aboutsummaryrefslogtreecommitdiffstats
path: root/arch/m68k/math-emu/multi_arith.h
blob: 4b5eb3d85638e576346e535ea103d15a3b3bf2cc (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
/* multi_arith.h: multi-precision integer arithmetic functions, needed
   to do extended-precision floating point.

   (c) 1998 David Huggins-Daines.

   Somewhat based on arch/alpha/math-emu/ieee-math.c, which is (c)
   David Mosberger-Tang.

   You may copy, modify, and redistribute this file under the terms of
   the GNU General Public License, version 2, or any later version, at
   your convenience. */

/* Note:

   These are not general multi-precision math routines.  Rather, they
   implement the subset of integer arithmetic that we need in order to
   multiply, divide, and normalize 128-bit unsigned mantissae.  */

#ifndef MULTI_ARITH_H
#define MULTI_ARITH_H

static inline void fp_denormalize(struct fp_ext *reg, unsigned int cnt)
{
	reg->exp += cnt;

	switch (cnt) {
	case 0 ... 8:
		reg->lowmant = reg->mant.m32[1] << (8 - cnt);
		reg->mant.m32[1] = (reg->mant.m32[1] >> cnt) |
				   (reg->mant.m32[0] << (32 - cnt));
		reg->mant.m32[0] = reg->mant.m32[0] >> cnt;
		break;
	case 9 ... 32:
		reg->lowmant = reg->mant.m32[1] >> (cnt - 8);
		if (reg->mant.m32[1] << (40 - cnt))
			reg->lowmant |= 1;
		reg->mant.m32[1] = (reg->mant.m32[1] >> cnt) |
				   (reg->mant.m32[0] << (32 - cnt));
		reg->mant.m32[0] = reg->mant.m32[0] >> cnt;
		break;
	case 33 ... 39:
		asm volatile ("bfextu %1{%2,#8},%0" : "=d" (reg->lowmant)
			: "m" (reg->mant.m32[0]), "d" (64 - cnt));
		if (reg->mant.m32[1] << (40 - cnt))
			reg->lowmant |= 1;
		reg->mant.m32[1] = reg->mant.m32[0] >> (cnt - 32);
		reg->mant.m32[0] = 0;
		break;
	case 40 ... 71:
		reg->lowmant = reg->mant.m32[0] >> (cnt - 40);
		if ((reg->mant.m32[0] << (72 - cnt)) || reg->mant.m32[1])
			reg->lowmant |= 1;
		reg->mant.m32[1] = reg->mant.m32[0] >> (cnt - 32);
		reg->mant.m32[0] = 0;
		break;
	default:
		reg->lowmant = reg->mant.m32[0] || reg->mant.m32[1];
		reg->mant.m32[0] = 0;
		reg->mant.m32[1] = 0;
		break;
	}
}

static inline int fp_overnormalize(struct fp_ext *reg)
{
	int shift;

	if (reg->mant.m32[0]) {
		asm ("bfffo %1{#0,#32},%0" : "=d" (shift) : "dm" (reg->mant.m32[0]));
		reg->mant.m32[0] = (reg->mant.m32[0] << shift) | (reg->mant.m32[1] >> (32 - shift));
		reg->mant.m32[1] = (reg->mant.m32[1] << shift);
	} else {
		asm ("bfffo %1{#0,#32},%0" : "=d" (shift) : "dm" (reg->mant.m32[1]));
		reg->mant.m32[0] = (reg->mant.m32[1] << shift);
		reg->mant.m32[1] = 0;
		shift += 32;
	}

	return shift;
}

static inline int fp_addmant(struct fp_ext *dest, struct fp_ext *src)
{
	int carry;

	/* we assume here, gcc only insert move and a clr instr */
	asm volatile ("add.b %1,%0" : "=d,g" (dest->lowmant)
		: "g,d" (src->lowmant), "0,0" (dest->lowmant));
	asm volatile ("addx.l %1,%0" : "=d" (dest->mant.m32[1])
		: "d" (src->mant.m32[1]), "0" (dest->mant.m32[1]));
	asm volatile ("addx.l %1,%0" : "=d" (dest->mant.m32[0])
		: "d" (src->mant.m32[0]), "0" (dest->mant.m32[0]));
	asm volatile ("addx.l %0,%0" : "=d" (carry) : "0" (0));

