aboutsummaryrefslogtreecommitdiffstats
path: root/arch/arm/mach-omap2/pm-debug.c
blob: 46092cd806fae24d14b90829c163190579104a05 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
/*
 * OMAP Power Management debug routines
 *
 * Copyright (C) 2005 Texas Instruments, Inc.
 * Copyright (C) 2006-2008 Nokia Corporation
 *
 * Written by:
 * Richard Woodruff <r-woodruff2@ti.com>
 * Tony Lindgren
 * Juha Yrjola
 * Amit Kucheria <amit.kucheria@nokia.com>
 * Igor Stoppa <igor.stoppa@nokia.com>
 * Jouni Hogander
 *
 * Based on pm.c for omap2
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/slab.h>

#include <plat/clock.h>
#include "powerdomain.h"
#include "clockdomain.h"
#include <plat/dmtimer.h>
#include <plat/omap-pm.h>

#include "cm2xxx_3xxx.h"
#include "prm2xxx_3xxx.h"
#include "pm.h"

u32 enable_off_mode;

#ifdef CONFIG_DEBUG_FS
#include <linux/debugfs.h>
#include <linux/seq_file.h>

static int pm_dbg_init_done;

static int pm_dbg_init(void);

enum {
	DEBUG_FILE_COUNTERS = 0,
	DEBUG_FILE_TIMERS,
};

static const char pwrdm_state_names[][PWRDM_MAX_PWRSTS] = {
	"OFF",
	"RET",
	"INA",
	"ON"
};

void pm_dbg_update_time(struct powerdomain *pwrdm, int prev)
{
	s64 t;

	if (!pm_dbg_init_done)
		return ;

	/* Update timer for previous state */
	t = sched_clock();

	pwrdm->state_timer[prev] += t - pwrdm->timer;

	pwrdm->timer = t;
}

static int clkdm_dbg_show_counter(struct clockdomain *clkdm, void *user)
{
	struct seq_file *s = (struct seq_file *)user;

	if (strcmp(clkdm->name, "emu_clkdm") == 0 ||
		strcmp(clkdm->name, "wkup_clkdm") == 0 ||
		strncmp(clkdm->name, "dpll", 4) == 0)
		return 0;

	seq_printf(s, "%s->%s (%d)", clkdm->name,
			clkdm->pwrdm.ptr->name,
			atomic_read(&clkdm->usecount));
	seq_printf(s, "\n");

	return 0;
}

static int pwrdm_dbg_show_counter(struct powerdomain *pwrdm, void *user)
{
	struct seq_file *s = (struct seq_file *)user;
	int i;

	if (strcmp(pwrdm->name, "emu_pwrdm") == 0 ||
		strcmp(pwrdm->name, "wkup_pwrdm") == 0 ||
		strncmp(pwrdm->name, "dpll", 4) == 0)
		return 0;

	if (pwrdm->state != pwrdm_read_pwrst(pwrdm))
		printk(KERN_ERR "pwrdm state mismatch(%s) %d != %d\n",
			pwrdm->name, pwrdm->state, pwrdm_read_pwrst(pwrdm));

	seq_printf(s, "%s (%s)", pwrdm->name,
			pwrdm_state_names[pwrdm->state]);
	for (i = 0; i < PWRDM_MAX_PWRSTS; i++)
		seq_printf(s, ",%s:%d", pwrdm_state_names[i],
			pwrdm->state_counter[i]);

	seq_printf(s, ",RET-LOGIC-OFF:%d", pwrdm->ret_logic_off_counter);
	for (i = 0; i < pwrdm->banks; i++)
		seq_printf(s, ",RET-MEMBANK%d-OFF:%d", i + 1,
				pwrdm->ret_mem_off_counter[i]);

	seq_printf(s, "\n");

	return 0;
}

static int pwrdm_dbg_show_timer(struct powerdomain *pwrdm, void *user)
{
	struct seq_file *s = (struct seq_file *)user;
	int i;

	if (strcmp(pwrdm->name, "emu_pwrdm") == 0 ||
		strcmp(pwrdm->name, "wkup_pwrdm") == 0 ||
		strncmp(pwrdm->name, "dpll", 4) == 0)
		return 0;

	pwrdm_state_switch(pwrdm);

