diff options
Diffstat (limited to 'lib/prio_tree.c')
-rw-r--r-- | lib/prio_tree.c | 466 |
1 files changed, 0 insertions, 466 deletions
diff --git a/lib/prio_tree.c b/lib/prio_tree.c deleted file mode 100644 index 8d443af03b4c..000000000000 --- a/lib/prio_tree.c +++ /dev/null | |||
@@ -1,466 +0,0 @@ | |||
1 | /* | ||
2 | * lib/prio_tree.c - priority search tree | ||
3 | * | ||
4 | * Copyright (C) 2004, Rajesh Venkatasubramanian <vrajesh@umich.edu> | ||
5 | * | ||
6 | * This file is released under the GPL v2. | ||
7 | * | ||
8 | * Based on the radix priority search tree proposed by Edward M. McCreight | ||
9 | * SIAM Journal of Computing, vol. 14, no.2, pages 257-276, May 1985 | ||
10 | * | ||
11 | * 02Feb2004 Initial version | ||
12 | */ | ||
13 | |||
14 | #include <linux/init.h> | ||
15 | #include <linux/mm.h> | ||
16 | #include <linux/prio_tree.h> | ||
17 | |||
18 | /* | ||
19 | * A clever mix of heap and radix trees forms a radix priority search tree (PST) | ||
20 | * which is useful for storing intervals, e.g, we can consider a vma as a closed | ||
21 | * interval of file pages [offset_begin, offset_end], and store all vmas that | ||
22 | * map a file in a PST. Then, using the PST, we can answer a stabbing query, | ||
23 | * i.e., selecting a set of stored intervals (vmas) that overlap with (map) a | ||
24 | * given input interval X (a set of consecutive file pages), in "O(log n + m)" | ||
25 | * time where 'log n' is the height of the PST, and 'm' is the number of stored | ||
26 | * intervals (vmas) that overlap (map) with the input interval X (the set of | ||
27 | * consecutive file pages). | ||
28 | * | ||
29 | * In our implementation, we store closed intervals of the form [radix_index, | ||
30 | * heap_index]. We assume that always radix_index <= heap_index. McCreight's PST | ||
31 | * is designed for storing intervals with unique radix indices, i.e., each | ||
32 | * interval have different radix_index. However, this limitation can be easily | ||
33 | * overcome by using the size, i.e., heap_index - radix_index, as part of the | ||
34 | * index, so we index the tree using [(radix_index,size), heap_index]. | ||
35 | * | ||
36 | * When the above-mentioned indexing scheme is used, theoretically, in a 32 bit | ||
37 | * machine, the maximum height of a PST can be 64. We can use a balanced version | ||
38 | * of the priority search tree to optimize the tree height, but the balanced | ||
39 | * tree proposed by McCreight is too complex and memory-hungry for our purpose. | ||
40 | */ | ||
41 | |||
42 | /* | ||
43 | * The following macros are used for implementing prio_tree for i_mmap | ||
44 | */ | ||
45 | |||
46 | #define RADIX_INDEX(vma) ((vma)->vm_pgoff) | ||
47 | #define VMA_SIZE(vma) (((vma)->vm_end - (vma)->vm_start) >> PAGE_SHIFT) | ||
48 | /* avoid overflow */ | ||
49 | #define HEAP_INDEX(vma) ((vma)->vm_pgoff + (VMA_SIZE(vma) - 1)) | ||
50 | |||
51 | |||
52 | static void get_index(const struct prio_tree_root *root, | ||
53 | const struct prio_tree_node *node, | ||
54 | unsigned long *radix, unsigned long *heap) | ||
55 | { | ||
56 | if (root->raw) { | ||
57 | struct vm_area_struct *vma = prio_tree_entry( | ||
58 | node, struct vm_area_struct, shared.prio_tree_node); | ||
59 | |||
60 | *radix = RADIX_INDEX(vma); | ||
61 | *heap = HEAP_INDEX(vma); | ||
62 | } | ||
