diff options
Diffstat (limited to 'kernel')
123 files changed, 14721 insertions, 13285 deletions
diff --git a/kernel/Makefile b/kernel/Makefile index 2093a691f1c2..187c89b4783d 100644 --- a/kernel/Makefile +++ b/kernel/Makefile | |||
| @@ -80,26 +80,22 @@ obj-$(CONFIG_DETECT_HUNG_TASK) += hung_task.o | |||
| 80 | obj-$(CONFIG_GENERIC_HARDIRQS) += irq/ | 80 | obj-$(CONFIG_GENERIC_HARDIRQS) += irq/ |
| 81 | obj-$(CONFIG_SECCOMP) += seccomp.o | 81 | obj-$(CONFIG_SECCOMP) += seccomp.o |
| 82 | obj-$(CONFIG_RCU_TORTURE_TEST) += rcutorture.o | 82 | obj-$(CONFIG_RCU_TORTURE_TEST) += rcutorture.o |
| 83 | obj-$(CONFIG_CLASSIC_RCU) += rcuclassic.o | ||
| 84 | obj-$(CONFIG_TREE_RCU) += rcutree.o | 83 | obj-$(CONFIG_TREE_RCU) += rcutree.o |
| 85 | obj-$(CONFIG_PREEMPT_RCU) += rcupreempt.o | 84 | obj-$(CONFIG_TREE_PREEMPT_RCU) += rcutree.o |
| 86 | obj-$(CONFIG_TREE_RCU_TRACE) += rcutree_trace.o | 85 | obj-$(CONFIG_TREE_RCU_TRACE) += rcutree_trace.o |
| 87 | obj-$(CONFIG_PREEMPT_RCU_TRACE) += rcupreempt_trace.o | ||
| 88 | obj-$(CONFIG_RELAY) += relay.o | 86 | obj-$(CONFIG_RELAY) += relay.o |
| 89 | obj-$(CONFIG_SYSCTL) += utsname_sysctl.o | 87 | obj-$(CONFIG_SYSCTL) += utsname_sysctl.o |
| 90 | obj-$(CONFIG_TASK_DELAY_ACCT) += delayacct.o | 88 | obj-$(CONFIG_TASK_DELAY_ACCT) += delayacct.o |
| 91 | obj-$(CONFIG_TASKSTATS) += taskstats.o tsacct.o | 89 | obj-$(CONFIG_TASKSTATS) += taskstats.o tsacct.o |
| 92 | obj-$(CONFIG_MARKERS) += marker.o | ||
| 93 | obj-$(CONFIG_TRACEPOINTS) += tracepoint.o | 90 | obj-$(CONFIG_TRACEPOINTS) += tracepoint.o |
| 94 | obj-$(CONFIG_LATENCYTOP) += latencytop.o | 91 | obj-$(CONFIG_LATENCYTOP) += latencytop.o |
| 95 | obj-$(CONFIG_HAVE_GENERIC_DMA_COHERENT) += dma-coherent.o | ||
| 96 | obj-$(CONFIG_FUNCTION_TRACER) += trace/ | 92 | obj-$(CONFIG_FUNCTION_TRACER) += trace/ |
| 97 | obj-$(CONFIG_TRACING) += trace/ | 93 | obj-$(CONFIG_TRACING) += trace/ |
| 98 | obj-$(CONFIG_X86_DS) += trace/ | 94 | obj-$(CONFIG_X86_DS) += trace/ |
| 99 | obj-$(CONFIG_RING_BUFFER) += trace/ | 95 | obj-$(CONFIG_RING_BUFFER) += trace/ |
| 100 | obj-$(CONFIG_SMP) += sched_cpupri.o | 96 | obj-$(CONFIG_SMP) += sched_cpupri.o |
| 101 | obj-$(CONFIG_SLOW_WORK) += slow-work.o | 97 | obj-$(CONFIG_SLOW_WORK) += slow-work.o |
| 102 | obj-$(CONFIG_PERF_COUNTERS) += perf_counter.o | 98 | obj-$(CONFIG_PERF_EVENTS) += perf_event.o |
| 103 | 99 | ||
| 104 | ifneq ($(CONFIG_SCHED_OMIT_FRAME_POINTER),y) | 100 | ifneq ($(CONFIG_SCHED_OMIT_FRAME_POINTER),y) |
| 105 | # According to Alan Modra <alan@linuxcare.com.au>, the -fno-omit-frame-pointer is | 101 | # According to Alan Modra <alan@linuxcare.com.au>, the -fno-omit-frame-pointer is |
| @@ -119,7 +115,7 @@ $(obj)/config_data.gz: .config FORCE | |||
| 119 | $(call if_changed,gzip) | 115 | $(call if_changed,gzip) |
| 120 | 116 | ||
| 121 | quiet_cmd_ikconfiggz = IKCFG $@ | 117 | quiet_cmd_ikconfiggz = IKCFG $@ |
| 122 | cmd_ikconfiggz = (echo "static const char kernel_config_data[] = MAGIC_START"; cat $< | scripts/bin2c; echo "MAGIC_END;") > $@ | 118 | cmd_ikconfiggz = (echo "static const char kernel_config_data[] __used = MAGIC_START"; cat $< | scripts/bin2c; echo "MAGIC_END;") > $@ |
| 123 | targets += config_data.h | 119 | targets += config_data.h |
| 124 | $(obj)/config_data.h: $(obj)/config_data.gz FORCE | 120 | $(obj)/config_data.h: $(obj)/config_data.gz FORCE |
| 125 | $(call if_changed,ikconfiggz) | 121 | $(call if_changed,ikconfiggz) |
diff --git a/kernel/acct.c b/kernel/acct.c index 7afa31564162..9a4715a2f6bf 100644 --- a/kernel/acct.c +++ b/kernel/acct.c | |||
| @@ -215,6 +215,7 @@ static void acct_file_reopen(struct bsd_acct_struct *acct, struct file *file, | |||
| 215 | static int acct_on(char *name) | 215 | static int acct_on(char *name) |
| 216 | { | 216 | { |
| 217 | struct file *file; | 217 | struct file *file; |
| 218 | struct vfsmount *mnt; | ||
| 218 | int error; | 219 | int error; |
| 219 | struct pid_namespace *ns; | 220 | struct pid_namespace *ns; |
| 220 | struct bsd_acct_struct *acct = NULL; | 221 | struct bsd_acct_struct *acct = NULL; |
| @@ -256,11 +257,12 @@ static int acct_on(char *name) | |||
| 256 | acct = NULL; | 257 | acct = NULL; |
| 257 | } | 258 | } |
| 258 | 259 | ||
| 259 | mnt_pin(file->f_path.mnt); | 260 | mnt = file->f_path.mnt; |
| 261 | mnt_pin(mnt); | ||
| 260 | acct_file_reopen(ns->bacct, file, ns); | 262 | acct_file_reopen(ns->bacct, file, ns); |
| 261 | spin_unlock(&acct_lock); | 263 | spin_unlock(&acct_lock); |
| 262 | 264 | ||
| 263 | mntput(file->f_path.mnt); /* it's pinned, now give up active reference */ | 265 | mntput(mnt); /* it's pinned, now give up active reference */ |
| 264 | kfree(acct); | 266 | kfree(acct); |
| 265 | 267 | ||
| 266 | return 0; | 268 | return 0; |
| @@ -489,13 +491,17 @@ static void do_acct_process(struct bsd_acct_struct *acct, | |||
| 489 | u64 run_time; | 491 | u64 run_time; |
| 490 | struct timespec uptime; | 492 | struct timespec uptime; |
| 491 | struct tty_struct *tty; | 493 | struct tty_struct *tty; |
| 494 | const struct cred *orig_cred; | ||
| 495 | |||
| 496 | /* Perform file operations on behalf of whoever enabled accounting */ | ||
| 497 | orig_cred = override_creds(file->f_cred); | ||
| 492 | 498 | ||
| 493 | /* | 499 | /* |
| 494 | * First check to see if there is enough free_space to continue | 500 | * First check to see if there is enough free_space to continue |
| 495 | * the process accounting system. | 501 | * the process accounting system. |
| 496 | */ | 502 | */ |
| 497 | if (!check_free_space(acct, file)) | 503 | if (!check_free_space(acct, file)) |
| 498 | return; | 504 | goto out; |
| 499 | 505 | ||
| 500 | /* | 506 | /* |
| 501 | * Fill the accounting struct with the needed info as recorded | 507 | * Fill the accounting struct with the needed info as recorded |
| @@ -576,6 +582,8 @@ static void do_acct_process(struct bsd_acct_struct *acct, | |||
| 576 | sizeof(acct_t), &file->f_pos); | 582 | sizeof(acct_t), &file->f_pos); |
| 577 | current->signal->rlim[RLIMIT_FSIZE].rlim_cur = flim; | 583 | current->signal->rlim[RLIMIT_FSIZE].rlim_cur = flim; |
| 578 | set_fs(fs); | 584 | set_fs(fs); |
| 585 | out: | ||
| 586 | revert_creds(orig_cred); | ||
| 579 | } | 587 | } |
| 580 | 588 | ||
| 581 | /** | 589 | /** |
diff --git a/kernel/cgroup.c b/kernel/cgroup.c index 3737a682cdf5..213b7f92fcdd 100644 --- a/kernel/cgroup.c +++ b/kernel/cgroup.c | |||
| @@ -47,6 +47,7 @@ | |||
| 47 | #include <linux/hash.h> | 47 | #include <linux/hash.h> |
| 48 | #include <linux/namei.h> | 48 | #include <linux/namei.h> |
| 49 | #include <linux/smp_lock.h> | 49 | #include <linux/smp_lock.h> |
| 50 | #include <linux/pid_namespace.h> | ||
| 50 | 51 | ||
| 51 | #include <asm/atomic.h> | 52 | #include <asm/atomic.h> |
| 52 | 53 | ||
| @@ -595,10 +596,11 @@ void cgroup_unlock(void) | |||
| 595 | static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode); | 596 | static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode); |
| 596 | static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry); | 597 | static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry); |
| 597 | static int cgroup_populate_dir(struct cgroup *cgrp); | 598 | static int cgroup_populate_dir(struct cgroup *cgrp); |
| 598 | static struct inode_operations cgroup_dir_inode_operations; | 599 | static const struct inode_operations cgroup_dir_inode_operations; |
| 599 | static struct file_operations proc_cgroupstats_operations; | 600 | static struct file_operations proc_cgroupstats_operations; |
| 600 | 601 | ||
| 601 | static struct backing_dev_info cgroup_backing_dev_info = { | 602 | static struct backing_dev_info cgroup_backing_dev_info = { |
| 603 | .name = "cgroup", | ||
| 602 | .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK, | 604 | .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK, |
| 603 | }; | 605 | }; |
| 604 | 606 | ||
| @@ -734,16 +736,28 @@ static void cgroup_d_remove_dir(struct dentry *dentry) | |||
| 734 | * reference to css->refcnt. In general, this refcnt is expected to goes down | 736 | * reference to css->refcnt. In general, this refcnt is expected to goes down |
| 735 | * to zero, soon. | 737 | * to zero, soon. |
| 736 | * | 738 | * |
| 737 | * CGRP_WAIT_ON_RMDIR flag is modified under cgroup's inode->i_mutex; | 739 | * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex; |
| 738 | */ | 740 | */ |
| 739 | DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq); | 741 | DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq); |
| 740 | 742 | ||
| 741 | static void cgroup_wakeup_rmdir_waiters(const struct cgroup *cgrp) | 743 | static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp) |
| 742 | { | 744 | { |
| 743 | if (unlikely(test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))) | 745 | if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))) |
| 744 | wake_up_all(&cgroup_rmdir_waitq); | 746 | wake_up_all(&cgroup_rmdir_waitq); |
| 745 | } | 747 | } |
| 746 | 748 | ||
| 749 | void cgroup_exclude_rmdir(struct cgroup_subsys_state *css) | ||
| 750 | { | ||
| 751 | css_get(css); | ||
| 752 | } | ||
| 753 | |||
| 754 | void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css) | ||
| 755 | { | ||
| 756 | cgroup_wakeup_rmdir_waiter(css->cgroup); | ||
| 757 | css_put(css); | ||
| 758 | } | ||
| 759 | |||
| 760 | |||
| 747 | static int rebind_subsystems(struct cgroupfs_root *root, | 761 | static int rebind_subsystems(struct cgroupfs_root *root, |
| 748 | unsigned long final_bits) | 762 | unsigned long final_bits) |
| 749 | { | 763 | { |
| @@ -947,7 +961,7 @@ static int cgroup_remount(struct super_block *sb, int *flags, char *data) | |||
| 947 | return ret; | 961 | return ret; |
| 948 | } | 962 | } |
| 949 | 963 | ||
| 950 | static struct super_operations cgroup_ops = { | 964 | static const struct super_operations cgroup_ops = { |
| 951 | .statfs = simple_statfs, | 965 | .statfs = simple_statfs, |
| 952 | .drop_inode = generic_delete_inode, | 966 | .drop_inode = generic_delete_inode, |
| 953 | .show_options = cgroup_show_options, | 967 | .show_options = cgroup_show_options, |
| @@ -960,6 +974,7 @@ static void init_cgroup_housekeeping(struct cgroup *cgrp) | |||
| 960 | INIT_LIST_HEAD(&cgrp->children); | 974 | INIT_LIST_HEAD(&cgrp->children); |
| 961 | INIT_LIST_HEAD(&cgrp->css_sets); | 975 | INIT_LIST_HEAD(&cgrp->css_sets); |
| 962 | INIT_LIST_HEAD(&cgrp->release_list); | 976 | INIT_LIST_HEAD(&cgrp->release_list); |
| 977 | INIT_LIST_HEAD(&cgrp->pids_list); | ||
| 963 | init_rwsem(&cgrp->pids_mutex); | 978 | init_rwsem(&cgrp->pids_mutex); |
| 964 | } | 979 | } |
| 965 | static void init_cgroup_root(struct cgroupfs_root *root) | 980 | static void init_cgroup_root(struct cgroupfs_root *root) |
| @@ -1357,7 +1372,7 @@ int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk) | |||
| 1357 | * wake up rmdir() waiter. the rmdir should fail since the cgroup | 1372 | * wake up rmdir() waiter. the rmdir should fail since the cgroup |
| 1358 | * is no longer empty. | 1373 | * is no longer empty. |
| 1359 | */ | 1374 | */ |
| 1360 | cgroup_wakeup_rmdir_waiters(cgrp); | 1375 | cgroup_wakeup_rmdir_waiter(cgrp); |
| 1361 | return 0; | 1376 | return 0; |
| 1362 | } | 1377 | } |
| 1363 | 1378 | ||
| @@ -1696,7 +1711,7 @@ static struct file_operations cgroup_file_operations = { | |||
| 1696 | .release = cgroup_file_release, | 1711 | .release = cgroup_file_release, |
| 1697 | }; | 1712 | }; |
| 1698 | 1713 | ||
| 1699 | static struct inode_operations cgroup_dir_inode_operations = { | 1714 | static const struct inode_operations cgroup_dir_inode_operations = { |
| 1700 | .lookup = simple_lookup, | 1715 | .lookup = simple_lookup, |
| 1701 | .mkdir = cgroup_mkdir, | 1716 | .mkdir = cgroup_mkdir, |
| 1702 | .rmdir = cgroup_rmdir, | 1717 | .rmdir = cgroup_rmdir, |
| @@ -2201,12 +2216,30 @@ err: | |||
| 2201 | return ret; | 2216 | return ret; |
| 2202 | } | 2217 | } |
| 2203 | 2218 | ||
| 2219 | /* | ||
| 2220 | * Cache pids for all threads in the same pid namespace that are | ||
| 2221 | * opening the same "tasks" file. | ||
| 2222 | */ | ||
| 2223 | struct cgroup_pids { | ||
| 2224 | /* The node in cgrp->pids_list */ | ||
| 2225 | struct list_head list; | ||
| 2226 | /* The cgroup those pids belong to */ | ||
| 2227 | struct cgroup *cgrp; | ||
| 2228 | /* The namepsace those pids belong to */ | ||
| 2229 | struct pid_namespace *ns; | ||
| 2230 | /* Array of process ids in the cgroup */ | ||
| 2231 | pid_t *tasks_pids; | ||
| 2232 | /* How many files are using the this tasks_pids array */ | ||
| 2233 | int use_count; | ||
| 2234 | /* Length of the current tasks_pids array */ | ||
| 2235 | int length; | ||
| 2236 | }; | ||
| 2237 | |||
| 2204 | static int cmppid(const void *a, const void *b) | 2238 | static int cmppid(const void *a, const void *b) |
| 2205 | { | 2239 | { |
| 2206 | return *(pid_t *)a - *(pid_t *)b; | 2240 | return *(pid_t *)a - *(pid_t *)b; |
| 2207 | } | 2241 | } |
| 2208 | 2242 | ||
| 2209 | |||
| 2210 | /* | 2243 | /* |
| 2211 | * seq_file methods for the "tasks" file. The seq_file position is the | 2244 | * seq_file methods for the "tasks" file. The seq_file position is the |
| 2212 | * next pid to display; the seq_file iterator is a pointer to the pid | 2245 | * next pid to display; the seq_file iterator is a pointer to the pid |
| @@ -2221,45 +2254,47 @@ static void *cgroup_tasks_start(struct seq_file *s, loff_t *pos) | |||
| 2221 | * after a seek to the start). Use a binary-search to find the | 2254 | * after a seek to the start). Use a binary-search to find the |
| 2222 | * next pid to display, if any | 2255 | * next pid to display, if any |
| 2223 | */ | 2256 | */ |
| 2224 | struct cgroup *cgrp = s->private; | 2257 | struct cgroup_pids *cp = s->private; |
| 2258 | struct cgroup *cgrp = cp->cgrp; | ||
| 2225 | int index = 0, pid = *pos; | 2259 | int index = 0, pid = *pos; |
| 2226 | int *iter; | 2260 | int *iter; |
| 2227 | 2261 | ||
| 2228 | down_read(&cgrp->pids_mutex); | 2262 | down_read(&cgrp->pids_mutex); |
| 2229 | if (pid) { | 2263 | if (pid) { |
| 2230 | int end = cgrp->pids_length; | 2264 | int end = cp->length; |
| 2231 | 2265 | ||
| 2232 | while (index < end) { | 2266 | while (index < end) { |
| 2233 | int mid = (index + end) / 2; | 2267 | int mid = (index + end) / 2; |
| 2234 | if (cgrp->tasks_pids[mid] == pid) { | 2268 | if (cp->tasks_pids[mid] == pid) { |
| 2235 | index = mid; | 2269 | index = mid; |
| 2236 | break; | 2270 | break; |
| 2237 | } else if (cgrp->tasks_pids[mid] <= pid) | 2271 | } else if (cp->tasks_pids[mid] <= pid) |
| 2238 | index = mid + 1; | 2272 | index = mid + 1; |
| 2239 | else | 2273 | else |
| 2240 | end = mid; | 2274 | end = mid; |
| 2241 | } | 2275 | } |
| 2242 | } | 2276 | } |
| 2243 | /* If we're off the end of the array, we're done */ | 2277 | /* If we're off the end of the array, we're done */ |
| 2244 | if (index >= cgrp->pids_length) | 2278 | if (index >= cp->length) |
| 2245 | return NULL; | 2279 | return NULL; |
| 2246 | /* Update the abstract position to be the actual pid that we found */ | 2280 | /* Update the abstract position to be the actual pid that we found */ |
| 2247 | iter = cgrp->tasks_pids + index; | 2281 | iter = cp->tasks_pids + index; |
| 2248 | *pos = *iter; | 2282 | *pos = *iter; |
| 2249 | return iter; | 2283 | return iter; |
| 2250 | } | 2284 | } |
| 2251 | 2285 | ||
| 2252 | static void cgroup_tasks_stop(struct seq_file *s, void *v) | 2286 | static void cgroup_tasks_stop(struct seq_file *s, void *v) |
| 2253 | { | 2287 | { |
| 2254 | struct cgroup *cgrp = s->private; | 2288 | struct cgroup_pids *cp = s->private; |
| 2289 | struct cgroup *cgrp = cp->cgrp; | ||
| 2255 | up_read(&cgrp->pids_mutex); | 2290 | up_read(&cgrp->pids_mutex); |
| 2256 | } | 2291 | } |
| 2257 | 2292 | ||
| 2258 | static void *cgroup_tasks_next(struct seq_file *s, void *v, loff_t *pos) | 2293 | static void *cgroup_tasks_next(struct seq_file *s, void *v, loff_t *pos) |
| 2259 | { | 2294 | { |
| 2260 | struct cgroup *cgrp = s->private; | 2295 | struct cgroup_pids *cp = s->private; |
| 2261 | int *p = v; | 2296 | int *p = v; |
| 2262 | int *end = cgrp->tasks_pids + cgrp->pids_length; | 2297 | int *end = cp->tasks_pids + cp->length; |
| 2263 | 2298 | ||
| 2264 | /* | 2299 | /* |
| 2265 | * Advance to the next pid in the array. If this goes off the | 2300 | * Advance to the next pid in the array. If this goes off the |
| @@ -2286,26 +2321,33 @@ static struct seq_operations cgroup_tasks_seq_operations = { | |||
| 2286 | .show = cgroup_tasks_show, | 2321 | .show = cgroup_tasks_show, |
| 2287 | }; | 2322 | }; |
| 2288 | 2323 | ||
| 2289 | static void release_cgroup_pid_array(struct cgroup *cgrp) | 2324 | static void release_cgroup_pid_array(struct cgroup_pids *cp) |
| 2290 | { | 2325 | { |
| 2326 | struct cgroup *cgrp = cp->cgrp; | ||
| 2327 | |||
| 2291 | down_write(&cgrp->pids_mutex); | 2328 | down_write(&cgrp->pids_mutex); |
| 2292 | BUG_ON(!cgrp->pids_use_count); | 2329 | BUG_ON(!cp->use_count); |
| 2293 | if (!--cgrp->pids_use_count) { | 2330 | if (!--cp->use_count) { |
| 2294 | kfree(cgrp->tasks_pids); | 2331 | list_del(&cp->list); |
| 2295 | cgrp->tasks_pids = NULL; | 2332 | put_pid_ns(cp->ns); |
| 2296 | cgrp->pids_length = 0; | 2333 | kfree(cp->tasks_pids); |
| 2334 | kfree(cp); | ||
| 2297 | } | 2335 | } |
| 2298 | up_write(&cgrp->pids_mutex); | 2336 | up_write(&cgrp->pids_mutex); |
| 2299 | } | 2337 | } |
| 2300 | 2338 | ||
| 2301 | static int cgroup_tasks_release(struct inode *inode, struct file *file) | 2339 | static int cgroup_tasks_release(struct inode *inode, struct file *file) |
| 2302 | { | 2340 | { |
| 2303 | struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent); | 2341 | struct seq_file *seq; |
| 2342 | struct cgroup_pids *cp; | ||
| 2304 | 2343 | ||
| 2305 | if (!(file->f_mode & FMODE_READ)) | 2344 | if (!(file->f_mode & FMODE_READ)) |
| 2306 | return 0; | 2345 | return 0; |
| 2307 | 2346 | ||
| 2308 | release_cgroup_pid_array(cgrp); | 2347 | seq = file->private_data; |
| 2348 | cp = seq->private; | ||
| 2349 | |||
| 2350 | release_cgroup_pid_array(cp); | ||
| 2309 | return seq_release(inode, file); | 2351 | return seq_release(inode, file); |
| 2310 | } | 2352 | } |
| 2311 | 2353 | ||
| @@ -2324,6 +2366,8 @@ static struct file_operations cgroup_tasks_operations = { | |||
| 2324 | static int cgroup_tasks_open(struct inode *unused, struct file *file) | 2366 | static int cgroup_tasks_open(struct inode *unused, struct file *file) |
| 2325 | { | 2367 | { |
| 2326 | struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent); | 2368 | struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent); |
| 2369 | struct pid_namespace *ns = current->nsproxy->pid_ns; | ||
| 2370 | struct cgroup_pids *cp; | ||
| 2327 | pid_t *pidarray; | 2371 | pid_t *pidarray; |
| 2328 | int npids; | 2372 | int npids; |
| 2329 | int retval; | 2373 | int retval; |
| @@ -2350,20 +2394,37 @@ static int cgroup_tasks_open(struct inode *unused, struct file *file) | |||
| 2350 | * array if necessary | 2394 | * array if necessary |
| 2351 | */ | 2395 | */ |
| 2352 | down_write(&cgrp->pids_mutex); | 2396 | down_write(&cgrp->pids_mutex); |
| 2353 | kfree(cgrp->tasks_pids); | 2397 | |
| 2354 | cgrp->tasks_pids = pidarray; | 2398 | list_for_each_entry(cp, &cgrp->pids_list, list) { |
| 2355 | cgrp->pids_length = npids; | 2399 | if (ns == cp->ns) |
| 2356 | cgrp->pids_use_count++; | 2400 | goto found; |
| 2401 | } | ||
| 2402 | |||
| 2403 | cp = kzalloc(sizeof(*cp), GFP_KERNEL); | ||
| 2404 | if (!cp) { | ||
| 2405 | up_write(&cgrp->pids_mutex); | ||
| 2406 | kfree(pidarray); | ||
| 2407 | return -ENOMEM; | ||
| 2408 | } | ||
| 2409 | cp->cgrp = cgrp; | ||
| 2410 | cp->ns = ns; | ||
| 2411 | get_pid_ns(ns); | ||
| 2412 | list_add(&cp->list, &cgrp->pids_list); | ||
| 2413 | found: | ||
| 2414 | kfree(cp->tasks_pids); | ||
| 2415 | cp->tasks_pids = pidarray; | ||
| 2416 | cp->length = npids; | ||
| 2417 | cp->use_count++; | ||
| 2357 | up_write(&cgrp->pids_mutex); | 2418 | up_write(&cgrp->pids_mutex); |
| 2358 | 2419 | ||
| 2359 | file->f_op = &cgroup_tasks_operations; | 2420 | file->f_op = &cgroup_tasks_operations; |
| 2360 | 2421 | ||
| 2361 | retval = seq_open(file, &cgroup_tasks_seq_operations); | 2422 | retval = seq_open(file, &cgroup_tasks_seq_operations); |
| 2362 | if (retval) { | 2423 | if (retval) { |
| 2363 | release_cgroup_pid_array(cgrp); | 2424 | release_cgroup_pid_array(cp); |
| 2364 | return retval; | 2425 | return retval; |
| 2365 | } | 2426 | } |
| 2366 | ((struct seq_file *)file->private_data)->private = cgrp; | 2427 | ((struct seq_file *)file->private_data)->private = cp; |
| 2367 | return 0; | 2428 | return 0; |
| 2368 | } | 2429 | } |
| 2369 | 2430 | ||
| @@ -2696,33 +2757,42 @@ again: | |||
| 2696 | mutex_unlock(&cgroup_mutex); | 2757 | mutex_unlock(&cgroup_mutex); |
| 2697 | 2758 | ||
| 2698 | /* | 2759 | /* |
| 2760 | * In general, subsystem has no css->refcnt after pre_destroy(). But | ||
| 2761 | * in racy cases, subsystem may have to get css->refcnt after | ||
| 2762 | * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes | ||
| 2763 | * make rmdir return -EBUSY too often. To avoid that, we use waitqueue | ||
| 2764 | * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir | ||
| 2765 | * and subsystem's reference count handling. Please see css_get/put | ||
| 2766 | * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation. | ||
| 2767 | */ | ||
| 2768 | set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags); | ||
| 2769 | |||
| 2770 | /* | ||
| 2699 | * Call pre_destroy handlers of subsys. Notify subsystems | 2771 | * Call pre_destroy handlers of subsys. Notify subsystems |
| 2700 | * that rmdir() request comes. | 2772 | * that rmdir() request comes. |
| 2701 | */ | 2773 | */ |
| 2702 | ret = cgroup_call_pre_destroy(cgrp); | 2774 | ret = cgroup_call_pre_destroy(cgrp); |
| 2703 | if (ret) | 2775 | if (ret) { |
| 2776 | clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags); | ||
| 2704 | return ret; | 2777 | return ret; |
| 2778 | } | ||
| 2705 | 2779 | ||
| 2706 | mutex_lock(&cgroup_mutex); | 2780 | mutex_lock(&cgroup_mutex); |
| 2707 | parent = cgrp->parent; | 2781 | parent = cgrp->parent; |
| 2708 | if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) { | 2782 | if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) { |
| 2783 | clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags); | ||
| 2709 | mutex_unlock(&cgroup_mutex); | 2784 | mutex_unlock(&cgroup_mutex); |
| 2710 | return -EBUSY; | 2785 | return -EBUSY; |
| 2711 | } | 2786 | } |
| 2712 | /* | ||
| 2713 | * css_put/get is provided for subsys to grab refcnt to css. In typical | ||
| 2714 | * case, subsystem has no reference after pre_destroy(). But, under | ||
| 2715 | * hierarchy management, some *temporal* refcnt can be hold. | ||
| 2716 | * To avoid returning -EBUSY to a user, waitqueue is used. If subsys | ||
| 2717 | * is really busy, it should return -EBUSY at pre_destroy(). wake_up | ||
| 2718 | * is called when css_put() is called and refcnt goes down to 0. | ||
| 2719 | */ | ||
| 2720 | set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags); | ||
| 2721 | prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE); | 2787 | prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE); |
| 2722 | |||
| 2723 | if (!cgroup_clear_css_refs(cgrp)) { | 2788 | if (!cgroup_clear_css_refs(cgrp)) { |
| 2724 | mutex_unlock(&cgroup_mutex); | 2789 | mutex_unlock(&cgroup_mutex); |
| 2725 | schedule(); | 2790 | /* |
| 2791 | * Because someone may call cgroup_wakeup_rmdir_waiter() before | ||
| 2792 | * prepare_to_wait(), we need to check this flag. | ||
| 2793 | */ | ||
| 2794 | if (test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)) | ||
| 2795 | schedule(); | ||
| 2726 | finish_wait(&cgroup_rmdir_waitq, &wait); | 2796 | finish_wait(&cgroup_rmdir_waitq, &wait); |
| 2727 | clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags); | 2797 | clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags); |
| 2728 | if (signal_pending(current)) | 2798 | if (signal_pending(current)) |
| @@ -3294,7 +3364,7 @@ void __css_put(struct cgroup_subsys_state *css) | |||
| 3294 | set_bit(CGRP_RELEASABLE, &cgrp->flags); | 3364 | set_bit(CGRP_RELEASABLE, &cgrp->flags); |
| 3295 | check_for_release(cgrp); | 3365 | check_for_release(cgrp); |
| 3296 | } | 3366 | } |
| 3297 | cgroup_wakeup_rmdir_waiters(cgrp); | 3367 | cgroup_wakeup_rmdir_waiter(cgrp); |
| 3298 | } | 3368 | } |
| 3299 | rcu_read_unlock(); | 3369 | rcu_read_unlock(); |
| 3300 | } | 3370 | } |
diff --git a/kernel/cpu.c b/kernel/cpu.c index 8ce10043e4ac..6ba0f1ecb212 100644 --- a/kernel/cpu.c +++ b/kernel/cpu.c | |||
| @@ -401,6 +401,7 @@ int disable_nonboot_cpus(void) | |||
| 401 | break; | 401 | break; |
| 402 | } | 402 | } |
| 403 | } | 403 | } |
| 404 | |||
| 404 | if (!error) { | 405 | if (!error) { |
| 405 | BUG_ON(num_online_cpus() > 1); | 406 | BUG_ON(num_online_cpus() > 1); |
| 406 | /* Make sure the CPUs won't be enabled by someone else */ | 407 | /* Make sure the CPUs won't be enabled by someone else */ |
| @@ -413,6 +414,14 @@ int disable_nonboot_cpus(void) | |||
| 413 | return error; | 414 | return error; |
| 414 | } | 415 | } |
| 415 | 416 | ||
| 417 | void __weak arch_enable_nonboot_cpus_begin(void) | ||
| 418 | { | ||
| 419 | } | ||
| 420 | |||
| 421 | void __weak arch_enable_nonboot_cpus_end(void) | ||
| 422 | { | ||
| 423 | } | ||
| 424 | |||
| 416 | void __ref enable_nonboot_cpus(void) | 425 | void __ref enable_nonboot_cpus(void) |
| 417 | { | 426 | { |
| 418 | int cpu, error; | 427 | int cpu, error; |
| @@ -424,6 +433,9 @@ void __ref enable_nonboot_cpus(void) | |||
| 424 | goto out; | 433 | goto out; |
| 425 | 434 | ||
| 426 | printk("Enabling non-boot CPUs ...\n"); | 435 | printk("Enabling non-boot CPUs ...\n"); |
| 436 | |||
| 437 | arch_enable_nonboot_cpus_begin(); | ||
| 438 | |||
| 427 | for_each_cpu(cpu, frozen_cpus) { | 439 | for_each_cpu(cpu, frozen_cpus) { |
| 428 | error = _cpu_up(cpu, 1); | 440 | error = _cpu_up(cpu, 1); |
| 429 | if (!error) { | 441 | if (!error) { |
| @@ -432,6 +444,9 @@ void __ref enable_nonboot_cpus(void) | |||
| 432 | } | 444 | } |
| 433 | printk(KERN_WARNING "Error taking CPU%d up: %d\n", cpu, error); | 445 | printk(KERN_WARNING "Error taking CPU%d up: %d\n", cpu, error); |
| 434 | } | 446 | } |
| 447 | |||
| 448 | arch_enable_nonboot_cpus_end(); | ||
| 449 | |||
| 435 | cpumask_clear(frozen_cpus); | 450 | cpumask_clear(frozen_cpus); |
| 436 | out: | 451 | out: |
| 437 | cpu_maps_update_done(); | 452 | cpu_maps_update_done(); |
diff --git a/kernel/cred.c b/kernel/cred.c index 1bb4d7e5d616..d7f7a01082eb 100644 --- a/kernel/cred.c +++ b/kernel/cred.c | |||
| @@ -18,6 +18,18 @@ | |||
| 18 | #include <linux/cn_proc.h> | 18 | #include <linux/cn_proc.h> |
| 19 | #include "cred-internals.h" | 19 | #include "cred-internals.h" |
| 20 | 20 | ||
| 21 | #if 0 | ||
| 22 | #define kdebug(FMT, ...) \ | ||
| 23 | printk("[%-5.5s%5u] "FMT"\n", current->comm, current->pid ,##__VA_ARGS__) | ||
| 24 | #else | ||
| 25 | static inline __attribute__((format(printf, 1, 2))) | ||
| 26 | void no_printk(const char *fmt, ...) | ||
| 27 | { | ||
| 28 | } | ||
| 29 | #define kdebug(FMT, ...) \ | ||
| 30 | no_printk("[%-5.5s%5u] "FMT"\n", current->comm, current->pid ,##__VA_ARGS__) | ||
| 31 | #endif | ||
| 32 | |||
| 21 | static struct kmem_cache *cred_jar; | 33 | static struct kmem_cache *cred_jar; |
| 22 | 34 | ||
| 23 | /* | 35 | /* |
| @@ -36,6 +48,10 @@ static struct thread_group_cred init_tgcred = { | |||
| 36 | */ | 48 | */ |
| 37 | struct cred init_cred = { | 49 | struct cred init_cred = { |
| 38 | .usage = ATOMIC_INIT(4), | 50 | .usage = ATOMIC_INIT(4), |
| 51 | #ifdef CONFIG_DEBUG_CREDENTIALS | ||
| 52 | .subscribers = ATOMIC_INIT(2), | ||
| 53 | .magic = CRED_MAGIC, | ||
| 54 | #endif | ||
| 39 | .securebits = SECUREBITS_DEFAULT, | 55 | .securebits = SECUREBITS_DEFAULT, |
| 40 | .cap_inheritable = CAP_INIT_INH_SET, | 56 | .cap_inheritable = CAP_INIT_INH_SET, |
| 41 | .cap_permitted = CAP_FULL_SET, | 57 | .cap_permitted = CAP_FULL_SET, |
| @@ -48,6 +64,31 @@ struct cred init_cred = { | |||
| 48 | #endif | 64 | #endif |
| 49 | }; | 65 | }; |
| 50 | 66 | ||
| 67 | static inline void set_cred_subscribers(struct cred *cred, int n) | ||
| 68 | { | ||
| 69 | #ifdef CONFIG_DEBUG_CREDENTIALS | ||
| 70 | atomic_set(&cred->subscribers, n); | ||
| 71 | #endif | ||
| 72 | } | ||
| 73 | |||
| 74 | static inline int read_cred_subscribers(const struct cred *cred) | ||
| 75 | { | ||
| 76 | #ifdef CONFIG_DEBUG_CREDENTIALS | ||
| 77 | return atomic_read(&cred->subscribers); | ||
| 78 | #else | ||
| 79 | return 0; | ||
| 80 | #endif | ||
| 81 | } | ||
| 82 | |||
| 83 | static inline void alter_cred_subscribers(const struct cred *_cred, int n) | ||
| 84 | { | ||
| 85 | #ifdef CONFIG_DEBUG_CREDENTIALS | ||
| 86 | struct cred *cred = (struct cred *) _cred; | ||
| 87 | |||
| 88 | atomic_add(n, &cred->subscribers); | ||
| 89 | #endif | ||
| 90 | } | ||
| 91 | |||
| 51 | /* | 92 | /* |
| 52 | * Dispose of the shared task group credentials | 93 | * Dispose of the shared task group credentials |
| 53 | */ | 94 | */ |
| @@ -85,15 +126,29 @@ static void put_cred_rcu(struct rcu_head *rcu) | |||
| 85 | { | 126 | { |
| 86 | struct cred *cred = container_of(rcu, struct cred, rcu); | 127 | struct cred *cred = container_of(rcu, struct cred, rcu); |
| 87 | 128 | ||
| 129 | kdebug("put_cred_rcu(%p)", cred); | ||
| 130 | |||
| 131 | #ifdef CONFIG_DEBUG_CREDENTIALS | ||
| 132 | if (cred->magic != CRED_MAGIC_DEAD || | ||
| 133 | atomic_read(&cred->usage) != 0 || | ||
| 134 | read_cred_subscribers(cred) != 0) | ||
| 135 | panic("CRED: put_cred_rcu() sees %p with" | ||
| 136 | " mag %x, put %p, usage %d, subscr %d\n", | ||
| 137 | cred, cred->magic, cred->put_addr, | ||
| 138 | atomic_read(&cred->usage), | ||
| 139 | read_cred_subscribers(cred)); | ||
| 140 | #else | ||
| 88 | if (atomic_read(&cred->usage) != 0) | 141 | if (atomic_read(&cred->usage) != 0) |
| 89 | panic("CRED: put_cred_rcu() sees %p with usage %d\n", | 142 | panic("CRED: put_cred_rcu() sees %p with usage %d\n", |
| 90 | cred, atomic_read(&cred->usage)); | 143 | cred, atomic_read(&cred->usage)); |
| 144 | #endif | ||
| 91 | 145 | ||
| 92 | security_cred_free(cred); | 146 | security_cred_free(cred); |
| 93 | key_put(cred->thread_keyring); | 147 | key_put(cred->thread_keyring); |
| 94 | key_put(cred->request_key_auth); | 148 | key_put(cred->request_key_auth); |
| 95 | release_tgcred(cred); | 149 | release_tgcred(cred); |
| 96 | put_group_info(cred->group_info); | 150 | if (cred->group_info) |
| 151 | put_group_info(cred->group_info); | ||
| 97 | free_uid(cred->user); | 152 | free_uid(cred->user); |
| 98 | kmem_cache_free(cred_jar, cred); | 153 | kmem_cache_free(cred_jar, cred); |
| 99 | } | 154 | } |
| @@ -106,12 +161,90 @@ static void put_cred_rcu(struct rcu_head *rcu) | |||
| 106 | */ | 161 | */ |
| 107 | void __put_cred(struct cred *cred) | 162 | void __put_cred(struct cred *cred) |
| 108 | { | 163 | { |
| 164 | kdebug("__put_cred(%p{%d,%d})", cred, | ||
| 165 | atomic_read(&cred->usage), | ||
| 166 | read_cred_subscribers(cred)); | ||
| 167 | |||
| 109 | BUG_ON(atomic_read(&cred->usage) != 0); | 168 | BUG_ON(atomic_read(&cred->usage) != 0); |
| 169 | #ifdef CONFIG_DEBUG_CREDENTIALS | ||
| 170 | BUG_ON(read_cred_subscribers(cred) != 0); | ||
| 171 | cred->magic = CRED_MAGIC_DEAD; | ||
| 172 | cred->put_addr = __builtin_return_address(0); | ||
| 173 | #endif | ||
| 174 | BUG_ON(cred == current->cred); | ||
| 175 | BUG_ON(cred == current->real_cred); | ||
| 110 | 176 | ||
| 111 | call_rcu(&cred->rcu, put_cred_rcu); | 177 | call_rcu(&cred->rcu, put_cred_rcu); |
| 112 | } | 178 | } |
| 113 | EXPORT_SYMBOL(__put_cred); | 179 | EXPORT_SYMBOL(__put_cred); |
| 114 | 180 | ||
| 181 | /* | ||
| 182 | * Clean up a task's credentials when it exits | ||
| 183 | */ | ||
| 184 | void exit_creds(struct task_struct *tsk) | ||
| 185 | { | ||
| 186 | struct cred *cred; | ||
| 187 | |||
| 188 | kdebug("exit_creds(%u,%p,%p,{%d,%d})", tsk->pid, tsk->real_cred, tsk->cred, | ||
| 189 | atomic_read(&tsk->cred->usage), | ||
| 190 | read_cred_subscribers(tsk->cred)); | ||
| 191 | |||
| 192 | cred = (struct cred *) tsk->real_cred; | ||
| 193 | tsk->real_cred = NULL; | ||
| 194 | validate_creds(cred); | ||
| 195 | alter_cred_subscribers(cred, -1); | ||
| 196 | put_cred(cred); | ||
| 197 | |||
| 198 | cred = (struct cred *) tsk->cred; | ||
| 199 | tsk->cred = NULL; | ||
| 200 | validate_creds(cred); | ||
| 201 | alter_cred_subscribers(cred, -1); | ||
| 202 | put_cred(cred); | ||
| 203 | |||
| 204 | cred = (struct cred *) tsk->replacement_session_keyring; | ||
| 205 | if (cred) { | ||
| 206 | tsk->replacement_session_keyring = NULL; | ||
| 207 | validate_creds(cred); | ||
| 208 | put_cred(cred); | ||
| 209 | } | ||
| 210 | } | ||
| 211 | |||
| 212 | /* | ||
| 213 | * Allocate blank credentials, such that the credentials can be filled in at a | ||
| 214 | * later date without risk of ENOMEM. | ||
| 215 | */ | ||
| 216 | struct cred *cred_alloc_blank(void) | ||
| 217 | { | ||
| 218 | struct cred *new; | ||
| 219 | |||
| 220 | new = kmem_cache_zalloc(cred_jar, GFP_KERNEL); | ||
| 221 | if (!new) | ||
| 222 | return NULL; | ||
| 223 | |||
| 224 | #ifdef CONFIG_KEYS | ||
| 225 | new->tgcred = kzalloc(sizeof(*new->tgcred), GFP_KERNEL); | ||
| 226 | if (!new->tgcred) { | ||
| 227 | kfree(new); | ||
| 228 | return NULL; | ||
| 229 | } | ||
| 230 | atomic_set(&new->tgcred->usage, 1); | ||
| 231 | #endif | ||
| 232 | |||
| 233 | atomic_set(&new->usage, 1); | ||
| 234 | |||
| 235 | if (security_cred_alloc_blank(new, GFP_KERNEL) < 0) | ||
| 236 | goto error; | ||
| 237 | |||
| 238 | #ifdef CONFIG_DEBUG_CREDENTIALS | ||
| 239 | new->magic = CRED_MAGIC; | ||
| 240 | #endif | ||
| 241 | return new; | ||
| 242 | |||
| 243 | error: | ||
| 244 | abort_creds(new); | ||
| 245 | return NULL; | ||
| 246 | } | ||
| 247 | |||
| 115 | /** | 248 | /** |
| 116 | * prepare_creds - Prepare a new set of credentials for modification | 249 | * prepare_creds - Prepare a new set of credentials for modification |
| 117 | * | 250 | * |
| @@ -132,16 +265,19 @@ struct cred *prepare_creds(void) | |||
| 132 | const struct cred *old; | 265 | const struct cred *old; |
| 133 | struct cred *new; | 266 | struct cred *new; |
| 134 | 267 | ||
| 135 | BUG_ON(atomic_read(&task->real_cred->usage) < 1); | 268 | validate_process_creds(); |
| 136 | 269 | ||
| 137 | new = kmem_cache_alloc(cred_jar, GFP_KERNEL); | 270 | new = kmem_cache_alloc(cred_jar, GFP_KERNEL); |
| 138 | if (!new) | 271 | if (!new) |
| 139 | return NULL; | 272 | return NULL; |
| 140 | 273 | ||
| 274 | kdebug("prepare_creds() alloc %p", new); | ||
| 275 | |||
| 141 | old = task->cred; | 276 | old = task->cred; |
| 142 | memcpy(new, old, sizeof(struct cred)); | 277 | memcpy(new, old, sizeof(struct cred)); |
| 143 | 278 | ||
| 144 | atomic_set(&new->usage, 1); | 279 | atomic_set(&new->usage, 1); |
| 280 | set_cred_subscribers(new, 0); | ||
| 145 | get_group_info(new->group_info); | 281 | get_group_info(new->group_info); |
| 146 | get_uid(new->user); | 282 | get_uid(new->user); |
| 147 | 283 | ||
| @@ -157,6 +293,7 @@ struct cred *prepare_creds(void) | |||
| 157 | 293 | ||
| 158 | if (security_prepare_creds(new, old, GFP_KERNEL) < 0) | 294 | if (security_prepare_creds(new, old, GFP_KERNEL) < 0) |
| 159 | goto error; | 295 | goto error; |
| 296 | validate_creds(new); | ||
| 160 | return new; | 297 | return new; |
| 161 | 298 | ||
| 162 | error: | 299 | error: |
| @@ -229,9 +366,12 @@ struct cred *prepare_usermodehelper_creds(void) | |||
| 229 | if (!new) | 366 | if (!new) |
| 230 | return NULL; | 367 | return NULL; |
| 231 | 368 | ||
| 369 | kdebug("prepare_usermodehelper_creds() alloc %p", new); | ||
| 370 | |||
| 232 | memcpy(new, &init_cred, sizeof(struct cred)); | 371 | memcpy(new, &init_cred, sizeof(struct cred)); |
| 233 | 372 | ||
| 234 | atomic_set(&new->usage, 1); | 373 | atomic_set(&new->usage, 1); |
| 374 | set_cred_subscribers(new, 0); | ||
| 235 | get_group_info(new->group_info); | 375 | get_group_info(new->group_info); |
| 236 | get_uid(new->user); | 376 | get_uid(new->user); |
| 237 | 377 | ||
| @@ -250,6 +390,7 @@ struct cred *prepare_usermodehelper_creds(void) | |||
| 250 | #endif | 390 | #endif |
| 251 | if (security_prepare_creds(new, &init_cred, GFP_ATOMIC) < 0) | 391 | if (security_prepare_creds(new, &init_cred, GFP_ATOMIC) < 0) |
| 252 | goto error; | 392 | goto error; |
| 393 | validate_creds(new); | ||
| 253 | 394 | ||
| 254 | BUG_ON(atomic_read(&new->usage) != 1); | 395 | BUG_ON(atomic_read(&new->usage) != 1); |
| 255 | return new; | 396 | return new; |
| @@ -286,6 +427,10 @@ int copy_creds(struct task_struct *p, unsigned long clone_flags) | |||
| 286 | ) { | 427 | ) { |
| 287 | p->real_cred = get_cred(p->cred); | 428 | p->real_cred = get_cred(p->cred); |
| 288 | get_cred(p->cred); | 429 | get_cred(p->cred); |
| 430 | alter_cred_subscribers(p->cred, 2); | ||
| 431 | kdebug("share_creds(%p{%d,%d})", | ||
| 432 | p->cred, atomic_read(&p->cred->usage), | ||
| 433 | read_cred_subscribers(p->cred)); | ||
| 289 | atomic_inc(&p->cred->user->processes); | 434 | atomic_inc(&p->cred->user->processes); |
| 290 | return 0; | 435 | return 0; |
| 291 | } | 436 | } |
| @@ -331,6 +476,8 @@ int copy_creds(struct task_struct *p, unsigned long clone_flags) | |||
| 331 | 476 | ||
| 332 | atomic_inc(&new->user->processes); | 477 | atomic_inc(&new->user->processes); |
| 333 | p->cred = p->real_cred = get_cred(new); | 478 | p->cred = p->real_cred = get_cred(new); |
| 479 | alter_cred_subscribers(new, 2); | ||
| 480 | validate_creds(new); | ||
| 334 | return 0; | 481 | return 0; |
| 335 | 482 | ||
| 336 | error_put: | 483 | error_put: |
| @@ -355,13 +502,20 @@ error_put: | |||
| 355 | int commit_creds(struct cred *new) | 502 | int commit_creds(struct cred *new) |
| 356 | { | 503 | { |
| 357 | struct task_struct *task = current; | 504 | struct task_struct *task = current; |
| 358 | const struct cred *old; | 505 | const struct cred *old = task->real_cred; |
| 359 | 506 | ||
| 360 | BUG_ON(task->cred != task->real_cred); | 507 | kdebug("commit_creds(%p{%d,%d})", new, |
| 361 | BUG_ON(atomic_read(&task->real_cred->usage) < 2); | 508 | atomic_read(&new->usage), |
| 509 | read_cred_subscribers(new)); | ||
| 510 | |||
| 511 | BUG_ON(task->cred != old); | ||
| 512 | #ifdef CONFIG_DEBUG_CREDENTIALS | ||
| 513 | BUG_ON(read_cred_subscribers(old) < 2); | ||
| 514 | validate_creds(old); | ||
| 515 | validate_creds(new); | ||
| 516 | #endif | ||
| 362 | BUG_ON(atomic_read(&new->usage) < 1); | 517 | BUG_ON(atomic_read(&new->usage) < 1); |
| 363 | 518 | ||
| 364 | old = task->real_cred; | ||
| 365 | security_commit_creds(new, old); | 519 | security_commit_creds(new, old); |
| 366 | 520 | ||
| 367 | get_cred(new); /* we will require a ref for the subj creds too */ | 521 | get_cred(new); /* we will require a ref for the subj creds too */ |
| @@ -390,12 +544,14 @@ int commit_creds(struct cred *new) | |||
| 390 | * cheaply with the new uid cache, so if it matters | 544 | * cheaply with the new uid cache, so if it matters |
| 391 | * we should be checking for it. -DaveM | 545 | * we should be checking for it. -DaveM |
| 392 | */ | 546 | */ |
| 547 | alter_cred_subscribers(new, 2); | ||
| 393 | if (new->user != old->user) | 548 | if (new->user != old->user) |
| 394 | atomic_inc(&new->user->processes); | 549 | atomic_inc(&new->user->processes); |
| 395 | rcu_assign_pointer(task->real_cred, new); | 550 | rcu_assign_pointer(task->real_cred, new); |
| 396 | rcu_assign_pointer(task->cred, new); | 551 | rcu_assign_pointer(task->cred, new); |
| 397 | if (new->user != old->user) | 552 | if (new->user != old->user) |
| 398 | atomic_dec(&old->user->processes); | 553 | atomic_dec(&old->user->processes); |
| 554 | alter_cred_subscribers(old, -2); | ||
| 399 | 555 | ||
| 400 | sched_switch_user(task); | 556 | sched_switch_user(task); |
| 401 | 557 | ||
| @@ -428,6 +584,13 @@ EXPORT_SYMBOL(commit_creds); | |||
| 428 | */ | 584 | */ |
| 429 | void abort_creds(struct cred *new) | 585 | void abort_creds(struct cred *new) |
| 430 | { | 586 | { |
| 587 | kdebug("abort_creds(%p{%d,%d})", new, | ||
| 588 | atomic_read(&new->usage), | ||
| 589 | read_cred_subscribers(new)); | ||
| 590 | |||
| 591 | #ifdef CONFIG_DEBUG_CREDENTIALS | ||
| 592 | BUG_ON(read_cred_subscribers(new) != 0); | ||
| 593 | #endif | ||
| 431 | BUG_ON(atomic_read(&new->usage) < 1); | 594 | BUG_ON(atomic_read(&new->usage) < 1); |
| 432 | put_cred(new); | 595 | put_cred(new); |
| 433 | } | 596 | } |
| @@ -444,7 +607,20 @@ const struct cred *override_creds(const struct cred *new) | |||
| 444 | { | 607 | { |
| 445 | const struct cred *old = current->cred; | 608 | const struct cred *old = current->cred; |
| 446 | 609 | ||
| 447 | rcu_assign_pointer(current->cred, get_cred(new)); | 610 | kdebug("override_creds(%p{%d,%d})", new, |
| 611 | atomic_read(&new->usage), | ||
| 612 | read_cred_subscribers(new)); | ||
| 613 | |||
| 614 | validate_creds(old); | ||
| 615 | validate_creds(new); | ||
| 616 | get_cred(new); | ||
| 617 | alter_cred_subscribers(new, 1); | ||
| 618 | rcu_assign_pointer(current->cred, new); | ||
| 619 | alter_cred_subscribers(old, -1); | ||
| 620 | |||
| 621 | kdebug("override_creds() = %p{%d,%d}", old, | ||
| 622 | atomic_read(&old->usage), | ||
| 623 | read_cred_subscribers(old)); | ||
| 448 | return old; | 624 | return old; |
| 449 | } | 625 | } |
| 450 | EXPORT_SYMBOL(override_creds); | 626 | EXPORT_SYMBOL(override_creds); |
| @@ -460,7 +636,15 @@ void revert_creds(const struct cred *old) | |||
| 460 | { | 636 | { |
| 461 | const struct cred *override = current->cred; | 637 | const struct cred *override = current->cred; |
| 462 | 638 | ||
| 639 | kdebug("revert_creds(%p{%d,%d})", old, | ||
| 640 | atomic_read(&old->usage), | ||
| 641 | read_cred_subscribers(old)); | ||
| 642 | |||
| 643 | validate_creds(old); | ||
| 644 | validate_creds(override); | ||
| 645 | alter_cred_subscribers(old, 1); | ||
| 463 | rcu_assign_pointer(current->cred, old); | 646 | rcu_assign_pointer(current->cred, old); |
| 647 | alter_cred_subscribers(override, -1); | ||
| 464 | put_cred(override); | 648 | put_cred(override); |
| 465 | } | 649 | } |
| 466 | EXPORT_SYMBOL(revert_creds); | 650 | EXPORT_SYMBOL(revert_creds); |
| @@ -502,11 +686,15 @@ struct cred *prepare_kernel_cred(struct task_struct *daemon) | |||
| 502 | if (!new) | 686 | if (!new) |
| 503 | return NULL; | 687 | return NULL; |
| 504 | 688 | ||
| 689 | kdebug("prepare_kernel_cred() alloc %p", new); | ||
| 690 | |||
| 505 | if (daemon) | 691 | if (daemon) |
| 506 | old = get_task_cred(daemon); | 692 | old = get_task_cred(daemon); |
| 507 | else | 693 | else |
| 508 | old = get_cred(&init_cred); | 694 | old = get_cred(&init_cred); |
| 509 | 695 | ||
| 696 | validate_creds(old); | ||
| 697 | |||
| 510 | *new = *old; | 698 | *new = *old; |
| 511 | get_uid(new->user); | 699 | get_uid(new->user); |
| 512 | get_group_info(new->group_info); | 700 | get_group_info(new->group_info); |
| @@ -526,7 +714,9 @@ struct cred *prepare_kernel_cred(struct task_struct *daemon) | |||
| 526 | goto error; | 714 | goto error; |
| 527 | 715 | ||
| 528 | atomic_set(&new->usage, 1); | 716 | atomic_set(&new->usage, 1); |
| 717 | set_cred_subscribers(new, 0); | ||
| 529 | put_cred(old); | 718 | put_cred(old); |
| 719 | validate_creds(new); | ||
| 530 | return new; | 720 | return new; |
| 531 | 721 | ||
| 532 | error: | 722 | error: |
| @@ -589,3 +779,95 @@ int set_create_files_as(struct cred *new, struct inode *inode) | |||
| 589 | return security_kernel_create_files_as(new, inode); | 779 | return security_kernel_create_files_as(new, inode); |
| 590 | } | 780 | } |
| 591 | EXPORT_SYMBOL(set_create_files_as); | 781 | EXPORT_SYMBOL(set_create_files_as); |
| 782 | |||
| 783 | #ifdef CONFIG_DEBUG_CREDENTIALS | ||
| 784 | |||
| 785 | /* | ||
| 786 | * dump invalid credentials | ||
| 787 | */ | ||
| 788 | static void dump_invalid_creds(const struct cred *cred, const char *label, | ||
| 789 | const struct task_struct *tsk) | ||
| 790 | { | ||
| 791 | printk(KERN_ERR "CRED: %s credentials: %p %s%s%s\n", | ||
| 792 | label, cred, | ||
| 793 | cred == &init_cred ? "[init]" : "", | ||
| 794 | cred == tsk->real_cred ? "[real]" : "", | ||
| 795 | cred == tsk->cred ? "[eff]" : ""); | ||
| 796 | printk(KERN_ERR "CRED: ->magic=%x, put_addr=%p\n", | ||
| 797 | cred->magic, cred->put_addr); | ||
| 798 | printk(KERN_ERR "CRED: ->usage=%d, subscr=%d\n", | ||
| 799 | atomic_read(&cred->usage), | ||
| 800 | read_cred_subscribers(cred)); | ||
| 801 | printk(KERN_ERR "CRED: ->*uid = { %d,%d,%d,%d }\n", | ||
| 802 | cred->uid, cred->euid, cred->suid, cred->fsuid); | ||
| 803 | printk(KERN_ERR "CRED: ->*gid = { %d,%d,%d,%d }\n", | ||
| 804 | cred->gid, cred->egid, cred->sgid, cred->fsgid); | ||
| 805 | #ifdef CONFIG_SECURITY | ||
| 806 | printk(KERN_ERR "CRED: ->security is %p\n", cred->security); | ||
| 807 | if ((unsigned long) cred->security >= PAGE_SIZE && | ||
| 808 | (((unsigned long) cred->security & 0xffffff00) != | ||
| 809 | (POISON_FREE << 24 | POISON_FREE << 16 | POISON_FREE << 8))) | ||
| 810 | printk(KERN_ERR "CRED: ->security {%x, %x}\n", | ||
| 811 | ((u32*)cred->security)[0], | ||
| 812 | ((u32*)cred->security)[1]); | ||
| 813 | #endif | ||
| 814 | } | ||
| 815 | |||
| 816 | /* | ||
| 817 | * report use of invalid credentials | ||
| 818 | */ | ||
| 819 | void __invalid_creds(const struct cred *cred, const char *file, unsigned line) | ||
| 820 | { | ||
| 821 | printk(KERN_ERR "CRED: Invalid credentials\n"); | ||
| 822 | printk(KERN_ERR "CRED: At %s:%u\n", file, line); | ||
| 823 | dump_invalid_creds(cred, "Specified", current); | ||
| 824 | BUG(); | ||
| 825 | } | ||
| 826 | EXPORT_SYMBOL(__invalid_creds); | ||
| 827 | |||
| 828 | /* | ||
| 829 | * check the credentials on a process | ||
| 830 | */ | ||
| 831 | void __validate_process_creds(struct task_struct *tsk, | ||
| 832 | const char *file, unsigned line) | ||
| 833 | { | ||
| 834 | if (tsk->cred == tsk->real_cred) { | ||
| 835 | if (unlikely(read_cred_subscribers(tsk->cred) < 2 || | ||
| 836 | creds_are_invalid(tsk->cred))) | ||
| 837 | goto invalid_creds; | ||
| 838 | } else { | ||
| 839 | if (unlikely(read_cred_subscribers(tsk->real_cred) < 1 || | ||
| 840 | read_cred_subscribers(tsk->cred) < 1 || | ||
| 841 | creds_are_invalid(tsk->real_cred) || | ||
| 842 | creds_are_invalid(tsk->cred))) | ||
| 843 | goto invalid_creds; | ||
| 844 | } | ||
| 845 | return; | ||
| 846 | |||
| 847 | invalid_creds: | ||
| 848 | printk(KERN_ERR "CRED: Invalid process credentials\n"); | ||
| 849 | printk(KERN_ERR "CRED: At %s:%u\n", file, line); | ||
| 850 | |||
| 851 | dump_invalid_creds(tsk->real_cred, "Real", tsk); | ||
| 852 | if (tsk->cred != tsk->real_cred) | ||
| 853 | dump_invalid_creds(tsk->cred, "Effective", tsk); | ||
| 854 | else | ||
| 855 | printk(KERN_ERR "CRED: Effective creds == Real creds\n"); | ||
| 856 | BUG(); | ||
| 857 | } | ||
| 858 | EXPORT_SYMBOL(__validate_process_creds); | ||
| 859 | |||
| 860 | /* | ||
| 861 | * check creds for do_exit() | ||
| 862 | */ | ||
| 863 | void validate_creds_for_do_exit(struct task_struct *tsk) | ||
| 864 | { | ||
| 865 | kdebug("validate_creds_for_do_exit(%p,%p{%d,%d})", | ||
| 866 | tsk->real_cred, tsk->cred, | ||
| 867 | atomic_read(&tsk->cred->usage), | ||
| 868 | read_cred_subscribers(tsk->cred)); | ||
| 869 | |||
| 870 | __validate_process_creds(tsk, __FILE__, __LINE__); | ||
| 871 | } | ||
| 872 | |||
| 873 | #endif /* CONFIG_DEBUG_CREDENTIALS */ | ||
diff --git a/kernel/delayacct.c b/kernel/delayacct.c index abb6e17505e2..ead9b610aa71 100644 --- a/kernel/delayacct.c +++ b/kernel/delayacct.c | |||
| @@ -15,6 +15,7 @@ | |||
| 15 | 15 | ||
| 16 | #include <linux/sched.h> | 16 | #include <linux/sched.h> |
| 17 | #include <linux/slab.h> | 17 | #include <linux/slab.h> |
| 18 | #include <linux/taskstats.h> | ||
| 18 | #include <linux/time.h> | 19 | #include <linux/time.h> |
| 19 | #include <linux/sysctl.h> | 20 | #include <linux/sysctl.h> |
| 20 | #include <linux/delayacct.h> | 21 | #include <linux/delayacct.h> |
diff --git a/kernel/dma-coherent.c b/kernel/dma-coherent.c deleted file mode 100644 index 962a3b574f21..000000000000 --- a/kernel/dma-coherent.c +++ /dev/null | |||
| @@ -1,176 +0,0 @@ | |||
| 1 | /* | ||
| 2 | * Coherent per-device memory handling. | ||
| 3 | * Borrowed from i386 | ||
| 4 | */ | ||
| 5 | #include <linux/kernel.h> | ||
| 6 | #include <linux/dma-mapping.h> | ||
| 7 | |||
| 8 | struct dma_coherent_mem { | ||
| 9 | void *virt_base; | ||
| 10 | u32 device_base; | ||
| 11 | int size; | ||
| 12 | int flags; | ||
| 13 | unsigned long *bitmap; | ||
| 14 | }; | ||
| 15 | |||
| 16 | int dma_declare_coherent_memory(struct device *dev, dma_addr_t bus_addr, | ||
| 17 | dma_addr_t device_addr, size_t size, int flags) | ||
| 18 | { | ||
| 19 | void __iomem *mem_base = NULL; | ||
| 20 | int pages = size >> PAGE_SHIFT; | ||
| 21 | int bitmap_size = BITS_TO_LONGS(pages) * sizeof(long); | ||
| 22 | |||
| 23 | if ((flags & (DMA_MEMORY_MAP | DMA_MEMORY_IO)) == 0) | ||
| 24 | goto out; | ||
| 25 | if (!size) | ||
| 26 | goto out; | ||
| 27 | if (dev->dma_mem) | ||
| 28 | goto out; | ||
| 29 | |||
| 30 | /* FIXME: this routine just ignores DMA_MEMORY_INCLUDES_CHILDREN */ | ||
| 31 | |||
| 32 | mem_base = ioremap(bus_addr, size); | ||
| 33 | if (!mem_base) | ||
| 34 | goto out; | ||
| 35 | |||
| 36 | dev->dma_mem = kzalloc(sizeof(struct dma_coherent_mem), GFP_KERNEL); | ||
| 37 | if (!dev->dma_mem) | ||
| 38 | goto out; | ||
| 39 | dev->dma_mem->bitmap = kzalloc(bitmap_size, GFP_KERNEL); | ||
| 40 | if (!dev->dma_mem->bitmap) | ||
| 41 | goto free1_out; | ||
| 42 | |||
| 43 | dev->dma_mem->virt_base = mem_base; | ||
| 44 | dev->dma_mem->device_base = device_addr; | ||
| 45 | dev->dma_mem->size = pages; | ||
| 46 | dev->dma_mem->flags = flags; | ||
| 47 | |||
| 48 | if (flags & DMA_MEMORY_MAP) | ||
| 49 | return DMA_MEMORY_MAP; | ||
| 50 | |||
| 51 | return DMA_MEMORY_IO; | ||
| 52 | |||
| 53 | free1_out: | ||
| 54 | kfree(dev->dma_mem); | ||
| 55 | out: | ||
| 56 | if (mem_base) | ||
| 57 | iounmap(mem_base); | ||
| 58 | return 0; | ||
| 59 | } | ||
| 60 | EXPORT_SYMBOL(dma_declare_coherent_memory); | ||
| 61 | |||
| 62 | void dma_release_declared_memory(struct device *dev) | ||
| 63 | { | ||
| 64 | struct dma_coherent_mem *mem = dev->dma_mem; | ||
| 65 | |||
| 66 | if (!mem) | ||
| 67 | return; | ||
| 68 | dev->dma_mem = NULL; | ||
| 69 | iounmap(mem->virt_base); | ||
| 70 | kfree(mem->bitmap); | ||
| 71 | kfree(mem); | ||
| 72 | } | ||
| 73 | EXPORT_SYMBOL(dma_release_declared_memory); | ||
| 74 | |||
| 75 | void *dma_mark_declared_memory_occupied(struct device *dev, | ||
| 76 | dma_addr_t device_addr, size_t size) | ||
| 77 | { | ||
| 78 | struct dma_coherent_mem *mem = dev->dma_mem; | ||
| 79 | int pos, err; | ||
| 80 | |||
| 81 | size += device_addr & ~PAGE_MASK; | ||
| 82 | |||
| 83 | if (!mem) | ||
| 84 | return ERR_PTR(-EINVAL); | ||
| 85 | |||
| 86 | pos = (device_addr - mem->device_base) >> PAGE_SHIFT; | ||
| 87 | err = bitmap_allocate_region(mem->bitmap, pos, get_order(size)); | ||
| 88 | if (err != 0) | ||
| 89 | return ERR_PTR(err); | ||
| 90 | return mem->virt_base + (pos << PAGE_SHIFT); | ||
| 91 | } | ||
| 92 | EXPORT_SYMBOL(dma_mark_declared_memory_occupied); | ||
| 93 | |||
| 94 | /** | ||
| 95 | * dma_alloc_from_coherent() - try to allocate memory from the per-device coherent area | ||
| 96 | * | ||
| 97 | * @dev: device from which we allocate memory | ||
| 98 | * @size: size of requested memory area | ||
| 99 | * @dma_handle: This will be filled with the correct dma handle | ||
| 100 | * @ret: This pointer will be filled with the virtual address | ||
| 101 | * to allocated area. | ||
| 102 | * | ||
| 103 | * This function should be only called from per-arch dma_alloc_coherent() | ||
| 104 | * to support allocation from per-device coherent memory pools. | ||
| 105 | * | ||
| 106 | * Returns 0 if dma_alloc_coherent should continue with allocating from | ||
| 107 | * generic memory areas, or !0 if dma_alloc_coherent should return @ret. | ||
| 108 | */ | ||
| 109 | int dma_alloc_from_coherent(struct device *dev, ssize_t size, | ||
| 110 | dma_addr_t *dma_handle, void **ret) | ||
| 111 | { | ||
| 112 | struct dma_coherent_mem *mem; | ||
| 113 | int order = get_order(size); | ||
| 114 | int pageno; | ||
| 115 | |||
| 116 | if (!dev) | ||
| 117 | return 0; | ||
| 118 | mem = dev->dma_mem; | ||
| 119 | if (!mem) | ||
| 120 | return 0; | ||
| 121 | |||
| 122 | *ret = NULL; | ||
| 123 | |||
| 124 | if (unlikely(size > (mem->size << PAGE_SHIFT))) | ||
| 125 | goto err; | ||
| 126 | |||
| 127 | pageno = bitmap_find_free_region(mem->bitmap, mem->size, order); | ||
| 128 | if (unlikely(pageno < 0)) | ||
| 129 | goto err; | ||
| 130 | |||
| 131 | /* | ||
| 132 | * Memory was found in the per-device area. | ||
| 133 | */ | ||
| 134 | *dma_handle = mem->device_base + (pageno << PAGE_SHIFT); | ||
| 135 | *ret = mem->virt_base + (pageno << PAGE_SHIFT); | ||
| 136 | memset(*ret, 0, size); | ||
| 137 | |||
| 138 | return 1; | ||
| 139 | |||
| 140 | err: | ||
| 141 | /* | ||
| 142 | * In the case where the allocation can not be satisfied from the | ||
| 143 | * per-device area, try to fall back to generic memory if the | ||
| 144 | * constraints allow it. | ||
| 145 | */ | ||
| 146 | return mem->flags & DMA_MEMORY_EXCLUSIVE; | ||
| 147 | } | ||
| 148 | EXPORT_SYMBOL(dma_alloc_from_coherent); | ||
| 149 | |||
| 150 | /** | ||
| 151 | * dma_release_from_coherent() - try to free the memory allocated from per-device coherent memory pool | ||
| 152 | * @dev: device from which the memory was allocated | ||
| 153 | * @order: the order of pages allocated | ||
| 154 | * @vaddr: virtual address of allocated pages | ||
| 155 | * | ||
| 156 | * This checks whether the memory was allocated from the per-device | ||
| 157 | * coherent memory pool and if so, releases that memory. | ||
| 158 | * | ||
| 159 | * Returns 1 if we correctly released the memory, or 0 if | ||
| 160 | * dma_release_coherent() should proceed with releasing memory from | ||
| 161 | * generic pools. | ||
| 162 | */ | ||
| 163 | int dma_release_from_coherent(struct device *dev, int order, void *vaddr) | ||
| 164 | { | ||
| 165 | struct dma_coherent_mem *mem = dev ? dev->dma_mem : NULL; | ||
| 166 | |||
| 167 | if (mem && vaddr >= mem->virt_base && vaddr < | ||
| 168 | (mem->virt_base + (mem->size << PAGE_SHIFT))) { | ||
| 169 | int page = (vaddr - mem->virt_base) >> PAGE_SHIFT; | ||
| 170 | |||
| 171 | bitmap_release_region(mem->bitmap, page, order); | ||
| 172 | return 1; | ||
| 173 | } | ||
| 174 | return 0; | ||
| 175 | } | ||
| 176 | EXPORT_SYMBOL(dma_release_from_coherent); | ||
diff --git a/kernel/exit.c b/kernel/exit.c index 628d41f0dd54..e47ee8a06135 100644 --- a/kernel/exit.c +++ b/kernel/exit.c | |||
| @@ -12,7 +12,6 @@ | |||
| 12 | #include <linux/completion.h> | 12 | #include <linux/completion.h> |
| 13 | #include <linux/personality.h> | 13 | #include <linux/personality.h> |
| 14 | #include <linux/tty.h> | 14 | #include <linux/tty.h> |
| 15 | #include <linux/mnt_namespace.h> | ||
| 16 | #include <linux/iocontext.h> | 15 | #include <linux/iocontext.h> |
| 17 | #include <linux/key.h> | 16 | #include <linux/key.h> |
| 18 | #include <linux/security.h> | 17 | #include <linux/security.h> |
| @@ -48,7 +47,7 @@ | |||
| 48 | #include <linux/tracehook.h> | 47 | #include <linux/tracehook.h> |
| 49 | #include <linux/fs_struct.h> | 48 | #include <linux/fs_struct.h> |
| 50 | #include <linux/init_task.h> | 49 | #include <linux/init_task.h> |
| 51 | #include <linux/perf_counter.h> | 50 | #include <linux/perf_event.h> |
| 52 | #include <trace/events/sched.h> | 51 | #include <trace/events/sched.h> |
| 53 | 52 | ||
| 54 | #include <asm/uaccess.h> | 53 | #include <asm/uaccess.h> |
| @@ -155,8 +154,8 @@ static void delayed_put_task_struct(struct rcu_head *rhp) | |||
| 155 | { | 154 | { |
| 156 | struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); | 155 | struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); |
| 157 | 156 | ||
| 158 | #ifdef CONFIG_PERF_COUNTERS | 157 | #ifdef CONFIG_PERF_EVENTS |
| 159 | WARN_ON_ONCE(tsk->perf_counter_ctxp); | 158 | WARN_ON_ONCE(tsk->perf_event_ctxp); |
| 160 | #endif | 159 | #endif |
| 161 | trace_sched_process_free(tsk); | 160 | trace_sched_process_free(tsk); |
| 162 | put_task_struct(tsk); | 161 | put_task_struct(tsk); |
| @@ -902,6 +901,8 @@ NORET_TYPE void do_exit(long code) | |||
| 902 | 901 | ||
| 903 | tracehook_report_exit(&code); | 902 | tracehook_report_exit(&code); |
| 904 | 903 | ||
| 904 | validate_creds_for_do_exit(tsk); | ||
| 905 | |||
| 905 | /* | 906 | /* |
| 906 | * We're taking recursive faults here in do_exit. Safest is to just | 907 | * We're taking recursive faults here in do_exit. Safest is to just |
| 907 | * leave this task alone and wait for reboot. | 908 | * leave this task alone and wait for reboot. |
| @@ -980,7 +981,7 @@ NORET_TYPE void do_exit(long code) | |||
| 980 | * Flush inherited counters to the parent - before the parent | 981 | * Flush inherited counters to the parent - before the parent |
| 981 | * gets woken up by child-exit notifications. | 982 | * gets woken up by child-exit notifications. |
| 982 | */ | 983 | */ |
| 983 | perf_counter_exit_task(tsk); | 984 | perf_event_exit_task(tsk); |
| 984 | 985 | ||
| 985 | exit_notify(tsk, group_dead); | 986 | exit_notify(tsk, group_dead); |
| 986 | #ifdef CONFIG_NUMA | 987 | #ifdef CONFIG_NUMA |
| @@ -1010,7 +1011,10 @@ NORET_TYPE void do_exit(long code) | |||
| 1010 | if (tsk->splice_pipe) | 1011 | if (tsk->splice_pipe) |
| 1011 | __free_pipe_info(tsk->splice_pipe); | 1012 | __free_pipe_info(tsk->splice_pipe); |
| 1012 | 1013 | ||
| 1014 | validate_creds_for_do_exit(tsk); | ||
| 1015 | |||
| 1013 | preempt_disable(); | 1016 | preempt_disable(); |
| 1017 | exit_rcu(); | ||
| 1014 | /* causes final put_task_struct in finish_task_switch(). */ | 1018 | /* causes final put_task_struct in finish_task_switch(). */ |
| 1015 | tsk->state = TASK_DEAD; | 1019 | tsk->state = TASK_DEAD; |
| 1016 | schedule(); | 1020 | schedule(); |
diff --git a/kernel/fork.c b/kernel/fork.c index 467746b3f0aa..1020977b57ca 100644 --- a/kernel/fork.c +++ b/kernel/fork.c | |||
| @@ -17,7 +17,6 @@ | |||
| 17 | #include <linux/module.h> | 17 | #include <linux/module.h> |
| 18 | #include <linux/vmalloc.h> | 18 | #include <linux/vmalloc.h> |
| 19 | #include <linux/completion.h> | 19 | #include <linux/completion.h> |
| 20 | #include <linux/mnt_namespace.h> | ||
| 21 | #include <linux/personality.h> | 20 | #include <linux/personality.h> |
| 22 | #include <linux/mempolicy.h> | 21 | #include <linux/mempolicy.h> |
| 23 | #include <linux/sem.h> | 22 | #include <linux/sem.h> |
| @@ -50,6 +49,7 @@ | |||
| 50 | #include <linux/ftrace.h> | 49 | #include <linux/ftrace.h> |
| 51 | #include <linux/profile.h> | 50 | #include <linux/profile.h> |
| 52 | #include <linux/rmap.h> | 51 | #include <linux/rmap.h> |
| 52 | #include <linux/ksm.h> | ||
| 53 | #include <linux/acct.h> | 53 | #include <linux/acct.h> |
| 54 | #include <linux/tsacct_kern.h> | 54 | #include <linux/tsacct_kern.h> |
| 55 | #include <linux/cn_proc.h> | 55 | #include <linux/cn_proc.h> |
| @@ -62,7 +62,7 @@ | |||
| 62 | #include <linux/blkdev.h> | 62 | #include <linux/blkdev.h> |
| 63 | #include <linux/fs_struct.h> | 63 | #include <linux/fs_struct.h> |
| 64 | #include <linux/magic.h> | 64 | #include <linux/magic.h> |
| 65 | #include <linux/perf_counter.h> | 65 | #include <linux/perf_event.h> |
| 66 | 66 | ||
| 67 | #include <asm/pgtable.h> | 67 | #include <asm/pgtable.h> |
| 68 | #include <asm/pgalloc.h> | 68 | #include <asm/pgalloc.h> |
| @@ -137,9 +137,17 @@ struct kmem_cache *vm_area_cachep; | |||
| 137 | /* SLAB cache for mm_struct structures (tsk->mm) */ | 137 | /* SLAB cache for mm_struct structures (tsk->mm) */ |
| 138 | static struct kmem_cache *mm_cachep; | 138 | static struct kmem_cache *mm_cachep; |
| 139 | 139 | ||
| 140 | static void account_kernel_stack(struct thread_info *ti, int account) | ||
| 141 | { | ||
| 142 | struct zone *zone = page_zone(virt_to_page(ti)); | ||
| 143 | |||
| 144 | mod_zone_page_state(zone, NR_KERNEL_STACK, account); | ||
| 145 | } | ||
| 146 | |||
| 140 | void free_task(struct task_struct *tsk) | 147 | void free_task(struct task_struct *tsk) |
| 141 | { | 148 | { |
| 142 | prop_local_destroy_single(&tsk->dirties); | 149 | prop_local_destroy_single(&tsk->dirties); |
| 150 | account_kernel_stack(tsk->stack, -1); | ||
| 143 | free_thread_info(tsk->stack); | 151 | free_thread_info(tsk->stack); |
| 144 | rt_mutex_debug_task_free(tsk); | 152 | rt_mutex_debug_task_free(tsk); |
| 145 | ftrace_graph_exit_task(tsk); | 153 | ftrace_graph_exit_task(tsk); |
| @@ -153,8 +161,7 @@ void __put_task_struct(struct task_struct *tsk) | |||
| 153 | WARN_ON(atomic_read(&tsk->usage)); | 161 | WARN_ON(atomic_read(&tsk->usage)); |
| 154 | WARN_ON(tsk == current); | 162 | WARN_ON(tsk == current); |
| 155 | 163 | ||
| 156 | put_cred(tsk->real_cred); | 164 | exit_creds(tsk); |
| 157 | put_cred(tsk->cred); | ||
| 158 | delayacct_tsk_free(tsk); | 165 | delayacct_tsk_free(tsk); |
| 159 | 166 | ||
| 160 | if (!profile_handoff_task(tsk)) | 167 | if (!profile_handoff_task(tsk)) |
| @@ -255,6 +262,9 @@ static struct task_struct *dup_task_struct(struct task_struct *orig) | |||
| 255 | tsk->btrace_seq = 0; | 262 | tsk->btrace_seq = 0; |
| 256 | #endif | 263 | #endif |
| 257 | tsk->splice_pipe = NULL; | 264 | tsk->splice_pipe = NULL; |
| 265 | |||
| 266 | account_kernel_stack(ti, 1); | ||
| 267 | |||
| 258 | return tsk; | 268 | return tsk; |
| 259 | 269 | ||
| 260 | out: | 270 | out: |
| @@ -290,6 +300,9 @@ static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) | |||
