diff options
Diffstat (limited to 'litmus')
-rw-r--r-- | litmus/Makefile | 4 | ||||
-rw-r--r-- | litmus/edf_split_common.c | 171 | ||||
-rw-r--r-- | litmus/sched_cfl_split.c | 1006 |
3 files changed, 1180 insertions, 1 deletions
diff --git a/litmus/Makefile b/litmus/Makefile index 2bddc94a399f..8f3b8b4c3342 100644 --- a/litmus/Makefile +++ b/litmus/Makefile | |||
@@ -11,6 +11,7 @@ obj-y = sched_plugin.o litmus.o \ | |||
11 | sync.o \ | 11 | sync.o \ |
12 | rt_domain.o \ | 12 | rt_domain.o \ |
13 | edf_common.o \ | 13 | edf_common.o \ |
14 | edf_split_common.o \ | ||
14 | fp_common.o \ | 15 | fp_common.o \ |
15 | fdso.o \ | 16 | fdso.o \ |
16 | locking.o \ | 17 | locking.o \ |
@@ -21,7 +22,8 @@ obj-y = sched_plugin.o litmus.o \ | |||
21 | uncachedev.o \ | 22 | uncachedev.o \ |
22 | sched_gsn_edf.o \ | 23 | sched_gsn_edf.o \ |
23 | sched_psn_edf.o \ | 24 | sched_psn_edf.o \ |
24 | sched_pfp.o | 25 | sched_pfp.o \ |
26 | sched_cfl_split.o | ||
25 | 27 | ||
26 | obj-$(CONFIG_PLUGIN_CEDF) += sched_cedf.o | 28 | obj-$(CONFIG_PLUGIN_CEDF) += sched_cedf.o |
27 | obj-$(CONFIG_PLUGIN_PFAIR) += sched_pfair.o | 29 | obj-$(CONFIG_PLUGIN_PFAIR) += sched_pfair.o |
diff --git a/litmus/edf_split_common.c b/litmus/edf_split_common.c new file mode 100644 index 000000000000..76b100c9c5b9 --- /dev/null +++ b/litmus/edf_split_common.c | |||
@@ -0,0 +1,171 @@ | |||
1 | /* | ||
2 | * kernel/edf_split_common.c | ||
3 | * | ||
4 | * Common functions for EDF based scheduler with split jobs. | ||
5 | */ | ||
6 | |||
7 | #include <linux/percpu.h> | ||
8 | #include <linux/sched.h> | ||
9 | #include <linux/list.h> | ||
10 | |||
11 | #include <litmus/litmus.h> | ||
12 | #include <litmus/sched_plugin.h> | ||
13 | #include <litmus/sched_trace.h> | ||
14 | |||
15 | #include <litmus/edf_split_common.h> | ||
16 | |||
17 | #ifdef CONFIG_EDF_TIE_BREAK_LATENESS_NORM | ||
18 | #include <litmus/fpmath.h> | ||
19 | #endif | ||
20 | |||
21 | #ifdef CONFIG_EDF_TIE_BREAK_HASH | ||
22 | #include <linux/hash.h> | ||
23 | static inline long edf_split_hash(struct task_struct *t) | ||
24 | { | ||
25 | /* pid is 32 bits, so normally we would shove that into the | ||
26 | * upper 32-bits and and put the job number in the bottom | ||
27 | * and hash the 64-bit number with hash_64(). Sadly, | ||
28 | * in testing, hash_64() doesn't distribute keys were the | ||
29 | * upper bits are close together (as would be the case with | ||
30 | * pids) and job numbers are equal (as would be the case with | ||
31 | * synchronous task sets with all relative deadlines equal). | ||
32 | * | ||
33 | * A 2006 Linux patch proposed the following solution | ||
34 | * (but for some reason it wasn't accepted...). | ||
35 | * | ||
36 | * At least this workaround works for 32-bit systems as well. | ||
37 | */ | ||
38 | return hash_32(hash_32((u32)tsk_rt(t)->job_params.job_no, 32) ^ t->pid, 32); | ||
39 | } | ||
40 | #endif | ||
41 | |||
42 | /* edf_higher_prio - returns true if first has a higher EDF priority | ||
43 | * than second. Deadline ties are broken by PID. | ||
44 | * | ||
45 | * both first and second may be NULL | ||
46 | */ | ||
47 | int edf_split_higher_prio(struct task_struct* first, | ||
48 | struct task_struct* second) | ||
49 | { | ||
50 | struct task_struct *first_task = first; | ||
51 | struct task_struct *second_task = second; | ||
52 | |||
53 | /* There is no point in comparing a task to itself. */ | ||
54 | if (first && first == second) { | ||
55 | TRACE_TASK(first, | ||
56 | "WARNING: pointless edf priority comparison.\n"); | ||
57 | return 0; | ||
58 | } | ||
59 | |||
60 | |||
61 | /* check for NULL tasks */ | ||
62 | if (!first || !second) | ||
63 | return first && !second; | ||
64 | |||
65 | if (earlier_deadline(first_task, second_task)) { | ||
66 | return 1; | ||
67 | } | ||
68 | else if (get_deadline(first_task) == get_deadline(second_task)) { | ||
69 | /* Need to tie break. All methods must set pid_break to 0/1 if | ||
70 | * first_task does not have priority over second_task. | ||
71 | */ | ||
72 | int pid_break; | ||
73 | |||
74 | #if defined(CONFIG_EDF_TIE_BREAK_LATENESS) | ||
75 | /* Tie break by lateness. Jobs with greater lateness get | ||
76 | * priority. This should spread tardiness across all tasks, | ||
77 | * especially in task sets where all tasks have the same | ||
78 | * period and relative deadlines. | ||
79 | */ | ||
80 | if (get_lateness(first_task) > get_lateness(second_task)) { | ||
81 | return 1; | ||
82 | } | ||
83 | pid_break = (get_lateness(first_task) == get_lateness(second_task)); | ||
84 | |||
85 | |||
86 | #elif defined(CONFIG_EDF_TIE_BREAK_LATENESS_NORM) | ||
87 | /* Tie break by lateness, normalized by relative deadline. Jobs with | ||
88 | * greater normalized lateness get priority. | ||
89 | * | ||
90 | * Note: Considered using the algebraically equivalent | ||
91 | * lateness(first)*relative_deadline(second) > | ||
92 | lateness(second)*relative_deadline(first) | ||
93 | * to avoid fixed-point math, but values are prone to overflow if inputs | ||
94 | * are on the order of several seconds, even in 64-bit. | ||
95 | */ | ||
96 | fp_t fnorm = _frac(get_lateness(first_task), | ||
97 | get_rt_relative_deadline(first_task)); | ||
98 | fp_t snorm = _frac(get_lateness(second_task), | ||
99 | get_rt_relative_deadline(second_task)); | ||
100 | if (_gt(fnorm, snorm)) { | ||
101 | return 1; | ||
102 | } | ||
103 | pid_break = _eq(fnorm, snorm); | ||
104 | |||
105 | #elif defined(CONFIG_EDF_TIE_BREAK_HASH) | ||
106 | /* Tie break by comparing hashs of (pid, job#) tuple. There should be | ||
107 | * a 50% chance that first_task has a higher priority than second_task. | ||
108 | */ | ||
109 | long fhash = edf_hash(first_task); | ||