63 | else { | ||
64 | *radix = node->start; | ||
65 | *heap = node->last; | ||
66 | } | ||
67 | } | ||
68 | |||
69 | static unsigned long index_bits_to_maxindex[BITS_PER_LONG]; | ||
70 | |||
71 | void __init prio_tree_init(void) | ||
72 | { | ||
73 | unsigned int i; | ||
74 | |||
75 | for (i = 0; i < ARRAY_SIZE(index_bits_to_maxindex) - 1; i++) | ||
76 | index_bits_to_maxindex[i] = (1UL << (i + 1)) - 1; | ||
77 | index_bits_to_maxindex[ARRAY_SIZE(index_bits_to_maxindex) - 1] = ~0UL; | ||
78 | } | ||
79 | |||
80 | /* | ||
81 | * Maximum heap_index that can be stored in a PST with index_bits bits | ||
82 | */ | ||
83 | static inline unsigned long prio_tree_maxindex(unsigned int bits) | ||
84 | { | ||
85 | return index_bits_to_maxindex[bits - 1]; | ||
86 | } | ||
87 | |||
88 | static void prio_set_parent(struct prio_tree_node *parent, | ||
89 | struct prio_tree_node *child, bool left) | ||
90 | { | ||
91 | if (left) | ||
92 | parent->left = child; | ||
93 | else | ||
94 | parent->right = child; | ||
95 | |||
96 | child->parent = parent; | ||
97 | } | ||
98 | |||
99 | /* | ||
100 | * Extend a priority search tree so that it can store a node with heap_index | ||
101 | * max_heap_index. In the worst case, this algorithm takes O((log n)^2). | ||
102 | * However, this function is used rarely and the common case performance is | ||
103 | * not bad. | ||
104 | */ | ||
105 | static struct prio_tree_node *prio_tree_expand(struct prio_tree_root *root, | ||
106 | struct prio_tree_node *node, unsigned long max_heap_index) | ||
107 | { | ||
108 | struct prio_tree_node *prev; | ||
109 | |||
110 | if (max_heap_index > prio_tree_maxindex(root->index_bits)) | ||
111 | root->index_bits++; | ||
112 | |||
113 | prev = node; | ||
114 | INIT_PRIO_TREE_NODE(node); | ||
115 | |||
116 | while (max_heap_index > prio_tree_maxindex(root->index_bits)) { | ||
117 | struct prio_tree_node *tmp = root->prio_tree_node; | ||
118 | |||
119 | root->index_bits++; | ||
120 | |||
121 | if (prio_tree_empty(root)) | ||
122 | continue; | ||
123 | |||
124 | prio_tree_remove(root, root->prio_tree_node); | ||
125 | INIT_PRIO_TREE_NODE(tmp); | ||
126 | |||
127 | prio_set_parent(prev, tmp, true); | ||
128 | prev = tmp; | ||
129 | } | ||
130 | |||
131 | if (!prio_tree_empty(root)) | ||
132 | prio_set_parent(prev, root->prio_tree_node, true); | ||
133 | |||
134 | root->prio_tree_node = node; | ||
135 | return node; | ||
136 | } | ||
137 | |||
138 | /* | ||
139 | * Replace a prio_tree_node with a new node and return the old node | ||
140 | */ | ||
141 | struct prio_tree_node *prio_tree_replace(struct prio_tree_root *root, | ||
142 | struct prio_tree_node *old, struct prio_tree_node *node) | ||
143 | { | ||
144 | INIT_PRIO_TREE_NODE(node); | ||
145 | |||
146 | if (prio_tree_root(old)) { | ||
147 | BUG_ON(root->prio_tree_node != old); | ||
148 | /* | ||
149 | * We can reduce root->index_bits here. However, it is complex | ||
150 | * and does not help much to improve performance (IMO). | ||
151 | */ | ||
152 | root->prio_tree_node = node; | ||
153 | } else | ||
154 | prio_set_parent(old->parent, node, old->parent->left == old); | ||
155 | |||
156 | if (!prio_tree_left_empty(old)) | ||
157 | prio_set_parent(node, old->left, true); | ||
158 | |||
159 | if (!prio_tree_right_empty(old)) | ||
160 | prio_set_parent(node, old->right, false); | ||
