1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
|
/*
* Copyright (C) 2000-2003 Axis Communications AB
*
* Authors: Bjorn Wesen (bjornw@axis.com)
* Mikael Starvik (starvik@axis.com)
* Tobias Anderberg (tobiasa@axis.com), CRISv32 port.
*
* This file handles the architecture-dependent parts of process handling..
*/
#include <linux/sched.h>
#include <linux/err.h>
#include <linux/fs.h>
#include <linux/slab.h>
#include <hwregs/reg_rdwr.h>
#include <hwregs/reg_map.h>
#include <hwregs/timer_defs.h>
#include <hwregs/intr_vect_defs.h>
extern void stop_watchdog(void);
extern int cris_hlt_counter;
/* We use this if we don't have any better idle routine. */
void default_idle(void)
{
local_irq_disable();
if (!need_resched() && !cris_hlt_counter) {
/* Halt until exception. */
__asm__ volatile("ei \n\t"
"halt ");
}
local_irq_enable();
}
/*
* Free current thread data structures etc..
*/
extern void deconfigure_bp(long pid);
void exit_thread(void)
{
deconfigure_bp(current->pid);
}
/*
* If the watchdog is enabled, disable interrupts and enter an infinite loop.
* The watchdog will reset the CPU after 0.1s. If the watchdog isn't enabled
* then enable it and wait.
*/
extern void arch_enable_nmi(void);
void
hard_reset_now(void)
{
/*
* Don't declare this variable elsewhere. We don't want any other
* code to know about it than the watchdog handler in entry.S and
* this code, implementing hard reset through the watchdog.
*/
#if defined(CONFIG_ETRAX_WATCHDOG)
extern int cause_of_death;
#endif
printk("*** HARD RESET ***\n");
local_irq_disable();
#if defined(CONFIG_ETRAX_WATCHDOG)
cause_of_death = 0xbedead;
#else
{
reg_timer_rw_wd_ctrl wd_ctrl = {0};
stop_watchdog();
wd_ctrl.key = 16; /* Arbitrary key. */
wd_ctrl.cnt = 1; /* Minimum time. */
wd_ctrl.cmd = regk_timer_start;
arch_enable_nmi();
REG_WR(timer, regi_timer0, rw_wd_ctrl, wd_ctrl);
}
#endif
while (1)
; /* Wait for reset. */
}
/*
* Return saved PC of a blocked thread.
*/
unsigned long thread_saved_pc(struct task_struct *t)
{
return task_pt_regs(t)->erp;
}
static void
kernel_thread_helper(void* dummy, int (*fn)(void *), void * arg)
{
fn(arg);
do_exit(-1); /* Should never be called, return bad exit value. */
}
/* Create a kernel thread. */
int
kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
{
struct pt_regs regs;
memset(®s, 0, sizeof(regs));
/* Don't use r10 since that is set to 0 in copy_thread. */
regs.r11 = (unsigned long) fn;
regs.r12 = (unsigned long) arg;
regs.erp = (unsigned long) kernel_thread_helper;
regs.ccs = 1 << (I_CCS_BITNR + CCS_SHIFT);
/* Create the new process. */
return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, ®s, 0, NULL, NULL);
}
/*
* Setup the child's kernel stack with a pt_regs and call switch_stack() on it.
* It will be unnested during _resume and _ret_from_sys_call when the new thread
* is scheduled.
*
* Also setup the thread switching structure which is used to keep
* thread-specific data during _resumes.
*/
extern asmlinkage void ret_from_fork(void);
int
copy_thread(unsigned long clone_flags, unsigned long usp,
unsigned long unused,
struct task_struct *p, struct pt_regs *regs)
{
struct pt_regs *childregs;
struct switch_stack *swstack;
/*
* Put the pt_regs structure at the end of the new kernel stack page and
* fix it up. Note: the task_struct doubles as the kernel stack for the
* task.