110 | long shash = edf_hash(second_task); | ||
111 | if (fhash < shash) { | ||
112 | return 1; | ||
113 | } | ||
114 | pid_break = (fhash == shash); | ||
115 | #else | ||
116 | |||
117 | |||
118 | /* CONFIG_EDF_PID_TIE_BREAK */ | ||
119 | pid_break = 1; // fall through to tie-break by pid; | ||
120 | #endif | ||
121 | |||
122 | /* Tie break by pid */ | ||
123 | if(pid_break) { | ||
124 | if (first_task->pid < second_task->pid) { | ||
125 | return 1; | ||
126 | } | ||
127 | else if (first_task->pid == second_task->pid) { | ||
128 | /* If the PIDs are the same then the task with the | ||
129 | * inherited priority wins. | ||
130 | */ | ||
131 | if (!second->rt_param.inh_task) { | ||
132 | return 1; | ||
133 | } | ||
134 | } | ||
135 | } | ||
136 | } | ||
137 | return 0; /* fall-through. prio(second_task) > prio(first_task) */ | ||
138 | } | ||
139 | |||
140 | int edf_split_ready_order(struct bheap_node* a, struct bheap_node* b) | ||
141 | { | ||
142 | return edf_split_higher_prio(bheap2task(a), bheap2task(b)); | ||
143 | } | ||
144 | |||
145 | void edf_split_domain_init(rt_domain_t* rt, check_resched_needed_t resched, | ||
146 | release_jobs_t release) | ||
147 | { | ||
148 | rt_domain_init(rt, edf_split_ready_order, resched, release); | ||
149 | } | ||
150 | |||
151 | /* need_to_preempt - check whether the task t needs to be preempted | ||
152 | * call only with irqs disabled and with ready_lock acquired | ||
153 | * THIS DOES NOT TAKE NON-PREEMPTIVE SECTIONS INTO ACCOUNT! | ||
154 | */ | ||
155 | int edf_split_preemption_needed(rt_domain_t* rt, struct task_struct *t) | ||
156 | { | ||
157 | /* we need the read lock for edf_ready_queue */ | ||
158 | /* no need to preempt if there is nothing pending */ | ||
159 | if (!__jobs_pending(rt)) | ||
160 | return 0; | ||
161 | /* we need to reschedule if t doesn't exist */ | ||
162 | if (!t) | ||
163 | return 1; | ||
164 | |||
165 | /* NOTE: We cannot check for non-preemptibility since we | ||
166 | * don't know what address space we're currently in. | ||
167 | */ | ||
168 | |||
169 | /* make sure to get non-rt stuff out of the way */ | ||
170 | return !is_realtime(t) || edf_split_higher_prio(__next_ready(rt), t); | ||
171 | } | ||
diff --git a/litmus/sched_cfl_split.c b/litmus/sched_cfl_split.c new file mode 100644 index 000000000000..37180e82bb4b --- /dev/null +++ b/litmus/sched_cfl_split.c | |||
@@ -0,0 +1,1006 @@ | |||
1 | /* | ||
2 | * litmus/sched_cfl_split.c | ||
3 | * | ||
4 | * Implementation of a clustered version of the G-FL scheduling algorithm, | ||
5 | * with job splitting. | ||
6 | * | ||
7 | * This implementation is based on G-FL-split: | ||
8 | * - CPUs are clustered around L2 or L3 caches. | ||
9 | * - Clusters topology is automatically detected (this is arch dependent | ||
10 | * and is working only on x86 at the moment --- and only with modern | ||
11 | * cpus that exports cpuid4 information) | ||
12 | * - The plugins _does not_ attempt to put tasks in the right cluster i.e. | ||
13 | * the programmer needs to be aware of the topology to place tasks | ||
14 | * in the desired cluster | ||
15 | * - default clustering is around L2 cache (cache index = 2) | ||
16 | * supported clusters are: L1 (private cache: pedf), L2, L3, ALL (all | ||
17 | * online_cpus are placed in a single cluster). | ||
18 | * | ||
19 | * For details on functions, take a look at sched_gsn_edf.c | ||
20 | * | ||
21 | * Currently, we do not support changes in the number of online cpus. | ||
22 | * If the num_online_cpus() dynamically changes, the plugin is broken. | ||
23 | * | ||
24 | * This version uses the simple approach and serializes all scheduling | ||
25 | * decisions by the use of a queue lock. This is probably not the | ||
26 | * best way to do it, but it should suffice for now. | ||
27 | */ | ||
28 | |||
29 | #include <linux/spinlock.h> | ||
30 | #include <linux/percpu.h> | ||
31 | #include <linux/sched.h> | ||
32 | #include <linux/slab.h> | ||
33 | |||
34 | #include <linux/module.h> | ||
35 | |||
36 | #include <litmus/litmus.h> | ||
37 | #include <litmus/budget.h> | ||
38 | #include <litmus/jobs.h> | ||
39 | #include <litmus/preempt.h> | ||
40 | #include <litmus/sched_plugin.h> | ||
41 | #include <litmus/edf_split_common.h> | ||
42 | #include <litmus/sched_trace.h> | ||
43 | |||
44 | #include <litmus/clustered.h> | ||
45 | |||
46 | #include <litmus/bheap.h> | ||
47 | |||
48 | #ifdef CONFIG_SCHED_CPU_AFFINITY | ||
49 | #include <litmus/affinity.h> | ||
50 | #endif | ||
51 | |||
52 | /* to configure the cluster size */ | ||
53 | #include <litmus/litmus_proc.h> | ||
54 | #include <linux/uaccess.h> | ||
55 | |||
56 | /* Reference configuration variable. Determines which cache level is used to | ||
57 | * group CPUs into clusters. GLOBAL_CLUSTER, which is the default, means that | ||
58 | * all CPUs form a single cluster (just like G-FL). | ||
59 | */ | ||
60 | static enum cache_level cluster_config = GLOBAL_CLUSTER; | ||
61 | |||
62 | struct clusterdomain; | ||
63 | |||
64 | /* cpu_entry_t - maintain the linked and scheduled state | ||
65 | * | ||
66 | * A cpu also contains a pointer to the cflsplit_domain_t cluster | ||
67 | * that owns it (struct clusterdomain*) | ||
68 | */ | ||
69 | typedef struct { | ||
70 | int cpu; | ||
71 | struct clusterdomain* cluster; /* owning cluster */ | ||
72 | struct task_struct* linked; /* only RT tasks */ | ||
73 | struct task_struct* scheduled; /* only RT tasks */ | ||
74 | atomic_t will_schedule; /* prevent unneeded IPIs */ | ||
75 | struct bheap_node* hn; | ||
76 | struct hrtimer split_timer; | ||
77 | int timer_armed; | ||
78 | } cpu_entry_t; | ||
79 | |||
80 | /* one cpu_entry_t per CPU */ | ||
81 | DEFINE_PER_CPU(cpu_entry_t, cflsplit_cpu_entries); | ||