161 | |||
162 | return old; | ||
163 | } | ||
164 | |||
165 | /* | ||
166 | * Insert a prio_tree_node @node into a radix priority search tree @root. The | ||
167 | * algorithm typically takes O(log n) time where 'log n' is the number of bits | ||
168 | * required to represent the maximum heap_index. In the worst case, the algo | ||
169 | * can take O((log n)^2) - check prio_tree_expand. | ||
170 | * | ||
171 | * If a prior node with same radix_index and heap_index is already found in | ||
172 | * the tree, then returns the address of the prior node. Otherwise, inserts | ||
173 | * @node into the tree and returns @node. | ||
174 | */ | ||
175 | struct prio_tree_node *prio_tree_insert(struct prio_tree_root *root, | ||
176 | struct prio_tree_node *node) | ||
177 | { | ||
178 | struct prio_tree_node *cur, *res = node; | ||
179 | unsigned long radix_index, heap_index; | ||
180 | unsigned long r_index, h_index, index, mask; | ||
181 | int size_flag = 0; | ||
182 | |||
183 | get_index(root, node, &radix_index, &heap_index); | ||
184 | |||
185 | if (prio_tree_empty(root) || | ||
186 | heap_index > prio_tree_maxindex(root->index_bits)) | ||
187 | return prio_tree_expand(root, node, heap_index); | ||
188 | |||
189 | cur = root->prio_tree_node; | ||
190 | mask = 1UL << (root->index_bits - 1); | ||
191 | |||
192 | while (mask) { | ||
193 | get_index(root, cur, &r_index, &h_index); | ||
194 | |||
195 | if (r_index == radix_index && h_index == heap_index) | ||
196 | return cur; | ||
197 | |||
198 | if (h_index < heap_index || | ||
199 | (h_index == heap_index && r_index > radix_index)) { | ||
200 | struct prio_tree_node *tmp = node; | ||
201 | node = prio_tree_replace(root, cur, node); | ||
202 | cur = tmp; | ||
203 | /* swap indices */ | ||
204 | index = r_index; | ||
205 | r_index = radix_index; | ||
206 | radix_index = index; | ||
207 | index = h_index; | ||
208 | h_index = heap_index; | ||
209 | heap_index = index; | ||
210 | } | ||
211 | |||
212 | if (size_flag) | ||
213 | index = heap_index - radix_index; | ||
214 | else | ||
215 | index = radix_index; | ||
216 | |||
217 | if (index & mask) { | ||
218 | if (prio_tree_right_empty(cur)) { | ||
219 | INIT_PRIO_TREE_NODE(node); | ||
220 | prio_set_parent(cur, node, false); | ||
221 | return res; | ||
222 | } else | ||
223 | cur = cur->right; | ||
224 | } else { | ||
225 | if (prio_tree_left_empty(cur)) { | ||
226 | INIT_PRIO_TREE_NODE(node); | ||
227 | prio_set_parent(cur, node, true); | ||
228 | return res; | ||
229 | } else | ||
230 | cur = cur->left; | ||
231 | } | ||
232 | |||
233 | mask >>= 1; | ||
234 | |||
235 | if (!mask) { | ||
236 | mask = 1UL << (BITS_PER_LONG - 1); | ||
237 | size_flag = 1; | ||
238 | } | ||
239 | } | ||
240 | /* Should not reach here */ | ||
241 | BUG(); | ||
242 | return NULL; | ||
243 | } | ||
244 | |||
245 | /* | ||
246 | * Remove a prio_tree_node @node from a radix priority search tree @root. The | ||
247 | * algorithm takes O(log n) time where 'log n' is the number of bits required | ||
248 | * to represent the maximum heap_index. | ||
249 | */ | ||
250 | void prio_tree_remove(struct prio_tree_root *root, struct prio_tree_node *node) | ||
251 | { | ||
252 | struct prio_tree_node *cur; | ||
253 | unsigned long r_index, h_index_right, h_index_left; | ||
254 | |||
255 | cur = node; | ||
256 | |||