	seq_printf(s, "%s (%s)", pwrdm->name,
		pwrdm_state_names[pwrdm->state]);

	for (i = 0; i < 4; i++)
		seq_printf(s, ",%s:%lld", pwrdm_state_names[i],
			pwrdm->state_timer[i]);

	seq_printf(s, "\n");
	return 0;
}

static int pm_dbg_show_counters(struct seq_file *s, void *unused)
{
	pwrdm_for_each(pwrdm_dbg_show_counter, s);
	clkdm_for_each(clkdm_dbg_show_counter, s);

	return 0;
}

static int pm_dbg_show_timers(struct seq_file *s, void *unused)
{
	pwrdm_for_each(pwrdm_dbg_show_timer, s);
	return 0;
}

static int pm_dbg_open(struct inode *inode, struct file *file)
{
	switch ((int)inode->i_private) {
	case DEBUG_FILE_COUNTERS:
		return single_open(file, pm_dbg_show_counters,
			&inode->i_private);
	case DEBUG_FILE_TIMERS:
	default:
		return single_open(file, pm_dbg_show_timers,
			&inode->i_private);
	}
}

static const struct file_operations debug_fops = {
	.open           = pm_dbg_open,
	.read           = seq_read,
	.llseek         = seq_lseek,
	.release        = single_release,
};

static int pwrdm_suspend_get(void *data, u64 *val)
{
	int ret = -EINVAL;

	if (cpu_is_omap34xx())
		ret = omap3_pm_get_suspend_state((struct powerdomain *)data);
	*val = ret;

	if (ret >= 0)
		return 0;
	return *val;
}

static int pwrdm_suspend_set(void *data, u64 val)
{
	if (cpu_is_omap34xx())
		return omap3_pm_set_suspend_state(
			(struct powerdomain *)data, (int)val);
	return -EINVAL;
}

DEFINE_SIMPLE_ATTRIBUTE(pwrdm_suspend_fops, pwrdm_suspend_get,
			pwrdm_suspend_set, "%llu\n");

static int __init pwrdms_setup(struct powerdomain *pwrdm, void *dir)
{
	int i;
	s64 t;
	struct dentry *d;

	t = sched_clock();

	for (i = 0; i < 4; i++)
		pwrdm->state_timer[i] = 0;

	pwrdm->timer = t;

	if (strncmp(pwrdm->name, "dpll", 4) == 0)
		return 0;

	d = debugfs_create_dir(pwrdm->name, (struct dentry *)dir);
	if (!(IS_ERR_OR_NULL(d)))
		(void) debugfs_create_file("suspend", S_IRUGO|S_IWUSR, d,
			(void *)pwrdm, &pwrdm_suspend_fops);

	return 0;
}

static int option_get(void *data, u64 *val)
{
	u32 *option = data;

	*val = *option;

	return 0;
}

static int option_set(void *data, u64 val)
{
	u32 *option = data;

	*option = val;

	if (option == &enable_off_mode) {
		if (val)
			omap_pm_enable_off_mode();
		else
			omap_pm_disable_off_mode();
		if (cpu_is_omap34xx())
			omap3_pm_off_mode_enable(val);
	}

	return 0;
}

DEFINE_SIMPLE_ATTRIBUTE(pm_dbg_option_fops, option_get, option_set, "%llu\n");

static int __init pm_dbg_init(void)
{
	struct dentry *d;

	if (pm_dbg_init_done)
		return 0;

	d = debugfs_create_dir("pm_debug", NULL);
	if (IS_ERR_OR_NULL(d))
		return PTR_ERR(d);

	(void) debugfs_create_file("count", S_IRUGO,
		d, (void *)DEBUG_FILE_COUNTERS, &debug_fops);
	(void) debugfs_create_file("time", S_IRUGO,
		d, (void *)DEBUG_FILE_TIMERS, &debug_fops);

	pwrdm_for_each(pwrdms_setup, (void *)d);

	(void) debugfs_create_file("enable_off_mode", S_IRUGO | S_IWUSR, d,
				   &enable_off_mode, &pm_dbg_option_fops);
	pm_dbg_init_done = 1;

	return 0;
}
arch_initcall(pm_dbg_init);