82 | |||
83 | #define set_will_schedule() \ | ||
84 | (atomic_set(&__get_cpu_var(cflsplit_cpu_entries).will_schedule, 1)) | ||
85 | #define clear_will_schedule() \ | ||
86 | (atomic_set(&__get_cpu_var(cflsplit_cpu_entries).will_schedule, 0)) | ||
87 | #define test_will_schedule(cpu) \ | ||
88 | (atomic_read(&per_cpu(cflsplit_cpu_entries, cpu).will_schedule)) | ||
89 | |||
90 | /* | ||
91 | * In C-FL-split there is a cflsplit domain _per_ cluster | ||
92 | * The number of clusters is dynamically determined accordingly to the | ||
93 | * total cpu number and the cluster size | ||
94 | */ | ||
95 | typedef struct clusterdomain { | ||
96 | /* rt_domain for this cluster */ | ||
97 | rt_domain_t domain; | ||
98 | /* cpus in this cluster */ | ||
99 | cpu_entry_t* *cpus; | ||
100 | /* map of this cluster cpus */ | ||
101 | cpumask_var_t cpu_map; | ||
102 | /* the cpus queue themselves according to priority in here */ | ||
103 | struct bheap_node *heap_node; | ||
104 | struct bheap cpu_heap; | ||
105 | /* lock for this cluster */ | ||
106 | #define cluster_lock domain.ready_lock | ||
107 | } cflsplit_domain_t; | ||
108 | |||
109 | /* a cflsplit_domain per cluster; allocation is done at init/activation time */ | ||
110 | cflsplit_domain_t *cflsplit; | ||
111 | |||
112 | #define remote_cluster(cpu) ((cflsplit_domain_t *) per_cpu(cflsplit_cpu_entries, cpu).cluster) | ||
113 | #define task_cpu_cluster(task) remote_cluster(get_partition(task)) | ||
114 | |||
115 | /* Uncomment WANT_ALL_SCHED_EVENTS if you want to see all scheduling | ||
116 | * decisions in the TRACE() log; uncomment VERBOSE_INIT for verbose | ||
117 | * information during the initialization of the plugin (e.g., topology) | ||
118 | #define WANT_ALL_SCHED_EVENTS | ||
119 | */ | ||
120 | #define VERBOSE_INIT | ||
121 | |||
122 | inline static int get_slice_num(struct task_struct* t) | ||
123 | { | ||
124 | int basic = ((t->rt_param.job_params.exec_time * | ||
125 | t->rt_param.task_params.split) / | ||
126 | t->rt_param.task_params.exec_cost) + 1; | ||
127 | if (basic <= t->rt_param.task_params.split){ | ||
128 | return basic; | ||
129 | } | ||
130 | else{ | ||
131 | /*Since we don't police budget, just leave where it's at.*/ | ||
132 | return t->rt_param.task_params.split; | ||
133 | } | ||
134 | } | ||
135 | |||
136 | /* Returns the appropriate subjob deadline.*/ | ||
137 | inline static lt_t get_proper_deadline(struct task_struct* t) | ||
138 | { | ||
139 | unsigned int num_cpus = num_online_cpus(); | ||
140 | return t->rt_param.job_params.release + | ||
141 | ((t->rt_param.task_params.period * get_slice_num(t)) | ||
142 | / t->rt_param.task_params.split) | ||
143 | /* G-FL correction */ | ||
144 | - (((num_cpus - 1) * t->rt_param.task_params.exec_cost) | ||
145 | / (num_cpus * t->rt_param.task_params.split)); | ||
146 | } | ||
147 | |||
148 | /* Tells us if the current deadline is too small.*/ | ||
149 | inline static int needs_deadline_move(struct task_struct* t) | ||
150 | { | ||
151 | BUG_ON(get_proper_deadline(t) < t->rt_param.job_params.subjob_deadline); | ||
152 | return get_proper_deadline(t) != tsk_rt(t)->job_params.subjob_deadline; | ||
153 | } | ||
154 | |||
155 | /*Returns execution time until the next deadline move. | ||
156 | * 0 means the task has no more deadline moves | ||
157 | */ | ||
158 | inline static lt_t time_to_next_move(struct task_struct* t) | ||
159 | { | ||
160 | if (get_slice_num(t) == t->rt_param.task_params.split){ | ||
161 | return 0; | ||
162 | } | ||
163 | /* +1 upper bounds ceiling, since integer division is floor*/ | ||
164 | return ((get_slice_num(t) * t->rt_param.task_params.exec_cost) | ||
165 | / t->rt_param.task_params.split) + 1 | ||
166 | - t->rt_param.job_params.exec_time; | ||
167 | } | ||
168 | |||
169 | /* Timer stuff - similar to budget.c. */ | ||
170 | static enum hrtimer_restart on_split_timeout(struct hrtimer *timer) | ||
171 | { | ||
172 | cpu_entry_t* st = container_of(timer, | ||
173 | cpu_entry_t, | ||
174 | split_timer); | ||
175 | |||
176 | unsigned long flags; | ||
177 | |||
178 | local_irq_save(flags); | ||
179 | TRACE("split timer fired.\n"); | ||
180 | st->timer_armed = 0; | ||
181 | /* Activate scheduler */ | ||
182 | litmus_reschedule_local(); | ||
183 | local_irq_restore(flags); | ||
184 | |||
185 | return HRTIMER_NORESTART; | ||
186 | } | ||
187 | |||
188 | static void cancel_split_timer(cpu_entry_t* ce) | ||
189 | { | ||
190 | int ret; | ||
191 | |||
192 | TRACE("cancelling split time.\n"); | ||
193 | |||
194 | /* Since interrupts are disabled and et->timer_armed is only | ||
195 | * modified locally, we do not need any locks. | ||
196 | */ | ||
197 | |||
198 | if (ce->timer_armed) { | ||
199 | ret = hrtimer_try_to_cancel(&ce->split_timer); | ||
200 | /* Should never be inactive. */ | ||
201 | BUG_ON(ret == 0); | ||
202 | /* Should never be running concurrently.*/ | ||
203 | BUG_ON(ret == -1); | ||
204 | |||
205 | ce->timer_armed = 0; | ||
206 | } | ||
207 | } | ||
208 | |||
209 | /* assumes called with IRQs off */ | ||
210 | static void arm_split_timer(cpu_entry_t *ce, | ||
211 | struct task_struct* t) | ||
212 | { | ||
213 | lt_t when_to_fire; | ||
214 | lt_t time_to_move; | ||
215 | TRACE_TASK(t, "arming split timer.\n"); | ||
216 | |||
217 | /* __hrtimer_start_range_ns() cancels the timer | ||
218 | * anyway, so we don't have to check whether it is still armed */ | ||
219 | |||
220 | /*We won't do any new deadline moves if the budget has been exhausted*/ | ||
221 | if (likely(!is_np(t) && (time_to_move = time_to_next_move(t)))) { | ||
222 | when_to_fire = litmus_clock() + time_to_move; | ||
223 | TRACE_TASK(t, "actually arming for %llu into the future\n", | ||
224 | time_to_move); | ||