257 | while (!prio_tree_left_empty(cur) || !prio_tree_right_empty(cur)) { | ||
258 | if (!prio_tree_left_empty(cur)) | ||
259 | get_index(root, cur->left, &r_index, &h_index_left); | ||
260 | else { | ||
261 | cur = cur->right; | ||
262 | continue; | ||
263 | } | ||
264 | |||
265 | if (!prio_tree_right_empty(cur)) | ||
266 | get_index(root, cur->right, &r_index, &h_index_right); | ||
267 | else { | ||
268 | cur = cur->left; | ||
269 | continue; | ||
270 | } | ||
271 | |||
272 | /* both h_index_left and h_index_right cannot be 0 */ | ||
273 | if (h_index_left >= h_index_right) | ||
274 | cur = cur->left; | ||
275 | else | ||
276 | cur = cur->right; | ||
277 | } | ||
278 | |||
279 | if (prio_tree_root(cur)) { | ||
280 | BUG_ON(root->prio_tree_node != cur); | ||
281 | __INIT_PRIO_TREE_ROOT(root, root->raw); | ||
282 | return; | ||
283 | } | ||
284 | |||
285 | if (cur->parent->right == cur) | ||
286 | cur->parent->right = cur->parent; | ||
287 | else | ||
288 | cur->parent->left = cur->parent; | ||
289 | |||
290 | while (cur != node) | ||
291 | cur = prio_tree_replace(root, cur->parent, cur); | ||
292 | } | ||
293 | |||
294 | static void iter_walk_down(struct prio_tree_iter *iter) | ||
295 | { | ||
296 | iter->mask >>= 1; | ||
297 | if (iter->mask) { | ||
298 | if (iter->size_level) | ||
299 | iter->size_level++; | ||
300 | return; | ||
301 | } | ||
302 | |||
303 | if (iter->size_level) { | ||
304 | BUG_ON(!prio_tree_left_empty(iter->cur)); | ||
305 | BUG_ON(!prio_tree_right_empty(iter->cur)); | ||
306 | iter->size_level++; | ||
307 | iter->mask = ULONG_MAX; | ||
308 | } else { | ||
309 | iter->size_level = 1; | ||
310 | iter->mask = 1UL << (BITS_PER_LONG - 1); | ||
311 | } | ||
312 | } | ||
313 | |||
314 | static void iter_walk_up(struct prio_tree_iter *iter) | ||
315 | { | ||
316 | if (iter->mask == ULONG_MAX) | ||
317 | iter->mask = 1UL; | ||
318 | else if (iter->size_level == 1) | ||
319 | iter->mask = 1UL; | ||
320 | else | ||
321 | iter->mask <<= 1; | ||
322 | if (iter->size_level) | ||
323 | iter->size_level--; | ||
324 | if (!iter->size_level && (iter->value & iter->mask)) | ||
325 | iter->value ^= iter->mask; | ||
326 | } | ||
327 | |||
328 | /* | ||
329 | * Following functions help to enumerate all prio_tree_nodes in the tree that | ||
330 | * overlap with the input interval X [radix_index, heap_index]. The enumeration | ||
331 | * takes O(log n + m) time where 'log n' is the height of the tree (which is | ||
332 | * proportional to # of bits required to represent the maximum heap_index) and | ||
333 | * 'm' is the number of prio_tree_nodes that overlap the interval X. | ||
334 | */ | ||
335 | |||
336 | static struct prio_tree_node *prio_tree_left(struct prio_tree_iter *iter, | ||
337 | unsigned long *r_index, unsigned long *h_index) | ||
338 | { | ||
339 | if (prio_tree_left_empty(iter->cur)) | ||
340 | return NULL; | ||
341 | |||
342 | get_index(iter->root, iter->cur->left, r_index, h_index); | ||
343 | |||
344 | if (iter->r_index <= *h_index) { | ||
345 | iter->cur = iter->cur->left; | ||
346 | iter_walk_down(iter); | ||
347 | return iter->cur; | ||
348 | } | ||
349 | |||
350 | return NULL; | ||
351 | } | ||
352 | |||
353 | static struct prio_tree_node *prio_tree_right(struct prio_tree_iter *iter, | ||
354 | unsigned long *r_index, unsigned long *h_index) | ||
355 | { | ||
