aboutsummaryrefslogtreecommitdiffstats
path: root/arch/ia64/mm/contig.c
blob: e004143ba86b7f22ce19d8a002a3cbd944b94c7a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
/*
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 * Copyright (C) 1998-2003 Hewlett-Packard Co
 *	David Mosberger-Tang <davidm@hpl.hp.com>
 *	Stephane Eranian <eranian@hpl.hp.com>
 * Copyright (C) 2000, Rohit Seth <rohit.seth@intel.com>
 * Copyright (C) 1999 VA Linux Systems
 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
 * Copyright (C) 2003 Silicon Graphics, Inc. All rights reserved.
 *
 * Routines used by ia64 machines with contiguous (or virtually contiguous)
 * memory.
 */
#include <linux/bootmem.h>
#include <linux/efi.h>
#include <linux/mm.h>
#include <linux/swap.h>

#include <asm/meminit.h>
#include <asm/pgalloc.h>
#include <asm/pgtable.h>
#include <asm/sections.h>
#include <asm/mca.h>

#ifdef CONFIG_VIRTUAL_MEM_MAP
static unsigned long num_dma_physpages;
static unsigned long max_gap;
#endif

/**
 * show_mem - display a memory statistics summary
 *
 * Just walks the pages in the system and describes where they're allocated.
 */
void
show_mem (void)
{
	int i, total = 0, reserved = 0;
	int shared = 0, cached = 0;

	printk("Mem-info:\n");
	show_free_areas();

	printk("Free swap:       %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
	i = max_mapnr;
	for (i = 0; i < max_mapnr; i++) {
		if (!pfn_valid(i)) {
#ifdef CONFIG_VIRTUAL_MEM_MAP
			if (max_gap < LARGE_GAP)
				continue;
			i = vmemmap_find_next_valid_pfn(0, i) - 1;
#endif
			continue;
		}
		total++;
		if (PageReserved(mem_map+i))
			reserved++;
		else if (PageSwapCache(mem_map+i))
			cached++;
		else if (page_count(mem_map + i))
			shared += page_count(mem_map + i) - 1;
	}
	printk("%d pages of RAM\n", total);
	printk("%d reserved pages\n", reserved);
	printk("%d pages shared\n", shared);
	printk("%d pages swap cached\n", cached);
	printk("%ld pages in page table cache\n",
		pgtable_quicklist_total_size());
}

/* physical address where the bootmem map is located */
unsigned long bootmap_start;

/**
 * find_max_pfn - adjust the maximum page number callback
 * @start: start of range
 * @end: end of range
 * @arg: address of pointer to global max_pfn variable
 *
 * Passed as a callback function to efi_memmap_walk() to determine the highest
 * available page frame number in the system.
 */
int
find_max_pfn (unsigned long start, unsigned long end, void *arg)
{
	unsigned long *max_pfnp = arg, pfn;

	pfn = (PAGE_ALIGN(end - 1) - PAGE_OFFSET) >> PAGE_SHIFT;
	if (pfn > *max_pfnp)
		*max_pfnp = pfn;
	return 0;
}

/**
 * find_bootmap_location - callback to find a memory area for the bootmap
 * @start: start of region
 * @end: end of region
 * @arg: unused callback data
 *
 * Find a place to put the bootmap and return its starting address in
 * bootmap_start.  This address must be page-aligned.
 */
static int __init
find_bootmap_location (unsigned long start, unsigned long end, void *arg)
{
	unsigned long needed = *(unsigned long *)arg;
	unsigned long range_start, range_end, free_start;
	int i;

#if IGNORE_PFN0
	if (start == PAGE_OFFSET) {
		start += PAGE_SIZE;
		if (start >= end)
			return 0;
	}
#endif

	free_start = PAGE_OFFSET;

	for (i = 0; i < num_rsvd_regions; i++) {
		range_start = max(start, free_start);
		range_end   = min(end, rsvd_region[i].start & PAGE_MASK);

		free_start = PAGE_ALIGN(rsvd_region[i].end);

		if (range_end <= range_start)
			continue; /* skip over empty range */

		if (range_end - range_start >= needed) {
			bootmap_start = __pa(range_start);
			return -1;	/* done */
		}

		/* nothing more available in this segment */
		if (range_end == end)
			return 0;
	}
	return 0;
}

/**
 * find_memory - setup memory map
 *
 * Walk the EFI memory map and find usable memory for the system, taking
 * into account reserved areas.
 */
void __init
find_memory (void)
{
	unsigned long bootmap_size;

	reserve_memory();

	/* first find highest page frame number */
	max_pfn = 0;
	efi_memmap_walk(find_max_pfn, &max_pfn);

	/* how many bytes to cover all the pages */
	bootmap_size = bootmem_bootmap_pages(max_pfn) << PAGE_SHIFT;