225 | __hrtimer_start_range_ns(&ce->split_timer, | ||
226 | ns_to_ktime(when_to_fire), | ||
227 | 0 /* delta */, | ||
228 | HRTIMER_MODE_ABS_PINNED, | ||
229 | 0 /* no wakeup */); | ||
230 | ce->timer_armed = 1; | ||
231 | } | ||
232 | } | ||
233 | |||
234 | static int cpu_lower_prio(struct bheap_node *_a, struct bheap_node *_b) | ||
235 | { | ||
236 | cpu_entry_t *a, *b; | ||
237 | a = _a->value; | ||
238 | b = _b->value; | ||
239 | /* Note that a and b are inverted: we want the lowest-priority CPU at | ||
240 | * the top of the heap. | ||
241 | */ | ||
242 | return edf_split_higher_prio(b->linked, a->linked); | ||
243 | } | ||
244 | |||
245 | /* update_cpu_position - Move the cpu entry to the correct place to maintain | ||
246 | * order in the cpu queue. Caller must hold cflsplit lock. | ||
247 | */ | ||
248 | static void update_cpu_position(cpu_entry_t *entry) | ||
249 | { | ||
250 | cflsplit_domain_t *cluster = entry->cluster; | ||
251 | |||
252 | if (likely(bheap_node_in_heap(entry->hn))) | ||
253 | bheap_delete(cpu_lower_prio, | ||
254 | &cluster->cpu_heap, | ||
255 | entry->hn); | ||
256 | |||
257 | bheap_insert(cpu_lower_prio, &cluster->cpu_heap, entry->hn); | ||
258 | } | ||
259 | |||
260 | /* caller must hold cflsplit lock */ | ||
261 | static cpu_entry_t* lowest_prio_cpu(cflsplit_domain_t *cluster) | ||
262 | { | ||
263 | struct bheap_node* hn; | ||
264 | hn = bheap_peek(cpu_lower_prio, &cluster->cpu_heap); | ||
265 | return hn->value; | ||
266 | } | ||
267 | |||
268 | |||
269 | /* link_task_to_cpu - Update the link of a CPU. | ||
270 | * Handles the case where the to-be-linked task is already | ||
271 | * scheduled on a different CPU. | ||
272 | */ | ||
273 | static noinline void link_task_to_cpu(struct task_struct* linked, | ||
274 | cpu_entry_t *entry) | ||
275 | { | ||
276 | cpu_entry_t *sched; | ||
277 | struct task_struct* tmp; | ||
278 | int on_cpu; | ||
279 | |||
280 | BUG_ON(linked && !is_realtime(linked)); | ||
281 | |||
282 | /* Currently linked task is set to be unlinked. */ | ||
283 | if (entry->linked) { | ||
284 | entry->linked->rt_param.linked_on = NO_CPU; | ||
285 | } | ||
286 | |||
287 | /* Link new task to CPU. */ | ||
288 | if (linked) { | ||
289 | /* handle task is already scheduled somewhere! */ | ||
290 | on_cpu = linked->rt_param.scheduled_on; | ||
291 | if (on_cpu != NO_CPU) { | ||
292 | sched = &per_cpu(cflsplit_cpu_entries, on_cpu); | ||
293 | /* this should only happen if not linked already */ | ||
294 | BUG_ON(sched->linked == linked); | ||
295 | |||
296 | /* If we are already scheduled on the CPU to which we | ||
297 | * wanted to link, we don't need to do the swap -- | ||
298 | * we just link ourselves to the CPU and depend on | ||
299 | * the caller to get things right. | ||
300 | */ | ||
301 | if (entry != sched) { | ||
302 | TRACE_TASK(linked, | ||
303 | "already scheduled on %d, updating link.\n", | ||
304 | sched->cpu); | ||
305 | tmp = sched->linked; | ||
306 | linked->rt_param.linked_on = sched->cpu; | ||
307 | sched->linked = linked; | ||
308 | update_cpu_position(sched); | ||
309 | linked = tmp; | ||
310 | } | ||
311 | } | ||
312 | if (linked) /* might be NULL due to swap */ | ||
313 | linked->rt_param.linked_on = entry->cpu; | ||
314 | } | ||
315 | entry->linked = linked; | ||
316 | #ifdef WANT_ALL_SCHED_EVENTS | ||
317 | if (linked) | ||
318 | TRACE_TASK(linked, "linked to %d.\n", entry->cpu); | ||
319 | else | ||
320 | TRACE("NULL linked to %d.\n", entry->cpu); | ||
321 | #endif | ||
322 | update_cpu_position(entry); | ||
323 | } | ||
324 | |||
325 | /* unlink - Make sure a task is not linked any longer to an entry | ||
326 | * where it was linked before. Must hold cflsplit_lock. | ||
327 | */ | ||
328 | static noinline void unlink(struct task_struct* t) | ||
329 | { | ||
330 | cpu_entry_t *entry; | ||
331 | |||
332 | if (t->rt_param.linked_on != NO_CPU) { | ||
333 | /* unlink */ | ||
334 | entry = &per_cpu(cflsplit_cpu_entries, t->rt_param.linked_on); | ||
335 | t->rt_param.linked_on = NO_CPU; | ||
336 | link_task_to_cpu(NULL, entry); | ||
337 | } else if (is_queued(t)) { | ||
338 | /* This is an interesting situation: t is scheduled, | ||
339 | * but was just recently unlinked. It cannot be | ||
340 | * linked anywhere else (because then it would have | ||
341 | * been relinked to this CPU), thus it must be in some | ||
342 | * queue. We must remove it from the list in this | ||
343 | * case. | ||
344 | * | ||
345 | * in C-FL-split case is should be somewhere in the queue for | ||
346 | * its domain, therefore and we can get the domain using | ||
347 | * task_cpu_cluster | ||
348 | */ | ||
349 | remove(&(task_cpu_cluster(t))->domain, t); | ||
350 | } | ||
351 | } | ||
352 | |||
353 | |||
354 | /* preempt - force a CPU to reschedule | ||
355 | */ | ||
356 | static void preempt(cpu_entry_t *entry) | ||
357 | { | ||
358 | preempt_if_preemptable(entry->scheduled, entry->cpu); | ||
359 | } | ||
360 | |||
361 | /* requeue - Put an unlinked task into gsn-edf domain. | ||
362 | * Caller must hold cflsplit_lock. | ||
363 | */ | ||
364 | static noinline void requeue(struct task_struct* task) | ||
365 | { | ||
366 | cflsplit_domain_t *cluster = task_cpu_cluster(task); | ||
367 | BUG_ON(!task); | ||
368 | /* sanity check before insertion */ | ||
369 | BUG_ON(is_queued(task)); | ||
370 | |||
371 | if (is_early_releasing(task) || is_released(task, litmus_clock())) | ||
372 | __add_ready(&cluster->domain, task); | ||
373 | else { | ||
374 | /* it has got to wait */ | ||
375 | add_release(&cluster->domain, task); | ||
376 | } | ||
377 | } | ||
378 | |||
379 | #ifdef CONFIG_SCHED_CPU_AFFINITY | ||
380 | static cpu_entry_t* cflsplit_get_nearest_available_cpu( | ||