| 290 | rb_link = &mm->mm_rb.rb_node; | 300 | rb_link = &mm->mm_rb.rb_node; |
| 291 | rb_parent = NULL; | 301 | rb_parent = NULL; |
| 292 | pprev = &mm->mmap; | 302 | pprev = &mm->mmap; |
| 303 | retval = ksm_fork(mm, oldmm); | ||
| 304 | if (retval) | ||
| 305 | goto out; | ||
| 293 | 306 | ||
| 294 | for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { | 307 | for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { |
| 295 | struct file *file; | 308 | struct file *file; |
| @@ -426,7 +439,8 @@ static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p) | |||
| 426 | atomic_set(&mm->mm_count, 1); | 439 | atomic_set(&mm->mm_count, 1); |
| 427 | init_rwsem(&mm->mmap_sem); | 440 | init_rwsem(&mm->mmap_sem); |
| 428 | INIT_LIST_HEAD(&mm->mmlist); | 441 | INIT_LIST_HEAD(&mm->mmlist); |
| 429 | mm->flags = (current->mm) ? current->mm->flags : default_dump_filter; | 442 | mm->flags = (current->mm) ? |
| 443 | (current->mm->flags & MMF_INIT_MASK) : default_dump_filter; | ||
| 430 | mm->core_state = NULL; | 444 | mm->core_state = NULL; |
| 431 | mm->nr_ptes = 0; | 445 | mm->nr_ptes = 0; |
| 432 | set_mm_counter(mm, file_rss, 0); | 446 | set_mm_counter(mm, file_rss, 0); |
| @@ -487,6 +501,7 @@ void mmput(struct mm_struct *mm) | |||
| 487 | 501 | ||
| 488 | if (atomic_dec_and_test(&mm->mm_users)) { | 502 | if (atomic_dec_and_test(&mm->mm_users)) { |
| 489 | exit_aio(mm); | 503 | exit_aio(mm); |
| 504 | ksm_exit(mm); | ||
| 490 | exit_mmap(mm); | 505 | exit_mmap(mm); |
| 491 | set_mm_exe_file(mm, NULL); | 506 | set_mm_exe_file(mm, NULL); |
| 492 | if (!list_empty(&mm->mmlist)) { | 507 | if (!list_empty(&mm->mmlist)) { |
| @@ -568,18 +583,18 @@ void mm_release(struct task_struct *tsk, struct mm_struct *mm) | |||
| 568 | * the value intact in a core dump, and to save the unnecessary | 583 | * the value intact in a core dump, and to save the unnecessary |
| 569 | * trouble otherwise. Userland only wants this done for a sys_exit. | 584 | * trouble otherwise. Userland only wants this done for a sys_exit. |
| 570 | */ | 585 | */ |
| 571 | if (tsk->clear_child_tid | 586 | if (tsk->clear_child_tid) { |
| 572 | && !(tsk->flags & PF_SIGNALED) | 587 | if (!(tsk->flags & PF_SIGNALED) && |
| 573 | && atomic_read(&mm->mm_users) > 1) { | 588 | atomic_read(&mm->mm_users) > 1) { |
| 574 | u32 __user * tidptr = tsk->clear_child_tid; | 589 | /* |
| 590 | * We don't check the error code - if userspace has | ||
| 591 | * not set up a proper pointer then tough luck. | ||
| 592 | */ | ||
| 593 | put_user(0, tsk->clear_child_tid); | ||
| 594 | sys_futex(tsk->clear_child_tid, FUTEX_WAKE, | ||
| 595 | 1, NULL, NULL, 0); | ||
| 596 | } | ||
| 575 | tsk->clear_child_tid = NULL; | 597 | tsk->clear_child_tid = NULL; |
| 576 | |||
| 577 | /* | ||
| 578 | * We don't check the error code - if userspace has | ||
| 579 | * not set up a proper pointer then tough luck. | ||
| 580 | */ | ||
| 581 | put_user(0, tidptr); | ||
| 582 | sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0); | ||
| 583 | } | 598 | } |
| 584 | } | 599 | } |
| 585 | 600 | ||
| @@ -816,11 +831,8 @@ static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) | |||
| 816 | { | 831 | { |
| 817 | struct signal_struct *sig; | 832 | struct signal_struct *sig; |
| 818 | 833 | ||
| 819 | if (clone_flags & CLONE_THREAD) { | 834 | if (clone_flags & CLONE_THREAD) |
| 820 | atomic_inc(¤t->signal->count); | ||
| 821 | atomic_inc(¤t->signal->live); | ||
| 822 | return 0; | 835 | return 0; |
| 823 | } | ||
| 824 | 836 | ||
| 825 | sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL); | 837 | sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL); |
| 826 | tsk->signal = sig; | 838 | tsk->signal = sig; |
| @@ -868,6 +880,8 @@ static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) | |||
| 868 | 880 | ||
| 869 | tty_audit_fork(sig); | 881 | tty_audit_fork(sig); |
| 870 | 882 | ||
| 883 | sig->oom_adj = current->signal->oom_adj; | ||
| 884 | |||
| 871 | return 0; | 885 | return 0; |
| 872 | } | 886 | } |
| 873 | 887 | ||
| @@ -878,16 +892,6 @@ void __cleanup_signal(struct signal_struct *sig) | |||
| 878 | kmem_cache_free(signal_cachep, sig); | 892 | kmem_cache_free(signal_cachep, sig); |
| 879 | } | 893 | } |
| 880 | 894 | ||
| 881 | static void cleanup_signal(struct task_struct *tsk) | ||
| 882 | { | ||
| 883 | struct signal_struct *sig = tsk->signal; | ||
| 884 | |||
| 885 | atomic_dec(&sig->live); | ||
| 886 | |||
| 887 | if (atomic_dec_and_test(&sig->count)) | ||
| 888 | __cleanup_signal(sig); | ||
| 889 | } | ||
| 890 | |||
| 891 | static void copy_flags(unsigned long clone_flags, struct task_struct *p) | 895 | static void copy_flags(unsigned long clone_flags, struct task_struct *p) |
| 892 | { | 896 | { |
| 893 | unsigned long new_flags = p->flags; | 897 | unsigned long new_flags = p->flags; |
| @@ -1022,10 +1026,7 @@ static struct task_struct *copy_process(unsigned long clone_flags, | |||
| 1022 | copy_flags(clone_flags, p); | 1026 | copy_flags(clone_flags, p); |
| 1023 | INIT_LIST_HEAD(&p->children); | 1027 | INIT_LIST_HEAD(&p->children); |
| 1024 | INIT_LIST_HEAD(&p->sibling); | 1028 | INIT_LIST_HEAD(&p->sibling); |
| 1025 | #ifdef CONFIG_PREEMPT_RCU | 1029 | rcu_copy_process(p); |
| 1026 | p->rcu_read_lock_nesting = 0; | ||
| 1027 | p->rcu_flipctr_idx = 0; | ||
| 1028 | #endif /* #ifdef CONFIG_PREEMPT_RCU */ | ||
| 1029 | p->vfork_done = NULL; | 1030 | p->vfork_done = NULL; |
| 1030 | spin_lock_init(&p->alloc_lock); | 1031 | spin_lock_init(&p->alloc_lock); |
| 1031 | 1032 | ||
| @@ -1096,7 +1097,7 @@ static struct task_struct *copy_process(unsigned long clone_flags, | |||
| 1096 | /* Perform scheduler related setup. Assign this task to a CPU. */ | 1097 | /* Perform scheduler related setup. Assign this task to a CPU. */ |
| 1097 | sched_fork(p, clone_flags); | 1098 | sched_fork(p, clone_flags); |
| 1098 | 1099 | ||
| 1099 | retval = perf_counter_init_task(p); | 1100 | retval = perf_event_init_task(p); |
| 1100 | if (retval) | 1101 | if (retval) |
| 1101 | goto bad_fork_cleanup_policy; | 1102 | goto bad_fork_cleanup_policy; |
| 1102 | 1103 | ||
| @@ -1240,6 +1241,8 @@ static struct task_struct *copy_process(unsigned long clone_flags, | |||
| 1240 | } | 1241 | } |
| 1241 | 1242 | ||
| 1242 | if (clone_flags & CLONE_THREAD) { | 1243 | if (clone_flags & CLONE_THREAD) { |
| 1244 | atomic_inc(¤t->signal->count); | ||
| 1245 | atomic_inc(¤t->signal->live); | ||
| 1243 | p->group_leader = current->group_leader; | 1246 | p->group_leader = current->group_leader; |
| 1244 | list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group); | 1247 | list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group); |
| 1245 | } | 1248 | } |
| @@ -1269,6 +1272,7 @@ static struct task_struct *copy_process(unsigned long clone_flags, | |||
| 1269 | write_unlock_irq(&tasklist_lock); | 1272 | write_unlock_irq(&tasklist_lock); |
| 1270 | proc_fork_connector(p); | 1273 | proc_fork_connector(p); |
| 1271 | cgroup_post_fork(p); | 1274 | cgroup_post_fork(p); |
| 1275 | perf_event_fork(p); | ||
| 1272 | return p; | 1276 | return p; |
| 1273 | 1277 | ||
| 1274 | bad_fork_free_pid: | 1278 | bad_fork_free_pid: |
| @@ -1282,7 +1286,8 @@ bad_fork_cleanup_mm: | |||
| 1282 | if (p->mm) | 1286 | if (p->mm) |
| 1283 | mmput(p->mm); | 1287 | mmput(p->mm); |
| 1284 | bad_fork_cleanup_signal: | 1288 | bad_fork_cleanup_signal: |
| 1285 | cleanup_signal(p); | 1289 | if (!(clone_flags & CLONE_THREAD)) |
| 1290 | __cleanup_signal(p->signal); | ||
| 1286 | bad_fork_cleanup_sighand: | 1291 | bad_fork_cleanup_sighand: |
| 1287 | __cleanup_sighand(p->sighand); | 1292 | __cleanup_sighand(p->sighand); |
| 1288 | bad_fork_cleanup_fs: | 1293 | bad_fork_cleanup_fs: |
| @@ -1294,7 +1299,7 @@ bad_fork_cleanup_semundo: | |||
| 1294 | bad_fork_cleanup_audit: | 1299 | bad_fork_cleanup_audit: |
| 1295 | audit_free(p); | 1300 | audit_free(p); |
| 1296 | bad_fork_cleanup_policy: | 1301 | bad_fork_cleanup_policy: |
| 1297 | perf_counter_free_task(p); | 1302 | perf_event_free_task(p); |
| 1298 | #ifdef CONFIG_NUMA | 1303 | #ifdef CONFIG_NUMA |
| 1299 | mpol_put(p->mempolicy); | 1304 | mpol_put(p->mempolicy); |
| 1300 | bad_fork_cleanup_cgroup: | 1305 | bad_fork_cleanup_cgroup: |
| @@ -1307,8 +1312,7 @@ bad_fork_cleanup_put_domain: | |||
| 1307 | module_put(task_thread_info(p)->exec_domain->module); | 1312 | module_put(task_thread_info(p)->exec_domain->module); |
| 1308 | bad_fork_cleanup_count: | 1313 | bad_fork_cleanup_count: |
| 1309 | atomic_dec(&p->cred->user->processes); | 1314 | atomic_dec(&p->cred->user->processes); |
| 1310 | put_cred(p->real_cred); | 1315 | exit_creds(p); |
| 1311 | put_cred(p->cred); | ||
| 1312 | bad_fork_free: | 1316 | bad_fork_free: |
| 1313 | free_task(p); | 1317 | free_task(p); |
| 1314 | fork_out: | 1318 | fork_out: |
| @@ -1408,12 +1412,6 @@ long do_fork(unsigned long clone_flags, | |||
| 1408 | if (clone_flags & CLONE_VFORK) { | 1412 | if (clone_flags & CLONE_VFORK) { |
| 1409 | p->vfork_done = &vfork; | 1413 | p->vfork_done = &vfork; |
| 1410 | init_completion(&vfork); | 1414 | init_completion(&vfork); |
| 1411 | } else if (!(clone_flags & CLONE_VM)) { | ||
| 1412 | /* | ||
| 1413 | * vfork will do an exec which will call | ||
| 1414 | * set_task_comm() | ||
| 1415 | */ | ||
| 1416 | perf_counter_fork(p); | ||
| 1417 | } | 1415 | } |
| 1418 | 1416 | ||
| 1419 | audit_finish_fork(p); | 1417 | audit_finish_fork(p); |
diff --git a/kernel/freezer.c b/kernel/freezer.c index 2f4936cf7083..bd1d42b17cb2 100644 --- a/kernel/freezer.c +++ b/kernel/freezer.c | |||
| @@ -44,12 +44,19 @@ void refrigerator(void) | |||
| 44 | recalc_sigpending(); /* We sent fake signal, clean it up */ | 44 | recalc_sigpending(); /* We sent fake signal, clean it up */ |
| 45 | spin_unlock_irq(¤t->sighand->siglock); | 45 | spin_unlock_irq(¤t->sighand->siglock); |
| 46 | 46 | ||
| 47 | /* prevent accounting of that task to load */ | ||
| 48 | current->flags |= PF_FREEZING; | ||
| 49 | |||
| 47 | for (;;) { | 50 | for (;;) { |
| 48 | set_current_state(TASK_UNINTERRUPTIBLE); | 51 | set_current_state(TASK_UNINTERRUPTIBLE); |
| 49 | if (!frozen(current)) | 52 | if (!frozen(current)) |
| 50 | break; | 53 | break; |
| 51 | schedule(); | 54 | schedule(); |
| 52 | } | 55 | } |
| 56 | |||
| 57 | /* Remove the accounting blocker */ | ||
| 58 | current->flags &= ~PF_FREEZING; | ||
| 59 | |||
| 53 | pr_debug("%s left refrigerator\n", current->comm); | 60 | pr_debug("%s left refrigerator\n", current->comm); |
| 54 | __set_current_state(save); | 61 | __set_current_state(save); |
| 55 | } | 62 | } |
diff --git a/kernel/futex.c b/kernel/futex.c index 794c862125fe..248dd119a86e 100644 --- a/kernel/futex.c +++ b/kernel/futex.c | |||
| @@ -115,6 +115,9 @@ struct futex_q { | |||
| 115 | /* rt_waiter storage for requeue_pi: */ | 115 | /* rt_waiter storage for requeue_pi: */ |
| 116 | struct rt_mutex_waiter *rt_waiter; | 116 | struct rt_mutex_waiter *rt_waiter; |
| 117 | 117 | ||
| 118 | /* The expected requeue pi target futex key: */ | ||
| 119 | union futex_key *requeue_pi_key; | ||
| 120 | |||
| 118 | /* Bitset for the optional bitmasked wakeup */ | 121 | /* Bitset for the optional bitmasked wakeup */ |
| 119 | u32 bitset; | 122 | u32 bitset; |
| 120 | }; | 123 | }; |
| @@ -247,6 +250,7 @@ again: | |||
| 247 | if (err < 0) | 250 | if (err < 0) |
| 248 | return err; | 251 | return err; |
| 249 | 252 | ||
| 253 | page = compound_head(page); | ||
| 250 | lock_page(page); | 254 | lock_page(page); |
| 251 | if (!page->mapping) { | 255 | if (!page->mapping) { |
| 252 | unlock_page(page); | 256 | unlock_page(page); |
| @@ -1009,15 +1013,19 @@ void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1, | |||
| 1009 | * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue | 1013 | * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue |
| 1010 | * q: the futex_q | 1014 | * q: the futex_q |
| 1011 | * key: the key of the requeue target futex | 1015 | * key: the key of the requeue target futex |
| 1016 | * hb: the hash_bucket of the requeue target futex | ||
| 1012 | * | 1017 | * |
| 1013 | * During futex_requeue, with requeue_pi=1, it is possible to acquire the | 1018 | * During futex_requeue, with requeue_pi=1, it is possible to acquire the |
| 1014 | * target futex if it is uncontended or via a lock steal. Set the futex_q key | 1019 | * target futex if it is uncontended or via a lock steal. Set the futex_q key |
| 1015 | * to the requeue target futex so the waiter can detect the wakeup on the right | 1020 | * to the requeue target futex so the waiter can detect the wakeup on the right |
| 1016 | * futex, but remove it from the hb and NULL the rt_waiter so it can detect | 1021 | * futex, but remove it from the hb and NULL the rt_waiter so it can detect |
| 1017 | * atomic lock acquisition. Must be called with the q->lock_ptr held. | 1022 | * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock |
| 1023 | * to protect access to the pi_state to fixup the owner later. Must be called | ||
| 1024 | * with both q->lock_ptr and hb->lock held. | ||
| 1018 | */ | 1025 | */ |
| 1019 | static inline | 1026 | static inline |
| 1020 | void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key) | 1027 | void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key, |
| 1028 | struct futex_hash_bucket *hb) | ||
| 1021 | { | 1029 | { |
| 1022 | drop_futex_key_refs(&q->key); | 1030 | drop_futex_key_refs(&q->key); |
| 1023 | get_futex_key_refs(key); | 1031 | get_futex_key_refs(key); |
| @@ -1029,6 +1037,11 @@ void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key) | |||
| 1029 | WARN_ON(!q->rt_waiter); | 1037 | WARN_ON(!q->rt_waiter); |
| 1030 | q->rt_waiter = NULL; | 1038 | q->rt_waiter = NULL; |
| 1031 | 1039 | ||
| 1040 | q->lock_ptr = &hb->lock; | ||
| 1041 | #ifdef CONFIG_DEBUG_PI_LIST | ||
| 1042 | q->list.plist.lock = &hb->lock; | ||
| 1043 | #endif | ||
| 1044 | |||
| 1032 | wake_up_state(q->task, TASK_NORMAL); | 1045 | wake_up_state(q->task, TASK_NORMAL); |
| 1033 | } | 1046 | } |
| 1034 | 1047 | ||
| @@ -1079,6 +1092,10 @@ static int futex_proxy_trylock_atomic(u32 __user *pifutex, | |||
| 1079 | if (!top_waiter) | 1092 | if (!top_waiter) |
| 1080 | return 0; | 1093 | return 0; |
| 1081 | 1094 | ||
| 1095 | /* Ensure we requeue to the expected futex. */ | ||
| 1096 | if (!match_futex(top_waiter->requeue_pi_key, key2)) | ||
| 1097 | return -EINVAL; | ||
| 1098 | |||
| 1082 | /* | 1099 | /* |
| 1083 | * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in | 1100 | * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in |
| 1084 | * the contended case or if set_waiters is 1. The pi_state is returned | 1101 | * the contended case or if set_waiters is 1. The pi_state is returned |
| @@ -1087,7 +1104,7 @@ static int futex_proxy_trylock_atomic(u32 __user *pifutex, | |||
| 1087 | ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task, | 1104 | ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task, |
| 1088 | set_waiters); | 1105 | set_waiters); |
| 1089 | if (ret == 1) | 1106 | if (ret == 1) |
| 1090 | requeue_pi_wake_futex(top_waiter, key2); | 1107 | requeue_pi_wake_futex(top_waiter, key2, hb2); |
| 1091 | 1108 | ||
| 1092 | return ret; | 1109 | return ret; |
| 1093 | } | 1110 | } |
| @@ -1246,8 +1263,15 @@ retry_private: | |||
| 1246 | if (!match_futex(&this->key, &key1)) | 1263 | if (!match_futex(&this->key, &key1)) |
| 1247 | continue; | 1264 | continue; |
| 1248 | 1265 | ||
| 1249 | WARN_ON(!requeue_pi && this->rt_waiter); | 1266 | /* |
| 1250 | WARN_ON(requeue_pi && !this->rt_waiter); | 1267 | * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always |
| 1268 | * be paired with each other and no other futex ops. | ||
| 1269 | */ | ||
| 1270 | if ((requeue_pi && !this->rt_waiter) || | ||
| 1271 | (!requeue_pi && this->rt_waiter)) { | ||
| 1272 | ret = -EINVAL; | ||
| 1273 | break; | ||
| 1274 | } | ||
| 1251 | 1275 | ||
| 1252 | /* | 1276 | /* |
| 1253 | * Wake nr_wake waiters. For requeue_pi, if we acquired the | 1277 | * Wake nr_wake waiters. For requeue_pi, if we acquired the |
| @@ -1259,6 +1283,12 @@ retry_private: | |||
| 1259 | continue; | 1283 | continue; |
| 1260 | } | 1284 | } |
| 1261 | 1285 | ||
| 1286 | /* Ensure we requeue to the expected futex for requeue_pi. */ | ||
| 1287 | if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) { | ||
| 1288 | ret = -EINVAL; | ||
| 1289 | break; | ||
| 1290 | } | ||
| 1291 | |||
| 1262 | /* | 1292 | /* |
| 1263 | * Requeue nr_requeue waiters and possibly one more in the case | 1293 | * Requeue nr_requeue waiters and possibly one more in the case |
| 1264 | * of requeue_pi if we couldn't acquire the lock atomically. | 1294 | * of requeue_pi if we couldn't acquire the lock atomically. |
| @@ -1272,7 +1302,7 @@ retry_private: | |||
| 1272 | this->task, 1); | 1302 | this->task, 1); |
| 1273 | if (ret == 1) { | 1303 | if (ret == 1) { |
| 1274 | /* We got the lock. */ | 1304 | /* We got the lock. */ |
| 1275 | requeue_pi_wake_futex(this, &key2); | 1305 | requeue_pi_wake_futex(this, &key2, hb2); |
| 1276 | continue; | 1306 | continue; |
| 1277 | } else if (ret) { | 1307 | } else if (ret) { |
| 1278 | /* -EDEADLK */ | 1308 | /* -EDEADLK */ |
| @@ -1734,6 +1764,7 @@ static int futex_wait(u32 __user *uaddr, int fshared, | |||
| 1734 | q.pi_state = NULL; | 1764 | q.pi_state = NULL; |
| 1735 | q.bitset = bitset; | 1765 | q.bitset = bitset; |
| 1736 | q.rt_waiter = NULL; | 1766 | q.rt_waiter = NULL; |
| 1767 | q.requeue_pi_key = NULL; | ||
| 1737 | 1768 | ||
| 1738 | if (abs_time) { | 1769 | if (abs_time) { |
| 1739 | to = &timeout; | 1770 | to = &timeout; |
| @@ -1841,6 +1872,7 @@ static int futex_lock_pi(u32 __user *uaddr, int fshared, | |||
| 1841 | 1872 | ||
| 1842 | q.pi_state = NULL; | 1873 | q.pi_state = NULL; |
| 1843 | q.rt_waiter = NULL; | 1874 | q.rt_waiter = NULL; |
| 1875 | q.requeue_pi_key = NULL; | ||
| 1844 | retry: | 1876 | retry: |
| 1845 | q.key = FUTEX_KEY_INIT; | 1877 | q.key = FUTEX_KEY_INIT; |
| 1846 | ret = get_futex_key(uaddr, fshared, &q.key, VERIFY_WRITE); | 1878 | ret = get_futex_key(uaddr, fshared, &q.key, VERIFY_WRITE); |
| @@ -2101,11 +2133,11 @@ int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb, | |||
| 2101 | * We call schedule in futex_wait_queue_me() when we enqueue and return there | 2133 | * We call schedule in futex_wait_queue_me() when we enqueue and return there |
| 2102 | * via the following: | 2134 | * via the following: |
| 2103 | * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue() | 2135 | * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue() |
| 2104 | * 2) wakeup on uaddr2 after a requeue and subsequent unlock | 2136 | * 2) wakeup on uaddr2 after a requeue |
| 2105 | * 3) signal (before or after requeue) | 2137 | * 3) signal |
| 2106 | * 4) timeout (before or after requeue) | 2138 | * 4) timeout |
| 2107 | * | 2139 | * |
| 2108 | * If 3, we setup a restart_block with futex_wait_requeue_pi() as the function. | 2140 | * If 3, cleanup and return -ERESTARTNOINTR. |
| 2109 | * | 2141 | * |
| 2110 | * If 2, we may then block on trying to take the rt_mutex and return via: | 2142 | * If 2, we may then block on trying to take the rt_mutex and return via: |
| 2111 | * 5) successful lock | 2143 | * 5) successful lock |
| @@ -2113,7 +2145,7 @@ int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb, | |||
| 2113 | * 7) timeout | 2145 | * 7) timeout |
| 2114 | * 8) other lock acquisition failure | 2146 | * 8) other lock acquisition failure |
| 2115 | * | 2147 | * |
| 2116 | * If 6, we setup a restart_block with futex_lock_pi() as the function. | 2148 | * If 6, return -EWOULDBLOCK (restarting the syscall would do the same). |
| 2117 | * | 2149 | * |
| 2118 | * If 4 or 7, we cleanup and return with -ETIMEDOUT. | 2150 | * If 4 or 7, we cleanup and return with -ETIMEDOUT. |
| 2119 | * | 2151 | * |
| @@ -2152,15 +2184,16 @@ static int futex_wait_requeue_pi(u32 __user *uaddr, int fshared, | |||
| 2152 | debug_rt_mutex_init_waiter(&rt_waiter); | 2184 | debug_rt_mutex_init_waiter(&rt_waiter); |
| 2153 | rt_waiter.task = NULL; | 2185 | rt_waiter.task = NULL; |
| 2154 | 2186 | ||
| 2155 | q.pi_state = NULL; | ||
| 2156 | q.bitset = bitset; | ||
| 2157 | q.rt_waiter = &rt_waiter; | ||
| 2158 | |||
| 2159 | key2 = FUTEX_KEY_INIT; | 2187 | key2 = FUTEX_KEY_INIT; |
| 2160 | ret = get_futex_key(uaddr2, fshared, &key2, VERIFY_WRITE); | 2188 | ret = get_futex_key(uaddr2, fshared, &key2, VERIFY_WRITE); |
| 2161 | if (unlikely(ret != 0)) | 2189 | if (unlikely(ret != 0)) |
| 2162 | goto out; | 2190 | goto out; |
| 2163 | 2191 | ||
| 2192 | q.pi_state = NULL; | ||
| 2193 | q.bitset = bitset; | ||
| 2194 | q.rt_waiter = &rt_waiter; | ||
| 2195 | q.requeue_pi_key = &key2; | ||
| 2196 | |||
| 2164 | /* Prepare to wait on uaddr. */ | 2197 | /* Prepare to wait on uaddr. */ |
| 2165 | ret = futex_wait_setup(uaddr, val, fshared, &q, &hb); | 2198 | ret = futex_wait_setup(uaddr, val, fshared, &q, &hb); |
| 2166 | if (ret) | 2199 | if (ret) |
| @@ -2231,14 +2264,11 @@ static int futex_wait_requeue_pi(u32 __user *uaddr, int fshared, | |||
| 2231 | rt_mutex_unlock(pi_mutex); | 2264 | rt_mutex_unlock(pi_mutex); |
| 2232 | } else if (ret == -EINTR) { | 2265 | } else if (ret == -EINTR) { |
| 2233 | /* | 2266 | /* |
| 2234 | * We've already been requeued, but we have no way to | 2267 | * We've already been requeued, but cannot restart by calling |
| 2235 | * restart by calling futex_lock_pi() directly. We | 2268 | * futex_lock_pi() directly. We could restart this syscall, but |
| 2236 | * could restart the syscall, but that will look at | 2269 | * it would detect that the user space "val" changed and return |
| 2237 | * the user space value and return right away. So we | 2270 | * -EWOULDBLOCK. Save the overhead of the restart and return |
| 2238 | * drop back with EWOULDBLOCK to tell user space that | 2271 | * -EWOULDBLOCK directly. |
| 2239 | * "val" has been changed. That's the same what the | ||
| 2240 | * restart of the syscall would do in | ||
| 2241 | * futex_wait_setup(). | ||
| 2242 | */ | 2272 | */ |
| 2243 | ret = -EWOULDBLOCK; | 2273 | ret = -EWOULDBLOCK; |
| 2244 | } | 2274 | } |
diff --git a/kernel/futex_compat.c b/kernel/futex_compat.c index d607a5b9ee29..235716556bf1 100644 --- a/kernel/futex_compat.c +++ b/kernel/futex_compat.c | |||
| @@ -180,7 +180,8 @@ asmlinkage long compat_sys_futex(u32 __user *uaddr, int op, u32 val, | |||
| 180 | int cmd = op & FUTEX_CMD_MASK; | 180 | int cmd = op & FUTEX_CMD_MASK; |
| 181 | 181 | ||
| 182 | if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI || | 182 | if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI || |
| 183 | cmd == FUTEX_WAIT_BITSET)) { | 183 | cmd == FUTEX_WAIT_BITSET || |
| 184 | cmd == FUTEX_WAIT_REQUEUE_PI)) { | ||
| 184 | if (get_compat_timespec(&ts, utime)) | 185 | if (get_compat_timespec(&ts, utime)) |
| 185 | return -EFAULT; | 186 | return -EFAULT; |
| 186 | if (!timespec_valid(&ts)) | 187 | if (!timespec_valid(&ts)) |
| @@ -191,7 +192,8 @@ asmlinkage long compat_sys_futex(u32 __user *uaddr, int op, u32 val, | |||
| 191 | t = ktime_add_safe(ktime_get(), t); | 192 | t = ktime_add_safe(ktime_get(), t); |
| 192 | tp = &t; | 193 | tp = &t; |
| 193 | } | 194 | } |
| 194 | if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE) | 195 | if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE || |
| 196 | cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP) | ||
| 195 | val2 = (int) (unsigned long) utime; | 197 | val2 = (int) (unsigned long) utime; |
| 196 | 198 | ||
| 197 | return do_futex(uaddr, op, val, tp, uaddr2, val2, val3); | 199 | return do_futex(uaddr, op, val, tp, uaddr2, val2, val3); |
diff --git a/kernel/gcov/Kconfig b/kernel/gcov/Kconfig index 22e9dcfaa3d3..654efd09f6a9 100644 --- a/kernel/gcov/Kconfig +++ b/kernel/gcov/Kconfig | |||
| @@ -34,7 +34,7 @@ config GCOV_KERNEL | |||
| 34 | config GCOV_PROFILE_ALL | 34 | config GCOV_PROFILE_ALL |
| 35 | bool "Profile entire Kernel" | 35 | bool "Profile entire Kernel" |
| 36 | depends on GCOV_KERNEL | 36 | depends on GCOV_KERNEL |
| 37 | depends on S390 || X86 | 37 | depends on S390 || X86 || (PPC && EXPERIMENTAL) |
| 38 | default n | 38 | default n |
| 39 | ---help--- | 39 | ---help--- |
| 40 | This options activates profiling for the entire kernel. | 40 | This options activates profiling for the entire kernel. |
diff --git a/kernel/hrtimer.c b/kernel/hrtimer.c index 9002958a96e7..c03f221fee44 100644 --- a/kernel/hrtimer.c +++ b/kernel/hrtimer.c | |||
| @@ -48,37 +48,6 @@ | |||
| 48 | 48 | ||
| 49 | #include <asm/uaccess.h> | 49 | #include <asm/uaccess.h> |
| 50 | 50 | ||
| 51 | /** | ||
| 52 | * ktime_get - get the monotonic time in ktime_t format | ||
| 53 | * | ||
| 54 | * returns the time in ktime_t format | ||
| 55 | */ | ||
| 56 | ktime_t ktime_get(void) | ||
| 57 | { | ||
| 58 | struct timespec now; | ||
| 59 | |||
| 60 | ktime_get_ts(&now); | ||
| 61 | |||
| 62 | return timespec_to_ktime(now); | ||
| 63 | } | ||
| 64 | EXPORT_SYMBOL_GPL(ktime_get); | ||
| 65 | |||
| 66 | /** | ||
| 67 | * ktime_get_real - get the real (wall-) time in ktime_t format | ||
| 68 | * | ||
| 69 | * returns the time in ktime_t format | ||
| 70 | */ | ||
| 71 | ktime_t ktime_get_real(void) | ||
| 72 | { | ||
| 73 | struct timespec now; | ||
| 74 | |||
| 75 | getnstimeofday(&now); | ||
| 76 | |||
| 77 | return timespec_to_ktime(now); | ||
| 78 | } | ||
| 79 | |||
| 80 | EXPORT_SYMBOL_GPL(ktime_get_real); | ||
| 81 | |||
| 82 | /* | 51 | /* |
| 83 | * The timer bases: | 52 | * The timer bases: |
| 84 | * | 53 | * |
| @@ -106,31 +75,6 @@ DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) = | |||
| 106 | } | 75 | } |
| 107 | }; | 76 | }; |
| 108 | 77 | ||
| 109 | /** | ||
| 110 | * ktime_get_ts - get the monotonic clock in timespec format | ||
| 111 | * @ts: pointer to timespec variable | ||
| 112 | * | ||
| 113 | * The function calculates the monotonic clock from the realtime | ||
| 114 | * clock and the wall_to_monotonic offset and stores the result | ||
| 115 | * in normalized timespec format in the variable pointed to by @ts. | ||
| 116 | */ | ||
| 117 | void ktime_get_ts(struct timespec *ts) | ||
| 118 | { | ||
| 119 | struct timespec tomono; | ||
| 120 | unsigned long seq; | ||
| 121 | |||
| 122 | do { | ||
| 123 | seq = read_seqbegin(&xtime_lock); | ||
| 124 | getnstimeofday(ts); | ||
| 125 | tomono = wall_to_monotonic; | ||
| 126 | |||
| 127 | } while (read_seqretry(&xtime_lock, seq)); | ||
| 128 | |||
| 129 | set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec, | ||
| 130 | ts->tv_nsec + tomono.tv_nsec); | ||
| 131 | } | ||
| 132 | EXPORT_SYMBOL_GPL(ktime_get_ts); | ||
| 133 | |||
| 134 | /* | 78 | /* |
| 135 | * Get the coarse grained time at the softirq based on xtime and | 79 | * Get the coarse grained time at the softirq based on xtime and |
| 136 | * wall_to_monotonic. | 80 | * wall_to_monotonic. |
| @@ -191,6 +135,46 @@ struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer, | |||
| 191 | } | 135 | } |
| 192 | } | 136 | } |
| 193 | 137 | ||
| 138 | |||
| 139 | /* | ||
| 140 | * Get the preferred target CPU for NOHZ | ||
| 141 | */ | ||
| 142 | static int hrtimer_get_target(int this_cpu, int pinned) | ||
| 143 | { | ||
| 144 | #ifdef CONFIG_NO_HZ | ||
| 145 | if (!pinned && get_sysctl_timer_migration() && idle_cpu(this_cpu)) { | ||
| 146 | int preferred_cpu = get_nohz_load_balancer(); | ||
| 147 | |||
| 148 | if (preferred_cpu >= 0) | ||
| 149 | return preferred_cpu; | ||
| 150 | } | ||
| 151 | #endif | ||
| 152 | return this_cpu; | ||
| 153 | } | ||
| 154 | |||
| 155 | /* | ||
| 156 | * With HIGHRES=y we do not migrate the timer when it is expiring | ||
| 157 | * before the next event on the target cpu because we cannot reprogram | ||
| 158 | * the target cpu hardware and we would cause it to fire late. | ||
| 159 | * | ||
| 160 | * Called with cpu_base->lock of target cpu held. | ||
| 161 | */ | ||
| 162 | static int | ||
| 163 | hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base) | ||
| 164 | { | ||
| 165 | #ifdef CONFIG_HIGH_RES_TIMERS | ||
| 166 | ktime_t expires; | ||
| 167 | |||
| 168 | if (!new_base->cpu_base->hres_active) | ||
| 169 | return 0; | ||
| 170 | |||
| 171 | expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset); | ||
| 172 | return expires.tv64 <= new_base->cpu_base->expires_next.tv64; | ||
| 173 | #else | ||
| 174 | return 0; | ||
| 175 | #endif | ||
| 176 | } | ||
| 177 | |||
| 194 | /* | 178 | /* |
| 195 | * Switch the timer base to the current CPU when possible. | 179 | * Switch the timer base to the current CPU when possible. |
| 196 | */ | 180 | */ |
| @@ -200,16 +184,8 @@ switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base, | |||
| 200 | { | 184 | { |
| 201 | struct hrtimer_clock_base *new_base; | 185 | struct hrtimer_clock_base *new_base; |
| 202 | struct hrtimer_cpu_base *new_cpu_base; | 186 | struct hrtimer_cpu_base *new_cpu_base; |
| 203 | int cpu, preferred_cpu = -1; | 187 | int this_cpu = smp_processor_id(); |
| 204 | 188 | int cpu = hrtimer_get_target(this_cpu, pinned); | |
| 205 | cpu = smp_processor_id(); | ||
| 206 | #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP) | ||
| 207 | if (!pinned && get_sysctl_timer_migration() && idle_cpu(cpu)) { | ||
| 208 | preferred_cpu = get_nohz_load_balancer(); | ||
| 209 | if (preferred_cpu >= 0) | ||
| 210 | cpu = preferred_cpu; | ||
| 211 | } | ||
| 212 | #endif | ||
| 213 | 189 | ||
| 214 | again: | 190 | again: |
| 215 | new_cpu_base = &per_cpu(hrtimer_bases, cpu); | 191 | new_cpu_base = &per_cpu(hrtimer_bases, cpu); |
| @@ -217,7 +193,7 @@ again: | |||
| 217 | 193 | ||
| 218 | if (base != new_base) { | 194 | if (base != new_base) { |
| 219 | /* | 195 | /* |
| 220 | * We are trying to schedule the timer on the local CPU. | 196 | * We are trying to move timer to new_base. |
| 221 | * However we can't change timer's base while it is running, | 197 | * However we can't change timer's base while it is running, |
| 222 | * so we keep it on the same CPU. No hassle vs. reprogramming | 198 | * so we keep it on the same CPU. No hassle vs. reprogramming |
| 223 | * the event source in the high resolution case. The softirq | 199 | * the event source in the high resolution case. The softirq |
| @@ -233,38 +209,12 @@ again: | |||
| 233 | spin_unlock(&base->cpu_base->lock); | 209 | spin_unlock(&base->cpu_base->lock); |
| 234 | spin_lock(&new_base->cpu_base->lock); | 210 | spin_lock(&new_base->cpu_base->lock); |
| 235 | 211 | ||
| 236 | /* Optimized away for NOHZ=n SMP=n */ | 212 | if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) { |
| 237 | if (cpu == preferred_cpu) { | 213 | cpu = this_cpu; |
| 238 | /* Calculate clock monotonic expiry time */ | 214 | spin_unlock(&new_base->cpu_base->lock); |
| 239 | #ifdef CONFIG_HIGH_RES_TIMERS | 215 | spin_lock(&base->cpu_base->lock); |
| 240 | ktime_t expires = ktime_sub(hrtimer_get_expires(timer), | 216 | timer->base = base; |
| 241 | new_base->offset); | 217 | goto again; |
| 242 | #else | ||
| 243 | ktime_t expires = hrtimer_get_expires(timer); | ||
| 244 | #endif | ||
| 245 | |||
| 246 | /* | ||
| 247 | * Get the next event on target cpu from the | ||
| 248 | * clock events layer. | ||
| 249 | * This covers the highres=off nohz=on case as well. | ||
| 250 | */ | ||
| 251 | ktime_t next = clockevents_get_next_event(cpu); | ||
| 252 | |||
| 253 | ktime_t delta = ktime_sub(expires, next); | ||
| 254 | |||
| 255 | /* | ||
| 256 | * We do not migrate the timer when it is expiring | ||
| 257 | * before the next event on the target cpu because | ||
| 258 | * we cannot reprogram the target cpu hardware and | ||
| 259 | * we would cause it to fire late. | ||
| 260 | */ | ||
| 261 | if (delta.tv64 < 0) { | ||
| 262 | cpu = smp_processor_id(); | ||
| 263 | spin_unlock(&new_base->cpu_base->lock); | ||
| 264 | spin_lock(&base->cpu_base->lock); | ||
| 265 | timer->base = base; | ||
| 266 | goto again; | ||
| 267 | } | ||
| 268 | } | 218 | } |
| 269 | timer->base = new_base; | 219 | timer->base = new_base; |
| 270 | } | 220 | } |
| @@ -479,6 +429,7 @@ void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id, | |||
| 479 | debug_object_init_on_stack(timer, &hrtimer_debug_descr); | 429 | debug_object_init_on_stack(timer, &hrtimer_debug_descr); |
| 480 | __hrtimer_init(timer, clock_id, mode); | 430 | __hrtimer_init(timer, clock_id, mode); |
| 481 | } | 431 | } |
| 432 | EXPORT_SYMBOL_GPL(hrtimer_init_on_stack); | ||
| 482 | 433 | ||
| 483 | void destroy_hrtimer_on_stack(struct hrtimer *timer) | 434 | void destroy_hrtimer_on_stack(struct hrtimer *timer) |
| 484 | { | 435 | { |
| @@ -1148,7 +1099,6 @@ static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, | |||
| 1148 | clock_id = CLOCK_MONOTONIC; | 1099 | clock_id = CLOCK_MONOTONIC; |
| 1149 | 1100 | ||
| 1150 | timer->base = &cpu_base->clock_base[clock_id]; | 1101 | timer->base = &cpu_base->clock_base[clock_id]; |
| 1151 | INIT_LIST_HEAD(&timer->cb_entry); | ||
| 1152 | hrtimer_init_timer_hres(timer); | 1102 | hrtimer_init_timer_hres(timer); |
| 1153 | 1103 | ||
| 1154 | #ifdef CONFIG_TIMER_STATS | 1104 | #ifdef CONFIG_TIMER_STATS |
| @@ -1276,14 +1226,22 @@ void hrtimer_interrupt(struct clock_event_device *dev) | |||
| 1276 | 1226 | ||
| 1277 | expires_next.tv64 = KTIME_MAX; | 1227 | expires_next.tv64 = KTIME_MAX; |
| 1278 | 1228 | ||
| 1229 | spin_lock(&cpu_base->lock); | ||
| 1230 | /* | ||
| 1231 | * We set expires_next to KTIME_MAX here with cpu_base->lock | ||
| 1232 | * held to prevent that a timer is enqueued in our queue via | ||
| 1233 | * the migration code. This does not affect enqueueing of | ||
| 1234 | * timers which run their callback and need to be requeued on | ||
| 1235 | * this CPU. | ||
| 1236 | */ | ||
| 1237 | cpu_base->expires_next.tv64 = KTIME_MAX; | ||
| 1238 | |||
| 1279 | base = cpu_base->clock_base; | 1239 | base = cpu_base->clock_base; |
| 1280 | 1240 | ||
| 1281 | for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { | 1241 | for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { |
| 1282 | ktime_t basenow; | 1242 | ktime_t basenow; |
| 1283 | struct rb_node *node; | 1243 | struct rb_node *node; |
| 1284 | 1244 | ||
| 1285 | spin_lock(&cpu_base->lock); | ||
| 1286 | |||
| 1287 | basenow = ktime_add(now, base->offset); | 1245 | basenow = ktime_add(now, base->offset); |
| 1288 | 1246 | ||
| 1289 | while ((node = base->first)) { | 1247 | while ((node = base->first)) { |
| @@ -1316,11 +1274,15 @@ void hrtimer_interrupt(struct clock_event_device *dev) | |||
| 1316 | 1274 | ||
| 1317 | __run_hrtimer(timer); | 1275 | __run_hrtimer(timer); |
| 1318 | } | 1276 | } |
| 1319 | spin_unlock(&cpu_base->lock); | ||
| 1320 | base++; | 1277 | base++; |
| 1321 | } | 1278 | } |
| 1322 | 1279 | ||
| 1280 | /* | ||
| 1281 | * Store the new expiry value so the migration code can verify | ||
| 1282 | * against it. | ||
| 1283 | */ | ||
| 1323 | cpu_base->expires_next = expires_next; | 1284 | cpu_base->expires_next = expires_next; |
| 1285 | spin_unlock(&cpu_base->lock); | ||
| 1324 | 1286 | ||
| 1325 | /* Reprogramming necessary ? */ | 1287 | /* Reprogramming necessary ? */ |
| 1326 | if (expires_next.tv64 != KTIME_MAX) { | 1288 | if (expires_next.tv64 != KTIME_MAX) { |
| @@ -1459,6 +1421,7 @@ void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task) | |||
| 1459 | sl->timer.function = hrtimer_wakeup; | 1421 | sl->timer.function = hrtimer_wakeup; |
| 1460 | sl->task = task; | 1422 | sl->task = task; |
| 1461 | } | 1423 | } |
| 1424 | EXPORT_SYMBOL_GPL(hrtimer_init_sleeper); | ||
| 1462 | 1425 | ||
| 1463 | static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode) | 1426 | static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode) |
| 1464 | { | 1427 | { |
diff --git a/kernel/irq/chip.c b/kernel/irq/chip.c index 13c68e71b726..c1660194d115 100644 --- a/kernel/irq/chip.c +++ b/kernel/irq/chip.c | |||
| @@ -222,6 +222,34 @@ int set_irq_chip_data(unsigned int irq, void *data) | |||
| 222 | } | 222 | } |
| 223 | EXPORT_SYMBOL(set_irq_chip_data); | 223 | EXPORT_SYMBOL(set_irq_chip_data); |
| 224 | 224 | ||
| 225 | /** | ||
| 226 | * set_irq_nested_thread - Set/Reset the IRQ_NESTED_THREAD flag of an irq | ||
| 227 | * | ||
| 228 | * @irq: Interrupt number | ||
| 229 | * @nest: 0 to clear / 1 to set the IRQ_NESTED_THREAD flag | ||
| 230 | * | ||
| 231 | * The IRQ_NESTED_THREAD flag indicates that on | ||
| 232 | * request_threaded_irq() no separate interrupt thread should be | ||
| 233 | * created for the irq as the handler are called nested in the | ||
| 234 | * context of a demultiplexing interrupt handler thread. | ||
| 235 | */ | ||
| 236 | void set_irq_nested_thread(unsigned int irq, int nest) | ||
| 237 | { | ||
| 238 | struct irq_desc *desc = irq_to_desc(irq); | ||
| 239 | unsigned long flags; | ||
| 240 | |||
| 241 | if (!desc) | ||
| 242 | return; | ||
| 243 | |||
| 244 | spin_lock_irqsave(&desc->lock, flags); | ||
| 245 | if (nest) | ||
| 246 | desc->status |= IRQ_NESTED_THREAD; | ||
| 247 | else | ||
| 248 | desc->status &= ~IRQ_NESTED_THREAD; | ||
| 249 | spin_unlock_irqrestore(&desc->lock, flags); | ||
| 250 | } | ||
| 251 | EXPORT_SYMBOL_GPL(set_irq_nested_thread); | ||
| 252 | |||
| 225 | /* | 253 | /* |
| 226 | * default enable function | 254 | * default enable function |
| 227 | */ | 255 | */ |
| @@ -299,6 +327,45 @@ static inline void mask_ack_irq(struct irq_desc *desc, int irq) | |||
| 299 | } | 327 | } |
| 300 | } | 328 | } |
| 301 | 329 | ||
| 330 | /* | ||
| 331 | * handle_nested_irq - Handle a nested irq from a irq thread | ||
| 332 | * @irq: the interrupt number | ||
| 333 | * | ||
| 334 | * Handle interrupts which are nested into a threaded interrupt | ||
| 335 | * handler. The handler function is called inside the calling | ||
| 336 | * threads context. | ||
| 337 | */ | ||
| 338 | void handle_nested_irq(unsigned int irq) | ||
| 339 | { | ||
| 340 | struct irq_desc *desc = irq_to_desc(irq); | ||
| 341 | struct irqaction *action; | ||
| 342 | irqreturn_t action_ret; | ||
| 343 | |||
| 344 | might_sleep(); | ||
| 345 | |||
| 346 | spin_lock_irq(&desc->lock); | ||
| 347 | |||
| 348 | kstat_incr_irqs_this_cpu(irq, desc); | ||
| 349 | |||
| 350 | action = desc->action; | ||
| 351 | if (unlikely(!action || (desc->status & IRQ_DISABLED))) | ||
| 352 | goto out_unlock; | ||
| 353 | |||
| 354 | desc->status |= IRQ_INPROGRESS; | ||
| 355 | spin_unlock_irq(&desc->lock); | ||
| 356 | |||
| 357 | action_ret = action->thread_fn(action->irq, action->dev_id); | ||
| 358 | if (!noirqdebug) | ||
| 359 | note_interrupt(irq, desc, action_ret); | ||
| 360 | |||
| 361 | spin_lock_irq(&desc->lock); | ||
| 362 | desc->status &= ~IRQ_INPROGRESS; | ||
| 363 | |||
| 364 | out_unlock: | ||
| 365 | spin_unlock_irq(&desc->lock); | ||
| 366 | } | ||
| 367 | EXPORT_SYMBOL_GPL(handle_nested_irq); | ||
| 368 | |||
| 302 | /** | 369 | /** |
| 303 | * handle_simple_irq - Simple and software-decoded IRQs. | 370 | * handle_simple_irq - Simple and software-decoded IRQs. |
| 304 | * @irq: the interrupt number | 371 | * @irq: the interrupt number |
| @@ -382,7 +449,10 @@ handle_level_irq(unsigned int irq, struct irq_desc *desc) | |||
| 382 | 449 | ||
| 383 | spin_lock(&desc->lock); | 450 | spin_lock(&desc->lock); |
| 384 | desc->status &= ~IRQ_INPROGRESS; | 451 | desc->status &= ~IRQ_INPROGRESS; |
| 385 | if (!(desc->status & IRQ_DISABLED) && desc->chip->unmask) | 452 | |
| 453 | if (unlikely(desc->status & IRQ_ONESHOT)) | ||
| 454 | desc->status |= IRQ_MASKED; | ||
| 455 | else if (!(desc->status & IRQ_DISABLED) && desc->chip->unmask) | ||
| 386 | desc->chip->unmask(irq); | 456 | desc->chip->unmask(irq); |
| 387 | out_unlock: | 457 | out_unlock: |
| 388 | spin_unlock(&desc->lock); | 458 | spin_unlock(&desc->lock); |
| @@ -572,6 +642,7 @@ __set_irq_handler(unsigned int irq, irq_flow_handler_t handle, int is_chained, | |||
| 572 | desc->chip = &dummy_irq_chip; | 642 | desc->chip = &dummy_irq_chip; |
| 573 | } | 643 | } |
| 574 | 644 | ||
| 645 | chip_bus_lock(irq, desc); | ||
| 575 | spin_lock_irqsave(&desc->lock, flags); | 646 | spin_lock_irqsave(&desc->lock, flags); |
| 576 | 647 | ||
| 577 | /* Uninstall? */ | 648 | /* Uninstall? */ |
| @@ -591,6 +662,7 @@ __set_irq_handler(unsigned int irq, irq_flow_handler_t handle, int is_chained, | |||
| 591 | desc->chip->startup(irq); | 662 | desc->chip->startup(irq); |
| 592 | } | 663 | } |
| 593 | spin_unlock_irqrestore(&desc->lock, flags); | 664 | spin_unlock_irqrestore(&desc->lock, flags); |
| 665 | chip_bus_sync_unlock(irq, desc); | ||
| 594 | } | 666 | } |
| 595 | EXPORT_SYMBOL_GPL(__set_irq_handler); | 667 | EXPORT_SYMBOL_GPL(__set_irq_handler); |
| 596 | 668 | ||
diff --git a/kernel/irq/handle.c b/kernel/irq/handle.c index 065205bdd920..a81cf80554db 100644 --- a/kernel/irq/handle.c +++ b/kernel/irq/handle.c | |||
| @@ -161,7 +161,7 @@ int __init early_irq_init(void) | |||
| 161 | 161 | ||
| 162 | desc = irq_desc_legacy; | 162 | desc = irq_desc_legacy; |
| 163 | legacy_count = ARRAY_SIZE(irq_desc_legacy); | 163 | legacy_count = ARRAY_SIZE(irq_desc_legacy); |
| 164 | node = first_online_node; | 164 | node = first_online_node; |
| 165 | 165 | ||
| 166 | /* allocate irq_desc_ptrs array based on nr_irqs */ | 166 | /* allocate irq_desc_ptrs array based on nr_irqs */ |
| 167 | irq_desc_ptrs = kcalloc(nr_irqs, sizeof(void *), GFP_NOWAIT); | 167 | irq_desc_ptrs = kcalloc(nr_irqs, sizeof(void *), GFP_NOWAIT); |
| @@ -172,6 +172,9 @@ int __init early_irq_init(void) | |||
| 172 | 172 | ||
| 173 | for (i = 0; i < legacy_count; i++) { | 173 | for (i = 0; i < legacy_count; i++) { |
| 174 | desc[i].irq = i; | 174 | desc[i].irq = i; |
| 175 | #ifdef CONFIG_SMP | ||
| 176 | desc[i].node = node; | ||
| 177 | #endif | ||
| 175 | desc[i].kstat_irqs = kstat_irqs_legacy + i * nr_cpu_ids; | 178 | desc[i].kstat_irqs = kstat_irqs_legacy + i * nr_cpu_ids; |
| 176 | lockdep_set_class(&desc[i].lock, &irq_desc_lock_class); | 179 | lockdep_set_class(&desc[i].lock, &irq_desc_lock_class); |
| 177 | alloc_desc_masks(&desc[i], node, true); | 180 | alloc_desc_masks(&desc[i], node, true); |
diff --git a/kernel/irq/internals.h b/kernel/irq/internals.h index 73468253143b..1b5d742c6a77 100644 --- a/kernel/irq/internals.h +++ b/kernel/irq/internals.h | |||
| @@ -42,8 +42,20 @@ static inline void unregister_handler_proc(unsigned int irq, | |||
| 42 | 42 | ||
| 43 | extern int irq_select_affinity_usr(unsigned int irq); | 43 | extern int irq_select_affinity_usr(unsigned int irq); |
| 44 | 44 | ||
| 45 | extern void | 45 | extern void irq_set_thread_affinity(struct irq_desc *desc); |
| 46 | irq_set_thread_affinity(struct irq_desc *desc, const struct cpumask *cpumask); | 46 | |
| 47 | /* Inline functions for support of irq chips on slow busses */ | ||
| 48 | static inline void chip_bus_lock(unsigned int irq, struct irq_desc *desc) | ||
| 49 | { | ||
| 50 | if (unlikely(desc->chip->bus_lock)) | ||
| 51 | desc->chip->bus_lock(irq); | ||
| 52 | } | ||
| 53 | |||
| 54 | static inline void chip_bus_sync_unlock(unsigned int irq, struct irq_desc *desc) | ||
| 55 | { | ||
| 56 | if (unlikely(desc->chip->bus_sync_unlock)) | ||
| 57 | desc->chip->bus_sync_unlock(irq); | ||
| 58 | } | ||
| 47 | 59 | ||
| 48 | /* | 60 | /* |
| 49 | * Debugging printout: | 61 | * Debugging printout: |
diff --git a/kernel/irq/manage.c b/kernel/irq/manage.c index 50da67672901..bde4c667d24d 100644 --- a/kernel/irq/manage.c +++ b/kernel/irq/manage.c | |||
| @@ -80,14 +80,22 @@ int irq_can_set_affinity(unsigned int irq) | |||
| 80 | return 1; | 80 | return 1; |
| 81 | } | 81 | } |
| 82 | 82 | ||
| 83 | void | 83 | /** |
| 84 | irq_set_thread_affinity(struct irq_desc *desc, const struct cpumask *cpumask) | 84 | * irq_set_thread_affinity - Notify irq threads to adjust affinity |
| 85 | * @desc: irq descriptor which has affitnity changed | ||
| 86 | * | ||
| 87 | * We just set IRQTF_AFFINITY and delegate the affinity setting | ||
| 88 | * to the interrupt thread itself. We can not call | ||
| 89 | * set_cpus_allowed_ptr() here as we hold desc->lock and this | ||
| 90 | * code can be called from hard interrupt context. | ||
| 91 | */ | ||
| 92 | void irq_set_thread_affinity(struct irq_desc *desc) | ||
| 85 | { | 93 | { |
| 86 | struct irqaction *action = desc->action; | 94 | struct irqaction *action = desc->action; |
| 87 | 95 | ||
| 88 | while (action) { | 96 | while (action) { |
| 89 | if (action->thread) | 97 | if (action->thread) |
| 90 | set_cpus_allowed_ptr(action->thread, cpumask); | 98 | set_bit(IRQTF_AFFINITY, &action->thread_flags); |
| 91 | action = action->next; | 99 | action = action->next; |
| 92 | } | 100 | } |
| 93 | } | 101 | } |
| @@ -112,7 +120,7 @@ int irq_set_affinity(unsigned int irq, const struct cpumask *cpumask) | |||
| 112 | if (desc->status & IRQ_MOVE_PCNTXT) { | 120 | if (desc->status & IRQ_MOVE_PCNTXT) { |
| 113 | if (!desc->chip->set_affinity(irq, cpumask)) { | 121 | if (!desc->chip->set_affinity(irq, cpumask)) { |
| 114 | cpumask_copy(desc->affinity, cpumask); | 122 | cpumask_copy(desc->affinity, cpumask); |
| 115 | irq_set_thread_affinity(desc, cpumask); | 123 | irq_set_thread_affinity(desc); |
| 116 | } | 124 | } |
| 117 | } | 125 | } |
| 118 | else { | 126 | else { |
| @@ -122,7 +130,7 @@ int irq_set_affinity(unsigned int irq, const struct cpumask *cpumask) | |||
| 122 | #else | 130 | #else |
| 123 | if (!desc->chip->set_affinity(irq, cpumask)) { | 131 | if (!desc->chip->set_affinity(irq, cpumask)) { |
| 124 | cpumask_copy(desc->affinity, cpumask); | 132 | cpumask_copy(desc->affinity, cpumask); |
| 125 | irq_set_thread_affinity(desc, cpumask); | 133 | irq_set_thread_affinity(desc); |
| 126 | } | 134 | } |
| 127 | #endif | 135 | #endif |
| 128 | desc->status |= IRQ_AFFINITY_SET; | 136 | desc->status |= IRQ_AFFINITY_SET; |
| @@ -176,7 +184,7 @@ int irq_select_affinity_usr(unsigned int irq) | |||
| 176 | spin_lock_irqsave(&desc->lock, flags); | 184 | spin_lock_irqsave(&desc->lock, flags); |
| 177 | ret = setup_affinity(irq, desc); | 185 | ret = setup_affinity(irq, desc); |
| 178 | if (!ret) | 186 | if (!ret) |
| 179 | irq_set_thread_affinity(desc, desc->affinity); | 187 | irq_set_thread_affinity(desc); |
| 180 | spin_unlock_irqrestore(&desc->lock, flags); | 188 | spin_unlock_irqrestore(&desc->lock, flags); |
| 181 | 189 | ||
| 182 | return ret; | 190 | return ret; |
| @@ -222,9 +230,11 @@ void disable_irq_nosync(unsigned int irq) | |||
| 222 | if (!desc) | 230 | if (!desc) |
| 223 | return; | 231 | return; |
| 224 | 232 | ||
| 233 | chip_bus_lock(irq, desc); | ||
| 225 | spin_lock_irqsave(&desc->lock, flags); | 234 | spin_lock_irqsave(&desc->lock, flags); |
| 226 | __disable_irq(desc, irq, false); | 235 | __disable_irq(desc, irq, false); |
| 227 | spin_unlock_irqrestore(&desc->lock, flags); | 236 | spin_unlock_irqrestore(&desc->lock, flags); |
| 237 | chip_bus_sync_unlock(irq, desc); | ||
| 228 | } | 238 | } |
| 229 | EXPORT_SYMBOL(disable_irq_nosync); | 239 | EXPORT_SYMBOL(disable_irq_nosync); |
| 230 | 240 | ||
| @@ -286,7 +296,8 @@ void __enable_irq(struct irq_desc *desc, unsigned int irq, bool resume) | |||
| 286 | * matches the last disable, processing of interrupts on this | 296 | * matches the last disable, processing of interrupts on this |
| 287 | * IRQ line is re-enabled. | 297 | * IRQ line is re-enabled. |
| 288 | * | 298 | * |
| 289 | * This function may be called from IRQ context. | 299 | * This function may be called from IRQ context only when |
| 300 | * desc->chip->bus_lock and desc->chip->bus_sync_unlock are NULL ! | ||
| 290 | */ | 301 | */ |
| 291 | void enable_irq(unsigned int irq) | 302 | void enable_irq(unsigned int irq) |
| 292 | { | 303 | { |
| @@ -296,9 +307,11 @@ void enable_irq(unsigned int irq) | |||
| 296 | if (!desc) | 307 | if (!desc) |
| 297 | return; | 308 | return; |
| 298 | 309 | ||
| 310 | chip_bus_lock(irq, desc); | ||
| 299 | spin_lock_irqsave(&desc->lock, flags); | 311 | spin_lock_irqsave(&desc->lock, flags); |
| 300 | __enable_irq(desc, irq, false); | 312 | __enable_irq(desc, irq, false); |
| 301 | spin_unlock_irqrestore(&desc->lock, flags); | 313 | spin_unlock_irqrestore(&desc->lock, flags); |
| 314 | chip_bus_sync_unlock(irq, desc); | ||
| 302 | } | 315 | } |
| 303 | EXPORT_SYMBOL(enable_irq); | 316 | EXPORT_SYMBOL(enable_irq); |
| 304 | 317 | ||
| @@ -428,6 +441,26 @@ int __irq_set_trigger(struct irq_desc *desc, unsigned int irq, | |||
| 428 | return ret; | 441 | return ret; |
| 429 | } | 442 | } |
| 430 | 443 | ||
| 444 | /* | ||
| 445 | * Default primary interrupt handler for threaded interrupts. Is | ||
| 446 | * assigned as primary handler when request_threaded_irq is called | ||
| 447 | * with handler == NULL. Useful for oneshot interrupts. | ||
| 448 | */ | ||
| 449 | static irqreturn_t irq_default_primary_handler(int irq, void *dev_id) | ||
| 450 | { | ||
| 451 | return IRQ_WAKE_THREAD; | ||
| 452 | } | ||
| 453 | |||
| 454 | /* | ||
| 455 | * Primary handler for nested threaded interrupts. Should never be | ||
| 456 | * called. | ||
| 457 | */ | ||
| 458 | static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id) | ||
| 459 | { | ||
| 460 | WARN(1, "Primary handler called for nested irq %d\n", irq); | ||
| 461 | return IRQ_NONE; | ||
| 462 | } | ||
| 463 | |||
| 431 | static int irq_wait_for_interrupt(struct irqaction *action) | 464 | static int irq_wait_for_interrupt(struct irqaction *action) |
| 432 | { | 465 | { |
| 433 | while (!kthread_should_stop()) { | 466 | while (!kthread_should_stop()) { |
| @@ -444,6 +477,56 @@ static int irq_wait_for_interrupt(struct irqaction *action) | |||
| 444 | } | 477 | } |
| 445 | 478 | ||
| 446 | /* | 479 | /* |
| 480 | * Oneshot interrupts keep the irq line masked until the threaded | ||
| 481 | * handler finished. unmask if the interrupt has not been disabled and | ||
| 482 | * is marked MASKED. | ||
| 483 | */ | ||
| 484 | static void irq_finalize_oneshot(unsigned int irq, struct irq_desc *desc) | ||
| 485 | { | ||
| 486 | chip_bus_lock(irq, desc); | ||
| 487 | spin_lock_irq(&desc->lock); | ||
| 488 | if (!(desc->status & IRQ_DISABLED) && (desc->status & IRQ_MASKED)) { | ||
| 489 | desc->status &= ~IRQ_MASKED; | ||
| 490 | desc->chip->unmask(irq); | ||
| 491 | } | ||
| 492 | spin_unlock_irq(&desc->lock); | ||
| 493 | chip_bus_sync_unlock(irq, desc); | ||
| 494 | } | ||
| 495 | |||
| 496 | #ifdef CONFIG_SMP | ||
| 497 | /* | ||
| 498 | * Check whether we need to change the affinity of the interrupt thread. | ||
| 499 | */ | ||
| 500 | static void | ||
| 501 | irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) | ||
| 502 | { | ||
| 503 | cpumask_var_t mask; | ||
| 504 | |||
| 505 | if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags)) | ||
| 506 | return; | ||
| 507 | |||
| 508 | /* | ||
| 509 | * In case we are out of memory we set IRQTF_AFFINITY again and | ||
| 510 | * try again next time | ||
| 511 | */ | ||
| 512 | if (!alloc_cpumask_var(&mask, GFP_KERNEL)) { | ||
| 513 | set_bit(IRQTF_AFFINITY, &action->thread_flags); | ||
| 514 | return; | ||
| 515 | } | ||
| 516 | |||
| 517 | spin_lock_irq(&desc->lock); | ||
| 518 | cpumask_copy(mask, desc->affinity); | ||
| 519 | spin_unlock_irq(&desc->lock); | ||
| 520 | |||
| 521 | set_cpus_allowed_ptr(current, mask); | ||
| 522 | free_cpumask_var(mask); | ||
| 523 | } | ||
| 524 | #else | ||
| 525 | static inline void | ||
| 526 | irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { } | ||
| 527 | #endif | ||
| 528 | |||
| 529 | /* | ||
| 447 | * Interrupt handler thread | 530 | * Interrupt handler thread |
| 448 | */ | 531 | */ |
| 449 | static int irq_thread(void *data) | 532 | static int irq_thread(void *data) |
| @@ -451,13 +534,15 @@ static int irq_thread(void *data) | |||
| 451 | struct sched_param param = { .sched_priority = MAX_USER_RT_PRIO/2, }; | 534 | struct sched_param param = { .sched_priority = MAX_USER_RT_PRIO/2, }; |
| 452 | struct irqaction *action = data; | 535 | struct irqaction *action = data; |
| 453 | struct irq_desc *desc = irq_to_desc(action->irq); | 536 | struct irq_desc *desc = irq_to_desc(action->irq); |
| 454 | int wake; | 537 | int wake, oneshot = desc->status & IRQ_ONESHOT; |
| 455 | 538 | ||
| 456 | sched_setscheduler(current, SCHED_FIFO, ¶m); | 539 | sched_setscheduler(current, SCHED_FIFO, ¶m); |
| 457 | current->irqaction = action; | 540 | current->irqaction = action; |
| 458 | 541 | ||
| 459 | while (!irq_wait_for_interrupt(action)) { | 542 | while (!irq_wait_for_interrupt(action)) { |
| 460 | 543 | ||
| 544 | irq_thread_check_affinity(desc, action); | ||
| 545 | |||
| 461 | atomic_inc(&desc->threads_active); | 546 | atomic_inc(&desc->threads_active); |
| 462 | 547 | ||
| 463 | spin_lock_irq(&desc->lock); | 548 | spin_lock_irq(&desc->lock); |
| @@ -475,6 +560,9 @@ static int irq_thread(void *data) | |||
| 475 | spin_unlock_irq(&desc->lock); | 560 | spin_unlock_irq(&desc->lock); |
| 476 | 561 | ||
| 477 | action->thread_fn(action->irq, action->dev_id); | 562 | action->thread_fn(action->irq, action->dev_id); |
| 563 | |||
| 564 | if (oneshot) | ||
| 565 | irq_finalize_oneshot(action->irq, desc); | ||
| 478 | } | 566 | } |
| 479 | 567 | ||
| 480 | wake = atomic_dec_and_test(&desc->threads_active); | 568 | wake = atomic_dec_and_test(&desc->threads_active); |
| @@ -522,7 +610,7 @@ __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new) | |||
| 522 | struct irqaction *old, **old_ptr; | 610 | struct irqaction *old, **old_ptr; |
| 523 | const char *old_name = NULL; | 611 | const char *old_name = NULL; |
| 524 | unsigned long flags; | 612 | unsigned long flags; |
| 525 | int shared = 0; | 613 | int nested, shared = 0; |
| 526 | int ret; | 614 | int ret; |
| 527 | 615 | ||
| 528 | if (!desc) | 616 | if (!desc) |
| @@ -547,10 +635,32 @@ __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new) | |||
| 547 | rand_initialize_irq(irq); | 635 | rand_initialize_irq(irq); |
| 548 | } | 636 | } |
| 549 | 637 | ||
| 638 | /* Oneshot interrupts are not allowed with shared */ | ||
| 639 | if ((new->flags & IRQF_ONESHOT) && (new->flags & IRQF_SHARED)) | ||
| 640 | return -EINVAL; | ||
| 641 | |||
| 642 | /* | ||
| 643 | * Check whether the interrupt nests into another interrupt | ||
| 644 | * thread. | ||
| 645 | */ | ||
| 646 | nested = desc->status & IRQ_NESTED_THREAD; | ||
| 647 | if (nested) { | ||
| 648 | if (!new->thread_fn) | ||
| 649 | return -EINVAL; | ||
| 650 | /* | ||
| 651 | * Replace the primary handler which was provided from | ||
| 652 | * the driver for non nested interrupt handling by the | ||
| 653 | * dummy function which warns when called. | ||
| 654 | */ | ||
| 655 | new->handler = irq_nested_primary_handler; | ||
| 656 | } | ||
| 657 | |||
| 550 | /* | 658 | /* |
| 551 | * Threaded handler ? | 659 | * Create a handler thread when a thread function is supplied |
| 660 | * and the interrupt does not nest into another interrupt | ||
| 661 | * thread. | ||
| 552 | */ | 662 | */ |
| 553 | if (new->thread_fn) { | 663 | if (new->thread_fn && !nested) { |
| 554 | struct task_struct *t; | 664 | struct task_struct *t; |
| 555 | 665 | ||
| 556 | t = kthread_create(irq_thread, new, "irq/%d-%s", irq, | 666 | t = kthread_create(irq_thread, new, "irq/%d-%s", irq, |
| @@ -564,7 +674,6 @@ __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new) | |||
| 564 | */ | 674 | */ |
| 565 | get_task_struct(t); | 675 | get_task_struct(t); |
| 566 | new->thread = t; | 676 | new->thread = t; |
| 567 | wake_up_process(t); | ||
| 568 | } | 677 | } |
| 569 | 678 | ||
| 570 | /* | 679 | /* |
| @@ -620,9 +729,12 @@ __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new) | |||
| 620 | desc->status |= IRQ_PER_CPU; | 729 | desc->status |= IRQ_PER_CPU; |
| 621 | #endif | 730 | #endif |
| 622 | 731 | ||
| 623 | desc->status &= ~(IRQ_AUTODETECT | IRQ_WAITING | | 732 | desc->status &= ~(IRQ_AUTODETECT | IRQ_WAITING | IRQ_ONESHOT | |
| 624 | IRQ_INPROGRESS | IRQ_SPURIOUS_DISABLED); | 733 | IRQ_INPROGRESS | IRQ_SPURIOUS_DISABLED); |
| 625 | 734 | ||
| 735 | if (new->flags & IRQF_ONESHOT) | ||
| 736 | desc->status |= IRQ_ONESHOT; | ||
| 737 | |||
| 626 | if (!(desc->status & IRQ_NOAUTOEN)) { | 738 | if (!(desc->status & IRQ_NOAUTOEN)) { |
| 627 | desc->depth = 0; | 739 | desc->depth = 0; |
| 628 | desc->status &= ~IRQ_DISABLED; | 740 | desc->status &= ~IRQ_DISABLED; |
| @@ -647,6 +759,7 @@ __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new) | |||
| 647 | (int)(new->flags & IRQF_TRIGGER_MASK)); | 759 | (int)(new->flags & IRQF_TRIGGER_MASK)); |
| 648 | } | 760 | } |
| 649 | 761 | ||
| 762 | new->irq = irq; | ||
| 650 | *old_ptr = new; | 763 | *old_ptr = new; |
| 651 | 764 | ||
| 652 | /* Reset broken irq detection when installing new handler */ | 765 | /* Reset broken irq detection when installing new handler */ |
| @@ -664,7 +777,13 @@ __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new) | |||
| 664 | 777 | ||
| 665 | spin_unlock_irqrestore(&desc->lock, flags); | 778 | spin_unlock_irqrestore(&desc->lock, flags); |
| 666 | 779 | ||
| 667 | new->irq = irq; | 780 | /* |
| 781 | * Strictly no need to wake it up, but hung_task complains | ||
| 782 | * when no hard interrupt wakes the thread up. | ||
| 783 | */ | ||
| 784 | if (new->thread) | ||
| 785 | wake_up_process(new->thread); | ||
| 786 | |||
| 668 | register_irq_proc(irq, desc); | 787 | register_irq_proc(irq, desc); |
| 669 | new->dir = NULL; | 788 | new->dir = NULL; |
| 670 | register_handler_proc(irq, new); | 789 | register_handler_proc(irq, new); |
| @@ -718,7 +837,6 @@ static struct irqaction *__free_irq(unsigned int irq, void *dev_id) | |||
| 718 | { | 837 | { |
| 719 | struct irq_desc *desc = irq_to_desc(irq); | 838 | struct irq_desc *desc = irq_to_desc(irq); |
| 720 | struct irqaction *action, **action_ptr; | 839 | struct irqaction *action, **action_ptr; |
| 721 | struct task_struct *irqthread; | ||
| 722 | unsigned long flags; | 840 | unsigned long flags; |
| 723 | 841 | ||
| 724 | WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq); | 842 | WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq); |
| @@ -766,9 +884,6 @@ static struct irqaction *__free_irq(unsigned int irq, void *dev_id) | |||
| 766 | desc->chip->disable(irq); | 884 | desc->chip->disable(irq); |
| 767 | } | 885 | } |
| 768 | 886 | ||
| 769 | irqthread = action->thread; | ||
| 770 | action->thread = NULL; | ||
| 771 | |||
| 772 | spin_unlock_irqrestore(&desc->lock, flags); | 887 | spin_unlock_irqrestore(&desc->lock, flags); |
| 773 | 888 | ||
| 774 | unregister_handler_proc(irq, action); | 889 | unregister_handler_proc(irq, action); |
| @@ -776,12 +891,6 @@ static struct irqaction *__free_irq(unsigned int irq, void *dev_id) | |||
| 776 | /* Make sure it's not being used on another CPU: */ | 891 | /* Make sure it's not being used on another CPU: */ |
| 777 | synchronize_irq(irq); | 892 | synchronize_irq(irq); |
| 778 | 893 | ||
| 779 | if (irqthread) { | ||
| 780 | if (!test_bit(IRQTF_DIED, &action->thread_flags)) | ||
| 781 | kthread_stop(irqthread); | ||
| 782 | put_task_struct(irqthread); | ||
| 783 | } | ||
| 784 | |||
| 785 | #ifdef CONFIG_DEBUG_SHIRQ | 894 | #ifdef CONFIG_DEBUG_SHIRQ |
| 786 | /* | 895 | /* |
| 787 | * It's a shared IRQ -- the driver ought to be prepared for an IRQ | 896 | * It's a shared IRQ -- the driver ought to be prepared for an IRQ |
| @@ -797,6 +906,13 @@ static struct irqaction *__free_irq(unsigned int irq, void *dev_id) | |||
| 797 | local_irq_restore(flags); | 906 | local_irq_restore(flags); |
| 798 | } | 907 | } |
| 799 | #endif | 908 | #endif |
| 909 | |||
| 910 | if (action->thread) { | ||
| 911 | if (!test_bit(IRQTF_DIED, &action->thread_flags)) | ||
| 912 | kthread_stop(action->thread); | ||
| 913 | put_task_struct(action->thread); | ||
| 914 | } | ||
| 915 | |||
| 800 | return action; | 916 | return action; |
| 801 | } | 917 | } |
| 802 | 918 | ||
| @@ -829,7 +945,14 @@ EXPORT_SYMBOL_GPL(remove_irq); | |||
| 829 | */ | 945 | */ |
| 830 | void free_irq(unsigned int irq, void *dev_id) | 946 | void free_irq(unsigned int irq, void *dev_id) |
| 831 | { | 947 | { |
| 948 | struct irq_desc *desc = irq_to_desc(irq); | ||
| 949 | |||
| 950 | if (!desc) | ||
| 951 | return; | ||
| 952 | |||
| 953 | chip_bus_lock(irq, desc); | ||
| 832 | kfree(__free_irq(irq, dev_id)); | 954 | kfree(__free_irq(irq, dev_id)); |
| 955 | chip_bus_sync_unlock(irq, desc); | ||
| 833 | } | 956 | } |
| 834 | EXPORT_SYMBOL(free_irq); | 957 | EXPORT_SYMBOL(free_irq); |
| 835 | 958 | ||
| @@ -838,6 +961,8 @@ EXPORT_SYMBOL(free_irq); | |||
| 838 | * @irq: Interrupt line to allocate | 961 | * @irq: Interrupt line to allocate |
| 839 | * @handler: Function to be called when the IRQ occurs. | 962 | * @handler: Function to be called when the IRQ occurs. |
| 840 | * Primary handler for threaded interrupts | 963 | * Primary handler for threaded interrupts |
| 964 | * If NULL and thread_fn != NULL the default | ||
| 965 | * primary handler is installed | ||
| 841 | * @thread_fn: Function called from the irq handler thread | 966 | * @thread_fn: Function called from the irq handler thread |
| 842 | * If NULL, no irq thread is created | 967 | * If NULL, no irq thread is created |
| 843 | * @irqflags: Interrupt type flags | 968 | * @irqflags: Interrupt type flags |
| @@ -917,8 +1042,12 @@ int request_threaded_irq(unsigned int irq, irq_handler_t handler, | |||
| 917 | 1042 | ||
| 918 | if (desc->status & IRQ_NOREQUEST) | 1043 | if (desc->status & IRQ_NOREQUEST) |
| 919 | return -EINVAL; | 1044 | return -EINVAL; |
| 920 | if (!handler) | 1045 | |
| 921 | return -EINVAL; | 1046 | if (!handler) { |
| 1047 | if (!thread_fn) | ||
| 1048 | return -EINVAL; | ||
| 1049 | handler = irq_default_primary_handler; | ||
| 1050 | } | ||
| 922 | 1051 | ||
| 923 | action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); | 1052 | action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); |