	return carry;
}

static inline int fp_addcarry(struct fp_ext *reg)
{
	if (++reg->exp == 0x7fff) {
		if (reg->mant.m64)
			fp_set_sr(FPSR_EXC_INEX2);
		reg->mant.m64 = 0;
		fp_set_sr(FPSR_EXC_OVFL);
		return 0;
	}
	reg->lowmant = (reg->mant.m32[1] << 7) | (reg->lowmant ? 1 : 0);
	reg->mant.m32[1] = (reg->mant.m32[1] >> 1) |
			   (reg->mant.m32[0] << 31);
	reg->mant.m32[0] = (reg->mant.m32[0] >> 1) | 0x80000000;

	return 1;
}

static inline void fp_submant(struct fp_ext *dest, struct fp_ext *src1,
			      struct fp_ext *src2)
{
	/* we assume here, gcc only insert move and a clr instr */
	asm volatile ("sub.b %1,%0" : "=d,g" (dest->lowmant)
		: "g,d" (src2->lowmant), "0,0" (src1->lowmant));
	asm volatile ("subx.l %1,%0" : "=d" (dest->mant.m32[1])
		: "d" (src2->mant.m32[1]), "0" (src1->mant.m32[1]));
	asm volatile ("subx.l %1,%0" : "=d" (dest->mant.m32[0])
		: "d" (src2->mant.m32[0]), "0" (src1->mant.m32[0]));
}

#define fp_mul64(desth, destl, src1, src2) ({				\
	asm ("mulu.l %2,%1:%0" : "=d" (destl), "=d" (desth)		\
		: "dm" (src1), "0" (src2));				\
})
#define fp_div64(quot, rem, srch, srcl, div)				\
	asm ("divu.l %2,%1:%0" : "=d" (quot), "=d" (rem)		\
		: "dm" (div), "1" (srch), "0" (srcl))
#define fp_add64(dest1, dest2, src1, src2) ({				\
	asm ("add.l %1,%0" : "=d,dm" (dest2)				\
		: "dm,d" (src2), "0,0" (dest2));			\
	asm ("addx.l %1,%0" : "=d" (dest1)				\
		: "d" (src1), "0" (dest1));				\
})
#define fp_addx96(dest, src) ({						\
	/* we assume here, gcc only insert move and a clr instr */	\
	asm volatile ("add.l %1,%0" : "=d,g" (dest->m32[2])		\
		: "g,d" (temp.m32[1]), "0,0" (dest->m32[2]));		\
	asm volatile ("addx.l %1,%0" : "=d" (dest->m32[1])		\
		: "d" (temp.m32[0]), "0" (dest->m32[1]));		\
	asm volatile ("addx.l %1,%0" : "=d" (dest->m32[0])		\
		: "d" (0), "0" (dest->m32[0]));				\
})
#define fp_sub64(dest, src) ({						\
	asm ("sub.l %1,%0" : "=d,dm" (dest.m32[1])			\
		: "dm,d" (src.m32[1]), "0,0" (dest.m32[1]));		\
	asm ("subx.l %1,%0" : "=d" (dest.m32[0])			\
		: "d" (src.m32[0]), "0" (dest.m32[0]));			\
})
#define fp_sub96c(dest, srch, srcm, srcl) ({				\
	char carry;							\
	asm ("sub.l %1,%0" : "=d,dm" (dest.m32[2])			\
		: "dm,d" (srcl), "0,0" (dest.m32[2]));			\
	asm ("subx.l %1,%0" : "=d" (dest.m32[1])			\
		: "d" (srcm), "0" (dest.m32[1]));			\
	asm ("subx.l %2,%1; scs %0" : "=d" (carry), "=d" (dest.m32[0])	\
		: "d" (srch), "1" (dest.m32[0]));			\
	carry;								\
})

static inline void fp_multiplymant(union fp_mant128 *dest, struct fp_ext *src1,
				   struct fp_ext *src2)
{
	union fp_mant64 temp;

	fp_mul64(dest->m32[0], dest->m32[1], src1->mant.m32[0], src2->mant.m32[0]);
	fp_mul64(dest->m32[2], dest->m32[3], src1->mant.m32[1], src2->mant.m32[1]);

	fp_mul64(temp.m32[0], temp.m32[1], src1->mant.m32[0], src2->mant.m32[1]);
	fp_addx96(dest, temp);

	fp_mul64(temp.m32[0], temp.m32[1], src1->mant.m32[1], src2->mant.m32[0]);
	fp_addx96(dest, temp);
}

static inline void fp_dividemant(union fp_mant128 *dest, struct fp_ext *src,
				 struct fp_ext *div)
{
	union fp_mant128 tmp;
	union fp_mant64 tmp64;
	unsigned long *mantp = dest->m32;
	unsigned long fix, rem, first, dummy;
	int i;