381 | cflsplit_domain_t *cluster, cpu_entry_t *start) | ||
382 | { | ||
383 | cpu_entry_t *affinity; | ||
384 | |||
385 | get_nearest_available_cpu(affinity, start, cflsplit_cpu_entries, | ||
386 | #ifdef CONFIG_RELEASE_MASTER | ||
387 | cluster->domain.release_master | ||
388 | #else | ||
389 | NO_CPU | ||
390 | #endif | ||
391 | ); | ||
392 | |||
393 | /* make sure CPU is in our cluster */ | ||
394 | if (affinity && cpu_isset(affinity->cpu, *cluster->cpu_map)) | ||
395 | return(affinity); | ||
396 | else | ||
397 | return(NULL); | ||
398 | } | ||
399 | #endif | ||
400 | |||
401 | |||
402 | /* check for any necessary preemptions */ | ||
403 | static void check_for_preemptions(cflsplit_domain_t *cluster) | ||
404 | { | ||
405 | struct task_struct *task; | ||
406 | cpu_entry_t *last; | ||
407 | |||
408 | for(last = lowest_prio_cpu(cluster); | ||
409 | edf_split_preemption_needed(&cluster->domain, last->linked); | ||
410 | last = lowest_prio_cpu(cluster)) { | ||
411 | /* preemption necessary */ | ||
412 | task = __take_ready(&cluster->domain); | ||
413 | TRACE("check_for_preemptions: attempting to link task %d to %d\n", | ||
414 | task->pid, last->cpu); | ||
415 | #ifdef CONFIG_SCHED_CPU_AFFINITY | ||
416 | { | ||
417 | cpu_entry_t *affinity = | ||
418 | cflsplit_get_nearest_available_cpu(cluster, | ||
419 | &per_cpu(cflsplit_cpu_entries, task_cpu(task))); | ||
420 | if(affinity) | ||
421 | last = affinity; | ||
422 | else if(requeue_preempted_job(last->linked)) | ||
423 | requeue(last->linked); | ||
424 | } | ||
425 | #else | ||
426 | if (requeue_preempted_job(last->linked)) | ||
427 | requeue(last->linked); | ||
428 | #endif | ||
429 | link_task_to_cpu(task, last); | ||
430 | preempt(last); | ||
431 | } | ||
432 | } | ||
433 | |||
434 | /* cflsplit_job_arrival: task is either resumed or released */ | ||
435 | static noinline void cflsplit_job_arrival(struct task_struct* task) | ||
436 | { | ||
437 | cflsplit_domain_t *cluster = task_cpu_cluster(task); | ||
438 | BUG_ON(!task); | ||
439 | |||
440 | requeue(task); | ||
441 | check_for_preemptions(cluster); | ||
442 | } | ||
443 | |||
444 | static void cflsplit_release_jobs(rt_domain_t* rt, struct bheap* tasks) | ||
445 | { | ||
446 | cflsplit_domain_t* cluster = container_of(rt, cflsplit_domain_t, domain); | ||
447 | unsigned long flags; | ||
448 | |||
449 | raw_spin_lock_irqsave(&cluster->cluster_lock, flags); | ||
450 | |||
451 | __merge_ready(&cluster->domain, tasks); | ||
452 | check_for_preemptions(cluster); | ||
453 | |||
454 | raw_spin_unlock_irqrestore(&cluster->cluster_lock, flags); | ||
455 | } | ||
456 | |||
457 | /* caller holds cflsplit_lock */ | ||
458 | static noinline void job_completion(struct task_struct *t, int forced) | ||
459 | { | ||
460 | BUG_ON(!t); | ||
461 | |||
462 | sched_trace_task_completion(t, forced); | ||
463 | |||
464 | TRACE_TASK(t, "job_completion().\n"); | ||
465 | |||
466 | /* set flags */ | ||
467 | tsk_rt(t)->completed = 0; | ||
468 | /* prepare for next period */ | ||
469 | prepare_for_next_period(t); | ||
470 | /* We now also set the subjob deadline to what it should be for | ||
471 | * scheduling priority. | ||
472 | */ | ||
473 | t->rt_param.job_params.subjob_deadline = get_proper_deadline(t); | ||
474 | if (is_early_releasing(t) || is_released(t, litmus_clock())) | ||
475 | sched_trace_task_release(t); | ||
476 | /* unlink */ | ||
477 | unlink(t); | ||
478 | /* requeue | ||
479 | * But don't requeue a blocking task. */ | ||
480 | if (is_running(t)) | ||
481 | cflsplit_job_arrival(t); | ||
482 | } | ||
483 | |||
484 | static void move_deadline(struct task_struct *t) | ||
485 | { | ||
486 | tsk_rt(t)->job_params.subjob_deadline = get_proper_deadline(t); | ||
487 | /* Check if rescheduling needed with lower priority. */ | ||
488 | unlink(t); | ||
489 | cflsplit_job_arrival(t); | ||
490 | } | ||
491 | |||
492 | /* cflsplit_tick - this function is called for every local timer | ||
493 | * interrupt. | ||
494 | * | ||
495 | * checks whether the current task has expired and checks | ||
496 | * whether we need to preempt it if it has not expired | ||
497 | */ | ||
498 | static void cflsplit_tick(struct task_struct* t) | ||
499 | { | ||
500 | if (is_realtime(t) && budget_enforced(t) && budget_exhausted(t)) { | ||
501 | if (!is_np(t)) { | ||
502 | /* np tasks will be preempted when they become | ||
503 | * preemptable again | ||
504 | */ | ||
505 | litmus_reschedule_local(); | ||
506 | set_will_schedule(); | ||
507 | TRACE("cflsplit_scheduler_tick: " | ||
508 | "%d is preemptable " | ||
509 | " => FORCE_RESCHED\n", t->pid); | ||
510 | } else if (is_user_np(t)) { | ||
511 | TRACE("cflsplit_scheduler_tick: " | ||
512 | "%d is non-preemptable, " | ||
513 | "preemption delayed.\n", t->pid); | ||
514 | request_exit_np(t); | ||
515 | } | ||
516 | } | ||
517 | } | ||
518 | |||
519 | /* Getting schedule() right is a bit tricky. schedule() may not make any | ||
520 | * assumptions on the state of the current task since it may be called for a | ||
521 | * number of reasons. The reasons include a scheduler_tick() determined that it | ||
522 | * was necessary, because sys_exit_np() was called, because some Linux | ||
523 | * subsystem determined so, or even (in the worst case) because there is a bug | ||
524 | * hidden somewhere. Thus, we must take extreme care to determine what the | ||
525 | * current state is. | ||
526 | * | ||
527 | * The CPU could currently be scheduling a task (or not), be linked (or not). | ||
528 | * | ||
529 | * The following assertions for the scheduled task could hold: | ||
530 | * | ||
531 | * - !is_running(scheduled) // the job blocks | ||
532 | * - scheduled->timeslice == 0 // the job completed (forcefully) | ||
