aboutsummaryrefslogtreecommitdiffstats
path: root/arch/powerpc/platforms/pseries/nvram.c
blob: 7e828ba29bc3ed20b0fa589dfe2c09c92c49cb71 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
/*
 *  c 2001 PPC 64 Team, IBM Corp
 *
 *      This program is free software; you can redistribute it and/or
 *      modify it under the terms of the GNU General Public License
 *      as published by the Free Software Foundation; either version
 *      2 of the License, or (at your option) any later version.
 *
 * /dev/nvram driver for PPC64
 *
 * This perhaps should live in drivers/char
 */


#include <linux/types.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <asm/uaccess.h>
#include <asm/nvram.h>
#include <asm/rtas.h>
#include <asm/prom.h>
#include <asm/machdep.h>

/* Max bytes to read/write in one go */
#define NVRW_CNT 0x20

static unsigned int nvram_size;
static int nvram_fetch, nvram_store;
static char nvram_buf[NVRW_CNT];	/* assume this is in the first 4GB */
static DEFINE_SPINLOCK(nvram_lock);

static long nvram_error_log_index = -1;
static long nvram_error_log_size = 0;

struct err_log_info {
	int error_type;
	unsigned int seq_num;
};
#define NVRAM_MAX_REQ		2079
#define NVRAM_MIN_REQ		1055

#define NVRAM_LOG_PART_NAME	"ibm,rtas-log"

static ssize_t pSeries_nvram_read(char *buf, size_t count, loff_t *index)
{
	unsigned int i;
	unsigned long len;
	int done;
	unsigned long flags;
	char *p = buf;


	if (nvram_size == 0 || nvram_fetch == RTAS_UNKNOWN_SERVICE)
		return -ENODEV;

	if (*index >= nvram_size)
		return 0;

	i = *index;
	if (i + count > nvram_size)
		count = nvram_size - i;

	spin_lock_irqsave(&nvram_lock, flags);

	for (; count != 0; count -= len) {
		len = count;
		if (len > NVRW_CNT)
			len = NVRW_CNT;
		
		if ((rtas_call(nvram_fetch, 3, 2, &done, i, __pa(nvram_buf),
			       len) != 0) || len != done) {
			spin_unlock_irqrestore(&nvram_lock, flags);
			return -EIO;
		}
		
		memcpy(p, nvram_buf, len);

		p += len;
		i += len;
	}

	spin_unlock_irqrestore(&nvram_lock, flags);
	
	*index = i;
	return p - buf;
}

static ssize_t pSeries_nvram_write(char *buf, size_t count, loff_t *index)
{
	unsigned int i;
	unsigned long len;
	int done;
	unsigned long flags;
	const char *p = buf;

	if (nvram_size == 0 || nvram_store == RTAS_UNKNOWN_SERVICE)
		return -ENODEV;

	if (*index >= nvram_size)
		return 0;

	i = *index;
	if (i + count > nvram_size)
		count = nvram_size - i;

	spin_lock_irqsave(&nvram_lock, flags);

	for (; count != 0; count -= len) {
		len = count;
		if (len > NVRW_CNT)
			len = NVRW_CNT;

		memcpy(nvram_buf, p, len);

		if ((rtas_call(nvram_store, 3, 2, &done, i, __pa(nvram_buf),
			       len) != 0) || len != done) {
			spin_unlock_irqrestore(&nvram_lock, flags);
			return -EIO;
		}
		
		p += len;
		i += len;
	}
	spin_unlock_irqrestore(&nvram_lock, flags);
	
	*index = i;
	return p - buf;
}

static ssize_t pSeries_nvram_get_size(void)
{
	return nvram_size ? nvram_size : -ENODEV;
}


/* nvram_write_error_log
 *
 * We need to buffer the error logs into nvram to ensure that we have
 * the failure information to decode.  If we have a severe error there
 * is no way to guarantee that the OS or the machine is in a state to
 * get back to user land and write the error to disk.  For example if
 * the SCSI device driver causes a Machine Check by writing to a bad
 * IO address, there is no way of guaranteeing that the device driver
 * is in any state that is would also be able to write the error data
 * captured to disk, thus we buffer it in NVRAM for analysis on the
 * next boot.
 *
 * In NVRAM the partition containing the error log buffer will looks like:
 * Header (in bytes):
 * +-----------+----------+--------+------------+------------------+
 * | signature | checksum | length | name       | data             |
 * |0          |1         |2      3|4         15|16        length-1|
 * +-----------+----------+--------+------------+------------------+
 *
 * The 'data' section would look like (in bytes):
 * +--------------+------------+-----------------------------------+
 * | event_logged | sequence # | error log                         |
 * |0            3|4          7|8            nvram_error_log_size-1|
 * +--------------+------------+-----------------------------------+
 *
 * event_logged: 0 if event has not been logged to syslog, 1 if it has
 * sequence #: The unique sequence # for each event. (until it wraps)
 * error log: The error log from event_scan
 */
int nvram_write_error_log(char * buff, int length,
                          unsigned int err_type, unsigned int error_log_cnt)
{
	int rc;
	loff_t tmp_index;
	struct err_log_info info;
	
	if (nvram_error_log_index == -1) {
		return -ESPIPE;
	}

	if (length > nvram_error_log_size) {
		length = nvram_error_log_size;
	}

	info.error_type = err_type;
	info.seq_num = error_log_cnt;

	tmp_index = nvram_error_log_index;

	rc = ppc_md.nvram_write((char *)&info, sizeof(struct err_log_info), &tmp_index);
	if (rc <= 0) {
		printk(KERN_ERR "nvram_write_error_log: Failed nvram_write (%d)\n", rc);
		return rc;
	}