| 924 | if (!action) | 1053 | if (!action) |
| @@ -930,7 +1059,10 @@ int request_threaded_irq(unsigned int irq, irq_handler_t handler, | |||
| 930 | action->name = devname; | 1059 | action->name = devname; |
| 931 | action->dev_id = dev_id; | 1060 | action->dev_id = dev_id; |
| 932 | 1061 | ||
| 1062 | chip_bus_lock(irq, desc); | ||
| 933 | retval = __setup_irq(irq, desc, action); | 1063 | retval = __setup_irq(irq, desc, action); |
| 1064 | chip_bus_sync_unlock(irq, desc); | ||
| 1065 | |||
| 934 | if (retval) | 1066 | if (retval) |
| 935 | kfree(action); | 1067 | kfree(action); |
| 936 | 1068 | ||
diff --git a/kernel/irq/migration.c b/kernel/irq/migration.c index cfe767ca1545..fcb6c96f2627 100644 --- a/kernel/irq/migration.c +++ b/kernel/irq/migration.c | |||
| @@ -45,7 +45,7 @@ void move_masked_irq(int irq) | |||
| 45 | < nr_cpu_ids)) | 45 | < nr_cpu_ids)) |
| 46 | if (!desc->chip->set_affinity(irq, desc->pending_mask)) { | 46 | if (!desc->chip->set_affinity(irq, desc->pending_mask)) { |
| 47 | cpumask_copy(desc->affinity, desc->pending_mask); | 47 | cpumask_copy(desc->affinity, desc->pending_mask); |
| 48 | irq_set_thread_affinity(desc, desc->pending_mask); | 48 | irq_set_thread_affinity(desc); |
| 49 | } | 49 | } |
| 50 | 50 | ||
| 51 | cpumask_clear(desc->pending_mask); | 51 | cpumask_clear(desc->pending_mask); |
diff --git a/kernel/irq/numa_migrate.c b/kernel/irq/numa_migrate.c index 2f69bee57bf2..3fd30197da2e 100644 --- a/kernel/irq/numa_migrate.c +++ b/kernel/irq/numa_migrate.c | |||
| @@ -107,8 +107,8 @@ out_unlock: | |||
| 107 | 107 | ||
| 108 | struct irq_desc *move_irq_desc(struct irq_desc *desc, int node) | 108 | struct irq_desc *move_irq_desc(struct irq_desc *desc, int node) |
| 109 | { | 109 | { |
| 110 | /* those all static, do move them */ | 110 | /* those static or target node is -1, do not move them */ |
| 111 | if (desc->irq < NR_IRQS_LEGACY) | 111 | if (desc->irq < NR_IRQS_LEGACY || node == -1) |
| 112 | return desc; | 112 | return desc; |
| 113 | 113 | ||
| 114 | if (desc->node != node) | 114 | if (desc->node != node) |
diff --git a/kernel/irq/pm.c b/kernel/irq/pm.c index 638d8bedec14..a0bb09e79867 100644 --- a/kernel/irq/pm.c +++ b/kernel/irq/pm.c | |||
| @@ -15,10 +15,10 @@ | |||
| 15 | /** | 15 | /** |
| 16 | * suspend_device_irqs - disable all currently enabled interrupt lines | 16 | * suspend_device_irqs - disable all currently enabled interrupt lines |
| 17 | * | 17 | * |
| 18 | * During system-wide suspend or hibernation device interrupts need to be | 18 | * During system-wide suspend or hibernation device drivers need to be prevented |
| 19 | * disabled at the chip level and this function is provided for this purpose. | 19 | * from receiving interrupts and this function is provided for this purpose. |
| 20 | * It disables all interrupt lines that are enabled at the moment and sets the | 20 | * It marks all interrupt lines in use, except for the timer ones, as disabled |
| 21 | * IRQ_SUSPENDED flag for them. | 21 | * and sets the IRQ_SUSPENDED flag for each of them. |
| 22 | */ | 22 | */ |
| 23 | void suspend_device_irqs(void) | 23 | void suspend_device_irqs(void) |
| 24 | { | 24 | { |
diff --git a/kernel/irq/resend.c b/kernel/irq/resend.c index 89c7117acf2b..090c3763f3a2 100644 --- a/kernel/irq/resend.c +++ b/kernel/irq/resend.c | |||
| @@ -70,8 +70,7 @@ void check_irq_resend(struct irq_desc *desc, unsigned int irq) | |||
| 70 | if ((status & (IRQ_LEVEL | IRQ_PENDING | IRQ_REPLAY)) == IRQ_PENDING) { | 70 | if ((status & (IRQ_LEVEL | IRQ_PENDING | IRQ_REPLAY)) == IRQ_PENDING) { |
| 71 | desc->status = (status & ~IRQ_PENDING) | IRQ_REPLAY; | 71 | desc->status = (status & ~IRQ_PENDING) | IRQ_REPLAY; |
| 72 | 72 | ||
| 73 | if (!desc->chip || !desc->chip->retrigger || | 73 | if (!desc->chip->retrigger || !desc->chip->retrigger(irq)) { |
| 74 | !desc->chip->retrigger(irq)) { | ||
| 75 | #ifdef CONFIG_HARDIRQS_SW_RESEND | 74 | #ifdef CONFIG_HARDIRQS_SW_RESEND |
| 76 | /* Set it pending and activate the softirq: */ | 75 | /* Set it pending and activate the softirq: */ |
| 77 | set_bit(irq, irqs_resend); | 76 | set_bit(irq, irqs_resend); |
diff --git a/kernel/irq/spurious.c b/kernel/irq/spurious.c index 4d568294de3e..114e704760fe 100644 --- a/kernel/irq/spurious.c +++ b/kernel/irq/spurious.c | |||
| @@ -297,7 +297,6 @@ static int __init irqfixup_setup(char *str) | |||
| 297 | 297 | ||
| 298 | __setup("irqfixup", irqfixup_setup); | 298 | __setup("irqfixup", irqfixup_setup); |
| 299 | module_param(irqfixup, int, 0644); | 299 | module_param(irqfixup, int, 0644); |
| 300 | MODULE_PARM_DESC("irqfixup", "0: No fixup, 1: irqfixup mode, 2: irqpoll mode"); | ||
| 301 | 300 | ||
| 302 | static int __init irqpoll_setup(char *str) | 301 | static int __init irqpoll_setup(char *str) |
| 303 | { | 302 | { |
diff --git a/kernel/kexec.c b/kernel/kexec.c index ae1c35201cc8..f336e2107f98 100644 --- a/kernel/kexec.c +++ b/kernel/kexec.c | |||
| @@ -1228,7 +1228,7 @@ static int __init parse_crashkernel_mem(char *cmdline, | |||
| 1228 | } while (*cur++ == ','); | 1228 | } while (*cur++ == ','); |
| 1229 | 1229 | ||
| 1230 | if (*crash_size > 0) { | 1230 | if (*crash_size > 0) { |
| 1231 | while (*cur != ' ' && *cur != '@') | 1231 | while (*cur && *cur != ' ' && *cur != '@') |
| 1232 | cur++; | 1232 | cur++; |
| 1233 | if (*cur == '@') { | 1233 | if (*cur == '@') { |
| 1234 | cur++; | 1234 | cur++; |
diff --git a/kernel/kfifo.c b/kernel/kfifo.c index 26539e3228e5..3765ff3c1bbe 100644 --- a/kernel/kfifo.c +++ b/kernel/kfifo.c | |||
| @@ -117,7 +117,7 @@ EXPORT_SYMBOL(kfifo_free); | |||
| 117 | * writer, you don't need extra locking to use these functions. | 117 | * writer, you don't need extra locking to use these functions. |
| 118 | */ | 118 | */ |
| 119 | unsigned int __kfifo_put(struct kfifo *fifo, | 119 | unsigned int __kfifo_put(struct kfifo *fifo, |
| 120 | unsigned char *buffer, unsigned int len) | 120 | const unsigned char *buffer, unsigned int len) |
| 121 | { | 121 | { |
| 122 | unsigned int l; | 122 | unsigned int l; |
| 123 | 123 | ||
diff --git a/kernel/kmod.c b/kernel/kmod.c index 7e95bedb2bfc..9fcb53a11f87 100644 --- a/kernel/kmod.c +++ b/kernel/kmod.c | |||
| @@ -24,7 +24,6 @@ | |||
| 24 | #include <linux/unistd.h> | 24 | #include <linux/unistd.h> |
| 25 | #include <linux/kmod.h> | 25 | #include <linux/kmod.h> |
| 26 | #include <linux/slab.h> | 26 | #include <linux/slab.h> |
| 27 | #include <linux/mnt_namespace.h> | ||
| 28 | #include <linux/completion.h> | 27 | #include <linux/completion.h> |
| 29 | #include <linux/file.h> | 28 | #include <linux/file.h> |
| 30 | #include <linux/fdtable.h> | 29 | #include <linux/fdtable.h> |
| @@ -38,6 +37,8 @@ | |||
| 38 | #include <linux/suspend.h> | 37 | #include <linux/suspend.h> |
| 39 | #include <asm/uaccess.h> | 38 | #include <asm/uaccess.h> |
| 40 | 39 | ||
| 40 | #include <trace/events/module.h> | ||
| 41 | |||
| 41 | extern int max_threads; | 42 | extern int max_threads; |
| 42 | 43 | ||
| 43 | static struct workqueue_struct *khelper_wq; | 44 | static struct workqueue_struct *khelper_wq; |
| @@ -79,6 +80,10 @@ int __request_module(bool wait, const char *fmt, ...) | |||
| 79 | #define MAX_KMOD_CONCURRENT 50 /* Completely arbitrary value - KAO */ | 80 | #define MAX_KMOD_CONCURRENT 50 /* Completely arbitrary value - KAO */ |
| 80 | static int kmod_loop_msg; | 81 | static int kmod_loop_msg; |
| 81 | 82 | ||
| 83 | ret = security_kernel_module_request(); | ||
| 84 | if (ret) | ||
| 85 | return ret; | ||
| 86 | |||
| 82 | va_start(args, fmt); | 87 | va_start(args, fmt); |
| 83 | ret = vsnprintf(module_name, MODULE_NAME_LEN, fmt, args); | 88 | ret = vsnprintf(module_name, MODULE_NAME_LEN, fmt, args); |
| 84 | va_end(args); | 89 | va_end(args); |
| @@ -109,6 +114,8 @@ int __request_module(bool wait, const char *fmt, ...) | |||
| 109 | return -ENOMEM; | 114 | return -ENOMEM; |
| 110 | } | 115 | } |
| 111 | 116 | ||
| 117 | trace_module_request(module_name, wait, _RET_IP_); | ||
| 118 | |||
| 112 | ret = call_usermodehelper(modprobe_path, argv, envp, | 119 | ret = call_usermodehelper(modprobe_path, argv, envp, |
| 113 | wait ? UMH_WAIT_PROC : UMH_WAIT_EXEC); | 120 | wait ? UMH_WAIT_PROC : UMH_WAIT_EXEC); |
| 114 | atomic_dec(&kmod_concurrent); | 121 | atomic_dec(&kmod_concurrent); |
| @@ -463,6 +470,7 @@ int call_usermodehelper_exec(struct subprocess_info *sub_info, | |||
| 463 | int retval = 0; | 470 | int retval = 0; |
| 464 | 471 | ||
| 465 | BUG_ON(atomic_read(&sub_info->cred->usage) != 1); | 472 | BUG_ON(atomic_read(&sub_info->cred->usage) != 1); |
| 473 | validate_creds(sub_info->cred); | ||
| 466 | 474 | ||
| 467 | helper_lock(); | 475 | helper_lock(); |
| 468 | if (sub_info->path[0] == '\0') | 476 | if (sub_info->path[0] == '\0') |
diff --git a/kernel/kprobes.c b/kernel/kprobes.c index c0fa54b276d9..ef177d653b2c 100644 --- a/kernel/kprobes.c +++ b/kernel/kprobes.c | |||
| @@ -103,7 +103,7 @@ static struct kprobe_blackpoint kprobe_blacklist[] = { | |||
| 103 | #define INSNS_PER_PAGE (PAGE_SIZE/(MAX_INSN_SIZE * sizeof(kprobe_opcode_t))) | 103 | #define INSNS_PER_PAGE (PAGE_SIZE/(MAX_INSN_SIZE * sizeof(kprobe_opcode_t))) |
| 104 | 104 | ||
| 105 | struct kprobe_insn_page { | 105 | struct kprobe_insn_page { |
| 106 | struct hlist_node hlist; | 106 | struct list_head list; |
| 107 | kprobe_opcode_t *insns; /* Page of instruction slots */ | 107 | kprobe_opcode_t *insns; /* Page of instruction slots */ |
| 108 | char slot_used[INSNS_PER_PAGE]; | 108 | char slot_used[INSNS_PER_PAGE]; |
| 109 | int nused; | 109 | int nused; |
| @@ -117,7 +117,7 @@ enum kprobe_slot_state { | |||
| 117 | }; | 117 | }; |
| 118 | 118 | ||
| 119 | static DEFINE_MUTEX(kprobe_insn_mutex); /* Protects kprobe_insn_pages */ | 119 | static DEFINE_MUTEX(kprobe_insn_mutex); /* Protects kprobe_insn_pages */ |
| 120 | static struct hlist_head kprobe_insn_pages; | 120 | static LIST_HEAD(kprobe_insn_pages); |
| 121 | static int kprobe_garbage_slots; | 121 | static int kprobe_garbage_slots; |
| 122 | static int collect_garbage_slots(void); | 122 | static int collect_garbage_slots(void); |
| 123 | 123 | ||
| @@ -152,10 +152,9 @@ loop_end: | |||
| 152 | static kprobe_opcode_t __kprobes *__get_insn_slot(void) | 152 | static kprobe_opcode_t __kprobes *__get_insn_slot(void) |
| 153 | { | 153 | { |
| 154 | struct kprobe_insn_page *kip; | 154 | struct kprobe_insn_page *kip; |
| 155 | struct hlist_node *pos; | ||
| 156 | 155 | ||
| 157 | retry: | 156 | retry: |
| 158 | hlist_for_each_entry(kip, pos, &kprobe_insn_pages, hlist) { | 157 | list_for_each_entry(kip, &kprobe_insn_pages, list) { |
| 159 | if (kip->nused < INSNS_PER_PAGE) { | 158 | if (kip->nused < INSNS_PER_PAGE) { |
| 160 | int i; | 159 | int i; |
| 161 | for (i = 0; i < INSNS_PER_PAGE; i++) { | 160 | for (i = 0; i < INSNS_PER_PAGE; i++) { |
| @@ -189,8 +188,8 @@ static kprobe_opcode_t __kprobes *__get_insn_slot(void) | |||
| 189 | kfree(kip); | 188 | kfree(kip); |
| 190 | return NULL; | 189 | return NULL; |
| 191 | } | 190 | } |
| 192 | INIT_HLIST_NODE(&kip->hlist); | 191 | INIT_LIST_HEAD(&kip->list); |
| 193 | hlist_add_head(&kip->hlist, &kprobe_insn_pages); | 192 | list_add(&kip->list, &kprobe_insn_pages); |
| 194 | memset(kip->slot_used, SLOT_CLEAN, INSNS_PER_PAGE); | 193 | memset(kip->slot_used, SLOT_CLEAN, INSNS_PER_PAGE); |
| 195 | kip->slot_used[0] = SLOT_USED; | 194 | kip->slot_used[0] = SLOT_USED; |
| 196 | kip->nused = 1; | 195 | kip->nused = 1; |
| @@ -219,12 +218,8 @@ static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx) | |||
| 219 | * so as not to have to set it up again the | 218 | * so as not to have to set it up again the |
| 220 | * next time somebody inserts a probe. | 219 | * next time somebody inserts a probe. |
| 221 | */ | 220 | */ |
| 222 | hlist_del(&kip->hlist); | 221 | if (!list_is_singular(&kprobe_insn_pages)) { |
| 223 | if (hlist_empty(&kprobe_insn_pages)) { | 222 | list_del(&kip->list); |
| 224 | INIT_HLIST_NODE(&kip->hlist); | ||
| 225 | hlist_add_head(&kip->hlist, | ||
| 226 | &kprobe_insn_pages); | ||
| 227 | } else { | ||
| 228 | module_free(NULL, kip->insns); | 223 | module_free(NULL, kip->insns); |
| 229 | kfree(kip); | 224 | kfree(kip); |
| 230 | } | 225 | } |
| @@ -235,18 +230,13 @@ static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx) | |||
| 235 | 230 | ||
| 236 | static int __kprobes collect_garbage_slots(void) | 231 | static int __kprobes collect_garbage_slots(void) |
| 237 | { | 232 | { |
| 238 | struct kprobe_insn_page *kip; | 233 | struct kprobe_insn_page *kip, *next; |
| 239 | struct hlist_node *pos, *next; | ||
| 240 | int safety; | ||
| 241 | 234 | ||
| 242 | /* Ensure no-one is preepmted on the garbages */ | 235 | /* Ensure no-one is preepmted on the garbages */ |
| 243 | mutex_unlock(&kprobe_insn_mutex); | 236 | if (check_safety()) |
| 244 | safety = check_safety(); | ||
| 245 | mutex_lock(&kprobe_insn_mutex); | ||
| 246 | if (safety != 0) | ||
| 247 | return -EAGAIN; | 237 | return -EAGAIN; |
| 248 | 238 | ||
| 249 | hlist_for_each_entry_safe(kip, pos, next, &kprobe_insn_pages, hlist) { | 239 | list_for_each_entry_safe(kip, next, &kprobe_insn_pages, list) { |
| 250 | int i; | 240 | int i; |
| 251 | if (kip->ngarbage == 0) | 241 | if (kip->ngarbage == 0) |
| 252 | continue; | 242 | continue; |
| @@ -264,19 +254,17 @@ static int __kprobes collect_garbage_slots(void) | |||
| 264 | void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty) | 254 | void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty) |
| 265 | { | 255 | { |
| 266 | struct kprobe_insn_page *kip; | 256 | struct kprobe_insn_page *kip; |
| 267 | struct hlist_node *pos; | ||
| 268 | 257 | ||
| 269 | mutex_lock(&kprobe_insn_mutex); | 258 | mutex_lock(&kprobe_insn_mutex); |
| 270 | hlist_for_each_entry(kip, pos, &kprobe_insn_pages, hlist) { | 259 | list_for_each_entry(kip, &kprobe_insn_pages, list) { |
| 271 | if (kip->insns <= slot && | 260 | if (kip->insns <= slot && |
| 272 | slot < kip->insns + (INSNS_PER_PAGE * MAX_INSN_SIZE)) { | 261 | slot < kip->insns + (INSNS_PER_PAGE * MAX_INSN_SIZE)) { |
| 273 | int i = (slot - kip->insns) / MAX_INSN_SIZE; | 262 | int i = (slot - kip->insns) / MAX_INSN_SIZE; |
| 274 | if (dirty) { | 263 | if (dirty) { |
| 275 | kip->slot_used[i] = SLOT_DIRTY; | 264 | kip->slot_used[i] = SLOT_DIRTY; |
| 276 | kip->ngarbage++; | 265 | kip->ngarbage++; |
| 277 | } else { | 266 | } else |
| 278 | collect_one_slot(kip, i); | 267 | collect_one_slot(kip, i); |
| 279 | } | ||
| 280 | break; | 268 | break; |
| 281 | } | 269 | } |
| 282 | } | 270 | } |
| @@ -698,7 +686,7 @@ int __kprobes register_kprobe(struct kprobe *p) | |||
| 698 | p->addr = addr; | 686 | p->addr = addr; |
| 699 | 687 | ||
| 700 | preempt_disable(); | 688 | preempt_disable(); |
| 701 | if (!__kernel_text_address((unsigned long) p->addr) || | 689 | if (!kernel_text_address((unsigned long) p->addr) || |
| 702 | in_kprobes_functions((unsigned long) p->addr)) { | 690 | in_kprobes_functions((unsigned long) p->addr)) { |
| 703 | preempt_enable(); | 691 | preempt_enable(); |
| 704 | return -EINVAL; | 692 | return -EINVAL; |
diff --git a/kernel/kthread.c b/kernel/kthread.c index 9b1a7de26979..5fe709982caa 100644 --- a/kernel/kthread.c +++ b/kernel/kthread.c | |||
| @@ -16,8 +16,6 @@ | |||
| 16 | #include <linux/mutex.h> | 16 | #include <linux/mutex.h> |
| 17 | #include <trace/events/sched.h> | 17 | #include <trace/events/sched.h> |
| 18 | 18 | ||
| 19 | #define KTHREAD_NICE_LEVEL (-5) | ||
| 20 | |||
| 21 | static DEFINE_SPINLOCK(kthread_create_lock); | 19 | static DEFINE_SPINLOCK(kthread_create_lock); |
| 22 | static LIST_HEAD(kthread_create_list); | 20 | static LIST_HEAD(kthread_create_list); |
| 23 | struct task_struct *kthreadd_task; | 21 | struct task_struct *kthreadd_task; |
| @@ -145,7 +143,6 @@ struct task_struct *kthread_create(int (*threadfn)(void *data), | |||
| 145 | * The kernel thread should not inherit these properties. | 143 | * The kernel thread should not inherit these properties. |
| 146 | */ | 144 | */ |
| 147 | sched_setscheduler_nocheck(create.result, SCHED_NORMAL, ¶m); | 145 | sched_setscheduler_nocheck(create.result, SCHED_NORMAL, ¶m); |
| 148 | set_user_nice(create.result, KTHREAD_NICE_LEVEL); | ||
| 149 | set_cpus_allowed_ptr(create.result, cpu_all_mask); | 146 | set_cpus_allowed_ptr(create.result, cpu_all_mask); |
| 150 | } | 147 | } |
| 151 | return create.result; | 148 | return create.result; |
| @@ -180,10 +177,12 @@ EXPORT_SYMBOL(kthread_bind); | |||
| 180 | * @k: thread created by kthread_create(). | 177 | * @k: thread created by kthread_create(). |
| 181 | * | 178 | * |
| 182 | * Sets kthread_should_stop() for @k to return true, wakes it, and | 179 | * Sets kthread_should_stop() for @k to return true, wakes it, and |
| 183 | * waits for it to exit. Your threadfn() must not call do_exit() | 180 | * waits for it to exit. This can also be called after kthread_create() |
| 184 | * itself if you use this function! This can also be called after | 181 | * instead of calling wake_up_process(): the thread will exit without |
| 185 | * kthread_create() instead of calling wake_up_process(): the thread | 182 | * calling threadfn(). |
| 186 | * will exit without calling threadfn(). | 183 | * |
| 184 | * If threadfn() may call do_exit() itself, the caller must ensure | ||
| 185 | * task_struct can't go away. | ||
| 187 | * | 186 | * |
| 188 | * Returns the result of threadfn(), or %-EINTR if wake_up_process() | 187 | * Returns the result of threadfn(), or %-EINTR if wake_up_process() |
| 189 | * was never called. | 188 | * was never called. |
| @@ -219,7 +218,6 @@ int kthreadd(void *unused) | |||
| 219 | /* Setup a clean context for our children to inherit. */ | 218 | /* Setup a clean context for our children to inherit. */ |
| 220 | set_task_comm(tsk, "kthreadd"); | 219 | set_task_comm(tsk, "kthreadd"); |
| 221 | ignore_signals(tsk); | 220 | ignore_signals(tsk); |
| 222 | set_user_nice(tsk, KTHREAD_NICE_LEVEL); | ||
| 223 | set_cpus_allowed_ptr(tsk, cpu_all_mask); | 221 | set_cpus_allowed_ptr(tsk, cpu_all_mask); |
| 224 | set_mems_allowed(node_possible_map); | 222 | set_mems_allowed(node_possible_map); |
| 225 | 223 | ||
diff --git a/kernel/lockdep.c b/kernel/lockdep.c index 8bbeef996c76..f74d2d7aa605 100644 --- a/kernel/lockdep.c +++ b/kernel/lockdep.c | |||
| @@ -42,6 +42,7 @@ | |||
| 42 | #include <linux/hash.h> | 42 | #include <linux/hash.h> |
| 43 | #include <linux/ftrace.h> | 43 | #include <linux/ftrace.h> |
| 44 | #include <linux/stringify.h> | 44 | #include <linux/stringify.h> |
| 45 | #include <linux/bitops.h> | ||
| 45 | 46 | ||
| 46 | #include <asm/sections.h> | 47 | #include <asm/sections.h> |
| 47 | 48 | ||
| @@ -366,11 +367,21 @@ static int save_trace(struct stack_trace *trace) | |||
| 366 | 367 | ||
| 367 | save_stack_trace(trace); | 368 | save_stack_trace(trace); |
| 368 | 369 | ||
| 370 | /* | ||
| 371 | * Some daft arches put -1 at the end to indicate its a full trace. | ||
| 372 | * | ||
| 373 | * <rant> this is buggy anyway, since it takes a whole extra entry so a | ||
| 374 | * complete trace that maxes out the entries provided will be reported | ||
| 375 | * as incomplete, friggin useless </rant> | ||
| 376 | */ | ||
| 377 | if (trace->entries[trace->nr_entries-1] == ULONG_MAX) | ||
| 378 | trace->nr_entries--; | ||
| 379 | |||
| 369 | trace->max_entries = trace->nr_entries; | 380 | trace->max_entries = trace->nr_entries; |
| 370 | 381 | ||
| 371 | nr_stack_trace_entries += trace->nr_entries; | 382 | nr_stack_trace_entries += trace->nr_entries; |
| 372 | 383 | ||
| 373 | if (nr_stack_trace_entries == MAX_STACK_TRACE_ENTRIES) { | 384 | if (nr_stack_trace_entries >= MAX_STACK_TRACE_ENTRIES-1) { |
| 374 | if (!debug_locks_off_graph_unlock()) | 385 | if (!debug_locks_off_graph_unlock()) |
| 375 | return 0; | 386 | return 0; |
| 376 | 387 | ||
| @@ -388,20 +399,6 @@ unsigned int nr_hardirq_chains; | |||
| 388 | unsigned int nr_softirq_chains; | 399 | unsigned int nr_softirq_chains; |
| 389 | unsigned int nr_process_chains; | 400 | unsigned int nr_process_chains; |
| 390 | unsigned int max_lockdep_depth; | 401 | unsigned int max_lockdep_depth; |
| 391 | unsigned int max_recursion_depth; | ||
| 392 | |||
| 393 | static unsigned int lockdep_dependency_gen_id; | ||
| 394 | |||
| 395 | static bool lockdep_dependency_visit(struct lock_class *source, | ||
| 396 | unsigned int depth) | ||
| 397 | { | ||
| 398 | if (!depth) | ||
| 399 | lockdep_dependency_gen_id++; | ||
| 400 | if (source->dep_gen_id == lockdep_dependency_gen_id) | ||
| 401 | return true; | ||
| 402 | source->dep_gen_id = lockdep_dependency_gen_id; | ||
| 403 | return false; | ||
| 404 | } | ||
| 405 | 402 | ||
| 406 | #ifdef CONFIG_DEBUG_LOCKDEP | 403 | #ifdef CONFIG_DEBUG_LOCKDEP |
| 407 | /* | 404 | /* |
| @@ -431,11 +428,8 @@ atomic_t redundant_softirqs_on; | |||
| 431 | atomic_t redundant_softirqs_off; | 428 | atomic_t redundant_softirqs_off; |
| 432 | atomic_t nr_unused_locks; | 429 | atomic_t nr_unused_locks; |
| 433 | atomic_t nr_cyclic_checks; | 430 | atomic_t nr_cyclic_checks; |
| 434 | atomic_t nr_cyclic_check_recursions; | ||
| 435 | atomic_t nr_find_usage_forwards_checks; | 431 | atomic_t nr_find_usage_forwards_checks; |
| 436 | atomic_t nr_find_usage_forwards_recursions; | ||
| 437 | atomic_t nr_find_usage_backwards_checks; | 432 | atomic_t nr_find_usage_backwards_checks; |
| 438 | atomic_t nr_find_usage_backwards_recursions; | ||
| 439 | #endif | 433 | #endif |
| 440 | 434 | ||
| 441 | /* | 435 | /* |
| @@ -551,58 +545,6 @@ static void lockdep_print_held_locks(struct task_struct *curr) | |||
| 551 | } | 545 | } |
| 552 | } | 546 | } |
| 553 | 547 | ||
| 554 | static void print_lock_class_header(struct lock_class *class, int depth) | ||
| 555 | { | ||
| 556 | int bit; | ||
| 557 | |||
| 558 | printk("%*s->", depth, ""); | ||
| 559 | print_lock_name(class); | ||
| 560 | printk(" ops: %lu", class->ops); | ||
| 561 | printk(" {\n"); | ||
| 562 | |||
| 563 | for (bit = 0; bit < LOCK_USAGE_STATES; bit++) { | ||
| 564 | if (class->usage_mask & (1 << bit)) { | ||
| 565 | int len = depth; | ||
| 566 | |||
| 567 | len += printk("%*s %s", depth, "", usage_str[bit]); | ||
| 568 | len += printk(" at:\n"); | ||
| 569 | print_stack_trace(class->usage_traces + bit, len); | ||
| 570 | } | ||
| 571 | } | ||
| 572 | printk("%*s }\n", depth, ""); | ||
| 573 | |||
| 574 | printk("%*s ... key at: ",depth,""); | ||
| 575 | print_ip_sym((unsigned long)class->key); | ||
| 576 | } | ||
| 577 | |||
| 578 | /* | ||
| 579 | * printk all lock dependencies starting at <entry>: | ||
| 580 | */ | ||
| 581 | static void __used | ||
| 582 | print_lock_dependencies(struct lock_class *class, int depth) | ||
| 583 | { | ||
| 584 | struct lock_list *entry; | ||
| 585 | |||
| 586 | if (lockdep_dependency_visit(class, depth)) | ||
| 587 | return; | ||
| 588 | |||
| 589 | if (DEBUG_LOCKS_WARN_ON(depth >= 20)) | ||
| 590 | return; | ||
| 591 | |||
| 592 | print_lock_class_header(class, depth); | ||
| 593 | |||
| 594 | list_for_each_entry(entry, &class->locks_after, entry) { | ||
| 595 | if (DEBUG_LOCKS_WARN_ON(!entry->class)) | ||
| 596 | return; | ||
| 597 | |||
| 598 | print_lock_dependencies(entry->class, depth + 1); | ||
| 599 | |||
| 600 | printk("%*s ... acquired at:\n",depth,""); | ||
| 601 | print_stack_trace(&entry->trace, 2); | ||
| 602 | printk("\n"); | ||
| 603 | } | ||
| 604 | } | ||
| 605 | |||
| 606 | static void print_kernel_version(void) | 548 | static void print_kernel_version(void) |
| 607 | { | 549 | { |
| 608 | printk("%s %.*s\n", init_utsname()->release, | 550 | printk("%s %.*s\n", init_utsname()->release, |
| @@ -898,22 +840,203 @@ static int add_lock_to_list(struct lock_class *class, struct lock_class *this, | |||
| 898 | } | 840 | } |
| 899 | 841 | ||
| 900 | /* | 842 | /* |
| 843 | * For good efficiency of modular, we use power of 2 | ||
| 844 | */ | ||
| 845 | #define MAX_CIRCULAR_QUEUE_SIZE 4096UL | ||
| 846 | #define CQ_MASK (MAX_CIRCULAR_QUEUE_SIZE-1) | ||
| 847 | |||
| 848 | /* | ||
| 849 | * The circular_queue and helpers is used to implement the | ||
| 850 | * breadth-first search(BFS)algorithem, by which we can build | ||
| 851 | * the shortest path from the next lock to be acquired to the | ||
| 852 | * previous held lock if there is a circular between them. | ||
| 853 | */ | ||
| 854 | struct circular_queue { | ||
| 855 | unsigned long element[MAX_CIRCULAR_QUEUE_SIZE]; | ||
| 856 | unsigned int front, rear; | ||
| 857 | }; | ||
| 858 | |||
| 859 | static struct circular_queue lock_cq; | ||
| 860 | |||
| 861 | unsigned int max_bfs_queue_depth; | ||
| 862 | |||
| 863 | static unsigned int lockdep_dependency_gen_id; | ||
| 864 | |||
| 865 | static inline void __cq_init(struct circular_queue *cq) | ||
| 866 | { | ||
| 867 | cq->front = cq->rear = 0; | ||
| 868 | lockdep_dependency_gen_id++; | ||
| 869 | } | ||
| 870 | |||
| 871 | static inline int __cq_empty(struct circular_queue *cq) | ||
| 872 | { | ||
| 873 | return (cq->front == cq->rear); | ||
| 874 | } | ||
| 875 | |||
| 876 | static inline int __cq_full(struct circular_queue *cq) | ||
| 877 | { | ||
| 878 | return ((cq->rear + 1) & CQ_MASK) == cq->front; | ||
| 879 | } | ||
| 880 | |||
| 881 | static inline int __cq_enqueue(struct circular_queue *cq, unsigned long elem) | ||
| 882 | { | ||
| 883 | if (__cq_full(cq)) | ||
| 884 | return -1; | ||
| 885 | |||
| 886 | cq->element[cq->rear] = elem; | ||
| 887 | cq->rear = (cq->rear + 1) & CQ_MASK; | ||
| 888 | return 0; | ||
| 889 | } | ||
| 890 | |||
| 891 | static inline int __cq_dequeue(struct circular_queue *cq, unsigned long *elem) | ||
| 892 | { | ||
| 893 | if (__cq_empty(cq)) | ||
| 894 | return -1; | ||
| 895 | |||
| 896 | *elem = cq->element[cq->front]; | ||
| 897 | cq->front = (cq->front + 1) & CQ_MASK; | ||
| 898 | return 0; | ||
| 899 | } | ||
| 900 | |||
| 901 | static inline unsigned int __cq_get_elem_count(struct circular_queue *cq) | ||
| 902 | { | ||
| 903 | return (cq->rear - cq->front) & CQ_MASK; | ||
| 904 | } | ||
| 905 | |||
| 906 | static inline void mark_lock_accessed(struct lock_list *lock, | ||
| 907 | struct lock_list *parent) | ||
| 908 | { | ||
| 909 | unsigned long nr; | ||
| 910 | |||
| 911 | nr = lock - list_entries; | ||
| 912 | WARN_ON(nr >= nr_list_entries); | ||
| 913 | lock->parent = parent; | ||
| 914 | lock->class->dep_gen_id = lockdep_dependency_gen_id; | ||
| 915 | } | ||
| 916 | |||
| 917 | static inline unsigned long lock_accessed(struct lock_list *lock) | ||
| 918 | { | ||
| 919 | unsigned long nr; | ||
| 920 | |||
| 921 | nr = lock - list_entries; | ||
| 922 | WARN_ON(nr >= nr_list_entries); | ||
| 923 | return lock->class->dep_gen_id == lockdep_dependency_gen_id; | ||
| 924 | } | ||
| 925 | |||
| 926 | static inline struct lock_list *get_lock_parent(struct lock_list *child) | ||
| 927 | { | ||
| 928 | return child->parent; | ||
| 929 | } | ||
| 930 | |||
| 931 | static inline int get_lock_depth(struct lock_list *child) | ||
| 932 | { | ||
| 933 | int depth = 0; | ||
| 934 | struct lock_list *parent; | ||
| 935 | |||
| 936 | while ((parent = get_lock_parent(child))) { | ||
| 937 | child = parent; | ||
| 938 | depth++; | ||
| 939 | } | ||
| 940 | return depth; | ||
| 941 | } | ||
| 942 | |||
| 943 | static int __bfs(struct lock_list *source_entry, | ||
| 944 | void *data, | ||
| 945 | int (*match)(struct lock_list *entry, void *data), | ||
| 946 | struct lock_list **target_entry, | ||
| 947 | int forward) | ||
| 948 | { | ||
| 949 | struct lock_list *entry; | ||
| 950 | struct list_head *head; | ||
| 951 | struct circular_queue *cq = &lock_cq; | ||
| 952 | int ret = 1; | ||
| 953 | |||
| 954 | if (match(source_entry, data)) { | ||
| 955 | *target_entry = source_entry; | ||
| 956 | ret = 0; | ||
| 957 | goto exit; | ||
| 958 | } | ||
| 959 | |||
| 960 | if (forward) | ||
| 961 | head = &source_entry->class->locks_after; | ||
| 962 | else | ||
| 963 | head = &source_entry->class->locks_before; | ||
| 964 | |||
| 965 | if (list_empty(head)) | ||
| 966 | goto exit; | ||
| 967 | |||
| 968 | __cq_init(cq); | ||
| 969 | __cq_enqueue(cq, (unsigned long)source_entry); | ||
| 970 | |||
| 971 | while (!__cq_empty(cq)) { | ||
| 972 | struct lock_list *lock; | ||
| 973 | |||
| 974 | __cq_dequeue(cq, (unsigned long *)&lock); | ||
| 975 | |||
| 976 | if (!lock->class) { | ||
| 977 | ret = -2; | ||
| 978 | goto exit; | ||
| 979 | } | ||
| 980 | |||
| 981 | if (forward) | ||
| 982 | head = &lock->class->locks_after; | ||
| 983 | else | ||
| 984 | head = &lock->class->locks_before; | ||
| 985 | |||
| 986 | list_for_each_entry(entry, head, entry) { | ||
| 987 | if (!lock_accessed(entry)) { | ||
| 988 | unsigned int cq_depth; | ||
| 989 | mark_lock_accessed(entry, lock); | ||
| 990 | if (match(entry, data)) { | ||
| 991 | *target_entry = entry; | ||
| 992 | ret = 0; | ||
| 993 | goto exit; | ||
| 994 | } | ||
| 995 | |||
| 996 | if (__cq_enqueue(cq, (unsigned long)entry)) { | ||
| 997 | ret = -1; | ||
| 998 | goto exit; | ||
| 999 | } | ||
| 1000 | cq_depth = __cq_get_elem_count(cq); | ||
| 1001 | if (max_bfs_queue_depth < cq_depth) | ||
| 1002 | max_bfs_queue_depth = cq_depth; | ||
| 1003 | } | ||
| 1004 | } | ||
| 1005 | } | ||
| 1006 | exit: | ||
| 1007 | return ret; | ||
| 1008 | } | ||
| 1009 | |||
| 1010 | static inline int __bfs_forwards(struct lock_list *src_entry, | ||
| 1011 | void *data, | ||
| 1012 | int (*match)(struct lock_list *entry, void *data), | ||
| 1013 | struct lock_list **target_entry) | ||
| 1014 | { | ||
| 1015 | return __bfs(src_entry, data, match, target_entry, 1); | ||
| 1016 | |||
| 1017 | } | ||
| 1018 | |||
| 1019 | static inline int __bfs_backwards(struct lock_list *src_entry, | ||
| 1020 | void *data, | ||
| 1021 | int (*match)(struct lock_list *entry, void *data), | ||
| 1022 | struct lock_list **target_entry) | ||
| 1023 | { | ||
| 1024 | return __bfs(src_entry, data, match, target_entry, 0); | ||
| 1025 | |||
| 1026 | } | ||
| 1027 | |||
| 1028 | /* | ||
| 901 | * Recursive, forwards-direction lock-dependency checking, used for | 1029 | * Recursive, forwards-direction lock-dependency checking, used for |
| 902 | * both noncyclic checking and for hardirq-unsafe/softirq-unsafe | 1030 | * both noncyclic checking and for hardirq-unsafe/softirq-unsafe |
| 903 | * checking. | 1031 | * checking. |
| 904 | * | ||
| 905 | * (to keep the stackframe of the recursive functions small we | ||
| 906 | * use these global variables, and we also mark various helper | ||
| 907 | * functions as noinline.) | ||
| 908 | */ | 1032 | */ |
| 909 | static struct held_lock *check_source, *check_target; | ||
| 910 | 1033 | ||
| 911 | /* | 1034 | /* |
| 912 | * Print a dependency chain entry (this is only done when a deadlock | 1035 | * Print a dependency chain entry (this is only done when a deadlock |
| 913 | * has been detected): | 1036 | * has been detected): |
| 914 | */ | 1037 | */ |
| 915 | static noinline int | 1038 | static noinline int |
| 916 | print_circular_bug_entry(struct lock_list *target, unsigned int depth) | 1039 | print_circular_bug_entry(struct lock_list *target, int depth) |
| 917 | { | 1040 | { |
| 918 | if (debug_locks_silent) | 1041 | if (debug_locks_silent) |
| 919 | return 0; | 1042 | return 0; |
| @@ -930,11 +1053,13 @@ print_circular_bug_entry(struct lock_list *target, unsigned int depth) | |||
| 930 | * header first: | 1053 | * header first: |
| 931 | */ | 1054 | */ |
| 932 | static noinline int | 1055 | static noinline int |
| 933 | print_circular_bug_header(struct lock_list *entry, unsigned int depth) | 1056 | print_circular_bug_header(struct lock_list *entry, unsigned int depth, |
| 1057 | struct held_lock *check_src, | ||
| 1058 | struct held_lock *check_tgt) | ||
| 934 | { | 1059 | { |
| 935 | struct task_struct *curr = current; | 1060 | struct task_struct *curr = current; |
| 936 | 1061 | ||
| 937 | if (!debug_locks_off_graph_unlock() || debug_locks_silent) | 1062 | if (debug_locks_silent) |
| 938 | return 0; | 1063 | return 0; |
| 939 | 1064 | ||
| 940 | printk("\n=======================================================\n"); | 1065 | printk("\n=======================================================\n"); |
| @@ -943,9 +1068,9 @@ print_circular_bug_header(struct lock_list *entry, unsigned int depth) | |||
| 943 | printk( "-------------------------------------------------------\n"); | 1068 | printk( "-------------------------------------------------------\n"); |
| 944 | printk("%s/%d is trying to acquire lock:\n", | 1069 | printk("%s/%d is trying to acquire lock:\n", |
| 945 | curr->comm, task_pid_nr(curr)); | 1070 | curr->comm, task_pid_nr(curr)); |
| 946 | print_lock(check_source); | 1071 | print_lock(check_src); |
| 947 | printk("\nbut task is already holding lock:\n"); | 1072 | printk("\nbut task is already holding lock:\n"); |
| 948 | print_lock(check_target); | 1073 | print_lock(check_tgt); |
| 949 | printk("\nwhich lock already depends on the new lock.\n\n"); | 1074 | printk("\nwhich lock already depends on the new lock.\n\n"); |
| 950 | printk("\nthe existing dependency chain (in reverse order) is:\n"); | 1075 | printk("\nthe existing dependency chain (in reverse order) is:\n"); |
| 951 | 1076 | ||
| @@ -954,19 +1079,36 @@ print_circular_bug_header(struct lock_list *entry, unsigned int depth) | |||
| 954 | return 0; | 1079 | return 0; |
| 955 | } | 1080 | } |
| 956 | 1081 | ||
| 957 | static noinline int print_circular_bug_tail(void) | 1082 | static inline int class_equal(struct lock_list *entry, void *data) |
| 1083 | { | ||
| 1084 | return entry->class == data; | ||
| 1085 | } | ||
| 1086 | |||
| 1087 | static noinline int print_circular_bug(struct lock_list *this, | ||
| 1088 | struct lock_list *target, | ||
| 1089 | struct held_lock *check_src, | ||
| 1090 | struct held_lock *check_tgt) | ||
| 958 | { | 1091 | { |
| 959 | struct task_struct *curr = current; | 1092 | struct task_struct *curr = current; |
| 960 | struct lock_list this; | 1093 | struct lock_list *parent; |
| 1094 | int depth; | ||
| 961 | 1095 | ||
| 962 | if (debug_locks_silent) | 1096 | if (!debug_locks_off_graph_unlock() || debug_locks_silent) |
| 963 | return 0; | 1097 | return 0; |
| 964 | 1098 | ||
| 965 | this.class = hlock_class(check_source); | 1099 | if (!save_trace(&this->trace)) |
| 966 | if (!save_trace(&this.trace)) | ||
| 967 | return 0; | 1100 | return 0; |
| 968 | 1101 | ||
| 969 | print_circular_bug_entry(&this, 0); | 1102 | depth = get_lock_depth(target); |
| 1103 | |||
| 1104 | print_circular_bug_header(target, depth, check_src, check_tgt); | ||
| 1105 | |||
| 1106 | parent = get_lock_parent(target); | ||
| 1107 | |||
| 1108 | while (parent) { | ||
| 1109 | print_circular_bug_entry(parent, --depth); | ||
| 1110 | parent = get_lock_parent(parent); | ||
| 1111 | } | ||
| 970 | 1112 | ||
| 971 | printk("\nother info that might help us debug this:\n\n"); | 1113 | printk("\nother info that might help us debug this:\n\n"); |
| 972 | lockdep_print_held_locks(curr); | 1114 | lockdep_print_held_locks(curr); |
| @@ -977,73 +1119,69 @@ static noinline int print_circular_bug_tail(void) | |||
| 977 | return 0; | 1119 | return 0; |
| 978 | } | 1120 | } |
| 979 | 1121 | ||
| 980 | #define RECURSION_LIMIT 40 | 1122 | static noinline int print_bfs_bug(int ret) |
| 981 | |||
| 982 | static int noinline print_infinite_recursion_bug(void) | ||
| 983 | { | 1123 | { |
| 984 | if (!debug_locks_off_graph_unlock()) | 1124 | if (!debug_locks_off_graph_unlock()) |
| 985 | return 0; | 1125 | return 0; |
| 986 | 1126 | ||
| 987 | WARN_ON(1); | 1127 | WARN(1, "lockdep bfs error:%d\n", ret); |
| 988 | 1128 | ||
| 989 | return 0; | 1129 | return 0; |
| 990 | } | 1130 | } |
| 991 | 1131 | ||
| 992 | unsigned long __lockdep_count_forward_deps(struct lock_class *class, | 1132 | static int noop_count(struct lock_list *entry, void *data) |
| 993 | unsigned int depth) | ||
| 994 | { | 1133 | { |
| 995 | struct lock_list *entry; | 1134 | (*(unsigned long *)data)++; |
| 996 | unsigned long ret = 1; | 1135 | return 0; |
| 1136 | } | ||
| 997 | 1137 | ||
| 998 | if (lockdep_dependency_visit(class, depth)) | 1138 | unsigned long __lockdep_count_forward_deps(struct lock_list *this) |
| 999 | return 0; | 1139 | { |
| 1140 | unsigned long count = 0; | ||
| 1141 | struct lock_list *uninitialized_var(target_entry); | ||
| 1000 | 1142 | ||
| 1001 | /* | 1143 | __bfs_forwards(this, (void *)&count, noop_count, &target_entry); |
| 1002 | * Recurse this class's dependency list: | ||
| 1003 | */ | ||
| 1004 | list_for_each_entry(entry, &class->locks_after, entry) | ||
| 1005 | ret += __lockdep_count_forward_deps(entry->class, depth + 1); | ||
| 1006 | 1144 | ||
| 1007 | return ret; | 1145 | return count; |
| 1008 | } | 1146 | } |
| 1009 | |||
| 1010 | unsigned long lockdep_count_forward_deps(struct lock_class *class) | 1147 | unsigned long lockdep_count_forward_deps(struct lock_class *class) |
| 1011 | { | 1148 | { |
| 1012 | unsigned long ret, flags; | 1149 | unsigned long ret, flags; |
| 1150 | struct lock_list this; | ||
| 1151 | |||
| 1152 | this.parent = NULL; | ||
| 1153 | this.class = class; | ||
| 1013 | 1154 | ||
| 1014 | local_irq_save(flags); | 1155 | local_irq_save(flags); |
| 1015 | __raw_spin_lock(&lockdep_lock); | 1156 | __raw_spin_lock(&lockdep_lock); |
| 1016 | ret = __lockdep_count_forward_deps(class, 0); | 1157 | ret = __lockdep_count_forward_deps(&this); |
| 1017 | __raw_spin_unlock(&lockdep_lock); | 1158 | __raw_spin_unlock(&lockdep_lock); |
| 1018 | local_irq_restore(flags); | 1159 | local_irq_restore(flags); |
| 1019 | 1160 | ||
| 1020 | return ret; | 1161 | return ret; |
| 1021 | } | 1162 | } |
| 1022 | 1163 | ||
| 1023 | unsigned long __lockdep_count_backward_deps(struct lock_class *class, | 1164 | unsigned long __lockdep_count_backward_deps(struct lock_list *this) |
| 1024 | unsigned int depth) | ||
| 1025 | { | 1165 | { |
| 1026 | struct lock_list *entry; | 1166 | unsigned long count = 0; |
| 1027 | unsigned long ret = 1; | 1167 | struct lock_list *uninitialized_var(target_entry); |
| 1028 | 1168 | ||
| 1029 | if (lockdep_dependency_visit(class, depth)) | 1169 | __bfs_backwards(this, (void *)&count, noop_count, &target_entry); |
| 1030 | return 0; | ||
| 1031 | /* | ||
| 1032 | * Recurse this class's dependency list: | ||
| 1033 | */ | ||
| 1034 | list_for_each_entry(entry, &class->locks_before, entry) | ||
| 1035 | ret += __lockdep_count_backward_deps(entry->class, depth + 1); | ||
| 1036 | 1170 | ||
| 1037 | return ret; | 1171 | return count; |
| 1038 | } | 1172 | } |
| 1039 | 1173 | ||
| 1040 | unsigned long lockdep_count_backward_deps(struct lock_class *class) | 1174 | unsigned long lockdep_count_backward_deps(struct lock_class *class) |
| 1041 | { | 1175 | { |
| 1042 | unsigned long ret, flags; | 1176 | unsigned long ret, flags; |
| 1177 | struct lock_list this; | ||
| 1178 | |||
| 1179 | this.parent = NULL; | ||
| 1180 | this.class = class; | ||
| 1043 | 1181 | ||
| 1044 | local_irq_save(flags); | 1182 | local_irq_save(flags); |
| 1045 | __raw_spin_lock(&lockdep_lock); | 1183 | __raw_spin_lock(&lockdep_lock); |
| 1046 | ret = __lockdep_count_backward_deps(class, 0); | 1184 | ret = __lockdep_count_backward_deps(&this); |
| 1047 | __raw_spin_unlock(&lockdep_lock); | 1185 | __raw_spin_unlock(&lockdep_lock); |
| 1048 | local_irq_restore(flags); | 1186 | local_irq_restore(flags); |
| 1049 | 1187 | ||
| @@ -1055,29 +1193,16 @@ unsigned long lockdep_count_backward_deps(struct lock_class *class) | |||
| 1055 | * lead to <target>. Print an error and return 0 if it does. | 1193 | * lead to <target>. Print an error and return 0 if it does. |
| 1056 | */ | 1194 | */ |
| 1057 | static noinline int | 1195 | static noinline int |
| 1058 | check_noncircular(struct lock_class *source, unsigned int depth) | 1196 | check_noncircular(struct lock_list *root, struct lock_class *target, |
| 1197 | struct lock_list **target_entry) | ||
| 1059 | { | 1198 | { |
| 1060 | struct lock_list *entry; | 1199 | int result; |
| 1061 | 1200 | ||
| 1062 | if (lockdep_dependency_visit(source, depth)) | 1201 | debug_atomic_inc(&nr_cyclic_checks); |
| 1063 | return 1; | ||
| 1064 | 1202 | ||
| 1065 | debug_atomic_inc(&nr_cyclic_check_recursions); | 1203 | result = __bfs_forwards(root, target, class_equal, target_entry); |
| 1066 | if (depth > max_recursion_depth) | 1204 | |
| 1067 | max_recursion_depth = depth; | 1205 | return result; |
| 1068 | if (depth >= RECURSION_LIMIT) | ||
| 1069 | return print_infinite_recursion_bug(); | ||
| 1070 | /* | ||
| 1071 | * Check this lock's dependency list: | ||
| 1072 | */ | ||
| 1073 | list_for_each_entry(entry, &source->locks_after, entry) { | ||
| 1074 | if (entry->class == hlock_class(check_target)) | ||
| 1075 | return print_circular_bug_header(entry, depth+1); | ||
| 1076 | debug_atomic_inc(&nr_cyclic_checks); | ||
| 1077 | if (!check_noncircular(entry->class, depth+1)) | ||
| 1078 | return print_circular_bug_entry(entry, depth+1); | ||
| 1079 | } | ||
| 1080 | return 1; | ||
| 1081 | } | 1206 | } |
| 1082 | 1207 | ||
| 1083 | #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING) | 1208 | #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING) |
| @@ -1086,103 +1211,121 @@ check_noncircular(struct lock_class *source, unsigned int depth) | |||
| 1086 | * proving that two subgraphs can be connected by a new dependency | 1211 | * proving that two subgraphs can be connected by a new dependency |
| 1087 | * without creating any illegal irq-safe -> irq-unsafe lock dependency. | 1212 | * without creating any illegal irq-safe -> irq-unsafe lock dependency. |
| 1088 | */ | 1213 | */ |
| 1089 | static enum lock_usage_bit find_usage_bit; | 1214 | |
| 1090 | static struct lock_class *forwards_match, *backwards_match; | 1215 | static inline int usage_match(struct lock_list *entry, void *bit) |
| 1216 | { | ||
| 1217 | return entry->class->usage_mask & (1 << (enum lock_usage_bit)bit); | ||
| 1218 | } | ||
| 1219 | |||
| 1220 | |||
| 1091 | 1221 | ||
| 1092 | /* | 1222 | /* |
| 1093 | * Find a node in the forwards-direction dependency sub-graph starting | 1223 | * Find a node in the forwards-direction dependency sub-graph starting |
| 1094 | * at <source> that matches <find_usage_bit>. | 1224 | * at @root->class that matches @bit. |
| 1095 | * | 1225 | * |
| 1096 | * Return 2 if such a node exists in the subgraph, and put that node | 1226 | * Return 0 if such a node exists in the subgraph, and put that node |
| 1097 | * into <forwards_match>. | 1227 | * into *@target_entry. |
| 1098 | * | 1228 | * |
| 1099 | * Return 1 otherwise and keep <forwards_match> unchanged. | 1229 | * Return 1 otherwise and keep *@target_entry unchanged. |
| 1100 | * Return 0 on error. | 1230 | * Return <0 on error. |
| 1101 | */ | 1231 | */ |
| 1102 | static noinline int | 1232 | static int |
| 1103 | find_usage_forwards(struct lock_class *source, unsigned int depth) | 1233 | find_usage_forwards(struct lock_list *root, enum lock_usage_bit bit, |
| 1234 | struct lock_list **target_entry) | ||
| 1104 | { | 1235 | { |
| 1105 | struct lock_list *entry; | 1236 | int result; |
| 1106 | int ret; | ||
| 1107 | |||
| 1108 | if (lockdep_dependency_visit(source, depth)) | ||
| 1109 | return 1; | ||
| 1110 | |||
| 1111 | if (depth > max_recursion_depth) | ||
| 1112 | max_recursion_depth = depth; | ||
| 1113 | if (depth >= RECURSION_LIMIT) | ||
| 1114 | return print_infinite_recursion_bug(); | ||
| 1115 | 1237 | ||
| 1116 | debug_atomic_inc(&nr_find_usage_forwards_checks); | 1238 | debug_atomic_inc(&nr_find_usage_forwards_checks); |
| 1117 | if (source->usage_mask & (1 << find_usage_bit)) { | ||
| 1118 | forwards_match = source; | ||
| 1119 | return 2; | ||
| 1120 | } | ||
| 1121 | 1239 | ||
| 1122 | /* | 1240 | result = __bfs_forwards(root, (void *)bit, usage_match, target_entry); |
| 1123 | * Check this lock's dependency list: | 1241 | |
| 1124 | */ | 1242 | return result; |
| 1125 | list_for_each_entry(entry, &source->locks_after, entry) { | ||
| 1126 | debug_atomic_inc(&nr_find_usage_forwards_recursions); | ||
| 1127 | ret = find_usage_forwards(entry->class, depth+1); | ||
| 1128 | if (ret == 2 || ret == 0) | ||
| 1129 | return ret; | ||
| 1130 | } | ||
| 1131 | return 1; | ||
| 1132 | } | 1243 | } |
| 1133 | 1244 | ||
| 1134 | /* | 1245 | /* |
| 1135 | * Find a node in the backwards-direction dependency sub-graph starting | 1246 | * Find a node in the backwards-direction dependency sub-graph starting |
| 1136 | * at <source> that matches <find_usage_bit>. | 1247 | * at @root->class that matches @bit. |
| 1137 | * | 1248 | * |
| 1138 | * Return 2 if such a node exists in the subgraph, and put that node | 1249 | * Return 0 if such a node exists in the subgraph, and put that node |
| 1139 | * into <backwards_match>. | 1250 | * into *@target_entry. |
| 1140 | * | 1251 | * |
| 1141 | * Return 1 otherwise and keep <backwards_match> unchanged. | 1252 | * Return 1 otherwise and keep *@target_entry unchanged. |
| 1142 | * Return 0 on error. | 1253 | * Return <0 on error. |
| 1143 | */ | 1254 | */ |
| 1144 | static noinline int | 1255 | static int |
| 1145 | find_usage_backwards(struct lock_class *source, unsigned int depth) | 1256 | find_usage_backwards(struct lock_list *root, enum lock_usage_bit bit, |
| 1257 | struct lock_list **target_entry) | ||
| 1146 | { | 1258 | { |
| 1147 | struct lock_list *entry; | 1259 | int result; |
| 1148 | int ret; | ||
| 1149 | 1260 | ||
| 1150 | if (lockdep_dependency_visit(source, depth)) | 1261 | debug_atomic_inc(&nr_find_usage_backwards_checks); |
| 1151 | return 1; | ||
| 1152 | 1262 | ||
| 1153 | if (!__raw_spin_is_locked(&lockdep_lock)) | 1263 | result = __bfs_backwards(root, (void *)bit, usage_match, target_entry); |
| 1154 | return DEBUG_LOCKS_WARN_ON(1); | ||
| 1155 | 1264 | ||
| 1156 | if (depth > max_recursion_depth) | 1265 | return result; |
| 1157 | max_recursion_depth = depth; | 1266 | } |
| 1158 | if (depth >= RECURSION_LIMIT) | ||
| 1159 | return print_infinite_recursion_bug(); | ||
| 1160 | 1267 | ||
| 1161 | debug_atomic_inc(&nr_find_usage_backwards_checks); | 1268 | static void print_lock_class_header(struct lock_class *class, int depth) |
| 1162 | if (source->usage_mask & (1 << find_usage_bit)) { | 1269 | { |
| 1163 | backwards_match = source; | 1270 | int bit; |
| 1164 | return 2; | ||
| 1165 | } | ||
| 1166 | 1271 | ||
| 1167 | if (!source && debug_locks_off_graph_unlock()) { | 1272 | printk("%*s->", depth, ""); |
| 1168 | WARN_ON(1); | 1273 | print_lock_name(class); |
| 1169 | return 0; | 1274 | printk(" ops: %lu", class->ops); |
| 1170 | } | 1275 | printk(" {\n"); |
| 1171 | 1276 | ||
| 1172 | /* | 1277 | for (bit = 0; bit < LOCK_USAGE_STATES; bit++) { |
| 1173 | * Check this lock's dependency list: | 1278 | if (class->usage_mask & (1 << bit)) { |
| 1174 | */ | 1279 | int len = depth; |
| 1175 | list_for_each_entry(entry, &source->locks_before, entry) { | 1280 | |
| 1176 | debug_atomic_inc(&nr_find_usage_backwards_recursions); | 1281 | len += printk("%*s %s", depth, "", usage_str[bit]); |
| 1177 | ret = find_usage_backwards(entry->class, depth+1); | 1282 | len += printk(" at:\n"); |
| 1178 | if (ret == 2 || ret == 0) | 1283 | print_stack_trace(class->usage_traces + bit, len); |
| 1179 | return ret; | 1284 | } |
| 1180 | } | 1285 | } |
| 1181 | return 1; | 1286 | printk("%*s }\n", depth, ""); |
| 1287 | |||
| 1288 | printk("%*s ... key at: ",depth,""); | ||
| 1289 | print_ip_sym((unsigned long)class->key); | ||
| 1290 | } | ||
| 1291 | |||
| 1292 | /* | ||
| 1293 | * printk the shortest lock dependencies from @start to @end in reverse order: | ||
| 1294 | */ | ||
| 1295 | static void __used | ||
| 1296 | print_shortest_lock_dependencies(struct lock_list *leaf, | ||
| 1297 | struct lock_list *root) | ||
| 1298 | { | ||
| 1299 | struct lock_list *entry = leaf; | ||
| 1300 | int depth; | ||
| 1301 | |||
| 1302 | /*compute depth from generated tree by BFS*/ | ||
| 1303 | depth = get_lock_depth(leaf); | ||
| 1304 | |||
| 1305 | do { | ||
| 1306 | print_lock_class_header(entry->class, depth); | ||
| 1307 | printk("%*s ... acquired at:\n", depth, ""); | ||
| 1308 | print_stack_trace(&entry->trace, 2); | ||
| 1309 | printk("\n"); | ||
| 1310 | |||
| 1311 | if (depth == 0 && (entry != root)) { | ||
| 1312 | printk("lockdep:%s bad BFS generated tree\n", __func__); | ||
| 1313 | break; | ||
| 1314 | } | ||
| 1315 | |||
| 1316 | entry = get_lock_parent(entry); | ||
| 1317 | depth--; | ||
| 1318 | } while (entry && (depth >= 0)); | ||
| 1319 | |||
| 1320 | return; | ||
| 1182 | } | 1321 | } |
| 1183 | 1322 | ||
| 1184 | static int | 1323 | static int |
| 1185 | print_bad_irq_dependency(struct task_struct *curr, | 1324 | print_bad_irq_dependency(struct task_struct *curr, |
| 1325 | struct lock_list *prev_root, | ||
| 1326 | struct lock_list *next_root, | ||
| 1327 | struct lock_list *backwards_entry, | ||
| 1328 | struct lock_list *forwards_entry, | ||
| 1186 | struct held_lock *prev, | 1329 | struct held_lock *prev, |
| 1187 | struct held_lock *next, | 1330 | struct held_lock *next, |
| 1188 | enum lock_usage_bit bit1, | 1331 | enum lock_usage_bit bit1, |
| @@ -1215,26 +1358,32 @@ print_bad_irq_dependency(struct task_struct *curr, | |||
| 1215 | 1358 | ||
| 1216 | printk("\nbut this new dependency connects a %s-irq-safe lock:\n", | 1359 | printk("\nbut this new dependency connects a %s-irq-safe lock:\n", |
| 1217 | irqclass); | 1360 | irqclass); |
| 1218 | print_lock_name(backwards_match); | 1361 | print_lock_name(backwards_entry->class); |
| 1219 | printk("\n... which became %s-irq-safe at:\n", irqclass); | 1362 | printk("\n... which became %s-irq-safe at:\n", irqclass); |
| 1220 | 1363 | ||
| 1221 | print_stack_trace(backwards_match->usage_traces + bit1, 1); | 1364 | print_stack_trace(backwards_entry->class->usage_traces + bit1, 1); |
| 1222 | 1365 | ||
| 1223 | printk("\nto a %s-irq-unsafe lock:\n", irqclass); | 1366 | printk("\nto a %s-irq-unsafe lock:\n", irqclass); |
| 1224 | print_lock_name(forwards_match); | 1367 | print_lock_name(forwards_entry->class); |
| 1225 | printk("\n... which became %s-irq-unsafe at:\n", irqclass); | 1368 | printk("\n... which became %s-irq-unsafe at:\n", irqclass); |
| 1226 | printk("..."); | 1369 | printk("..."); |
| 1227 | 1370 | ||
| 1228 | print_stack_trace(forwards_match->usage_traces + bit2, 1); | 1371 | print_stack_trace(forwards_entry->class->usage_traces + bit2, 1); |
| 1229 | 1372 | ||
| 1230 | printk("\nother info that might help us debug this:\n\n"); | 1373 | printk("\nother info that might help us debug this:\n\n"); |
| 1231 | lockdep_print_held_locks(curr); | 1374 | lockdep_print_held_locks(curr); |
| 1232 | 1375 | ||
| 1233 | printk("\nthe %s-irq-safe lock's dependencies:\n", irqclass); | 1376 | printk("\nthe dependencies between %s-irq-safe lock", irqclass); |
| 1234 | print_lock_dependencies(backwards_match, 0); | 1377 | printk(" and the holding lock:\n"); |
| 1378 | if (!save_trace(&prev_root->trace)) | ||
| 1379 | return 0; | ||
| 1380 | print_shortest_lock_dependencies(backwards_entry, prev_root); | ||
| 1235 | 1381 | ||
| 1236 | printk("\nthe %s-irq-unsafe lock's dependencies:\n", irqclass); | 1382 | printk("\nthe dependencies between the lock to be acquired"); |
| 1237 | print_lock_dependencies(forwards_match, 0); | 1383 | printk(" and %s-irq-unsafe lock:\n", irqclass); |
| 1384 | if (!save_trace(&next_root->trace)) | ||
| 1385 | return 0; | ||
| 1386 | print_shortest_lock_dependencies(forwards_entry, next_root); | ||
| 1238 | 1387 | ||
| 1239 | printk("\nstack backtrace:\n"); | 1388 | printk("\nstack backtrace:\n"); |
| 1240 | dump_stack(); | 1389 | dump_stack(); |
| @@ -1248,19 +1397,30 @@ check_usage(struct task_struct *curr, struct held_lock *prev, | |||
| 1248 | enum lock_usage_bit bit_forwards, const char *irqclass) | 1397 | enum lock_usage_bit bit_forwards, const char *irqclass) |
| 1249 | { | 1398 | { |
| 1250 | int ret; | 1399 | int ret; |
| 1400 | struct lock_list this, that; | ||
| 1401 | struct lock_list *uninitialized_var(target_entry); | ||
| 1402 | struct lock_list *uninitialized_var(target_entry1); | ||
| 1251 | 1403 | ||
| 1252 | find_usage_bit = bit_backwards; | 1404 | this.parent = NULL; |
| 1253 | /* fills in <backwards_match> */ | 1405 | |
| 1254 | ret = find_usage_backwards(hlock_class(prev), 0); | 1406 | this.class = hlock_class(prev); |
| 1255 | if (!ret || ret == 1) | 1407 | ret = find_usage_backwards(&this, bit_backwards, &target_entry); |
| 1408 | if (ret < 0) | ||
| 1409 | return print_bfs_bug(ret); | ||
| 1410 | if (ret == 1) | ||
| 1256 | return ret; | 1411 | return ret; |
| 1257 | 1412 | ||
| 1258 | find_usage_bit = bit_forwards; | 1413 | that.parent = NULL; |
| 1259 | ret = find_usage_forwards(hlock_class(next), 0); | 1414 | that.class = hlock_class(next); |
| 1260 | if (!ret || ret == 1) | 1415 | ret = find_usage_forwards(&that, bit_forwards, &target_entry1); |
| 1416 | if (ret < 0) | ||
| 1417 | return print_bfs_bug(ret); | ||
| 1418 | if (ret == 1) | ||
| 1261 | return ret; | 1419 | return ret; |
| 1262 | /* ret == 2 */ | 1420 | |
| 1263 | return print_bad_irq_dependency(curr, prev, next, | 1421 | return print_bad_irq_dependency(curr, &this, &that, |
| 1422 | target_entry, target_entry1, | ||
| 1423 | prev, next, | ||
| 1264 | bit_backwards, bit_forwards, irqclass); | 1424 | bit_backwards, bit_forwards, irqclass); |
| 1265 | } | 1425 | } |
| 1266 | 1426 | ||
| @@ -1472,6 +1632,8 @@ check_prev_add(struct task_struct *curr, struct held_lock *prev, | |||
| 1472 | { | 1632 | { |
| 1473 | struct lock_list *entry; | 1633 | struct lock_list *entry; |
| 1474 | int ret; | 1634 | int ret; |
| 1635 | struct lock_list this; | ||
| 1636 | struct lock_list *uninitialized_var(target_entry); | ||
| 1475 | 1637 | ||
| 1476 | /* | 1638 | /* |
| 1477 | * Prove that the new <prev> -> <next> dependency would not | 1639 | * Prove that the new <prev> -> <next> dependency would not |
| @@ -1482,10 +1644,13 @@ check_prev_add(struct task_struct *curr, struct held_lock *prev, | |||
| 1482 | * We are using global variables to control the recursion, to | 1644 | * We are using global variables to control the recursion, to |
| 1483 | * keep the stackframe size of the recursive functions low: | 1645 | * keep the stackframe size of the recursive functions low: |
| 1484 | */ | 1646 | */ |
| 1485 | check_source = next; | 1647 | this.class = hlock_class(next); |
| 1486 | check_target = prev; | 1648 | this.parent = NULL; |
| 1487 | if (!(check_noncircular(hlock_class(next), 0))) | 1649 | ret = check_noncircular(&this, hlock_class(prev), &target_entry); |
| 1488 | return print_circular_bug_tail(); | 1650 | if (unlikely(!ret)) |
| 1651 | return print_circular_bug(&this, target_entry, next, prev); | ||
| 1652 | else if (unlikely(ret < 0)) | ||
| 1653 | return print_bfs_bug(ret); | ||
| 1489 | 1654 | ||
| 1490 | if (!check_prev_add_irq(curr, prev, next)) | 1655 | if (!check_prev_add_irq(curr, prev, next)) |
| 1491 | return 0; | 1656 | return 0; |
| @@ -1884,7 +2049,8 @@ static int mark_lock(struct task_struct *curr, struct held_lock *this, | |||
| 1884 | * print irq inversion bug: | 2049 | * print irq inversion bug: |
| 1885 | */ | 2050 | */ |
| 1886 | static int | 2051 | static int |
| 1887 | print_irq_inversion_bug(struct task_struct *curr, struct lock_class *other, | 2052 | print_irq_inversion_bug(struct task_struct *curr, |
| 2053 | struct lock_list *root, struct lock_list *other, | ||
| 1888 | struct held_lock *this, int forwards, | 2054 | struct held_lock *this, int forwards, |
| 1889 | const char *irqclass) | 2055 | const char *irqclass) |
| 1890 | { | 2056 | { |
| @@ -1902,17 +2068,16 @@ print_irq_inversion_bug(struct task_struct *curr, struct lock_class *other, | |||
| 1902 | printk("but this lock took another, %s-unsafe lock in the past:\n", irqclass); | 2068 | printk("but this lock took another, %s-unsafe lock in the past:\n", irqclass); |
| 1903 | else | 2069 | else |
| 1904 | printk("but this lock was taken by another, %s-safe lock in the past:\n", irqclass); | 2070 | printk("but this lock was taken by another, %s-safe lock in the past:\n", irqclass); |
| 1905 | print_lock_name(other); | 2071 | print_lock_name(other->class); |
| 1906 | printk("\n\nand interrupts could create inverse lock ordering between them.\n\n"); | 2072 | printk("\n\nand interrupts could create inverse lock ordering between them.\n\n"); |
| 1907 | 2073 | ||
| 1908 | printk("\nother info that might help us debug this:\n"); | 2074 | printk("\nother info that might help us debug this:\n"); |
| 1909 | lockdep_print_held_locks(curr); | 2075 | lockdep_print_held_locks(curr); |
| 1910 | 2076 | ||
| 1911 | printk("\nthe first lock's dependencies:\n"); | 2077 | printk("\nthe shortest dependencies between 2nd lock and 1st lock:\n"); |
| 1912 | print_lock_dependencies(hlock_class(this), 0); | 2078 | if (!save_trace(&root->trace)) |
| 1913 | 2079 | return 0; | |
| 1914 | printk("\nthe second lock's dependencies:\n"); | 2080 | print_shortest_lock_dependencies(other, root); |
| 1915 | print_lock_dependencies(other, 0); | ||
| 1916 | 2081 | ||
| 1917 | printk("\nstack backtrace:\n"); | 2082 | printk("\nstack backtrace:\n"); |
| 1918 | dump_stack(); | 2083 | dump_stack(); |
| @@ -1929,14 +2094,19 @@ check_usage_forwards(struct task_struct *curr, struct held_lock *this, | |||
| 1929 | enum lock_usage_bit bit, const char *irqclass) | 2094 | enum lock_usage_bit bit, const char *irqclass) |
| 1930 | { | 2095 | { |
| 1931 | int ret; | 2096 | int ret; |
| 1932 | 2097 | struct lock_list root; | |
| 1933 | find_usage_bit = bit; | 2098 | struct lock_list *uninitialized_var(target_entry); |
| 1934 | /* fills in <forwards_match> */ | 2099 | |
| 1935 | ret = find_usage_forwards(hlock_class(this), 0); | 2100 | root.parent = NULL; |
| 1936 | if (!ret || ret == 1) | 2101 | root.class = hlock_class(this); |
| 2102 | ret = find_usage_forwards(&root, bit, &target_entry); | ||
| 2103 | if (ret < 0) | ||
| 2104 | return print_bfs_bug(ret); | ||
| 2105 | if (ret == 1) | ||
| 1937 | return ret; | 2106 | return ret; |
| 1938 | 2107 | ||
| 1939 | return print_irq_inversion_bug(curr, forwards_match, this, 1, irqclass); | 2108 | return print_irq_inversion_bug(curr, &root, target_entry, |
| 2109 | this, 1, irqclass); | ||
| 1940 | } | 2110 | } |
| 1941 | 2111 | ||
| 1942 | /* | 2112 | /* |
| @@ -1948,14 +2118,19 @@ check_usage_backwards(struct task_struct *curr, struct held_lock *this, | |||
| 1948 | enum lock_usage_bit bit, const char *irqclass) | 2118 | enum lock_usage_bit bit, const char *irqclass) |
| 1949 | { | 2119 | { |
| 1950 | int ret; | 2120 | int ret; |
| 1951 | 2121 | struct lock_list root; | |
| 1952 | find_usage_bit = bit; | 2122 | struct lock_list *uninitialized_var(target_entry); |
| 1953 | /* fills in <backwards_match> */ | 2123 | |
| 1954 | ret = find_usage_backwards(hlock_class(this), 0); | 2124 | root.parent = NULL; |
| 1955 | if (!ret || ret == 1) | 2125 | root.class = hlock_class(this); |
| 2126 | ret = find_usage_backwards(&root, bit, &target_entry); | ||
| 2127 | if (ret < 0) | ||
| 2128 | return print_bfs_bug(ret); | ||
| 2129 | if (ret == 1) | ||
| 1956 | return ret; | 2130 | return ret; |
| 1957 | 2131 | ||
| 1958 | return print_irq_inversion_bug(curr, backwards_match, this, 0, irqclass); | 2132 | return print_irq_inversion_bug(curr, &root, target_entry, |
| 2133 | this, 1, irqclass); | ||
| 1959 | } | 2134 | } |
| 1960 | 2135 | ||
| 1961 | void print_irqtrace_events(struct task_struct *curr) | 2136 | void print_irqtrace_events(struct task_struct *curr) |
| @@ -2530,13 +2705,15 @@ EXPORT_SYMBOL_GPL(lockdep_init_map); | |||
| 2530 | */ | 2705 | */ |
| 2531 | static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass, | 2706 | static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass, |
| 2532 | int trylock, int read, int check, int hardirqs_off, | 2707 | int trylock, int read, int check, int hardirqs_off, |
| 2533 | struct lockdep_map *nest_lock, unsigned long ip) | 2708 | struct lockdep_map *nest_lock, unsigned long ip, |
| 2709 | int references) | ||
| 2534 | { | 2710 | { |
| 2535 | struct task_struct *curr = current; | 2711 | struct task_struct *curr = current; |
| 2536 | struct lock_class *class = NULL; | 2712 | struct lock_class *class = NULL; |
| 2537 | struct held_lock *hlock; | 2713 | struct held_lock *hlock; |
| 2538 | unsigned int depth, id; | 2714 | unsigned int depth, id; |
| 2539 | int chain_head = 0; | 2715 | int chain_head = 0; |
| 2716 | int class_idx; | ||
| 2540 | u64 chain_key; | 2717 | u64 chain_key; |
| 2541 | 2718 | ||
| 2542 | if (!prove_locking) | 2719 | if (!prove_locking) |
| @@ -2584,10 +2761,24 @@ static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass, | |||
| 2584 | if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH)) | 2761 | if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH)) |
| 2585 | return 0; | 2762 | return 0; |
| 2586 | 2763 | ||
| 2764 | class_idx = class - lock_classes + 1; | ||
| 2765 | |||
| 2766 | if (depth) { | ||
| 2767 | hlock = curr->held_locks + depth - 1; | ||
| 2768 | if (hlock->class_idx == class_idx && nest_lock) { | ||
| 2769 | if (hlock->references) | ||
| 2770 | hlock->references++; | ||
| 2771 | else | ||
| 2772 | hlock->references = 2; | ||
| 2773 | |||
| 2774 | return 1; | ||
| 2775 | } | ||
| 2776 | } | ||
| 2777 | |||
| 2587 | hlock = curr->held_locks + depth; | 2778 | hlock = curr->held_locks + depth; |
| 2588 | if (DEBUG_LOCKS_WARN_ON(!class)) | 2779 | if (DEBUG_LOCKS_WARN_ON(!class)) |
| 2589 | return 0; | 2780 | return 0; |
| 2590 | hlock->class_idx = class - lock_classes + 1; | 2781 | hlock->class_idx = class_idx; |
| 2591 | hlock->acquire_ip = ip; | 2782 | hlock->acquire_ip = ip; |
| 2592 | hlock->instance = lock; | 2783 | hlock->instance = lock; |
| 2593 | hlock->nest_lock = nest_lock; | 2784 | hlock->nest_lock = nest_lock; |
| @@ -2595,6 +2786,7 @@ static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass, | |||
