aboutsummaryrefslogtreecommitdiffstats
path: root/arch/mips/sni/time.c
blob: 0904d4d30cb338d1bdd4beaaf136472b488f4657 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
#include <linux/types.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/smp.h>
#include <linux/time.h>
#include <linux/clockchips.h>

#include <asm/i8253.h>
#include <asm/sni.h>
#include <asm/time.h>
#include <asm-generic/rtc.h>

#define SNI_CLOCK_TICK_RATE     3686400
#define SNI_COUNTER2_DIV        64
#define SNI_COUNTER0_DIV        ((SNI_CLOCK_TICK_RATE / SNI_COUNTER2_DIV) / HZ)

static void a20r_set_mode(enum clock_event_mode mode,
                          struct clock_event_device *evt)
{
	switch (mode) {
	case CLOCK_EVT_MODE_PERIODIC:
		*(volatile u8 *)(A20R_PT_CLOCK_BASE + 12) = 0x34;
		wmb();
		*(volatile u8 *)(A20R_PT_CLOCK_BASE +  0) = SNI_COUNTER0_DIV;
		wmb();
		*(volatile u8 *)(A20R_PT_CLOCK_BASE +  0) = SNI_COUNTER0_DIV >> 8;
		wmb();

		*(volatile u8 *)(A20R_PT_CLOCK_BASE + 12) = 0xb4;
		wmb();
		*(volatile u8 *)(A20R_PT_CLOCK_BASE +  8) = SNI_COUNTER2_DIV;
		wmb();
		*(volatile u8 *)(A20R_PT_CLOCK_BASE +  8) = SNI_COUNTER2_DIV >> 8;
		wmb();

                break;
        case CLOCK_EVT_MODE_ONESHOT:
        case CLOCK_EVT_MODE_UNUSED:
        case CLOCK_EVT_MODE_SHUTDOWN:
                break;
        case CLOCK_EVT_MODE_RESUME:
                break;
        }
}

static struct clock_event_device a20r_clockevent_device = {
	.name		= "a20r-timer",
	.features	= CLOCK_EVT_FEAT_PERIODIC,

	/* .mult, .shift, .max_delta_ns and .min_delta_ns left uninitialized */

	.rating		= 300,
	.irq		= SNI_A20R_IRQ_TIMER,
	.set_mode	= a20r_set_mode,
};

static irqreturn_t a20r_interrupt(int irq, void *dev_id)
{
	struct clock_event_device *cd = dev_id;

	*(volatile u8 *)A20R_PT_TIM0_ACK = 0;
	wmb();

	cd->event_handler(cd);

	return IRQ_HANDLED;
}

static struct irqaction a20r_irqaction = {
	.handler	= a20r_interrupt,
	.flags		= IRQF_DISABLED | IRQF_PERCPU | IRQF_TIMER,
	.name		= "a20r-timer",
};

/*
 * a20r platform uses 2 counters to divide the input frequency.
 * Counter 2 output is connected to Counter 0 & 1 input.
 */
static void __init sni_a20r_timer_setup(void)
{
	struct clock_event_device *cd = &a20r_clockevent_device;
	struct irqaction *action = &a20r_irqaction;
	unsigned int cpu = smp_processor_id();

	cd->cpumask             = cpumask_of(cpu);
	clockevents_register_device(cd);
	action->dev_id = cd;
	setup_irq(SNI_A20R_IRQ_TIMER, &a20r_irqaction);
}

#define SNI_8254_TICK_RATE        1193182UL

#define SNI_8254_TCSAMP_COUNTER   ((SNI_8254_TICK_RATE / HZ) + 255)

static __init unsigned long dosample(void)
{
	u32 ct0, ct1;
	volatile u8 msb;

	/* Start the counter. */
	outb_p(0x34, 0x43);
	outb_p(SNI_8254_TCSAMP_COUNTER & 0xff, 0x40);
	outb(SNI_8254_TCSAMP_COUNTER >> 8, 0x40);

	/* Get initial counter invariant */
	ct0 = read_c0_count();

	/* Latch and spin until top byte of counter0 is zero */
	do {
		outb(0x00, 0x43);
		(void) inb(0x40);
		msb = inb(0x40);
		ct1 = read_c0_count();
	} while (msb);

	/* Stop the counter. */
	outb(0x38, 0x43);
	/*
	 * Return the difference, this is how far the r4k counter increments
	 * for every 1/HZ seconds. We round off the nearest 1 MHz of master
	 * clock (= 1000000 / HZ / 2).
	 */
	/*return (ct1 - ct0 + (500000/HZ/2)) / (500000/HZ) * (500000/HZ);*/
	return (ct1 - ct0) / (500000/HZ) * (500000/HZ);
}

/*
 * Here we need to calibrate the cycle counter to at least be close.
 */
void __init plat_time_init(void)
{
	unsigned long r4k_ticks[3];
	unsigned long r4k_tick;

	/*
	 * Figure out the r4k offset, the algorithm is very simple and works in
	 * _all_ cases as long as the 8254 counter register itself works ok (as
	 * an interrupt driving timer it does not because of bug, this is why
	 * we are using the onchip r4k counter/compare register to serve this
	 * purpose, but for r4k_offset calculation it will work ok for us).
	 * There are other very complicated ways of performing this calculation
	 * but this one works just fine so I am not going to futz around. ;-)
	 */
	printk(KERN_INFO "Calibrating system timer... ");
	dosample();	/* Prime cache. */
	dosample();	/* Prime cache. */
	/* Zero is NOT an option. */
	do {
		r4k_ticks[0] = dosample();
	} while (!r4k_ticks[0]);
	do {
		r4k_ticks[1] = dosample();
	} while (!r4k_ticks[1]);

	if (r4k_ticks[0] != r4k_ticks[1]) {
		printk("warning: timer counts differ, retrying... ");
		r4k_ticks[2] = dosample();
		if (r4k_ticks[2] == r4k_ticks[0]
		    || r4k_ticks[2] == r4k_ticks[1])
			r4k_tick = r4k_ticks[2];
		else {
			printk("disagreement, using average... ");
			r4k_tick = (r4k_ticks[0] + r4k_ticks[1]
				   + r4k_ticks[2]) / 3;
		}
	} else
		r4k_tick = r4k_ticks[0];

	printk("%d [%d.%04d MHz CPU]\n", (int) r4k_tick,
		(int) (r4k_tick / (500000 / HZ)),
		(int) (r4k_tick % (500000 / HZ)));

	mips_hpt_frequency = r4k_tick * HZ;

	switch (sni_brd_type) {
	case SNI_BRD_10:
	case SNI_BRD_10NEW:
	case SNI_BRD_TOWER_OASIC:
	case SNI_BRD_MINITOWER:
		sni_a20r_timer_setup();
		break;
	}
	setup_pit_timer();
}

void read_persistent_clock(struct timespec *ts)
{
	ts->tv_sec = -1;
	ts->tv_nsec = 0;
}