533 | * - is_completed() // the job completed (by syscall) | ||
534 | * - linked != scheduled // we need to reschedule (for any reason) | ||
535 | * - is_np(scheduled) // rescheduling must be delayed, | ||
536 | * sys_exit_np must be requested | ||
537 | * | ||
538 | * Any of these can occur together. | ||
539 | */ | ||
540 | static struct task_struct* cflsplit_schedule(struct task_struct * prev) | ||
541 | { | ||
542 | cpu_entry_t* entry = &__get_cpu_var(cflsplit_cpu_entries); | ||
543 | cflsplit_domain_t *cluster = entry->cluster; | ||
544 | int out_of_time, sleep, preempt, np, exists, blocks, needs_move; | ||
545 | struct task_struct* next = NULL; | ||
546 | |||
547 | #ifdef CONFIG_RELEASE_MASTER | ||
548 | /* Bail out early if we are the release master. | ||
549 | * The release master never schedules any real-time tasks. | ||
550 | */ | ||
551 | if (unlikely(cluster->domain.release_master == entry->cpu)) { | ||
552 | sched_state_task_picked(); | ||
553 | return NULL; | ||
554 | } | ||
555 | #endif | ||
556 | |||
557 | raw_spin_lock(&cluster->cluster_lock); | ||
558 | clear_will_schedule(); | ||
559 | |||
560 | /* sanity checking */ | ||
561 | BUG_ON(entry->scheduled && entry->scheduled != prev); | ||
562 | BUG_ON(entry->scheduled && !is_realtime(prev)); | ||
563 | BUG_ON(is_realtime(prev) && !entry->scheduled); | ||
564 | |||
565 | /* (0) Determine state */ | ||
566 | exists = entry->scheduled != NULL; | ||
567 | blocks = exists && !is_running(entry->scheduled); | ||
568 | out_of_time = exists && | ||
569 | budget_enforced(entry->scheduled) && | ||
570 | budget_exhausted(entry->scheduled); | ||
571 | needs_move = exists && needs_deadline_move(entry->scheduled); | ||
572 | np = exists && is_np(entry->scheduled); | ||
573 | sleep = exists && is_completed(entry->scheduled); | ||
574 | preempt = entry->scheduled != entry->linked; | ||
575 | |||
576 | #ifdef WANT_ALL_SCHED_EVENTS | ||
577 | TRACE_TASK(prev, "invoked cflsplit_schedule.\n"); | ||
578 | #endif | ||
579 | |||
580 | if (exists) | ||
581 | TRACE_TASK(prev, | ||
582 | "blocks:%d out_of_time:%d needs_move: %d np:%d" | ||
583 | " sleep:%d preempt:%d state:%d sig:%d\n", | ||
584 | blocks, out_of_time, needs_move, np, sleep, preempt, | ||
585 | prev->state, signal_pending(prev)); | ||
586 | if (entry->linked && preempt) | ||
587 | TRACE_TASK(prev, "will be preempted by %s/%d\n", | ||
588 | entry->linked->comm, entry->linked->pid); | ||
589 | |||
590 | |||
591 | /* If a task blocks we have no choice but to reschedule. | ||
592 | */ | ||
593 | if (blocks) | ||
594 | unlink(entry->scheduled); | ||
595 | |||
596 | /* Request a sys_exit_np() call if we would like to preempt but cannot. | ||
597 | * We need to make sure to update the link structure anyway in case | ||
598 | * that we are still linked. Multiple calls to request_exit_np() don't | ||
599 | * hurt. | ||
600 | * | ||
601 | * Job deadline moves handled similarly | ||
602 | */ | ||
603 | if (np && (out_of_time || preempt || sleep)) { | ||
604 | unlink(entry->scheduled); | ||
605 | request_exit_np(entry->scheduled); | ||
606 | } | ||
607 | else if (np && needs_move) { | ||
608 | request_exit_np(entry->scheduled); | ||
609 | } | ||
610 | |||
611 | /* Any task that is preemptable and either exhausts its execution | ||
612 | * budget or wants to sleep completes. We may have to reschedule after | ||
613 | * this. Don't do a job completion if we block (can't have timers running | ||
614 | * for blocked jobs). Preemption go first for the same reason. | ||
615 | */ | ||
616 | if (!np && (out_of_time || sleep) && !blocks) | ||
617 | job_completion(entry->scheduled, !sleep); | ||
618 | else if (!np && needs_move && !blocks) { | ||
619 | move_deadline(entry->scheduled); | ||
620 | } | ||
621 | |||
622 | /* Link pending task if we became unlinked. | ||
623 | */ | ||
624 | if (!entry->linked) | ||
625 | link_task_to_cpu(__take_ready(&cluster->domain), entry); | ||
626 | |||
627 | /* The final scheduling decision. Do we need to switch for some reason? | ||
628 | * If linked is different from scheduled, then select linked as next. | ||
629 | */ | ||
630 | if ((!np || blocks) && | ||
631 | entry->linked != entry->scheduled) { | ||
632 | /* Schedule a linked job? */ | ||
633 | if (entry->linked) { | ||
634 | entry->linked->rt_param.scheduled_on = entry->cpu; | ||
635 | next = entry->linked; | ||
636 | } | ||
637 | if (entry->scheduled) { | ||
638 | /* not gonna be scheduled soon */ | ||
639 | entry->scheduled->rt_param.scheduled_on = NO_CPU; | ||
640 | TRACE_TASK(entry->scheduled, "scheduled_on = NO_CPU\n"); | ||
641 | } | ||
642 | } else | ||
643 | /* Only override Linux scheduler if we have a real-time task | ||
644 | * scheduled that needs to continue. | ||
645 | */ | ||
646 | if (exists) | ||
647 | next = prev; | ||
648 | |||
649 | sched_state_task_picked(); | ||
650 | raw_spin_unlock(&cluster->cluster_lock); | ||
651 | |||
652 | if (next) { | ||
653 | arm_split_timer(entry, next); | ||
654 | } | ||
655 | else if (entry->timer_armed) { | ||
656 | cancel_split_timer(entry); | ||
657 | } | ||
658 | |||
659 | #ifdef WANT_ALL_SCHED_EVENTS | ||
660 | TRACE("cflsplit_lock released, next=0x%p\n", next); | ||
661 | |||
662 | if (next) | ||
663 | TRACE_TASK(next, "scheduled at %llu\n", litmus_clock()); | ||
664 | else if (exists && !next) | ||
665 | TRACE("becomes idle at %llu.\n", litmus_clock()); | ||
666 | #endif | ||
667 | |||
668 | |||
669 | return next; | ||
670 | } | ||
671 | |||
672 | |||
673 | /* _finish_switch - we just finished the switch away from prev | ||
674 | */ | ||
675 | static void cflsplit_finish_switch(struct task_struct *prev) | ||
676 | { | ||
677 | cpu_entry_t* entry = &__get_cpu_var(cflsplit_cpu_entries); | ||
678 | |||