| 2595 | hlock->read = read; | 2786 | hlock->read = read; |
| 2596 | hlock->check = check; | 2787 | hlock->check = check; |
| 2597 | hlock->hardirqs_off = !!hardirqs_off; | 2788 | hlock->hardirqs_off = !!hardirqs_off; |
| 2789 | hlock->references = references; | ||
| 2598 | #ifdef CONFIG_LOCK_STAT | 2790 | #ifdef CONFIG_LOCK_STAT |
| 2599 | hlock->waittime_stamp = 0; | 2791 | hlock->waittime_stamp = 0; |
| 2600 | hlock->holdtime_stamp = sched_clock(); | 2792 | hlock->holdtime_stamp = sched_clock(); |
| @@ -2703,6 +2895,30 @@ static int check_unlock(struct task_struct *curr, struct lockdep_map *lock, | |||
| 2703 | return 1; | 2895 | return 1; |
| 2704 | } | 2896 | } |
| 2705 | 2897 | ||
| 2898 | static int match_held_lock(struct held_lock *hlock, struct lockdep_map *lock) | ||
| 2899 | { | ||
| 2900 | if (hlock->instance == lock) | ||
| 2901 | return 1; | ||
| 2902 | |||
| 2903 | if (hlock->references) { | ||
| 2904 | struct lock_class *class = lock->class_cache; | ||
| 2905 | |||
| 2906 | if (!class) | ||
| 2907 | class = look_up_lock_class(lock, 0); | ||
| 2908 | |||
| 2909 | if (DEBUG_LOCKS_WARN_ON(!class)) | ||
| 2910 | return 0; | ||
| 2911 | |||
| 2912 | if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock)) | ||
| 2913 | return 0; | ||
| 2914 | |||
| 2915 | if (hlock->class_idx == class - lock_classes + 1) | ||
| 2916 | return 1; | ||
| 2917 | } | ||
| 2918 | |||
| 2919 | return 0; | ||
| 2920 | } | ||
| 2921 | |||
| 2706 | static int | 2922 | static int |
| 2707 | __lock_set_class(struct lockdep_map *lock, const char *name, | 2923 | __lock_set_class(struct lockdep_map *lock, const char *name, |
| 2708 | struct lock_class_key *key, unsigned int subclass, | 2924 | struct lock_class_key *key, unsigned int subclass, |
| @@ -2726,7 +2942,7 @@ __lock_set_class(struct lockdep_map *lock, const char *name, | |||
| 2726 | */ | 2942 | */ |
| 2727 | if (prev_hlock && prev_hlock->irq_context != hlock->irq_context) | 2943 | if (prev_hlock && prev_hlock->irq_context != hlock->irq_context) |
| 2728 | break; | 2944 | break; |
| 2729 | if (hlock->instance == lock) | 2945 | if (match_held_lock(hlock, lock)) |
| 2730 | goto found_it; | 2946 | goto found_it; |
| 2731 | prev_hlock = hlock; | 2947 | prev_hlock = hlock; |
| 2732 | } | 2948 | } |
| @@ -2745,7 +2961,8 @@ found_it: | |||
| 2745 | if (!__lock_acquire(hlock->instance, | 2961 | if (!__lock_acquire(hlock->instance, |
| 2746 | hlock_class(hlock)->subclass, hlock->trylock, | 2962 | hlock_class(hlock)->subclass, hlock->trylock, |
| 2747 | hlock->read, hlock->check, hlock->hardirqs_off, | 2963 | hlock->read, hlock->check, hlock->hardirqs_off, |
| 2748 | hlock->nest_lock, hlock->acquire_ip)) | 2964 | hlock->nest_lock, hlock->acquire_ip, |
| 2965 | hlock->references)) | ||
| 2749 | return 0; | 2966 | return 0; |
| 2750 | } | 2967 | } |
| 2751 | 2968 | ||
| @@ -2784,20 +3001,34 @@ lock_release_non_nested(struct task_struct *curr, | |||
| 2784 | */ | 3001 | */ |
| 2785 | if (prev_hlock && prev_hlock->irq_context != hlock->irq_context) | 3002 | if (prev_hlock && prev_hlock->irq_context != hlock->irq_context) |
| 2786 | break; | 3003 | break; |
| 2787 | if (hlock->instance == lock) | 3004 | if (match_held_lock(hlock, lock)) |
| 2788 | goto found_it; | 3005 | goto found_it; |
| 2789 | prev_hlock = hlock; | 3006 | prev_hlock = hlock; |
| 2790 | } | 3007 | } |
| 2791 | return print_unlock_inbalance_bug(curr, lock, ip); | 3008 | return print_unlock_inbalance_bug(curr, lock, ip); |
| 2792 | 3009 | ||
| 2793 | found_it: | 3010 | found_it: |
| 2794 | lock_release_holdtime(hlock); | 3011 | if (hlock->instance == lock) |
| 3012 | lock_release_holdtime(hlock); | ||
| 3013 | |||
| 3014 | if (hlock->references) { | ||
| 3015 | hlock->references--; | ||
| 3016 | if (hlock->references) { | ||
| 3017 | /* | ||
| 3018 | * We had, and after removing one, still have | ||
| 3019 | * references, the current lock stack is still | ||
| 3020 | * valid. We're done! | ||
| 3021 | */ | ||
| 3022 | return 1; | ||
| 3023 | } | ||
| 3024 | } | ||
| 2795 | 3025 | ||
| 2796 | /* | 3026 | /* |
| 2797 | * We have the right lock to unlock, 'hlock' points to it. | 3027 | * We have the right lock to unlock, 'hlock' points to it. |
| 2798 | * Now we remove it from the stack, and add back the other | 3028 | * Now we remove it from the stack, and add back the other |
| 2799 | * entries (if any), recalculating the hash along the way: | 3029 | * entries (if any), recalculating the hash along the way: |
| 2800 | */ | 3030 | */ |
| 3031 | |||
| 2801 | curr->lockdep_depth = i; | 3032 | curr->lockdep_depth = i; |
| 2802 | curr->curr_chain_key = hlock->prev_chain_key; | 3033 | curr->curr_chain_key = hlock->prev_chain_key; |
| 2803 | 3034 | ||
| @@ -2806,7 +3037,8 @@ found_it: | |||
| 2806 | if (!__lock_acquire(hlock->instance, | 3037 | if (!__lock_acquire(hlock->instance, |
| 2807 | hlock_class(hlock)->subclass, hlock->trylock, | 3038 | hlock_class(hlock)->subclass, hlock->trylock, |
| 2808 | hlock->read, hlock->check, hlock->hardirqs_off, | 3039 | hlock->read, hlock->check, hlock->hardirqs_off, |
| 2809 | hlock->nest_lock, hlock->acquire_ip)) | 3040 | hlock->nest_lock, hlock->acquire_ip, |
| 3041 | hlock->references)) | ||
| 2810 | return 0; | 3042 | return 0; |
| 2811 | } | 3043 | } |
| 2812 | 3044 | ||
| @@ -2836,7 +3068,7 @@ static int lock_release_nested(struct task_struct *curr, | |||
| 2836 | /* | 3068 | /* |
| 2837 | * Is the unlock non-nested: | 3069 | * Is the unlock non-nested: |
| 2838 | */ | 3070 | */ |
| 2839 | if (hlock->instance != lock) | 3071 | if (hlock->instance != lock || hlock->references) |
| 2840 | return lock_release_non_nested(curr, lock, ip); | 3072 | return lock_release_non_nested(curr, lock, ip); |
| 2841 | curr->lockdep_depth--; | 3073 | curr->lockdep_depth--; |
| 2842 | 3074 | ||
| @@ -2881,6 +3113,21 @@ __lock_release(struct lockdep_map *lock, int nested, unsigned long ip) | |||
| 2881 | check_chain_key(curr); | 3113 | check_chain_key(curr); |
| 2882 | } | 3114 | } |
| 2883 | 3115 | ||
| 3116 | static int __lock_is_held(struct lockdep_map *lock) | ||
| 3117 | { | ||
| 3118 | struct task_struct *curr = current; | ||
| 3119 | int i; | ||
| 3120 | |||
| 3121 | for (i = 0; i < curr->lockdep_depth; i++) { | ||
| 3122 | struct held_lock *hlock = curr->held_locks + i; | ||
| 3123 | |||
| 3124 | if (match_held_lock(hlock, lock)) | ||
| 3125 | return 1; | ||
| 3126 | } | ||
| 3127 | |||
| 3128 | return 0; | ||
| 3129 | } | ||
| 3130 | |||
| 2884 | /* | 3131 | /* |
| 2885 | * Check whether we follow the irq-flags state precisely: | 3132 | * Check whether we follow the irq-flags state precisely: |
| 2886 | */ | 3133 | */ |
| @@ -2957,7 +3204,7 @@ void lock_acquire(struct lockdep_map *lock, unsigned int subclass, | |||
| 2957 | 3204 | ||
| 2958 | current->lockdep_recursion = 1; | 3205 | current->lockdep_recursion = 1; |
| 2959 | __lock_acquire(lock, subclass, trylock, read, check, | 3206 | __lock_acquire(lock, subclass, trylock, read, check, |
| 2960 | irqs_disabled_flags(flags), nest_lock, ip); | 3207 | irqs_disabled_flags(flags), nest_lock, ip, 0); |
| 2961 | current->lockdep_recursion = 0; | 3208 | current->lockdep_recursion = 0; |
| 2962 | raw_local_irq_restore(flags); | 3209 | raw_local_irq_restore(flags); |
| 2963 | } | 3210 | } |
| @@ -2982,6 +3229,26 @@ void lock_release(struct lockdep_map *lock, int nested, | |||
| 2982 | } | 3229 | } |
| 2983 | EXPORT_SYMBOL_GPL(lock_release); | 3230 | EXPORT_SYMBOL_GPL(lock_release); |
| 2984 | 3231 | ||
| 3232 | int lock_is_held(struct lockdep_map *lock) | ||
| 3233 | { | ||
| 3234 | unsigned long flags; | ||
| 3235 | int ret = 0; | ||
| 3236 | |||
| 3237 | if (unlikely(current->lockdep_recursion)) | ||
| 3238 | return ret; | ||
| 3239 | |||
| 3240 | raw_local_irq_save(flags); | ||
| 3241 | check_flags(flags); | ||
| 3242 | |||
| 3243 | current->lockdep_recursion = 1; | ||
| 3244 | ret = __lock_is_held(lock); | ||
| 3245 | current->lockdep_recursion = 0; | ||
| 3246 | raw_local_irq_restore(flags); | ||
| 3247 | |||
| 3248 | return ret; | ||
| 3249 | } | ||
| 3250 | EXPORT_SYMBOL_GPL(lock_is_held); | ||
| 3251 | |||
| 2985 | void lockdep_set_current_reclaim_state(gfp_t gfp_mask) | 3252 | void lockdep_set_current_reclaim_state(gfp_t gfp_mask) |
| 2986 | { | 3253 | { |
| 2987 | current->lockdep_reclaim_gfp = gfp_mask; | 3254 | current->lockdep_reclaim_gfp = gfp_mask; |
| @@ -3041,7 +3308,7 @@ __lock_contended(struct lockdep_map *lock, unsigned long ip) | |||
| 3041 | */ | 3308 | */ |
| 3042 | if (prev_hlock && prev_hlock->irq_context != hlock->irq_context) | 3309 | if (prev_hlock && prev_hlock->irq_context != hlock->irq_context) |
| 3043 | break; | 3310 | break; |
| 3044 | if (hlock->instance == lock) | 3311 | if (match_held_lock(hlock, lock)) |
| 3045 | goto found_it; | 3312 | goto found_it; |
| 3046 | prev_hlock = hlock; | 3313 | prev_hlock = hlock; |
| 3047 | } | 3314 | } |
| @@ -3049,6 +3316,9 @@ __lock_contended(struct lockdep_map *lock, unsigned long ip) | |||
| 3049 | return; | 3316 | return; |
| 3050 | 3317 | ||
| 3051 | found_it: | 3318 | found_it: |
| 3319 | if (hlock->instance != lock) | ||
| 3320 | return; | ||
| 3321 | |||
| 3052 | hlock->waittime_stamp = sched_clock(); | 3322 | hlock->waittime_stamp = sched_clock(); |
| 3053 | 3323 | ||
| 3054 | contention_point = lock_point(hlock_class(hlock)->contention_point, ip); | 3324 | contention_point = lock_point(hlock_class(hlock)->contention_point, ip); |
| @@ -3088,7 +3358,7 @@ __lock_acquired(struct lockdep_map *lock, unsigned long ip) | |||
| 3088 | */ | 3358 | */ |
| 3089 | if (prev_hlock && prev_hlock->irq_context != hlock->irq_context) | 3359 | if (prev_hlock && prev_hlock->irq_context != hlock->irq_context) |
| 3090 | break; | 3360 | break; |
| 3091 | if (hlock->instance == lock) | 3361 | if (match_held_lock(hlock, lock)) |
| 3092 | goto found_it; | 3362 | goto found_it; |
| 3093 | prev_hlock = hlock; | 3363 | prev_hlock = hlock; |
| 3094 | } | 3364 | } |
| @@ -3096,6 +3366,9 @@ __lock_acquired(struct lockdep_map *lock, unsigned long ip) | |||
| 3096 | return; | 3366 | return; |
| 3097 | 3367 | ||
| 3098 | found_it: | 3368 | found_it: |
| 3369 | if (hlock->instance != lock) | ||
| 3370 | return; | ||
| 3371 | |||
| 3099 | cpu = smp_processor_id(); | 3372 | cpu = smp_processor_id(); |
| 3100 | if (hlock->waittime_stamp) { | 3373 | if (hlock->waittime_stamp) { |
| 3101 | now = sched_clock(); | 3374 | now = sched_clock(); |
| @@ -3326,7 +3599,12 @@ void __init lockdep_info(void) | |||
| 3326 | sizeof(struct list_head) * CLASSHASH_SIZE + | 3599 | sizeof(struct list_head) * CLASSHASH_SIZE + |
| 3327 | sizeof(struct lock_list) * MAX_LOCKDEP_ENTRIES + | 3600 | sizeof(struct lock_list) * MAX_LOCKDEP_ENTRIES + |
| 3328 | sizeof(struct lock_chain) * MAX_LOCKDEP_CHAINS + | 3601 | sizeof(struct lock_chain) * MAX_LOCKDEP_CHAINS + |
| 3329 | sizeof(struct list_head) * CHAINHASH_SIZE) / 1024); | 3602 | sizeof(struct list_head) * CHAINHASH_SIZE |
| 3603 | #ifdef CONFIG_PROVE_LOCKING | ||
| 3604 | + sizeof(struct circular_queue) | ||
| 3605 | #endif | ||
| 3606 | ) / 1024 | ||
| 3607 | ); | ||
| 3330 | 3608 | ||
| 3331 | printk(" per task-struct memory footprint: %lu bytes\n", | 3609 | printk(" per task-struct memory footprint: %lu bytes\n", |
| 3332 | sizeof(struct held_lock) * MAX_LOCK_DEPTH); | 3610 | sizeof(struct held_lock) * MAX_LOCK_DEPTH); |
diff --git a/kernel/lockdep_internals.h b/kernel/lockdep_internals.h index 699a2ac3a0d7..a2ee95ad1313 100644 --- a/kernel/lockdep_internals.h +++ b/kernel/lockdep_internals.h | |||
| @@ -91,6 +91,8 @@ extern unsigned int nr_process_chains; | |||
| 91 | extern unsigned int max_lockdep_depth; | 91 | extern unsigned int max_lockdep_depth; |
| 92 | extern unsigned int max_recursion_depth; | 92 | extern unsigned int max_recursion_depth; |
| 93 | 93 | ||
| 94 | extern unsigned int max_bfs_queue_depth; | ||
| 95 | |||
| 94 | #ifdef CONFIG_PROVE_LOCKING | 96 | #ifdef CONFIG_PROVE_LOCKING |
| 95 | extern unsigned long lockdep_count_forward_deps(struct lock_class *); | 97 | extern unsigned long lockdep_count_forward_deps(struct lock_class *); |
| 96 | extern unsigned long lockdep_count_backward_deps(struct lock_class *); | 98 | extern unsigned long lockdep_count_backward_deps(struct lock_class *); |
diff --git a/kernel/lockdep_proc.c b/kernel/lockdep_proc.c index d7135aa2d2c4..d4b3dbc79fdb 100644 --- a/kernel/lockdep_proc.c +++ b/kernel/lockdep_proc.c | |||
| @@ -25,38 +25,12 @@ | |||
| 25 | 25 | ||
| 26 | static void *l_next(struct seq_file *m, void *v, loff_t *pos) | 26 | static void *l_next(struct seq_file *m, void *v, loff_t *pos) |
| 27 | { | 27 | { |
| 28 | struct lock_class *class; | 28 | return seq_list_next(v, &all_lock_classes, pos); |
| 29 | |||
| 30 | (*pos)++; | ||
| 31 | |||
| 32 | if (v == SEQ_START_TOKEN) | ||
| 33 | class = m->private; | ||
| 34 | else { | ||
| 35 | class = v; | ||
| 36 | |||
| 37 | if (class->lock_entry.next != &all_lock_classes) | ||
| 38 | class = list_entry(class->lock_entry.next, | ||
| 39 | struct lock_class, lock_entry); | ||
| 40 | else | ||
| 41 | class = NULL; | ||
| 42 | } | ||
| 43 | |||
| 44 | return class; | ||
| 45 | } | 29 | } |
| 46 | 30 | ||
| 47 | static void *l_start(struct seq_file *m, loff_t *pos) | 31 | static void *l_start(struct seq_file *m, loff_t *pos) |
| 48 | { | 32 | { |
| 49 | struct lock_class *class; | 33 | return seq_list_start_head(&all_lock_classes, *pos); |
| 50 | loff_t i = 0; | ||
| 51 | |||
| 52 | if (*pos == 0) | ||
| 53 | return SEQ_START_TOKEN; | ||
| 54 | |||
| 55 | list_for_each_entry(class, &all_lock_classes, lock_entry) { | ||
| 56 | if (++i == *pos) | ||
| 57 | return class; | ||
| 58 | } | ||
| 59 | return NULL; | ||
| 60 | } | 34 | } |
| 61 | 35 | ||
| 62 | static void l_stop(struct seq_file *m, void *v) | 36 | static void l_stop(struct seq_file *m, void *v) |
| @@ -82,11 +56,11 @@ static void print_name(struct seq_file *m, struct lock_class *class) | |||
| 82 | 56 | ||
| 83 | static int l_show(struct seq_file *m, void *v) | 57 | static int l_show(struct seq_file *m, void *v) |
| 84 | { | 58 | { |
| 85 | struct lock_class *class = v; | 59 | struct lock_class *class = list_entry(v, struct lock_class, lock_entry); |
| 86 | struct lock_list *entry; | 60 | struct lock_list *entry; |
| 87 | char usage[LOCK_USAGE_CHARS]; | 61 | char usage[LOCK_USAGE_CHARS]; |
| 88 | 62 | ||
| 89 | if (v == SEQ_START_TOKEN) { | 63 | if (v == &all_lock_classes) { |
| 90 | seq_printf(m, "all lock classes:\n"); | 64 | seq_printf(m, "all lock classes:\n"); |
| 91 | return 0; | 65 | return 0; |
| 92 | } | 66 | } |
| @@ -128,17 +102,7 @@ static const struct seq_operations lockdep_ops = { | |||
| 128 | 102 | ||
| 129 | static int lockdep_open(struct inode *inode, struct file *file) | 103 | static int lockdep_open(struct inode *inode, struct file *file) |
| 130 | { | 104 | { |
| 131 | int res = seq_open(file, &lockdep_ops); | 105 | return seq_open(file, &lockdep_ops); |
| 132 | if (!res) { | ||
| 133 | struct seq_file *m = file->private_data; | ||
| 134 | |||
| 135 | if (!list_empty(&all_lock_classes)) | ||
| 136 | m->private = list_entry(all_lock_classes.next, | ||
| 137 | struct lock_class, lock_entry); | ||
| 138 | else | ||
| 139 | m->private = NULL; | ||
| 140 | } | ||
| 141 | return res; | ||
| 142 | } | 106 | } |
| 143 | 107 | ||
| 144 | static const struct file_operations proc_lockdep_operations = { | 108 | static const struct file_operations proc_lockdep_operations = { |
| @@ -149,37 +113,23 @@ static const struct file_operations proc_lockdep_operations = { | |||
| 149 | }; | 113 | }; |
| 150 | 114 | ||
| 151 | #ifdef CONFIG_PROVE_LOCKING | 115 | #ifdef CONFIG_PROVE_LOCKING |
| 152 | static void *lc_next(struct seq_file *m, void *v, loff_t *pos) | ||
| 153 | { | ||
| 154 | struct lock_chain *chain; | ||
| 155 | |||
| 156 | (*pos)++; | ||
| 157 | |||
| 158 | if (v == SEQ_START_TOKEN) | ||
| 159 | chain = m->private; | ||
| 160 | else { | ||
| 161 | chain = v; | ||
| 162 | |||
| 163 | if (*pos < nr_lock_chains) | ||
| 164 | chain = lock_chains + *pos; | ||
| 165 | else | ||
| 166 | chain = NULL; | ||
| 167 | } | ||
| 168 | |||
| 169 | return chain; | ||
| 170 | } | ||
| 171 | |||
| 172 | static void *lc_start(struct seq_file *m, loff_t *pos) | 116 | static void *lc_start(struct seq_file *m, loff_t *pos) |
| 173 | { | 117 | { |
| 174 | if (*pos == 0) | 118 | if (*pos == 0) |
| 175 | return SEQ_START_TOKEN; | 119 | return SEQ_START_TOKEN; |
| 176 | 120 | ||
| 177 | if (*pos < nr_lock_chains) | 121 | if (*pos - 1 < nr_lock_chains) |
| 178 | return lock_chains + *pos; | 122 | return lock_chains + (*pos - 1); |
| 179 | 123 | ||
| 180 | return NULL; | 124 | return NULL; |
| 181 | } | 125 | } |
| 182 | 126 | ||
| 127 | static void *lc_next(struct seq_file *m, void *v, loff_t *pos) | ||
| 128 | { | ||
| 129 | (*pos)++; | ||
| 130 | return lc_start(m, pos); | ||
| 131 | } | ||
| 132 | |||
| 183 | static void lc_stop(struct seq_file *m, void *v) | 133 | static void lc_stop(struct seq_file *m, void *v) |
| 184 | { | 134 | { |
| 185 | } | 135 | } |
| @@ -220,16 +170,7 @@ static const struct seq_operations lockdep_chains_ops = { | |||
| 220 | 170 | ||
| 221 | static int lockdep_chains_open(struct inode *inode, struct file *file) | 171 | static int lockdep_chains_open(struct inode *inode, struct file *file) |
| 222 | { | 172 | { |
| 223 | int res = seq_open(file, &lockdep_chains_ops); | 173 | return seq_open(file, &lockdep_chains_ops); |
| 224 | if (!res) { | ||
| 225 | struct seq_file *m = file->private_data; | ||
| 226 | |||
| 227 | if (nr_lock_chains) | ||
| 228 | m->private = lock_chains; | ||
| 229 | else | ||
| 230 | m->private = NULL; | ||
| 231 | } | ||
| 232 | return res; | ||
| 233 | } | 174 | } |
| 234 | 175 | ||
| 235 | static const struct file_operations proc_lockdep_chains_operations = { | 176 | static const struct file_operations proc_lockdep_chains_operations = { |
| @@ -258,16 +199,10 @@ static void lockdep_stats_debug_show(struct seq_file *m) | |||
| 258 | debug_atomic_read(&chain_lookup_hits)); | 199 | debug_atomic_read(&chain_lookup_hits)); |
| 259 | seq_printf(m, " cyclic checks: %11u\n", | 200 | seq_printf(m, " cyclic checks: %11u\n", |
| 260 | debug_atomic_read(&nr_cyclic_checks)); | 201 | debug_atomic_read(&nr_cyclic_checks)); |
| 261 | seq_printf(m, " cyclic-check recursions: %11u\n", | ||
| 262 | debug_atomic_read(&nr_cyclic_check_recursions)); | ||
| 263 | seq_printf(m, " find-mask forwards checks: %11u\n", | 202 | seq_printf(m, " find-mask forwards checks: %11u\n", |
| 264 | debug_atomic_read(&nr_find_usage_forwards_checks)); | 203 | debug_atomic_read(&nr_find_usage_forwards_checks)); |
| 265 | seq_printf(m, " find-mask forwards recursions: %11u\n", | ||
| 266 | debug_atomic_read(&nr_find_usage_forwards_recursions)); | ||
| 267 | seq_printf(m, " find-mask backwards checks: %11u\n", | 204 | seq_printf(m, " find-mask backwards checks: %11u\n", |
| 268 | debug_atomic_read(&nr_find_usage_backwards_checks)); | 205 | debug_atomic_read(&nr_find_usage_backwards_checks)); |
| 269 | seq_printf(m, " find-mask backwards recursions:%11u\n", | ||
| 270 | debug_atomic_read(&nr_find_usage_backwards_recursions)); | ||
| 271 | 206 | ||
| 272 | seq_printf(m, " hardirq on events: %11u\n", hi1); | 207 | seq_printf(m, " hardirq on events: %11u\n", hi1); |
| 273 | seq_printf(m, " hardirq off events: %11u\n", hi2); | 208 | seq_printf(m, " hardirq off events: %11u\n", hi2); |
| @@ -409,8 +344,10 @@ static int lockdep_stats_show(struct seq_file *m, void *v) | |||
| 409 | nr_unused); | 344 | nr_unused); |
| 410 | seq_printf(m, " max locking depth: %11u\n", | 345 | seq_printf(m, " max locking depth: %11u\n", |
| 411 | max_lockdep_depth); | 346 | max_lockdep_depth); |
| 412 | seq_printf(m, " max recursion depth: %11u\n", | 347 | #ifdef CONFIG_PROVE_LOCKING |
| 413 | max_recursion_depth); | 348 | seq_printf(m, " max bfs queue depth: %11u\n", |
| 349 | max_bfs_queue_depth); | ||
| 350 | #endif | ||
| 414 | lockdep_stats_debug_show(m); | 351 | lockdep_stats_debug_show(m); |
| 415 | seq_printf(m, " debug_locks: %11u\n", | 352 | seq_printf(m, " debug_locks: %11u\n", |
| 416 | debug_locks); | 353 | debug_locks); |
| @@ -438,7 +375,6 @@ struct lock_stat_data { | |||
| 438 | }; | 375 | }; |
| 439 | 376 | ||
| 440 | struct lock_stat_seq { | 377 | struct lock_stat_seq { |
| 441 | struct lock_stat_data *iter; | ||
| 442 | struct lock_stat_data *iter_end; | 378 | struct lock_stat_data *iter_end; |
| 443 | struct lock_stat_data stats[MAX_LOCKDEP_KEYS]; | 379 | struct lock_stat_data stats[MAX_LOCKDEP_KEYS]; |
| 444 | }; | 380 | }; |
| @@ -626,34 +562,22 @@ static void seq_header(struct seq_file *m) | |||
| 626 | static void *ls_start(struct seq_file *m, loff_t *pos) | 562 | static void *ls_start(struct seq_file *m, loff_t *pos) |
| 627 | { | 563 | { |
| 628 | struct lock_stat_seq *data = m->private; | 564 | struct lock_stat_seq *data = m->private; |
| 565 | struct lock_stat_data *iter; | ||
| 629 | 566 | ||
| 630 | if (*pos == 0) | 567 | if (*pos == 0) |
| 631 | return SEQ_START_TOKEN; | 568 | return SEQ_START_TOKEN; |
| 632 | 569 | ||
| 633 | data->iter = data->stats + *pos; | 570 | iter = data->stats + (*pos - 1); |
| 634 | if (data->iter >= data->iter_end) | 571 | if (iter >= data->iter_end) |
| 635 | data->iter = NULL; | 572 | iter = NULL; |
| 636 | 573 | ||
| 637 | return data->iter; | 574 | return iter; |
| 638 | } | 575 | } |
| 639 | 576 | ||
| 640 | static void *ls_next(struct seq_file *m, void *v, loff_t *pos) | 577 | static void *ls_next(struct seq_file *m, void *v, loff_t *pos) |
| 641 | { | 578 | { |
| 642 | struct lock_stat_seq *data = m->private; | ||
| 643 | |||
| 644 | (*pos)++; | 579 | (*pos)++; |
| 645 | 580 | return ls_start(m, pos); | |
| 646 | if (v == SEQ_START_TOKEN) | ||
| 647 | data->iter = data->stats; | ||
| 648 | else { | ||
| 649 | data->iter = v; | ||
| 650 | data->iter++; | ||
| 651 | } | ||
| 652 | |||
| 653 | if (data->iter == data->iter_end) | ||
| 654 | data->iter = NULL; | ||
| 655 | |||
| 656 | return data->iter; | ||
| 657 | } | 581 | } |
| 658 | 582 | ||
| 659 | static void ls_stop(struct seq_file *m, void *v) | 583 | static void ls_stop(struct seq_file *m, void *v) |
| @@ -691,7 +615,6 @@ static int lock_stat_open(struct inode *inode, struct file *file) | |||
| 691 | struct lock_stat_data *iter = data->stats; | 615 | struct lock_stat_data *iter = data->stats; |
| 692 | struct seq_file *m = file->private_data; | 616 | struct seq_file *m = file->private_data; |
| 693 | 617 | ||
| 694 | data->iter = iter; | ||
| 695 | list_for_each_entry(class, &all_lock_classes, lock_entry) { | 618 | list_for_each_entry(class, &all_lock_classes, lock_entry) { |
| 696 | iter->class = class; | 619 | iter->class = class; |
| 697 | iter->stats = lock_stats(class); | 620 | iter->stats = lock_stats(class); |
| @@ -699,7 +622,7 @@ static int lock_stat_open(struct inode *inode, struct file *file) | |||
| 699 | } | 622 | } |
| 700 | data->iter_end = iter; | 623 | data->iter_end = iter; |
| 701 | 624 | ||
| 702 | sort(data->stats, data->iter_end - data->iter, | 625 | sort(data->stats, data->iter_end - data->stats, |
| 703 | sizeof(struct lock_stat_data), | 626 | sizeof(struct lock_stat_data), |
| 704 | lock_stat_cmp, NULL); | 627 | lock_stat_cmp, NULL); |
| 705 | 628 | ||
| @@ -734,7 +657,6 @@ static int lock_stat_release(struct inode *inode, struct file *file) | |||
| 734 | struct seq_file *seq = file->private_data; | 657 | struct seq_file *seq = file->private_data; |
| 735 | 658 | ||
| 736 | vfree(seq->private); | 659 | vfree(seq->private); |
| 737 | seq->private = NULL; | ||
| 738 | return seq_release(inode, file); | 660 | return seq_release(inode, file); |
| 739 | } | 661 | } |
| 740 | 662 | ||
| @@ -758,7 +680,8 @@ static int __init lockdep_proc_init(void) | |||
| 758 | &proc_lockdep_stats_operations); | 680 | &proc_lockdep_stats_operations); |
| 759 | 681 | ||
| 760 | #ifdef CONFIG_LOCK_STAT | 682 | #ifdef CONFIG_LOCK_STAT |
| 761 | proc_create("lock_stat", S_IRUSR, NULL, &proc_lock_stat_operations); | 683 | proc_create("lock_stat", S_IRUSR | S_IWUSR, NULL, |
| 684 | &proc_lock_stat_operations); | ||
| 762 | #endif | 685 | #endif |
| 763 | 686 | ||
| 764 | return 0; | 687 | return 0; |
diff --git a/kernel/marker.c b/kernel/marker.c deleted file mode 100644 index ea54f2647868..000000000000 --- a/kernel/marker.c +++ /dev/null | |||
| @@ -1,930 +0,0 @@ | |||
| 1 | /* | ||
| 2 | * Copyright (C) 2007 Mathieu Desnoyers | ||
| 3 | * | ||
| 4 | * This program is free software; you can redistribute it and/or modify | ||
| 5 | * it under the terms of the GNU General Public License as published by | ||
| 6 | * the Free Software Foundation; either version 2 of the License, or | ||
| 7 | * (at your option) any later version. | ||
| 8 | * | ||
| 9 | * This program is distributed in the hope that it will be useful, | ||
| 10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
| 11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
| 12 | * GNU General Public License for more details. | ||
| 13 | * | ||
| 14 | * You should have received a copy of the GNU General Public License | ||
| 15 | * along with this program; if not, write to the Free Software | ||
| 16 | * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | ||
| 17 | */ | ||
| 18 | #include <linux/module.h> | ||
| 19 | #include <linux/mutex.h> | ||
| 20 | #include <linux/types.h> | ||
| 21 | #include <linux/jhash.h> | ||
| 22 | #include <linux/list.h> | ||
| 23 | #include <linux/rcupdate.h> | ||
| 24 | #include <linux/marker.h> | ||
| 25 | #include <linux/err.h> | ||
| 26 | #include <linux/slab.h> | ||
| 27 | |||
| 28 | extern struct marker __start___markers[]; | ||
| 29 | extern struct marker __stop___markers[]; | ||
| 30 | |||
| 31 | /* Set to 1 to enable marker debug output */ | ||
| 32 | static const int marker_debug; | ||
| 33 | |||
| 34 | /* | ||
| 35 | * markers_mutex nests inside module_mutex. Markers mutex protects the builtin | ||
| 36 | * and module markers and the hash table. | ||
| 37 | */ | ||
| 38 | static DEFINE_MUTEX(markers_mutex); | ||
| 39 | |||
| 40 | /* | ||
| 41 | * Marker hash table, containing the active markers. | ||
| 42 | * Protected by module_mutex. | ||
| 43 | */ | ||
| 44 | #define MARKER_HASH_BITS 6 | ||
| 45 | #define MARKER_TABLE_SIZE (1 << MARKER_HASH_BITS) | ||
| 46 | static struct hlist_head marker_table[MARKER_TABLE_SIZE]; | ||
| 47 | |||
| 48 | /* | ||
| 49 | * Note about RCU : | ||
| 50 | * It is used to make sure every handler has finished using its private data | ||
| 51 | * between two consecutive operation (add or remove) on a given marker. It is | ||
| 52 | * also used to delay the free of multiple probes array until a quiescent state | ||
| 53 | * is reached. | ||
| 54 | * marker entries modifications are protected by the markers_mutex. | ||
| 55 | */ | ||
| 56 | struct marker_entry { | ||
| 57 | struct hlist_node hlist; | ||
| 58 | char *format; | ||
| 59 | /* Probe wrapper */ | ||
| 60 | void (*call)(const struct marker *mdata, void *call_private, ...); | ||
| 61 | struct marker_probe_closure single; | ||
| 62 | struct marker_probe_closure *multi; | ||
| 63 | int refcount; /* Number of times armed. 0 if disarmed. */ | ||
| 64 | struct rcu_head rcu; | ||
| 65 | void *oldptr; | ||
| 66 | int rcu_pending; | ||
| 67 | unsigned char ptype:1; | ||
| 68 | unsigned char format_allocated:1; | ||
| 69 | char name[0]; /* Contains name'\0'format'\0' */ | ||
| 70 | }; | ||
| 71 | |||
| 72 | /** | ||
| 73 | * __mark_empty_function - Empty probe callback | ||
| 74 | * @probe_private: probe private data | ||
| 75 | * @call_private: call site private data | ||
| 76 | * @fmt: format string | ||
| 77 | * @...: variable argument list | ||
| 78 | * | ||
| 79 | * Empty callback provided as a probe to the markers. By providing this to a | ||
| 80 | * disabled marker, we make sure the execution flow is always valid even | ||
| 81 | * though the function pointer change and the marker enabling are two distinct | ||
| 82 | * operations that modifies the execution flow of preemptible code. | ||
| 83 | */ | ||
| 84 | notrace void __mark_empty_function(void *probe_private, void *call_private, | ||
| 85 | const char *fmt, va_list *args) | ||
| 86 | { | ||
| 87 | } | ||
| 88 | EXPORT_SYMBOL_GPL(__mark_empty_function); | ||
| 89 | |||
| 90 | /* | ||
| 91 | * marker_probe_cb Callback that prepares the variable argument list for probes. | ||
| 92 | * @mdata: pointer of type struct marker | ||
| 93 | * @call_private: caller site private data | ||
| 94 | * @...: Variable argument list. | ||
| 95 | * | ||
| 96 | * Since we do not use "typical" pointer based RCU in the 1 argument case, we | ||
| 97 | * need to put a full smp_rmb() in this branch. This is why we do not use | ||
| 98 | * rcu_dereference() for the pointer read. | ||
| 99 | */ | ||
| 100 | notrace void marker_probe_cb(const struct marker *mdata, | ||
| 101 | void *call_private, ...) | ||
| 102 | { | ||
| 103 | va_list args; | ||
| 104 | char ptype; | ||
| 105 | |||
| 106 | /* | ||
| 107 | * rcu_read_lock_sched does two things : disabling preemption to make | ||
| 108 | * sure the teardown of the callbacks can be done correctly when they | ||
| 109 | * are in modules and they insure RCU read coherency. | ||
| 110 | */ | ||
| 111 | rcu_read_lock_sched_notrace(); | ||
| 112 | ptype = mdata->ptype; | ||
| 113 | if (likely(!ptype)) { | ||
| 114 | marker_probe_func *func; | ||
| 115 | /* Must read the ptype before ptr. They are not data dependant, | ||
| 116 | * so we put an explicit smp_rmb() here. */ | ||
| 117 | smp_rmb(); | ||
| 118 | func = mdata->single.func; | ||
| 119 | /* Must read the ptr before private data. They are not data | ||
| 120 | * dependant, so we put an explicit smp_rmb() here. */ | ||
| 121 | smp_rmb(); | ||
| 122 | va_start(args, call_private); | ||
| 123 | func(mdata->single.probe_private, call_private, mdata->format, | ||
| 124 | &args); | ||
| 125 | va_end(args); | ||
| 126 | } else { | ||
| 127 | struct marker_probe_closure *multi; | ||
| 128 | int i; | ||
| 129 | /* | ||
| 130 | * Read mdata->ptype before mdata->multi. | ||
| 131 | */ | ||
| 132 | smp_rmb(); | ||
| 133 | multi = mdata->multi; | ||
| 134 | /* | ||
| 135 | * multi points to an array, therefore accessing the array | ||
| 136 | * depends on reading multi. However, even in this case, | ||
| 137 | * we must insure that the pointer is read _before_ the array | ||
| 138 | * data. Same as rcu_dereference, but we need a full smp_rmb() | ||
| 139 | * in the fast path, so put the explicit barrier here. | ||
| 140 | */ | ||
| 141 | smp_read_barrier_depends(); | ||
| 142 | for (i = 0; multi[i].func; i++) { | ||
| 143 | va_start(args, call_private); | ||
| 144 | multi[i].func(multi[i].probe_private, call_private, | ||
| 145 | mdata->format, &args); | ||
| 146 | va_end(args); | ||
| 147 | } | ||
| 148 | } | ||
| 149 | rcu_read_unlock_sched_notrace(); | ||
| 150 | } | ||
| 151 | EXPORT_SYMBOL_GPL(marker_probe_cb); | ||
| 152 | |||
| 153 | /* | ||
| 154 | * marker_probe_cb Callback that does not prepare the variable argument list. | ||
| 155 | * @mdata: pointer of type struct marker | ||
| 156 | * @call_private: caller site private data | ||
| 157 | * @...: Variable argument list. | ||
| 158 | * | ||
| 159 | * Should be connected to markers "MARK_NOARGS". | ||
| 160 | */ | ||
| 161 | static notrace void marker_probe_cb_noarg(const struct marker *mdata, | ||
| 162 | void *call_private, ...) | ||
| 163 | { | ||
| 164 | va_list args; /* not initialized */ | ||
| 165 | char ptype; | ||
| 166 | |||
| 167 | rcu_read_lock_sched_notrace(); | ||
| 168 | ptype = mdata->ptype; | ||
| 169 | if (likely(!ptype)) { | ||
| 170 | marker_probe_func *func; | ||
| 171 | /* Must read the ptype before ptr. They are not data dependant, | ||
| 172 | * so we put an explicit smp_rmb() here. */ | ||
| 173 | smp_rmb(); | ||
| 174 | func = mdata->single.func; | ||
| 175 | /* Must read the ptr before private data. They are not data | ||
| 176 | * dependant, so we put an explicit smp_rmb() here. */ | ||
| 177 | smp_rmb(); | ||
| 178 | func(mdata->single.probe_private, call_private, mdata->format, | ||
| 179 | &args); | ||
| 180 | } else { | ||
| 181 | struct marker_probe_closure *multi; | ||
| 182 | int i; | ||
| 183 | /* | ||
| 184 | * Read mdata->ptype before mdata->multi. | ||
| 185 | */ | ||
| 186 | smp_rmb(); | ||
| 187 | multi = mdata->multi; | ||
| 188 | /* | ||
| 189 | * multi points to an array, therefore accessing the array | ||
| 190 | * depends on reading multi. However, even in this case, | ||
| 191 | * we must insure that the pointer is read _before_ the array | ||
| 192 | * data. Same as rcu_dereference, but we need a full smp_rmb() | ||
| 193 | * in the fast path, so put the explicit barrier here. | ||
| 194 | */ | ||
| 195 | smp_read_barrier_depends(); | ||
| 196 | for (i = 0; multi[i].func; i++) | ||
| 197 | multi[i].func(multi[i].probe_private, call_private, | ||
| 198 | mdata->format, &args); | ||
| 199 | } | ||
| 200 | rcu_read_unlock_sched_notrace(); | ||
| 201 | } | ||
| 202 | |||
| 203 | static void free_old_closure(struct rcu_head *head) | ||
| 204 | { | ||
| 205 | struct marker_entry *entry = container_of(head, | ||
| 206 | struct marker_entry, rcu); | ||
| 207 | kfree(entry->oldptr); | ||
| 208 | /* Make sure we free the data before setting the pending flag to 0 */ | ||
| 209 | smp_wmb(); | ||
| 210 | entry->rcu_pending = 0; | ||
| 211 | } | ||
| 212 | |||
| 213 | static void debug_print_probes(struct marker_entry *entry) | ||
| 214 | { | ||
| 215 | int i; | ||
| 216 | |||
| 217 | if (!marker_debug) | ||
| 218 | return; | ||
| 219 | |||
| 220 | if (!entry->ptype) { | ||
| 221 | printk(KERN_DEBUG "Single probe : %p %p\n", | ||
| 222 | entry->single.func, | ||
| 223 | entry->single.probe_private); | ||
| 224 | } else { | ||
| 225 | for (i = 0; entry->multi[i].func; i++) | ||
| 226 | printk(KERN_DEBUG "Multi probe %d : %p %p\n", i, | ||
| 227 | entry->multi[i].func, | ||
| 228 | entry->multi[i].probe_private); | ||
| 229 | } | ||
| 230 | } | ||
| 231 | |||
| 232 | static struct marker_probe_closure * | ||
| 233 | marker_entry_add_probe(struct marker_entry *entry, | ||
| 234 | marker_probe_func *probe, void *probe_private) | ||
| 235 | { | ||
| 236 | int nr_probes = 0; | ||
| 237 | struct marker_probe_closure *old, *new; | ||
| 238 | |||
| 239 | WARN_ON(!probe); | ||
| 240 | |||
| 241 | debug_print_probes(entry); | ||
| 242 | old = entry->multi; | ||
| 243 | if (!entry->ptype) { | ||
| 244 | if (entry->single.func == probe && | ||
| 245 | entry->single.probe_private == probe_private) | ||
| 246 | return ERR_PTR(-EBUSY); | ||
| 247 | if (entry->single.func == __mark_empty_function) { | ||
| 248 | /* 0 -> 1 probes */ | ||
| 249 | entry->single.func = probe; | ||
| 250 | entry->single.probe_private = probe_private; | ||
| 251 | entry->refcount = 1; | ||
| 252 | entry->ptype = 0; | ||
| 253 | debug_print_probes(entry); | ||
| 254 | return NULL; | ||
| 255 | } else { | ||
| 256 | /* 1 -> 2 probes */ | ||
| 257 | nr_probes = 1; | ||
| 258 | old = NULL; | ||
| 259 | } | ||
| 260 | } else { | ||
| 261 | /* (N -> N+1), (N != 0, 1) probes */ | ||
| 262 | for (nr_probes = 0; old[nr_probes].func; nr_probes++) | ||
| 263 | if (old[nr_probes].func == probe | ||
| 264 | && old[nr_probes].probe_private | ||
| 265 | == probe_private) | ||
| 266 | return ERR_PTR(-EBUSY); | ||
| 267 | } | ||
| 268 | /* + 2 : one for new probe, one for NULL func */ | ||
| 269 | new = kzalloc((nr_probes + 2) * sizeof(struct marker_probe_closure), | ||
| 270 | GFP_KERNEL); | ||
| 271 | if (new == NULL) | ||
| 272 | return ERR_PTR(-ENOMEM); | ||
| 273 | if (!old) | ||
| 274 | new[0] = entry->single; | ||
| 275 | else | ||
| 276 | memcpy(new, old, | ||
| 277 | nr_probes * sizeof(struct marker_probe_closure)); | ||
| 278 | new[nr_probes].func = probe; | ||
| 279 | new[nr_probes].probe_private = probe_private; | ||
| 280 | entry->refcount = nr_probes + 1; | ||
| 281 | entry->multi = new; | ||
| 282 | entry->ptype = 1; | ||
| 283 | debug_print_probes(entry); | ||
| 284 | return old; | ||
| 285 | } | ||
| 286 | |||
| 287 | static struct marker_probe_closure * | ||
| 288 | marker_entry_remove_probe(struct marker_entry *entry, | ||
| 289 | marker_probe_func *probe, void *probe_private) | ||
| 290 | { | ||
| 291 | int nr_probes = 0, nr_del = 0, i; | ||
| 292 | struct marker_probe_closure *old, *new; | ||
| 293 | |||
| 294 | old = entry->multi; | ||
| 295 | |||
| 296 | debug_print_probes(entry); | ||
| 297 | if (!entry->ptype) { | ||
| 298 | /* 0 -> N is an error */ | ||
| 299 | WARN_ON(entry->single.func == __mark_empty_function); | ||
| 300 | /* 1 -> 0 probes */ | ||
| 301 | WARN_ON(probe && entry->single.func != probe); | ||
| 302 | WARN_ON(entry->single.probe_private != probe_private); | ||
| 303 | entry->single.func = __mark_empty_function; | ||
| 304 | entry->refcount = 0; | ||
| 305 | entry->ptype = 0; | ||
| 306 | debug_print_probes(entry); | ||
| 307 | return NULL; | ||
| 308 | } else { | ||
| 309 | /* (N -> M), (N > 1, M >= 0) probes */ | ||
| 310 | for (nr_probes = 0; old[nr_probes].func; nr_probes++) { | ||
| 311 | if ((!probe || old[nr_probes].func == probe) | ||
| 312 | && old[nr_probes].probe_private | ||
| 313 | == probe_private) | ||
| 314 | nr_del++; | ||
| 315 | } | ||
| 316 | } | ||
| 317 | |||
| 318 | if (nr_probes - nr_del == 0) { | ||
| 319 | /* N -> 0, (N > 1) */ | ||
| 320 | entry->single.func = __mark_empty_function; | ||
| 321 | entry->refcount = 0; | ||
| 322 | entry->ptype = 0; | ||
| 323 | } else if (nr_probes - nr_del == 1) { | ||
| 324 | /* N -> 1, (N > 1) */ | ||
| 325 | for (i = 0; old[i].func; i++) | ||
| 326 | if ((probe && old[i].func != probe) || | ||
| 327 | old[i].probe_private != probe_private) | ||
| 328 | entry->single = old[i]; | ||
| 329 | entry->refcount = 1; | ||
| 330 | entry->ptype = 0; | ||
| 331 | } else { | ||
| 332 | int j = 0; | ||
| 333 | /* N -> M, (N > 1, M > 1) */ | ||
| 334 | /* + 1 for NULL */ | ||
| 335 | new = kzalloc((nr_probes - nr_del + 1) | ||
| 336 | * sizeof(struct marker_probe_closure), GFP_KERNEL); | ||
| 337 | if (new == NULL) | ||
| 338 | return ERR_PTR(-ENOMEM); | ||
| 339 | for (i = 0; old[i].func; i++) | ||
| 340 | if ((probe && old[i].func != probe) || | ||
| 341 | old[i].probe_private != probe_private) | ||
| 342 | new[j++] = old[i]; | ||
| 343 | entry->refcount = nr_probes - nr_del; | ||
| 344 | entry->ptype = 1; | ||
| 345 | entry->multi = new; | ||
| 346 | } | ||
| 347 | debug_print_probes(entry); | ||
| 348 | return old; | ||
| 349 | } | ||
| 350 | |||
| 351 | /* | ||
| 352 | * Get marker if the marker is present in the marker hash table. | ||
| 353 | * Must be called with markers_mutex held. | ||
| 354 | * Returns NULL if not present. | ||
| 355 | */ | ||
| 356 | static struct marker_entry *get_marker(const char *name) | ||
| 357 | { | ||
| 358 | struct hlist_head *head; | ||
| 359 | struct hlist_node *node; | ||
| 360 | struct marker_entry *e; | ||
| 361 | u32 hash = jhash(name, strlen(name), 0); | ||
| 362 | |||
| 363 | head = &marker_table[hash & ((1 << MARKER_HASH_BITS)-1)]; | ||
| 364 | hlist_for_each_entry(e, node, head, hlist) { | ||
| 365 | if (!strcmp(name, e->name)) | ||
| 366 | return e; | ||
| 367 | } | ||
| 368 | return NULL; | ||
| 369 | } | ||
| 370 | |||
| 371 | /* | ||
| 372 | * Add the marker to the marker hash table. Must be called with markers_mutex | ||
| 373 | * held. | ||
| 374 | */ | ||
| 375 | static struct marker_entry *add_marker(const char *name, const char *format) | ||
| 376 | { | ||
| 377 | struct hlist_head *head; | ||
| 378 | struct hlist_node *node; | ||
| 379 | struct marker_entry *e; | ||
| 380 | size_t name_len = strlen(name) + 1; | ||
| 381 | size_t format_len = 0; | ||
| 382 | u32 hash = jhash(name, name_len-1, 0); | ||
| 383 | |||
| 384 | if (format) | ||
| 385 | format_len = strlen(format) + 1; | ||
| 386 | head = &marker_table[hash & ((1 << MARKER_HASH_BITS)-1)]; | ||
| 387 | hlist_for_each_entry(e, node, head, hlist) { | ||
| 388 | if (!strcmp(name, e->name)) { | ||
| 389 | printk(KERN_NOTICE | ||
| 390 | "Marker %s busy\n", name); | ||
| 391 | return ERR_PTR(-EBUSY); /* Already there */ | ||
| 392 | } | ||
| 393 | } | ||
| 394 | /* | ||
| 395 | * Using kmalloc here to allocate a variable length element. Could | ||
| 396 | * cause some memory fragmentation if overused. | ||
| 397 | */ | ||
| 398 | e = kmalloc(sizeof(struct marker_entry) + name_len + format_len, | ||
| 399 | GFP_KERNEL); | ||
| 400 | if (!e) | ||
| 401 | return ERR_PTR(-ENOMEM); | ||
| 402 | memcpy(&e->name[0], name, name_len); | ||
| 403 | if (format) { | ||
| 404 | e->format = &e->name[name_len]; | ||
| 405 | memcpy(e->format, format, format_len); | ||
| 406 | if (strcmp(e->format, MARK_NOARGS) == 0) | ||
| 407 | e->call = marker_probe_cb_noarg; | ||
| 408 | else | ||
| 409 | e->call = marker_probe_cb; | ||
| 410 | trace_mark(core_marker_format, "name %s format %s", | ||
| 411 | e->name, e->format); | ||
| 412 | } else { | ||
| 413 | e->format = NULL; | ||
| 414 | e->call = marker_probe_cb; | ||
| 415 | } | ||
| 416 | e->single.func = __mark_empty_function; | ||
| 417 | e->single.probe_private = NULL; | ||
| 418 | e->multi = NULL; | ||
| 419 | e->ptype = 0; | ||
| 420 | e->format_allocated = 0; | ||
| 421 | e->refcount = 0; | ||
| 422 | e->rcu_pending = 0; | ||
| 423 | hlist_add_head(&e->hlist, head); | ||
| 424 | return e; | ||
| 425 | } | ||
| 426 | |||
| 427 | /* | ||
| 428 | * Remove the marker from the marker hash table. Must be called with mutex_lock | ||
| 429 | * held. | ||
| 430 | */ | ||
| 431 | static int remove_marker(const char *name) | ||
| 432 | { | ||
| 433 | struct hlist_head *head; | ||
| 434 | struct hlist_node *node; | ||
| 435 | struct marker_entry *e; | ||
| 436 | int found = 0; | ||
| 437 | size_t len = strlen(name) + 1; | ||
| 438 | u32 hash = jhash(name, len-1, 0); | ||
| 439 | |||
| 440 | head = &marker_table[hash & ((1 << MARKER_HASH_BITS)-1)]; | ||
| 441 | hlist_for_each_entry(e, node, head, hlist) { | ||
| 442 | if (!strcmp(name, e->name)) { | ||
| 443 | found = 1; | ||
| 444 | break; | ||
| 445 | } | ||
| 446 | } | ||
| 447 | if (!found) | ||
| 448 | return -ENOENT; | ||
| 449 | if (e->single.func != __mark_empty_function) | ||
| 450 | return -EBUSY; | ||
| 451 | hlist_del(&e->hlist); | ||
| 452 | if (e->format_allocated) | ||
| 453 | kfree(e->format); | ||
| 454 | /* Make sure the call_rcu has been executed */ | ||
| 455 | if (e->rcu_pending) | ||
| 456 | rcu_barrier_sched(); | ||
| 457 | kfree(e); | ||
| 458 | return 0; | ||
| 459 | } | ||
| 460 | |||
| 461 | /* | ||
| 462 | * Set the mark_entry format to the format found in the element. | ||
| 463 | */ | ||
| 464 | static int marker_set_format(struct marker_entry *entry, const char *format) | ||
| 465 | { | ||
| 466 | entry->format = kstrdup(format, GFP_KERNEL); | ||
| 467 | if (!entry->format) | ||
| 468 | return -ENOMEM; | ||
| 469 | entry->format_allocated = 1; | ||
| 470 | |||
| 471 | trace_mark(core_marker_format, "name %s format %s", | ||
| 472 | entry->name, entry->format); | ||
| 473 | return 0; | ||
| 474 | } | ||
| 475 | |||
| 476 | /* | ||
| 477 | * Sets the probe callback corresponding to one marker. | ||
| 478 | */ | ||
| 479 | static int set_marker(struct marker_entry *entry, struct marker *elem, | ||
| 480 | int active) | ||
| 481 | { | ||
| 482 | int ret = 0; | ||
| 483 | WARN_ON(strcmp(entry->name, elem->name) != 0); | ||
| 484 | |||
| 485 | if (entry->format) { | ||
| 486 | if (strcmp(entry->format, elem->format) != 0) { | ||
| 487 | printk(KERN_NOTICE | ||
| 488 | "Format mismatch for probe %s " | ||
| 489 | "(%s), marker (%s)\n", | ||
| 490 | entry->name, | ||
| 491 | entry->format, | ||
| 492 | elem->format); | ||
| 493 | return -EPERM; | ||
| 494 | } | ||
| 495 | } else { | ||
| 496 | ret = marker_set_format(entry, elem->format); | ||
| 497 | if (ret) | ||
| 498 | return ret; | ||
| 499 | } | ||
| 500 | |||
| 501 | /* | ||
| 502 | * probe_cb setup (statically known) is done here. It is | ||
| 503 | * asynchronous with the rest of execution, therefore we only | ||
| 504 | * pass from a "safe" callback (with argument) to an "unsafe" | ||
| 505 | * callback (does not set arguments). | ||
| 506 | */ | ||
| 507 | elem->call = entry->call; | ||
| 508 | /* | ||
| 509 | * Sanity check : | ||
| 510 | * We only update the single probe private data when the ptr is | ||
| 511 | * set to a _non_ single probe! (0 -> 1 and N -> 1, N != 1) | ||
| 512 | */ | ||
| 513 | WARN_ON(elem->single.func != __mark_empty_function | ||
| 514 | && elem->single.probe_private != entry->single.probe_private | ||
| 515 | && !elem->ptype); | ||
| 516 | elem->single.probe_private = entry->single.probe_private; | ||
| 517 | /* | ||
| 518 | * Make sure the private data is valid when we update the | ||
| 519 | * single probe ptr. | ||
| 520 | */ | ||
| 521 | smp_wmb(); | ||
| 522 | elem->single.func = entry->single.func; | ||
| 523 | /* | ||
| 524 | * We also make sure that the new probe callbacks array is consistent | ||
| 525 | * before setting a pointer to it. | ||
| 526 | */ | ||
| 527 | rcu_assign_pointer(elem->multi, entry->multi); | ||
| 528 | /* | ||
| 529 | * Update the function or multi probe array pointer before setting the | ||
| 530 | * ptype. | ||
| 531 | */ | ||
| 532 | smp_wmb(); | ||
| 533 | elem->ptype = entry->ptype; | ||
| 534 | |||
| 535 | if (elem->tp_name && (active ^ elem->state)) { | ||
| 536 | WARN_ON(!elem->tp_cb); | ||
| 537 | /* | ||
| 538 | * It is ok to directly call the probe registration because type | ||
| 539 | * checking has been done in the __trace_mark_tp() macro. | ||
| 540 | */ | ||
| 541 | |||
| 542 | if (active) { | ||
| 543 | /* | ||
| 544 | * try_module_get should always succeed because we hold | ||
| 545 | * lock_module() to get the tp_cb address. | ||
| 546 | */ | ||
| 547 | ret = try_module_get(__module_text_address( | ||
| 548 | (unsigned long)elem->tp_cb)); | ||
| 549 | BUG_ON(!ret); | ||
| 550 | ret = tracepoint_probe_register_noupdate( | ||
| 551 | elem->tp_name, | ||
| 552 | elem->tp_cb); | ||
| 553 | } else { | ||
| 554 | ret = tracepoint_probe_unregister_noupdate( | ||
| 555 | elem->tp_name, | ||
| 556 | elem->tp_cb); | ||
| 557 | /* | ||
| 558 | * tracepoint_probe_update_all() must be called | ||
| 559 | * before the module containing tp_cb is unloaded. | ||
| 560 | */ | ||
| 561 | module_put(__module_text_address( | ||
| 562 | (unsigned long)elem->tp_cb)); | ||
| 563 | } | ||
| 564 | } | ||
| 565 | elem->state = active; | ||
| 566 | |||
| 567 | return ret; | ||
| 568 | } | ||
| 569 | |||
| 570 | /* | ||
| 571 | * Disable a marker and its probe callback. | ||
| 572 | * Note: only waiting an RCU period after setting elem->call to the empty | ||
| 573 | * function insures that the original callback is not used anymore. This insured | ||
| 574 | * by rcu_read_lock_sched around the call site. | ||
| 575 | */ | ||
| 576 | static void disable_marker(struct marker *elem) | ||
| 577 | { | ||
| 578 | int ret; | ||
| 579 | |||
| 580 | /* leave "call" as is. It is known statically. */ | ||
| 581 | if (elem->tp_name && elem->state) { | ||
| 582 | WARN_ON(!elem->tp_cb); | ||
| 583 | /* | ||
| 584 | * It is ok to directly call the probe registration because type | ||
| 585 | * checking has been done in the __trace_mark_tp() macro. | ||
| 586 | */ | ||
| 587 | ret = tracepoint_probe_unregister_noupdate(elem->tp_name, | ||
| 588 | elem->tp_cb); | ||
| 589 | WARN_ON(ret); | ||
| 590 | /* | ||
| 591 | * tracepoint_probe_update_all() must be called | ||
| 592 | * before the module containing tp_cb is unloaded. | ||
| 593 | */ | ||
| 594 | module_put(__module_text_address((unsigned long)elem->tp_cb)); | ||
| 595 | } | ||
| 596 | elem->state = 0; | ||
| 597 | elem->single.func = __mark_empty_function; | ||
| 598 | /* Update the function before setting the ptype */ | ||
| 599 | smp_wmb(); | ||
| 600 | elem->ptype = 0; /* single probe */ | ||
| 601 | /* | ||
| 602 | * Leave the private data and id there, because removal is racy and | ||
| 603 | * should be done only after an RCU period. These are never used until | ||
| 604 | * the next initialization anyway. | ||
| 605 | */ | ||
| 606 | } | ||
| 607 | |||
| 608 | /** | ||
| 609 | * marker_update_probe_range - Update a probe range | ||
| 610 | * @begin: beginning of the range | ||
| 611 | * @end: end of the range | ||
| 612 | * | ||
| 613 | * Updates the probe callback corresponding to a range of markers. | ||
| 614 | */ | ||
| 615 | void marker_update_probe_range(struct marker *begin, | ||
| 616 | struct marker *end) | ||
| 617 | { | ||
| 618 | struct marker *iter; | ||
| 619 | struct marker_entry *mark_entry; | ||
| 620 | |||
| 621 | mutex_lock(&markers_mutex); | ||
| 622 | for (iter = begin; iter < end; iter++) { | ||
| 623 | mark_entry = get_marker(iter->name); | ||
| 624 | if (mark_entry) { | ||
| 625 | set_marker(mark_entry, iter, !!mark_entry->refcount); | ||
| 626 | /* | ||
| 627 | * ignore error, continue | ||
| 628 | */ | ||
| 629 | } else { | ||
| 630 | disable_marker(iter); | ||
| 631 | } | ||
| 632 | } | ||
| 633 | mutex_unlock(&markers_mutex); | ||
| 634 | } | ||
| 635 | |||
| 636 | /* | ||
| 637 | * Update probes, removing the faulty probes. | ||
| 638 | * | ||
| 639 | * Internal callback only changed before the first probe is connected to it. | ||
| 640 | * Single probe private data can only be changed on 0 -> 1 and 2 -> 1 | ||
| 641 | * transitions. All other transitions will leave the old private data valid. | ||
| 642 | * This makes the non-atomicity of the callback/private data updates valid. | ||
| 643 | * | ||
| 644 | * "special case" updates : | ||
| 645 | * 0 -> 1 callback | ||
| 646 | * 1 -> 0 callback | ||
| 647 | * 1 -> 2 callbacks | ||
| 648 | * 2 -> 1 callbacks | ||
| 649 | * Other updates all behave the same, just like the 2 -> 3 or 3 -> 2 updates. | ||
| 650 | * Site effect : marker_set_format may delete the marker entry (creating a | ||
| 651 | * replacement). | ||
| 652 | */ | ||
| 653 | static void marker_update_probes(void) | ||
| 654 | { | ||
| 655 | /* Core kernel markers */ | ||
| 656 | marker_update_probe_range(__start___markers, __stop___markers); | ||
| 657 | /* Markers in modules. */ | ||
| 658 | module_update_markers(); | ||
| 659 | tracepoint_probe_update_all(); | ||
| 660 | } | ||
| 661 | |||
| 662 | /** | ||
| 663 | * marker_probe_register - Connect a probe to a marker | ||
| 664 | * @name: marker name | ||
| 665 | * @format: format string | ||
| 666 | * @probe: probe handler | ||
| 667 | * @probe_private: probe private data | ||
| 668 | * | ||
| 669 | * private data must be a valid allocated memory address, or NULL. | ||
| 670 | * Returns 0 if ok, error value on error. | ||
| 671 | * The probe address must at least be aligned on the architecture pointer size. | ||
| 672 | */ | ||
| 673 | int marker_probe_register(const char *name, const char *format, | ||
| 674 | marker_probe_func *probe, void *probe_private) | ||
| 675 | { | ||
| 676 | struct marker_entry *entry; | ||
| 677 | int ret = 0; | ||
| 678 | struct marker_probe_closure *old; | ||
| 679 | |||
| 680 | mutex_lock(&markers_mutex); | ||
| 681 | entry = get_marker(name); | ||
| 682 | if (!entry) { | ||
| 683 | entry = add_marker(name, format); | ||
| 684 | if (IS_ERR(entry)) | ||
| 685 | ret = PTR_ERR(entry); | ||
| 686 | } else if (format) { | ||
| 687 | if (!entry->format) | ||
| 688 | ret = marker_set_format(entry, format); | ||
| 689 | else if (strcmp(entry->format, format)) | ||
| 690 | ret = -EPERM; | ||
| 691 | } | ||
| 692 | if (ret) | ||
| 693 | goto end; | ||
| 694 | |||
| 695 | /* | ||
| 696 | * If we detect that a call_rcu is pending for this marker, | ||
| 697 | * make sure it's executed now. | ||
| 698 | */ | ||
| 699 | if (entry->rcu_pending) | ||
| 700 | rcu_barrier_sched(); | ||
| 701 | old = marker_entry_add_probe(entry, probe, probe_private); | ||
| 702 | if (IS_ERR(old)) { | ||
| 703 | ret = PTR_ERR(old); | ||
| 704 | goto end; | ||
| 705 | } | ||
| 706 | mutex_unlock(&markers_mutex); | ||
| 707 | marker_update_probes(); | ||
| 708 | mutex_lock(&markers_mutex); | ||
| 709 | entry = get_marker(name); | ||
| 710 | if (!entry) | ||
| 711 | goto end; | ||
| 712 | if (entry->rcu_pending) | ||
| 713 | rcu_barrier_sched(); | ||
| 714 | entry->oldptr = old; | ||
| 715 | entry->rcu_pending = 1; | ||
| 716 | /* write rcu_pending before calling the RCU callback */ | ||
| 717 | smp_wmb(); | ||
| 718 | call_rcu_sched(&entry->rcu, free_old_closure); | ||
| 719 | end: | ||
| 720 | mutex_unlock(&markers_mutex); | ||
| 721 | return ret; | ||
| 722 | } | ||
| 723 | EXPORT_SYMBOL_GPL(marker_probe_register); | ||
| 724 | |||
| 725 | /** | ||
| 726 | * marker_probe_unregister - Disconnect a probe from a marker | ||
| 727 | * @name: marker name | ||
| 728 | * @probe: probe function pointer | ||
| 729 | * @probe_private: probe private data | ||
| 730 | * | ||
| 731 | * Returns the private data given to marker_probe_register, or an ERR_PTR(). | ||
| 732 | * We do not need to call a synchronize_sched to make sure the probes have | ||
| 733 | * finished running before doing a module unload, because the module unload | ||
| 734 | * itself uses stop_machine(), which insures that every preempt disabled section | ||
| 735 | * have finished. | ||
| 736 | */ | ||
| 737 | int marker_probe_unregister(const char *name, | ||
| 738 | marker_probe_func *probe, void *probe_private) | ||
| 739 | { | ||
| 740 | struct marker_entry *entry; | ||
| 741 | struct marker_probe_closure *old; | ||
| 742 | int ret = -ENOENT; | ||
| 743 | |||
| 744 | mutex_lock(&markers_mutex); | ||
| 745 | entry = get_marker(name); | ||
| 746 | if (!entry) | ||
| 747 | goto end; | ||
| 748 | if (entry->rcu_pending) | ||
| 749 | rcu_barrier_sched(); | ||
| 750 | old = marker_entry_remove_probe(entry, probe, probe_private); | ||
| 751 | mutex_unlock(&markers_mutex); | ||
| 752 | marker_update_probes(); | ||
| 753 | mutex_lock(&markers_mutex); | ||
| 754 | entry = get_marker(name); | ||
| 755 | if (!entry) | ||
| 756 | goto end; | ||
| 757 | if (entry->rcu_pending) | ||
| 758 | rcu_barrier_sched(); | ||
| 759 | entry->oldptr = old; | ||
| 760 | entry->rcu_pending = 1; | ||
| 761 | /* write rcu_pending before calling the RCU callback */ | ||
| 762 | smp_wmb(); | ||
| 763 | call_rcu_sched(&entry->rcu, free_old_closure); | ||
| 764 | remove_marker(name); /* Ignore busy error message */ | ||
| 765 | ret = 0; | ||
| 766 | end: | ||
| 767 | mutex_unlock(&markers_mutex); | ||
| 768 | return ret; | ||
| 769 | } | ||
| 770 | EXPORT_SYMBOL_GPL(marker_probe_unregister); | ||
| 771 | |||
| 772 | static struct marker_entry * | ||
| 773 | get_marker_from_private_data(marker_probe_func *probe, void *probe_private) | ||
| 774 | { | ||
| 775 | struct marker_entry *entry; | ||
| 776 | unsigned int i; | ||
| 777 | struct hlist_head *head; | ||
| 778 | struct hlist_node *node; | ||
| 779 | |||
| 780 | for (i = 0; i < MARKER_TABLE_SIZE; i++) { | ||
| 781 | head = &marker_table[i]; | ||
| 782 | hlist_for_each_entry(entry, node, head, hlist) { | ||
| 783 | if (!entry->ptype) { | ||
| 784 | if (entry->single.func == probe | ||
| 785 | && entry->single.probe_private | ||
| 786 | == probe_private) | ||
| 787 | return entry; | ||
| 788 | } else { | ||
| 789 | struct marker_probe_closure *closure; | ||
| 790 | closure = entry->multi; | ||
| 791 | for (i = 0; closure[i].func; i++) { | ||
| 792 | if (closure[i].func == probe && | ||
| 793 | closure[i].probe_private | ||
| 794 | == probe_private) | ||
| 795 | return entry; | ||
| 796 | } | ||
| 797 | } | ||
| 798 | } | ||
| 799 | } | ||
| 800 | return NULL; | ||
| 801 | } | ||
| 802 | |||
| 803 | /** | ||
| 804 | * marker_probe_unregister_private_data - Disconnect a probe from a marker | ||
| 805 | * @probe: probe function | ||
| 806 | * @probe_private: probe private data | ||
| 807 | * | ||
| 808 | * Unregister a probe by providing the registered private data. | ||
| 809 | * Only removes the first marker found in hash table. | ||
| 810 | * Return 0 on success or error value. | ||
| 811 | * We do not need to call a synchronize_sched to make sure the probes have | ||
| 812 | * finished running before doing a module unload, because the module unload | ||
| 813 | * itself uses stop_machine(), which insures that every preempt disabled section | ||
| 814 | * have finished. | ||
| 815 | */ | ||
| 816 | int marker_probe_unregister_private_data(marker_probe_func *probe, | ||
| 817 | void *probe_private) | ||
| 818 | { | ||
| 819 | struct marker_entry *entry; | ||
| 820 | int ret = 0; | ||
| 821 | struct marker_probe_closure *old; | ||
| 822 | |||
| 823 | mutex_lock(&markers_mutex); | ||
| 824 | entry = get_marker_from_private_data(probe, probe_private); | ||
| 825 | if (!entry) { | ||
| 826 | ret = -ENOENT; | ||
| 827 | goto end; | ||
| 828 | } | ||
| 829 | if (entry->rcu_pending) | ||
| 830 | rcu_barrier_sched(); | ||
| 831 | old = marker_entry_remove_probe(entry, NULL, probe_private); | ||
| 832 | mutex_unlock(&markers_mutex); | ||
| 833 | marker_update_probes(); | ||
| 834 | mutex_lock(&markers_mutex); | ||
| 835 | entry = get_marker_from_private_data(probe, probe_private); | ||
| 836 | if (!entry) | ||
| 837 | goto end; | ||
| 838 | if (entry->rcu_pending) | ||
| 839 | rcu_barrier_sched(); | ||
| 840 | entry->oldptr = old; | ||
| 841 | entry->rcu_pending = 1; | ||
| 842 | /* write rcu_pending before calling the RCU callback */ | ||
| 843 | smp_wmb(); | ||
| 844 | call_rcu_sched(&entry->rcu, free_old_closure); | ||
| 845 | remove_marker(entry->name); /* Ignore busy error message */ | ||
| 846 | end: | ||
| 847 | mutex_unlock(&markers_mutex); | ||
| 848 | return ret; | ||
| 849 | } | ||
| 850 | EXPORT_SYMBOL_GPL(marker_probe_unregister_private_data); | ||
| 851 | |||
| 852 | /** | ||
| 853 | * marker_get_private_data - Get a marker's probe private data | ||
| 854 | * @name: marker name | ||
| 855 | * @probe: probe to match | ||
| 856 | * @num: get the nth matching probe's private data | ||
| 857 | * | ||
| 858 | * Returns the nth private data pointer (starting from 0) matching, or an | ||
| 859 | * ERR_PTR. | ||
| 860 | * Returns the private data pointer, or an ERR_PTR. | ||
| 861 | * The private data pointer should _only_ be dereferenced if the caller is the | ||
| 862 | * owner of the data, or its content could vanish. This is mostly used to | ||
| 863 | * confirm that a caller is the owner of a registered probe. | ||
| 864 | */ | ||
| 865 | void *marker_get_private_data(const char *name, marker_probe_func *probe, | ||
| 866 | int num) | ||
| 867 | { | ||
| 868 | struct hlist_head *head; | ||
| 869 | struct hlist_node *node; | ||
| 870 | struct marker_entry *e; | ||
| 871 | size_t name_len = strlen(name) + 1; | ||
| 872 | u32 hash = jhash(name, name_len-1, 0); | ||
| 873 | int i; | ||
| 874 | |||
| 875 | head = &marker_table[hash & ((1 << MARKER_HASH_BITS)-1)]; | ||
| 876 | hlist_for_each_entry(e, node, head, hlist) { | ||
| 877 | if (!strcmp(name, e->name)) { | ||
| 878 | if (!e->ptype) { | ||
| 879 | if (num == 0 && e->single.func == probe) | ||
| 880 | return e->single.probe_private; | ||
| 881 | } else { | ||
| 882 | struct marker_probe_closure *closure; | ||
| 883 | int match = 0; | ||
| 884 | closure = e->multi; | ||
| 885 | for (i = 0; closure[i].func; i++) { | ||
| 886 | if (closure[i].func != probe) | ||
| 887 | continue; | ||
| 888 | if (match++ == num) | ||
| 889 | return closure[i].probe_private; | ||
| 890 | } | ||
| 891 | } | ||
| 892 | break; | ||
| 893 | } | ||
| 894 | } | ||
| 895 | return ERR_PTR(-ENOENT); | ||
| 896 | } | ||
| 897 | EXPORT_SYMBOL_GPL(marker_get_private_data); | ||
| 898 | |||
| 899 | #ifdef CONFIG_MODULES | ||
| 900 | |||
| 901 | int marker_module_notify(struct notifier_block *self, | ||
| 902 | unsigned long val, void *data) | ||
| 903 | { | ||
| 904 | struct module *mod = data; | ||
| 905 | |||
| 906 | switch (val) { | ||
| 907 | case MODULE_STATE_COMING: | ||
| 908 | marker_update_probe_range(mod->markers, | ||
| 909 | mod->markers + mod->num_markers); | ||
| 910 | break; | ||
| 911 | case MODULE_STATE_GOING: | ||
| 912 | marker_update_probe_range(mod->markers, | ||
| 913 | mod->markers + mod->num_markers); | ||
| 914 | break; | ||
| 915 | } | ||
| 916 | return 0; | ||
| 917 | } | ||
| 918 | |||
| 919 | struct notifier_block marker_module_nb = { | ||
| 920 | .notifier_call = marker_module_notify, | ||
| 921 | .priority = 0, | ||
| 922 | }; | ||
| 923 | |||
| 924 | static int init_markers(void) | ||
| 925 | { | ||
| 926 | return register_module_notifier(&marker_module_nb); | ||
| 927 | } | ||
| 928 | __initcall(init_markers); | ||
| 929 | |||
| 930 | #endif /* CONFIG_MODULES */ | ||
diff --git a/kernel/module.c b/kernel/module.c index 38928fcaff2b..e6bc4b28aa62 100644 --- a/kernel/module.c +++ b/kernel/module.c | |||
| @@ -47,6 +47,7 @@ | |||
| 47 | #include <linux/rculist.h> | 47 | #include <linux/rculist.h> |
| 48 | #include <asm/uaccess.h> | 48 | #include <asm/uaccess.h> |
| 49 | #include <asm/cacheflush.h> | 49 | #include <asm/cacheflush.h> |
| 50 | #include <asm/mmu_context.h> | ||
| 50 | #include <linux/license.h> | 51 | #include <linux/license.h> |
| 51 | #include <asm/sections.h> | 52 | #include <asm/sections.h> |
| 52 | #include <linux/tracepoint.h> | 53 | #include <linux/tracepoint.h> |
| @@ -55,6 +56,11 @@ | |||
| 55 | #include <linux/percpu.h> | 56 | #include <linux/percpu.h> |
| 56 | #include <linux/kmemleak.h> | 57 | #include <linux/kmemleak.h> |
| 57 | 58 | ||
| 59 | #define CREATE_TRACE_POINTS | ||
| 60 | #include <trace/events/module.h> | ||
| 61 | |||
| 62 | EXPORT_TRACEPOINT_SYMBOL(module_get); | ||
| 63 | |||
| 58 | #if 0 | 64 | #if 0 |
| 59 | #define DEBUGP printk | 65 | #define DEBUGP printk |
| 60 | #else | 66 | #else |
| @@ -364,7 +370,7 @@ EXPORT_SYMBOL_GPL(find_module); | |||
