struct it points to. * * This function is only called from try_to_unmap/try_to_munlock for * object-based pages. * When called from try_to_munlock(), the mmap_sem of the mm containing the vma * where the page was found will be held for write. So, we won't recheck * vm_flags for that VMA. That should be OK, because that vma shouldn't be * 'LOCKED. */ static int try_to_unmap_file(struct page *page, int unlock, int migration) { struct address_space *mapping = page->mapping; pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); struct vm_area_struct *vma; struct prio_tree_iter iter; int ret = SWAP_AGAIN; unsigned long cursor; unsigned long max_nl_cursor = 0; unsigned long max_nl_size = 0; unsigned int mapcount; unsigned int mlocked = 0; if (MLOCK_PAGES && unlikely(unlock)) ret = SWAP_SUCCESS; /* default for try_to_munlock() */ spin_lock(&mapping->i_mmap_lock); vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { if (MLOCK_PAGES && unlikely(unlock)) { if (!((vma->vm_flags & VM_LOCKED) && page_mapped_in_vma(page, vma))) continue; /* must visit all vmas */ ret = SWAP_MLOCK; } else { ret = try_to_unmap_one(page, vma, migration); if (ret == SWAP_FAIL || !page_mapped(page)) goto out; } if (ret == SWAP_MLOCK) { mlocked = try_to_mlock_page(page, vma); if (mlocked) break; /* stop if actually mlocked page */ } } if (mlocked) goto out; if (list_empty(&mapping->i_mmap_nonlinear)) goto out; list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) { if (MLOCK_PAGES && unlikely(unlock)) { if (!(vma->vm_flags & VM_LOCKED)) continue; /* must visit all vmas */ ret = SWAP_MLOCK; /* leave mlocked == 0 */ goto out; /* no need to look further */ } if (!MLOCK_PAGES && !migration && (vma->vm_flags & VM_LOCKED)) continue; cursor = (unsigned long) vma->vm_private_data; if (cursor > max_nl_cursor) max_nl_cursor = cursor; cursor = vma->vm_end - vma->vm_start; if (cursor > max_nl_size) max_nl_size = cursor; } if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */ ret = SWAP_FAIL; goto out; } /* * We don't try to search for this page in the nonlinear vmas, * and page_referenced wouldn't have found it anyway. Instead * just walk the nonlinear vmas trying to age and unmap some. * The mapcount of the page we came in with is irrelevant, * but even so use it as a guide to how hard we should try? */ mapcount = page_mapcount(page); if (!mapcount) goto out; cond_resched_lock(&mapping->i_mmap_lock); max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK; if (max_nl_cursor == 0) max_nl_cursor = CLUSTER_SIZE; do { list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) { if (!MLOCK_PAGES && !migration && (vma->vm_flags & VM_LOCKED)) continue; cursor = (unsigned long) vma->vm_private_data; while ( cursor < max_nl_cursor && cursor < vma->vm_end - vma->vm_start) { ret = try_to_unmap_cluster(cursor, &mapcount, vma, page); if (ret == SWAP_MLOCK) mlocked = 2; /* to return below */ cursor += CLUSTER_SIZE; vma->vm_private_data = (void *) cursor; if ((int)mapcount <= 0) goto out; } vma->vm_private_data = (void *) max_nl_cursor; } cond_resched_lock(&mapping->i_mmap_lock); max_nl_cursor += CLUSTER_SIZE; } while (max_nl_cursor <= max_nl_size); /* * Don't loop forever (perhaps all the remaining pages are * in locked vmas). Reset cursor on all unreserved nonlinear * vmas, now forgetting on which ones it had fallen behind. */ list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) vma->vm_private_data = NULL; out: spin_unlock(&mapping->i_mmap_lock); if (mlocked) ret = SWAP_MLOCK; /* actually mlocked the page */ else if (ret == SWAP_MLOCK) ret = SWAP_AGAIN; /* saw VM_LOCKED vma */ return ret; } /** * try_to_unmap - try to remove all page table mappings to a page * @page: the page to get unmapped * @migration: migration flag * * Tries to remove all the page table entries which are mapping this * page, used in the pageout path. Caller must hold the page lock. * Return values are: * * SWAP_SUCCESS - we succeeded in removing all mappings * SWAP_AGAIN - we missed a mapping, try again later * SWAP_FAIL - the page is unswappable * SWAP_MLOCK - page is mlocked. */ int try_to_unmap(struct page *page, int migration) { int ret; BUG_ON(!PageLocked(page)); if (PageAnon(page)) ret = try_to_unmap_anon(page, 0, migration); else ret = try_to_unmap_file(page, 0, migration); if (ret != SWAP_MLOCK && !page_mapped(page)) ret = SWAP_SUCCESS; return ret; } #ifdef CONFIG_UNEVICTABLE_LRU /** * try_to_munlock - try to munlock a page * @page: the page to be munlocked * * Called from munlock code. Checks all of the VMAs mapping the page * to make sure nobody else has this page mlocked. The page will be * returned with PG_mlocked cleared if no other vmas have it mlocked. * * Return values are: * * SWAP_SUCCESS - no vma's holding page mlocked. * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem * SWAP_MLOCK - page is now mlocked. */ int try_to_munlock(struct page *page) { VM_BUG_ON(!PageLocked(page) || PageLRU(page)); if (PageAnon(page)) return try_to_unmap_anon(page, 1, 0); else return try_to_unmap_file(page, 1, 0); } #endif