#endif
class="hl ppc"> #include "classmap.h" #define AVC_CACHE_SLOTS 512 #define AVC_DEF_CACHE_THRESHOLD 512 #define AVC_CACHE_RECLAIM 16 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS #define avc_cache_stats_incr(field) this_cpu_inc(avc_cache_stats.field) #else #define avc_cache_stats_incr(field) do {} while (0) #endif struct avc_entry { u32 ssid; u32 tsid; u16 tclass; struct av_decision avd; struct avc_xperms_node *xp_node; }; struct avc_node { struct avc_entry ae; struct hlist_node list; /* anchored in avc_cache->slots[i] */ struct rcu_head rhead; }; struct avc_xperms_decision_node { struct extended_perms_decision xpd; struct list_head xpd_list; /* list of extended_perms_decision */ }; struct avc_xperms_node { struct extended_perms xp; struct list_head xpd_head; /* list head of extended_perms_decision */ }; struct avc_cache { struct hlist_head slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */ spinlock_t slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */ atomic_t lru_hint; /* LRU hint for reclaim scan */ atomic_t active_nodes; u32 latest_notif; /* latest revocation notification */ }; struct avc_callback_node { int (*callback) (u32 event); u32 events; struct avc_callback_node *next; }; #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 }; #endif struct selinux_avc { unsigned int avc_cache_threshold; struct avc_cache avc_cache; }; static struct selinux_avc selinux_avc; void selinux_avc_init(struct selinux_avc **avc) { int i; selinux_avc.avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD; for (i = 0; i < AVC_CACHE_SLOTS; i++) { INIT_HLIST_HEAD(&selinux_avc.avc_cache.slots[i]); spin_lock_init(&selinux_avc.avc_cache.slots_lock[i]); } atomic_set(&selinux_avc.avc_cache.active_nodes, 0); atomic_set(&selinux_avc.avc_cache.lru_hint, 0); *avc = &selinux_avc; } unsigned int avc_get_cache_threshold(struct selinux_avc *avc) { return avc->avc_cache_threshold; } void avc_set_cache_threshold(struct selinux_avc *avc, unsigned int cache_threshold) { avc->avc_cache_threshold = cache_threshold; } static struct avc_callback_node *avc_callbacks; static struct kmem_cache *avc_node_cachep; static struct kmem_cache *avc_xperms_data_cachep; static struct kmem_cache *avc_xperms_decision_cachep; static struct kmem_cache *avc_xperms_cachep; static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass) { return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1); } /** * avc_dump_av - Display an access vector in human-readable form. * @tclass: target security class * @av: access vector */ static void avc_dump_av(struct audit_buffer *ab, u16 tclass, u32 av) { const char **perms; int i, perm; if (av == 0) { audit_log_format(ab, " null"); return; } BUG_ON(!tclass || tclass >= ARRAY_SIZE(secclass_map)); perms = secclass_map[tclass-1].perms; audit_log_format(ab, " {"); i = 0; perm = 1; while (i < (sizeof(av) * 8)) { if ((perm & av) && perms[i]) { audit_log_format(ab, " %s", perms[i]); av &= ~perm; } i++; perm <<= 1; } if (av) audit_log_format(ab, " 0x%x", av); audit_log_format(ab, " }"); } /** * avc_dump_query - Display a SID pair and a class in human-readable form. * @ssid: source security identifier * @tsid: target security identifier * @tclass: target security class */ static void avc_dump_query(struct audit_buffer *ab, struct selinux_state *state, u32 ssid, u32 tsid, u16 tclass) { int rc; char *scontext; u32 scontext_len; rc = security_sid_to_context(state, ssid, &scontext, &scontext_len); if (rc) audit_log_format(ab, "ssid=%d", ssid); else { audit_log_format(ab, "scontext=%s", scontext); kfree(scontext); } rc = security_sid_to_context(state, tsid, &scontext, &scontext_len); if (rc) audit_log_format(ab, " tsid=%d", tsid); else { audit_log_format(ab, " tcontext=%s", scontext); kfree(scontext); } BUG_ON(!tclass || tclass >= ARRAY_SIZE(secclass_map)); audit_log_format(ab, " tclass=%s", secclass_map[tclass-1].name); } /** * avc_init - Initialize the AVC. * * Initialize the access vector cache. */ void __init avc_init(void) { avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node), 0, SLAB_PANIC, NULL); avc_xperms_cachep = kmem_cache_create("avc_xperms_node", sizeof(struct avc_xperms_node), 0, SLAB_PANIC, NULL); avc_xperms_decision_cachep = kmem_cache_create( "avc_xperms_decision_node", sizeof(struct avc_xperms_decision_node), 0, SLAB_PANIC, NULL); avc_xperms_data_cachep = kmem_cache_create("avc_xperms_data", sizeof(struct extended_perms_data), 0, SLAB_PANIC, NULL); } int avc_get_hash_stats(struct selinux_avc *avc, char *page) { int i, chain_len, max_chain_len, slots_used; struct avc_node *node; struct hlist_head *head; rcu_read_lock(); slots_used = 0; max_chain_len = 0; for (i = 0; i < AVC_CACHE_SLOTS; i++) { head = &avc->avc_cache.slots[i]; if (!hlist_empty(head)) { slots_used++; chain_len = 0; hlist_for_each_entry_rcu(node, head, list) chain_len++; if (chain_len > max_chain_len) max_chain_len = chain_len; } } rcu_read_unlock(); return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n" "longest chain: %d\n", atomic_read(&avc->avc_cache.active_nodes), slots_used, AVC_CACHE_SLOTS, max_chain_len); } /* * using a linked list for extended_perms_decision lookup because the list is * always small. i.e. less than 5, typically 1 */ static struct extended_perms_decision *avc_xperms_decision_lookup(u8 driver, struct avc_xperms_node *xp_node) { struct avc_xperms_decision_node *xpd_node; list_for_each_entry(xpd_node, &xp_node->xpd_head, xpd_list) { if (xpd_node->xpd.driver == driver) return &xpd_node->xpd; } return NULL; } static inline unsigned int avc_xperms_has_perm(struct extended_perms_decision *xpd, u8 perm, u8 which) { unsigned int rc = 0; if ((which == XPERMS_ALLOWED) && (xpd->used & XPERMS_ALLOWED)) rc = security_xperm_test(xpd->allowed->p, perm); else if ((which == XPERMS_AUDITALLOW) && (xpd->used & XPERMS_AUDITALLOW)) rc = security_xperm_test(xpd->auditallow->p, perm); else if ((which == XPERMS_DONTAUDIT) && (xpd->used & XPERMS_DONTAUDIT)) rc = security_xperm_test(xpd->dontaudit->p, perm); return rc; } static void avc_xperms_allow_perm(struct avc_xperms_node *xp_node, u8 driver, u8 perm) { struct extended_perms_decision *xpd; security_xperm_set(xp_node->xp.drivers.p, driver); xpd = avc_xperms_decision_lookup(driver, xp_node); if (xpd && xpd->allowed) security_xperm_set(xpd->allowed->p, perm); } static void avc_xperms_decision_free(struct avc_xperms_decision_node *xpd_node) { struct extended_perms_decision *xpd; xpd = &xpd_node->xpd; if (xpd->allowed) kmem_cache_free(avc_xperms_data_cachep, xpd->allowed); if (xpd->auditallow) kmem_cache_free(avc_xperms_data_cachep, xpd->auditallow); if (xpd->dontaudit) kmem_cache_free(avc_xperms_data_cachep, xpd->dontaudit); kmem_cache_free(avc_xperms_decision_cachep, xpd_node); } static void avc_xperms_free(struct avc_xperms_node *xp_node) { struct avc_xperms_decision_node *xpd_node, *tmp; if (!xp_node) return; list_for_each_entry_safe(xpd_node, tmp, &xp_node->xpd_head, xpd_list) { list_del(&xpd_node->xpd_list); avc_xperms_decision_free(xpd_node); } kmem_cache_free(avc_xperms_cachep, xp_node); } static void avc_copy_xperms_decision(struct extended_perms_decision *dest, struct