| 364 | 370 | ||
| 365 | #ifdef CONFIG_SMP | 371 | #ifdef CONFIG_SMP |
| 366 | 372 | ||
| 367 | #ifdef CONFIG_HAVE_DYNAMIC_PER_CPU_AREA | 373 | #ifndef CONFIG_HAVE_LEGACY_PER_CPU_AREA |
| 368 | 374 | ||
| 369 | static void *percpu_modalloc(unsigned long size, unsigned long align, | 375 | static void *percpu_modalloc(unsigned long size, unsigned long align, |
| 370 | const char *name) | 376 | const char *name) |
| @@ -389,7 +395,7 @@ static void percpu_modfree(void *freeme) | |||
| 389 | free_percpu(freeme); | 395 | free_percpu(freeme); |
| 390 | } | 396 | } |
| 391 | 397 | ||
| 392 | #else /* ... !CONFIG_HAVE_DYNAMIC_PER_CPU_AREA */ | 398 | #else /* ... CONFIG_HAVE_LEGACY_PER_CPU_AREA */ |
| 393 | 399 | ||
| 394 | /* Number of blocks used and allocated. */ | 400 | /* Number of blocks used and allocated. */ |
| 395 | static unsigned int pcpu_num_used, pcpu_num_allocated; | 401 | static unsigned int pcpu_num_used, pcpu_num_allocated; |
| @@ -535,7 +541,7 @@ static int percpu_modinit(void) | |||
| 535 | } | 541 | } |
| 536 | __initcall(percpu_modinit); | 542 | __initcall(percpu_modinit); |
| 537 | 543 | ||
| 538 | #endif /* CONFIG_HAVE_DYNAMIC_PER_CPU_AREA */ | 544 | #endif /* CONFIG_HAVE_LEGACY_PER_CPU_AREA */ |
| 539 | 545 | ||
| 540 | static unsigned int find_pcpusec(Elf_Ehdr *hdr, | 546 | static unsigned int find_pcpusec(Elf_Ehdr *hdr, |
| 541 | Elf_Shdr *sechdrs, | 547 | Elf_Shdr *sechdrs, |
| @@ -909,16 +915,18 @@ void __symbol_put(const char *symbol) | |||
| 909 | } | 915 | } |
| 910 | EXPORT_SYMBOL(__symbol_put); | 916 | EXPORT_SYMBOL(__symbol_put); |
| 911 | 917 | ||
| 918 | /* Note this assumes addr is a function, which it currently always is. */ | ||
| 912 | void symbol_put_addr(void *addr) | 919 | void symbol_put_addr(void *addr) |
| 913 | { | 920 | { |
| 914 | struct module *modaddr; | 921 | struct module *modaddr; |
| 922 | unsigned long a = (unsigned long)dereference_function_descriptor(addr); | ||
| 915 | 923 | ||
| 916 | if (core_kernel_text((unsigned long)addr)) | 924 | if (core_kernel_text(a)) |
| 917 | return; | 925 | return; |
| 918 | 926 | ||
| 919 | /* module_text_address is safe here: we're supposed to have reference | 927 | /* module_text_address is safe here: we're supposed to have reference |
| 920 | * to module from symbol_get, so it can't go away. */ | 928 | * to module from symbol_get, so it can't go away. */ |
| 921 | modaddr = __module_text_address((unsigned long)addr); | 929 | modaddr = __module_text_address(a); |
| 922 | BUG_ON(!modaddr); | 930 | BUG_ON(!modaddr); |
| 923 | module_put(modaddr); | 931 | module_put(modaddr); |
| 924 | } | 932 | } |
| @@ -940,6 +948,8 @@ void module_put(struct module *module) | |||
| 940 | if (module) { | 948 | if (module) { |
| 941 | unsigned int cpu = get_cpu(); | 949 | unsigned int cpu = get_cpu(); |
| 942 | local_dec(__module_ref_addr(module, cpu)); | 950 | local_dec(__module_ref_addr(module, cpu)); |
| 951 | trace_module_put(module, _RET_IP_, | ||
| 952 | local_read(__module_ref_addr(module, cpu))); | ||
| 943 | /* Maybe they're waiting for us to drop reference? */ | 953 | /* Maybe they're waiting for us to drop reference? */ |
| 944 | if (unlikely(!module_is_live(module))) | 954 | if (unlikely(!module_is_live(module))) |
| 945 | wake_up_process(module->waiter); | 955 | wake_up_process(module->waiter); |
| @@ -1068,7 +1078,8 @@ static inline int check_modstruct_version(Elf_Shdr *sechdrs, | |||
| 1068 | { | 1078 | { |
| 1069 | const unsigned long *crc; | 1079 | const unsigned long *crc; |
| 1070 | 1080 | ||
| 1071 | if (!find_symbol("module_layout", NULL, &crc, true, false)) | 1081 | if (!find_symbol(MODULE_SYMBOL_PREFIX "module_layout", NULL, |
| 1082 | &crc, true, false)) | ||
| 1072 | BUG(); | 1083 | BUG(); |
| 1073 | return check_version(sechdrs, versindex, "module_layout", mod, crc); | 1084 | return check_version(sechdrs, versindex, "module_layout", mod, crc); |
| 1074 | } | 1085 | } |
| @@ -1271,6 +1282,10 @@ static void add_notes_attrs(struct module *mod, unsigned int nsect, | |||
| 1271 | struct module_notes_attrs *notes_attrs; | 1282 | struct module_notes_attrs *notes_attrs; |
| 1272 | struct bin_attribute *nattr; | 1283 | struct bin_attribute *nattr; |
| 1273 | 1284 | ||
| 1285 | /* failed to create section attributes, so can't create notes */ | ||
| 1286 | if (!mod->sect_attrs) | ||
| 1287 | return; | ||
| 1288 | |||
| 1274 | /* Count notes sections and allocate structures. */ | 1289 | /* Count notes sections and allocate structures. */ |
| 1275 | notes = 0; | 1290 | notes = 0; |
| 1276 | for (i = 0; i < nsect; i++) | 1291 | for (i = 0; i < nsect; i++) |
| @@ -1490,6 +1505,8 @@ static int __unlink_module(void *_mod) | |||
| 1490 | /* Free a module, remove from lists, etc (must hold module_mutex). */ | 1505 | /* Free a module, remove from lists, etc (must hold module_mutex). */ |
| 1491 | static void free_module(struct module *mod) | 1506 | static void free_module(struct module *mod) |
| 1492 | { | 1507 | { |
| 1508 | trace_module_free(mod); | ||
| 1509 | |||
| 1493 | /* Delete from various lists */ | 1510 | /* Delete from various lists */ |
| 1494 | stop_machine(__unlink_module, mod, NULL); | 1511 | stop_machine(__unlink_module, mod, NULL); |
| 1495 | remove_notes_attrs(mod); | 1512 | remove_notes_attrs(mod); |
| @@ -1519,6 +1536,10 @@ static void free_module(struct module *mod) | |||
| 1519 | 1536 | ||
| 1520 | /* Finally, free the core (containing the module structure) */ | 1537 | /* Finally, free the core (containing the module structure) */ |
| 1521 | module_free(mod, mod->module_core); | 1538 | module_free(mod, mod->module_core); |
| 1539 | |||
| 1540 | #ifdef CONFIG_MPU | ||
| 1541 | update_protections(current->mm); | ||
| 1542 | #endif | ||
| 1522 | } | 1543 | } |
| 1523 | 1544 | ||
| 1524 | void *__symbol_get(const char *symbol) | 1545 | void *__symbol_get(const char *symbol) |
| @@ -2221,10 +2242,6 @@ static noinline struct module *load_module(void __user *umod, | |||
| 2221 | sizeof(*mod->ctors), &mod->num_ctors); | 2242 | sizeof(*mod->ctors), &mod->num_ctors); |
| 2222 | #endif | 2243 | #endif |
| 2223 | 2244 | ||
| 2224 | #ifdef CONFIG_MARKERS | ||
| 2225 | mod->markers = section_objs(hdr, sechdrs, secstrings, "__markers", | ||
| 2226 | sizeof(*mod->markers), &mod->num_markers); | ||
| 2227 | #endif | ||
| 2228 | #ifdef CONFIG_TRACEPOINTS | 2245 | #ifdef CONFIG_TRACEPOINTS |
| 2229 | mod->tracepoints = section_objs(hdr, sechdrs, secstrings, | 2246 | mod->tracepoints = section_objs(hdr, sechdrs, secstrings, |
| 2230 | "__tracepoints", | 2247 | "__tracepoints", |
| @@ -2357,6 +2374,8 @@ static noinline struct module *load_module(void __user *umod, | |||
| 2357 | /* Get rid of temporary copy */ | 2374 | /* Get rid of temporary copy */ |
| 2358 | vfree(hdr); | 2375 | vfree(hdr); |
| 2359 | 2376 | ||
| 2377 | trace_module_load(mod); | ||
| 2378 | |||
| 2360 | /* Done! */ | 2379 | /* Done! */ |
| 2361 | return mod; | 2380 | return mod; |
| 2362 | 2381 | ||
| @@ -2451,9 +2470,9 @@ SYSCALL_DEFINE3(init_module, void __user *, umod, | |||
| 2451 | return ret; | 2470 | return ret; |
| 2452 | } | 2471 | } |
| 2453 | if (ret > 0) { | 2472 | if (ret > 0) { |
| 2454 | printk(KERN_WARNING "%s: '%s'->init suspiciously returned %d, " | 2473 | printk(KERN_WARNING |
| 2455 | "it should follow 0/-E convention\n" | 2474 | "%s: '%s'->init suspiciously returned %d, it should follow 0/-E convention\n" |
| 2456 | KERN_WARNING "%s: loading module anyway...\n", | 2475 | "%s: loading module anyway...\n", |
| 2457 | __func__, mod->name, ret, | 2476 | __func__, mod->name, ret, |
| 2458 | __func__); | 2477 | __func__); |
| 2459 | dump_stack(); | 2478 | dump_stack(); |
| @@ -2940,20 +2959,6 @@ void module_layout(struct module *mod, | |||
| 2940 | EXPORT_SYMBOL(module_layout); | 2959 | EXPORT_SYMBOL(module_layout); |
| 2941 | #endif | 2960 | #endif |
| 2942 | 2961 | ||
| 2943 | #ifdef CONFIG_MARKERS | ||
| 2944 | void module_update_markers(void) | ||
| 2945 | { | ||
| 2946 | struct module *mod; | ||
| 2947 | |||
| 2948 | mutex_lock(&module_mutex); | ||
| 2949 | list_for_each_entry(mod, &modules, list) | ||
| 2950 | if (!mod->taints) | ||
| 2951 | marker_update_probe_range(mod->markers, | ||
| 2952 | mod->markers + mod->num_markers); | ||
| 2953 | mutex_unlock(&module_mutex); | ||
| 2954 | } | ||
| 2955 | #endif | ||
| 2956 | |||
| 2957 | #ifdef CONFIG_TRACEPOINTS | 2962 | #ifdef CONFIG_TRACEPOINTS |
| 2958 | void module_update_tracepoints(void) | 2963 | void module_update_tracepoints(void) |
| 2959 | { | 2964 | { |
diff --git a/kernel/panic.c b/kernel/panic.c index 984b3ecbd72c..bcdef26e3332 100644 --- a/kernel/panic.c +++ b/kernel/panic.c | |||
| @@ -177,7 +177,7 @@ static const struct tnt tnts[] = { | |||
| 177 | * 'W' - Taint on warning. | 177 | * 'W' - Taint on warning. |
| 178 | * 'C' - modules from drivers/staging are loaded. | 178 | * 'C' - modules from drivers/staging are loaded. |
| 179 | * | 179 | * |
| 180 | * The string is overwritten by the next call to print_taint(). | 180 | * The string is overwritten by the next call to print_tainted(). |
| 181 | */ | 181 | */ |
| 182 | const char *print_tainted(void) | 182 | const char *print_tainted(void) |
| 183 | { | 183 | { |
| @@ -301,6 +301,7 @@ int oops_may_print(void) | |||
| 301 | */ | 301 | */ |
| 302 | void oops_enter(void) | 302 | void oops_enter(void) |
| 303 | { | 303 | { |
| 304 | tracing_off(); | ||
| 304 | /* can't trust the integrity of the kernel anymore: */ | 305 | /* can't trust the integrity of the kernel anymore: */ |
| 305 | debug_locks_off(); | 306 | debug_locks_off(); |
| 306 | do_oops_enter_exit(); | 307 | do_oops_enter_exit(); |
diff --git a/kernel/perf_counter.c b/kernel/perf_counter.c deleted file mode 100644 index 1a933a221ea4..000000000000 --- a/kernel/perf_counter.c +++ /dev/null | |||
| @@ -1,4383 +0,0 @@ | |||
| 1 | /* | ||
| 2 | * Performance counter core code | ||
| 3 | * | ||
| 4 | * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> | ||
| 5 | * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar | ||
| 6 | * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> | ||
| 7 | * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> | ||
| 8 | * | ||
| 9 | * For licensing details see kernel-base/COPYING | ||
| 10 | */ | ||
| 11 | |||
| 12 | #include <linux/fs.h> | ||
| 13 | #include <linux/mm.h> | ||
| 14 | #include <linux/cpu.h> | ||
| 15 | #include <linux/smp.h> | ||
| 16 | #include <linux/file.h> | ||
| 17 | #include <linux/poll.h> | ||
| 18 | #include <linux/sysfs.h> | ||
| 19 | #include <linux/dcache.h> | ||
| 20 | #include <linux/percpu.h> | ||
| 21 | #include <linux/ptrace.h> | ||
| 22 | #include <linux/vmstat.h> | ||
| 23 | #include <linux/hardirq.h> | ||
| 24 | #include <linux/rculist.h> | ||
| 25 | #include <linux/uaccess.h> | ||
| 26 | #include <linux/syscalls.h> | ||
| 27 | #include <linux/anon_inodes.h> | ||
| 28 | #include <linux/kernel_stat.h> | ||
| 29 | #include <linux/perf_counter.h> | ||
| 30 | |||
| 31 | #include <asm/irq_regs.h> | ||
| 32 | |||
| 33 | /* | ||
| 34 | * Each CPU has a list of per CPU counters: | ||
| 35 | */ | ||
| 36 | DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context); | ||
| 37 | |||
| 38 | int perf_max_counters __read_mostly = 1; | ||
| 39 | static int perf_reserved_percpu __read_mostly; | ||
| 40 | static int perf_overcommit __read_mostly = 1; | ||
| 41 | |||
| 42 | static atomic_t nr_counters __read_mostly; | ||
| 43 | static atomic_t nr_mmap_counters __read_mostly; | ||
| 44 | static atomic_t nr_comm_counters __read_mostly; | ||
| 45 | |||
| 46 | /* | ||
| 47 | * perf counter paranoia level: | ||
| 48 | * 0 - not paranoid | ||
| 49 | * 1 - disallow cpu counters to unpriv | ||
| 50 | * 2 - disallow kernel profiling to unpriv | ||
| 51 | */ | ||
| 52 | int sysctl_perf_counter_paranoid __read_mostly; | ||
| 53 | |||
| 54 | static inline bool perf_paranoid_cpu(void) | ||
| 55 | { | ||
| 56 | return sysctl_perf_counter_paranoid > 0; | ||
| 57 | } | ||
| 58 | |||
| 59 | static inline bool perf_paranoid_kernel(void) | ||
| 60 | { | ||
| 61 | return sysctl_perf_counter_paranoid > 1; | ||
| 62 | } | ||
| 63 | |||
| 64 | int sysctl_perf_counter_mlock __read_mostly = 512; /* 'free' kb per user */ | ||
| 65 | |||
| 66 | /* | ||
| 67 | * max perf counter sample rate | ||
| 68 | */ | ||
| 69 | int sysctl_perf_counter_sample_rate __read_mostly = 100000; | ||
| 70 | |||
| 71 | static atomic64_t perf_counter_id; | ||
| 72 | |||
| 73 | /* | ||
| 74 | * Lock for (sysadmin-configurable) counter reservations: | ||
| 75 | */ | ||
| 76 | static DEFINE_SPINLOCK(perf_resource_lock); | ||
| 77 | |||
| 78 | /* | ||
| 79 | * Architecture provided APIs - weak aliases: | ||
| 80 | */ | ||
| 81 | extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter) | ||
| 82 | { | ||
| 83 | return NULL; | ||
| 84 | } | ||
| 85 | |||
| 86 | void __weak hw_perf_disable(void) { barrier(); } | ||
| 87 | void __weak hw_perf_enable(void) { barrier(); } | ||
| 88 | |||
| 89 | void __weak hw_perf_counter_setup(int cpu) { barrier(); } | ||
| 90 | |||
| 91 | int __weak | ||
| 92 | hw_perf_group_sched_in(struct perf_counter *group_leader, | ||
| 93 | struct perf_cpu_context *cpuctx, | ||
| 94 | struct perf_counter_context *ctx, int cpu) | ||
| 95 | { | ||
| 96 | return 0; | ||
| 97 | } | ||
| 98 | |||
| 99 | void __weak perf_counter_print_debug(void) { } | ||
| 100 | |||
| 101 | static DEFINE_PER_CPU(int, disable_count); | ||
| 102 | |||
| 103 | void __perf_disable(void) | ||
| 104 | { | ||
| 105 | __get_cpu_var(disable_count)++; | ||
| 106 | } | ||
| 107 | |||
| 108 | bool __perf_enable(void) | ||
| 109 | { | ||
| 110 | return !--__get_cpu_var(disable_count); | ||
| 111 | } | ||
| 112 | |||
| 113 | void perf_disable(void) | ||
| 114 | { | ||
| 115 | __perf_disable(); | ||
| 116 | hw_perf_disable(); | ||
| 117 | } | ||
| 118 | |||
| 119 | void perf_enable(void) | ||
| 120 | { | ||
| 121 | if (__perf_enable()) | ||
| 122 | hw_perf_enable(); | ||
| 123 | } | ||
| 124 | |||
| 125 | static void get_ctx(struct perf_counter_context *ctx) | ||
| 126 | { | ||
| 127 | WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); | ||
| 128 | } | ||
| 129 | |||
| 130 | static void free_ctx(struct rcu_head *head) | ||
| 131 | { | ||
| 132 | struct perf_counter_context *ctx; | ||
| 133 | |||
| 134 | ctx = container_of(head, struct perf_counter_context, rcu_head); | ||
| 135 | kfree(ctx); | ||
| 136 | } | ||
| 137 | |||
| 138 | static void put_ctx(struct perf_counter_context *ctx) | ||
| 139 | { | ||
| 140 | if (atomic_dec_and_test(&ctx->refcount)) { | ||
| 141 | if (ctx->parent_ctx) | ||
| 142 | put_ctx(ctx->parent_ctx); | ||
| 143 | if (ctx->task) | ||
| 144 | put_task_struct(ctx->task); | ||
| 145 | call_rcu(&ctx->rcu_head, free_ctx); | ||
| 146 | } | ||
| 147 | } | ||
| 148 | |||
| 149 | /* | ||
| 150 | * Get the perf_counter_context for a task and lock it. | ||
| 151 | * This has to cope with with the fact that until it is locked, | ||
| 152 | * the context could get moved to another task. | ||
| 153 | */ | ||
| 154 | static struct perf_counter_context * | ||
| 155 | perf_lock_task_context(struct task_struct *task, unsigned long *flags) | ||
| 156 | { | ||
| 157 | struct perf_counter_context *ctx; | ||
| 158 | |||
| 159 | rcu_read_lock(); | ||
| 160 | retry: | ||
| 161 | ctx = rcu_dereference(task->perf_counter_ctxp); | ||
| 162 | if (ctx) { | ||
| 163 | /* | ||
| 164 | * If this context is a clone of another, it might | ||
| 165 | * get swapped for another underneath us by | ||
| 166 | * perf_counter_task_sched_out, though the | ||
| 167 | * rcu_read_lock() protects us from any context | ||
| 168 | * getting freed. Lock the context and check if it | ||
| 169 | * got swapped before we could get the lock, and retry | ||
| 170 | * if so. If we locked the right context, then it | ||
| 171 | * can't get swapped on us any more. | ||
| 172 | */ | ||
| 173 | spin_lock_irqsave(&ctx->lock, *flags); | ||
| 174 | if (ctx != rcu_dereference(task->perf_counter_ctxp)) { | ||
| 175 | spin_unlock_irqrestore(&ctx->lock, *flags); | ||
| 176 | goto retry; | ||
| 177 | } | ||
| 178 | |||
| 179 | if (!atomic_inc_not_zero(&ctx->refcount)) { | ||
| 180 | spin_unlock_irqrestore(&ctx->lock, *flags); | ||
| 181 | ctx = NULL; | ||
| 182 | } | ||
| 183 | } | ||
| 184 | rcu_read_unlock(); | ||
| 185 | return ctx; | ||
| 186 | } | ||
| 187 | |||
| 188 | /* | ||
| 189 | * Get the context for a task and increment its pin_count so it | ||
| 190 | * can't get swapped to another task. This also increments its | ||
| 191 | * reference count so that the context can't get freed. | ||
| 192 | */ | ||
| 193 | static struct perf_counter_context *perf_pin_task_context(struct task_struct *task) | ||
| 194 | { | ||
| 195 | struct perf_counter_context *ctx; | ||
| 196 | unsigned long flags; | ||
| 197 | |||
| 198 | ctx = perf_lock_task_context(task, &flags); | ||
| 199 | if (ctx) { | ||
| 200 | ++ctx->pin_count; | ||
| 201 | spin_unlock_irqrestore(&ctx->lock, flags); | ||
| 202 | } | ||
| 203 | return ctx; | ||
| 204 | } | ||
| 205 | |||
| 206 | static void perf_unpin_context(struct perf_counter_context *ctx) | ||
| 207 | { | ||
| 208 | unsigned long flags; | ||
| 209 | |||
| 210 | spin_lock_irqsave(&ctx->lock, flags); | ||
| 211 | --ctx->pin_count; | ||
| 212 | spin_unlock_irqrestore(&ctx->lock, flags); | ||
| 213 | put_ctx(ctx); | ||
| 214 | } | ||
| 215 | |||
| 216 | /* | ||
| 217 | * Add a counter from the lists for its context. | ||
| 218 | * Must be called with ctx->mutex and ctx->lock held. | ||
| 219 | */ | ||
| 220 | static void | ||
| 221 | list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx) | ||
| 222 | { | ||
| 223 | struct perf_counter *group_leader = counter->group_leader; | ||
| 224 | |||
| 225 | /* | ||
| 226 | * Depending on whether it is a standalone or sibling counter, | ||
| 227 | * add it straight to the context's counter list, or to the group | ||
| 228 | * leader's sibling list: | ||
| 229 | */ | ||
| 230 | if (group_leader == counter) | ||
| 231 | list_add_tail(&counter->list_entry, &ctx->counter_list); | ||
| 232 | else { | ||
| 233 | list_add_tail(&counter->list_entry, &group_leader->sibling_list); | ||
| 234 | group_leader->nr_siblings++; | ||
| 235 | } | ||
| 236 | |||
| 237 | list_add_rcu(&counter->event_entry, &ctx->event_list); | ||
| 238 | ctx->nr_counters++; | ||
| 239 | } | ||
| 240 | |||
| 241 | /* | ||
| 242 | * Remove a counter from the lists for its context. | ||
| 243 | * Must be called with ctx->mutex and ctx->lock held. | ||
| 244 | */ | ||
| 245 | static void | ||
| 246 | list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx) | ||
| 247 | { | ||
| 248 | struct perf_counter *sibling, *tmp; | ||
| 249 | |||
| 250 | if (list_empty(&counter->list_entry)) | ||
| 251 | return; | ||
| 252 | ctx->nr_counters--; | ||
| 253 | |||
| 254 | list_del_init(&counter->list_entry); | ||
| 255 | list_del_rcu(&counter->event_entry); | ||
| 256 | |||
| 257 | if (counter->group_leader != counter) | ||
| 258 | counter->group_leader->nr_siblings--; | ||
| 259 | |||
| 260 | /* | ||
| 261 | * If this was a group counter with sibling counters then | ||
| 262 | * upgrade the siblings to singleton counters by adding them | ||
| 263 | * to the context list directly: | ||
| 264 | */ | ||
| 265 | list_for_each_entry_safe(sibling, tmp, | ||
| 266 | &counter->sibling_list, list_entry) { | ||
| 267 | |||
| 268 | list_move_tail(&sibling->list_entry, &ctx->counter_list); | ||
| 269 | sibling->group_leader = sibling; | ||
| 270 | } | ||
| 271 | } | ||
| 272 | |||
| 273 | static void | ||
| 274 | counter_sched_out(struct perf_counter *counter, | ||
| 275 | struct perf_cpu_context *cpuctx, | ||
| 276 | struct perf_counter_context *ctx) | ||
| 277 | { | ||
| 278 | if (counter->state != PERF_COUNTER_STATE_ACTIVE) | ||
| 279 | return; | ||
| 280 | |||
| 281 | counter->state = PERF_COUNTER_STATE_INACTIVE; | ||
| 282 | counter->tstamp_stopped = ctx->time; | ||
| 283 | counter->pmu->disable(counter); | ||
| 284 | counter->oncpu = -1; | ||
| 285 | |||
| 286 | if (!is_software_counter(counter)) | ||
| 287 | cpuctx->active_oncpu--; | ||
| 288 | ctx->nr_active--; | ||
| 289 | if (counter->attr.exclusive || !cpuctx->active_oncpu) | ||
| 290 | cpuctx->exclusive = 0; | ||
| 291 | } | ||
| 292 | |||
| 293 | static void | ||
| 294 | group_sched_out(struct perf_counter *group_counter, | ||
| 295 | struct perf_cpu_context *cpuctx, | ||
| 296 | struct perf_counter_context *ctx) | ||
| 297 | { | ||
| 298 | struct perf_counter *counter; | ||
| 299 | |||
| 300 | if (group_counter->state != PERF_COUNTER_STATE_ACTIVE) | ||
| 301 | return; | ||
| 302 | |||
| 303 | counter_sched_out(group_counter, cpuctx, ctx); | ||
| 304 | |||
| 305 | /* | ||
| 306 | * Schedule out siblings (if any): | ||
| 307 | */ | ||
| 308 | list_for_each_entry(counter, &group_counter->sibling_list, list_entry) | ||
| 309 | counter_sched_out(counter, cpuctx, ctx); | ||
| 310 | |||
| 311 | if (group_counter->attr.exclusive) | ||
| 312 | cpuctx->exclusive = 0; | ||
| 313 | } | ||
| 314 | |||
| 315 | /* | ||
| 316 | * Cross CPU call to remove a performance counter | ||
| 317 | * | ||
| 318 | * We disable the counter on the hardware level first. After that we | ||
| 319 | * remove it from the context list. | ||
| 320 | */ | ||
| 321 | static void __perf_counter_remove_from_context(void *info) | ||
| 322 | { | ||
| 323 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
| 324 | struct perf_counter *counter = info; | ||
| 325 | struct perf_counter_context *ctx = counter->ctx; | ||
| 326 | |||
| 327 | /* | ||
| 328 | * If this is a task context, we need to check whether it is | ||
| 329 | * the current task context of this cpu. If not it has been | ||
| 330 | * scheduled out before the smp call arrived. | ||
| 331 | */ | ||
| 332 | if (ctx->task && cpuctx->task_ctx != ctx) | ||
| 333 | return; | ||
| 334 | |||
| 335 | spin_lock(&ctx->lock); | ||
| 336 | /* | ||
| 337 | * Protect the list operation against NMI by disabling the | ||
| 338 | * counters on a global level. | ||
| 339 | */ | ||
| 340 | perf_disable(); | ||
| 341 | |||
| 342 | counter_sched_out(counter, cpuctx, ctx); | ||
| 343 | |||
| 344 | list_del_counter(counter, ctx); | ||
| 345 | |||
| 346 | if (!ctx->task) { | ||
| 347 | /* | ||
| 348 | * Allow more per task counters with respect to the | ||
| 349 | * reservation: | ||
| 350 | */ | ||
| 351 | cpuctx->max_pertask = | ||
| 352 | min(perf_max_counters - ctx->nr_counters, | ||
| 353 | perf_max_counters - perf_reserved_percpu); | ||
| 354 | } | ||
| 355 | |||
| 356 | perf_enable(); | ||
| 357 | spin_unlock(&ctx->lock); | ||
| 358 | } | ||
| 359 | |||
| 360 | |||
| 361 | /* | ||
| 362 | * Remove the counter from a task's (or a CPU's) list of counters. | ||
| 363 | * | ||
| 364 | * Must be called with ctx->mutex held. | ||
| 365 | * | ||
| 366 | * CPU counters are removed with a smp call. For task counters we only | ||
| 367 | * call when the task is on a CPU. | ||
| 368 | * | ||
| 369 | * If counter->ctx is a cloned context, callers must make sure that | ||
| 370 | * every task struct that counter->ctx->task could possibly point to | ||
| 371 | * remains valid. This is OK when called from perf_release since | ||
| 372 | * that only calls us on the top-level context, which can't be a clone. | ||
| 373 | * When called from perf_counter_exit_task, it's OK because the | ||
| 374 | * context has been detached from its task. | ||
| 375 | */ | ||
| 376 | static void perf_counter_remove_from_context(struct perf_counter *counter) | ||
| 377 | { | ||
| 378 | struct perf_counter_context *ctx = counter->ctx; | ||
| 379 | struct task_struct *task = ctx->task; | ||
| 380 | |||
| 381 | if (!task) { | ||
| 382 | /* | ||
| 383 | * Per cpu counters are removed via an smp call and | ||
| 384 | * the removal is always sucessful. | ||
| 385 | */ | ||
| 386 | smp_call_function_single(counter->cpu, | ||
| 387 | __perf_counter_remove_from_context, | ||
| 388 | counter, 1); | ||
| 389 | return; | ||
| 390 | } | ||
| 391 | |||
| 392 | retry: | ||
| 393 | task_oncpu_function_call(task, __perf_counter_remove_from_context, | ||
| 394 | counter); | ||
| 395 | |||
| 396 | spin_lock_irq(&ctx->lock); | ||
| 397 | /* | ||
| 398 | * If the context is active we need to retry the smp call. | ||
| 399 | */ | ||
| 400 | if (ctx->nr_active && !list_empty(&counter->list_entry)) { | ||
| 401 | spin_unlock_irq(&ctx->lock); | ||
| 402 | goto retry; | ||
| 403 | } | ||
| 404 | |||
| 405 | /* | ||
| 406 | * The lock prevents that this context is scheduled in so we | ||
| 407 | * can remove the counter safely, if the call above did not | ||
| 408 | * succeed. | ||
| 409 | */ | ||
| 410 | if (!list_empty(&counter->list_entry)) { | ||
| 411 | list_del_counter(counter, ctx); | ||
| 412 | } | ||
| 413 | spin_unlock_irq(&ctx->lock); | ||
| 414 | } | ||
| 415 | |||
| 416 | static inline u64 perf_clock(void) | ||
| 417 | { | ||
| 418 | return cpu_clock(smp_processor_id()); | ||
| 419 | } | ||
| 420 | |||
| 421 | /* | ||
| 422 | * Update the record of the current time in a context. | ||
| 423 | */ | ||
| 424 | static void update_context_time(struct perf_counter_context *ctx) | ||
| 425 | { | ||
| 426 | u64 now = perf_clock(); | ||
| 427 | |||
| 428 | ctx->time += now - ctx->timestamp; | ||
| 429 | ctx->timestamp = now; | ||
| 430 | } | ||
| 431 | |||
| 432 | /* | ||
| 433 | * Update the total_time_enabled and total_time_running fields for a counter. | ||
| 434 | */ | ||
| 435 | static void update_counter_times(struct perf_counter *counter) | ||
| 436 | { | ||
| 437 | struct perf_counter_context *ctx = counter->ctx; | ||
| 438 | u64 run_end; | ||
| 439 | |||
| 440 | if (counter->state < PERF_COUNTER_STATE_INACTIVE) | ||
| 441 | return; | ||
| 442 | |||
| 443 | counter->total_time_enabled = ctx->time - counter->tstamp_enabled; | ||
| 444 | |||
| 445 | if (counter->state == PERF_COUNTER_STATE_INACTIVE) | ||
| 446 | run_end = counter->tstamp_stopped; | ||
| 447 | else | ||
| 448 | run_end = ctx->time; | ||
| 449 | |||
| 450 | counter->total_time_running = run_end - counter->tstamp_running; | ||
| 451 | } | ||
| 452 | |||
| 453 | /* | ||
| 454 | * Update total_time_enabled and total_time_running for all counters in a group. | ||
| 455 | */ | ||
| 456 | static void update_group_times(struct perf_counter *leader) | ||
| 457 | { | ||
| 458 | struct perf_counter *counter; | ||
| 459 | |||
| 460 | update_counter_times(leader); | ||
| 461 | list_for_each_entry(counter, &leader->sibling_list, list_entry) | ||
| 462 | update_counter_times(counter); | ||
| 463 | } | ||
| 464 | |||
| 465 | /* | ||
| 466 | * Cross CPU call to disable a performance counter | ||
| 467 | */ | ||
| 468 | static void __perf_counter_disable(void *info) | ||
| 469 | { | ||
| 470 | struct perf_counter *counter = info; | ||
| 471 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
| 472 | struct perf_counter_context *ctx = counter->ctx; | ||
| 473 | |||
| 474 | /* | ||
| 475 | * If this is a per-task counter, need to check whether this | ||
| 476 | * counter's task is the current task on this cpu. | ||
| 477 | */ | ||
| 478 | if (ctx->task && cpuctx->task_ctx != ctx) | ||
| 479 | return; | ||
| 480 | |||
| 481 | spin_lock(&ctx->lock); | ||
| 482 | |||
| 483 | /* | ||
| 484 | * If the counter is on, turn it off. | ||
| 485 | * If it is in error state, leave it in error state. | ||
| 486 | */ | ||
| 487 | if (counter->state >= PERF_COUNTER_STATE_INACTIVE) { | ||
| 488 | update_context_time(ctx); | ||
| 489 | update_counter_times(counter); | ||
| 490 | if (counter == counter->group_leader) | ||
| 491 | group_sched_out(counter, cpuctx, ctx); | ||
| 492 | else | ||
| 493 | counter_sched_out(counter, cpuctx, ctx); | ||
| 494 | counter->state = PERF_COUNTER_STATE_OFF; | ||
| 495 | } | ||
| 496 | |||
| 497 | spin_unlock(&ctx->lock); | ||
| 498 | } | ||
| 499 | |||
| 500 | /* | ||
| 501 | * Disable a counter. | ||
| 502 | * | ||
| 503 | * If counter->ctx is a cloned context, callers must make sure that | ||
| 504 | * every task struct that counter->ctx->task could possibly point to | ||
| 505 | * remains valid. This condition is satisifed when called through | ||
| 506 | * perf_counter_for_each_child or perf_counter_for_each because they | ||
| 507 | * hold the top-level counter's child_mutex, so any descendant that | ||
| 508 | * goes to exit will block in sync_child_counter. | ||
| 509 | * When called from perf_pending_counter it's OK because counter->ctx | ||
| 510 | * is the current context on this CPU and preemption is disabled, | ||
| 511 | * hence we can't get into perf_counter_task_sched_out for this context. | ||
| 512 | */ | ||
| 513 | static void perf_counter_disable(struct perf_counter *counter) | ||
| 514 | { | ||
| 515 | struct perf_counter_context *ctx = counter->ctx; | ||
| 516 | struct task_struct *task = ctx->task; | ||
| 517 | |||
| 518 | if (!task) { | ||
| 519 | /* | ||
| 520 | * Disable the counter on the cpu that it's on | ||
| 521 | */ | ||
| 522 | smp_call_function_single(counter->cpu, __perf_counter_disable, | ||
| 523 | counter, 1); | ||
| 524 | return; | ||
| 525 | } | ||
| 526 | |||
| 527 | retry: | ||
| 528 | task_oncpu_function_call(task, __perf_counter_disable, counter); | ||
| 529 | |||
| 530 | spin_lock_irq(&ctx->lock); | ||
| 531 | /* | ||
| 532 | * If the counter is still active, we need to retry the cross-call. | ||
| 533 | */ | ||
| 534 | if (counter->state == PERF_COUNTER_STATE_ACTIVE) { | ||
| 535 | spin_unlock_irq(&ctx->lock); | ||
| 536 | goto retry; | ||
| 537 | } | ||
| 538 | |||
| 539 | /* | ||
| 540 | * Since we have the lock this context can't be scheduled | ||
| 541 | * in, so we can change the state safely. | ||
| 542 | */ | ||
| 543 | if (counter->state == PERF_COUNTER_STATE_INACTIVE) { | ||
| 544 | update_counter_times(counter); | ||
| 545 | counter->state = PERF_COUNTER_STATE_OFF; | ||
| 546 | } | ||
| 547 | |||
| 548 | spin_unlock_irq(&ctx->lock); | ||
| 549 | } | ||
| 550 | |||
| 551 | static int | ||
| 552 | counter_sched_in(struct perf_counter *counter, | ||
| 553 | struct perf_cpu_context *cpuctx, | ||
| 554 | struct perf_counter_context *ctx, | ||
| 555 | int cpu) | ||
| 556 | { | ||
| 557 | if (counter->state <= PERF_COUNTER_STATE_OFF) | ||
| 558 | return 0; | ||
| 559 | |||
| 560 | counter->state = PERF_COUNTER_STATE_ACTIVE; | ||
| 561 | counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */ | ||
| 562 | /* | ||
| 563 | * The new state must be visible before we turn it on in the hardware: | ||
| 564 | */ | ||
| 565 | smp_wmb(); | ||
| 566 | |||
| 567 | if (counter->pmu->enable(counter)) { | ||
| 568 | counter->state = PERF_COUNTER_STATE_INACTIVE; | ||
| 569 | counter->oncpu = -1; | ||
| 570 | return -EAGAIN; | ||
| 571 | } | ||
| 572 | |||
| 573 | counter->tstamp_running += ctx->time - counter->tstamp_stopped; | ||
| 574 | |||
| 575 | if (!is_software_counter(counter)) | ||
| 576 | cpuctx->active_oncpu++; | ||
| 577 | ctx->nr_active++; | ||
| 578 | |||
| 579 | if (counter->attr.exclusive) | ||
| 580 | cpuctx->exclusive = 1; | ||
| 581 | |||
| 582 | return 0; | ||
| 583 | } | ||
| 584 | |||
| 585 | static int | ||
| 586 | group_sched_in(struct perf_counter *group_counter, | ||
| 587 | struct perf_cpu_context *cpuctx, | ||
| 588 | struct perf_counter_context *ctx, | ||
| 589 | int cpu) | ||
| 590 | { | ||
| 591 | struct perf_counter *counter, *partial_group; | ||
| 592 | int ret; | ||
| 593 | |||
| 594 | if (group_counter->state == PERF_COUNTER_STATE_OFF) | ||
| 595 | return 0; | ||
| 596 | |||
| 597 | ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu); | ||
| 598 | if (ret) | ||
| 599 | return ret < 0 ? ret : 0; | ||
| 600 | |||
| 601 | if (counter_sched_in(group_counter, cpuctx, ctx, cpu)) | ||
| 602 | return -EAGAIN; | ||
| 603 | |||
| 604 | /* | ||
| 605 | * Schedule in siblings as one group (if any): | ||
| 606 | */ | ||
| 607 | list_for_each_entry(counter, &group_counter->sibling_list, list_entry) { | ||
| 608 | if (counter_sched_in(counter, cpuctx, ctx, cpu)) { | ||
| 609 | partial_group = counter; | ||
| 610 | goto group_error; | ||
| 611 | } | ||
| 612 | } | ||
| 613 | |||
| 614 | return 0; | ||
| 615 | |||
| 616 | group_error: | ||
| 617 | /* | ||
| 618 | * Groups can be scheduled in as one unit only, so undo any | ||
| 619 | * partial group before returning: | ||
| 620 | */ | ||
| 621 | list_for_each_entry(counter, &group_counter->sibling_list, list_entry) { | ||
| 622 | if (counter == partial_group) | ||
| 623 | break; | ||
| 624 | counter_sched_out(counter, cpuctx, ctx); | ||
| 625 | } | ||
| 626 | counter_sched_out(group_counter, cpuctx, ctx); | ||
| 627 | |||
| 628 | return -EAGAIN; | ||
| 629 | } | ||
| 630 | |||
| 631 | /* | ||
| 632 | * Return 1 for a group consisting entirely of software counters, | ||
| 633 | * 0 if the group contains any hardware counters. | ||
| 634 | */ | ||
| 635 | static int is_software_only_group(struct perf_counter *leader) | ||
| 636 | { | ||
| 637 | struct perf_counter *counter; | ||
| 638 | |||
| 639 | if (!is_software_counter(leader)) | ||
| 640 | return 0; | ||
| 641 | |||
| 642 | list_for_each_entry(counter, &leader->sibling_list, list_entry) | ||
| 643 | if (!is_software_counter(counter)) | ||
| 644 | return 0; | ||
| 645 | |||
| 646 | return 1; | ||
| 647 | } | ||
| 648 | |||
| 649 | /* | ||
| 650 | * Work out whether we can put this counter group on the CPU now. | ||
| 651 | */ | ||
| 652 | static int group_can_go_on(struct perf_counter *counter, | ||
| 653 | struct perf_cpu_context *cpuctx, | ||
| 654 | int can_add_hw) | ||
| 655 | { | ||
| 656 | /* | ||
| 657 | * Groups consisting entirely of software counters can always go on. | ||
| 658 | */ | ||
| 659 | if (is_software_only_group(counter)) | ||
| 660 | return 1; | ||
| 661 | /* | ||
| 662 | * If an exclusive group is already on, no other hardware | ||
| 663 | * counters can go on. | ||
| 664 | */ | ||
| 665 | if (cpuctx->exclusive) | ||
| 666 | return 0; | ||
| 667 | /* | ||
| 668 | * If this group is exclusive and there are already | ||
| 669 | * counters on the CPU, it can't go on. | ||
| 670 | */ | ||
| 671 | if (counter->attr.exclusive && cpuctx->active_oncpu) | ||
| 672 | return 0; | ||
| 673 | /* | ||
| 674 | * Otherwise, try to add it if all previous groups were able | ||
| 675 | * to go on. | ||
| 676 | */ | ||
| 677 | return can_add_hw; | ||
| 678 | } | ||
| 679 | |||
| 680 | static void add_counter_to_ctx(struct perf_counter *counter, | ||
| 681 | struct perf_counter_context *ctx) | ||
| 682 | { | ||
| 683 | list_add_counter(counter, ctx); | ||
| 684 | counter->tstamp_enabled = ctx->time; | ||
| 685 | counter->tstamp_running = ctx->time; | ||
| 686 | counter->tstamp_stopped = ctx->time; | ||
| 687 | } | ||
| 688 | |||
| 689 | /* | ||
| 690 | * Cross CPU call to install and enable a performance counter | ||
| 691 | * | ||
| 692 | * Must be called with ctx->mutex held | ||
| 693 | */ | ||
| 694 | static void __perf_install_in_context(void *info) | ||
| 695 | { | ||
| 696 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
| 697 | struct perf_counter *counter = info; | ||
| 698 | struct perf_counter_context *ctx = counter->ctx; | ||
| 699 | struct perf_counter *leader = counter->group_leader; | ||
| 700 | int cpu = smp_processor_id(); | ||
| 701 | int err; | ||
| 702 | |||
| 703 | /* | ||
| 704 | * If this is a task context, we need to check whether it is | ||
| 705 | * the current task context of this cpu. If not it has been | ||
| 706 | * scheduled out before the smp call arrived. | ||
| 707 | * Or possibly this is the right context but it isn't | ||
| 708 | * on this cpu because it had no counters. | ||
| 709 | */ | ||
| 710 | if (ctx->task && cpuctx->task_ctx != ctx) { | ||
| 711 | if (cpuctx->task_ctx || ctx->task != current) | ||
| 712 | return; | ||
| 713 | cpuctx->task_ctx = ctx; | ||
| 714 | } | ||
| 715 | |||
| 716 | spin_lock(&ctx->lock); | ||
| 717 | ctx->is_active = 1; | ||
| 718 | update_context_time(ctx); | ||
| 719 | |||
| 720 | /* | ||
| 721 | * Protect the list operation against NMI by disabling the | ||
| 722 | * counters on a global level. NOP for non NMI based counters. | ||
| 723 | */ | ||
| 724 | perf_disable(); | ||
| 725 | |||
| 726 | add_counter_to_ctx(counter, ctx); | ||
| 727 | |||
| 728 | /* | ||
| 729 | * Don't put the counter on if it is disabled or if | ||
| 730 | * it is in a group and the group isn't on. | ||
| 731 | */ | ||
| 732 | if (counter->state != PERF_COUNTER_STATE_INACTIVE || | ||
| 733 | (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)) | ||
| 734 | goto unlock; | ||
| 735 | |||
| 736 | /* | ||
| 737 | * An exclusive counter can't go on if there are already active | ||
| 738 | * hardware counters, and no hardware counter can go on if there | ||
| 739 | * is already an exclusive counter on. | ||
| 740 | */ | ||
| 741 | if (!group_can_go_on(counter, cpuctx, 1)) | ||
| 742 | err = -EEXIST; | ||
| 743 | else | ||
| 744 | err = counter_sched_in(counter, cpuctx, ctx, cpu); | ||
| 745 | |||
| 746 | if (err) { | ||
| 747 | /* | ||
| 748 | * This counter couldn't go on. If it is in a group | ||
| 749 | * then we have to pull the whole group off. | ||
| 750 | * If the counter group is pinned then put it in error state. | ||
| 751 | */ | ||
| 752 | if (leader != counter) | ||
| 753 | group_sched_out(leader, cpuctx, ctx); | ||
| 754 | if (leader->attr.pinned) { | ||
| 755 | update_group_times(leader); | ||
| 756 | leader->state = PERF_COUNTER_STATE_ERROR; | ||
| 757 | } | ||
| 758 | } | ||
| 759 | |||
| 760 | if (!err && !ctx->task && cpuctx->max_pertask) | ||
| 761 | cpuctx->max_pertask--; | ||
| 762 | |||
| 763 | unlock: | ||
| 764 | perf_enable(); | ||
| 765 | |||
| 766 | spin_unlock(&ctx->lock); | ||
| 767 | } | ||
| 768 | |||
| 769 | /* | ||
| 770 | * Attach a performance counter to a context | ||
| 771 | * | ||
| 772 | * First we add the counter to the list with the hardware enable bit | ||
| 773 | * in counter->hw_config cleared. | ||
| 774 | * | ||
| 775 | * If the counter is attached to a task which is on a CPU we use a smp | ||
| 776 | * call to enable it in the task context. The task might have been | ||
| 777 | * scheduled away, but we check this in the smp call again. | ||
| 778 | * | ||
| 779 | * Must be called with ctx->mutex held. | ||
| 780 | */ | ||
| 781 | static void | ||
| 782 | perf_install_in_context(struct perf_counter_context *ctx, | ||
| 783 | struct perf_counter *counter, | ||
| 784 | int cpu) | ||
| 785 | { | ||
| 786 | struct task_struct *task = ctx->task; | ||
| 787 | |||
| 788 | if (!task) { | ||
| 789 | /* | ||
| 790 | * Per cpu counters are installed via an smp call and | ||
| 791 | * the install is always sucessful. | ||
| 792 | */ | ||
| 793 | smp_call_function_single(cpu, __perf_install_in_context, | ||
| 794 | counter, 1); | ||
| 795 | return; | ||
| 796 | } | ||
| 797 | |||
| 798 | retry: | ||
| 799 | task_oncpu_function_call(task, __perf_install_in_context, | ||
| 800 | counter); | ||
| 801 | |||
| 802 | spin_lock_irq(&ctx->lock); | ||
| 803 | /* | ||
| 804 | * we need to retry the smp call. | ||
| 805 | */ | ||
| 806 | if (ctx->is_active && list_empty(&counter->list_entry)) { | ||
| 807 | spin_unlock_irq(&ctx->lock); | ||
| 808 | goto retry; | ||
| 809 | } | ||
| 810 | |||
| 811 | /* | ||
| 812 | * The lock prevents that this context is scheduled in so we | ||
| 813 | * can add the counter safely, if it the call above did not | ||
| 814 | * succeed. | ||
| 815 | */ | ||
| 816 | if (list_empty(&counter->list_entry)) | ||
| 817 | add_counter_to_ctx(counter, ctx); | ||
| 818 | spin_unlock_irq(&ctx->lock); | ||
| 819 | } | ||
| 820 | |||
| 821 | /* | ||
| 822 | * Cross CPU call to enable a performance counter | ||
| 823 | */ | ||
| 824 | static void __perf_counter_enable(void *info) | ||
| 825 | { | ||
| 826 | struct perf_counter *counter = info; | ||
| 827 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
| 828 | struct perf_counter_context *ctx = counter->ctx; | ||
| 829 | struct perf_counter *leader = counter->group_leader; | ||
| 830 | int err; | ||
| 831 | |||
| 832 | /* | ||
| 833 | * If this is a per-task counter, need to check whether this | ||
| 834 | * counter's task is the current task on this cpu. | ||
| 835 | */ | ||
| 836 | if (ctx->task && cpuctx->task_ctx != ctx) { | ||
| 837 | if (cpuctx->task_ctx || ctx->task != current) | ||
| 838 | return; | ||
| 839 | cpuctx->task_ctx = ctx; | ||
| 840 | } | ||
| 841 | |||
| 842 | spin_lock(&ctx->lock); | ||
| 843 | ctx->is_active = 1; | ||
| 844 | update_context_time(ctx); | ||
| 845 | |||
| 846 | if (counter->state >= PERF_COUNTER_STATE_INACTIVE) | ||
| 847 | goto unlock; | ||
| 848 | counter->state = PERF_COUNTER_STATE_INACTIVE; | ||
| 849 | counter->tstamp_enabled = ctx->time - counter->total_time_enabled; | ||
| 850 | |||
| 851 | /* | ||
| 852 | * If the counter is in a group and isn't the group leader, | ||
| 853 | * then don't put it on unless the group is on. | ||
| 854 | */ | ||
| 855 | if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE) | ||
| 856 | goto unlock; | ||
| 857 | |||
| 858 | if (!group_can_go_on(counter, cpuctx, 1)) { | ||
| 859 | err = -EEXIST; | ||
| 860 | } else { | ||
| 861 | perf_disable(); | ||
| 862 | if (counter == leader) | ||
| 863 | err = group_sched_in(counter, cpuctx, ctx, | ||
| 864 | smp_processor_id()); | ||
| 865 | else | ||
| 866 | err = counter_sched_in(counter, cpuctx, ctx, | ||
| 867 | smp_processor_id()); | ||
| 868 | perf_enable(); | ||
| 869 | } | ||
| 870 | |||
| 871 | if (err) { | ||
| 872 | /* | ||
| 873 | * If this counter can't go on and it's part of a | ||
| 874 | * group, then the whole group has to come off. | ||
| 875 | */ | ||
| 876 | if (leader != counter) | ||
| 877 | group_sched_out(leader, cpuctx, ctx); | ||
| 878 | if (leader->attr.pinned) { | ||
| 879 | update_group_times(leader); | ||
| 880 | leader->state = PERF_COUNTER_STATE_ERROR; | ||
| 881 | } | ||
| 882 | } | ||
| 883 | |||
| 884 | unlock: | ||
| 885 | spin_unlock(&ctx->lock); | ||
| 886 | } | ||
| 887 | |||
| 888 | /* | ||
| 889 | * Enable a counter. | ||
| 890 | * | ||
| 891 | * If counter->ctx is a cloned context, callers must make sure that | ||
| 892 | * every task struct that counter->ctx->task could possibly point to | ||
| 893 | * remains valid. This condition is satisfied when called through | ||
| 894 | * perf_counter_for_each_child or perf_counter_for_each as described | ||
| 895 | * for perf_counter_disable. | ||
| 896 | */ | ||
| 897 | static void perf_counter_enable(struct perf_counter *counter) | ||
| 898 | { | ||
| 899 | struct perf_counter_context *ctx = counter->ctx; | ||
| 900 | struct task_struct *task = ctx->task; | ||
| 901 | |||
| 902 | if (!task) { | ||
| 903 | /* | ||
| 904 | * Enable the counter on the cpu that it's on | ||
| 905 | */ | ||
| 906 | smp_call_function_single(counter->cpu, __perf_counter_enable, | ||
| 907 | counter, 1); | ||
| 908 | return; | ||
| 909 | } | ||
| 910 | |||
| 911 | spin_lock_irq(&ctx->lock); | ||
| 912 | if (counter->state >= PERF_COUNTER_STATE_INACTIVE) | ||
| 913 | goto out; | ||
| 914 | |||
| 915 | /* | ||
| 916 | * If the counter is in error state, clear that first. | ||
| 917 | * That way, if we see the counter in error state below, we | ||
| 918 | * know that it has gone back into error state, as distinct | ||
| 919 | * from the task having been scheduled away before the | ||
| 920 | * cross-call arrived. | ||
| 921 | */ | ||
| 922 | if (counter->state == PERF_COUNTER_STATE_ERROR) | ||
| 923 | counter->state = PERF_COUNTER_STATE_OFF; | ||
| 924 | |||
| 925 | retry: | ||
| 926 | spin_unlock_irq(&ctx->lock); | ||
| 927 | task_oncpu_function_call(task, __perf_counter_enable, counter); | ||
| 928 | |||
| 929 | spin_lock_irq(&ctx->lock); | ||
| 930 | |||
| 931 | /* | ||
| 932 | * If the context is active and the counter is still off, | ||
| 933 | * we need to retry the cross-call. | ||
| 934 | */ | ||
| 935 | if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF) | ||
| 936 | goto retry; | ||
| 937 | |||
| 938 | /* | ||
| 939 | * Since we have the lock this context can't be scheduled | ||
| 940 | * in, so we can change the state safely. | ||
| 941 | */ | ||
| 942 | if (counter->state == PERF_COUNTER_STATE_OFF) { | ||
| 943 | counter->state = PERF_COUNTER_STATE_INACTIVE; | ||
| 944 | counter->tstamp_enabled = | ||
| 945 | ctx->time - counter->total_time_enabled; | ||
| 946 | } | ||
| 947 | out: | ||
| 948 | spin_unlock_irq(&ctx->lock); | ||
| 949 | } | ||
| 950 | |||
| 951 | static int perf_counter_refresh(struct perf_counter *counter, int refresh) | ||
| 952 | { | ||
| 953 | /* | ||
| 954 | * not supported on inherited counters | ||
| 955 | */ | ||
| 956 | if (counter->attr.inherit) | ||
| 957 | return -EINVAL; | ||
| 958 | |||
| 959 | atomic_add(refresh, &counter->event_limit); | ||
| 960 | perf_counter_enable(counter); | ||
| 961 | |||
| 962 | return 0; | ||
| 963 | } | ||
| 964 | |||
| 965 | void __perf_counter_sched_out(struct perf_counter_context *ctx, | ||
| 966 | struct perf_cpu_context *cpuctx) | ||
| 967 | { | ||
| 968 | struct perf_counter *counter; | ||
| 969 | |||
| 970 | spin_lock(&ctx->lock); | ||
| 971 | ctx->is_active = 0; | ||
| 972 | if (likely(!ctx->nr_counters)) | ||
| 973 | goto out; | ||
| 974 | update_context_time(ctx); | ||
| 975 | |||
| 976 | perf_disable(); | ||
| 977 | if (ctx->nr_active) { | ||
| 978 | list_for_each_entry(counter, &ctx->counter_list, list_entry) { | ||
| 979 | if (counter != counter->group_leader) | ||
| 980 | counter_sched_out(counter, cpuctx, ctx); | ||
| 981 | else | ||
| 982 | group_sched_out(counter, cpuctx, ctx); | ||
| 983 | } | ||
| 984 | } | ||
| 985 | perf_enable(); | ||
| 986 | out: | ||
| 987 | spin_unlock(&ctx->lock); | ||
| 988 | } | ||
| 989 | |||
| 990 | /* | ||
| 991 | * Test whether two contexts are equivalent, i.e. whether they | ||
| 992 | * have both been cloned from the same version of the same context | ||
| 993 | * and they both have the same number of enabled counters. | ||
| 994 | * If the number of enabled counters is the same, then the set | ||
| 995 | * of enabled counters should be the same, because these are both | ||
| 996 | * inherited contexts, therefore we can't access individual counters | ||
| 997 | * in them directly with an fd; we can only enable/disable all | ||
| 998 | * counters via prctl, or enable/disable all counters in a family | ||
| 999 | * via ioctl, which will have the same effect on both contexts. | ||
| 1000 | */ | ||
| 1001 | static int context_equiv(struct perf_counter_context *ctx1, | ||
| 1002 | struct perf_counter_context *ctx2) | ||
| 1003 | { | ||
| 1004 | return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx | ||
| 1005 | && ctx1->parent_gen == ctx2->parent_gen | ||
| 1006 | && !ctx1->pin_count && !ctx2->pin_count; | ||
| 1007 | } | ||
| 1008 | |||
| 1009 | /* | ||
| 1010 | * Called from scheduler to remove the counters of the current task, | ||
| 1011 | * with interrupts disabled. | ||
| 1012 | * | ||
| 1013 | * We stop each counter and update the counter value in counter->count. | ||
| 1014 | * | ||
| 1015 | * This does not protect us against NMI, but disable() | ||
| 1016 | * sets the disabled bit in the control field of counter _before_ | ||
| 1017 | * accessing the counter control register. If a NMI hits, then it will | ||
| 1018 | * not restart the counter. | ||
| 1019 | */ | ||
| 1020 | void perf_counter_task_sched_out(struct task_struct *task, | ||
| 1021 | struct task_struct *next, int cpu) | ||
| 1022 | { | ||
| 1023 | struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
| 1024 | struct perf_counter_context *ctx = task->perf_counter_ctxp; | ||
| 1025 | struct perf_counter_context *next_ctx; | ||
| 1026 | struct perf_counter_context *parent; | ||
| 1027 | struct pt_regs *regs; | ||
| 1028 | int do_switch = 1; | ||
| 1029 | |||
| 1030 | regs = task_pt_regs(task); | ||
| 1031 | perf_swcounter_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0); | ||
| 1032 | |||
| 1033 | if (likely(!ctx || !cpuctx->task_ctx)) | ||
| 1034 | return; | ||
| 1035 | |||
| 1036 | update_context_time(ctx); | ||
| 1037 | |||
| 1038 | rcu_read_lock(); | ||
| 1039 | parent = rcu_dereference(ctx->parent_ctx); | ||
| 1040 | next_ctx = next->perf_counter_ctxp; | ||
| 1041 | if (parent && next_ctx && | ||
| 1042 | rcu_dereference(next_ctx->parent_ctx) == parent) { | ||
| 1043 | /* | ||
| 1044 | * Looks like the two contexts are clones, so we might be | ||
| 1045 | * able to optimize the context switch. We lock both | ||
| 1046 | * contexts and check that they are clones under the | ||
| 1047 | * lock (including re-checking that neither has been | ||
| 1048 | * uncloned in the meantime). It doesn't matter which | ||
| 1049 | * order we take the locks because no other cpu could | ||
| 1050 | * be trying to lock both of these tasks. | ||
| 1051 | */ | ||
| 1052 | spin_lock(&ctx->lock); | ||
| 1053 | spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); | ||
| 1054 | if (context_equiv(ctx, next_ctx)) { | ||
| 1055 | /* | ||
| 1056 | * XXX do we need a memory barrier of sorts | ||
| 1057 | * wrt to rcu_dereference() of perf_counter_ctxp | ||
| 1058 | */ | ||
| 1059 | task->perf_counter_ctxp = next_ctx; | ||
| 1060 | next->perf_counter_ctxp = ctx; | ||
| 1061 | ctx->task = next; | ||
| 1062 | next_ctx->task = task; | ||
| 1063 | do_switch = 0; | ||
| 1064 | } | ||
| 1065 | spin_unlock(&next_ctx->lock); | ||
| 1066 | spin_unlock(&ctx->lock); | ||
| 1067 | } | ||
| 1068 | rcu_read_unlock(); | ||
| 1069 | |||
| 1070 | if (do_switch) { | ||
| 1071 | __perf_counter_sched_out(ctx, cpuctx); | ||
| 1072 | cpuctx->task_ctx = NULL; | ||
| 1073 | } | ||
| 1074 | } | ||
| 1075 | |||
| 1076 | /* | ||
| 1077 | * Called with IRQs disabled | ||
| 1078 | */ | ||
| 1079 | static void __perf_counter_task_sched_out(struct perf_counter_context *ctx) | ||
| 1080 | { | ||
| 1081 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
| 1082 | |||
| 1083 | if (!cpuctx->task_ctx) | ||
| 1084 | return; | ||
| 1085 | |||
| 1086 | if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) | ||
| 1087 | return; | ||
| 1088 | |||
| 1089 | __perf_counter_sched_out(ctx, cpuctx); | ||
| 1090 | cpuctx->task_ctx = NULL; | ||
| 1091 | } | ||
| 1092 | |||
| 1093 | /* | ||
| 1094 | * Called with IRQs disabled | ||
| 1095 | */ | ||
| 1096 | static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx) | ||
| 1097 | { | ||
| 1098 | __perf_counter_sched_out(&cpuctx->ctx, cpuctx); | ||
| 1099 | } | ||
| 1100 | |||
| 1101 | static void | ||
| 1102 | __perf_counter_sched_in(struct perf_counter_context *ctx, | ||
| 1103 | struct perf_cpu_context *cpuctx, int cpu) | ||
| 1104 | { | ||
| 1105 | struct perf_counter *counter; | ||
| 1106 | int can_add_hw = 1; | ||
| 1107 | |||
| 1108 | spin_lock(&ctx->lock); | ||
| 1109 | ctx->is_active = 1; | ||
| 1110 | if (likely(!ctx->nr_counters)) | ||
| 1111 | goto out; | ||
| 1112 | |||
| 1113 | ctx->timestamp = perf_clock(); | ||
| 1114 | |||
| 1115 | perf_disable(); | ||
| 1116 | |||
| 1117 | /* | ||
| 1118 | * First go through the list and put on any pinned groups | ||
| 1119 | * in order to give them the best chance of going on. | ||
| 1120 | */ | ||
| 1121 | list_for_each_entry(counter, &ctx->counter_list, list_entry) { | ||
| 1122 | if (counter->state <= PERF_COUNTER_STATE_OFF || | ||
| 1123 | !counter->attr.pinned) | ||
| 1124 | continue; | ||
| 1125 | if (counter->cpu != -1 && counter->cpu != cpu) | ||
| 1126 | continue; | ||
| 1127 | |||
| 1128 | if (counter != counter->group_leader) | ||
| 1129 | counter_sched_in(counter, cpuctx, ctx, cpu); | ||
| 1130 | else { | ||
| 1131 | if (group_can_go_on(counter, cpuctx, 1)) | ||
| 1132 | group_sched_in(counter, cpuctx, ctx, cpu); | ||
| 1133 | } | ||
| 1134 | |||
| 1135 | /* | ||
| 1136 | * If this pinned group hasn't been scheduled, | ||
| 1137 | * put it in error state. | ||
| 1138 | */ | ||
| 1139 | if (counter->state == PERF_COUNTER_STATE_INACTIVE) { | ||
| 1140 | update_group_times(counter); | ||
| 1141 | counter->state = PERF_COUNTER_STATE_ERROR; | ||
| 1142 | } | ||
| 1143 | } | ||
| 1144 | |||
| 1145 | list_for_each_entry(counter, &ctx->counter_list, list_entry) { | ||
| 1146 | /* | ||
| 1147 | * Ignore counters in OFF or ERROR state, and | ||
| 1148 | * ignore pinned counters since we did them already. | ||
| 1149 | */ | ||
| 1150 | if (counter->state <= PERF_COUNTER_STATE_OFF || | ||
| 1151 | counter->attr.pinned) | ||
| 1152 | continue; | ||
| 1153 | |||
| 1154 | /* | ||
| 1155 | * Listen to the 'cpu' scheduling filter constraint | ||
| 1156 | * of counters: | ||
| 1157 | */ | ||
| 1158 | if (counter->cpu != -1 && counter->cpu != cpu) | ||
| 1159 | continue; | ||
| 1160 | |||
| 1161 | if (counter != counter->group_leader) { | ||
| 1162 | if (counter_sched_in(counter, cpuctx, ctx, cpu)) | ||
| 1163 | can_add_hw = 0; | ||
| 1164 | } else { | ||
| 1165 | if (group_can_go_on(counter, cpuctx, can_add_hw)) { | ||
| 1166 | if (group_sched_in(counter, cpuctx, ctx, cpu)) | ||
| 1167 | can_add_hw = 0; | ||
| 1168 | } | ||
| 1169 | } | ||
| 1170 | } | ||
| 1171 | perf_enable(); | ||
| 1172 | out: | ||
| 1173 | spin_unlock(&ctx->lock); | ||
| 1174 | } | ||
| 1175 | |||
| 1176 | /* | ||
| 1177 | * Called from scheduler to add the counters of the current task | ||
| 1178 | * with interrupts disabled. | ||
| 1179 | * | ||
| 1180 | * We restore the counter value and then enable it. | ||
| 1181 | * | ||
| 1182 | * This does not protect us against NMI, but enable() | ||
| 1183 | * sets the enabled bit in the control field of counter _before_ | ||
| 1184 | * accessing the counter control register. If a NMI hits, then it will | ||
| 1185 | * keep the counter running. | ||
| 1186 | */ | ||
| 1187 | void perf_counter_task_sched_in(struct task_struct *task, int cpu) | ||
| 1188 | { | ||
| 1189 | struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
| 1190 | struct perf_counter_context *ctx = task->perf_counter_ctxp; | ||
| 1191 | |||
| 1192 | if (likely(!ctx)) | ||
| 1193 | return; | ||
| 1194 | if (cpuctx->task_ctx == ctx) | ||
| 1195 | return; | ||
| 1196 | __perf_counter_sched_in(ctx, cpuctx, cpu); | ||
| 1197 | cpuctx->task_ctx = ctx; | ||
| 1198 | } | ||
| 1199 | |||
| 1200 | static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu) | ||
| 1201 | { | ||
| 1202 | struct perf_counter_context *ctx = &cpuctx->ctx; | ||
| 1203 | |||
| 1204 | __perf_counter_sched_in(ctx, cpuctx, cpu); | ||
| 1205 | } | ||
| 1206 | |||
| 1207 | #define MAX_INTERRUPTS (~0ULL) | ||
| 1208 | |||
| 1209 | static void perf_log_throttle(struct perf_counter *counter, int enable); | ||
| 1210 | static void perf_log_period(struct perf_counter *counter, u64 period); | ||
| 1211 | |||
| 1212 | static void perf_adjust_period(struct perf_counter *counter, u64 events) | ||
| 1213 | { | ||
| 1214 | struct hw_perf_counter *hwc = &counter->hw; | ||
| 1215 | u64 period, sample_period; | ||
| 1216 | s64 delta; | ||
| 1217 | |||
| 1218 | events *= hwc->sample_period; | ||
| 1219 | period = div64_u64(events, counter->attr.sample_freq); | ||
| 1220 | |||
| 1221 | delta = (s64)(period - hwc->sample_period); | ||
| 1222 | delta = (delta + 7) / 8; /* low pass filter */ | ||
| 1223 | |||
| 1224 | sample_period = hwc->sample_period + delta; | ||
| 1225 | |||
| 1226 | if (!sample_period) | ||
| 1227 | sample_period = 1; | ||
| 1228 | |||
| 1229 | perf_log_period(counter, sample_period); | ||
| 1230 | |||
| 1231 | hwc->sample_period = sample_period; | ||
| 1232 | } | ||
| 1233 | |||
| 1234 | static void perf_ctx_adjust_freq(struct perf_counter_context *ctx) | ||
| 1235 | { | ||
| 1236 | struct perf_counter *counter; | ||
| 1237 | struct hw_perf_counter *hwc; | ||
| 1238 | u64 interrupts, freq; | ||
| 1239 | |||
| 1240 | spin_lock(&ctx->lock); | ||
| 1241 | list_for_each_entry(counter, &ctx->counter_list, list_entry) { | ||
| 1242 | if (counter->state != PERF_COUNTER_STATE_ACTIVE) | ||
| 1243 | continue; | ||
| 1244 | |||
| 1245 | hwc = &counter->hw; | ||
| 1246 | |||
| 1247 | interrupts = hwc->interrupts; | ||
| 1248 | hwc->interrupts = 0; | ||
| 1249 | |||
| 1250 | /* | ||
| 1251 | * unthrottle counters on the tick | ||
| 1252 | */ | ||
| 1253 | if (interrupts == MAX_INTERRUPTS) { | ||
| 1254 | perf_log_throttle(counter, 1); | ||
| 1255 | counter->pmu->unthrottle(counter); | ||
| 1256 | interrupts = 2*sysctl_perf_counter_sample_rate/HZ; | ||
| 1257 | } | ||
| 1258 | |||
| 1259 | if (!counter->attr.freq || !counter->attr.sample_freq) | ||
| 1260 | continue; | ||
| 1261 | |||
| 1262 | /* | ||
| 1263 | * if the specified freq < HZ then we need to skip ticks | ||
| 1264 | */ | ||
| 1265 | if (counter->attr.sample_freq < HZ) { | ||
| 1266 | freq = counter->attr.sample_freq; | ||
| 1267 | |||
| 1268 | hwc->freq_count += freq; | ||
| 1269 | hwc->freq_interrupts += interrupts; | ||
| 1270 | |||
| 1271 | if (hwc->freq_count < HZ) | ||
| 1272 | continue; | ||
| 1273 | |||
| 1274 | interrupts = hwc->freq_interrupts; | ||
| 1275 | hwc->freq_interrupts = 0; | ||
| 1276 | hwc->freq_count -= HZ; | ||
| 1277 | } else | ||
| 1278 | freq = HZ; | ||
| 1279 | |||
| 1280 | perf_adjust_period(counter, freq * interrupts); | ||
| 1281 | |||
| 1282 | /* | ||
| 1283 | * In order to avoid being stalled by an (accidental) huge | ||
| 1284 | * sample period, force reset the sample period if we didn't | ||
| 1285 | * get any events in this freq period. | ||
| 1286 | */ | ||
| 1287 | if (!interrupts) { | ||
| 1288 | perf_disable(); | ||
| 1289 | counter->pmu->disable(counter); | ||
| 1290 | atomic64_set(&hwc->period_left, 0); | ||
| 1291 | counter->pmu->enable(counter); | ||
| 1292 | perf_enable(); | ||
| 1293 | } | ||
| 1294 | } | ||
| 1295 | spin_unlock(&ctx->lock); | ||
| 1296 | } | ||
| 1297 | |||
| 1298 | /* | ||
| 1299 | * Round-robin a context's counters: | ||
| 1300 | */ | ||
| 1301 | static void rotate_ctx(struct perf_counter_context *ctx) | ||
| 1302 | { | ||
| 1303 | struct perf_counter *counter; | ||
| 1304 | |||
| 1305 | if (!ctx->nr_counters) | ||
| 1306 | return; | ||
| 1307 | |||
| 1308 | spin_lock(&ctx->lock); | ||
| 1309 | /* | ||
| 1310 | * Rotate the first entry last (works just fine for group counters too): | ||
| 1311 | */ | ||
| 1312 | perf_disable(); | ||
| 1313 | list_for_each_entry(counter, &ctx->counter_list, list_entry) { | ||
| 1314 | list_move_tail(&counter->list_entry, &ctx->counter_list); | ||
| 1315 | break; | ||
| 1316 | } | ||
| 1317 | perf_enable(); | ||
| 1318 | |||
| 1319 | spin_unlock(&ctx->lock); | ||
| 1320 | } | ||
| 1321 | |||
| 1322 | void perf_counter_task_tick(struct task_struct *curr, int cpu) | ||
| 1323 | { | ||
| 1324 | struct perf_cpu_context *cpuctx; | ||
| 1325 | struct perf_counter_context *ctx; | ||
| 1326 | |||
| 1327 | if (!atomic_read(&nr_counters)) | ||
| 1328 | return; | ||
| 1329 | |||
| 1330 | cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
| 1331 | ctx = curr->perf_counter_ctxp; | ||
| 1332 | |||
| 1333 | perf_ctx_adjust_freq(&cpuctx->ctx); | ||
| 1334 | if (ctx) | ||
| 1335 | perf_ctx_adjust_freq(ctx); | ||
| 1336 | |||
| 1337 | perf_counter_cpu_sched_out(cpuctx); | ||
| 1338 | if (ctx) | ||
| 1339 | __perf_counter_task_sched_out(ctx); | ||
| 1340 | |||
| 1341 | rotate_ctx(&cpuctx->ctx); | ||
| 1342 | if (ctx) | ||
| 1343 | rotate_ctx(ctx); | ||
| 1344 | |||
| 1345 | perf_counter_cpu_sched_in(cpuctx, cpu); | ||
| 1346 | if (ctx) | ||
| 1347 | perf_counter_task_sched_in(curr, cpu); | ||
| 1348 | } | ||
| 1349 | |||
| 1350 | /* | ||
| 1351 | * Cross CPU call to read the hardware counter | ||
| 1352 | */ | ||
| 1353 | static void __read(void *info) | ||
| 1354 | { | ||
| 1355 | struct perf_counter *counter = info; | ||
| 1356 | struct perf_counter_context *ctx = counter->ctx; | ||
| 1357 | unsigned long flags; | ||
| 1358 | |||
| 1359 | local_irq_save(flags); | ||
| 1360 | if (ctx->is_active) | ||
| 1361 | update_context_time(ctx); | ||
| 1362 | counter->pmu->read(counter); | ||
| 1363 | update_counter_times(counter); | ||
| 1364 | local_irq_restore(flags); | ||
| 1365 | } | ||
| 1366 | |||
| 1367 | static u64 perf_counter_read(struct perf_counter *counter) | ||
| 1368 | { | ||
| 1369 | /* | ||
| 1370 | * If counter is enabled and currently active on a CPU, update the | ||
| 1371 | * value in the counter structure: | ||
| 1372 | */ | ||
| 1373 | if (counter->state == PERF_COUNTER_STATE_ACTIVE) { | ||
| 1374 | smp_call_function_single(counter->oncpu, | ||
| 1375 | __read, counter, 1); | ||
| 1376 | } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) { | ||
| 1377 | update_counter_times(counter); | ||
| 1378 | } | ||
| 1379 | |||
| 1380 | return atomic64_read(&counter->count); | ||
| 1381 | } | ||
| 1382 | |||
| 1383 | /* | ||
| 1384 | * Initialize the perf_counter context in a task_struct: | ||
| 1385 | */ | ||
| 1386 | static void | ||
| 1387 | __perf_counter_init_context(struct perf_counter_context *ctx, | ||
| 1388 | struct task_struct *task) | ||
| 1389 | { | ||
| 1390 | memset(ctx, 0, sizeof(*ctx)); | ||
| 1391 | spin_lock_init(&ctx->lock); | ||
| 1392 | mutex_init(&ctx->mutex); | ||
| 1393 | INIT_LIST_HEAD(&ctx->counter_list); | ||
| 1394 | INIT_LIST_HEAD(&ctx->event_list); | ||
| 1395 | atomic_set(&ctx->refcount, 1); | ||
| 1396 | ctx->task = task; | ||
| 1397 | } | ||
| 1398 | |||
| 1399 | static struct perf_counter_context *find_get_context(pid_t pid, int cpu) | ||
| 1400 | { | ||
| 1401 | struct perf_counter_context *parent_ctx; | ||
| 1402 | struct perf_counter_context *ctx; | ||
| 1403 | struct perf_cpu_context *cpuctx; | ||
| 1404 | struct task_struct *task; | ||
| 1405 | unsigned long flags; | ||
| 1406 | int err; | ||
| 1407 | |||
| 1408 | /* | ||
| 1409 | * If cpu is not a wildcard then this is a percpu counter: | ||
| 1410 | */ | ||
| 1411 | if (cpu != -1) { | ||
| 1412 | /* Must be root to operate on a CPU counter: */ | ||
| 1413 | if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) | ||