	rc = ppc_md.nvram_write(buff, length, &tmp_index);
	if (rc <= 0) {
		printk(KERN_ERR "nvram_write_error_log: Failed nvram_write (%d)\n", rc);
		return rc;
	}
	
	return 0;
}

/* nvram_read_error_log
 *
 * Reads nvram for error log for at most 'length'
 */
int nvram_read_error_log(char * buff, int length,
                         unsigned int * err_type, unsigned int * error_log_cnt)
{
	int rc;
	loff_t tmp_index;
	struct err_log_info info;
	
	if (nvram_error_log_index == -1)
		return -1;

	if (length > nvram_error_log_size)
		length = nvram_error_log_size;

	tmp_index = nvram_error_log_index;

	rc = ppc_md.nvram_read((char *)&info, sizeof(struct err_log_info), &tmp_index);
	if (rc <= 0) {
		printk(KERN_ERR "nvram_read_error_log: Failed nvram_read (%d)\n", rc);
		return rc;
	}

	rc = ppc_md.nvram_read(buff, length, &tmp_index);
	if (rc <= 0) {
		printk(KERN_ERR "nvram_read_error_log: Failed nvram_read (%d)\n", rc);
		return rc;
	}

	*error_log_cnt = info.seq_num;
	*err_type = info.error_type;

	return 0;
}

/* This doesn't actually zero anything, but it sets the event_logged
 * word to tell that this event is safely in syslog.
 */
int nvram_clear_error_log(void)
{
	loff_t tmp_index;
	int clear_word = ERR_FLAG_ALREADY_LOGGED;
	int rc;

	if (nvram_error_log_index == -1)
		return -1;

	tmp_index = nvram_error_log_index;
	
	rc = ppc_md.nvram_write((char *)&clear_word, sizeof(int), &tmp_index);
	if (rc <= 0) {
		printk(KERN_ERR "nvram_clear_error_log: Failed nvram_write (%d)\n", rc);
		return rc;
	}

	return 0;
}

/* pseries_nvram_init_log_partition
 *
 * This will setup the partition we need for buffering the
 * error logs and cleanup partitions if needed.
 *
 * The general strategy is the following:
 * 1.) If there is log partition large enough then use it.
 * 2.) If there is none large enough, search
 * for a free partition that is large enough.
 * 3.) If there is not a free partition large enough remove 
 * _all_ OS partitions and consolidate the space.
 * 4.) Will first try getting a chunk that will satisfy the maximum
 * error log size (NVRAM_MAX_REQ).
 * 5.) If the max chunk cannot be allocated then try finding a chunk
 * that will satisfy the minum needed (NVRAM_MIN_REQ).
 */
static int __init pseries_nvram_init_log_partition(void)
{
	loff_t p;
	int size;

	/* Scan nvram for partitions */
	nvram_scan_partitions();

	/* Lookg for ours */
	p = nvram_find_partition(NVRAM_LOG_PART_NAME, NVRAM_SIG_OS, &size);

	/* Found one but too small, remove it */
	if (p && size < NVRAM_MIN_REQ) {
		pr_info("nvram: Found too small "NVRAM_LOG_PART_NAME" partition"
			",removing it...");
		nvram_remove_partition(NVRAM_LOG_PART_NAME, NVRAM_SIG_OS);
		p = 0;
	}

	/* Create one if we didn't find */
	if (!p) {
		p = nvram_create_partition(NVRAM_LOG_PART_NAME, NVRAM_SIG_OS,
					   NVRAM_MAX_REQ, NVRAM_MIN_REQ);
		/* No room for it, try to get rid of any OS partition
		 * and try again
		 */
		if (p == -ENOSPC) {
			pr_info("nvram: No room to create "NVRAM_LOG_PART_NAME
				" partition, deleting all OS partitions...");
			nvram_remove_partition(NULL, NVRAM_SIG_OS);
			p = nvram_create_partition(NVRAM_LOG_PART_NAME,
						   NVRAM_SIG_OS, NVRAM_MAX_REQ,
						   NVRAM_MIN_REQ);
		}
	}

	if (p <= 0) {
		pr_err("nvram: Failed to find or create "NVRAM_LOG_PART_NAME
		       " partition, err %d\n", (int)p);
		return 0;
	}

	nvram_error_log_index = p;
	nvram_error_log_size = nvram_get_partition_size(p) -
		sizeof(struct err_log_info);
	
	return 0;
}
machine_arch_initcall(pseries, pseries_nvram_init_log_partition);

int __init pSeries_nvram_init(void)
{
	struct device_node *nvram;
	const unsigned int *nbytes_p;
	unsigned int proplen;

	nvram = of_find_node_by_type(NULL, "nvram");
	if (nvram == NULL)
		return -ENODEV;

	nbytes_p = of_get_property(nvram, "#bytes", &proplen);
	if (nbytes_p == NULL || proplen != sizeof(unsigned int)) {
		of_node_put(nvram);
		return -EIO;
	}

	nvram_size = *nbytes_p;

	nvram_fetch = rtas_token("nvram-fetch");
	nvram_store = rtas_token("nvram-store");
	printk(KERN_INFO "PPC64 nvram contains %d bytes\n", nvram_size);
	of_node_put(nvram);

	ppc_md.nvram_read	= pSeries_nvram_read;
	ppc_md.nvram_write	= pSeries_nvram_write;
	ppc_md.nvram_size	= pSeries_nvram_get_size;

	return 0;
}