679 | entry->scheduled = is_realtime(current) ? current : NULL; | ||
680 | #ifdef WANT_ALL_SCHED_EVENTS | ||
681 | TRACE_TASK(prev, "switched away from\n"); | ||
682 | #endif | ||
683 | } | ||
684 | |||
685 | |||
686 | static void cflsplit_release_at(struct task_struct *t, lt_t start) | ||
687 | { | ||
688 | release_at(t, start); | ||
689 | t->rt_param.job_params.subjob_deadline = get_proper_deadline(t); | ||
690 | } | ||
691 | |||
692 | |||
693 | /* Prepare a task for running in RT mode | ||
694 | */ | ||
695 | static void cflsplit_task_new(struct task_struct * t, int on_rq, int is_scheduled) | ||
696 | { | ||
697 | unsigned long flags; | ||
698 | cpu_entry_t* entry; | ||
699 | cflsplit_domain_t* cluster; | ||
700 | |||
701 | TRACE("gsn edf: task new %d\n", t->pid); | ||
702 | |||
703 | /* the cluster doesn't change even if t is scheduled */ | ||
704 | cluster = task_cpu_cluster(t); | ||
705 | |||
706 | raw_spin_lock_irqsave(&cluster->cluster_lock, flags); | ||
707 | |||
708 | /* setup job params */ | ||
709 | cflsplit_release_at(t, litmus_clock()); | ||
710 | |||
711 | if (is_scheduled) { | ||
712 | entry = &per_cpu(cflsplit_cpu_entries, task_cpu(t)); | ||
713 | BUG_ON(entry->scheduled); | ||
714 | |||
715 | #ifdef CONFIG_RELEASE_MASTER | ||
716 | if (entry->cpu != cluster->domain.release_master) { | ||
717 | #endif | ||
718 | entry->scheduled = t; | ||
719 | tsk_rt(t)->scheduled_on = task_cpu(t); | ||
720 | #ifdef CONFIG_RELEASE_MASTER | ||
721 | } else { | ||
722 | /* do not schedule on release master */ | ||
723 | preempt(entry); /* force resched */ | ||
724 | tsk_rt(t)->scheduled_on = NO_CPU; | ||
725 | } | ||
726 | #endif | ||
727 | } else { | ||
728 | t->rt_param.scheduled_on = NO_CPU; | ||
729 | } | ||
730 | t->rt_param.linked_on = NO_CPU; | ||
731 | |||
732 | if (is_running(t)) | ||
733 | cflsplit_job_arrival(t); | ||
734 | raw_spin_unlock_irqrestore(&(cluster->cluster_lock), flags); | ||
735 | } | ||
736 | |||
737 | static void cflsplit_task_wake_up(struct task_struct *task) | ||
738 | { | ||
739 | unsigned long flags; | ||
740 | lt_t now; | ||
741 | cflsplit_domain_t *cluster; | ||
742 | |||
743 | TRACE_TASK(task, "wake_up at %llu\n", litmus_clock()); | ||
744 | |||
745 | cluster = task_cpu_cluster(task); | ||
746 | |||
747 | raw_spin_lock_irqsave(&cluster->cluster_lock, flags); | ||
748 | now = litmus_clock(); | ||
749 | if (is_sporadic(task) && is_tardy(task, now)) { | ||
750 | /* new sporadic release */ | ||
751 | cflsplit_release_at(task, now); | ||
752 | sched_trace_task_release(task); | ||
753 | } | ||
754 | cflsplit_job_arrival(task); | ||
755 | raw_spin_unlock_irqrestore(&cluster->cluster_lock, flags); | ||
756 | } | ||
757 | |||
758 | static void cflsplit_task_block(struct task_struct *t) | ||
759 | { | ||
760 | unsigned long flags; | ||
761 | cflsplit_domain_t *cluster; | ||
762 | |||
763 | TRACE_TASK(t, "block at %llu\n", litmus_clock()); | ||
764 | |||
765 | cluster = task_cpu_cluster(t); | ||
766 | |||
767 | /* unlink if necessary */ | ||
768 | raw_spin_lock_irqsave(&cluster->cluster_lock, flags); | ||
769 | unlink(t); | ||
770 | raw_spin_unlock_irqrestore(&cluster->cluster_lock, flags); | ||
771 | |||
772 | BUG_ON(!is_realtime(t)); | ||
773 | } | ||
774 | |||
775 | |||
776 | static void cflsplit_task_exit(struct task_struct * t) | ||
777 | { | ||
778 | unsigned long flags; | ||
779 | cflsplit_domain_t *cluster = task_cpu_cluster(t); | ||
780 | |||
781 | /* unlink if necessary */ | ||
782 | raw_spin_lock_irqsave(&cluster->cluster_lock, flags); | ||
783 | unlink(t); | ||
784 | if (tsk_rt(t)->scheduled_on != NO_CPU) { | ||
785 | cpu_entry_t *cpu; | ||
786 | cpu = &per_cpu(cflsplit_cpu_entries, tsk_rt(t)->scheduled_on); | ||
787 | cpu->scheduled = NULL; | ||
788 | tsk_rt(t)->scheduled_on = NO_CPU; | ||
789 | } | ||
790 | raw_spin_unlock_irqrestore(&cluster->cluster_lock, flags); | ||
791 | |||
792 | BUG_ON(!is_realtime(t)); | ||
793 | TRACE_TASK(t, "RIP\n"); | ||
794 | } | ||
795 | |||
796 | static long cflsplit_admit_task(struct task_struct* tsk) | ||
797 | { | ||
798 | return (remote_cluster(task_cpu(tsk)) == task_cpu_cluster(tsk)) ? | ||
799 | 0 : -EINVAL; | ||
800 | } | ||
801 | |||
802 | /* total number of cluster */ | ||
803 | static int num_clusters; | ||
804 | /* we do not support cluster of different sizes */ | ||
805 | static unsigned int cluster_size; | ||
806 | |||
807 | #ifdef VERBOSE_INIT | ||
808 | static void print_cluster_topology(cpumask_var_t mask, int cpu) | ||
809 | { | ||
810 | int chk; | ||
811 | char buf[255]; | ||
812 | |||
813 | chk = cpulist_scnprintf(buf, 254, mask); | ||
814 | buf[chk] = '\0'; | ||
815 | printk(KERN_INFO "CPU = %d, shared cpu(s) = %s\n", cpu, buf); | ||
816 | |||
817 | } | ||
818 | #endif | ||
819 | |||
820 | static int clusters_allocated = 0; | ||
821 | |||
822 | static void cleanup_cflsplit(void) | ||
823 | { | ||
824 | int i; | ||
825 | |||
826 | if (clusters_allocated) { | ||
827 | for (i = 0; i < num_clusters; i++) { | ||
828 | kfree(cflsplit[i].cpus); | ||
829 | kfree(cflsplit[i].heap_node); | ||
830 | free_cpumask_var(cflsplit[i].cpu_map); | ||
831 | } | ||
832 | |||
833 | kfree(cflsplit); | ||
834 | } | ||
835 | } | ||
836 | |||
837 | static long cflsplit_activate_plugin(void) | ||
838 | { | ||
839 | int i, j, cpu, ccpu, cpu_count; | ||
840 | cpu_entry_t *entry; | ||
841 | |||
842 | cpumask_var_t mask; | ||
843 | int chk = 0; | ||
844 | |||
845 | /* de-allocate old clusters, if any */ | ||
846 | cleanup_cflsplit(); | ||
847 | |||
848 | printk(KERN_INFO "C-FL-split: Activate Plugin, cluster configuration = %d\n", | ||
849 | cluster_config); | ||
850 | |||
851 | /* need to get cluster_size first */ | ||
852 | if(!zalloc_cpumask_var(&mask, GFP_ATOMIC)) | ||