| 1414 | return ERR_PTR(-EACCES); | ||
| 1415 | |||
| 1416 | if (cpu < 0 || cpu > num_possible_cpus()) | ||
| 1417 | return ERR_PTR(-EINVAL); | ||
| 1418 | |||
| 1419 | /* | ||
| 1420 | * We could be clever and allow to attach a counter to an | ||
| 1421 | * offline CPU and activate it when the CPU comes up, but | ||
| 1422 | * that's for later. | ||
| 1423 | */ | ||
| 1424 | if (!cpu_isset(cpu, cpu_online_map)) | ||
| 1425 | return ERR_PTR(-ENODEV); | ||
| 1426 | |||
| 1427 | cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
| 1428 | ctx = &cpuctx->ctx; | ||
| 1429 | get_ctx(ctx); | ||
| 1430 | |||
| 1431 | return ctx; | ||
| 1432 | } | ||
| 1433 | |||
| 1434 | rcu_read_lock(); | ||
| 1435 | if (!pid) | ||
| 1436 | task = current; | ||
| 1437 | else | ||
| 1438 | task = find_task_by_vpid(pid); | ||
| 1439 | if (task) | ||
| 1440 | get_task_struct(task); | ||
| 1441 | rcu_read_unlock(); | ||
| 1442 | |||
| 1443 | if (!task) | ||
| 1444 | return ERR_PTR(-ESRCH); | ||
| 1445 | |||
| 1446 | /* | ||
| 1447 | * Can't attach counters to a dying task. | ||
| 1448 | */ | ||
| 1449 | err = -ESRCH; | ||
| 1450 | if (task->flags & PF_EXITING) | ||
| 1451 | goto errout; | ||
| 1452 | |||
| 1453 | /* Reuse ptrace permission checks for now. */ | ||
| 1454 | err = -EACCES; | ||
| 1455 | if (!ptrace_may_access(task, PTRACE_MODE_READ)) | ||
| 1456 | goto errout; | ||
| 1457 | |||
| 1458 | retry: | ||
| 1459 | ctx = perf_lock_task_context(task, &flags); | ||
| 1460 | if (ctx) { | ||
| 1461 | parent_ctx = ctx->parent_ctx; | ||
| 1462 | if (parent_ctx) { | ||
| 1463 | put_ctx(parent_ctx); | ||
| 1464 | ctx->parent_ctx = NULL; /* no longer a clone */ | ||
| 1465 | } | ||
| 1466 | spin_unlock_irqrestore(&ctx->lock, flags); | ||
| 1467 | } | ||
| 1468 | |||
| 1469 | if (!ctx) { | ||
| 1470 | ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL); | ||
| 1471 | err = -ENOMEM; | ||
| 1472 | if (!ctx) | ||
| 1473 | goto errout; | ||
| 1474 | __perf_counter_init_context(ctx, task); | ||
| 1475 | get_ctx(ctx); | ||
| 1476 | if (cmpxchg(&task->perf_counter_ctxp, NULL, ctx)) { | ||
| 1477 | /* | ||
| 1478 | * We raced with some other task; use | ||
| 1479 | * the context they set. | ||
| 1480 | */ | ||
| 1481 | kfree(ctx); | ||
| 1482 | goto retry; | ||
| 1483 | } | ||
| 1484 | get_task_struct(task); | ||
| 1485 | } | ||
| 1486 | |||
| 1487 | put_task_struct(task); | ||
| 1488 | return ctx; | ||
| 1489 | |||
| 1490 | errout: | ||
| 1491 | put_task_struct(task); | ||
| 1492 | return ERR_PTR(err); | ||
| 1493 | } | ||
| 1494 | |||
| 1495 | static void free_counter_rcu(struct rcu_head *head) | ||
| 1496 | { | ||
| 1497 | struct perf_counter *counter; | ||
| 1498 | |||
| 1499 | counter = container_of(head, struct perf_counter, rcu_head); | ||
| 1500 | if (counter->ns) | ||
| 1501 | put_pid_ns(counter->ns); | ||
| 1502 | kfree(counter); | ||
| 1503 | } | ||
| 1504 | |||
| 1505 | static void perf_pending_sync(struct perf_counter *counter); | ||
| 1506 | |||
| 1507 | static void free_counter(struct perf_counter *counter) | ||
| 1508 | { | ||
| 1509 | perf_pending_sync(counter); | ||
| 1510 | |||
| 1511 | atomic_dec(&nr_counters); | ||
| 1512 | if (counter->attr.mmap) | ||
| 1513 | atomic_dec(&nr_mmap_counters); | ||
| 1514 | if (counter->attr.comm) | ||
| 1515 | atomic_dec(&nr_comm_counters); | ||
| 1516 | |||
| 1517 | if (counter->destroy) | ||
| 1518 | counter->destroy(counter); | ||
| 1519 | |||
| 1520 | put_ctx(counter->ctx); | ||
| 1521 | call_rcu(&counter->rcu_head, free_counter_rcu); | ||
| 1522 | } | ||
| 1523 | |||
| 1524 | /* | ||
| 1525 | * Called when the last reference to the file is gone. | ||
| 1526 | */ | ||
| 1527 | static int perf_release(struct inode *inode, struct file *file) | ||
| 1528 | { | ||
| 1529 | struct perf_counter *counter = file->private_data; | ||
| 1530 | struct perf_counter_context *ctx = counter->ctx; | ||
| 1531 | |||
| 1532 | file->private_data = NULL; | ||
| 1533 | |||
| 1534 | WARN_ON_ONCE(ctx->parent_ctx); | ||
| 1535 | mutex_lock(&ctx->mutex); | ||
| 1536 | perf_counter_remove_from_context(counter); | ||
| 1537 | mutex_unlock(&ctx->mutex); | ||
| 1538 | |||
| 1539 | mutex_lock(&counter->owner->perf_counter_mutex); | ||
| 1540 | list_del_init(&counter->owner_entry); | ||
| 1541 | mutex_unlock(&counter->owner->perf_counter_mutex); | ||
| 1542 | put_task_struct(counter->owner); | ||
| 1543 | |||
| 1544 | free_counter(counter); | ||
| 1545 | |||
| 1546 | return 0; | ||
| 1547 | } | ||
| 1548 | |||
| 1549 | /* | ||
| 1550 | * Read the performance counter - simple non blocking version for now | ||
| 1551 | */ | ||
| 1552 | static ssize_t | ||
| 1553 | perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count) | ||
| 1554 | { | ||
| 1555 | u64 values[4]; | ||
| 1556 | int n; | ||
| 1557 | |||
| 1558 | /* | ||
| 1559 | * Return end-of-file for a read on a counter that is in | ||
| 1560 | * error state (i.e. because it was pinned but it couldn't be | ||
| 1561 | * scheduled on to the CPU at some point). | ||
| 1562 | */ | ||
| 1563 | if (counter->state == PERF_COUNTER_STATE_ERROR) | ||
| 1564 | return 0; | ||
| 1565 | |||
| 1566 | WARN_ON_ONCE(counter->ctx->parent_ctx); | ||
| 1567 | mutex_lock(&counter->child_mutex); | ||
| 1568 | values[0] = perf_counter_read(counter); | ||
| 1569 | n = 1; | ||
| 1570 | if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) | ||
| 1571 | values[n++] = counter->total_time_enabled + | ||
| 1572 | atomic64_read(&counter->child_total_time_enabled); | ||
| 1573 | if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) | ||
| 1574 | values[n++] = counter->total_time_running + | ||
| 1575 | atomic64_read(&counter->child_total_time_running); | ||
| 1576 | if (counter->attr.read_format & PERF_FORMAT_ID) | ||
| 1577 | values[n++] = counter->id; | ||
| 1578 | mutex_unlock(&counter->child_mutex); | ||
| 1579 | |||
| 1580 | if (count < n * sizeof(u64)) | ||
| 1581 | return -EINVAL; | ||
| 1582 | count = n * sizeof(u64); | ||
| 1583 | |||
| 1584 | if (copy_to_user(buf, values, count)) | ||
| 1585 | return -EFAULT; | ||
| 1586 | |||
| 1587 | return count; | ||
| 1588 | } | ||
| 1589 | |||
| 1590 | static ssize_t | ||
| 1591 | perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) | ||
| 1592 | { | ||
| 1593 | struct perf_counter *counter = file->private_data; | ||
| 1594 | |||
| 1595 | return perf_read_hw(counter, buf, count); | ||
| 1596 | } | ||
| 1597 | |||
| 1598 | static unsigned int perf_poll(struct file *file, poll_table *wait) | ||
| 1599 | { | ||
| 1600 | struct perf_counter *counter = file->private_data; | ||
| 1601 | struct perf_mmap_data *data; | ||
| 1602 | unsigned int events = POLL_HUP; | ||
| 1603 | |||
| 1604 | rcu_read_lock(); | ||
| 1605 | data = rcu_dereference(counter->data); | ||
| 1606 | if (data) | ||
| 1607 | events = atomic_xchg(&data->poll, 0); | ||
| 1608 | rcu_read_unlock(); | ||
| 1609 | |||
| 1610 | poll_wait(file, &counter->waitq, wait); | ||
| 1611 | |||
| 1612 | return events; | ||
| 1613 | } | ||
| 1614 | |||
| 1615 | static void perf_counter_reset(struct perf_counter *counter) | ||
| 1616 | { | ||
| 1617 | (void)perf_counter_read(counter); | ||
| 1618 | atomic64_set(&counter->count, 0); | ||
| 1619 | perf_counter_update_userpage(counter); | ||
| 1620 | } | ||
| 1621 | |||
| 1622 | /* | ||
| 1623 | * Holding the top-level counter's child_mutex means that any | ||
| 1624 | * descendant process that has inherited this counter will block | ||
| 1625 | * in sync_child_counter if it goes to exit, thus satisfying the | ||
| 1626 | * task existence requirements of perf_counter_enable/disable. | ||
| 1627 | */ | ||
| 1628 | static void perf_counter_for_each_child(struct perf_counter *counter, | ||
| 1629 | void (*func)(struct perf_counter *)) | ||
| 1630 | { | ||
| 1631 | struct perf_counter *child; | ||
| 1632 | |||
| 1633 | WARN_ON_ONCE(counter->ctx->parent_ctx); | ||
| 1634 | mutex_lock(&counter->child_mutex); | ||
| 1635 | func(counter); | ||
| 1636 | list_for_each_entry(child, &counter->child_list, child_list) | ||
| 1637 | func(child); | ||
| 1638 | mutex_unlock(&counter->child_mutex); | ||
| 1639 | } | ||
| 1640 | |||
| 1641 | static void perf_counter_for_each(struct perf_counter *counter, | ||
| 1642 | void (*func)(struct perf_counter *)) | ||
| 1643 | { | ||
| 1644 | struct perf_counter_context *ctx = counter->ctx; | ||
| 1645 | struct perf_counter *sibling; | ||
| 1646 | |||
| 1647 | WARN_ON_ONCE(ctx->parent_ctx); | ||
| 1648 | mutex_lock(&ctx->mutex); | ||
| 1649 | counter = counter->group_leader; | ||
| 1650 | |||
| 1651 | perf_counter_for_each_child(counter, func); | ||
| 1652 | func(counter); | ||
| 1653 | list_for_each_entry(sibling, &counter->sibling_list, list_entry) | ||
| 1654 | perf_counter_for_each_child(counter, func); | ||
| 1655 | mutex_unlock(&ctx->mutex); | ||
| 1656 | } | ||
| 1657 | |||
| 1658 | static int perf_counter_period(struct perf_counter *counter, u64 __user *arg) | ||
| 1659 | { | ||
| 1660 | struct perf_counter_context *ctx = counter->ctx; | ||
| 1661 | unsigned long size; | ||
| 1662 | int ret = 0; | ||
| 1663 | u64 value; | ||
| 1664 | |||
| 1665 | if (!counter->attr.sample_period) | ||
| 1666 | return -EINVAL; | ||
| 1667 | |||
| 1668 | size = copy_from_user(&value, arg, sizeof(value)); | ||
| 1669 | if (size != sizeof(value)) | ||
| 1670 | return -EFAULT; | ||
| 1671 | |||
| 1672 | if (!value) | ||
| 1673 | return -EINVAL; | ||
| 1674 | |||
| 1675 | spin_lock_irq(&ctx->lock); | ||
| 1676 | if (counter->attr.freq) { | ||
| 1677 | if (value > sysctl_perf_counter_sample_rate) { | ||
| 1678 | ret = -EINVAL; | ||
| 1679 | goto unlock; | ||
| 1680 | } | ||
| 1681 | |||
| 1682 | counter->attr.sample_freq = value; | ||
| 1683 | } else { | ||
| 1684 | perf_log_period(counter, value); | ||
| 1685 | |||
| 1686 | counter->attr.sample_period = value; | ||
| 1687 | counter->hw.sample_period = value; | ||
| 1688 | } | ||
| 1689 | unlock: | ||
| 1690 | spin_unlock_irq(&ctx->lock); | ||
| 1691 | |||
| 1692 | return ret; | ||
| 1693 | } | ||
| 1694 | |||
| 1695 | static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) | ||
| 1696 | { | ||
| 1697 | struct perf_counter *counter = file->private_data; | ||
| 1698 | void (*func)(struct perf_counter *); | ||
| 1699 | u32 flags = arg; | ||
| 1700 | |||
| 1701 | switch (cmd) { | ||
| 1702 | case PERF_COUNTER_IOC_ENABLE: | ||
| 1703 | func = perf_counter_enable; | ||
| 1704 | break; | ||
| 1705 | case PERF_COUNTER_IOC_DISABLE: | ||
| 1706 | func = perf_counter_disable; | ||
| 1707 | break; | ||
| 1708 | case PERF_COUNTER_IOC_RESET: | ||
| 1709 | func = perf_counter_reset; | ||
| 1710 | break; | ||
| 1711 | |||
| 1712 | case PERF_COUNTER_IOC_REFRESH: | ||
| 1713 | return perf_counter_refresh(counter, arg); | ||
| 1714 | |||
| 1715 | case PERF_COUNTER_IOC_PERIOD: | ||
| 1716 | return perf_counter_period(counter, (u64 __user *)arg); | ||
| 1717 | |||
| 1718 | default: | ||
| 1719 | return -ENOTTY; | ||
| 1720 | } | ||
| 1721 | |||
| 1722 | if (flags & PERF_IOC_FLAG_GROUP) | ||
| 1723 | perf_counter_for_each(counter, func); | ||
| 1724 | else | ||
| 1725 | perf_counter_for_each_child(counter, func); | ||
| 1726 | |||
| 1727 | return 0; | ||
| 1728 | } | ||
| 1729 | |||
| 1730 | int perf_counter_task_enable(void) | ||
| 1731 | { | ||
| 1732 | struct perf_counter *counter; | ||
| 1733 | |||
| 1734 | mutex_lock(¤t->perf_counter_mutex); | ||
| 1735 | list_for_each_entry(counter, ¤t->perf_counter_list, owner_entry) | ||
| 1736 | perf_counter_for_each_child(counter, perf_counter_enable); | ||
| 1737 | mutex_unlock(¤t->perf_counter_mutex); | ||
| 1738 | |||
| 1739 | return 0; | ||
| 1740 | } | ||
| 1741 | |||
| 1742 | int perf_counter_task_disable(void) | ||
| 1743 | { | ||
| 1744 | struct perf_counter *counter; | ||
| 1745 | |||
| 1746 | mutex_lock(¤t->perf_counter_mutex); | ||
| 1747 | list_for_each_entry(counter, ¤t->perf_counter_list, owner_entry) | ||
| 1748 | perf_counter_for_each_child(counter, perf_counter_disable); | ||
| 1749 | mutex_unlock(¤t->perf_counter_mutex); | ||
| 1750 | |||
| 1751 | return 0; | ||
| 1752 | } | ||
| 1753 | |||
| 1754 | /* | ||
| 1755 | * Callers need to ensure there can be no nesting of this function, otherwise | ||
| 1756 | * the seqlock logic goes bad. We can not serialize this because the arch | ||
| 1757 | * code calls this from NMI context. | ||
| 1758 | */ | ||
| 1759 | void perf_counter_update_userpage(struct perf_counter *counter) | ||
| 1760 | { | ||
| 1761 | struct perf_counter_mmap_page *userpg; | ||
| 1762 | struct perf_mmap_data *data; | ||
| 1763 | |||
| 1764 | rcu_read_lock(); | ||
| 1765 | data = rcu_dereference(counter->data); | ||
| 1766 | if (!data) | ||
| 1767 | goto unlock; | ||
| 1768 | |||
| 1769 | userpg = data->user_page; | ||
| 1770 | |||
| 1771 | /* | ||
| 1772 | * Disable preemption so as to not let the corresponding user-space | ||
| 1773 | * spin too long if we get preempted. | ||
| 1774 | */ | ||
| 1775 | preempt_disable(); | ||
| 1776 | ++userpg->lock; | ||
| 1777 | barrier(); | ||
| 1778 | userpg->index = counter->hw.idx; | ||
| 1779 | userpg->offset = atomic64_read(&counter->count); | ||
| 1780 | if (counter->state == PERF_COUNTER_STATE_ACTIVE) | ||
| 1781 | userpg->offset -= atomic64_read(&counter->hw.prev_count); | ||
| 1782 | |||
| 1783 | barrier(); | ||
| 1784 | ++userpg->lock; | ||
| 1785 | preempt_enable(); | ||
| 1786 | unlock: | ||
| 1787 | rcu_read_unlock(); | ||
| 1788 | } | ||
| 1789 | |||
| 1790 | static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) | ||
| 1791 | { | ||
| 1792 | struct perf_counter *counter = vma->vm_file->private_data; | ||
| 1793 | struct perf_mmap_data *data; | ||
| 1794 | int ret = VM_FAULT_SIGBUS; | ||
| 1795 | |||
| 1796 | if (vmf->flags & FAULT_FLAG_MKWRITE) { | ||
| 1797 | if (vmf->pgoff == 0) | ||
| 1798 | ret = 0; | ||
| 1799 | return ret; | ||
| 1800 | } | ||
| 1801 | |||
| 1802 | rcu_read_lock(); | ||
| 1803 | data = rcu_dereference(counter->data); | ||
| 1804 | if (!data) | ||
| 1805 | goto unlock; | ||
| 1806 | |||
| 1807 | if (vmf->pgoff == 0) { | ||
| 1808 | vmf->page = virt_to_page(data->user_page); | ||
| 1809 | } else { | ||
| 1810 | int nr = vmf->pgoff - 1; | ||
| 1811 | |||
| 1812 | if ((unsigned)nr > data->nr_pages) | ||
| 1813 | goto unlock; | ||
| 1814 | |||
| 1815 | if (vmf->flags & FAULT_FLAG_WRITE) | ||
| 1816 | goto unlock; | ||
| 1817 | |||
| 1818 | vmf->page = virt_to_page(data->data_pages[nr]); | ||
| 1819 | } | ||
| 1820 | |||
| 1821 | get_page(vmf->page); | ||
| 1822 | vmf->page->mapping = vma->vm_file->f_mapping; | ||
| 1823 | vmf->page->index = vmf->pgoff; | ||
| 1824 | |||
| 1825 | ret = 0; | ||
| 1826 | unlock: | ||
| 1827 | rcu_read_unlock(); | ||
| 1828 | |||
| 1829 | return ret; | ||
| 1830 | } | ||
| 1831 | |||
| 1832 | static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages) | ||
| 1833 | { | ||
| 1834 | struct perf_mmap_data *data; | ||
| 1835 | unsigned long size; | ||
| 1836 | int i; | ||
| 1837 | |||
| 1838 | WARN_ON(atomic_read(&counter->mmap_count)); | ||
| 1839 | |||
| 1840 | size = sizeof(struct perf_mmap_data); | ||
| 1841 | size += nr_pages * sizeof(void *); | ||
| 1842 | |||
| 1843 | data = kzalloc(size, GFP_KERNEL); | ||
| 1844 | if (!data) | ||
| 1845 | goto fail; | ||
| 1846 | |||
| 1847 | data->user_page = (void *)get_zeroed_page(GFP_KERNEL); | ||
| 1848 | if (!data->user_page) | ||
| 1849 | goto fail_user_page; | ||
| 1850 | |||
| 1851 | for (i = 0; i < nr_pages; i++) { | ||
| 1852 | data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL); | ||
| 1853 | if (!data->data_pages[i]) | ||
| 1854 | goto fail_data_pages; | ||
| 1855 | } | ||
| 1856 | |||
| 1857 | data->nr_pages = nr_pages; | ||
| 1858 | atomic_set(&data->lock, -1); | ||
| 1859 | |||
| 1860 | rcu_assign_pointer(counter->data, data); | ||
| 1861 | |||
| 1862 | return 0; | ||
| 1863 | |||
| 1864 | fail_data_pages: | ||
| 1865 | for (i--; i >= 0; i--) | ||
| 1866 | free_page((unsigned long)data->data_pages[i]); | ||
| 1867 | |||
| 1868 | free_page((unsigned long)data->user_page); | ||
| 1869 | |||
| 1870 | fail_user_page: | ||
| 1871 | kfree(data); | ||
| 1872 | |||
| 1873 | fail: | ||
| 1874 | return -ENOMEM; | ||
| 1875 | } | ||
| 1876 | |||
| 1877 | static void perf_mmap_free_page(unsigned long addr) | ||
| 1878 | { | ||
| 1879 | struct page *page = virt_to_page(addr); | ||
| 1880 | |||
| 1881 | page->mapping = NULL; | ||
| 1882 | __free_page(page); | ||
| 1883 | } | ||
| 1884 | |||
| 1885 | static void __perf_mmap_data_free(struct rcu_head *rcu_head) | ||
| 1886 | { | ||
| 1887 | struct perf_mmap_data *data; | ||
| 1888 | int i; | ||
| 1889 | |||
| 1890 | data = container_of(rcu_head, struct perf_mmap_data, rcu_head); | ||
| 1891 | |||
| 1892 | perf_mmap_free_page((unsigned long)data->user_page); | ||
| 1893 | for (i = 0; i < data->nr_pages; i++) | ||
| 1894 | perf_mmap_free_page((unsigned long)data->data_pages[i]); | ||
| 1895 | |||
| 1896 | kfree(data); | ||
| 1897 | } | ||
| 1898 | |||
| 1899 | static void perf_mmap_data_free(struct perf_counter *counter) | ||
| 1900 | { | ||
| 1901 | struct perf_mmap_data *data = counter->data; | ||
| 1902 | |||
| 1903 | WARN_ON(atomic_read(&counter->mmap_count)); | ||
| 1904 | |||
| 1905 | rcu_assign_pointer(counter->data, NULL); | ||
| 1906 | call_rcu(&data->rcu_head, __perf_mmap_data_free); | ||
| 1907 | } | ||
| 1908 | |||
| 1909 | static void perf_mmap_open(struct vm_area_struct *vma) | ||
| 1910 | { | ||
| 1911 | struct perf_counter *counter = vma->vm_file->private_data; | ||
| 1912 | |||
| 1913 | atomic_inc(&counter->mmap_count); | ||
| 1914 | } | ||
| 1915 | |||
| 1916 | static void perf_mmap_close(struct vm_area_struct *vma) | ||
| 1917 | { | ||
| 1918 | struct perf_counter *counter = vma->vm_file->private_data; | ||
| 1919 | |||
| 1920 | WARN_ON_ONCE(counter->ctx->parent_ctx); | ||
| 1921 | if (atomic_dec_and_mutex_lock(&counter->mmap_count, &counter->mmap_mutex)) { | ||
| 1922 | struct user_struct *user = current_user(); | ||
| 1923 | |||
| 1924 | atomic_long_sub(counter->data->nr_pages + 1, &user->locked_vm); | ||
| 1925 | vma->vm_mm->locked_vm -= counter->data->nr_locked; | ||
| 1926 | perf_mmap_data_free(counter); | ||
| 1927 | mutex_unlock(&counter->mmap_mutex); | ||
| 1928 | } | ||
| 1929 | } | ||
| 1930 | |||
| 1931 | static struct vm_operations_struct perf_mmap_vmops = { | ||
| 1932 | .open = perf_mmap_open, | ||
| 1933 | .close = perf_mmap_close, | ||
| 1934 | .fault = perf_mmap_fault, | ||
| 1935 | .page_mkwrite = perf_mmap_fault, | ||
| 1936 | }; | ||
| 1937 | |||
| 1938 | static int perf_mmap(struct file *file, struct vm_area_struct *vma) | ||
| 1939 | { | ||
| 1940 | struct perf_counter *counter = file->private_data; | ||
| 1941 | unsigned long user_locked, user_lock_limit; | ||
| 1942 | struct user_struct *user = current_user(); | ||
| 1943 | unsigned long locked, lock_limit; | ||
| 1944 | unsigned long vma_size; | ||
| 1945 | unsigned long nr_pages; | ||
| 1946 | long user_extra, extra; | ||
| 1947 | int ret = 0; | ||
| 1948 | |||
| 1949 | if (!(vma->vm_flags & VM_SHARED)) | ||
| 1950 | return -EINVAL; | ||
| 1951 | |||
| 1952 | vma_size = vma->vm_end - vma->vm_start; | ||
| 1953 | nr_pages = (vma_size / PAGE_SIZE) - 1; | ||
| 1954 | |||
| 1955 | /* | ||
| 1956 | * If we have data pages ensure they're a power-of-two number, so we | ||
| 1957 | * can do bitmasks instead of modulo. | ||
| 1958 | */ | ||
| 1959 | if (nr_pages != 0 && !is_power_of_2(nr_pages)) | ||
| 1960 | return -EINVAL; | ||
| 1961 | |||
| 1962 | if (vma_size != PAGE_SIZE * (1 + nr_pages)) | ||
| 1963 | return -EINVAL; | ||
| 1964 | |||
| 1965 | if (vma->vm_pgoff != 0) | ||
| 1966 | return -EINVAL; | ||
| 1967 | |||
| 1968 | WARN_ON_ONCE(counter->ctx->parent_ctx); | ||
| 1969 | mutex_lock(&counter->mmap_mutex); | ||
| 1970 | if (atomic_inc_not_zero(&counter->mmap_count)) { | ||
| 1971 | if (nr_pages != counter->data->nr_pages) | ||
| 1972 | ret = -EINVAL; | ||
| 1973 | goto unlock; | ||
| 1974 | } | ||
| 1975 | |||
| 1976 | user_extra = nr_pages + 1; | ||
| 1977 | user_lock_limit = sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10); | ||
| 1978 | |||
| 1979 | /* | ||
| 1980 | * Increase the limit linearly with more CPUs: | ||
| 1981 | */ | ||
| 1982 | user_lock_limit *= num_online_cpus(); | ||
| 1983 | |||
| 1984 | user_locked = atomic_long_read(&user->locked_vm) + user_extra; | ||
| 1985 | |||
| 1986 | extra = 0; | ||
| 1987 | if (user_locked > user_lock_limit) | ||
| 1988 | extra = user_locked - user_lock_limit; | ||
| 1989 | |||
| 1990 | lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur; | ||
| 1991 | lock_limit >>= PAGE_SHIFT; | ||
| 1992 | locked = vma->vm_mm->locked_vm + extra; | ||
| 1993 | |||
| 1994 | if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) { | ||
| 1995 | ret = -EPERM; | ||
| 1996 | goto unlock; | ||
| 1997 | } | ||
| 1998 | |||
| 1999 | WARN_ON(counter->data); | ||
| 2000 | ret = perf_mmap_data_alloc(counter, nr_pages); | ||
| 2001 | if (ret) | ||
| 2002 | goto unlock; | ||
| 2003 | |||
| 2004 | atomic_set(&counter->mmap_count, 1); | ||
| 2005 | atomic_long_add(user_extra, &user->locked_vm); | ||
| 2006 | vma->vm_mm->locked_vm += extra; | ||
| 2007 | counter->data->nr_locked = extra; | ||
| 2008 | if (vma->vm_flags & VM_WRITE) | ||
| 2009 | counter->data->writable = 1; | ||
| 2010 | |||
| 2011 | unlock: | ||
| 2012 | mutex_unlock(&counter->mmap_mutex); | ||
| 2013 | |||
| 2014 | vma->vm_flags |= VM_RESERVED; | ||
| 2015 | vma->vm_ops = &perf_mmap_vmops; | ||
| 2016 | |||
| 2017 | return ret; | ||
| 2018 | } | ||
| 2019 | |||
| 2020 | static int perf_fasync(int fd, struct file *filp, int on) | ||
| 2021 | { | ||
| 2022 | struct inode *inode = filp->f_path.dentry->d_inode; | ||
| 2023 | struct perf_counter *counter = filp->private_data; | ||
| 2024 | int retval; | ||
| 2025 | |||
| 2026 | mutex_lock(&inode->i_mutex); | ||
| 2027 | retval = fasync_helper(fd, filp, on, &counter->fasync); | ||
| 2028 | mutex_unlock(&inode->i_mutex); | ||
| 2029 | |||
| 2030 | if (retval < 0) | ||
| 2031 | return retval; | ||
| 2032 | |||
| 2033 | return 0; | ||
| 2034 | } | ||
| 2035 | |||
| 2036 | static const struct file_operations perf_fops = { | ||
| 2037 | .release = perf_release, | ||
| 2038 | .read = perf_read, | ||
| 2039 | .poll = perf_poll, | ||
| 2040 | .unlocked_ioctl = perf_ioctl, | ||
| 2041 | .compat_ioctl = perf_ioctl, | ||
| 2042 | .mmap = perf_mmap, | ||
| 2043 | .fasync = perf_fasync, | ||
| 2044 | }; | ||
| 2045 | |||
| 2046 | /* | ||
| 2047 | * Perf counter wakeup | ||
| 2048 | * | ||
| 2049 | * If there's data, ensure we set the poll() state and publish everything | ||
| 2050 | * to user-space before waking everybody up. | ||
| 2051 | */ | ||
| 2052 | |||
| 2053 | void perf_counter_wakeup(struct perf_counter *counter) | ||
| 2054 | { | ||
| 2055 | wake_up_all(&counter->waitq); | ||
| 2056 | |||
| 2057 | if (counter->pending_kill) { | ||
| 2058 | kill_fasync(&counter->fasync, SIGIO, counter->pending_kill); | ||
| 2059 | counter->pending_kill = 0; | ||
| 2060 | } | ||
| 2061 | } | ||
| 2062 | |||
| 2063 | /* | ||
| 2064 | * Pending wakeups | ||
| 2065 | * | ||
| 2066 | * Handle the case where we need to wakeup up from NMI (or rq->lock) context. | ||
| 2067 | * | ||
| 2068 | * The NMI bit means we cannot possibly take locks. Therefore, maintain a | ||
| 2069 | * single linked list and use cmpxchg() to add entries lockless. | ||
| 2070 | */ | ||
| 2071 | |||
| 2072 | static void perf_pending_counter(struct perf_pending_entry *entry) | ||
| 2073 | { | ||
| 2074 | struct perf_counter *counter = container_of(entry, | ||
| 2075 | struct perf_counter, pending); | ||
| 2076 | |||
| 2077 | if (counter->pending_disable) { | ||
| 2078 | counter->pending_disable = 0; | ||
| 2079 | perf_counter_disable(counter); | ||
| 2080 | } | ||
| 2081 | |||
| 2082 | if (counter->pending_wakeup) { | ||
| 2083 | counter->pending_wakeup = 0; | ||
| 2084 | perf_counter_wakeup(counter); | ||
| 2085 | } | ||
| 2086 | } | ||
| 2087 | |||
| 2088 | #define PENDING_TAIL ((struct perf_pending_entry *)-1UL) | ||
| 2089 | |||
| 2090 | static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = { | ||
| 2091 | PENDING_TAIL, | ||
| 2092 | }; | ||
| 2093 | |||
| 2094 | static void perf_pending_queue(struct perf_pending_entry *entry, | ||
| 2095 | void (*func)(struct perf_pending_entry *)) | ||
| 2096 | { | ||
| 2097 | struct perf_pending_entry **head; | ||
| 2098 | |||
| 2099 | if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL) | ||
| 2100 | return; | ||
| 2101 | |||
| 2102 | entry->func = func; | ||
| 2103 | |||
| 2104 | head = &get_cpu_var(perf_pending_head); | ||
| 2105 | |||
| 2106 | do { | ||
| 2107 | entry->next = *head; | ||
| 2108 | } while (cmpxchg(head, entry->next, entry) != entry->next); | ||
| 2109 | |||
| 2110 | set_perf_counter_pending(); | ||
| 2111 | |||
| 2112 | put_cpu_var(perf_pending_head); | ||
| 2113 | } | ||
| 2114 | |||
| 2115 | static int __perf_pending_run(void) | ||
| 2116 | { | ||
| 2117 | struct perf_pending_entry *list; | ||
| 2118 | int nr = 0; | ||
| 2119 | |||
| 2120 | list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL); | ||
| 2121 | while (list != PENDING_TAIL) { | ||
| 2122 | void (*func)(struct perf_pending_entry *); | ||
| 2123 | struct perf_pending_entry *entry = list; | ||
| 2124 | |||
| 2125 | list = list->next; | ||
| 2126 | |||
| 2127 | func = entry->func; | ||
| 2128 | entry->next = NULL; | ||
| 2129 | /* | ||
| 2130 | * Ensure we observe the unqueue before we issue the wakeup, | ||
| 2131 | * so that we won't be waiting forever. | ||
| 2132 | * -- see perf_not_pending(). | ||
| 2133 | */ | ||
| 2134 | smp_wmb(); | ||
| 2135 | |||
| 2136 | func(entry); | ||
| 2137 | nr++; | ||
| 2138 | } | ||
| 2139 | |||
| 2140 | return nr; | ||
| 2141 | } | ||
| 2142 | |||
| 2143 | static inline int perf_not_pending(struct perf_counter *counter) | ||
| 2144 | { | ||
| 2145 | /* | ||
| 2146 | * If we flush on whatever cpu we run, there is a chance we don't | ||
| 2147 | * need to wait. | ||
| 2148 | */ | ||
| 2149 | get_cpu(); | ||
| 2150 | __perf_pending_run(); | ||
| 2151 | put_cpu(); | ||
| 2152 | |||
| 2153 | /* | ||
| 2154 | * Ensure we see the proper queue state before going to sleep | ||
| 2155 | * so that we do not miss the wakeup. -- see perf_pending_handle() | ||
| 2156 | */ | ||
| 2157 | smp_rmb(); | ||
| 2158 | return counter->pending.next == NULL; | ||
| 2159 | } | ||
| 2160 | |||
| 2161 | static void perf_pending_sync(struct perf_counter *counter) | ||
| 2162 | { | ||
| 2163 | wait_event(counter->waitq, perf_not_pending(counter)); | ||
| 2164 | } | ||
| 2165 | |||
| 2166 | void perf_counter_do_pending(void) | ||
| 2167 | { | ||
| 2168 | __perf_pending_run(); | ||
| 2169 | } | ||
| 2170 | |||
| 2171 | /* | ||
| 2172 | * Callchain support -- arch specific | ||
| 2173 | */ | ||
| 2174 | |||
| 2175 | __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs) | ||
| 2176 | { | ||
| 2177 | return NULL; | ||
| 2178 | } | ||
| 2179 | |||
| 2180 | /* | ||
| 2181 | * Output | ||
| 2182 | */ | ||
| 2183 | |||
| 2184 | struct perf_output_handle { | ||
| 2185 | struct perf_counter *counter; | ||
| 2186 | struct perf_mmap_data *data; | ||
| 2187 | unsigned long head; | ||
| 2188 | unsigned long offset; | ||
| 2189 | int nmi; | ||
| 2190 | int sample; | ||
| 2191 | int locked; | ||
| 2192 | unsigned long flags; | ||
| 2193 | }; | ||
| 2194 | |||
| 2195 | static bool perf_output_space(struct perf_mmap_data *data, | ||
| 2196 | unsigned int offset, unsigned int head) | ||
| 2197 | { | ||
| 2198 | unsigned long tail; | ||
| 2199 | unsigned long mask; | ||
| 2200 | |||
| 2201 | if (!data->writable) | ||
| 2202 | return true; | ||
| 2203 | |||
| 2204 | mask = (data->nr_pages << PAGE_SHIFT) - 1; | ||
| 2205 | /* | ||
| 2206 | * Userspace could choose to issue a mb() before updating the tail | ||
| 2207 | * pointer. So that all reads will be completed before the write is | ||
| 2208 | * issued. | ||
| 2209 | */ | ||
| 2210 | tail = ACCESS_ONCE(data->user_page->data_tail); | ||
| 2211 | smp_rmb(); | ||
| 2212 | |||
| 2213 | offset = (offset - tail) & mask; | ||
| 2214 | head = (head - tail) & mask; | ||
| 2215 | |||
| 2216 | if ((int)(head - offset) < 0) | ||
| 2217 | return false; | ||
| 2218 | |||
| 2219 | return true; | ||
| 2220 | } | ||
| 2221 | |||
| 2222 | static void perf_output_wakeup(struct perf_output_handle *handle) | ||
| 2223 | { | ||
| 2224 | atomic_set(&handle->data->poll, POLL_IN); | ||
| 2225 | |||
| 2226 | if (handle->nmi) { | ||
| 2227 | handle->counter->pending_wakeup = 1; | ||
| 2228 | perf_pending_queue(&handle->counter->pending, | ||
| 2229 | perf_pending_counter); | ||
| 2230 | } else | ||
| 2231 | perf_counter_wakeup(handle->counter); | ||
| 2232 | } | ||
| 2233 | |||
| 2234 | /* | ||
| 2235 | * Curious locking construct. | ||
| 2236 | * | ||
| 2237 | * We need to ensure a later event doesn't publish a head when a former | ||
| 2238 | * event isn't done writing. However since we need to deal with NMIs we | ||
| 2239 | * cannot fully serialize things. | ||
| 2240 | * | ||
| 2241 | * What we do is serialize between CPUs so we only have to deal with NMI | ||
| 2242 | * nesting on a single CPU. | ||
| 2243 | * | ||
| 2244 | * We only publish the head (and generate a wakeup) when the outer-most | ||
| 2245 | * event completes. | ||
| 2246 | */ | ||
| 2247 | static void perf_output_lock(struct perf_output_handle *handle) | ||
| 2248 | { | ||
| 2249 | struct perf_mmap_data *data = handle->data; | ||
| 2250 | int cpu; | ||
| 2251 | |||
| 2252 | handle->locked = 0; | ||
| 2253 | |||
| 2254 | local_irq_save(handle->flags); | ||
| 2255 | cpu = smp_processor_id(); | ||
| 2256 | |||
| 2257 | if (in_nmi() && atomic_read(&data->lock) == cpu) | ||
| 2258 | return; | ||
| 2259 | |||
| 2260 | while (atomic_cmpxchg(&data->lock, -1, cpu) != -1) | ||
| 2261 | cpu_relax(); | ||
| 2262 | |||
| 2263 | handle->locked = 1; | ||
| 2264 | } | ||
| 2265 | |||
| 2266 | static void perf_output_unlock(struct perf_output_handle *handle) | ||
| 2267 | { | ||
| 2268 | struct perf_mmap_data *data = handle->data; | ||
| 2269 | unsigned long head; | ||
| 2270 | int cpu; | ||
| 2271 | |||
| 2272 | data->done_head = data->head; | ||
| 2273 | |||
| 2274 | if (!handle->locked) | ||
| 2275 | goto out; | ||
| 2276 | |||
| 2277 | again: | ||
| 2278 | /* | ||
| 2279 | * The xchg implies a full barrier that ensures all writes are done | ||
| 2280 | * before we publish the new head, matched by a rmb() in userspace when | ||
| 2281 | * reading this position. | ||
| 2282 | */ | ||
| 2283 | while ((head = atomic_long_xchg(&data->done_head, 0))) | ||
| 2284 | data->user_page->data_head = head; | ||
| 2285 | |||
| 2286 | /* | ||
| 2287 | * NMI can happen here, which means we can miss a done_head update. | ||
| 2288 | */ | ||
| 2289 | |||
| 2290 | cpu = atomic_xchg(&data->lock, -1); | ||
| 2291 | WARN_ON_ONCE(cpu != smp_processor_id()); | ||
| 2292 | |||
| 2293 | /* | ||
| 2294 | * Therefore we have to validate we did not indeed do so. | ||
| 2295 | */ | ||
| 2296 | if (unlikely(atomic_long_read(&data->done_head))) { | ||
| 2297 | /* | ||
| 2298 | * Since we had it locked, we can lock it again. | ||
| 2299 | */ | ||
| 2300 | while (atomic_cmpxchg(&data->lock, -1, cpu) != -1) | ||
| 2301 | cpu_relax(); | ||
| 2302 | |||
| 2303 | goto again; | ||
| 2304 | } | ||
| 2305 | |||
| 2306 | if (atomic_xchg(&data->wakeup, 0)) | ||
| 2307 | perf_output_wakeup(handle); | ||
| 2308 | out: | ||
| 2309 | local_irq_restore(handle->flags); | ||
| 2310 | } | ||
| 2311 | |||
| 2312 | static void perf_output_copy(struct perf_output_handle *handle, | ||
| 2313 | const void *buf, unsigned int len) | ||
| 2314 | { | ||
| 2315 | unsigned int pages_mask; | ||
| 2316 | unsigned int offset; | ||
| 2317 | unsigned int size; | ||
| 2318 | void **pages; | ||
| 2319 | |||
| 2320 | offset = handle->offset; | ||
| 2321 | pages_mask = handle->data->nr_pages - 1; | ||
| 2322 | pages = handle->data->data_pages; | ||
| 2323 | |||
| 2324 | do { | ||
| 2325 | unsigned int page_offset; | ||
| 2326 | int nr; | ||
| 2327 | |||
| 2328 | nr = (offset >> PAGE_SHIFT) & pages_mask; | ||
| 2329 | page_offset = offset & (PAGE_SIZE - 1); | ||
| 2330 | size = min_t(unsigned int, PAGE_SIZE - page_offset, len); | ||
| 2331 | |||
| 2332 | memcpy(pages[nr] + page_offset, buf, size); | ||
| 2333 | |||
| 2334 | len -= size; | ||
| 2335 | buf += size; | ||
| 2336 | offset += size; | ||
| 2337 | } while (len); | ||
| 2338 | |||
| 2339 | handle->offset = offset; | ||
| 2340 | |||
| 2341 | /* | ||
| 2342 | * Check we didn't copy past our reservation window, taking the | ||
| 2343 | * possible unsigned int wrap into account. | ||
| 2344 | */ | ||
| 2345 | WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0); | ||
| 2346 | } | ||
| 2347 | |||
| 2348 | #define perf_output_put(handle, x) \ | ||
| 2349 | perf_output_copy((handle), &(x), sizeof(x)) | ||
| 2350 | |||
| 2351 | static int perf_output_begin(struct perf_output_handle *handle, | ||
| 2352 | struct perf_counter *counter, unsigned int size, | ||
| 2353 | int nmi, int sample) | ||
| 2354 | { | ||
| 2355 | struct perf_mmap_data *data; | ||
| 2356 | unsigned int offset, head; | ||
| 2357 | int have_lost; | ||
| 2358 | struct { | ||
| 2359 | struct perf_event_header header; | ||
| 2360 | u64 id; | ||
| 2361 | u64 lost; | ||
| 2362 | } lost_event; | ||
| 2363 | |||
| 2364 | /* | ||
| 2365 | * For inherited counters we send all the output towards the parent. | ||
| 2366 | */ | ||
| 2367 | if (counter->parent) | ||
| 2368 | counter = counter->parent; | ||
| 2369 | |||
| 2370 | rcu_read_lock(); | ||
| 2371 | data = rcu_dereference(counter->data); | ||
| 2372 | if (!data) | ||
| 2373 | goto out; | ||
| 2374 | |||
| 2375 | handle->data = data; | ||
| 2376 | handle->counter = counter; | ||
| 2377 | handle->nmi = nmi; | ||
| 2378 | handle->sample = sample; | ||
| 2379 | |||
| 2380 | if (!data->nr_pages) | ||
| 2381 | goto fail; | ||
| 2382 | |||
| 2383 | have_lost = atomic_read(&data->lost); | ||
| 2384 | if (have_lost) | ||
| 2385 | size += sizeof(lost_event); | ||
| 2386 | |||
| 2387 | perf_output_lock(handle); | ||
| 2388 | |||
| 2389 | do { | ||
| 2390 | offset = head = atomic_long_read(&data->head); | ||
| 2391 | head += size; | ||
| 2392 | if (unlikely(!perf_output_space(data, offset, head))) | ||
| 2393 | goto fail; | ||
| 2394 | } while (atomic_long_cmpxchg(&data->head, offset, head) != offset); | ||
| 2395 | |||
| 2396 | handle->offset = offset; | ||
| 2397 | handle->head = head; | ||
| 2398 | |||
| 2399 | if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT)) | ||
| 2400 | atomic_set(&data->wakeup, 1); | ||
| 2401 | |||
| 2402 | if (have_lost) { | ||
| 2403 | lost_event.header.type = PERF_EVENT_LOST; | ||
| 2404 | lost_event.header.misc = 0; | ||
| 2405 | lost_event.header.size = sizeof(lost_event); | ||
| 2406 | lost_event.id = counter->id; | ||
| 2407 | lost_event.lost = atomic_xchg(&data->lost, 0); | ||
| 2408 | |||
| 2409 | perf_output_put(handle, lost_event); | ||
| 2410 | } | ||
| 2411 | |||
| 2412 | return 0; | ||
| 2413 | |||
| 2414 | fail: | ||
| 2415 | atomic_inc(&data->lost); | ||
| 2416 | perf_output_unlock(handle); | ||
| 2417 | out: | ||
| 2418 | rcu_read_unlock(); | ||
| 2419 | |||
| 2420 | return -ENOSPC; | ||
| 2421 | } | ||
| 2422 | |||
| 2423 | static void perf_output_end(struct perf_output_handle *handle) | ||
| 2424 | { | ||
| 2425 | struct perf_counter *counter = handle->counter; | ||
| 2426 | struct perf_mmap_data *data = handle->data; | ||
| 2427 | |||
| 2428 | int wakeup_events = counter->attr.wakeup_events; | ||
| 2429 | |||
| 2430 | if (handle->sample && wakeup_events) { | ||
| 2431 | int events = atomic_inc_return(&data->events); | ||
| 2432 | if (events >= wakeup_events) { | ||
| 2433 | atomic_sub(wakeup_events, &data->events); | ||
| 2434 | atomic_set(&data->wakeup, 1); | ||
| 2435 | } | ||
| 2436 | } | ||
| 2437 | |||
| 2438 | perf_output_unlock(handle); | ||
| 2439 | rcu_read_unlock(); | ||
| 2440 | } | ||
| 2441 | |||
| 2442 | static u32 perf_counter_pid(struct perf_counter *counter, struct task_struct *p) | ||
| 2443 | { | ||
| 2444 | /* | ||
| 2445 | * only top level counters have the pid namespace they were created in | ||
| 2446 | */ | ||
| 2447 | if (counter->parent) | ||
| 2448 | counter = counter->parent; | ||
| 2449 | |||
| 2450 | return task_tgid_nr_ns(p, counter->ns); | ||
| 2451 | } | ||
| 2452 | |||
| 2453 | static u32 perf_counter_tid(struct perf_counter *counter, struct task_struct *p) | ||
| 2454 | { | ||
| 2455 | /* | ||
| 2456 | * only top level counters have the pid namespace they were created in | ||
| 2457 | */ | ||
| 2458 | if (counter->parent) | ||
| 2459 | counter = counter->parent; | ||
| 2460 | |||
| 2461 | return task_pid_nr_ns(p, counter->ns); | ||
| 2462 | } | ||
| 2463 | |||
| 2464 | static void perf_counter_output(struct perf_counter *counter, int nmi, | ||
| 2465 | struct perf_sample_data *data) | ||
| 2466 | { | ||
| 2467 | int ret; | ||
| 2468 | u64 sample_type = counter->attr.sample_type; | ||
| 2469 | struct perf_output_handle handle; | ||
| 2470 | struct perf_event_header header; | ||
| 2471 | u64 ip; | ||
| 2472 | struct { | ||
| 2473 | u32 pid, tid; | ||
| 2474 | } tid_entry; | ||
| 2475 | struct { | ||
| 2476 | u64 id; | ||
| 2477 | u64 counter; | ||
| 2478 | } group_entry; | ||
| 2479 | struct perf_callchain_entry *callchain = NULL; | ||
| 2480 | int callchain_size = 0; | ||
| 2481 | u64 time; | ||
| 2482 | struct { | ||
| 2483 | u32 cpu, reserved; | ||
| 2484 | } cpu_entry; | ||
| 2485 | |||
| 2486 | header.type = 0; | ||
| 2487 | header.size = sizeof(header); | ||
| 2488 | |||
| 2489 | header.misc = PERF_EVENT_MISC_OVERFLOW; | ||
| 2490 | header.misc |= perf_misc_flags(data->regs); | ||
| 2491 | |||
| 2492 | if (sample_type & PERF_SAMPLE_IP) { | ||
| 2493 | ip = perf_instruction_pointer(data->regs); | ||
| 2494 | header.type |= PERF_SAMPLE_IP; | ||
| 2495 | header.size += sizeof(ip); | ||
| 2496 | } | ||
| 2497 | |||
| 2498 | if (sample_type & PERF_SAMPLE_TID) { | ||
| 2499 | /* namespace issues */ | ||
| 2500 | tid_entry.pid = perf_counter_pid(counter, current); | ||
| 2501 | tid_entry.tid = perf_counter_tid(counter, current); | ||
| 2502 | |||
| 2503 | header.type |= PERF_SAMPLE_TID; | ||
| 2504 | header.size += sizeof(tid_entry); | ||
| 2505 | } | ||
| 2506 | |||
| 2507 | if (sample_type & PERF_SAMPLE_TIME) { | ||
| 2508 | /* | ||
| 2509 | * Maybe do better on x86 and provide cpu_clock_nmi() | ||
| 2510 | */ | ||
| 2511 | time = sched_clock(); | ||
| 2512 | |||
| 2513 | header.type |= PERF_SAMPLE_TIME; | ||
| 2514 | header.size += sizeof(u64); | ||
| 2515 | } | ||
| 2516 | |||
| 2517 | if (sample_type & PERF_SAMPLE_ADDR) { | ||
| 2518 | header.type |= PERF_SAMPLE_ADDR; | ||
| 2519 | header.size += sizeof(u64); | ||
| 2520 | } | ||
| 2521 | |||
| 2522 | if (sample_type & PERF_SAMPLE_ID) { | ||
| 2523 | header.type |= PERF_SAMPLE_ID; | ||
| 2524 | header.size += sizeof(u64); | ||
| 2525 | } | ||
| 2526 | |||
| 2527 | if (sample_type & PERF_SAMPLE_CPU) { | ||
| 2528 | header.type |= PERF_SAMPLE_CPU; | ||
| 2529 | header.size += sizeof(cpu_entry); | ||
| 2530 | |||
| 2531 | cpu_entry.cpu = raw_smp_processor_id(); | ||
| 2532 | } | ||
| 2533 | |||
| 2534 | if (sample_type & PERF_SAMPLE_PERIOD) { | ||
| 2535 | header.type |= PERF_SAMPLE_PERIOD; | ||
| 2536 | header.size += sizeof(u64); | ||
| 2537 | } | ||
| 2538 | |||
| 2539 | if (sample_type & PERF_SAMPLE_GROUP) { | ||
| 2540 | header.type |= PERF_SAMPLE_GROUP; | ||
| 2541 | header.size += sizeof(u64) + | ||
| 2542 | counter->nr_siblings * sizeof(group_entry); | ||
| 2543 | } | ||
| 2544 | |||
| 2545 | if (sample_type & PERF_SAMPLE_CALLCHAIN) { | ||
| 2546 | callchain = perf_callchain(data->regs); | ||
| 2547 | |||
| 2548 | if (callchain) { | ||
| 2549 | callchain_size = (1 + callchain->nr) * sizeof(u64); | ||
| 2550 | |||
| 2551 | header.type |= PERF_SAMPLE_CALLCHAIN; | ||
| 2552 | header.size += callchain_size; | ||
| 2553 | } | ||
| 2554 | } | ||
| 2555 | |||
| 2556 | ret = perf_output_begin(&handle, counter, header.size, nmi, 1); | ||
| 2557 | if (ret) | ||
| 2558 | return; | ||
| 2559 | |||
| 2560 | perf_output_put(&handle, header); | ||
| 2561 | |||
| 2562 | if (sample_type & PERF_SAMPLE_IP) | ||
| 2563 | perf_output_put(&handle, ip); | ||
| 2564 | |||
| 2565 | if (sample_type & PERF_SAMPLE_TID) | ||
| 2566 | perf_output_put(&handle, tid_entry); | ||
| 2567 | |||
| 2568 | if (sample_type & PERF_SAMPLE_TIME) | ||
| 2569 | perf_output_put(&handle, time); | ||
| 2570 | |||
| 2571 | if (sample_type & PERF_SAMPLE_ADDR) | ||
| 2572 | perf_output_put(&handle, data->addr); | ||
| 2573 | |||
| 2574 | if (sample_type & PERF_SAMPLE_ID) | ||
| 2575 | perf_output_put(&handle, counter->id); | ||
| 2576 | |||
| 2577 | if (sample_type & PERF_SAMPLE_CPU) | ||
| 2578 | perf_output_put(&handle, cpu_entry); | ||
| 2579 | |||
| 2580 | if (sample_type & PERF_SAMPLE_PERIOD) | ||
| 2581 | perf_output_put(&handle, data->period); | ||
| 2582 | |||
| 2583 | /* | ||
| 2584 | * XXX PERF_SAMPLE_GROUP vs inherited counters seems difficult. | ||
| 2585 | */ | ||
| 2586 | if (sample_type & PERF_SAMPLE_GROUP) { | ||
| 2587 | struct perf_counter *leader, *sub; | ||
| 2588 | u64 nr = counter->nr_siblings; | ||
| 2589 | |||
| 2590 | perf_output_put(&handle, nr); | ||
| 2591 | |||
| 2592 | leader = counter->group_leader; | ||
| 2593 | list_for_each_entry(sub, &leader->sibling_list, list_entry) { | ||
| 2594 | if (sub != counter) | ||
| 2595 | sub->pmu->read(sub); | ||
| 2596 | |||
| 2597 | group_entry.id = sub->id; | ||
| 2598 | group_entry.counter = atomic64_read(&sub->count); | ||
| 2599 | |||
| 2600 | perf_output_put(&handle, group_entry); | ||
| 2601 | } | ||
| 2602 | } | ||
| 2603 | |||
| 2604 | if (callchain) | ||
| 2605 | perf_output_copy(&handle, callchain, callchain_size); | ||
| 2606 | |||
| 2607 | perf_output_end(&handle); | ||
| 2608 | } | ||
| 2609 | |||
| 2610 | /* | ||
| 2611 | * fork tracking | ||
| 2612 | */ | ||
| 2613 | |||
| 2614 | struct perf_fork_event { | ||
| 2615 | struct task_struct *task; | ||
| 2616 | |||
| 2617 | struct { | ||
| 2618 | struct perf_event_header header; | ||
| 2619 | |||
| 2620 | u32 pid; | ||
| 2621 | u32 ppid; | ||
| 2622 | } event; | ||
| 2623 | }; | ||
| 2624 | |||
| 2625 | static void perf_counter_fork_output(struct perf_counter *counter, | ||
| 2626 | struct perf_fork_event *fork_event) | ||
| 2627 | { | ||
| 2628 | struct perf_output_handle handle; | ||
| 2629 | int size = fork_event->event.header.size; | ||
| 2630 | struct task_struct *task = fork_event->task; | ||
| 2631 | int ret = perf_output_begin(&handle, counter, size, 0, 0); | ||
| 2632 | |||
| 2633 | if (ret) | ||
| 2634 | return; | ||
| 2635 | |||
| 2636 | fork_event->event.pid = perf_counter_pid(counter, task); | ||
| 2637 | fork_event->event.ppid = perf_counter_pid(counter, task->real_parent); | ||
| 2638 | |||
| 2639 | perf_output_put(&handle, fork_event->event); | ||
| 2640 | perf_output_end(&handle); | ||
| 2641 | } | ||
| 2642 | |||
| 2643 | static int perf_counter_fork_match(struct perf_counter *counter) | ||
| 2644 | { | ||
| 2645 | if (counter->attr.comm || counter->attr.mmap) | ||
| 2646 | return 1; | ||
| 2647 | |||
| 2648 | return 0; | ||
| 2649 | } | ||
| 2650 | |||
| 2651 | static void perf_counter_fork_ctx(struct perf_counter_context *ctx, | ||
| 2652 | struct perf_fork_event *fork_event) | ||
| 2653 | { | ||
| 2654 | struct perf_counter *counter; | ||
| 2655 | |||
| 2656 | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) | ||
| 2657 | return; | ||
| 2658 | |||
| 2659 | rcu_read_lock(); | ||
| 2660 | list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) { | ||
| 2661 | if (perf_counter_fork_match(counter)) | ||
| 2662 | perf_counter_fork_output(counter, fork_event); | ||
| 2663 | } | ||
| 2664 | rcu_read_unlock(); | ||
| 2665 | } | ||
| 2666 | |||
| 2667 | static void perf_counter_fork_event(struct perf_fork_event *fork_event) | ||
| 2668 | { | ||
| 2669 | struct perf_cpu_context *cpuctx; | ||
| 2670 | struct perf_counter_context *ctx; | ||
| 2671 | |||
| 2672 | cpuctx = &get_cpu_var(perf_cpu_context); | ||
| 2673 | perf_counter_fork_ctx(&cpuctx->ctx, fork_event); | ||
| 2674 | put_cpu_var(perf_cpu_context); | ||
| 2675 | |||
| 2676 | rcu_read_lock(); | ||
| 2677 | /* | ||
| 2678 | * doesn't really matter which of the child contexts the | ||
| 2679 | * events ends up in. | ||
| 2680 | */ | ||
| 2681 | ctx = rcu_dereference(current->perf_counter_ctxp); | ||
| 2682 | if (ctx) | ||
| 2683 | perf_counter_fork_ctx(ctx, fork_event); | ||
| 2684 | rcu_read_unlock(); | ||
| 2685 | } | ||
| 2686 | |||
| 2687 | void perf_counter_fork(struct task_struct *task) | ||
| 2688 | { | ||
| 2689 | struct perf_fork_event fork_event; | ||
| 2690 | |||
| 2691 | if (!atomic_read(&nr_comm_counters) && | ||
| 2692 | !atomic_read(&nr_mmap_counters)) | ||
| 2693 | return; | ||
| 2694 | |||
| 2695 | fork_event = (struct perf_fork_event){ | ||
| 2696 | .task = task, | ||
| 2697 | .event = { | ||
| 2698 | .header = { | ||
| 2699 | .type = PERF_EVENT_FORK, | ||
| 2700 | .size = sizeof(fork_event.event), | ||
| 2701 | }, | ||
| 2702 | }, | ||
| 2703 | }; | ||
| 2704 | |||
| 2705 | perf_counter_fork_event(&fork_event); | ||
| 2706 | } | ||
| 2707 | |||
| 2708 | /* | ||
| 2709 | * comm tracking | ||
| 2710 | */ | ||
| 2711 | |||
| 2712 | struct perf_comm_event { | ||
| 2713 | struct task_struct *task; | ||
| 2714 | char *comm; | ||
| 2715 | int comm_size; | ||
| 2716 | |||
| 2717 | struct { | ||
| 2718 | struct perf_event_header header; | ||
| 2719 | |||
| 2720 | u32 pid; | ||
| 2721 | u32 tid; | ||
| 2722 | } event; | ||
| 2723 | }; | ||
| 2724 | |||
| 2725 | static void perf_counter_comm_output(struct perf_counter *counter, | ||
| 2726 | struct perf_comm_event *comm_event) | ||
| 2727 | { | ||
| 2728 | struct perf_output_handle handle; | ||
| 2729 | int size = comm_event->event.header.size; | ||
| 2730 | int ret = perf_output_begin(&handle, counter, size, 0, 0); | ||
| 2731 | |||
| 2732 | if (ret) | ||
| 2733 | return; | ||
| 2734 | |||
| 2735 | comm_event->event.pid = perf_counter_pid(counter, comm_event->task); | ||
| 2736 | comm_event->event.tid = perf_counter_tid(counter, comm_event->task); | ||
| 2737 | |||
| 2738 | perf_output_put(&handle, comm_event->event); | ||
| 2739 | perf_output_copy(&handle, comm_event->comm, | ||
| 2740 | comm_event->comm_size); | ||
| 2741 | perf_output_end(&handle); | ||
| 2742 | } | ||
| 2743 | |||
| 2744 | static int perf_counter_comm_match(struct perf_counter *counter) | ||
| 2745 | { | ||
| 2746 | if (counter->attr.comm) | ||
| 2747 | return 1; | ||
| 2748 | |||
| 2749 | return 0; | ||
| 2750 | } | ||
| 2751 | |||
| 2752 | static void perf_counter_comm_ctx(struct perf_counter_context *ctx, | ||
| 2753 | struct perf_comm_event *comm_event) | ||
| 2754 | { | ||
| 2755 | struct perf_counter *counter; | ||
| 2756 | |||
| 2757 | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) | ||
| 2758 | return; | ||
| 2759 | |||
| 2760 | rcu_read_lock(); | ||
| 2761 | list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) { | ||
| 2762 | if (perf_counter_comm_match(counter)) | ||
| 2763 | perf_counter_comm_output(counter, comm_event); | ||
| 2764 | } | ||
| 2765 | rcu_read_unlock(); | ||
| 2766 | } | ||
| 2767 | |||
| 2768 | static void perf_counter_comm_event(struct perf_comm_event *comm_event) | ||
| 2769 | { | ||
| 2770 | struct perf_cpu_context *cpuctx; | ||
| 2771 | struct perf_counter_context *ctx; | ||
| 2772 | unsigned int size; | ||
| 2773 | char *comm = comm_event->task->comm; | ||
| 2774 | |||
| 2775 | size = ALIGN(strlen(comm)+1, sizeof(u64)); | ||
| 2776 | |||
| 2777 | comm_event->comm = comm; | ||
| 2778 | comm_event->comm_size = size; | ||
| 2779 | |||
| 2780 | comm_event->event.header.size = sizeof(comm_event->event) + size; | ||
| 2781 | |||
| 2782 | cpuctx = &get_cpu_var(perf_cpu_context); | ||
| 2783 | perf_counter_comm_ctx(&cpuctx->ctx, comm_event); | ||
| 2784 | put_cpu_var(perf_cpu_context); | ||
| 2785 | |||
| 2786 | rcu_read_lock(); | ||
| 2787 | /* | ||
| 2788 | * doesn't really matter which of the child contexts the | ||
| 2789 | * events ends up in. | ||
| 2790 | */ | ||
| 2791 | ctx = rcu_dereference(current->perf_counter_ctxp); | ||
| 2792 | if (ctx) | ||
| 2793 | perf_counter_comm_ctx(ctx, comm_event); | ||
| 2794 | rcu_read_unlock(); | ||
| 2795 | } | ||
| 2796 | |||
| 2797 | void perf_counter_comm(struct task_struct *task) | ||
| 2798 | { | ||
| 2799 | struct perf_comm_event comm_event; | ||
| 2800 | |||
| 2801 | if (!atomic_read(&nr_comm_counters)) | ||
| 2802 | return; | ||
| 2803 | |||
| 2804 | comm_event = (struct perf_comm_event){ | ||
| 2805 | .task = task, | ||
| 2806 | .event = { | ||
| 2807 | .header = { .type = PERF_EVENT_COMM, }, | ||
| 2808 | }, | ||
| 2809 | }; | ||
| 2810 | |||
| 2811 | perf_counter_comm_event(&comm_event); | ||
| 2812 | } | ||
| 2813 | |||
| 2814 | /* | ||
| 2815 | * mmap tracking | ||
| 2816 | */ | ||
| 2817 | |||
| 2818 | struct perf_mmap_event { | ||
| 2819 | struct vm_area_struct *vma; | ||
| 2820 | |||
| 2821 | const char *file_name; | ||
| 2822 | int file_size; | ||
| 2823 | |||
| 2824 | struct { | ||
| 2825 | struct perf_event_header header; | ||
| 2826 | |||
| 2827 | u32 pid; | ||
| 2828 | u32 tid; | ||
| 2829 | u64 start; | ||
| 2830 | u64 len; | ||
| 2831 | u64 pgoff; | ||
| 2832 | } event; | ||
| 2833 | }; | ||
| 2834 | |||
| 2835 | static void perf_counter_mmap_output(struct perf_counter *counter, | ||
| 2836 | struct perf_mmap_event *mmap_event) | ||
| 2837 | { | ||
| 2838 | struct perf_output_handle handle; | ||
| 2839 | int size = mmap_event->event.header.size; | ||
| 2840 | int ret = perf_output_begin(&handle, counter, size, 0, 0); | ||
| 2841 | |||
| 2842 | if (ret) | ||
| 2843 | return; | ||
| 2844 | |||
| 2845 | mmap_event->event.pid = perf_counter_pid(counter, current); | ||
| 2846 | mmap_event->event.tid = perf_counter_tid(counter, current); | ||
| 2847 | |||
| 2848 | perf_output_put(&handle, mmap_event->event); | ||
| 2849 | perf_output_copy(&handle, mmap_event->file_name, | ||
| 2850 | mmap_event->file_size); | ||
| 2851 | perf_output_end(&handle); | ||
| 2852 | } | ||
| 2853 | |||
| 2854 | static int perf_counter_mmap_match(struct perf_counter *counter, | ||
| 2855 | struct perf_mmap_event *mmap_event) | ||
| 2856 | { | ||
| 2857 | if (counter->attr.mmap) | ||
| 2858 | return 1; | ||
| 2859 | |||
| 2860 | return 0; | ||
| 2861 | } | ||
| 2862 | |||
| 2863 | static void perf_counter_mmap_ctx(struct perf_counter_context *ctx, | ||
| 2864 | struct perf_mmap_event *mmap_event) | ||
| 2865 | { | ||
| 2866 | struct perf_counter *counter; | ||
| 2867 | |||
| 2868 | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) | ||
| 2869 | return; | ||
| 2870 | |||
| 2871 | rcu_read_lock(); | ||
| 2872 | list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) { | ||
| 2873 | if (perf_counter_mmap_match(counter, mmap_event)) | ||
| 2874 | perf_counter_mmap_output(counter, mmap_event); | ||
| 2875 | } | ||
| 2876 | rcu_read_unlock(); | ||
| 2877 | } | ||
| 2878 | |||
| 2879 | static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event) | ||
| 2880 | { | ||
| 2881 | struct perf_cpu_context *cpuctx; | ||
| 2882 | struct perf_counter_context *ctx; | ||
| 2883 | struct vm_area_struct *vma = mmap_event->vma; | ||
| 2884 | struct file *file = vma->vm_file; | ||
| 2885 | unsigned int size; | ||
| 2886 | char tmp[16]; | ||
| 2887 | char *buf = NULL; | ||
| 2888 | const char *name; | ||
| 2889 | |||
| 2890 | if (file) { | ||
| 2891 | buf = kzalloc(PATH_MAX, GFP_KERNEL); | ||
| 2892 | if (!buf) { | ||
| 2893 | name = strncpy(tmp, "//enomem", sizeof(tmp)); | ||
| 2894 | goto got_name; | ||
| 2895 | } | ||
| 2896 | name = d_path(&file->f_path, buf, PATH_MAX); | ||
| 2897 | if (IS_ERR(name)) { | ||
| 2898 | name = strncpy(tmp, "//toolong", sizeof(tmp)); | ||
| 2899 | goto got_name; | ||
| 2900 | } | ||
| 2901 | } else { | ||
| 2902 | name = arch_vma_name(mmap_event->vma); | ||
| 2903 | if (name) | ||
| 2904 | goto got_name; | ||
| 2905 | |||
| 2906 | if (!vma->vm_mm) { | ||
| 2907 | name = strncpy(tmp, "[vdso]", sizeof(tmp)); | ||
| 2908 | goto got_name; | ||
| 2909 | } | ||
| 2910 | |||
| 2911 | name = strncpy(tmp, "//anon", sizeof(tmp)); | ||
| 2912 | goto got_name; | ||
| 2913 | } | ||
| 2914 | |||
| 2915 | got_name: | ||
| 2916 | size = ALIGN(strlen(name)+1, sizeof(u64)); | ||
| 2917 | |||
| 2918 | mmap_event->file_name = name; | ||
| 2919 | mmap_event->file_size = size; | ||
| 2920 | |||
| 2921 | mmap_event->event.header.size = sizeof(mmap_event->event) + size; | ||
| 2922 | |||
| 2923 | cpuctx = &get_cpu_var(perf_cpu_context); | ||
| 2924 | perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event); | ||
| 2925 | put_cpu_var(perf_cpu_context); | ||
| 2926 | |||
| 2927 | rcu_read_lock(); | ||
| 2928 | /* | ||
| 2929 | * doesn't really matter which of the child contexts the | ||
| 2930 | * events ends up in. | ||
| 2931 | */ | ||
| 2932 | ctx = rcu_dereference(current->perf_counter_ctxp); | ||
| 2933 | if (ctx) | ||
| 2934 | perf_counter_mmap_ctx(ctx, mmap_event); | ||
| 2935 | rcu_read_unlock(); | ||
| 2936 | |||
| 2937 | kfree(buf); | ||
| 2938 | } | ||
| 2939 | |||
| 2940 | void __perf_counter_mmap(struct vm_area_struct *vma) | ||
| 2941 | { | ||
| 2942 | struct perf_mmap_event mmap_event; | ||
| 2943 | |||
| 2944 | if (!atomic_read(&nr_mmap_counters)) | ||
| 2945 | return; | ||
| 2946 | |||
| 2947 | mmap_event = (struct perf_mmap_event){ | ||
| 2948 | .vma = vma, | ||
| 2949 | .event = { | ||
| 2950 | .header = { .type = PERF_EVENT_MMAP, }, | ||
| 2951 | .start = vma->vm_start, | ||
| 2952 | .len = vma->vm_end - vma->vm_start, | ||
| 2953 | .pgoff = vma->vm_pgoff, | ||
| 2954 | }, | ||
| 2955 | }; | ||
| 2956 | |||
| 2957 | perf_counter_mmap_event(&mmap_event); | ||
| 2958 | } | ||
| 2959 | |||
| 2960 | /* | ||
| 2961 | * Log sample_period changes so that analyzing tools can re-normalize the | ||
| 2962 | * event flow. | ||
| 2963 | */ | ||
| 2964 | |||
| 2965 | struct freq_event { | ||
| 2966 | struct perf_event_header header; | ||
| 2967 | u64 time; | ||
| 2968 | u64 id; | ||
| 2969 | u64 period; | ||
| 2970 | }; | ||
| 2971 | |||
| 2972 | static void perf_log_period(struct perf_counter *counter, u64 period) | ||
| 2973 | { | ||
| 2974 | struct perf_output_handle handle; | ||
| 2975 | struct freq_event event; | ||
| 2976 | int ret; | ||
| 2977 | |||
| 2978 | if (counter->hw.sample_period == period) | ||
| 2979 | return; | ||
| 2980 | |||
| 2981 | if (counter->attr.sample_type & PERF_SAMPLE_PERIOD) | ||
| 2982 | return; | ||
| 2983 | |||
| 2984 | event = (struct freq_event) { | ||
| 2985 | .header = { | ||
| 2986 | .type = PERF_EVENT_PERIOD, | ||
| 2987 | .misc = 0, | ||
| 2988 | .size = sizeof(event), | ||
| 2989 | }, | ||
| 2990 | .time = sched_clock(), | ||
| 2991 | .id = counter->id, | ||
| 2992 | .period = period, | ||
| 2993 | }; | ||
| 2994 | |||
| 2995 | ret = perf_output_begin(&handle, counter, sizeof(event), 1, 0); | ||
| 2996 | if (ret) | ||
| 2997 | return; | ||
| 2998 | |||
| 2999 | perf_output_put(&handle, event); | ||
| 3000 | perf_output_end(&handle); | ||
| 3001 | } | ||
| 3002 | |||
| 3003 | /* | ||
| 3004 | * IRQ throttle logging | ||
| 3005 | */ | ||
| 3006 | |||
| 3007 | static void perf_log_throttle(struct perf_counter *counter, int enable) | ||
| 3008 | { | ||
| 3009 | struct perf_output_handle handle; | ||
| 3010 | int ret; | ||
| 3011 | |||
| 3012 | struct { | ||
| 3013 | struct perf_event_header header; | ||
| 3014 | u64 time; | ||
| 3015 | u64 id; | ||
| 3016 | } throttle_event = { | ||
| 3017 | .header = { | ||
| 3018 | .type = PERF_EVENT_THROTTLE + 1, | ||
| 3019 | .misc = 0, | ||
| 3020 | .size = sizeof(throttle_event), | ||
| 3021 | }, | ||
| 3022 | .time = sched_clock(), | ||
| 3023 | .id = counter->id, | ||
| 3024 | }; | ||
| 3025 | |||
| 3026 | ret = perf_output_begin(&handle, counter, sizeof(throttle_event), 1, 0); | ||
| 3027 | if (ret) | ||
| 3028 | return; | ||
| 3029 | |||
| 3030 | perf_output_put(&handle, throttle_event); | ||
| 3031 | perf_output_end(&handle); | ||
| 3032 | } | ||
| 3033 | |||
| 3034 | /* | ||
| 3035 | * Generic counter overflow handling, sampling. | ||
| 3036 | */ | ||
| 3037 | |||
| 3038 | int perf_counter_overflow(struct perf_counter *counter, int nmi, | ||
| 3039 | struct perf_sample_data *data) | ||
| 3040 | { | ||
| 3041 | int events = atomic_read(&counter->event_limit); | ||
| 3042 | int throttle = counter->pmu->unthrottle != NULL; | ||
| 3043 | struct hw_perf_counter *hwc = &counter->hw; | ||
| 3044 | int ret = 0; | ||
| 3045 | |||
| 3046 | if (!throttle) { | ||
| 3047 | hwc->interrupts++; | ||
| 3048 | } else { | ||
| 3049 | if (hwc->interrupts != MAX_INTERRUPTS) { | ||
| 3050 | hwc->interrupts++; | ||
| 3051 | if (HZ * hwc->interrupts > | ||
| 3052 | (u64)sysctl_perf_counter_sample_rate) { | ||
| 3053 | hwc->interrupts = MAX_INTERRUPTS; | ||
| 3054 | perf_log_throttle(counter, 0); | ||
| 3055 | ret = 1; | ||
| 3056 | } | ||
| 3057 | } else { | ||
| 3058 | /* | ||
| 3059 | * Keep re-disabling counters even though on the previous | ||
| 3060 | * pass we disabled it - just in case we raced with a | ||
| 3061 | * sched-in and the counter got enabled again: | ||
| 3062 | */ | ||
| 3063 | ret = 1; | ||
| 3064 | } | ||
| 3065 | } | ||
| 3066 | |||
| 3067 | if (counter->attr.freq) { | ||
| 3068 | u64 now = sched_clock(); | ||
| 3069 | s64 delta = now - hwc->freq_stamp; | ||
| 3070 | |||
| 3071 | hwc->freq_stamp = now; | ||
| 3072 | |||
| 3073 | if (delta > 0 && delta < TICK_NSEC) | ||
| 3074 | perf_adjust_period(counter, NSEC_PER_SEC / (int)delta); | ||
| 3075 | } | ||
| 3076 | |||
| 3077 | /* | ||
| 3078 | * XXX event_limit might not quite work as expected on inherited | ||
| 3079 | * counters | ||
| 3080 | */ | ||
| 3081 | |||
| 3082 | counter->pending_kill = POLL_IN; | ||
| 3083 | if (events && atomic_dec_and_test(&counter->event_limit)) { | ||
| 3084 | ret = 1; | ||
| 3085 | counter->pending_kill = POLL_HUP; | ||
| 3086 | if (nmi) { | ||
| 3087 | counter->pending_disable = 1; | ||
| 3088 | perf_pending_queue(&counter->pending, | ||
| 3089 | perf_pending_counter); | ||
| 3090 | } else | ||
| 3091 | perf_counter_disable(counter); | ||
| 3092 | } | ||
| 3093 | |||
| 3094 | perf_counter_output(counter, nmi, data); | ||
| 3095 | return ret; | ||
| 3096 | } | ||
| 3097 | |||
| 3098 | /* | ||
| 3099 | * Generic software counter infrastructure | ||
| 3100 | */ | ||
| 3101 | |||
| 3102 | static void perf_swcounter_update(struct perf_counter *counter) | ||
| 3103 | { | ||
| 3104 | struct hw_perf_counter *hwc = &counter->hw; | ||
| 3105 | u64 prev, now; | ||
| 3106 | s64 delta; | ||
| 3107 | |||
| 3108 | again: | ||
| 3109 | prev = atomic64_read(&hwc->prev_count); | ||
| 3110 | now = atomic64_read(&hwc->count); | ||
| 3111 | if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev) | ||
| 3112 | goto again; | ||
| 3113 | |||
| 3114 | delta = now - prev; | ||
| 3115 | |||
| 3116 | atomic64_add(delta, &counter->count); | ||
| 3117 | atomic64_sub(delta, &hwc->period_left); | ||
| 3118 | } | ||
| 3119 | |||
| 3120 | static void perf_swcounter_set_period(struct perf_counter *counter) | ||
| 3121 | { | ||
| 3122 | struct hw_perf_counter *hwc = &counter->hw; | ||
| 3123 | s64 left = atomic64_read(&hwc->period_left); | ||
| 3124 | s64 period = hwc->sample_period; | ||
| 3125 | |||
| 3126 | if (unlikely(left <= -period)) { | ||
| 3127 | left = period; | ||
| 3128 | atomic64_set(&hwc->period_left, left); | ||
| 3129 | hwc->last_period = period; | ||
| 3130 | } | ||
| 3131 | |||
| 3132 | if (unlikely(left <= 0)) { | ||
| 3133 | left += period; | ||
| 3134 | atomic64_add(period, &hwc->period_left); | ||
| 3135 | hwc->last_period = period; | ||
| 3136 | } | ||
| 3137 | |||
| 3138 | atomic64_set(&hwc->prev_count, -left); | ||
| 3139 | atomic64_set(&hwc->count, -left); | ||
| 3140 | } | ||
| 3141 | |||
| 3142 | static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer) | ||
| 3143 | { | ||
| 3144 | enum hrtimer_restart ret = HRTIMER_RESTART; | ||
| 3145 | struct perf_sample_data data; | ||
| 3146 | struct perf_counter *counter; | ||
| 3147 | u64 period; | ||
| 3148 | |||
| 3149 | counter = container_of(hrtimer, struct perf_counter, hw.hrtimer); | ||
| 3150 | counter->pmu->read(counter); | ||
| 3151 | |||
| 3152 | data.addr = 0; | ||
| 3153 | data.regs = get_irq_regs(); | ||
| 3154 | /* | ||
| 3155 | * In case we exclude kernel IPs or are somehow not in interrupt | ||
| 3156 | * context, provide the next best thing, the user IP. | ||
| 3157 | */ | ||
| 3158 | if ((counter->attr.exclude_kernel || !data.regs) && | ||
| 3159 | !counter->attr.exclude_user) | ||
| 3160 | data.regs = task_pt_regs(current); | ||
| 3161 | |||
| 3162 | if (data.regs) { | ||
| 3163 | if (perf_counter_overflow(counter, 0, &data)) | ||
| 3164 | ret = HRTIMER_NORESTART; | ||
| 3165 | } | ||
| 3166 | |||
| 3167 | period = max_t(u64, 10000, counter->hw.sample_period); | ||
| 3168 | hrtimer_forward_now(hrtimer, ns_to_ktime(period)); | ||
| 3169 | |||
| 3170 | return ret; | ||
| 3171 | } | ||
| 3172 | |||
| 3173 | static void perf_swcounter_overflow(struct perf_counter *counter, | ||
| 3174 | int nmi, struct perf_sample_data *data) | ||
| 3175 | { | ||
| 3176 | data->period = counter->hw.last_period; | ||
| 3177 | |||
| 3178 | perf_swcounter_update(counter); | ||
| 3179 | perf_swcounter_set_period(counter); | ||
| 3180 | if (perf_counter_overflow(counter, nmi, data)) | ||
| 3181 | /* soft-disable the counter */ | ||
| 3182 | ; | ||
| 3183 | } | ||
| 3184 | |||
| 3185 | static int perf_swcounter_is_counting(struct perf_counter *counter) | ||
| 3186 | { | ||
| 3187 | struct perf_counter_context *ctx; | ||
| 3188 | unsigned long flags; | ||
| 3189 | int count; | ||
| 3190 | |||