extended_perms_decision *src) { dest->driver = src->driver; dest->used = src->used; if (dest->used & XPERMS_ALLOWED) memcpy(dest->allowed->p, src->allowed->p, sizeof(src->allowed->p)); if (dest->used & XPERMS_AUDITALLOW) memcpy(dest->auditallow->p, src->auditallow->p, sizeof(src->auditallow->p)); if (dest->used & XPERMS_DONTAUDIT) memcpy(dest->dontaudit->p, src->dontaudit->p, sizeof(src->dontaudit->p)); } /* * similar to avc_copy_xperms_decision, but only copy decision * information relevant to this perm */ static inline void avc_quick_copy_xperms_decision(u8 perm, struct extended_perms_decision *dest, struct extended_perms_decision *src) { /* * compute index of the u32 of the 256 bits (8 u32s) that contain this * command permission */ u8 i = perm >> 5; dest->used = src->used; if (dest->used & XPERMS_ALLOWED) dest->allowed->p[i] = src->allowed->p[i]; if (dest->used & XPERMS_AUDITALLOW) dest->auditallow->p[i] = src->auditallow->p[i]; if (dest->used & XPERMS_DONTAUDIT) dest->dontaudit->p[i] = src->dontaudit->p[i]; } static struct avc_xperms_decision_node *avc_xperms_decision_alloc(u8 which) { struct avc_xperms_decision_node *xpd_node; struct extended_perms_decision *xpd; xpd_node = kmem_cache_zalloc(avc_xperms_decision_cachep, GFP_NOWAIT); if (!xpd_node) return NULL; xpd = &xpd_node->xpd; if (which & XPERMS_ALLOWED) { xpd->allowed = kmem_cache_zalloc(avc_xperms_data_cachep, GFP_NOWAIT); if (!xpd->allowed) goto error; } if (which & XPERMS_AUDITALLOW) { xpd->auditallow = kmem_cache_zalloc(avc_xperms_data_cachep, GFP_NOWAIT); if (!xpd->auditallow) goto error; } if (which & XPERMS_DONTAUDIT) { xpd->dontaudit = kmem_cache_zalloc(avc_xperms_data_cachep, GFP_NOWAIT); if (!xpd->dontaudit) goto error; } return xpd_node; error: avc_xperms_decision_free(xpd_node); return NULL; } static int avc_add_xperms_decision(struct avc_node *node, struct extended_perms_decision *src) { struct avc_xperms_decision_node *dest_xpd; node->ae.xp_node->xp.len++; dest_xpd = avc_xperms_decision_alloc(src->used); if (!dest_xpd) return -ENOMEM; avc_copy_xperms_decision(&dest_xpd->xpd, src); list_add(&dest_xpd->xpd_list, &node->ae.xp_node->xpd_head); return 0; } static struct avc_xperms_node *avc_xperms_alloc(void) { struct avc_xperms_node *xp_node; xp_node = kmem_cache_zalloc(avc_xperms_cachep, GFP_NOWAIT); if (!xp_node) return xp_node; INIT_LIST_HEAD(&xp_node->xpd_head); return xp_node; } static int avc_xperms_populate(struct avc_node *node, struct avc_xperms_node *src) { struct avc_xperms_node *dest; struct avc_xperms_decision_node *dest_xpd; struct avc_xperms_decision_node *src_xpd; if (src->xp.len == 0) return 0; dest = avc_xperms_alloc(); if (!dest) return -ENOMEM; memcpy(dest->xp.drivers.p, src->xp.drivers.p, sizeof(dest->xp.drivers.p)); dest->xp.len = src->xp.len; /* for each source xpd allocate a destination xpd and copy */ list_for_each_entry(src_xpd, &src->xpd_head, xpd_list) { dest_xpd = avc_xperms_decision_alloc(src_xpd->xpd.used); if (!dest_xpd) goto error; avc_copy_xperms_decision(&dest_xpd->xpd, &src_xpd->xpd); list_add(&dest_xpd->xpd_list, &dest->xpd_head); } node->ae.xp_node = dest; return 0; error: avc_xperms_free(dest); return -ENOMEM; } static inline u32 avc_xperms_audit_required(u32 requested, struct av_decision *avd, struct extended_perms_decision *xpd, u8 perm, int result, u32 *deniedp) { u32 denied, audited; denied = requested & ~avd->allowed; if (unlikely(denied)) { audited = denied & avd->auditdeny; if (audited && xpd) { if (avc_xperms_has_perm(xpd, perm, XPERMS_DONTAUDIT)) audited &= ~requested; } } else if (result) {