	/* look for a location to hold the bootmap */
	bootmap_start = ~0UL;
	efi_memmap_walk(find_bootmap_location, &bootmap_size);
	if (bootmap_start == ~0UL)
		panic("Cannot find %ld bytes for bootmap\n", bootmap_size);

	bootmap_size = init_bootmem(bootmap_start >> PAGE_SHIFT, max_pfn);

	/* Free all available memory, then mark bootmem-map as being in use. */
	efi_memmap_walk(filter_rsvd_memory, free_bootmem);
	reserve_bootmem(bootmap_start, bootmap_size);

	find_initrd();
}

#ifdef CONFIG_SMP
/**
 * per_cpu_init - setup per-cpu variables
 *
 * Allocate and setup per-cpu data areas.
 */
void * __cpuinit
per_cpu_init (void)
{
	void *cpu_data;
	int cpu;
	static int first_time=1;

	/*
	 * get_free_pages() cannot be used before cpu_init() done.  BSP
	 * allocates "NR_CPUS" pages for all CPUs to avoid that AP calls
	 * get_zeroed_page().
	 */
	if (first_time) {
		first_time=0;
		cpu_data = __alloc_bootmem(PERCPU_PAGE_SIZE * NR_CPUS,
					   PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
		for (cpu = 0; cpu < NR_CPUS; cpu++) {
			memcpy(cpu_data, __phys_per_cpu_start, __per_cpu_end - __per_cpu_start);
			__per_cpu_offset[cpu] = (char *) cpu_data - __per_cpu_start;
			cpu_data += PERCPU_PAGE_SIZE;
			per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu];
		}
	}
	return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
}
#endif /* CONFIG_SMP */

static int
count_pages (u64 start, u64 end, void *arg)
{
	unsigned long *count = arg;

	*count += (end - start) >> PAGE_SHIFT;
	return 0;
}

#ifdef CONFIG_VIRTUAL_MEM_MAP
static int
count_dma_pages (u64 start, u64 end, void *arg)
{
	unsigned long *count = arg;

	if (start < MAX_DMA_ADDRESS)
		*count += (min(end, MAX_DMA_ADDRESS) - start) >> PAGE_SHIFT;
	return 0;
}
#endif

/*
 * Set up the page tables.
 */

void __init
paging_init (void)
{
	unsigned long max_dma;
	unsigned long zones_size[MAX_NR_ZONES];
#ifdef CONFIG_VIRTUAL_MEM_MAP
	unsigned long zholes_size[MAX_NR_ZONES];
#endif

	/* initialize mem_map[] */

	memset(zones_size, 0, sizeof(zones_size));

	num_physpages = 0;
	efi_memmap_walk(count_pages, &num_physpages);

	max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;

#ifdef CONFIG_VIRTUAL_MEM_MAP
	memset(zholes_size, 0, sizeof(zholes_size));

	num_dma_physpages = 0;
	efi_memmap_walk(count_dma_pages, &num_dma_physpages);

	if (max_low_pfn < max_dma) {
		zones_size[ZONE_DMA] = max_low_pfn;
		zholes_size[ZONE_DMA] = max_low_pfn - num_dma_physpages;
	} else {
		zones_size[ZONE_DMA] = max_dma;
		zholes_size[ZONE_DMA] = max_dma - num_dma_physpages;
		if (num_physpages > num_dma_physpages) {
			zones_size[ZONE_NORMAL] = max_low_pfn - max_dma;
			zholes_size[ZONE_NORMAL] =
				((max_low_pfn - max_dma) -
				 (num_physpages - num_dma_physpages));
		}
	}

	efi_memmap_walk(find_largest_hole, (u64 *)&max_gap);
	if (max_gap < LARGE_GAP) {
		vmem_map = (struct page *) 0;
		free_area_init_node(0, NODE_DATA(0), zones_size, 0,
				    zholes_size);
	} else {
		unsigned long map_size;

		/* allocate virtual_mem_map */

		map_size = PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) *
			sizeof(struct page));
		vmalloc_end -= map_size;
		vmem_map = (struct page *) vmalloc_end;
		efi_memmap_walk(create_mem_map_page_table, NULL);

		NODE_DATA(0)->node_mem_map = vmem_map;
		free_area_init_node(0, NODE_DATA(0), zones_size,
				    0, zholes_size);

		printk("Virtual mem_map starts at 0x%p\n", mem_map);
	}
#else /* !CONFIG_VIRTUAL_MEM_MAP */
	if (max_low_pfn < max_dma)
		zones_size[ZONE_DMA] = max_low_pfn;
	else {
		zones_size[ZONE_DMA] = max_dma;
		zones_size[ZONE_NORMAL] = max_low_pfn - max_dma;
	}
	free_area_init(zones_size);
#endif /* !CONFIG_VIRTUAL_MEM_MAP */
	zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));
}