| 3191 | if (counter->state == PERF_COUNTER_STATE_ACTIVE) | ||
| 3192 | return 1; | ||
| 3193 | |||
| 3194 | if (counter->state != PERF_COUNTER_STATE_INACTIVE) | ||
| 3195 | return 0; | ||
| 3196 | |||
| 3197 | /* | ||
| 3198 | * If the counter is inactive, it could be just because | ||
| 3199 | * its task is scheduled out, or because it's in a group | ||
| 3200 | * which could not go on the PMU. We want to count in | ||
| 3201 | * the first case but not the second. If the context is | ||
| 3202 | * currently active then an inactive software counter must | ||
| 3203 | * be the second case. If it's not currently active then | ||
| 3204 | * we need to know whether the counter was active when the | ||
| 3205 | * context was last active, which we can determine by | ||
| 3206 | * comparing counter->tstamp_stopped with ctx->time. | ||
| 3207 | * | ||
| 3208 | * We are within an RCU read-side critical section, | ||
| 3209 | * which protects the existence of *ctx. | ||
| 3210 | */ | ||
| 3211 | ctx = counter->ctx; | ||
| 3212 | spin_lock_irqsave(&ctx->lock, flags); | ||
| 3213 | count = 1; | ||
| 3214 | /* Re-check state now we have the lock */ | ||
| 3215 | if (counter->state < PERF_COUNTER_STATE_INACTIVE || | ||
| 3216 | counter->ctx->is_active || | ||
| 3217 | counter->tstamp_stopped < ctx->time) | ||
| 3218 | count = 0; | ||
| 3219 | spin_unlock_irqrestore(&ctx->lock, flags); | ||
| 3220 | return count; | ||
| 3221 | } | ||
| 3222 | |||
| 3223 | static int perf_swcounter_match(struct perf_counter *counter, | ||
| 3224 | enum perf_type_id type, | ||
| 3225 | u32 event, struct pt_regs *regs) | ||
| 3226 | { | ||
| 3227 | if (!perf_swcounter_is_counting(counter)) | ||
| 3228 | return 0; | ||
| 3229 | |||
| 3230 | if (counter->attr.type != type) | ||
| 3231 | return 0; | ||
| 3232 | if (counter->attr.config != event) | ||
| 3233 | return 0; | ||
| 3234 | |||
| 3235 | if (regs) { | ||
| 3236 | if (counter->attr.exclude_user && user_mode(regs)) | ||
| 3237 | return 0; | ||
| 3238 | |||
| 3239 | if (counter->attr.exclude_kernel && !user_mode(regs)) | ||
| 3240 | return 0; | ||
| 3241 | } | ||
| 3242 | |||
| 3243 | return 1; | ||
| 3244 | } | ||
| 3245 | |||
| 3246 | static void perf_swcounter_add(struct perf_counter *counter, u64 nr, | ||
| 3247 | int nmi, struct perf_sample_data *data) | ||
| 3248 | { | ||
| 3249 | int neg = atomic64_add_negative(nr, &counter->hw.count); | ||
| 3250 | |||
| 3251 | if (counter->hw.sample_period && !neg && data->regs) | ||
| 3252 | perf_swcounter_overflow(counter, nmi, data); | ||
| 3253 | } | ||
| 3254 | |||
| 3255 | static void perf_swcounter_ctx_event(struct perf_counter_context *ctx, | ||
| 3256 | enum perf_type_id type, | ||
| 3257 | u32 event, u64 nr, int nmi, | ||
| 3258 | struct perf_sample_data *data) | ||
| 3259 | { | ||
| 3260 | struct perf_counter *counter; | ||
| 3261 | |||
| 3262 | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) | ||
| 3263 | return; | ||
| 3264 | |||
| 3265 | rcu_read_lock(); | ||
| 3266 | list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) { | ||
| 3267 | if (perf_swcounter_match(counter, type, event, data->regs)) | ||
| 3268 | perf_swcounter_add(counter, nr, nmi, data); | ||
| 3269 | } | ||
| 3270 | rcu_read_unlock(); | ||
| 3271 | } | ||
| 3272 | |||
| 3273 | static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx) | ||
| 3274 | { | ||
| 3275 | if (in_nmi()) | ||
| 3276 | return &cpuctx->recursion[3]; | ||
| 3277 | |||
| 3278 | if (in_irq()) | ||
| 3279 | return &cpuctx->recursion[2]; | ||
| 3280 | |||
| 3281 | if (in_softirq()) | ||
| 3282 | return &cpuctx->recursion[1]; | ||
| 3283 | |||
| 3284 | return &cpuctx->recursion[0]; | ||
| 3285 | } | ||
| 3286 | |||
| 3287 | static void do_perf_swcounter_event(enum perf_type_id type, u32 event, | ||
| 3288 | u64 nr, int nmi, | ||
| 3289 | struct perf_sample_data *data) | ||
| 3290 | { | ||
| 3291 | struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context); | ||
| 3292 | int *recursion = perf_swcounter_recursion_context(cpuctx); | ||
| 3293 | struct perf_counter_context *ctx; | ||
| 3294 | |||
| 3295 | if (*recursion) | ||
| 3296 | goto out; | ||
| 3297 | |||
| 3298 | (*recursion)++; | ||
| 3299 | barrier(); | ||
| 3300 | |||
| 3301 | perf_swcounter_ctx_event(&cpuctx->ctx, type, event, | ||
| 3302 | nr, nmi, data); | ||
| 3303 | rcu_read_lock(); | ||
| 3304 | /* | ||
| 3305 | * doesn't really matter which of the child contexts the | ||
| 3306 | * events ends up in. | ||
| 3307 | */ | ||
| 3308 | ctx = rcu_dereference(current->perf_counter_ctxp); | ||
| 3309 | if (ctx) | ||
| 3310 | perf_swcounter_ctx_event(ctx, type, event, nr, nmi, data); | ||
| 3311 | rcu_read_unlock(); | ||
| 3312 | |||
| 3313 | barrier(); | ||
| 3314 | (*recursion)--; | ||
| 3315 | |||
| 3316 | out: | ||
| 3317 | put_cpu_var(perf_cpu_context); | ||
| 3318 | } | ||
| 3319 | |||
| 3320 | void | ||
| 3321 | perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs, u64 addr) | ||
| 3322 | { | ||
| 3323 | struct perf_sample_data data = { | ||
| 3324 | .regs = regs, | ||
| 3325 | .addr = addr, | ||
| 3326 | }; | ||
| 3327 | |||
| 3328 | do_perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, &data); | ||
| 3329 | } | ||
| 3330 | |||
| 3331 | static void perf_swcounter_read(struct perf_counter *counter) | ||
| 3332 | { | ||
| 3333 | perf_swcounter_update(counter); | ||
| 3334 | } | ||
| 3335 | |||
| 3336 | static int perf_swcounter_enable(struct perf_counter *counter) | ||
| 3337 | { | ||
| 3338 | perf_swcounter_set_period(counter); | ||
| 3339 | return 0; | ||
| 3340 | } | ||
| 3341 | |||
| 3342 | static void perf_swcounter_disable(struct perf_counter *counter) | ||
| 3343 | { | ||
| 3344 | perf_swcounter_update(counter); | ||
| 3345 | } | ||
| 3346 | |||
| 3347 | static const struct pmu perf_ops_generic = { | ||
| 3348 | .enable = perf_swcounter_enable, | ||
| 3349 | .disable = perf_swcounter_disable, | ||
| 3350 | .read = perf_swcounter_read, | ||
| 3351 | }; | ||
| 3352 | |||
| 3353 | /* | ||
| 3354 | * Software counter: cpu wall time clock | ||
| 3355 | */ | ||
| 3356 | |||
| 3357 | static void cpu_clock_perf_counter_update(struct perf_counter *counter) | ||
| 3358 | { | ||
| 3359 | int cpu = raw_smp_processor_id(); | ||
| 3360 | s64 prev; | ||
| 3361 | u64 now; | ||
| 3362 | |||
| 3363 | now = cpu_clock(cpu); | ||
| 3364 | prev = atomic64_read(&counter->hw.prev_count); | ||
| 3365 | atomic64_set(&counter->hw.prev_count, now); | ||
| 3366 | atomic64_add(now - prev, &counter->count); | ||
| 3367 | } | ||
| 3368 | |||
| 3369 | static int cpu_clock_perf_counter_enable(struct perf_counter *counter) | ||
| 3370 | { | ||
| 3371 | struct hw_perf_counter *hwc = &counter->hw; | ||
| 3372 | int cpu = raw_smp_processor_id(); | ||
| 3373 | |||
| 3374 | atomic64_set(&hwc->prev_count, cpu_clock(cpu)); | ||
| 3375 | hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | ||
| 3376 | hwc->hrtimer.function = perf_swcounter_hrtimer; | ||
| 3377 | if (hwc->sample_period) { | ||
| 3378 | u64 period = max_t(u64, 10000, hwc->sample_period); | ||
| 3379 | __hrtimer_start_range_ns(&hwc->hrtimer, | ||
| 3380 | ns_to_ktime(period), 0, | ||
| 3381 | HRTIMER_MODE_REL, 0); | ||
| 3382 | } | ||
| 3383 | |||
| 3384 | return 0; | ||
| 3385 | } | ||
| 3386 | |||
| 3387 | static void cpu_clock_perf_counter_disable(struct perf_counter *counter) | ||
| 3388 | { | ||
| 3389 | if (counter->hw.sample_period) | ||
| 3390 | hrtimer_cancel(&counter->hw.hrtimer); | ||
| 3391 | cpu_clock_perf_counter_update(counter); | ||
| 3392 | } | ||
| 3393 | |||
| 3394 | static void cpu_clock_perf_counter_read(struct perf_counter *counter) | ||
| 3395 | { | ||
| 3396 | cpu_clock_perf_counter_update(counter); | ||
| 3397 | } | ||
| 3398 | |||
| 3399 | static const struct pmu perf_ops_cpu_clock = { | ||
| 3400 | .enable = cpu_clock_perf_counter_enable, | ||
| 3401 | .disable = cpu_clock_perf_counter_disable, | ||
| 3402 | .read = cpu_clock_perf_counter_read, | ||
| 3403 | }; | ||
| 3404 | |||
| 3405 | /* | ||
| 3406 | * Software counter: task time clock | ||
| 3407 | */ | ||
| 3408 | |||
| 3409 | static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now) | ||
| 3410 | { | ||
| 3411 | u64 prev; | ||
| 3412 | s64 delta; | ||
| 3413 | |||
| 3414 | prev = atomic64_xchg(&counter->hw.prev_count, now); | ||
| 3415 | delta = now - prev; | ||
| 3416 | atomic64_add(delta, &counter->count); | ||
| 3417 | } | ||
| 3418 | |||
| 3419 | static int task_clock_perf_counter_enable(struct perf_counter *counter) | ||
| 3420 | { | ||
| 3421 | struct hw_perf_counter *hwc = &counter->hw; | ||
| 3422 | u64 now; | ||
| 3423 | |||
| 3424 | now = counter->ctx->time; | ||
| 3425 | |||
| 3426 | atomic64_set(&hwc->prev_count, now); | ||
| 3427 | hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | ||
| 3428 | hwc->hrtimer.function = perf_swcounter_hrtimer; | ||
| 3429 | if (hwc->sample_period) { | ||
| 3430 | u64 period = max_t(u64, 10000, hwc->sample_period); | ||
| 3431 | __hrtimer_start_range_ns(&hwc->hrtimer, | ||
| 3432 | ns_to_ktime(period), 0, | ||
| 3433 | HRTIMER_MODE_REL, 0); | ||
| 3434 | } | ||
| 3435 | |||
| 3436 | return 0; | ||
| 3437 | } | ||
| 3438 | |||
| 3439 | static void task_clock_perf_counter_disable(struct perf_counter *counter) | ||
| 3440 | { | ||
| 3441 | if (counter->hw.sample_period) | ||
| 3442 | hrtimer_cancel(&counter->hw.hrtimer); | ||
| 3443 | task_clock_perf_counter_update(counter, counter->ctx->time); | ||
| 3444 | |||
| 3445 | } | ||
| 3446 | |||
| 3447 | static void task_clock_perf_counter_read(struct perf_counter *counter) | ||
| 3448 | { | ||
| 3449 | u64 time; | ||
| 3450 | |||
| 3451 | if (!in_nmi()) { | ||
| 3452 | update_context_time(counter->ctx); | ||
| 3453 | time = counter->ctx->time; | ||
| 3454 | } else { | ||
| 3455 | u64 now = perf_clock(); | ||
| 3456 | u64 delta = now - counter->ctx->timestamp; | ||
| 3457 | time = counter->ctx->time + delta; | ||
| 3458 | } | ||
| 3459 | |||
| 3460 | task_clock_perf_counter_update(counter, time); | ||
| 3461 | } | ||
| 3462 | |||
| 3463 | static const struct pmu perf_ops_task_clock = { | ||
| 3464 | .enable = task_clock_perf_counter_enable, | ||
| 3465 | .disable = task_clock_perf_counter_disable, | ||
| 3466 | .read = task_clock_perf_counter_read, | ||
| 3467 | }; | ||
| 3468 | |||
| 3469 | #ifdef CONFIG_EVENT_PROFILE | ||
| 3470 | void perf_tpcounter_event(int event_id) | ||
| 3471 | { | ||
| 3472 | struct perf_sample_data data = { | ||
| 3473 | .regs = get_irq_regs(); | ||
| 3474 | .addr = 0, | ||
| 3475 | }; | ||
| 3476 | |||
| 3477 | if (!data.regs) | ||
| 3478 | data.regs = task_pt_regs(current); | ||
| 3479 | |||
| 3480 | do_perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, &data); | ||
| 3481 | } | ||
| 3482 | EXPORT_SYMBOL_GPL(perf_tpcounter_event); | ||
| 3483 | |||
| 3484 | extern int ftrace_profile_enable(int); | ||
| 3485 | extern void ftrace_profile_disable(int); | ||
| 3486 | |||
| 3487 | static void tp_perf_counter_destroy(struct perf_counter *counter) | ||
| 3488 | { | ||
| 3489 | ftrace_profile_disable(perf_event_id(&counter->attr)); | ||
| 3490 | } | ||
| 3491 | |||
| 3492 | static const struct pmu *tp_perf_counter_init(struct perf_counter *counter) | ||
| 3493 | { | ||
| 3494 | int event_id = perf_event_id(&counter->attr); | ||
| 3495 | int ret; | ||
| 3496 | |||
| 3497 | ret = ftrace_profile_enable(event_id); | ||
| 3498 | if (ret) | ||
| 3499 | return NULL; | ||
| 3500 | |||
| 3501 | counter->destroy = tp_perf_counter_destroy; | ||
| 3502 | |||
| 3503 | return &perf_ops_generic; | ||
| 3504 | } | ||
| 3505 | #else | ||
| 3506 | static const struct pmu *tp_perf_counter_init(struct perf_counter *counter) | ||
| 3507 | { | ||
| 3508 | return NULL; | ||
| 3509 | } | ||
| 3510 | #endif | ||
| 3511 | |||
| 3512 | static const struct pmu *sw_perf_counter_init(struct perf_counter *counter) | ||
| 3513 | { | ||
| 3514 | const struct pmu *pmu = NULL; | ||
| 3515 | |||
| 3516 | /* | ||
| 3517 | * Software counters (currently) can't in general distinguish | ||
| 3518 | * between user, kernel and hypervisor events. | ||
| 3519 | * However, context switches and cpu migrations are considered | ||
| 3520 | * to be kernel events, and page faults are never hypervisor | ||
| 3521 | * events. | ||
| 3522 | */ | ||
| 3523 | switch (counter->attr.config) { | ||
| 3524 | case PERF_COUNT_SW_CPU_CLOCK: | ||
| 3525 | pmu = &perf_ops_cpu_clock; | ||
| 3526 | |||
| 3527 | break; | ||
| 3528 | case PERF_COUNT_SW_TASK_CLOCK: | ||
| 3529 | /* | ||
| 3530 | * If the user instantiates this as a per-cpu counter, | ||
| 3531 | * use the cpu_clock counter instead. | ||
| 3532 | */ | ||
| 3533 | if (counter->ctx->task) | ||
| 3534 | pmu = &perf_ops_task_clock; | ||
| 3535 | else | ||
| 3536 | pmu = &perf_ops_cpu_clock; | ||
| 3537 | |||
| 3538 | break; | ||
| 3539 | case PERF_COUNT_SW_PAGE_FAULTS: | ||
| 3540 | case PERF_COUNT_SW_PAGE_FAULTS_MIN: | ||
| 3541 | case PERF_COUNT_SW_PAGE_FAULTS_MAJ: | ||
| 3542 | case PERF_COUNT_SW_CONTEXT_SWITCHES: | ||
| 3543 | case PERF_COUNT_SW_CPU_MIGRATIONS: | ||
| 3544 | pmu = &perf_ops_generic; | ||
| 3545 | break; | ||
| 3546 | } | ||
| 3547 | |||
| 3548 | return pmu; | ||
| 3549 | } | ||
| 3550 | |||
| 3551 | /* | ||
| 3552 | * Allocate and initialize a counter structure | ||
| 3553 | */ | ||
| 3554 | static struct perf_counter * | ||
| 3555 | perf_counter_alloc(struct perf_counter_attr *attr, | ||
| 3556 | int cpu, | ||
| 3557 | struct perf_counter_context *ctx, | ||
| 3558 | struct perf_counter *group_leader, | ||
| 3559 | gfp_t gfpflags) | ||
| 3560 | { | ||
| 3561 | const struct pmu *pmu; | ||
| 3562 | struct perf_counter *counter; | ||
| 3563 | struct hw_perf_counter *hwc; | ||
| 3564 | long err; | ||
| 3565 | |||
| 3566 | counter = kzalloc(sizeof(*counter), gfpflags); | ||
| 3567 | if (!counter) | ||
| 3568 | return ERR_PTR(-ENOMEM); | ||
| 3569 | |||
| 3570 | /* | ||
| 3571 | * Single counters are their own group leaders, with an | ||
| 3572 | * empty sibling list: | ||
| 3573 | */ | ||
| 3574 | if (!group_leader) | ||
| 3575 | group_leader = counter; | ||
| 3576 | |||
| 3577 | mutex_init(&counter->child_mutex); | ||
| 3578 | INIT_LIST_HEAD(&counter->child_list); | ||
| 3579 | |||
| 3580 | INIT_LIST_HEAD(&counter->list_entry); | ||
| 3581 | INIT_LIST_HEAD(&counter->event_entry); | ||
| 3582 | INIT_LIST_HEAD(&counter->sibling_list); | ||
| 3583 | init_waitqueue_head(&counter->waitq); | ||
| 3584 | |||
| 3585 | mutex_init(&counter->mmap_mutex); | ||
| 3586 | |||
| 3587 | counter->cpu = cpu; | ||
| 3588 | counter->attr = *attr; | ||
| 3589 | counter->group_leader = group_leader; | ||
| 3590 | counter->pmu = NULL; | ||
| 3591 | counter->ctx = ctx; | ||
| 3592 | counter->oncpu = -1; | ||
| 3593 | |||
| 3594 | counter->ns = get_pid_ns(current->nsproxy->pid_ns); | ||
| 3595 | counter->id = atomic64_inc_return(&perf_counter_id); | ||
| 3596 | |||
| 3597 | counter->state = PERF_COUNTER_STATE_INACTIVE; | ||
| 3598 | |||
| 3599 | if (attr->disabled) | ||
| 3600 | counter->state = PERF_COUNTER_STATE_OFF; | ||
| 3601 | |||
| 3602 | pmu = NULL; | ||
| 3603 | |||
| 3604 | hwc = &counter->hw; | ||
| 3605 | hwc->sample_period = attr->sample_period; | ||
| 3606 | if (attr->freq && attr->sample_freq) | ||
| 3607 | hwc->sample_period = 1; | ||
| 3608 | |||
| 3609 | atomic64_set(&hwc->period_left, hwc->sample_period); | ||
| 3610 | |||
| 3611 | /* | ||
| 3612 | * we currently do not support PERF_SAMPLE_GROUP on inherited counters | ||
| 3613 | */ | ||
| 3614 | if (attr->inherit && (attr->sample_type & PERF_SAMPLE_GROUP)) | ||
| 3615 | goto done; | ||
| 3616 | |||
| 3617 | switch (attr->type) { | ||
| 3618 | case PERF_TYPE_RAW: | ||
| 3619 | case PERF_TYPE_HARDWARE: | ||
| 3620 | case PERF_TYPE_HW_CACHE: | ||
| 3621 | pmu = hw_perf_counter_init(counter); | ||
| 3622 | break; | ||
| 3623 | |||
| 3624 | case PERF_TYPE_SOFTWARE: | ||
| 3625 | pmu = sw_perf_counter_init(counter); | ||
| 3626 | break; | ||
| 3627 | |||
| 3628 | case PERF_TYPE_TRACEPOINT: | ||
| 3629 | pmu = tp_perf_counter_init(counter); | ||
| 3630 | break; | ||
| 3631 | |||
| 3632 | default: | ||
| 3633 | break; | ||
| 3634 | } | ||
| 3635 | done: | ||
| 3636 | err = 0; | ||
| 3637 | if (!pmu) | ||
| 3638 | err = -EINVAL; | ||
| 3639 | else if (IS_ERR(pmu)) | ||
| 3640 | err = PTR_ERR(pmu); | ||
| 3641 | |||
| 3642 | if (err) { | ||
| 3643 | if (counter->ns) | ||
| 3644 | put_pid_ns(counter->ns); | ||
| 3645 | kfree(counter); | ||
| 3646 | return ERR_PTR(err); | ||
| 3647 | } | ||
| 3648 | |||
| 3649 | counter->pmu = pmu; | ||
| 3650 | |||
| 3651 | atomic_inc(&nr_counters); | ||
| 3652 | if (counter->attr.mmap) | ||
| 3653 | atomic_inc(&nr_mmap_counters); | ||
| 3654 | if (counter->attr.comm) | ||
| 3655 | atomic_inc(&nr_comm_counters); | ||
| 3656 | |||
| 3657 | return counter; | ||
| 3658 | } | ||
| 3659 | |||
| 3660 | static int perf_copy_attr(struct perf_counter_attr __user *uattr, | ||
| 3661 | struct perf_counter_attr *attr) | ||
| 3662 | { | ||
| 3663 | int ret; | ||
| 3664 | u32 size; | ||
| 3665 | |||
| 3666 | if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) | ||
| 3667 | return -EFAULT; | ||
| 3668 | |||
| 3669 | /* | ||
| 3670 | * zero the full structure, so that a short copy will be nice. | ||
| 3671 | */ | ||
| 3672 | memset(attr, 0, sizeof(*attr)); | ||
| 3673 | |||
| 3674 | ret = get_user(size, &uattr->size); | ||
| 3675 | if (ret) | ||
| 3676 | return ret; | ||
| 3677 | |||
| 3678 | if (size > PAGE_SIZE) /* silly large */ | ||
| 3679 | goto err_size; | ||
| 3680 | |||
| 3681 | if (!size) /* abi compat */ | ||
| 3682 | size = PERF_ATTR_SIZE_VER0; | ||
| 3683 | |||
| 3684 | if (size < PERF_ATTR_SIZE_VER0) | ||
| 3685 | goto err_size; | ||
| 3686 | |||
| 3687 | /* | ||
| 3688 | * If we're handed a bigger struct than we know of, | ||
| 3689 | * ensure all the unknown bits are 0. | ||
| 3690 | */ | ||
| 3691 | if (size > sizeof(*attr)) { | ||
| 3692 | unsigned long val; | ||
| 3693 | unsigned long __user *addr; | ||
| 3694 | unsigned long __user *end; | ||
| 3695 | |||
| 3696 | addr = PTR_ALIGN((void __user *)uattr + sizeof(*attr), | ||
| 3697 | sizeof(unsigned long)); | ||
| 3698 | end = PTR_ALIGN((void __user *)uattr + size, | ||
| 3699 | sizeof(unsigned long)); | ||
| 3700 | |||
| 3701 | for (; addr < end; addr += sizeof(unsigned long)) { | ||
| 3702 | ret = get_user(val, addr); | ||
| 3703 | if (ret) | ||
| 3704 | return ret; | ||
| 3705 | if (val) | ||
| 3706 | goto err_size; | ||
| 3707 | } | ||
| 3708 | } | ||
| 3709 | |||
| 3710 | ret = copy_from_user(attr, uattr, size); | ||
| 3711 | if (ret) | ||
| 3712 | return -EFAULT; | ||
| 3713 | |||
| 3714 | /* | ||
| 3715 | * If the type exists, the corresponding creation will verify | ||
| 3716 | * the attr->config. | ||
| 3717 | */ | ||
| 3718 | if (attr->type >= PERF_TYPE_MAX) | ||
| 3719 | return -EINVAL; | ||
| 3720 | |||
| 3721 | if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) | ||
| 3722 | return -EINVAL; | ||
| 3723 | |||
| 3724 | if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) | ||
| 3725 | return -EINVAL; | ||
| 3726 | |||
| 3727 | if (attr->read_format & ~(PERF_FORMAT_MAX-1)) | ||
| 3728 | return -EINVAL; | ||
| 3729 | |||
| 3730 | out: | ||
| 3731 | return ret; | ||
| 3732 | |||
| 3733 | err_size: | ||
| 3734 | put_user(sizeof(*attr), &uattr->size); | ||
| 3735 | ret = -E2BIG; | ||
| 3736 | goto out; | ||
| 3737 | } | ||
| 3738 | |||
| 3739 | /** | ||
| 3740 | * sys_perf_counter_open - open a performance counter, associate it to a task/cpu | ||
| 3741 | * | ||
| 3742 | * @attr_uptr: event type attributes for monitoring/sampling | ||
| 3743 | * @pid: target pid | ||
| 3744 | * @cpu: target cpu | ||
| 3745 | * @group_fd: group leader counter fd | ||
| 3746 | */ | ||
| 3747 | SYSCALL_DEFINE5(perf_counter_open, | ||
| 3748 | struct perf_counter_attr __user *, attr_uptr, | ||
| 3749 | pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) | ||
| 3750 | { | ||
| 3751 | struct perf_counter *counter, *group_leader; | ||
| 3752 | struct perf_counter_attr attr; | ||
| 3753 | struct perf_counter_context *ctx; | ||
| 3754 | struct file *counter_file = NULL; | ||
| 3755 | struct file *group_file = NULL; | ||
| 3756 | int fput_needed = 0; | ||
| 3757 | int fput_needed2 = 0; | ||
| 3758 | int ret; | ||
| 3759 | |||
| 3760 | /* for future expandability... */ | ||
| 3761 | if (flags) | ||
| 3762 | return -EINVAL; | ||
| 3763 | |||
| 3764 | ret = perf_copy_attr(attr_uptr, &attr); | ||
| 3765 | if (ret) | ||
| 3766 | return ret; | ||
| 3767 | |||
| 3768 | if (!attr.exclude_kernel) { | ||
| 3769 | if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) | ||
| 3770 | return -EACCES; | ||
| 3771 | } | ||
| 3772 | |||
| 3773 | if (attr.freq) { | ||
| 3774 | if (attr.sample_freq > sysctl_perf_counter_sample_rate) | ||
| 3775 | return -EINVAL; | ||
| 3776 | } | ||
| 3777 | |||
| 3778 | /* | ||
| 3779 | * Get the target context (task or percpu): | ||
| 3780 | */ | ||
| 3781 | ctx = find_get_context(pid, cpu); | ||
| 3782 | if (IS_ERR(ctx)) | ||
| 3783 | return PTR_ERR(ctx); | ||
| 3784 | |||
| 3785 | /* | ||
| 3786 | * Look up the group leader (we will attach this counter to it): | ||
| 3787 | */ | ||
| 3788 | group_leader = NULL; | ||
| 3789 | if (group_fd != -1) { | ||
| 3790 | ret = -EINVAL; | ||
| 3791 | group_file = fget_light(group_fd, &fput_needed); | ||
| 3792 | if (!group_file) | ||
| 3793 | goto err_put_context; | ||
| 3794 | if (group_file->f_op != &perf_fops) | ||
| 3795 | goto err_put_context; | ||
| 3796 | |||
| 3797 | group_leader = group_file->private_data; | ||
| 3798 | /* | ||
| 3799 | * Do not allow a recursive hierarchy (this new sibling | ||
| 3800 | * becoming part of another group-sibling): | ||
| 3801 | */ | ||
| 3802 | if (group_leader->group_leader != group_leader) | ||
| 3803 | goto err_put_context; | ||
| 3804 | /* | ||
| 3805 | * Do not allow to attach to a group in a different | ||
| 3806 | * task or CPU context: | ||
| 3807 | */ | ||
| 3808 | if (group_leader->ctx != ctx) | ||
| 3809 | goto err_put_context; | ||
| 3810 | /* | ||
| 3811 | * Only a group leader can be exclusive or pinned | ||
| 3812 | */ | ||
| 3813 | if (attr.exclusive || attr.pinned) | ||
| 3814 | goto err_put_context; | ||
| 3815 | } | ||
| 3816 | |||
| 3817 | counter = perf_counter_alloc(&attr, cpu, ctx, group_leader, | ||
| 3818 | GFP_KERNEL); | ||
| 3819 | ret = PTR_ERR(counter); | ||
| 3820 | if (IS_ERR(counter)) | ||
| 3821 | goto err_put_context; | ||
| 3822 | |||
| 3823 | ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0); | ||
| 3824 | if (ret < 0) | ||
| 3825 | goto err_free_put_context; | ||
| 3826 | |||
| 3827 | counter_file = fget_light(ret, &fput_needed2); | ||
| 3828 | if (!counter_file) | ||
| 3829 | goto err_free_put_context; | ||
| 3830 | |||
| 3831 | counter->filp = counter_file; | ||
| 3832 | WARN_ON_ONCE(ctx->parent_ctx); | ||
| 3833 | mutex_lock(&ctx->mutex); | ||
| 3834 | perf_install_in_context(ctx, counter, cpu); | ||
| 3835 | ++ctx->generation; | ||
| 3836 | mutex_unlock(&ctx->mutex); | ||
| 3837 | |||
| 3838 | counter->owner = current; | ||
| 3839 | get_task_struct(current); | ||
| 3840 | mutex_lock(¤t->perf_counter_mutex); | ||
| 3841 | list_add_tail(&counter->owner_entry, ¤t->perf_counter_list); | ||
| 3842 | mutex_unlock(¤t->perf_counter_mutex); | ||
| 3843 | |||
| 3844 | fput_light(counter_file, fput_needed2); | ||
| 3845 | |||
| 3846 | out_fput: | ||
| 3847 | fput_light(group_file, fput_needed); | ||
| 3848 | |||
| 3849 | return ret; | ||
| 3850 | |||
| 3851 | err_free_put_context: | ||
| 3852 | kfree(counter); | ||
| 3853 | |||
| 3854 | err_put_context: | ||
| 3855 | put_ctx(ctx); | ||
| 3856 | |||
| 3857 | goto out_fput; | ||
| 3858 | } | ||
| 3859 | |||
| 3860 | /* | ||
| 3861 | * inherit a counter from parent task to child task: | ||
| 3862 | */ | ||
| 3863 | static struct perf_counter * | ||
| 3864 | inherit_counter(struct perf_counter *parent_counter, | ||
| 3865 | struct task_struct *parent, | ||
| 3866 | struct perf_counter_context *parent_ctx, | ||
| 3867 | struct task_struct *child, | ||
| 3868 | struct perf_counter *group_leader, | ||
| 3869 | struct perf_counter_context *child_ctx) | ||
| 3870 | { | ||
| 3871 | struct perf_counter *child_counter; | ||
| 3872 | |||
| 3873 | /* | ||
| 3874 | * Instead of creating recursive hierarchies of counters, | ||
| 3875 | * we link inherited counters back to the original parent, | ||
| 3876 | * which has a filp for sure, which we use as the reference | ||
| 3877 | * count: | ||
| 3878 | */ | ||
| 3879 | if (parent_counter->parent) | ||
| 3880 | parent_counter = parent_counter->parent; | ||
| 3881 | |||
| 3882 | child_counter = perf_counter_alloc(&parent_counter->attr, | ||
| 3883 | parent_counter->cpu, child_ctx, | ||
| 3884 | group_leader, GFP_KERNEL); | ||
| 3885 | if (IS_ERR(child_counter)) | ||
| 3886 | return child_counter; | ||
| 3887 | get_ctx(child_ctx); | ||
| 3888 | |||
| 3889 | /* | ||
| 3890 | * Make the child state follow the state of the parent counter, | ||
| 3891 | * not its attr.disabled bit. We hold the parent's mutex, | ||
| 3892 | * so we won't race with perf_counter_{en, dis}able_family. | ||
| 3893 | */ | ||
| 3894 | if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE) | ||
| 3895 | child_counter->state = PERF_COUNTER_STATE_INACTIVE; | ||
| 3896 | else | ||
| 3897 | child_counter->state = PERF_COUNTER_STATE_OFF; | ||
| 3898 | |||
| 3899 | if (parent_counter->attr.freq) | ||
| 3900 | child_counter->hw.sample_period = parent_counter->hw.sample_period; | ||
| 3901 | |||
| 3902 | /* | ||
| 3903 | * Link it up in the child's context: | ||
| 3904 | */ | ||
| 3905 | add_counter_to_ctx(child_counter, child_ctx); | ||
| 3906 | |||
| 3907 | child_counter->parent = parent_counter; | ||
| 3908 | /* | ||
| 3909 | * inherit into child's child as well: | ||
| 3910 | */ | ||
| 3911 | child_counter->attr.inherit = 1; | ||
| 3912 | |||
| 3913 | /* | ||
| 3914 | * Get a reference to the parent filp - we will fput it | ||
| 3915 | * when the child counter exits. This is safe to do because | ||
| 3916 | * we are in the parent and we know that the filp still | ||
| 3917 | * exists and has a nonzero count: | ||
| 3918 | */ | ||
| 3919 | atomic_long_inc(&parent_counter->filp->f_count); | ||
| 3920 | |||
| 3921 | /* | ||
| 3922 | * Link this into the parent counter's child list | ||
| 3923 | */ | ||
| 3924 | WARN_ON_ONCE(parent_counter->ctx->parent_ctx); | ||
| 3925 | mutex_lock(&parent_counter->child_mutex); | ||
| 3926 | list_add_tail(&child_counter->child_list, &parent_counter->child_list); | ||
| 3927 | mutex_unlock(&parent_counter->child_mutex); | ||
| 3928 | |||
| 3929 | return child_counter; | ||
| 3930 | } | ||
| 3931 | |||
| 3932 | static int inherit_group(struct perf_counter *parent_counter, | ||
| 3933 | struct task_struct *parent, | ||
| 3934 | struct perf_counter_context *parent_ctx, | ||
| 3935 | struct task_struct *child, | ||
| 3936 | struct perf_counter_context *child_ctx) | ||
| 3937 | { | ||
| 3938 | struct perf_counter *leader; | ||
| 3939 | struct perf_counter *sub; | ||
| 3940 | struct perf_counter *child_ctr; | ||
| 3941 | |||
| 3942 | leader = inherit_counter(parent_counter, parent, parent_ctx, | ||
| 3943 | child, NULL, child_ctx); | ||
| 3944 | if (IS_ERR(leader)) | ||
| 3945 | return PTR_ERR(leader); | ||
| 3946 | list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) { | ||
| 3947 | child_ctr = inherit_counter(sub, parent, parent_ctx, | ||
| 3948 | child, leader, child_ctx); | ||
| 3949 | if (IS_ERR(child_ctr)) | ||
| 3950 | return PTR_ERR(child_ctr); | ||
| 3951 | } | ||
| 3952 | return 0; | ||
| 3953 | } | ||
| 3954 | |||
| 3955 | static void sync_child_counter(struct perf_counter *child_counter, | ||
| 3956 | struct perf_counter *parent_counter) | ||
| 3957 | { | ||
| 3958 | u64 child_val; | ||
| 3959 | |||
| 3960 | child_val = atomic64_read(&child_counter->count); | ||
| 3961 | |||
| 3962 | /* | ||
| 3963 | * Add back the child's count to the parent's count: | ||
| 3964 | */ | ||
| 3965 | atomic64_add(child_val, &parent_counter->count); | ||
| 3966 | atomic64_add(child_counter->total_time_enabled, | ||
| 3967 | &parent_counter->child_total_time_enabled); | ||
| 3968 | atomic64_add(child_counter->total_time_running, | ||
| 3969 | &parent_counter->child_total_time_running); | ||
| 3970 | |||
| 3971 | /* | ||
| 3972 | * Remove this counter from the parent's list | ||
| 3973 | */ | ||
| 3974 | WARN_ON_ONCE(parent_counter->ctx->parent_ctx); | ||
| 3975 | mutex_lock(&parent_counter->child_mutex); | ||
| 3976 | list_del_init(&child_counter->child_list); | ||
| 3977 | mutex_unlock(&parent_counter->child_mutex); | ||
| 3978 | |||
| 3979 | /* | ||
| 3980 | * Release the parent counter, if this was the last | ||
| 3981 | * reference to it. | ||
| 3982 | */ | ||
| 3983 | fput(parent_counter->filp); | ||
| 3984 | } | ||
| 3985 | |||
| 3986 | static void | ||
| 3987 | __perf_counter_exit_task(struct perf_counter *child_counter, | ||
| 3988 | struct perf_counter_context *child_ctx) | ||
| 3989 | { | ||
| 3990 | struct perf_counter *parent_counter; | ||
| 3991 | |||
| 3992 | update_counter_times(child_counter); | ||
| 3993 | perf_counter_remove_from_context(child_counter); | ||
| 3994 | |||
| 3995 | parent_counter = child_counter->parent; | ||
| 3996 | /* | ||
| 3997 | * It can happen that parent exits first, and has counters | ||
| 3998 | * that are still around due to the child reference. These | ||
| 3999 | * counters need to be zapped - but otherwise linger. | ||
| 4000 | */ | ||
| 4001 | if (parent_counter) { | ||
| 4002 | sync_child_counter(child_counter, parent_counter); | ||
| 4003 | free_counter(child_counter); | ||
| 4004 | } | ||
| 4005 | } | ||
| 4006 | |||
| 4007 | /* | ||
| 4008 | * When a child task exits, feed back counter values to parent counters. | ||
| 4009 | */ | ||
| 4010 | void perf_counter_exit_task(struct task_struct *child) | ||
| 4011 | { | ||
| 4012 | struct perf_counter *child_counter, *tmp; | ||
| 4013 | struct perf_counter_context *child_ctx; | ||
| 4014 | unsigned long flags; | ||
| 4015 | |||
| 4016 | if (likely(!child->perf_counter_ctxp)) | ||
| 4017 | return; | ||
| 4018 | |||
| 4019 | local_irq_save(flags); | ||
| 4020 | /* | ||
| 4021 | * We can't reschedule here because interrupts are disabled, | ||
| 4022 | * and either child is current or it is a task that can't be | ||
| 4023 | * scheduled, so we are now safe from rescheduling changing | ||
| 4024 | * our context. | ||
| 4025 | */ | ||
| 4026 | child_ctx = child->perf_counter_ctxp; | ||
| 4027 | __perf_counter_task_sched_out(child_ctx); | ||
| 4028 | |||
| 4029 | /* | ||
| 4030 | * Take the context lock here so that if find_get_context is | ||
| 4031 | * reading child->perf_counter_ctxp, we wait until it has | ||
| 4032 | * incremented the context's refcount before we do put_ctx below. | ||
| 4033 | */ | ||
| 4034 | spin_lock(&child_ctx->lock); | ||
| 4035 | child->perf_counter_ctxp = NULL; | ||
| 4036 | if (child_ctx->parent_ctx) { | ||
| 4037 | /* | ||
| 4038 | * This context is a clone; unclone it so it can't get | ||
| 4039 | * swapped to another process while we're removing all | ||
| 4040 | * the counters from it. | ||
| 4041 | */ | ||
| 4042 | put_ctx(child_ctx->parent_ctx); | ||
| 4043 | child_ctx->parent_ctx = NULL; | ||
| 4044 | } | ||
| 4045 | spin_unlock(&child_ctx->lock); | ||
| 4046 | local_irq_restore(flags); | ||
| 4047 | |||
| 4048 | /* | ||
| 4049 | * We can recurse on the same lock type through: | ||
| 4050 | * | ||
| 4051 | * __perf_counter_exit_task() | ||
| 4052 | * sync_child_counter() | ||
| 4053 | * fput(parent_counter->filp) | ||
| 4054 | * perf_release() | ||
| 4055 | * mutex_lock(&ctx->mutex) | ||
| 4056 | * | ||
| 4057 | * But since its the parent context it won't be the same instance. | ||
| 4058 | */ | ||
| 4059 | mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING); | ||
| 4060 | |||
| 4061 | again: | ||
| 4062 | list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list, | ||
| 4063 | list_entry) | ||
| 4064 | __perf_counter_exit_task(child_counter, child_ctx); | ||
| 4065 | |||
| 4066 | /* | ||
| 4067 | * If the last counter was a group counter, it will have appended all | ||
| 4068 | * its siblings to the list, but we obtained 'tmp' before that which | ||
| 4069 | * will still point to the list head terminating the iteration. | ||
| 4070 | */ | ||
| 4071 | if (!list_empty(&child_ctx->counter_list)) | ||
| 4072 | goto again; | ||
| 4073 | |||
| 4074 | mutex_unlock(&child_ctx->mutex); | ||
| 4075 | |||
| 4076 | put_ctx(child_ctx); | ||
| 4077 | } | ||
| 4078 | |||
| 4079 | /* | ||
| 4080 | * free an unexposed, unused context as created by inheritance by | ||
| 4081 | * init_task below, used by fork() in case of fail. | ||
| 4082 | */ | ||
| 4083 | void perf_counter_free_task(struct task_struct *task) | ||
| 4084 | { | ||
| 4085 | struct perf_counter_context *ctx = task->perf_counter_ctxp; | ||
| 4086 | struct perf_counter *counter, *tmp; | ||
| 4087 | |||
| 4088 | if (!ctx) | ||
| 4089 | return; | ||
| 4090 | |||
| 4091 | mutex_lock(&ctx->mutex); | ||
| 4092 | again: | ||
| 4093 | list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry) { | ||
| 4094 | struct perf_counter *parent = counter->parent; | ||
| 4095 | |||
| 4096 | if (WARN_ON_ONCE(!parent)) | ||
| 4097 | continue; | ||
| 4098 | |||
| 4099 | mutex_lock(&parent->child_mutex); | ||
| 4100 | list_del_init(&counter->child_list); | ||
| 4101 | mutex_unlock(&parent->child_mutex); | ||
| 4102 | |||
| 4103 | fput(parent->filp); | ||
| 4104 | |||
| 4105 | list_del_counter(counter, ctx); | ||
| 4106 | free_counter(counter); | ||
| 4107 | } | ||
| 4108 | |||
| 4109 | if (!list_empty(&ctx->counter_list)) | ||
| 4110 | goto again; | ||
| 4111 | |||
| 4112 | mutex_unlock(&ctx->mutex); | ||
| 4113 | |||
| 4114 | put_ctx(ctx); | ||
| 4115 | } | ||
| 4116 | |||
| 4117 | /* | ||
| 4118 | * Initialize the perf_counter context in task_struct | ||
| 4119 | */ | ||
| 4120 | int perf_counter_init_task(struct task_struct *child) | ||
| 4121 | { | ||
| 4122 | struct perf_counter_context *child_ctx, *parent_ctx; | ||
| 4123 | struct perf_counter_context *cloned_ctx; | ||
| 4124 | struct perf_counter *counter; | ||
| 4125 | struct task_struct *parent = current; | ||
| 4126 | int inherited_all = 1; | ||
| 4127 | int ret = 0; | ||
| 4128 | |||
| 4129 | child->perf_counter_ctxp = NULL; | ||
| 4130 | |||
| 4131 | mutex_init(&child->perf_counter_mutex); | ||
| 4132 | INIT_LIST_HEAD(&child->perf_counter_list); | ||
| 4133 | |||
| 4134 | if (likely(!parent->perf_counter_ctxp)) | ||
| 4135 | return 0; | ||
| 4136 | |||
| 4137 | /* | ||
| 4138 | * This is executed from the parent task context, so inherit | ||
| 4139 | * counters that have been marked for cloning. | ||
| 4140 | * First allocate and initialize a context for the child. | ||
| 4141 | */ | ||
| 4142 | |||
| 4143 | child_ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL); | ||
| 4144 | if (!child_ctx) | ||
| 4145 | return -ENOMEM; | ||
| 4146 | |||
| 4147 | __perf_counter_init_context(child_ctx, child); | ||
| 4148 | child->perf_counter_ctxp = child_ctx; | ||
| 4149 | get_task_struct(child); | ||
| 4150 | |||
| 4151 | /* | ||
| 4152 | * If the parent's context is a clone, pin it so it won't get | ||
| 4153 | * swapped under us. | ||
| 4154 | */ | ||
| 4155 | parent_ctx = perf_pin_task_context(parent); | ||
| 4156 | |||
| 4157 | /* | ||
| 4158 | * No need to check if parent_ctx != NULL here; since we saw | ||
| 4159 | * it non-NULL earlier, the only reason for it to become NULL | ||
| 4160 | * is if we exit, and since we're currently in the middle of | ||
| 4161 | * a fork we can't be exiting at the same time. | ||
| 4162 | */ | ||
| 4163 | |||
| 4164 | /* | ||
| 4165 | * Lock the parent list. No need to lock the child - not PID | ||
| 4166 | * hashed yet and not running, so nobody can access it. | ||
| 4167 | */ | ||
| 4168 | mutex_lock(&parent_ctx->mutex); | ||
| 4169 | |||
| 4170 | /* | ||
| 4171 | * We dont have to disable NMIs - we are only looking at | ||
| 4172 | * the list, not manipulating it: | ||
| 4173 | */ | ||
| 4174 | list_for_each_entry_rcu(counter, &parent_ctx->event_list, event_entry) { | ||
| 4175 | if (counter != counter->group_leader) | ||
| 4176 | continue; | ||
| 4177 | |||
| 4178 | if (!counter->attr.inherit) { | ||
| 4179 | inherited_all = 0; | ||
| 4180 | continue; | ||
| 4181 | } | ||
| 4182 | |||
| 4183 | ret = inherit_group(counter, parent, parent_ctx, | ||
| 4184 | child, child_ctx); | ||
| 4185 | if (ret) { | ||
| 4186 | inherited_all = 0; | ||
| 4187 | break; | ||
| 4188 | } | ||
| 4189 | } | ||
| 4190 | |||
| 4191 | if (inherited_all) { | ||
| 4192 | /* | ||
| 4193 | * Mark the child context as a clone of the parent | ||
| 4194 | * context, or of whatever the parent is a clone of. | ||
| 4195 | * Note that if the parent is a clone, it could get | ||
| 4196 | * uncloned at any point, but that doesn't matter | ||
| 4197 | * because the list of counters and the generation | ||
| 4198 | * count can't have changed since we took the mutex. | ||
| 4199 | */ | ||
| 4200 | cloned_ctx = rcu_dereference(parent_ctx->parent_ctx); | ||
| 4201 | if (cloned_ctx) { | ||
| 4202 | child_ctx->parent_ctx = cloned_ctx; | ||
| 4203 | child_ctx->parent_gen = parent_ctx->parent_gen; | ||
| 4204 | } else { | ||
| 4205 | child_ctx->parent_ctx = parent_ctx; | ||
| 4206 | child_ctx->parent_gen = parent_ctx->generation; | ||
| 4207 | } | ||
| 4208 | get_ctx(child_ctx->parent_ctx); | ||
| 4209 | } | ||
| 4210 | |||
| 4211 | mutex_unlock(&parent_ctx->mutex); | ||
| 4212 | |||
| 4213 | perf_unpin_context(parent_ctx); | ||
| 4214 | |||
| 4215 | return ret; | ||
| 4216 | } | ||
| 4217 | |||
| 4218 | static void __cpuinit perf_counter_init_cpu(int cpu) | ||
| 4219 | { | ||
| 4220 | struct perf_cpu_context *cpuctx; | ||
| 4221 | |||
| 4222 | cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
| 4223 | __perf_counter_init_context(&cpuctx->ctx, NULL); | ||
| 4224 | |||
| 4225 | spin_lock(&perf_resource_lock); | ||
| 4226 | cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu; | ||
| 4227 | spin_unlock(&perf_resource_lock); | ||
| 4228 | |||
| 4229 | hw_perf_counter_setup(cpu); | ||
| 4230 | } | ||
| 4231 | |||
| 4232 | #ifdef CONFIG_HOTPLUG_CPU | ||
| 4233 | static void __perf_counter_exit_cpu(void *info) | ||
| 4234 | { | ||
| 4235 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
| 4236 | struct perf_counter_context *ctx = &cpuctx->ctx; | ||
| 4237 | struct perf_counter *counter, *tmp; | ||
| 4238 | |||
| 4239 | list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry) | ||
| 4240 | __perf_counter_remove_from_context(counter); | ||
| 4241 | } | ||
| 4242 | static void perf_counter_exit_cpu(int cpu) | ||
| 4243 | { | ||
| 4244 | struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
| 4245 | struct perf_counter_context *ctx = &cpuctx->ctx; | ||
| 4246 | |||
| 4247 | mutex_lock(&ctx->mutex); | ||
| 4248 | smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1); | ||
| 4249 | mutex_unlock(&ctx->mutex); | ||
| 4250 | } | ||
| 4251 | #else | ||
| 4252 | static inline void perf_counter_exit_cpu(int cpu) { } | ||
| 4253 | #endif | ||
| 4254 | |||
| 4255 | static int __cpuinit | ||
| 4256 | perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) | ||
| 4257 | { | ||
| 4258 | unsigned int cpu = (long)hcpu; | ||
| 4259 | |||
| 4260 | switch (action) { | ||
| 4261 | |||
| 4262 | case CPU_UP_PREPARE: | ||
| 4263 | case CPU_UP_PREPARE_FROZEN: | ||
| 4264 | perf_counter_init_cpu(cpu); | ||
| 4265 | break; | ||
| 4266 | |||
| 4267 | case CPU_DOWN_PREPARE: | ||
| 4268 | case CPU_DOWN_PREPARE_FROZEN: | ||
| 4269 | perf_counter_exit_cpu(cpu); | ||
| 4270 | break; | ||
| 4271 | |||
| 4272 | default: | ||
| 4273 | break; | ||
| 4274 | } | ||
| 4275 | |||
| 4276 | return NOTIFY_OK; | ||
| 4277 | } | ||
| 4278 | |||
| 4279 | /* | ||
| 4280 | * This has to have a higher priority than migration_notifier in sched.c. | ||
| 4281 | */ | ||
| 4282 | static struct notifier_block __cpuinitdata perf_cpu_nb = { | ||
| 4283 | .notifier_call = perf_cpu_notify, | ||
| 4284 | .priority = 20, | ||
| 4285 | }; | ||
| 4286 | |||
| 4287 | void __init perf_counter_init(void) | ||
| 4288 | { | ||
| 4289 | perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE, | ||
| 4290 | (void *)(long)smp_processor_id()); | ||
| 4291 | register_cpu_notifier(&perf_cpu_nb); | ||
| 4292 | } | ||
| 4293 | |||
| 4294 | static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf) | ||
| 4295 | { | ||
| 4296 | return sprintf(buf, "%d\n", perf_reserved_percpu); | ||
| 4297 | } | ||
| 4298 | |||
| 4299 | static ssize_t | ||
| 4300 | perf_set_reserve_percpu(struct sysdev_class *class, | ||
| 4301 | const char *buf, | ||
| 4302 | size_t count) | ||
| 4303 | { | ||
| 4304 | struct perf_cpu_context *cpuctx; | ||
| 4305 | unsigned long val; | ||
| 4306 | int err, cpu, mpt; | ||
| 4307 | |||
| 4308 | err = strict_strtoul(buf, 10, &val); | ||
| 4309 | if (err) | ||
| 4310 | return err; | ||
| 4311 | if (val > perf_max_counters) | ||
| 4312 | return -EINVAL; | ||
| 4313 | |||
| 4314 | spin_lock(&perf_resource_lock); | ||
| 4315 | perf_reserved_percpu = val; | ||
| 4316 | for_each_online_cpu(cpu) { | ||
| 4317 | cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
| 4318 | spin_lock_irq(&cpuctx->ctx.lock); | ||
| 4319 | mpt = min(perf_max_counters - cpuctx->ctx.nr_counters, | ||
| 4320 | perf_max_counters - perf_reserved_percpu); | ||
| 4321 | cpuctx->max_pertask = mpt; | ||
| 4322 | spin_unlock_irq(&cpuctx->ctx.lock); | ||
| 4323 | } | ||
| 4324 | spin_unlock(&perf_resource_lock); | ||
| 4325 | |||
| 4326 | return count; | ||
| 4327 | } | ||
| 4328 | |||
| 4329 | static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf) | ||
| 4330 | { | ||
| 4331 | return sprintf(buf, "%d\n", perf_overcommit); | ||
| 4332 | } | ||
| 4333 | |||
| 4334 | static ssize_t | ||
| 4335 | perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count) | ||
| 4336 | { | ||
| 4337 | unsigned long val; | ||
| 4338 | int err; | ||
| 4339 | |||
| 4340 | err = strict_strtoul(buf, 10, &val); | ||
| 4341 | if (err) | ||
| 4342 | return err; | ||
| 4343 | if (val > 1) | ||
| 4344 | return -EINVAL; | ||
| 4345 | |||
| 4346 | spin_lock(&perf_resource_lock); | ||
| 4347 | perf_overcommit = val; | ||
| 4348 | spin_unlock(&perf_resource_lock); | ||
| 4349 | |||
| 4350 | return count; | ||
| 4351 | } | ||
| 4352 | |||
| 4353 | static SYSDEV_CLASS_ATTR( | ||
| 4354 | reserve_percpu, | ||
| 4355 | 0644, | ||
| 4356 | perf_show_reserve_percpu, | ||
| 4357 | perf_set_reserve_percpu | ||
| 4358 | ); | ||
| 4359 | |||
| 4360 | static SYSDEV_CLASS_ATTR( | ||
| 4361 | overcommit, | ||
| 4362 | 0644, | ||
| 4363 | perf_show_overcommit, | ||
| 4364 | perf_set_overcommit | ||
| 4365 | ); | ||
| 4366 | |||
| 4367 | static struct attribute *perfclass_attrs[] = { | ||
| 4368 | &attr_reserve_percpu.attr, | ||
| 4369 | &attr_overcommit.attr, | ||
| 4370 | NULL | ||
| 4371 | }; | ||
| 4372 | |||
| 4373 | static struct attribute_group perfclass_attr_group = { | ||
| 4374 | .attrs = perfclass_attrs, | ||
| 4375 | .name = "perf_counters", | ||
| 4376 | }; | ||
| 4377 | |||
| 4378 | static int __init perf_counter_sysfs_init(void) | ||
| 4379 | { | ||
| 4380 | return sysfs_create_group(&cpu_sysdev_class.kset.kobj, | ||
| 4381 | &perfclass_attr_group); | ||
| 4382 | } | ||
| 4383 | device_initcall(perf_counter_sysfs_init); | ||
diff --git a/kernel/perf_event.c b/kernel/perf_event.c new file mode 100644 index 000000000000..76ac4db405e9 --- /dev/null +++ b/kernel/perf_event.c | |||
| @@ -0,0 +1,5000 @@ | |||
| 1 | /* | ||
| 2 | * Performance events core code: | ||
| 3 | * | ||
| 4 | * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> | ||
| 5 | * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar | ||
| 6 | * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> | ||
| 7 | * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> | ||
| 8 | * | ||
| 9 | * For licensing details see kernel-base/COPYING | ||
| 10 | */ | ||
| 11 | |||
| 12 | #include <linux/fs.h> | ||
| 13 | #include <linux/mm.h> | ||
| 14 | #include <linux/cpu.h> | ||
| 15 | #include <linux/smp.h> | ||
| 16 | #include <linux/file.h> | ||
| 17 | #include <linux/poll.h> | ||
| 18 | #include <linux/sysfs.h> | ||
| 19 | #include <linux/dcache.h> | ||
| 20 | #include <linux/percpu.h> | ||
| 21 | #include <linux/ptrace.h> | ||
| 22 | #include <linux/vmstat.h> | ||
| 23 | #include <linux/hardirq.h> | ||
| 24 | #include <linux/rculist.h> | ||
| 25 | #include <linux/uaccess.h> | ||
| 26 | #include <linux/syscalls.h> | ||
| 27 | #include <linux/anon_inodes.h> | ||
| 28 | #include <linux/kernel_stat.h> | ||
| 29 | #include <linux/perf_event.h> | ||
| 30 | |||
| 31 | #include <asm/irq_regs.h> | ||
| 32 | |||
| 33 | /* | ||
| 34 | * Each CPU has a list of per CPU events: | ||
| 35 | */ | ||
| 36 | DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context); | ||
| 37 | |||
| 38 | int perf_max_events __read_mostly = 1; | ||
| 39 | static int perf_reserved_percpu __read_mostly; | ||
| 40 | static int perf_overcommit __read_mostly = 1; | ||
| 41 | |||
| 42 | static atomic_t nr_events __read_mostly; | ||
| 43 | static atomic_t nr_mmap_events __read_mostly; | ||
| 44 | static atomic_t nr_comm_events __read_mostly; | ||
| 45 | static atomic_t nr_task_events __read_mostly; | ||
| 46 | |||
| 47 | /* | ||
| 48 | * perf event paranoia level: | ||
| 49 | * -1 - not paranoid at all | ||
| 50 | * 0 - disallow raw tracepoint access for unpriv | ||
| 51 | * 1 - disallow cpu events for unpriv | ||
| 52 | * 2 - disallow kernel profiling for unpriv | ||
| 53 | */ | ||
| 54 | int sysctl_perf_event_paranoid __read_mostly = 1; | ||
| 55 | |||
| 56 | static inline bool perf_paranoid_tracepoint_raw(void) | ||
| 57 | { | ||
| 58 | return sysctl_perf_event_paranoid > -1; | ||
| 59 | } | ||
| 60 | |||
| 61 | static inline bool perf_paranoid_cpu(void) | ||
| 62 | { | ||
| 63 | return sysctl_perf_event_paranoid > 0; | ||
| 64 | } | ||
| 65 | |||
| 66 | static inline bool perf_paranoid_kernel(void) | ||
| 67 | { | ||
| 68 | return sysctl_perf_event_paranoid > 1; | ||
| 69 | } | ||
| 70 | |||
| 71 | int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */ | ||
| 72 | |||
| 73 | /* | ||
| 74 | * max perf event sample rate | ||
| 75 | */ | ||
| 76 | int sysctl_perf_event_sample_rate __read_mostly = 100000; | ||
| 77 | |||
| 78 | static atomic64_t perf_event_id; | ||
| 79 | |||
| 80 | /* | ||
| 81 | * Lock for (sysadmin-configurable) event reservations: | ||
| 82 | */ | ||
| 83 | static DEFINE_SPINLOCK(perf_resource_lock); | ||
| 84 | |||
| 85 | /* | ||
| 86 | * Architecture provided APIs - weak aliases: | ||
| 87 | */ | ||
| 88 | extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event) | ||
| 89 | { | ||
| 90 | return NULL; | ||
| 91 | } | ||
| 92 | |||
| 93 | void __weak hw_perf_disable(void) { barrier(); } | ||
| 94 | void __weak hw_perf_enable(void) { barrier(); } | ||
| 95 | |||
| 96 | void __weak hw_perf_event_setup(int cpu) { barrier(); } | ||
| 97 | void __weak hw_perf_event_setup_online(int cpu) { barrier(); } | ||
| 98 | |||
| 99 | int __weak | ||
| 100 | hw_perf_group_sched_in(struct perf_event *group_leader, | ||
| 101 | struct perf_cpu_context *cpuctx, | ||
| 102 | struct perf_event_context *ctx, int cpu) | ||
| 103 | { | ||
| 104 | return 0; | ||
| 105 | } | ||
| 106 | |||
| 107 | void __weak perf_event_print_debug(void) { } | ||
| 108 | |||
| 109 | static DEFINE_PER_CPU(int, perf_disable_count); | ||
| 110 | |||
| 111 | void __perf_disable(void) | ||
| 112 | { | ||
| 113 | __get_cpu_var(perf_disable_count)++; | ||
| 114 | } | ||
| 115 | |||
| 116 | bool __perf_enable(void) | ||
| 117 | { | ||
| 118 | return !--__get_cpu_var(perf_disable_count); | ||
| 119 | } | ||
| 120 | |||
| 121 | void perf_disable(void) | ||
| 122 | { | ||
| 123 | __perf_disable(); | ||
| 124 | hw_perf_disable(); | ||
| 125 | } | ||
| 126 | |||
| 127 | void perf_enable(void) | ||
| 128 | { | ||
| 129 | if (__perf_enable()) | ||
| 130 | hw_perf_enable(); | ||
| 131 | } | ||
| 132 | |||
| 133 | static void get_ctx(struct perf_event_context *ctx) | ||
| 134 | { | ||
| 135 | WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); | ||
| 136 | } | ||
| 137 | |||
| 138 | static void free_ctx(struct rcu_head *head) | ||
| 139 | { | ||
| 140 | struct perf_event_context *ctx; | ||
| 141 | |||
| 142 | ctx = container_of(head, struct perf_event_context, rcu_head); | ||
| 143 | kfree(ctx); | ||
| 144 | } | ||
| 145 | |||
| 146 | static void put_ctx(struct perf_event_context *ctx) | ||
| 147 | { | ||
| 148 | if (atomic_dec_and_test(&ctx->refcount)) { | ||
| 149 | if (ctx->parent_ctx) | ||
| 150 | put_ctx(ctx->parent_ctx); | ||
| 151 | if (ctx->task) | ||
| 152 | put_task_struct(ctx->task); | ||
| 153 | call_rcu(&ctx->rcu_head, free_ctx); | ||
| 154 | } | ||
| 155 | } | ||
| 156 | |||
| 157 | static void unclone_ctx(struct perf_event_context *ctx) | ||
| 158 | { | ||
| 159 | if (ctx->parent_ctx) { | ||
| 160 | put_ctx(ctx->parent_ctx); | ||
| 161 | ctx->parent_ctx = NULL; | ||
| 162 | } | ||
| 163 | } | ||
| 164 | |||
| 165 | /* | ||
| 166 | * If we inherit events we want to return the parent event id | ||
| 167 | * to userspace. | ||
| 168 | */ | ||
| 169 | static u64 primary_event_id(struct perf_event *event) | ||
| 170 | { | ||
| 171 | u64 id = event->id; | ||
| 172 | |||
| 173 | if (event->parent) | ||
| 174 | id = event->parent->id; | ||
| 175 | |||
| 176 | return id; | ||
| 177 | } | ||
| 178 | |||
| 179 | /* | ||
| 180 | * Get the perf_event_context for a task and lock it. | ||
| 181 | * This has to cope with with the fact that until it is locked, | ||
| 182 | * the context could get moved to another task. | ||
| 183 | */ | ||
| 184 | static struct perf_event_context * | ||
| 185 | perf_lock_task_context(struct task_struct *task, unsigned long *flags) | ||
| 186 | { | ||
| 187 | struct perf_event_context *ctx; | ||
| 188 | |||
| 189 | rcu_read_lock(); | ||
| 190 | retry: | ||
| 191 | ctx = rcu_dereference(task->perf_event_ctxp); | ||
| 192 | if (ctx) { | ||
| 193 | /* | ||
| 194 | * If this context is a clone of another, it might | ||
| 195 | * get swapped for another underneath us by | ||
| 196 | * perf_event_task_sched_out, though the | ||
| 197 | * rcu_read_lock() protects us from any context | ||
| 198 | * getting freed. Lock the context and check if it | ||
| 199 | * got swapped before we could get the lock, and retry | ||
| 200 | * if so. If we locked the right context, then it | ||
| 201 | * can't get swapped on us any more. | ||
| 202 | */ | ||
| 203 | spin_lock_irqsave(&ctx->lock, *flags); | ||
| 204 | if (ctx != rcu_dereference(task->perf_event_ctxp)) { | ||
| 205 | spin_unlock_irqrestore(&ctx->lock, *flags); | ||
| 206 | goto retry; | ||
| 207 | } | ||
| 208 | |||
| 209 | if (!atomic_inc_not_zero(&ctx->refcount)) { | ||
| 210 | spin_unlock_irqrestore(&ctx->lock, *flags); | ||
| 211 | ctx = NULL; | ||
| 212 | } | ||
| 213 | } | ||
| 214 | rcu_read_unlock(); | ||
| 215 | return ctx; | ||
| 216 | } | ||
| 217 | |||
| 218 | /* | ||
| 219 | * Get the context for a task and increment its pin_count so it | ||
| 220 | * can't get swapped to another task. This also increments its | ||
| 221 | * reference count so that the context can't get freed. | ||
| 222 | */ | ||
| 223 | static struct perf_event_context *perf_pin_task_context(struct task_struct *task) | ||
| 224 | { | ||
| 225 | struct perf_event_context *ctx; | ||
| 226 | unsigned long flags; | ||
| 227 | |||
| 228 | ctx = perf_lock_task_context(task, &flags); | ||
| 229 | if (ctx) { | ||
| 230 | ++ctx->pin_count; | ||
| 231 | spin_unlock_irqrestore(&ctx->lock, flags); | ||
| 232 | } | ||
| 233 | return ctx; | ||
| 234 | } | ||
| 235 | |||
| 236 | static void perf_unpin_context(struct perf_event_context *ctx) | ||
| 237 | { | ||
| 238 | unsigned long flags; | ||
| 239 | |||
| 240 | spin_lock_irqsave(&ctx->lock, flags); | ||
| 241 | --ctx->pin_count; | ||
| 242 | spin_unlock_irqrestore(&ctx->lock, flags); | ||
| 243 | put_ctx(ctx); | ||
| 244 | } | ||
| 245 | |||
| 246 | /* | ||
| 247 | * Add a event from the lists for its context. | ||
| 248 | * Must be called with ctx->mutex and ctx->lock held. | ||
| 249 | */ | ||
| 250 | static void | ||
| 251 | list_add_event(struct perf_event *event, struct perf_event_context *ctx) | ||
| 252 | { | ||
| 253 | struct perf_event *group_leader = event->group_leader; | ||
| 254 | |||
| 255 | /* | ||
| 256 | * Depending on whether it is a standalone or sibling event, | ||
| 257 | * add it straight to the context's event list, or to the group | ||
| 258 | * leader's sibling list: | ||
| 259 | */ | ||
| 260 | if (group_leader == event) | ||
| 261 | list_add_tail(&event->group_entry, &ctx->group_list); | ||
| 262 | else { | ||
| 263 | list_add_tail(&event->group_entry, &group_leader->sibling_list); | ||
| 264 | group_leader->nr_siblings++; | ||
| 265 | } | ||
| 266 | |||
| 267 | list_add_rcu(&event->event_entry, &ctx->event_list); | ||
| 268 | ctx->nr_events++; | ||
| 269 | if (event->attr.inherit_stat) | ||
| 270 | ctx->nr_stat++; | ||
| 271 | } | ||
| 272 | |||
| 273 | /* | ||
| 274 | * Remove a event from the lists for its context. | ||
| 275 | * Must be called with ctx->mutex and ctx->lock held. | ||
| 276 | */ | ||
| 277 | static void | ||
| 278 | list_del_event(struct perf_event *event, struct perf_event_context *ctx) | ||
| 279 | { | ||
| 280 | struct perf_event *sibling, *tmp; | ||
| 281 | |||
| 282 | if (list_empty(&event->group_entry)) | ||
| 283 | return; | ||
| 284 | ctx->nr_events--; | ||
| 285 | if (event->attr.inherit_stat) | ||
| 286 | ctx->nr_stat--; | ||
| 287 | |||
| 288 | list_del_init(&event->group_entry); | ||
| 289 | list_del_rcu(&event->event_entry); | ||
| 290 | |||
| 291 | if (event->group_leader != event) | ||
| 292 | event->group_leader->nr_siblings--; | ||
| 293 | |||
| 294 | /* | ||
| 295 | * If this was a group event with sibling events then | ||
| 296 | * upgrade the siblings to singleton events by adding them | ||
| 297 | * to the context list directly: | ||
| 298 | */ | ||
| 299 | list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) { | ||
| 300 | |||
| 301 | list_move_tail(&sibling->group_entry, &ctx->group_list); | ||
| 302 | sibling->group_leader = sibling; | ||
| 303 | } | ||
| 304 | } | ||
| 305 | |||
| 306 | static void | ||
| 307 | event_sched_out(struct perf_event *event, | ||
| 308 | struct perf_cpu_context *cpuctx, | ||
| 309 | struct perf_event_context *ctx) | ||
| 310 | { | ||
| 311 | if (event->state != PERF_EVENT_STATE_ACTIVE) | ||
| 312 | return; | ||
| 313 | |||
| 314 | event->state = PERF_EVENT_STATE_INACTIVE; | ||
| 315 | if (event->pending_disable) { | ||
| 316 | event->pending_disable = 0; | ||
| 317 | event->state = PERF_EVENT_STATE_OFF; | ||
| 318 | } | ||
| 319 | event->tstamp_stopped = ctx->time; | ||
| 320 | event->pmu->disable(event); | ||
| 321 | event->oncpu = -1; | ||
| 322 | |||
| 323 | if (!is_software_event(event)) | ||
| 324 | cpuctx->active_oncpu--; | ||
| 325 | ctx->nr_active--; | ||
| 326 | if (event->attr.exclusive || !cpuctx->active_oncpu) | ||
| 327 | cpuctx->exclusive = 0; | ||
| 328 | } | ||
| 329 | |||
| 330 | static void | ||
| 331 | group_sched_out(struct perf_event *group_event, | ||
| 332 | struct perf_cpu_context *cpuctx, | ||
| 333 | struct perf_event_context *ctx) | ||
| 334 | { | ||
| 335 | struct perf_event *event; | ||
| 336 | |||
| 337 | if (group_event->state != PERF_EVENT_STATE_ACTIVE) | ||
| 338 | return; | ||
| 339 | |||
| 340 | event_sched_out(group_event, cpuctx, ctx); | ||
| 341 | |||
| 342 | /* | ||
| 343 | * Schedule out siblings (if any): | ||
| 344 | */ | ||
| 345 | list_for_each_entry(event, &group_event->sibling_list, group_entry) | ||
| 346 | event_sched_out(event, cpuctx, ctx); | ||
| 347 | |||
| 348 | if (group_event->attr.exclusive) | ||
| 349 | cpuctx->exclusive = 0; | ||
| 350 | } | ||
| 351 | |||
| 352 | /* | ||
| 353 | * Cross CPU call to remove a performance event | ||
| 354 | * | ||
| 355 | * We disable the event on the hardware level first. After that we | ||
| 356 | * remove it from the context list. | ||
| 357 | */ | ||
| 358 | static void __perf_event_remove_from_context(void *info) | ||
| 359 | { | ||
| 360 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
| 361 | struct perf_event *event = info; | ||
| 362 | struct perf_event_context *ctx = event->ctx; | ||
| 363 | |||
| 364 | /* | ||
| 365 | * If this is a task context, we need to check whether it is | ||
| 366 | * the current task context of this cpu. If not it has been | ||
| 367 | * scheduled out before the smp call arrived. | ||
| 368 | */ | ||
| 369 | if (ctx->task && cpuctx->task_ctx != ctx) | ||
| 370 | return; | ||
| 371 | |||
| 372 | spin_lock(&ctx->lock); | ||
| 373 | /* | ||
| 374 | * Protect the list operation against NMI by disabling the | ||
| 375 | * events on a global level. | ||
| 376 | */ | ||
| 377 | perf_disable(); | ||
| 378 | |||
| 379 | event_sched_out(event, cpuctx, ctx); | ||
| 380 | |||
| 381 | list_del_event(event, ctx); | ||
| 382 | |||
| 383 | if (!ctx->task) { | ||
| 384 | /* | ||
| 385 | * Allow more per task events with respect to the | ||
| 386 | * reservation: | ||
| 387 | */ | ||
| 388 | cpuctx->max_pertask = | ||
| 389 | min(perf_max_events - ctx->nr_events, | ||
| 390 | perf_max_events - perf_reserved_percpu); | ||
| 391 | } | ||
| 392 | |||
| 393 | perf_enable(); | ||
| 394 | spin_unlock(&ctx->lock); | ||
| 395 | } | ||
| 396 | |||
| 397 | |||
| 398 | /* | ||
| 399 | * Remove the event from a task's (or a CPU's) list of events. | ||
| 400 | * | ||
| 401 | * Must be called with ctx->mutex held. | ||
| 402 | * | ||
| 403 | * CPU events are removed with a smp call. For task events we only | ||
| 404 | * call when the task is on a CPU. | ||
| 405 | * | ||
| 406 | * If event->ctx is a cloned context, callers must make sure that | ||
| 407 | * every task struct that event->ctx->task could possibly point to | ||
| 408 | * remains valid. This is OK when called from perf_release since | ||
| 409 | * that only calls us on the top-level context, which can't be a clone. | ||
| 410 | * When called from perf_event_exit_task, it's OK because the | ||
| 411 | * context has been detached from its task. | ||
| 412 | */ | ||
| 413 | static void perf_event_remove_from_context(struct perf_event *event) | ||
| 414 | { | ||
| 415 | struct perf_event_context *ctx = event->ctx; | ||
| 416 | struct task_struct *task = ctx->task; | ||
| 417 | |||
| 418 | if (!task) { | ||
| 419 | /* | ||
| 420 | * Per cpu events are removed via an smp call and | ||
| 421 | * the removal is always sucessful. | ||
| 422 | */ | ||
| 423 | smp_call_function_single(event->cpu, | ||
| 424 | __perf_event_remove_from_context, | ||
| 425 | event, 1); | ||
| 426 | return; | ||
| 427 | } | ||
| 428 | |||
| 429 | retry: | ||
| 430 | task_oncpu_function_call(task, __perf_event_remove_from_context, | ||
| 431 | event); | ||
| 432 | |||
| 433 | spin_lock_irq(&ctx->lock); | ||
| 434 | /* | ||
| 435 | * If the context is active we need to retry the smp call. | ||
| 436 | */ | ||
| 437 | if (ctx->nr_active && !list_empty(&event->group_entry)) { | ||
| 438 | spin_unlock_irq(&ctx->lock); | ||
| 439 | goto retry; | ||
| 440 | } | ||
| 441 | |||
| 442 | /* | ||
| 443 | * The lock prevents that this context is scheduled in so we | ||
| 444 | * can remove the event safely, if the call above did not | ||
| 445 | * succeed. | ||
| 446 | */ | ||
| 447 | if (!list_empty(&event->group_entry)) { | ||
| 448 | list_del_event(event, ctx); | ||
| 449 | } | ||
| 450 | spin_unlock_irq(&ctx->lock); | ||
| 451 | } | ||
| 452 | |||
| 453 | static inline u64 perf_clock(void) | ||
| 454 | { | ||
| 455 | return cpu_clock(smp_processor_id()); | ||
| 456 | } | ||
| 457 | |||
| 458 | /* | ||
| 459 | * Update the record of the current time in a context. | ||
| 460 | */ | ||
| 461 | static void update_context_time(struct perf_event_context *ctx) | ||
| 462 | { | ||
| 463 | u64 now = perf_clock(); | ||
| 464 | |||
| 465 | ctx->time += now - ctx->timestamp; | ||
| 466 | ctx->timestamp = now; | ||
| 467 | } | ||
| 468 | |||
| 469 | /* | ||
| 470 | * Update the total_time_enabled and total_time_running fields for a event. | ||
| 471 | */ | ||
| 472 | static void update_event_times(struct perf_event *event) | ||
| 473 | { | ||
| 474 | struct perf_event_context *ctx = event->ctx; | ||
| 475 | u64 run_end; | ||
| 476 | |||
| 477 | if (event->state < PERF_EVENT_STATE_INACTIVE || | ||
| 478 | event->group_leader->state < PERF_EVENT_STATE_INACTIVE) | ||
| 479 | return; | ||
| 480 | |||
| 481 | event->total_time_enabled = ctx->time - event->tstamp_enabled; | ||
| 482 | |||
| 483 | if (event->state == PERF_EVENT_STATE_INACTIVE) | ||
| 484 | run_end = event->tstamp_stopped; | ||
| 485 | else | ||
| 486 | run_end = ctx->time; | ||
| 487 | |||
| 488 | event->total_time_running = run_end - event->tstamp_running; | ||
| 489 | } | ||
| 490 | |||
| 491 | /* | ||
| 492 | * Update total_time_enabled and total_time_running for all events in a group. | ||
| 493 | */ | ||
| 494 | static void update_group_times(struct perf_event *leader) | ||
| 495 | { | ||
| 496 | struct perf_event *event; | ||
| 497 | |||
| 498 | update_event_times(leader); | ||
| 499 | list_for_each_entry(event, &leader->sibling_list, group_entry) | ||
| 500 | update_event_times(event); | ||
| 501 | } | ||
| 502 | |||
| 503 | /* | ||
| 504 | * Cross CPU call to disable a performance event | ||
| 505 | */ | ||
| 506 | static void __perf_event_disable(void *info) | ||
| 507 | { | ||
| 508 | struct perf_event *event = info; | ||
| 509 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
| 510 | struct perf_event_context *ctx = event->ctx; | ||
| 511 | |||
| 512 | /* | ||
| 513 | * If this is a per-task event, need to check whether this | ||
