aboutsummaryrefslogtreecommitdiffstats
path: root/arch/x86/kernel/cpu/perf_event_amd.c
blob: c2897b7b4a3b1c7a6cfe4fe7e70b3d7378432d4c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
#ifdef CONFIG_CPU_SUP_AMD

static DEFINE_RAW_SPINLOCK(amd_nb_lock);

static __initconst const u64 amd_hw_cache_event_ids
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses        */
		[ C(RESULT_MISS)   ] = 0x0041, /* Data Cache Misses          */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x0142, /* Data Cache Refills :system */
		[ C(RESULT_MISS)   ] = 0,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0267, /* Data Prefetcher :attempts  */
		[ C(RESULT_MISS)   ] = 0x0167, /* Data Prefetcher :cancelled */
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0080, /* Instruction cache fetches  */
		[ C(RESULT_MISS)   ] = 0x0081, /* Instruction cache misses   */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x014B, /* Prefetch Instructions :Load */
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x037D, /* Requests to L2 Cache :IC+DC */
		[ C(RESULT_MISS)   ] = 0x037E, /* L2 Cache Misses : IC+DC     */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x017F, /* L2 Fill/Writeback           */
		[ C(RESULT_MISS)   ] = 0,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses        */
		[ C(RESULT_MISS)   ] = 0x0046, /* L1 DTLB and L2 DLTB Miss   */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0080, /* Instruction fecthes        */
		[ C(RESULT_MISS)   ] = 0x0085, /* Instr. fetch ITLB misses   */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c2, /* Retired Branch Instr.      */
		[ C(RESULT_MISS)   ] = 0x00c3, /* Retired Mispredicted BI    */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
};

/*
 * AMD Performance Monitor K7 and later.
 */
static const u64 amd_perfmon_event_map[] =
{
  [PERF_COUNT_HW_CPU_CYCLES]		= 0x0076,
  [PERF_COUNT_HW_INSTRUCTIONS]		= 0x00c0,
  [PERF_COUNT_HW_CACHE_REFERENCES]	= 0x0080,
  [PERF_COUNT_HW_CACHE_MISSES]		= 0x0081,
  [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= 0x00c2,
  [PERF_COUNT_HW_BRANCH_MISSES]		= 0x00c3,
};

static u64 amd_pmu_event_map(int hw_event)
{
	return amd_perfmon_event_map[hw_event];
}

static int amd_pmu_hw_config(struct perf_event *event)
{
	int ret = x86_pmu_hw_config(event);

	if (ret)
		return ret;

	if (event->attr.type != PERF_TYPE_RAW)
		return 0;

	event->hw.config |= event->attr.config & AMD64_RAW_EVENT_MASK;

	return 0;
}

/*
 * AMD64 events are detected based on their event codes.
 */
static inline int amd_is_nb_event(struct hw_perf_event *hwc)
{
	return (hwc->config & 0xe0) == 0xe0;
}

static inline int amd_has_nb(struct cpu_hw_events *cpuc)
{
	struct amd_nb *nb = cpuc->amd_nb;

	return nb && nb->nb_id != -1;
}

static void amd_put_event_constraints(struct cpu_hw_events *cpuc,
				      struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;
	struct amd_nb *nb = cpuc->amd_nb;
	int i;

	/*
	 * only care about NB events
	 */
	if (!(amd_has_nb(cpuc) && amd_is_nb_event(hwc)))
		return;

	/*
	 * need to scan whole list because event may not have
	 * been assigned during scheduling
	 *
	 * no race condition possible because event can only
	 * be removed on one CPU at a time AND PMU is disabled
	 * when we come here
	 */
	for (i = 0; i < x86_pmu.num_counters; i++) {
		if (nb->owners[i] == event) {
			cmpxchg(nb->owners+i, event, NULL);
			break;
		}
	}
}

 /*
  * AMD64 NorthBridge events need special treatment because
  * counter access needs to be synchronized across all cores
  * of a package. Refer to BKDG section 3.12
  *
  * NB events are events measuring L3 cache, Hypertransport
  * traffic. They are identified by an event code >= 0xe00.
  * They measure events on the NorthBride which is shared
  * by all cores on a package. NB events are counted on a
  * shared set of counters. When a NB event is programmed
  * in a counter, the data actually comes from a shared
  * counter. Thus, access to those counters needs to be
  * synchronized.
  *
  * We implement the synchronization such that no two cores
  * can be measuring NB events using the same counters. Thus,
  * we maintain a per-NB allocation table. The available slot
  * is propagated using the event_constraint structure.
  *
  * We provide only one choice for each NB event based on
  * the fact that only NB events have restrictions. Consequently,
  * if a counter is available, there is a guarantee the NB event
  * will be assigned to it. If no slot is available, an empty
  * constraint is returned and scheduling will eventually fail
  * for this event.
  *
  * Note that all cores attached the same NB compete for the same
  * counters to host NB events, this is why we use atomic ops. Some
  * multi-chip CPUs may have more than one NB.
  *
  * Given that resources are allocated (cmpxchg), they must be
  * eventually freed for others to use. This is accomplished by
  * calling amd_put_event_constraints().
  *
  * Non NB events are not impacted by this restriction.
  */
static struct event_constraint *
amd_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;
	struct amd_nb *nb = cpuc->amd_nb;
	struct perf_event *old = NULL;
	int max = x86_pmu.num_counters;
	int i, j, k = -1;

	/*
	 * if not NB event or no NB, then no constraints
	 */
	if (!(amd_has_nb(cpuc) && amd_is_nb_event(hwc)))
		return &unconstrained;