356 | unsigned long value; | ||
357 | |||
358 | if (prio_tree_right_empty(iter->cur)) | ||
359 | return NULL; | ||
360 | |||
361 | if (iter->size_level) | ||
362 | value = iter->value; | ||
363 | else | ||
364 | value = iter->value | iter->mask; | ||
365 | |||
366 | if (iter->h_index < value) | ||
367 | return NULL; | ||
368 | |||
369 | get_index(iter->root, iter->cur->right, r_index, h_index); | ||
370 | |||
371 | if (iter->r_index <= *h_index) { | ||
372 | iter->cur = iter->cur->right; | ||
373 | iter_walk_down(iter); | ||
374 | return iter->cur; | ||
375 | } | ||
376 | |||
377 | return NULL; | ||
378 | } | ||
379 | |||
380 | static struct prio_tree_node *prio_tree_parent(struct prio_tree_iter *iter) | ||
381 | { | ||
382 | iter->cur = iter->cur->parent; | ||
383 | iter_walk_up(iter); | ||
384 | return iter->cur; | ||
385 | } | ||
386 | |||
387 | static inline int overlap(struct prio_tree_iter *iter, | ||
388 | unsigned long r_index, unsigned long h_index) | ||
389 | { | ||
390 | return iter->h_index >= r_index && iter->r_index <= h_index; | ||
391 | } | ||
392 | |||
393 | /* | ||
394 | * prio_tree_first: | ||
395 | * | ||
396 | * Get the first prio_tree_node that overlaps with the interval [radix_index, | ||
397 | * heap_index]. Note that always radix_index <= heap_index. We do a pre-order | ||
398 | * traversal of the tree. | ||
399 | */ | ||
400 | static struct prio_tree_node *prio_tree_first(struct prio_tree_iter *iter) | ||
401 | { | ||
402 | struct prio_tree_root *root; | ||
403 | unsigned long r_index, h_index; | ||
404 | |||
405 | INIT_PRIO_TREE_ITER(iter); | ||
406 | |||
407 | root = iter->root; | ||
408 | if (prio_tree_empty(root)) | ||
409 | return NULL; | ||
410 | |||
411 | get_index(root, root->prio_tree_node, &r_index, &h_index); | ||
412 | |||
413 | if (iter->r_index > h_index) | ||
414 | return NULL; | ||
415 | |||
416 | iter->mask = 1UL << (root->index_bits - 1); | ||
417 | iter->cur = root->prio_tree_node; | ||
418 | |||
419 | while (1) { | ||
420 | if (overlap(iter, r_index, h_index)) | ||
421 | return iter->cur; | ||
422 | |||
423 | if (prio_tree_left(iter, &r_index, &h_index)) | ||
424 | continue; | ||
425 | |||
426 | if (prio_tree_right(iter, &r_index, &h_index)) | ||
427 | continue; | ||
428 | |||
429 | break; | ||
430 | } | ||
431 | return NULL; | ||
432 | } | ||
433 | |||
434 | /* | ||
435 | * prio_tree_next: | ||
436 | * | ||
437 | * Get the next prio_tree_node that overlaps with the input interval in iter | ||
438 | */ | ||
439 | struct prio_tree_node *prio_tree_next(struct prio_tree_iter *iter) | ||
440 | { | ||
441 | unsigned long r_index, h_index; | ||
442 | |||
443 | if (iter->cur == NULL) | ||
444 | return prio_tree_first(iter); | ||
445 | |||
446 | repeat: | ||
447 | while (prio_tree_left(iter, &r_index, &h_index)) | ||
448 | if (overlap(iter, r_index, h_index)) | ||
449 | return iter->cur; | ||
450 | |||
451 | while (!prio_tree_right(iter, &r_index, &h_index)) { | ||
452 | while (!prio_tree_root(iter->cur) && | ||
453 | iter->cur->parent->right == iter->cur) | ||
454 | prio_tree_parent(iter); | ||
455 | |||
456 | if (prio_tree_root(iter->cur)) | ||
457 | return NULL; | ||
458 | |||
459 | prio_tree_parent(iter); | ||
460 | } | ||
461 | |||
462 | if (overlap(iter, r_index, h_index)) | ||
463 | return iter->cur; | ||
464 | |||
465 | goto repeat; | ||
466 | } | ||