	/* the algorithm below requires dest to be smaller than div,
	   but both have the high bit set */
	if (src->mant.m64 >= div->mant.m64) {
		fp_sub64(src->mant, div->mant);
		*mantp = 1;
	} else
		*mantp = 0;
	mantp++;

	/* basic idea behind this algorithm: we can't divide two 64bit numbers
	   (AB/CD) directly, but we can calculate AB/C0, but this means this
	   quotient is off by C0/CD, so we have to multiply the first result
	   to fix the result, after that we have nearly the correct result
	   and only a few corrections are needed. */

	/* C0/CD can be precalculated, but it's an 64bit division again, but
	   we can make it a bit easier, by dividing first through C so we get
	   10/1D and now only a single shift and the value fits into 32bit. */
	fix = 0x80000000;
	dummy = div->mant.m32[1] / div->mant.m32[0] + 1;
	dummy = (dummy >> 1) | fix;
	fp_div64(fix, dummy, fix, 0, dummy);
	fix--;

	for (i = 0; i < 3; i++, mantp++) {
		if (src->mant.m32[0] == div->mant.m32[0]) {
			fp_div64(first, rem, 0, src->mant.m32[1], div->mant.m32[0]);

			fp_mul64(*mantp, dummy, first, fix);
			*mantp += fix;
		} else {
			fp_div64(first, rem, src->mant.m32[0], src->mant.m32[1], div->mant.m32[0]);

			fp_mul64(*mantp, dummy, first, fix);
		}

		fp_mul64(tmp.m32[0], tmp.m32[1], div->mant.m32[0], first - *mantp);
		fp_add64(tmp.m32[0], tmp.m32[1], 0, rem);
		tmp.m32[2] = 0;

		fp_mul64(tmp64.m32[0], tmp64.m32[1], *mantp, div->mant.m32[1]);
		fp_sub96c(tmp, 0, tmp64.m32[0], tmp64.m32[1]);

		src->mant.m32[0] = tmp.m32[1];
		src->mant.m32[1] = tmp.m32[2];

		while (!fp_sub96c(tmp, 0, div->mant.m32[0], div->mant.m32[1])) {
			src->mant.m32[0] = tmp.m32[1];
			src->mant.m32[1] = tmp.m32[2];
			*mantp += 1;
		}
	}
}

static inline void fp_putmant128(struct fp_ext *dest, union fp_mant128 *src,
				 int shift)
{
	unsigned long tmp;

	switch (shift) {
	case 0:
		dest->mant.m64 = src->m64[0];
		dest->lowmant = src->m32[2] >> 24;
		if (src->m32[3] || (src->m32[2] << 8))
			dest->lowmant |= 1;
		break;
	case 1:
		asm volatile ("lsl.l #1,%0"
			: "=d" (tmp) : "0" (src->m32[2]));
		asm volatile ("roxl.l #1,%0"
			: "=d" (dest->mant.m32[1]) : "0" (src->m32[1]));
		asm volatile ("roxl.l #1,%0"
			: "=d" (dest->mant.m32[0]) : "0" (src->m32[0]));
		dest->lowmant = tmp >> 24;
		if (src->m32[3] || (tmp << 8))
			dest->lowmant |= 1;
		break;
	case 31:
		asm volatile ("lsr.l #1,%1; roxr.l #1,%0"
			: "=d" (dest->mant.m32[0])
			: "d" (src->m32[0]), "0" (src->m32[1]));
		asm volatile ("roxr.l #1,%0"
			: "=d" (dest->mant.m32[1]) : "0" (src->m32[2]));
		asm volatile ("roxr.l #1,%0"
			: "=d" (tmp) : "0" (src->m32[3]));
		dest->lowmant = tmp >> 24;
		if (src->m32[3] << 7)
			dest->lowmant |= 1;
		break;
	case 32:
		dest->mant.m32[0] = src->m32[1];
		dest->mant.m32[1] = src->m32[2];
		dest->lowmant = src->m32[3] >> 24;
		if (src->m32[3] << 8)
			dest->lowmant |= 1;
		break;
	}
}

#endif	/* MULTI_ARITH_H */