853 | return -ENOMEM; | ||
854 | |||
855 | if (unlikely(cluster_config == GLOBAL_CLUSTER)) { | ||
856 | cluster_size = num_online_cpus(); | ||
857 | } else { | ||
858 | chk = get_shared_cpu_map(mask, 0, cluster_config); | ||
859 | if (chk) { | ||
860 | /* if chk != 0 then it is the max allowed index */ | ||
861 | printk(KERN_INFO "C-FL-split: Cluster configuration = %d " | ||
862 | "is not supported on this hardware.\n", | ||
863 | cluster_config); | ||
864 | /* User should notice that the configuration failed, so | ||
865 | * let's bail out. */ | ||
866 | return -EINVAL; | ||
867 | } | ||
868 | |||
869 | cluster_size = cpumask_weight(mask); | ||
870 | } | ||
871 | |||
872 | if ((num_online_cpus() % cluster_size) != 0) { | ||
873 | /* this can't be right, some cpus are left out */ | ||
874 | printk(KERN_ERR "C-FL-split: Trying to group %d cpus in %d!\n", | ||
875 | num_online_cpus(), cluster_size); | ||
876 | return -1; | ||
877 | } | ||
878 | |||
879 | num_clusters = num_online_cpus() / cluster_size; | ||
880 | printk(KERN_INFO "C-FL-split: %d cluster(s) of size = %d\n", | ||
881 | num_clusters, cluster_size); | ||
882 | |||
883 | /* initialize clusters */ | ||
884 | cflsplit = kmalloc(num_clusters * sizeof(cflsplit_domain_t), GFP_ATOMIC); | ||
885 | for (i = 0; i < num_clusters; i++) { | ||
886 | |||
887 | cflsplit[i].cpus = kmalloc(cluster_size * sizeof(cpu_entry_t), | ||
888 | GFP_ATOMIC); | ||
889 | cflsplit[i].heap_node = kmalloc( | ||
890 | cluster_size * sizeof(struct bheap_node), | ||
891 | GFP_ATOMIC); | ||
892 | bheap_init(&(cflsplit[i].cpu_heap)); | ||
893 | edf_split_domain_init(&(cflsplit[i].domain), NULL, | ||
894 | cflsplit_release_jobs); | ||
895 | |||
896 | if(!zalloc_cpumask_var(&cflsplit[i].cpu_map, GFP_ATOMIC)) | ||
897 | return -ENOMEM; | ||
898 | #ifdef CONFIG_RELEASE_MASTER | ||
899 | cflsplit[i].domain.release_master = atomic_read(&release_master_cpu); | ||
900 | #endif | ||
901 | } | ||
902 | |||
903 | /* cycle through cluster and add cpus to them */ | ||
904 | for (i = 0; i < num_clusters; i++) { | ||
905 | |||
906 | for_each_online_cpu(cpu) { | ||
907 | /* check if the cpu is already in a cluster */ | ||
908 | for (j = 0; j < num_clusters; j++) | ||
909 | if (cpumask_test_cpu(cpu, cflsplit[j].cpu_map)) | ||
910 | break; | ||
911 | /* if it is in a cluster go to next cpu */ | ||
912 | if (j < num_clusters && | ||
913 | cpumask_test_cpu(cpu, cflsplit[j].cpu_map)) | ||
914 | continue; | ||
915 | |||
916 | /* this cpu isn't in any cluster */ | ||
917 | /* get the shared cpus */ | ||
918 | if (unlikely(cluster_config == GLOBAL_CLUSTER)) | ||
919 | cpumask_copy(mask, cpu_online_mask); | ||
920 | else | ||
921 | get_shared_cpu_map(mask, cpu, cluster_config); | ||
922 | |||
923 | cpumask_copy(cflsplit[i].cpu_map, mask); | ||
924 | #ifdef VERBOSE_INIT | ||
925 | print_cluster_topology(mask, cpu); | ||
926 | #endif | ||
927 | /* add cpus to current cluster and init cpu_entry_t */ | ||
928 | cpu_count = 0; | ||
929 | for_each_cpu(ccpu, cflsplit[i].cpu_map) { | ||
930 | |||
931 | entry = &per_cpu(cflsplit_cpu_entries, ccpu); | ||
932 | cflsplit[i].cpus[cpu_count] = entry; | ||
933 | atomic_set(&entry->will_schedule, 0); | ||
934 | entry->cpu = ccpu; | ||
935 | entry->cluster = &cflsplit[i]; | ||
936 | entry->hn = &(cflsplit[i].heap_node[cpu_count]); | ||
937 | hrtimer_init(&entry->split_timer, | ||
938 | CLOCK_MONOTONIC, | ||
939 | HRTIMER_MODE_ABS); | ||
940 | entry->split_timer.function = on_split_timeout; | ||
941 | bheap_node_init(&entry->hn, entry); | ||
942 | |||
943 | cpu_count++; | ||
944 | |||
945 | entry->linked = NULL; | ||
946 | entry->scheduled = NULL; | ||
947 | #ifdef CONFIG_RELEASE_MASTER | ||
948 | /* only add CPUs that should schedule jobs */ | ||
949 | if (entry->cpu != entry->cluster->domain.release_master) | ||
950 | #endif | ||
951 | update_cpu_position(entry); | ||
952 | } | ||
953 | /* done with this cluster */ | ||
954 | break; | ||
955 | } | ||
956 | } | ||
957 | |||
958 | free_cpumask_var(mask); | ||
959 | clusters_allocated = 1; | ||
960 | return 0; | ||
961 | } | ||
962 | |||
963 | /* Plugin object */ | ||
964 | static struct sched_plugin cflsplit_plugin __cacheline_aligned_in_smp = { | ||
965 | .plugin_name = "C-FL-split", | ||
966 | .finish_switch = cflsplit_finish_switch, | ||
967 | .tick = cflsplit_tick, | ||
968 | .task_new = cflsplit_task_new, | ||
969 | .complete_job = complete_job, | ||
970 | .task_exit = cflsplit_task_exit, | ||
971 | .schedule = cflsplit_schedule, | ||
972 | .release_at = cflsplit_release_at, | ||
973 | .task_wake_up = cflsplit_task_wake_up, | ||
974 | .task_block = cflsplit_task_block, | ||
975 | .admit_task = cflsplit_admit_task, | ||
976 | .activate_plugin = cflsplit_activate_plugin, | ||
977 | }; | ||
978 | |||
979 | static struct proc_dir_entry *cluster_file = NULL, *cflsplit_dir = NULL; | ||
980 | |||
981 | static int __init init_cflsplit(void) | ||
982 | { | ||
983 | int err, fs; | ||
984 | |||
985 | err = register_sched_plugin(&cflsplit_plugin); | ||
986 | if (!err) { | ||
987 | fs = make_plugin_proc_dir(&cflsplit_plugin, &cflsplit_dir); | ||
988 | if (!fs) | ||
989 | cluster_file = create_cluster_file(cflsplit_dir, &cluster_config); | ||
990 | else | ||
991 | printk(KERN_ERR "Could not allocate C-FL-split procfs dir.\n"); | ||
992 | } | ||
993 | return err; | ||
994 | } | ||
995 | |||
996 | static void clean_cflsplit(void) | ||
997 | { | ||
998 | cleanup_cflsplit(); | ||
999 | if (cluster_file) | ||
1000 | remove_proc_entry("cluster", cflsplit_dir); | ||
1001 | if (cflsplit_dir) | ||
1002 | remove_plugin_proc_dir(&cflsplit_plugin); | ||
1003 | } | ||
1004 | |||
1005 | module_init(init_cflsplit); | ||
1006 | module_exit(clean_cflsplit); | ||