	/*
	 * detect if already present, if so reuse
	 *
	 * cannot merge with actual allocation
	 * because of possible holes
	 *
	 * event can already be present yet not assigned (in hwc->idx)
	 * because of successive calls to x86_schedule_events() from
	 * hw_perf_group_sched_in() without hw_perf_enable()
	 */
	for (i = 0; i < max; i++) {
		/*
		 * keep track of first free slot
		 */
		if (k == -1 && !nb->owners[i])
			k = i;

		/* already present, reuse */
		if (nb->owners[i] == event)
			goto done;
	}
	/*
	 * not present, so grab a new slot
	 * starting either at:
	 */
	if (hwc->idx != -1) {
		/* previous assignment */
		i = hwc->idx;
	} else if (k != -1) {
		/* start from free slot found */
		i = k;
	} else {
		/*
		 * event not found, no slot found in
		 * first pass, try again from the
		 * beginning
		 */
		i = 0;
	}
	j = i;
	do {
		old = cmpxchg(nb->owners+i, NULL, event);
		if (!old)
			break;
		if (++i == max)
			i = 0;
	} while (i != j);
done:
	if (!old)
		return &nb->event_constraints[i];

	return &emptyconstraint;
}

static struct amd_nb *amd_alloc_nb(int cpu, int nb_id)
{
	struct amd_nb *nb;
	int i;

	nb = kmalloc(sizeof(struct amd_nb), GFP_KERNEL);
	if (!nb)
		return NULL;

	memset(nb, 0, sizeof(*nb));
	nb->nb_id = nb_id;

	/*
	 * initialize all possible NB constraints
	 */
	for (i = 0; i < x86_pmu.num_counters; i++) {
		__set_bit(i, nb->event_constraints[i].idxmsk);
		nb->event_constraints[i].weight = 1;
	}
	return nb;
}

static int amd_pmu_cpu_prepare(int cpu)
{
	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);

	WARN_ON_ONCE(cpuc->amd_nb);

	if (boot_cpu_data.x86_max_cores < 2)
		return NOTIFY_OK;

	cpuc->amd_nb = amd_alloc_nb(cpu, -1);
	if (!cpuc->amd_nb)
		return NOTIFY_BAD;

	return NOTIFY_OK;
}

static void amd_pmu_cpu_starting(int cpu)
{
	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
	struct amd_nb *nb;
	int i, nb_id;

	if (boot_cpu_data.x86_max_cores < 2)
		return;

	nb_id = amd_get_nb_id(cpu);
	WARN_ON_ONCE(nb_id == BAD_APICID);

	raw_spin_lock(&amd_nb_lock);

	for_each_online_cpu(i) {
		nb = per_cpu(cpu_hw_events, i).amd_nb;
		if (WARN_ON_ONCE(!nb))
			continue;

		if (nb->nb_id == nb_id) {
			kfree(cpuc->amd_nb);
			cpuc->amd_nb = nb;
			break;
		}
	}

	cpuc->amd_nb->nb_id = nb_id;
	cpuc->amd_nb->refcnt++;

	raw_spin_unlock(&amd_nb_lock);
}

static void amd_pmu_cpu_dead(int cpu)
{
	struct cpu_hw_events *cpuhw;

	if (boot_cpu_data.x86_max_cores < 2)
		return;

	cpuhw = &per_cpu(cpu_hw_events, cpu);

	raw_spin_lock(&amd_nb_lock);

	if (cpuhw->amd_nb) {
		struct amd_nb *nb = cpuhw->amd_nb;

		if (nb->nb_id == -1 || --nb->refcnt == 0)
			kfree(nb);

		cpuhw->amd_nb = NULL;
	}

	raw_spin_unlock(&amd_nb_lock);
}

static __initconst const struct x86_pmu amd_pmu = {
	.name			= "AMD",
	.handle_irq		= x86_pmu_handle_irq,
	.disable_all		= x86_pmu_disable_all,
	.enable_all		= x86_pmu_enable_all,
	.enable			= x86_pmu_enable_event,
	.disable		= x86_pmu_disable_event,
	.hw_config		= amd_pmu_hw_config,
	.schedule_events	= x86_schedule_events,
	.eventsel		= MSR_K7_EVNTSEL0,
	.perfctr		= MSR_K7_PERFCTR0,
	.event_map		= amd_pmu_event_map,
	.max_events		= ARRAY_SIZE(amd_perfmon_event_map),
	.num_counters		= 4,
	.cntval_bits		= 48,
	.cntval_mask		= (1ULL << 48) - 1,
	.apic			= 1,
	/* use highest bit to detect overflow */
	.max_period		= (1ULL << 47) - 1,
	.get_event_constraints	= amd_get_event_constraints,
	.put_event_constraints	= amd_put_event_constraints,

	.cpu_prepare		= amd_pmu_cpu_prepare,
	.cpu_starting		= amd_pmu_cpu_starting,
	.cpu_dead		= amd_pmu_cpu_dead,
};

static __init int amd_pmu_init(void)
{
	/* Performance-monitoring supported from K7 and later: */
	if (boot_cpu_data.x86 < 6)
		return -ENODEV;

	x86_pmu = amd_pmu;

	/* Events are common for all AMDs */
	memcpy(hw_cache_event_ids, amd_hw_cache_event_ids,
	       sizeof(hw_cache_event_ids));

	return 0;
}

#else /* CONFIG_CPU_SUP_AMD */

static int amd_pmu_init(void)
{
	return 0;
}

#endif