*/
childregs = task_pt_regs(p);
*childregs = *regs; /* Struct copy of pt_regs. */
p->set_child_tid = p->clear_child_tid = NULL;
childregs->r10 = 0; /* Child returns 0 after a fork/clone. */
/* Set a new TLS ?
* The TLS is in $mof beacuse it is the 5th argument to sys_clone.
*/
if (p->mm && (clone_flags & CLONE_SETTLS)) {
task_thread_info(p)->tls = regs->mof;
}
/* Put the switch stack right below the pt_regs. */
swstack = ((struct switch_stack *) childregs) - 1;
/* Parameter to ret_from_sys_call. 0 is don't restart the syscall. */
swstack->r9 = 0;
/*
* We want to return into ret_from_sys_call after the _resume.
* ret_from_fork will call ret_from_sys_call.
*/
swstack->return_ip = (unsigned long) ret_from_fork;
/* Fix the user-mode and kernel-mode stackpointer. */
p->thread.usp = usp;
p->thread.ksp = (unsigned long) swstack;
return 0;
}
/*
* Be aware of the "magic" 7th argument in the four system-calls below.
* They need the latest stackframe, which is put as the 7th argument by
* entry.S. The previous arguments are dummies or actually used, but need
* to be defined to reach the 7th argument.
*
* N.B.: Another method to get the stackframe is to use current_regs(). But
* it returns the latest stack-frame stacked when going from _user mode_ and
* some of these (at least sys_clone) are called from kernel-mode sometimes
* (for example during kernel_thread, above) and thus cannot use it. Thus,
* to be sure not to get any surprises, we use the method for the other calls
* as well.
*/
asmlinkage int
sys_fork(long r10, long r11, long r12, long r13, long mof, long srp,
struct pt_regs *regs)
{
return do_fork(SIGCHLD, rdusp(), regs, 0, NULL, NULL);
}
/* FIXME: Is parent_tid/child_tid really third/fourth argument? Update lib? */
asmlinkage int
sys_clone(unsigned long newusp, unsigned long flags, int *parent_tid, int *child_tid,
unsigned long tls, long srp, struct pt_regs *regs)
{
if (!newusp)
newusp = rdusp();
return do_fork(flags, newusp, regs, 0, parent_tid, child_tid);
}
/*
* vfork is a system call in i386 because of register-pressure - maybe
* we can remove it and handle it in libc but we put it here until then.
*/
asmlinkage int
sys_vfork(long r10, long r11, long r12, long r13, long mof, long srp,
struct pt_regs *regs)
{
return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, rdusp(), regs, 0, NULL, NULL);
}
/* sys_execve() executes a new program. */
asmlinkage int
sys_execve(const char *fname, char **argv, char **envp, long r13, long mof, long srp,
struct pt_regs *regs)
{
int error;
char *filename;
filename = getname(fname);
error = PTR_ERR(filename);
if (IS_ERR(filename))
goto out;
error = do_execve(filename, argv, envp, regs);
putname(filename);
out:
return error;
}
unsigned long
get_wchan(struct task_struct *p)
{
/* TODO */
return 0;
}
#undef last_sched
#undef first_sched
void show_regs(struct pt_regs * regs)
{
unsigned long usp = rdusp();
printk("ERP: %08lx SRP: %08lx CCS: %08lx USP: %08lx MOF: %08lx\n",
regs->erp, regs->srp, regs->ccs, usp, regs->mof);
printk(" r0: %08lx r1: %08lx r2: %08lx r3: %08lx\n",
regs->r0, regs->r1, regs->r2, regs->r3);
printk(" r4: %08lx r5: %08lx r6: %08lx r7: %08lx\n",
regs->r4, regs->r5, regs->r6, regs->r7);
printk(" r8: %08lx r9: %08lx r10: %08lx r11: %08lx\n",
regs->r8, regs->r9, regs->r10, regs->r11);
printk("r12: %08lx r13: %08lx oR10: %08lx\n",
regs->r12, regs->r13, regs->orig_r10);
}
|