| 514 | * event's task is the current task on this cpu. | ||
| 515 | */ | ||
| 516 | if (ctx->task && cpuctx->task_ctx != ctx) | ||
| 517 | return; | ||
| 518 | |||
| 519 | spin_lock(&ctx->lock); | ||
| 520 | |||
| 521 | /* | ||
| 522 | * If the event is on, turn it off. | ||
| 523 | * If it is in error state, leave it in error state. | ||
| 524 | */ | ||
| 525 | if (event->state >= PERF_EVENT_STATE_INACTIVE) { | ||
| 526 | update_context_time(ctx); | ||
| 527 | update_group_times(event); | ||
| 528 | if (event == event->group_leader) | ||
| 529 | group_sched_out(event, cpuctx, ctx); | ||
| 530 | else | ||
| 531 | event_sched_out(event, cpuctx, ctx); | ||
| 532 | event->state = PERF_EVENT_STATE_OFF; | ||
| 533 | } | ||
| 534 | |||
| 535 | spin_unlock(&ctx->lock); | ||
| 536 | } | ||
| 537 | |||
| 538 | /* | ||
| 539 | * Disable a event. | ||
| 540 | * | ||
| 541 | * If event->ctx is a cloned context, callers must make sure that | ||
| 542 | * every task struct that event->ctx->task could possibly point to | ||
| 543 | * remains valid. This condition is satisifed when called through | ||
| 544 | * perf_event_for_each_child or perf_event_for_each because they | ||
| 545 | * hold the top-level event's child_mutex, so any descendant that | ||
| 546 | * goes to exit will block in sync_child_event. | ||
| 547 | * When called from perf_pending_event it's OK because event->ctx | ||
| 548 | * is the current context on this CPU and preemption is disabled, | ||
| 549 | * hence we can't get into perf_event_task_sched_out for this context. | ||
| 550 | */ | ||
| 551 | static void perf_event_disable(struct perf_event *event) | ||
| 552 | { | ||
| 553 | struct perf_event_context *ctx = event->ctx; | ||
| 554 | struct task_struct *task = ctx->task; | ||
| 555 | |||
| 556 | if (!task) { | ||
| 557 | /* | ||
| 558 | * Disable the event on the cpu that it's on | ||
| 559 | */ | ||
| 560 | smp_call_function_single(event->cpu, __perf_event_disable, | ||
| 561 | event, 1); | ||
| 562 | return; | ||
| 563 | } | ||
| 564 | |||
| 565 | retry: | ||
| 566 | task_oncpu_function_call(task, __perf_event_disable, event); | ||
| 567 | |||
| 568 | spin_lock_irq(&ctx->lock); | ||
| 569 | /* | ||
| 570 | * If the event is still active, we need to retry the cross-call. | ||
| 571 | */ | ||
| 572 | if (event->state == PERF_EVENT_STATE_ACTIVE) { | ||
| 573 | spin_unlock_irq(&ctx->lock); | ||
| 574 | goto retry; | ||
| 575 | } | ||
| 576 | |||
| 577 | /* | ||
| 578 | * Since we have the lock this context can't be scheduled | ||
| 579 | * in, so we can change the state safely. | ||
| 580 | */ | ||
| 581 | if (event->state == PERF_EVENT_STATE_INACTIVE) { | ||
| 582 | update_group_times(event); | ||
| 583 | event->state = PERF_EVENT_STATE_OFF; | ||
| 584 | } | ||
| 585 | |||
| 586 | spin_unlock_irq(&ctx->lock); | ||
| 587 | } | ||
| 588 | |||
| 589 | static int | ||
| 590 | event_sched_in(struct perf_event *event, | ||
| 591 | struct perf_cpu_context *cpuctx, | ||
| 592 | struct perf_event_context *ctx, | ||
| 593 | int cpu) | ||
| 594 | { | ||
| 595 | if (event->state <= PERF_EVENT_STATE_OFF) | ||
| 596 | return 0; | ||
| 597 | |||
| 598 | event->state = PERF_EVENT_STATE_ACTIVE; | ||
| 599 | event->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */ | ||
| 600 | /* | ||
| 601 | * The new state must be visible before we turn it on in the hardware: | ||
| 602 | */ | ||
| 603 | smp_wmb(); | ||
| 604 | |||
| 605 | if (event->pmu->enable(event)) { | ||
| 606 | event->state = PERF_EVENT_STATE_INACTIVE; | ||
| 607 | event->oncpu = -1; | ||
| 608 | return -EAGAIN; | ||
| 609 | } | ||
| 610 | |||
| 611 | event->tstamp_running += ctx->time - event->tstamp_stopped; | ||
| 612 | |||
| 613 | if (!is_software_event(event)) | ||
| 614 | cpuctx->active_oncpu++; | ||
| 615 | ctx->nr_active++; | ||
| 616 | |||
| 617 | if (event->attr.exclusive) | ||
| 618 | cpuctx->exclusive = 1; | ||
| 619 | |||
| 620 | return 0; | ||
| 621 | } | ||
| 622 | |||
| 623 | static int | ||
| 624 | group_sched_in(struct perf_event *group_event, | ||
| 625 | struct perf_cpu_context *cpuctx, | ||
| 626 | struct perf_event_context *ctx, | ||
| 627 | int cpu) | ||
| 628 | { | ||
| 629 | struct perf_event *event, *partial_group; | ||
| 630 | int ret; | ||
| 631 | |||
| 632 | if (group_event->state == PERF_EVENT_STATE_OFF) | ||
| 633 | return 0; | ||
| 634 | |||
| 635 | ret = hw_perf_group_sched_in(group_event, cpuctx, ctx, cpu); | ||
| 636 | if (ret) | ||
| 637 | return ret < 0 ? ret : 0; | ||
| 638 | |||
| 639 | if (event_sched_in(group_event, cpuctx, ctx, cpu)) | ||
| 640 | return -EAGAIN; | ||
| 641 | |||
| 642 | /* | ||
| 643 | * Schedule in siblings as one group (if any): | ||
| 644 | */ | ||
| 645 | list_for_each_entry(event, &group_event->sibling_list, group_entry) { | ||
| 646 | if (event_sched_in(event, cpuctx, ctx, cpu)) { | ||
| 647 | partial_group = event; | ||
| 648 | goto group_error; | ||
| 649 | } | ||
| 650 | } | ||
| 651 | |||
| 652 | return 0; | ||
| 653 | |||
| 654 | group_error: | ||
| 655 | /* | ||
| 656 | * Groups can be scheduled in as one unit only, so undo any | ||
| 657 | * partial group before returning: | ||
| 658 | */ | ||
| 659 | list_for_each_entry(event, &group_event->sibling_list, group_entry) { | ||
| 660 | if (event == partial_group) | ||
| 661 | break; | ||
| 662 | event_sched_out(event, cpuctx, ctx); | ||
| 663 | } | ||
| 664 | event_sched_out(group_event, cpuctx, ctx); | ||
| 665 | |||
| 666 | return -EAGAIN; | ||
| 667 | } | ||
| 668 | |||
| 669 | /* | ||
| 670 | * Return 1 for a group consisting entirely of software events, | ||
| 671 | * 0 if the group contains any hardware events. | ||
| 672 | */ | ||
| 673 | static int is_software_only_group(struct perf_event *leader) | ||
| 674 | { | ||
| 675 | struct perf_event *event; | ||
| 676 | |||
| 677 | if (!is_software_event(leader)) | ||
| 678 | return 0; | ||
| 679 | |||
| 680 | list_for_each_entry(event, &leader->sibling_list, group_entry) | ||
| 681 | if (!is_software_event(event)) | ||
| 682 | return 0; | ||
| 683 | |||
| 684 | return 1; | ||
| 685 | } | ||
| 686 | |||
| 687 | /* | ||
| 688 | * Work out whether we can put this event group on the CPU now. | ||
| 689 | */ | ||
| 690 | static int group_can_go_on(struct perf_event *event, | ||
| 691 | struct perf_cpu_context *cpuctx, | ||
| 692 | int can_add_hw) | ||
| 693 | { | ||
| 694 | /* | ||
| 695 | * Groups consisting entirely of software events can always go on. | ||
| 696 | */ | ||
| 697 | if (is_software_only_group(event)) | ||
| 698 | return 1; | ||
| 699 | /* | ||
| 700 | * If an exclusive group is already on, no other hardware | ||
| 701 | * events can go on. | ||
| 702 | */ | ||
| 703 | if (cpuctx->exclusive) | ||
| 704 | return 0; | ||
| 705 | /* | ||
| 706 | * If this group is exclusive and there are already | ||
| 707 | * events on the CPU, it can't go on. | ||
| 708 | */ | ||
| 709 | if (event->attr.exclusive && cpuctx->active_oncpu) | ||
| 710 | return 0; | ||
| 711 | /* | ||
| 712 | * Otherwise, try to add it if all previous groups were able | ||
| 713 | * to go on. | ||
| 714 | */ | ||
| 715 | return can_add_hw; | ||
| 716 | } | ||
| 717 | |||
| 718 | static void add_event_to_ctx(struct perf_event *event, | ||
| 719 | struct perf_event_context *ctx) | ||
| 720 | { | ||
| 721 | list_add_event(event, ctx); | ||
| 722 | event->tstamp_enabled = ctx->time; | ||
| 723 | event->tstamp_running = ctx->time; | ||
| 724 | event->tstamp_stopped = ctx->time; | ||
| 725 | } | ||
| 726 | |||
| 727 | /* | ||
| 728 | * Cross CPU call to install and enable a performance event | ||
| 729 | * | ||
| 730 | * Must be called with ctx->mutex held | ||
| 731 | */ | ||
| 732 | static void __perf_install_in_context(void *info) | ||
| 733 | { | ||
| 734 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
| 735 | struct perf_event *event = info; | ||
| 736 | struct perf_event_context *ctx = event->ctx; | ||
| 737 | struct perf_event *leader = event->group_leader; | ||
| 738 | int cpu = smp_processor_id(); | ||
| 739 | int err; | ||
| 740 | |||
| 741 | /* | ||
| 742 | * If this is a task context, we need to check whether it is | ||
| 743 | * the current task context of this cpu. If not it has been | ||
| 744 | * scheduled out before the smp call arrived. | ||
| 745 | * Or possibly this is the right context but it isn't | ||
| 746 | * on this cpu because it had no events. | ||
| 747 | */ | ||
| 748 | if (ctx->task && cpuctx->task_ctx != ctx) { | ||
| 749 | if (cpuctx->task_ctx || ctx->task != current) | ||
| 750 | return; | ||
| 751 | cpuctx->task_ctx = ctx; | ||
| 752 | } | ||
| 753 | |||
| 754 | spin_lock(&ctx->lock); | ||
| 755 | ctx->is_active = 1; | ||
| 756 | update_context_time(ctx); | ||
| 757 | |||
| 758 | /* | ||
| 759 | * Protect the list operation against NMI by disabling the | ||
| 760 | * events on a global level. NOP for non NMI based events. | ||
| 761 | */ | ||
| 762 | perf_disable(); | ||
| 763 | |||
| 764 | add_event_to_ctx(event, ctx); | ||
| 765 | |||
| 766 | /* | ||
| 767 | * Don't put the event on if it is disabled or if | ||
| 768 | * it is in a group and the group isn't on. | ||
| 769 | */ | ||
| 770 | if (event->state != PERF_EVENT_STATE_INACTIVE || | ||
| 771 | (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)) | ||
| 772 | goto unlock; | ||
| 773 | |||
| 774 | /* | ||
| 775 | * An exclusive event can't go on if there are already active | ||
| 776 | * hardware events, and no hardware event can go on if there | ||
| 777 | * is already an exclusive event on. | ||
| 778 | */ | ||
| 779 | if (!group_can_go_on(event, cpuctx, 1)) | ||
| 780 | err = -EEXIST; | ||
| 781 | else | ||
| 782 | err = event_sched_in(event, cpuctx, ctx, cpu); | ||
| 783 | |||
| 784 | if (err) { | ||
| 785 | /* | ||
| 786 | * This event couldn't go on. If it is in a group | ||
| 787 | * then we have to pull the whole group off. | ||
| 788 | * If the event group is pinned then put it in error state. | ||
| 789 | */ | ||
| 790 | if (leader != event) | ||
| 791 | group_sched_out(leader, cpuctx, ctx); | ||
| 792 | if (leader->attr.pinned) { | ||
| 793 | update_group_times(leader); | ||
| 794 | leader->state = PERF_EVENT_STATE_ERROR; | ||
| 795 | } | ||
| 796 | } | ||
| 797 | |||
| 798 | if (!err && !ctx->task && cpuctx->max_pertask) | ||
| 799 | cpuctx->max_pertask--; | ||
| 800 | |||
| 801 | unlock: | ||
| 802 | perf_enable(); | ||
| 803 | |||
| 804 | spin_unlock(&ctx->lock); | ||
| 805 | } | ||
| 806 | |||
| 807 | /* | ||
| 808 | * Attach a performance event to a context | ||
| 809 | * | ||
| 810 | * First we add the event to the list with the hardware enable bit | ||
| 811 | * in event->hw_config cleared. | ||
| 812 | * | ||
| 813 | * If the event is attached to a task which is on a CPU we use a smp | ||
| 814 | * call to enable it in the task context. The task might have been | ||
| 815 | * scheduled away, but we check this in the smp call again. | ||
| 816 | * | ||
| 817 | * Must be called with ctx->mutex held. | ||
| 818 | */ | ||
| 819 | static void | ||
| 820 | perf_install_in_context(struct perf_event_context *ctx, | ||
| 821 | struct perf_event *event, | ||
| 822 | int cpu) | ||
| 823 | { | ||
| 824 | struct task_struct *task = ctx->task; | ||
| 825 | |||
| 826 | if (!task) { | ||
| 827 | /* | ||
| 828 | * Per cpu events are installed via an smp call and | ||
| 829 | * the install is always sucessful. | ||
| 830 | */ | ||
| 831 | smp_call_function_single(cpu, __perf_install_in_context, | ||
| 832 | event, 1); | ||
| 833 | return; | ||
| 834 | } | ||
| 835 | |||
| 836 | retry: | ||
| 837 | task_oncpu_function_call(task, __perf_install_in_context, | ||
| 838 | event); | ||
| 839 | |||
| 840 | spin_lock_irq(&ctx->lock); | ||
| 841 | /* | ||
| 842 | * we need to retry the smp call. | ||
| 843 | */ | ||
| 844 | if (ctx->is_active && list_empty(&event->group_entry)) { | ||
| 845 | spin_unlock_irq(&ctx->lock); | ||
| 846 | goto retry; | ||
| 847 | } | ||
| 848 | |||
| 849 | /* | ||
| 850 | * The lock prevents that this context is scheduled in so we | ||
| 851 | * can add the event safely, if it the call above did not | ||
| 852 | * succeed. | ||
| 853 | */ | ||
| 854 | if (list_empty(&event->group_entry)) | ||
| 855 | add_event_to_ctx(event, ctx); | ||
| 856 | spin_unlock_irq(&ctx->lock); | ||
| 857 | } | ||
| 858 | |||
| 859 | /* | ||
| 860 | * Put a event into inactive state and update time fields. | ||
| 861 | * Enabling the leader of a group effectively enables all | ||
| 862 | * the group members that aren't explicitly disabled, so we | ||
| 863 | * have to update their ->tstamp_enabled also. | ||
| 864 | * Note: this works for group members as well as group leaders | ||
| 865 | * since the non-leader members' sibling_lists will be empty. | ||
| 866 | */ | ||
| 867 | static void __perf_event_mark_enabled(struct perf_event *event, | ||
| 868 | struct perf_event_context *ctx) | ||
| 869 | { | ||
| 870 | struct perf_event *sub; | ||
| 871 | |||
| 872 | event->state = PERF_EVENT_STATE_INACTIVE; | ||
| 873 | event->tstamp_enabled = ctx->time - event->total_time_enabled; | ||
| 874 | list_for_each_entry(sub, &event->sibling_list, group_entry) | ||
| 875 | if (sub->state >= PERF_EVENT_STATE_INACTIVE) | ||
| 876 | sub->tstamp_enabled = | ||
| 877 | ctx->time - sub->total_time_enabled; | ||
| 878 | } | ||
| 879 | |||
| 880 | /* | ||
| 881 | * Cross CPU call to enable a performance event | ||
| 882 | */ | ||
| 883 | static void __perf_event_enable(void *info) | ||
| 884 | { | ||
| 885 | struct perf_event *event = info; | ||
| 886 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
| 887 | struct perf_event_context *ctx = event->ctx; | ||
| 888 | struct perf_event *leader = event->group_leader; | ||
| 889 | int err; | ||
| 890 | |||
| 891 | /* | ||
| 892 | * If this is a per-task event, need to check whether this | ||
| 893 | * event's task is the current task on this cpu. | ||
| 894 | */ | ||
| 895 | if (ctx->task && cpuctx->task_ctx != ctx) { | ||
| 896 | if (cpuctx->task_ctx || ctx->task != current) | ||
| 897 | return; | ||
| 898 | cpuctx->task_ctx = ctx; | ||
| 899 | } | ||
| 900 | |||
| 901 | spin_lock(&ctx->lock); | ||
| 902 | ctx->is_active = 1; | ||
| 903 | update_context_time(ctx); | ||
| 904 | |||
| 905 | if (event->state >= PERF_EVENT_STATE_INACTIVE) | ||
| 906 | goto unlock; | ||
| 907 | __perf_event_mark_enabled(event, ctx); | ||
| 908 | |||
| 909 | /* | ||
| 910 | * If the event is in a group and isn't the group leader, | ||
| 911 | * then don't put it on unless the group is on. | ||
| 912 | */ | ||
| 913 | if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) | ||
| 914 | goto unlock; | ||
| 915 | |||
| 916 | if (!group_can_go_on(event, cpuctx, 1)) { | ||
| 917 | err = -EEXIST; | ||
| 918 | } else { | ||
| 919 | perf_disable(); | ||
| 920 | if (event == leader) | ||
| 921 | err = group_sched_in(event, cpuctx, ctx, | ||
| 922 | smp_processor_id()); | ||
| 923 | else | ||
| 924 | err = event_sched_in(event, cpuctx, ctx, | ||
| 925 | smp_processor_id()); | ||
| 926 | perf_enable(); | ||
| 927 | } | ||
| 928 | |||
| 929 | if (err) { | ||
| 930 | /* | ||
| 931 | * If this event can't go on and it's part of a | ||
| 932 | * group, then the whole group has to come off. | ||
| 933 | */ | ||
| 934 | if (leader != event) | ||
| 935 | group_sched_out(leader, cpuctx, ctx); | ||
| 936 | if (leader->attr.pinned) { | ||
| 937 | update_group_times(leader); | ||
| 938 | leader->state = PERF_EVENT_STATE_ERROR; | ||
| 939 | } | ||
| 940 | } | ||
| 941 | |||
| 942 | unlock: | ||
| 943 | spin_unlock(&ctx->lock); | ||
| 944 | } | ||
| 945 | |||
| 946 | /* | ||
| 947 | * Enable a event. | ||
| 948 | * | ||
| 949 | * If event->ctx is a cloned context, callers must make sure that | ||
| 950 | * every task struct that event->ctx->task could possibly point to | ||
| 951 | * remains valid. This condition is satisfied when called through | ||
| 952 | * perf_event_for_each_child or perf_event_for_each as described | ||
| 953 | * for perf_event_disable. | ||
| 954 | */ | ||
| 955 | static void perf_event_enable(struct perf_event *event) | ||
| 956 | { | ||
| 957 | struct perf_event_context *ctx = event->ctx; | ||
| 958 | struct task_struct *task = ctx->task; | ||
| 959 | |||
| 960 | if (!task) { | ||
| 961 | /* | ||
| 962 | * Enable the event on the cpu that it's on | ||
| 963 | */ | ||
| 964 | smp_call_function_single(event->cpu, __perf_event_enable, | ||
| 965 | event, 1); | ||
| 966 | return; | ||
| 967 | } | ||
| 968 | |||
| 969 | spin_lock_irq(&ctx->lock); | ||
| 970 | if (event->state >= PERF_EVENT_STATE_INACTIVE) | ||
| 971 | goto out; | ||
| 972 | |||
| 973 | /* | ||
| 974 | * If the event is in error state, clear that first. | ||
| 975 | * That way, if we see the event in error state below, we | ||
| 976 | * know that it has gone back into error state, as distinct | ||
| 977 | * from the task having been scheduled away before the | ||
| 978 | * cross-call arrived. | ||
| 979 | */ | ||
| 980 | if (event->state == PERF_EVENT_STATE_ERROR) | ||
| 981 | event->state = PERF_EVENT_STATE_OFF; | ||
| 982 | |||
| 983 | retry: | ||
| 984 | spin_unlock_irq(&ctx->lock); | ||
| 985 | task_oncpu_function_call(task, __perf_event_enable, event); | ||
| 986 | |||
| 987 | spin_lock_irq(&ctx->lock); | ||
| 988 | |||
| 989 | /* | ||
| 990 | * If the context is active and the event is still off, | ||
| 991 | * we need to retry the cross-call. | ||
| 992 | */ | ||
| 993 | if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) | ||
| 994 | goto retry; | ||
| 995 | |||
| 996 | /* | ||
| 997 | * Since we have the lock this context can't be scheduled | ||
| 998 | * in, so we can change the state safely. | ||
| 999 | */ | ||
| 1000 | if (event->state == PERF_EVENT_STATE_OFF) | ||
| 1001 | __perf_event_mark_enabled(event, ctx); | ||
| 1002 | |||
| 1003 | out: | ||
| 1004 | spin_unlock_irq(&ctx->lock); | ||
| 1005 | } | ||
| 1006 | |||
| 1007 | static int perf_event_refresh(struct perf_event *event, int refresh) | ||
| 1008 | { | ||
| 1009 | /* | ||
| 1010 | * not supported on inherited events | ||
| 1011 | */ | ||
| 1012 | if (event->attr.inherit) | ||
| 1013 | return -EINVAL; | ||
| 1014 | |||
| 1015 | atomic_add(refresh, &event->event_limit); | ||
| 1016 | perf_event_enable(event); | ||
| 1017 | |||
| 1018 | return 0; | ||
| 1019 | } | ||
| 1020 | |||
| 1021 | void __perf_event_sched_out(struct perf_event_context *ctx, | ||
| 1022 | struct perf_cpu_context *cpuctx) | ||
| 1023 | { | ||
| 1024 | struct perf_event *event; | ||
| 1025 | |||
| 1026 | spin_lock(&ctx->lock); | ||
| 1027 | ctx->is_active = 0; | ||
| 1028 | if (likely(!ctx->nr_events)) | ||
| 1029 | goto out; | ||
| 1030 | update_context_time(ctx); | ||
| 1031 | |||
| 1032 | perf_disable(); | ||
| 1033 | if (ctx->nr_active) { | ||
| 1034 | list_for_each_entry(event, &ctx->group_list, group_entry) { | ||
| 1035 | if (event != event->group_leader) | ||
| 1036 | event_sched_out(event, cpuctx, ctx); | ||
| 1037 | else | ||
| 1038 | group_sched_out(event, cpuctx, ctx); | ||
| 1039 | } | ||
| 1040 | } | ||
| 1041 | perf_enable(); | ||
| 1042 | out: | ||
| 1043 | spin_unlock(&ctx->lock); | ||
| 1044 | } | ||
| 1045 | |||
| 1046 | /* | ||
| 1047 | * Test whether two contexts are equivalent, i.e. whether they | ||
| 1048 | * have both been cloned from the same version of the same context | ||
| 1049 | * and they both have the same number of enabled events. | ||
| 1050 | * If the number of enabled events is the same, then the set | ||
| 1051 | * of enabled events should be the same, because these are both | ||
| 1052 | * inherited contexts, therefore we can't access individual events | ||
| 1053 | * in them directly with an fd; we can only enable/disable all | ||
| 1054 | * events via prctl, or enable/disable all events in a family | ||
| 1055 | * via ioctl, which will have the same effect on both contexts. | ||
| 1056 | */ | ||
| 1057 | static int context_equiv(struct perf_event_context *ctx1, | ||
| 1058 | struct perf_event_context *ctx2) | ||
| 1059 | { | ||
| 1060 | return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx | ||
| 1061 | && ctx1->parent_gen == ctx2->parent_gen | ||
| 1062 | && !ctx1->pin_count && !ctx2->pin_count; | ||
| 1063 | } | ||
| 1064 | |||
| 1065 | static void __perf_event_read(void *event); | ||
| 1066 | |||
| 1067 | static void __perf_event_sync_stat(struct perf_event *event, | ||
| 1068 | struct perf_event *next_event) | ||
| 1069 | { | ||
| 1070 | u64 value; | ||
| 1071 | |||
| 1072 | if (!event->attr.inherit_stat) | ||
| 1073 | return; | ||
| 1074 | |||
| 1075 | /* | ||
| 1076 | * Update the event value, we cannot use perf_event_read() | ||
| 1077 | * because we're in the middle of a context switch and have IRQs | ||
| 1078 | * disabled, which upsets smp_call_function_single(), however | ||
| 1079 | * we know the event must be on the current CPU, therefore we | ||
| 1080 | * don't need to use it. | ||
| 1081 | */ | ||
| 1082 | switch (event->state) { | ||
| 1083 | case PERF_EVENT_STATE_ACTIVE: | ||
| 1084 | __perf_event_read(event); | ||
| 1085 | break; | ||
| 1086 | |||
| 1087 | case PERF_EVENT_STATE_INACTIVE: | ||
| 1088 | update_event_times(event); | ||
| 1089 | break; | ||
| 1090 | |||
| 1091 | default: | ||
| 1092 | break; | ||
| 1093 | } | ||
| 1094 | |||
| 1095 | /* | ||
| 1096 | * In order to keep per-task stats reliable we need to flip the event | ||
| 1097 | * values when we flip the contexts. | ||
| 1098 | */ | ||
| 1099 | value = atomic64_read(&next_event->count); | ||
| 1100 | value = atomic64_xchg(&event->count, value); | ||
| 1101 | atomic64_set(&next_event->count, value); | ||
| 1102 | |||
| 1103 | swap(event->total_time_enabled, next_event->total_time_enabled); | ||
| 1104 | swap(event->total_time_running, next_event->total_time_running); | ||
| 1105 | |||
| 1106 | /* | ||
| 1107 | * Since we swizzled the values, update the user visible data too. | ||
| 1108 | */ | ||
| 1109 | perf_event_update_userpage(event); | ||
| 1110 | perf_event_update_userpage(next_event); | ||
| 1111 | } | ||
| 1112 | |||
| 1113 | #define list_next_entry(pos, member) \ | ||
| 1114 | list_entry(pos->member.next, typeof(*pos), member) | ||
| 1115 | |||
| 1116 | static void perf_event_sync_stat(struct perf_event_context *ctx, | ||
| 1117 | struct perf_event_context *next_ctx) | ||
| 1118 | { | ||
| 1119 | struct perf_event *event, *next_event; | ||
| 1120 | |||
| 1121 | if (!ctx->nr_stat) | ||
| 1122 | return; | ||
| 1123 | |||
| 1124 | event = list_first_entry(&ctx->event_list, | ||
| 1125 | struct perf_event, event_entry); | ||
| 1126 | |||
| 1127 | next_event = list_first_entry(&next_ctx->event_list, | ||
| 1128 | struct perf_event, event_entry); | ||
| 1129 | |||
| 1130 | while (&event->event_entry != &ctx->event_list && | ||
| 1131 | &next_event->event_entry != &next_ctx->event_list) { | ||
| 1132 | |||
| 1133 | __perf_event_sync_stat(event, next_event); | ||
| 1134 | |||
| 1135 | event = list_next_entry(event, event_entry); | ||
| 1136 | next_event = list_next_entry(next_event, event_entry); | ||
| 1137 | } | ||
| 1138 | } | ||
| 1139 | |||
| 1140 | /* | ||
| 1141 | * Called from scheduler to remove the events of the current task, | ||
| 1142 | * with interrupts disabled. | ||
| 1143 | * | ||
| 1144 | * We stop each event and update the event value in event->count. | ||
| 1145 | * | ||
| 1146 | * This does not protect us against NMI, but disable() | ||
| 1147 | * sets the disabled bit in the control field of event _before_ | ||
| 1148 | * accessing the event control register. If a NMI hits, then it will | ||
| 1149 | * not restart the event. | ||
| 1150 | */ | ||
| 1151 | void perf_event_task_sched_out(struct task_struct *task, | ||
| 1152 | struct task_struct *next, int cpu) | ||
| 1153 | { | ||
| 1154 | struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
| 1155 | struct perf_event_context *ctx = task->perf_event_ctxp; | ||
| 1156 | struct perf_event_context *next_ctx; | ||
| 1157 | struct perf_event_context *parent; | ||
| 1158 | struct pt_regs *regs; | ||
| 1159 | int do_switch = 1; | ||
| 1160 | |||
| 1161 | regs = task_pt_regs(task); | ||
| 1162 | perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0); | ||
| 1163 | |||
| 1164 | if (likely(!ctx || !cpuctx->task_ctx)) | ||
| 1165 | return; | ||
| 1166 | |||
| 1167 | update_context_time(ctx); | ||
| 1168 | |||
| 1169 | rcu_read_lock(); | ||
| 1170 | parent = rcu_dereference(ctx->parent_ctx); | ||
| 1171 | next_ctx = next->perf_event_ctxp; | ||
| 1172 | if (parent && next_ctx && | ||
| 1173 | rcu_dereference(next_ctx->parent_ctx) == parent) { | ||
| 1174 | /* | ||
| 1175 | * Looks like the two contexts are clones, so we might be | ||
| 1176 | * able to optimize the context switch. We lock both | ||
| 1177 | * contexts and check that they are clones under the | ||
| 1178 | * lock (including re-checking that neither has been | ||
| 1179 | * uncloned in the meantime). It doesn't matter which | ||
| 1180 | * order we take the locks because no other cpu could | ||
| 1181 | * be trying to lock both of these tasks. | ||
| 1182 | */ | ||
| 1183 | spin_lock(&ctx->lock); | ||
| 1184 | spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); | ||
| 1185 | if (context_equiv(ctx, next_ctx)) { | ||
| 1186 | /* | ||
| 1187 | * XXX do we need a memory barrier of sorts | ||
| 1188 | * wrt to rcu_dereference() of perf_event_ctxp | ||
| 1189 | */ | ||
| 1190 | task->perf_event_ctxp = next_ctx; | ||
| 1191 | next->perf_event_ctxp = ctx; | ||
| 1192 | ctx->task = next; | ||
| 1193 | next_ctx->task = task; | ||
| 1194 | do_switch = 0; | ||
| 1195 | |||
| 1196 | perf_event_sync_stat(ctx, next_ctx); | ||
| 1197 | } | ||
| 1198 | spin_unlock(&next_ctx->lock); | ||
| 1199 | spin_unlock(&ctx->lock); | ||
| 1200 | } | ||
| 1201 | rcu_read_unlock(); | ||
| 1202 | |||
| 1203 | if (do_switch) { | ||
| 1204 | __perf_event_sched_out(ctx, cpuctx); | ||
| 1205 | cpuctx->task_ctx = NULL; | ||
| 1206 | } | ||
| 1207 | } | ||
| 1208 | |||
| 1209 | /* | ||
| 1210 | * Called with IRQs disabled | ||
| 1211 | */ | ||
| 1212 | static void __perf_event_task_sched_out(struct perf_event_context *ctx) | ||
| 1213 | { | ||
| 1214 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
| 1215 | |||
| 1216 | if (!cpuctx->task_ctx) | ||
| 1217 | return; | ||
| 1218 | |||
| 1219 | if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) | ||
| 1220 | return; | ||
| 1221 | |||
| 1222 | __perf_event_sched_out(ctx, cpuctx); | ||
| 1223 | cpuctx->task_ctx = NULL; | ||
| 1224 | } | ||
| 1225 | |||
| 1226 | /* | ||
| 1227 | * Called with IRQs disabled | ||
| 1228 | */ | ||
| 1229 | static void perf_event_cpu_sched_out(struct perf_cpu_context *cpuctx) | ||
| 1230 | { | ||
| 1231 | __perf_event_sched_out(&cpuctx->ctx, cpuctx); | ||
| 1232 | } | ||
| 1233 | |||
| 1234 | static void | ||
| 1235 | __perf_event_sched_in(struct perf_event_context *ctx, | ||
| 1236 | struct perf_cpu_context *cpuctx, int cpu) | ||
| 1237 | { | ||
| 1238 | struct perf_event *event; | ||
| 1239 | int can_add_hw = 1; | ||
| 1240 | |||
| 1241 | spin_lock(&ctx->lock); | ||
| 1242 | ctx->is_active = 1; | ||
| 1243 | if (likely(!ctx->nr_events)) | ||
| 1244 | goto out; | ||
| 1245 | |||
| 1246 | ctx->timestamp = perf_clock(); | ||
| 1247 | |||
| 1248 | perf_disable(); | ||
| 1249 | |||
| 1250 | /* | ||
| 1251 | * First go through the list and put on any pinned groups | ||
| 1252 | * in order to give them the best chance of going on. | ||
| 1253 | */ | ||
| 1254 | list_for_each_entry(event, &ctx->group_list, group_entry) { | ||
| 1255 | if (event->state <= PERF_EVENT_STATE_OFF || | ||
| 1256 | !event->attr.pinned) | ||
| 1257 | continue; | ||
| 1258 | if (event->cpu != -1 && event->cpu != cpu) | ||
| 1259 | continue; | ||
| 1260 | |||
| 1261 | if (event != event->group_leader) | ||
| 1262 | event_sched_in(event, cpuctx, ctx, cpu); | ||
| 1263 | else { | ||
| 1264 | if (group_can_go_on(event, cpuctx, 1)) | ||
| 1265 | group_sched_in(event, cpuctx, ctx, cpu); | ||
| 1266 | } | ||
| 1267 | |||
| 1268 | /* | ||
| 1269 | * If this pinned group hasn't been scheduled, | ||
| 1270 | * put it in error state. | ||
| 1271 | */ | ||
| 1272 | if (event->state == PERF_EVENT_STATE_INACTIVE) { | ||
| 1273 | update_group_times(event); | ||
| 1274 | event->state = PERF_EVENT_STATE_ERROR; | ||
| 1275 | } | ||
| 1276 | } | ||
| 1277 | |||
| 1278 | list_for_each_entry(event, &ctx->group_list, group_entry) { | ||
| 1279 | /* | ||
| 1280 | * Ignore events in OFF or ERROR state, and | ||
| 1281 | * ignore pinned events since we did them already. | ||
| 1282 | */ | ||
| 1283 | if (event->state <= PERF_EVENT_STATE_OFF || | ||
| 1284 | event->attr.pinned) | ||
| 1285 | continue; | ||
| 1286 | |||
| 1287 | /* | ||
| 1288 | * Listen to the 'cpu' scheduling filter constraint | ||
| 1289 | * of events: | ||
| 1290 | */ | ||
| 1291 | if (event->cpu != -1 && event->cpu != cpu) | ||
| 1292 | continue; | ||
| 1293 | |||
| 1294 | if (event != event->group_leader) { | ||
| 1295 | if (event_sched_in(event, cpuctx, ctx, cpu)) | ||
| 1296 | can_add_hw = 0; | ||
| 1297 | } else { | ||
| 1298 | if (group_can_go_on(event, cpuctx, can_add_hw)) { | ||
| 1299 | if (group_sched_in(event, cpuctx, ctx, cpu)) | ||
| 1300 | can_add_hw = 0; | ||
| 1301 | } | ||
| 1302 | } | ||
| 1303 | } | ||
| 1304 | perf_enable(); | ||
| 1305 | out: | ||
| 1306 | spin_unlock(&ctx->lock); | ||
| 1307 | } | ||
| 1308 | |||
| 1309 | /* | ||
| 1310 | * Called from scheduler to add the events of the current task | ||
| 1311 | * with interrupts disabled. | ||
| 1312 | * | ||
| 1313 | * We restore the event value and then enable it. | ||
| 1314 | * | ||
| 1315 | * This does not protect us against NMI, but enable() | ||
| 1316 | * sets the enabled bit in the control field of event _before_ | ||
| 1317 | * accessing the event control register. If a NMI hits, then it will | ||
| 1318 | * keep the event running. | ||
| 1319 | */ | ||
| 1320 | void perf_event_task_sched_in(struct task_struct *task, int cpu) | ||
| 1321 | { | ||
| 1322 | struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
| 1323 | struct perf_event_context *ctx = task->perf_event_ctxp; | ||
| 1324 | |||
| 1325 | if (likely(!ctx)) | ||
| 1326 | return; | ||
| 1327 | if (cpuctx->task_ctx == ctx) | ||
| 1328 | return; | ||
| 1329 | __perf_event_sched_in(ctx, cpuctx, cpu); | ||
| 1330 | cpuctx->task_ctx = ctx; | ||
| 1331 | } | ||
| 1332 | |||
| 1333 | static void perf_event_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu) | ||
| 1334 | { | ||
| 1335 | struct perf_event_context *ctx = &cpuctx->ctx; | ||
| 1336 | |||
| 1337 | __perf_event_sched_in(ctx, cpuctx, cpu); | ||
| 1338 | } | ||
| 1339 | |||
| 1340 | #define MAX_INTERRUPTS (~0ULL) | ||
| 1341 | |||
| 1342 | static void perf_log_throttle(struct perf_event *event, int enable); | ||
| 1343 | |||
| 1344 | static void perf_adjust_period(struct perf_event *event, u64 events) | ||
| 1345 | { | ||
| 1346 | struct hw_perf_event *hwc = &event->hw; | ||
| 1347 | u64 period, sample_period; | ||
| 1348 | s64 delta; | ||
| 1349 | |||
| 1350 | events *= hwc->sample_period; | ||
| 1351 | period = div64_u64(events, event->attr.sample_freq); | ||
| 1352 | |||
| 1353 | delta = (s64)(period - hwc->sample_period); | ||
| 1354 | delta = (delta + 7) / 8; /* low pass filter */ | ||
| 1355 | |||
| 1356 | sample_period = hwc->sample_period + delta; | ||
| 1357 | |||
| 1358 | if (!sample_period) | ||
| 1359 | sample_period = 1; | ||
| 1360 | |||
| 1361 | hwc->sample_period = sample_period; | ||
| 1362 | } | ||
| 1363 | |||
| 1364 | static void perf_ctx_adjust_freq(struct perf_event_context *ctx) | ||
| 1365 | { | ||
| 1366 | struct perf_event *event; | ||
| 1367 | struct hw_perf_event *hwc; | ||
| 1368 | u64 interrupts, freq; | ||
| 1369 | |||
| 1370 | spin_lock(&ctx->lock); | ||
| 1371 | list_for_each_entry(event, &ctx->group_list, group_entry) { | ||
| 1372 | if (event->state != PERF_EVENT_STATE_ACTIVE) | ||
| 1373 | continue; | ||
| 1374 | |||
| 1375 | hwc = &event->hw; | ||
| 1376 | |||
| 1377 | interrupts = hwc->interrupts; | ||
| 1378 | hwc->interrupts = 0; | ||
| 1379 | |||
| 1380 | /* | ||
| 1381 | * unthrottle events on the tick | ||
| 1382 | */ | ||
| 1383 | if (interrupts == MAX_INTERRUPTS) { | ||
| 1384 | perf_log_throttle(event, 1); | ||
| 1385 | event->pmu->unthrottle(event); | ||
| 1386 | interrupts = 2*sysctl_perf_event_sample_rate/HZ; | ||
| 1387 | } | ||
| 1388 | |||
| 1389 | if (!event->attr.freq || !event->attr.sample_freq) | ||
| 1390 | continue; | ||
| 1391 | |||
| 1392 | /* | ||
| 1393 | * if the specified freq < HZ then we need to skip ticks | ||
| 1394 | */ | ||
| 1395 | if (event->attr.sample_freq < HZ) { | ||
| 1396 | freq = event->attr.sample_freq; | ||
| 1397 | |||
| 1398 | hwc->freq_count += freq; | ||
| 1399 | hwc->freq_interrupts += interrupts; | ||
| 1400 | |||
| 1401 | if (hwc->freq_count < HZ) | ||
| 1402 | continue; | ||
| 1403 | |||
| 1404 | interrupts = hwc->freq_interrupts; | ||
| 1405 | hwc->freq_interrupts = 0; | ||
| 1406 | hwc->freq_count -= HZ; | ||
| 1407 | } else | ||
| 1408 | freq = HZ; | ||
| 1409 | |||
| 1410 | perf_adjust_period(event, freq * interrupts); | ||
| 1411 | |||
| 1412 | /* | ||
| 1413 | * In order to avoid being stalled by an (accidental) huge | ||
| 1414 | * sample period, force reset the sample period if we didn't | ||
| 1415 | * get any events in this freq period. | ||
| 1416 | */ | ||
| 1417 | if (!interrupts) { | ||
| 1418 | perf_disable(); | ||
| 1419 | event->pmu->disable(event); | ||
| 1420 | atomic64_set(&hwc->period_left, 0); | ||
| 1421 | event->pmu->enable(event); | ||
| 1422 | perf_enable(); | ||
| 1423 | } | ||
| 1424 | } | ||
| 1425 | spin_unlock(&ctx->lock); | ||
| 1426 | } | ||
| 1427 | |||
| 1428 | /* | ||
| 1429 | * Round-robin a context's events: | ||
| 1430 | */ | ||
| 1431 | static void rotate_ctx(struct perf_event_context *ctx) | ||
| 1432 | { | ||
| 1433 | struct perf_event *event; | ||
| 1434 | |||
| 1435 | if (!ctx->nr_events) | ||
| 1436 | return; | ||
| 1437 | |||
| 1438 | spin_lock(&ctx->lock); | ||
| 1439 | /* | ||
| 1440 | * Rotate the first entry last (works just fine for group events too): | ||
| 1441 | */ | ||
| 1442 | perf_disable(); | ||
| 1443 | list_for_each_entry(event, &ctx->group_list, group_entry) { | ||
| 1444 | list_move_tail(&event->group_entry, &ctx->group_list); | ||
| 1445 | break; | ||
| 1446 | } | ||
| 1447 | perf_enable(); | ||
| 1448 | |||
| 1449 | spin_unlock(&ctx->lock); | ||
| 1450 | } | ||
| 1451 | |||
| 1452 | void perf_event_task_tick(struct task_struct *curr, int cpu) | ||
| 1453 | { | ||
| 1454 | struct perf_cpu_context *cpuctx; | ||
| 1455 | struct perf_event_context *ctx; | ||
| 1456 | |||
| 1457 | if (!atomic_read(&nr_events)) | ||
| 1458 | return; | ||
| 1459 | |||
| 1460 | cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
| 1461 | ctx = curr->perf_event_ctxp; | ||
| 1462 | |||
| 1463 | perf_ctx_adjust_freq(&cpuctx->ctx); | ||
| 1464 | if (ctx) | ||
| 1465 | perf_ctx_adjust_freq(ctx); | ||
| 1466 | |||
| 1467 | perf_event_cpu_sched_out(cpuctx); | ||
| 1468 | if (ctx) | ||
| 1469 | __perf_event_task_sched_out(ctx); | ||
| 1470 | |||
| 1471 | rotate_ctx(&cpuctx->ctx); | ||
| 1472 | if (ctx) | ||
| 1473 | rotate_ctx(ctx); | ||
| 1474 | |||
| 1475 | perf_event_cpu_sched_in(cpuctx, cpu); | ||
| 1476 | if (ctx) | ||
| 1477 | perf_event_task_sched_in(curr, cpu); | ||
| 1478 | } | ||
| 1479 | |||
| 1480 | /* | ||
| 1481 | * Enable all of a task's events that have been marked enable-on-exec. | ||
| 1482 | * This expects task == current. | ||
| 1483 | */ | ||
| 1484 | static void perf_event_enable_on_exec(struct task_struct *task) | ||
| 1485 | { | ||
| 1486 | struct perf_event_context *ctx; | ||
| 1487 | struct perf_event *event; | ||
| 1488 | unsigned long flags; | ||
| 1489 | int enabled = 0; | ||
| 1490 | |||
| 1491 | local_irq_save(flags); | ||
| 1492 | ctx = task->perf_event_ctxp; | ||
| 1493 | if (!ctx || !ctx->nr_events) | ||
| 1494 | goto out; | ||
| 1495 | |||
| 1496 | __perf_event_task_sched_out(ctx); | ||
| 1497 | |||
| 1498 | spin_lock(&ctx->lock); | ||
| 1499 | |||
| 1500 | list_for_each_entry(event, &ctx->group_list, group_entry) { | ||
| 1501 | if (!event->attr.enable_on_exec) | ||
| 1502 | continue; | ||
| 1503 | event->attr.enable_on_exec = 0; | ||
| 1504 | if (event->state >= PERF_EVENT_STATE_INACTIVE) | ||
| 1505 | continue; | ||
| 1506 | __perf_event_mark_enabled(event, ctx); | ||
| 1507 | enabled = 1; | ||
| 1508 | } | ||
| 1509 | |||
| 1510 | /* | ||
| 1511 | * Unclone this context if we enabled any event. | ||
| 1512 | */ | ||
| 1513 | if (enabled) | ||
| 1514 | unclone_ctx(ctx); | ||
| 1515 | |||
| 1516 | spin_unlock(&ctx->lock); | ||
| 1517 | |||
| 1518 | perf_event_task_sched_in(task, smp_processor_id()); | ||
| 1519 | out: | ||
| 1520 | local_irq_restore(flags); | ||
| 1521 | } | ||
| 1522 | |||
| 1523 | /* | ||
| 1524 | * Cross CPU call to read the hardware event | ||
| 1525 | */ | ||
| 1526 | static void __perf_event_read(void *info) | ||
| 1527 | { | ||
| 1528 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
| 1529 | struct perf_event *event = info; | ||
| 1530 | struct perf_event_context *ctx = event->ctx; | ||
| 1531 | unsigned long flags; | ||
| 1532 | |||
| 1533 | /* | ||
| 1534 | * If this is a task context, we need to check whether it is | ||
| 1535 | * the current task context of this cpu. If not it has been | ||
| 1536 | * scheduled out before the smp call arrived. In that case | ||
| 1537 | * event->count would have been updated to a recent sample | ||
| 1538 | * when the event was scheduled out. | ||
| 1539 | */ | ||
| 1540 | if (ctx->task && cpuctx->task_ctx != ctx) | ||
| 1541 | return; | ||
| 1542 | |||
| 1543 | local_irq_save(flags); | ||
| 1544 | if (ctx->is_active) | ||
| 1545 | update_context_time(ctx); | ||
| 1546 | event->pmu->read(event); | ||
| 1547 | update_event_times(event); | ||
| 1548 | local_irq_restore(flags); | ||
| 1549 | } | ||
| 1550 | |||
| 1551 | static u64 perf_event_read(struct perf_event *event) | ||
| 1552 | { | ||
| 1553 | /* | ||
| 1554 | * If event is enabled and currently active on a CPU, update the | ||
| 1555 | * value in the event structure: | ||
| 1556 | */ | ||
| 1557 | if (event->state == PERF_EVENT_STATE_ACTIVE) { | ||
| 1558 | smp_call_function_single(event->oncpu, | ||
| 1559 | __perf_event_read, event, 1); | ||
| 1560 | } else if (event->state == PERF_EVENT_STATE_INACTIVE) { | ||
| 1561 | update_event_times(event); | ||
| 1562 | } | ||
| 1563 | |||
| 1564 | return atomic64_read(&event->count); | ||
| 1565 | } | ||
| 1566 | |||
| 1567 | /* | ||
| 1568 | * Initialize the perf_event context in a task_struct: | ||
| 1569 | */ | ||
| 1570 | static void | ||
| 1571 | __perf_event_init_context(struct perf_event_context *ctx, | ||
| 1572 | struct task_struct *task) | ||
| 1573 | { | ||
| 1574 | memset(ctx, 0, sizeof(*ctx)); | ||
| 1575 | spin_lock_init(&ctx->lock); | ||
| 1576 | mutex_init(&ctx->mutex); | ||
| 1577 | INIT_LIST_HEAD(&ctx->group_list); | ||
| 1578 | INIT_LIST_HEAD(&ctx->event_list); | ||
| 1579 | atomic_set(&ctx->refcount, 1); | ||
| 1580 | ctx->task = task; | ||
| 1581 | } | ||
| 1582 | |||
| 1583 | static struct perf_event_context *find_get_context(pid_t pid, int cpu) | ||
| 1584 | { | ||
| 1585 | struct perf_event_context *ctx; | ||
| 1586 | struct perf_cpu_context *cpuctx; | ||
| 1587 | struct task_struct *task; | ||
| 1588 | unsigned long flags; | ||
| 1589 | int err; | ||
| 1590 | |||
| 1591 | /* | ||
| 1592 | * If cpu is not a wildcard then this is a percpu event: | ||
| 1593 | */ | ||
| 1594 | if (cpu != -1) { | ||
| 1595 | /* Must be root to operate on a CPU event: */ | ||
| 1596 | if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) | ||
| 1597 | return ERR_PTR(-EACCES); | ||
| 1598 | |||
| 1599 | if (cpu < 0 || cpu > num_possible_cpus()) | ||
| 1600 | return ERR_PTR(-EINVAL); | ||
| 1601 | |||
| 1602 | /* | ||
| 1603 | * We could be clever and allow to attach a event to an | ||
| 1604 | * offline CPU and activate it when the CPU comes up, but | ||
| 1605 | * that's for later. | ||
| 1606 | */ | ||
| 1607 | if (!cpu_isset(cpu, cpu_online_map)) | ||
| 1608 | return ERR_PTR(-ENODEV); | ||
| 1609 | |||
| 1610 | cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
| 1611 | ctx = &cpuctx->ctx; | ||
| 1612 | get_ctx(ctx); | ||
| 1613 | |||
| 1614 | return ctx; | ||
| 1615 | } | ||
| 1616 | |||
| 1617 | rcu_read_lock(); | ||
| 1618 | if (!pid) | ||
| 1619 | task = current; | ||
| 1620 | else | ||
| 1621 | task = find_task_by_vpid(pid); | ||
| 1622 | if (task) | ||
| 1623 | get_task_struct(task); | ||
| 1624 | rcu_read_unlock(); | ||
| 1625 | |||
| 1626 | if (!task) | ||
| 1627 | return ERR_PTR(-ESRCH); | ||
| 1628 | |||
| 1629 | /* | ||
| 1630 | * Can't attach events to a dying task. | ||
| 1631 | */ | ||
| 1632 | err = -ESRCH; | ||
| 1633 | if (task->flags & PF_EXITING) | ||
| 1634 | goto errout; | ||
| 1635 | |||
| 1636 | /* Reuse ptrace permission checks for now. */ | ||
| 1637 | err = -EACCES; | ||
| 1638 | if (!ptrace_may_access(task, PTRACE_MODE_READ)) | ||
| 1639 | goto errout; | ||
| 1640 | |||
| 1641 | retry: | ||
| 1642 | ctx = perf_lock_task_context(task, &flags); | ||
| 1643 | if (ctx) { | ||
| 1644 | unclone_ctx(ctx); | ||
| 1645 | spin_unlock_irqrestore(&ctx->lock, flags); | ||
| 1646 | } | ||
| 1647 | |||
| 1648 | if (!ctx) { | ||
| 1649 | ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL); | ||
| 1650 | err = -ENOMEM; | ||
| 1651 | if (!ctx) | ||
| 1652 | goto errout; | ||
| 1653 | __perf_event_init_context(ctx, task); | ||
| 1654 | get_ctx(ctx); | ||
| 1655 | if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) { | ||
| 1656 | /* | ||
| 1657 | * We raced with some other task; use | ||
| 1658 | * the context they set. | ||
| 1659 | */ | ||
| 1660 | kfree(ctx); | ||
| 1661 | goto retry; | ||
| 1662 | } | ||
| 1663 | get_task_struct(task); | ||
| 1664 | } | ||
| 1665 | |||
| 1666 | put_task_struct(task); | ||
| 1667 | return ctx; | ||
| 1668 | |||
| 1669 | errout: | ||
| 1670 | put_task_struct(task); | ||
| 1671 | return ERR_PTR(err); | ||
| 1672 | } | ||
| 1673 | |||
| 1674 | static void free_event_rcu(struct rcu_head *head) | ||
| 1675 | { | ||
| 1676 | struct perf_event *event; | ||
| 1677 | |||
| 1678 | event = container_of(head, struct perf_event, rcu_head); | ||
| 1679 | if (event->ns) | ||
| 1680 | put_pid_ns(event->ns); | ||
| 1681 | kfree(event); | ||
| 1682 | } | ||
| 1683 | |||
| 1684 | static void perf_pending_sync(struct perf_event *event); | ||
| 1685 | |||
| 1686 | static void free_event(struct perf_event *event) | ||
| 1687 | { | ||
| 1688 | perf_pending_sync(event); | ||
| 1689 | |||
| 1690 | if (!event->parent) { | ||
| 1691 | atomic_dec(&nr_events); | ||
| 1692 | if (event->attr.mmap) | ||
| 1693 | atomic_dec(&nr_mmap_events); | ||
| 1694 | if (event->attr.comm) | ||
| 1695 | atomic_dec(&nr_comm_events); | ||
| 1696 | if (event->attr.task) | ||
| 1697 | atomic_dec(&nr_task_events); | ||
| 1698 | } | ||
| 1699 | |||
| 1700 | if (event->output) { | ||
| 1701 | fput(event->output->filp); | ||
| 1702 | event->output = NULL; | ||
| 1703 | } | ||
| 1704 | |||
| 1705 | if (event->destroy) | ||
| 1706 | event->destroy(event); | ||
| 1707 | |||
| 1708 | put_ctx(event->ctx); | ||
| 1709 | call_rcu(&event->rcu_head, free_event_rcu); | ||
| 1710 | } | ||
| 1711 | |||
| 1712 | /* | ||
| 1713 | * Called when the last reference to the file is gone. | ||
| 1714 | */ | ||
| 1715 | static int perf_release(struct inode *inode, struct file *file) | ||
| 1716 | { | ||
| 1717 | struct perf_event *event = file->private_data; | ||
| 1718 | struct perf_event_context *ctx = event->ctx; | ||
| 1719 | |||
| 1720 | file->private_data = NULL; | ||
| 1721 | |||
| 1722 | WARN_ON_ONCE(ctx->parent_ctx); | ||
| 1723 | mutex_lock(&ctx->mutex); | ||
| 1724 | perf_event_remove_from_context(event); | ||
| 1725 | mutex_unlock(&ctx->mutex); | ||
| 1726 | |||
| 1727 | mutex_lock(&event->owner->perf_event_mutex); | ||
| 1728 | list_del_init(&event->owner_entry); | ||
| 1729 | mutex_unlock(&event->owner->perf_event_mutex); | ||
| 1730 | put_task_struct(event->owner); | ||
| 1731 | |||
| 1732 | free_event(event); | ||
| 1733 | |||
| 1734 | return 0; | ||
| 1735 | } | ||
| 1736 | |||
| 1737 | static int perf_event_read_size(struct perf_event *event) | ||
| 1738 | { | ||
| 1739 | int entry = sizeof(u64); /* value */ | ||
| 1740 | int size = 0; | ||
| 1741 | int nr = 1; | ||
| 1742 | |||
| 1743 | if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) | ||
| 1744 | size += sizeof(u64); | ||
| 1745 | |||
| 1746 | if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) | ||
| 1747 | size += sizeof(u64); | ||
| 1748 | |||
| 1749 | if (event->attr.read_format & PERF_FORMAT_ID) | ||
| 1750 | entry += sizeof(u64); | ||
| 1751 | |||
| 1752 | if (event->attr.read_format & PERF_FORMAT_GROUP) { | ||
| 1753 | nr += event->group_leader->nr_siblings; | ||
| 1754 | size += sizeof(u64); | ||
| 1755 | } | ||
| 1756 | |||
| 1757 | size += entry * nr; | ||
| 1758 | |||
| 1759 | return size; | ||
| 1760 | } | ||
| 1761 | |||
| 1762 | static u64 perf_event_read_value(struct perf_event *event) | ||
| 1763 | { | ||
| 1764 | struct perf_event *child; | ||
| 1765 | u64 total = 0; | ||
| 1766 | |||
| 1767 | total += perf_event_read(event); | ||
| 1768 | list_for_each_entry(child, &event->child_list, child_list) | ||
| 1769 | total += perf_event_read(child); | ||
| 1770 | |||
| 1771 | return total; | ||
| 1772 | } | ||
| 1773 | |||
| 1774 | static int perf_event_read_entry(struct perf_event *event, | ||
| 1775 | u64 read_format, char __user *buf) | ||
| 1776 | { | ||
| 1777 | int n = 0, count = 0; | ||
| 1778 | u64 values[2]; | ||
| 1779 | |||
| 1780 | values[n++] = perf_event_read_value(event); | ||
| 1781 | if (read_format & PERF_FORMAT_ID) | ||
| 1782 | values[n++] = primary_event_id(event); | ||
| 1783 | |||
| 1784 | count = n * sizeof(u64); | ||
| 1785 | |||
| 1786 | if (copy_to_user(buf, values, count)) | ||
| 1787 | return -EFAULT; | ||
| 1788 | |||
| 1789 | return count; | ||
| 1790 | } | ||
| 1791 | |||
| 1792 | static int perf_event_read_group(struct perf_event *event, | ||
| 1793 | u64 read_format, char __user *buf) | ||
| 1794 | { | ||
| 1795 | struct perf_event *leader = event->group_leader, *sub; | ||
| 1796 | int n = 0, size = 0, err = -EFAULT; | ||
| 1797 | u64 values[3]; | ||
| 1798 | |||
| 1799 | values[n++] = 1 + leader->nr_siblings; | ||
| 1800 | if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { | ||
| 1801 | values[n++] = leader->total_time_enabled + | ||
| 1802 | atomic64_read(&leader->child_total_time_enabled); | ||
| 1803 | } | ||
| 1804 | if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { | ||
| 1805 | values[n++] = leader->total_time_running + | ||
| 1806 | atomic64_read(&leader->child_total_time_running); | ||
| 1807 | } | ||
| 1808 | |||
| 1809 | size = n * sizeof(u64); | ||
| 1810 | |||
| 1811 | if (copy_to_user(buf, values, size)) | ||
| 1812 | return -EFAULT; | ||
| 1813 | |||
| 1814 | err = perf_event_read_entry(leader, read_format, buf + size); | ||
| 1815 | if (err < 0) | ||
| 1816 | return err; | ||
| 1817 | |||
| 1818 | size += err; | ||
| 1819 | |||
| 1820 | list_for_each_entry(sub, &leader->sibling_list, group_entry) { | ||
| 1821 | err = perf_event_read_entry(sub, read_format, | ||
| 1822 | buf + size); | ||
| 1823 | if (err < 0) | ||
| 1824 | return err; | ||
| 1825 | |||
| 1826 | size += err; | ||
| 1827 | } | ||
| 1828 | |||
| 1829 | return size; | ||
| 1830 | } | ||
| 1831 | |||
| 1832 | static int perf_event_read_one(struct perf_event *event, | ||
| 1833 | u64 read_format, char __user *buf) | ||
| 1834 | { | ||
| 1835 | u64 values[4]; | ||
| 1836 | int n = 0; | ||
| 1837 | |||
| 1838 | values[n++] = perf_event_read_value(event); | ||
| 1839 | if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { | ||
| 1840 | values[n++] = event->total_time_enabled + | ||
| 1841 | atomic64_read(&event->child_total_time_enabled); | ||
| 1842 | } | ||
| 1843 | if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { | ||
| 1844 | values[n++] = event->total_time_running + | ||
| 1845 | atomic64_read(&event->child_total_time_running); | ||
| 1846 | } | ||
| 1847 | if (read_format & PERF_FORMAT_ID) | ||
| 1848 | values[n++] = primary_event_id(event); | ||
| 1849 | |||
| 1850 | if (copy_to_user(buf, values, n * sizeof(u64))) | ||
| 1851 | return -EFAULT; | ||
| 1852 | |||
| 1853 | return n * sizeof(u64); | ||
| 1854 | } | ||
| 1855 | |||
| 1856 | /* | ||
| 1857 | * Read the performance event - simple non blocking version for now | ||
| 1858 | */ | ||
| 1859 | static ssize_t | ||
| 1860 | perf_read_hw(struct perf_event *event, char __user *buf, size_t count) | ||
| 1861 | { | ||
| 1862 | u64 read_format = event->attr.read_format; | ||
| 1863 | int ret; | ||
| 1864 | |||
| 1865 | /* | ||
| 1866 | * Return end-of-file for a read on a event that is in | ||
| 1867 | * error state (i.e. because it was pinned but it couldn't be | ||
| 1868 | * scheduled on to the CPU at some point). | ||
| 1869 | */ | ||
| 1870 | if (event->state == PERF_EVENT_STATE_ERROR) | ||
| 1871 | return 0; | ||
| 1872 | |||
| 1873 | if (count < perf_event_read_size(event)) | ||
| 1874 | return -ENOSPC; | ||
| 1875 | |||
| 1876 | WARN_ON_ONCE(event->ctx->parent_ctx); | ||
| 1877 | mutex_lock(&event->child_mutex); | ||
| 1878 | if (read_format & PERF_FORMAT_GROUP) | ||
| 1879 | ret = perf_event_read_group(event, read_format, buf); | ||
| 1880 | else | ||
| 1881 | ret = perf_event_read_one(event, read_format, buf); | ||
| 1882 | mutex_unlock(&event->child_mutex); | ||
| 1883 | |||
| 1884 | return ret; | ||
| 1885 | } | ||
| 1886 | |||
| 1887 | static ssize_t | ||
| 1888 | perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) | ||
| 1889 | { | ||
| 1890 | struct perf_event *event = file->private_data; | ||
| 1891 | |||
| 1892 | return perf_read_hw(event, buf, count); | ||
| 1893 | } | ||
| 1894 | |||
| 1895 | static unsigned int perf_poll(struct file *file, poll_table *wait) | ||
| 1896 | { | ||
| 1897 | struct perf_event *event = file->private_data; | ||
| 1898 | struct perf_mmap_data *data; | ||
| 1899 | unsigned int events = POLL_HUP; | ||
| 1900 | |||
| 1901 | rcu_read_lock(); | ||
| 1902 | data = rcu_dereference(event->data); | ||
| 1903 | if (data) | ||
| 1904 | events = atomic_xchg(&data->poll, 0); | ||
| 1905 | rcu_read_unlock(); | ||
| 1906 | |||
| 1907 | poll_wait(file, &event->waitq, wait); | ||
| 1908 | |||
| 1909 | return events; | ||
| 1910 | } | ||
| 1911 | |||
| 1912 | static void perf_event_reset(struct perf_event *event) | ||
| 1913 | { | ||
| 1914 | (void)perf_event_read(event); | ||
| 1915 | atomic64_set(&event->count, 0); | ||
| 1916 | perf_event_update_userpage(event); | ||
| 1917 | } | ||
| 1918 | |||
| 1919 | /* | ||
| 1920 | * Holding the top-level event's child_mutex means that any | ||
| 1921 | * descendant process that has inherited this event will block | ||
| 1922 | * in sync_child_event if it goes to exit, thus satisfying the | ||
| 1923 | * task existence requirements of perf_event_enable/disable. | ||
| 1924 | */ | ||
| 1925 | static void perf_event_for_each_child(struct perf_event *event, | ||
| 1926 | void (*func)(struct perf_event *)) | ||
| 1927 | { | ||
| 1928 | struct perf_event *child; | ||
| 1929 | |||
| 1930 | WARN_ON_ONCE(event->ctx->parent_ctx); | ||
| 1931 | mutex_lock(&event->child_mutex); | ||
| 1932 | func(event); | ||
| 1933 | list_for_each_entry(child, &event->child_list, child_list) | ||
| 1934 | func(child); | ||
| 1935 | mutex_unlock(&event->child_mutex); | ||
| 1936 | } | ||
| 1937 | |||
| 1938 | static void perf_event_for_each(struct perf_event *event, | ||
| 1939 | void (*func)(struct perf_event *)) | ||
| 1940 | { | ||
| 1941 | struct perf_event_context *ctx = event->ctx; | ||
| 1942 | struct perf_event *sibling; | ||
| 1943 | |||
| 1944 | WARN_ON_ONCE(ctx->parent_ctx); | ||
| 1945 | mutex_lock(&ctx->mutex); | ||
| 1946 | event = event->group_leader; | ||
| 1947 | |||
| 1948 | perf_event_for_each_child(event, func); | ||
| 1949 | func(event); | ||
| 1950 | list_for_each_entry(sibling, &event->sibling_list, group_entry) | ||
| 1951 | perf_event_for_each_child(event, func); | ||
| 1952 | mutex_unlock(&ctx->mutex); | ||
| 1953 | } | ||
| 1954 | |||
| 1955 | static int perf_event_period(struct perf_event *event, u64 __user *arg) | ||
| 1956 | { | ||
| 1957 | struct perf_event_context *ctx = event->ctx; | ||
| 1958 | unsigned long size; | ||
| 1959 | int ret = 0; | ||
| 1960 | u64 value; | ||
| 1961 | |||
| 1962 | if (!event->attr.sample_period) | ||
| 1963 | return -EINVAL; | ||
| 1964 | |||
| 1965 | size = copy_from_user(&value, arg, sizeof(value)); | ||
| 1966 | if (size != sizeof(value)) | ||
| 1967 | return -EFAULT; | ||
| 1968 | |||
| 1969 | if (!value) | ||
| 1970 | return -EINVAL; | ||
| 1971 | |||
| 1972 | spin_lock_irq(&ctx->lock); | ||
| 1973 | if (event->attr.freq) { | ||
| 1974 | if (value > sysctl_perf_event_sample_rate) { | ||
| 1975 | ret = -EINVAL; | ||
| 1976 | goto unlock; | ||
| 1977 | } | ||
| 1978 | |||
| 1979 | event->attr.sample_freq = value; | ||
| 1980 | } else { | ||
| 1981 | event->attr.sample_period = value; | ||
| 1982 | event->hw.sample_period = value; | ||
| 1983 | } | ||
| 1984 | unlock: | ||
| 1985 | spin_unlock_irq(&ctx->lock); | ||
| 1986 | |||
| 1987 | return ret; | ||
| 1988 | } | ||
| 1989 | |||
| 1990 | int perf_event_set_output(struct perf_event *event, int output_fd); | ||
| 1991 | |||
| 1992 | static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) | ||
| 1993 | { | ||
| 1994 | struct perf_event *event = file->private_data; | ||
| 1995 | void (*func)(struct perf_event *); | ||
| 1996 | u32 flags = arg; | ||
| 1997 | |||
| 1998 | switch (cmd) { | ||
| 1999 | case PERF_EVENT_IOC_ENABLE: | ||
| 2000 | func = perf_event_enable; | ||
| 2001 | break; | ||
| 2002 | case PERF_EVENT_IOC_DISABLE: | ||
| 2003 | func = perf_event_disable; | ||
| 2004 | break; | ||
| 2005 | case PERF_EVENT_IOC_RESET: | ||
| 2006 | func = perf_event_reset; | ||
| 2007 | break; | ||
| 2008 | |||
| 2009 | case PERF_EVENT_IOC_REFRESH: | ||
| 2010 | return perf_event_refresh(event, arg); | ||
| 2011 | |||
| 2012 | case PERF_EVENT_IOC_PERIOD: | ||
| 2013 | return perf_event_period(event, (u64 __user *)arg); | ||
| 2014 | |||
| 2015 | case PERF_EVENT_IOC_SET_OUTPUT: | ||
| 2016 | return perf_event_set_output(event, arg); | ||
| 2017 | |||
| 2018 | default: | ||
| 2019 | return -ENOTTY; | ||
| 2020 | } | ||
| 2021 | |||
| 2022 | if (flags & PERF_IOC_FLAG_GROUP) | ||
| 2023 | perf_event_for_each(event, func); | ||
| 2024 | else | ||
| 2025 | perf_event_for_each_child(event, func); | ||
| 2026 | |||
| 2027 | return 0; | ||
| 2028 | } | ||
| 2029 | |||
| 2030 | int perf_event_task_enable(void) | ||
| 2031 | { | ||
| 2032 | struct perf_event *event; | ||
| 2033 | |||
| 2034 | mutex_lock(¤t->perf_event_mutex); | ||
| 2035 | list_for_each_entry(event, ¤t->perf_event_list, owner_entry) | ||
| 2036 | perf_event_for_each_child(event, perf_event_enable); | ||
| 2037 | mutex_unlock(¤t->perf_event_mutex); | ||
| 2038 | |||
| 2039 | return 0; | ||
| 2040 | } | ||
| 2041 | |||
| 2042 | int perf_event_task_disable(void) | ||
| 2043 | { | ||
| 2044 | struct perf_event *event; | ||
| 2045 | |||
| 2046 | mutex_lock(¤t->perf_event_mutex); | ||
| 2047 | list_for_each_entry(event, ¤t->perf_event_list, owner_entry) | ||
| 2048 | perf_event_for_each_child(event, perf_event_disable); | ||
| 2049 | mutex_unlock(¤t->perf_event_mutex); | ||
| 2050 | |||
| 2051 | return 0; | ||
| 2052 | } | ||
| 2053 | |||
| 2054 | #ifndef PERF_EVENT_INDEX_OFFSET | ||
| 2055 | # define PERF_EVENT_INDEX_OFFSET 0 | ||
| 2056 | #endif | ||
| 2057 | |||
| 2058 | static int perf_event_index(struct perf_event *event) | ||
| 2059 | { | ||
| 2060 | if (event->state != PERF_EVENT_STATE_ACTIVE) | ||
| 2061 | return 0; | ||
| 2062 | |||
| 2063 | return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET; | ||
| 2064 | } | ||
| 2065 | |||
| 2066 | /* | ||
| 2067 | * Callers need to ensure there can be no nesting of this function, otherwise | ||
| 2068 | * the seqlock logic goes bad. We can not serialize this because the arch | ||
| 2069 | * code calls this from NMI context. | ||
| 2070 | */ | ||
| 2071 | void perf_event_update_userpage(struct perf_event *event) | ||
| 2072 | { | ||
| 2073 | struct perf_event_mmap_page *userpg; | ||
| 2074 | struct perf_mmap_data *data; | ||
| 2075 | |||
| 2076 | rcu_read_lock(); | ||
| 2077 | data = rcu_dereference(event->data); | ||
| 2078 | if (!data) | ||
| 2079 | goto unlock; | ||
| 2080 | |||
| 2081 | userpg = data->user_page; | ||
| 2082 | |||
| 2083 | /* | ||
| 2084 | * Disable preemption so as to not let the corresponding user-space | ||
| 2085 | * spin too long if we get preempted. | ||
| 2086 | */ | ||
| 2087 | preempt_disable(); | ||
| 2088 | ++userpg->lock; | ||
| 2089 | barrier(); | ||
| 2090 | userpg->index = perf_event_index(event); | ||
| 2091 | userpg->offset = atomic64_read(&event->count); | ||
| 2092 | if (event->state == PERF_EVENT_STATE_ACTIVE) | ||
| 2093 | userpg->offset -= atomic64_read(&event->hw.prev_count); | ||
| 2094 | |||
| 2095 | userpg->time_enabled = event->total_time_enabled + | ||
| 2096 | atomic64_read(&event->child_total_time_enabled); | ||
| 2097 | |||
| 2098 | userpg->time_running = event->total_time_running + | ||
| 2099 | atomic64_read(&event->child_total_time_running); | ||
| 2100 | |||
| 2101 | barrier(); | ||
| 2102 | ++userpg->lock; | ||
| 2103 | preempt_enable(); | ||
| 2104 | unlock: | ||
| 2105 | rcu_read_unlock(); | ||
| 2106 | } | ||
| 2107 | |||
| 2108 | static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) | ||
| 2109 | { | ||
| 2110 | struct perf_event *event = vma->vm_file->private_data; | ||
| 2111 | struct perf_mmap_data *data; | ||
| 2112 | int ret = VM_FAULT_SIGBUS; | ||
| 2113 | |||
| 2114 | if (vmf->flags & FAULT_FLAG_MKWRITE) { | ||
| 2115 | if (vmf->pgoff == 0) | ||
| 2116 | ret = 0; | ||
| 2117 | return ret; | ||
| 2118 | } | ||
| 2119 | |||
| 2120 | rcu_read_lock(); | ||
| 2121 | data = rcu_dereference(event->data); | ||
| 2122 | if (!data) | ||
| 2123 | goto unlock; | ||
| 2124 | |||
| 2125 | if (vmf->pgoff == 0) { | ||
| 2126 | vmf->page = virt_to_page(data->user_page); | ||
| 2127 | } else { | ||
| 2128 | int nr = vmf->pgoff - 1; | ||
| 2129 | |||
| 2130 | if ((unsigned)nr > data->nr_pages) | ||
| 2131 | goto unlock; | ||
| 2132 | |||
| 2133 | if (vmf->flags & FAULT_FLAG_WRITE) | ||
| 2134 | goto unlock; | ||
| 2135 | |||
| 2136 | vmf->page = virt_to_page(data->data_pages[nr]); | ||
| 2137 | } | ||
| 2138 | |||
| 2139 | get_page(vmf->page); | ||
| 2140 | vmf->page->mapping = vma->vm_file->f_mapping; | ||
| 2141 | vmf->page->index = vmf->pgoff; | ||
| 2142 | |||
| 2143 | ret = 0; | ||
| 2144 | unlock: | ||
| 2145 | rcu_read_unlock(); | ||
| 2146 | |||
| 2147 | return ret; | ||
| 2148 | } | ||
| 2149 | |||
| 2150 | static int perf_mmap_data_alloc(struct perf_event *event, int nr_pages) | ||
| 2151 | { | ||
| 2152 | struct perf_mmap_data *data; | ||
| 2153 | unsigned long size; | ||
| 2154 | int i; | ||
| 2155 | |||
| 2156 | WARN_ON(atomic_read(&event->mmap_count)); | ||
| 2157 | |||
| 2158 | size = sizeof(struct perf_mmap_data); | ||
| 2159 | size += nr_pages * sizeof(void *); | ||
| 2160 | |||
| 2161 | data = kzalloc(size, GFP_KERNEL); | ||
| 2162 | if (!data) | ||
| 2163 | goto fail; | ||
| 2164 | |||
| 2165 | data->user_page = (void *)get_zeroed_page(GFP_KERNEL); | ||
| 2166 | if (!data->user_page) | ||
| 2167 | goto fail_user_page; | ||
| 2168 | |||
| 2169 | for (i = 0; i < nr_pages; i++) { | ||
| 2170 | data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL); | ||
| 2171 | if (!data->data_pages[i]) | ||
| 2172 | goto fail_data_pages; | ||
| 2173 | } | ||
| 2174 | |||
| 2175 | data->nr_pages = nr_pages; | ||
| 2176 | atomic_set(&data->lock, -1); | ||
| 2177 | |||
| 2178 | if (event->attr.watermark) { | ||
| 2179 | data->watermark = min_t(long, PAGE_SIZE * nr_pages, | ||
| 2180 | event->attr.wakeup_watermark); | ||
| 2181 | } | ||
| 2182 | if (!data->watermark) | ||
| 2183 | data->watermark = max(PAGE_SIZE, PAGE_SIZE * nr_pages / 4); | ||
| 2184 | |||
| 2185 | rcu_assign_pointer(event->data, data); | ||
| 2186 | |||
| 2187 | return 0; | ||
| 2188 | |||
| 2189 | fail_data_pages: | ||
| 2190 | for (i--; i >= 0; i--) | ||
| 2191 | free_page((unsigned long)data->data_pages[i]); | ||
| 2192 | |||
| 2193 | free_page((unsigned long)data->user_page); | ||
| 2194 | |||
| 2195 | fail_user_page: | ||
| 2196 | kfree(data); | ||
| 2197 | |||
| 2198 | fail: | ||
| 2199 | return -ENOMEM; | ||
| 2200 | } | ||
| 2201 | |||
| 2202 | static void perf_mmap_free_page(unsigned long addr) | ||
| 2203 | { | ||
| 2204 | struct page *page = virt_to_page((void *)addr); | ||
| 2205 | |||
| 2206 | page->mapping = NULL; | ||
| 2207 | __free_page(page); | ||
| 2208 | } | ||
| 2209 | |||
| 2210 | static void __perf_mmap_data_free(struct rcu_head *rcu_head) | ||
| 2211 | { | ||
| 2212 | struct perf_mmap_data *data; | ||
| 2213 | int i; | ||
| 2214 | |||
| 2215 | data = container_of(rcu_head, struct perf_mmap_data, rcu_head); | ||
| 2216 | |||
| 2217 | perf_mmap_free_page((unsigned long)data->user_page); | ||
| 2218 | for (i = 0; i < data->nr_pages; i++) | ||
| 2219 | perf_mmap_free_page((unsigned long)data->data_pages[i]); | ||
| 2220 | |||
| 2221 | kfree(data); | ||
| 2222 | } | ||
| 2223 | |||
| 2224 | static void perf_mmap_data_free(struct perf_event *event) | ||
| 2225 | { | ||
| 2226 | struct perf_mmap_data *data = event->data; | ||
| 2227 | |||
| 2228 | WARN_ON(atomic_read(&event->mmap_count)); | ||
| 2229 | |||
| 2230 | rcu_assign_pointer(event->data, NULL); | ||
| 2231 | call_rcu(&data->rcu_head, __perf_mmap_data_free); | ||
| 2232 | } | ||
| 2233 | |||
| 2234 | static void perf_mmap_open(struct vm_area_struct *vma) | ||
| 2235 | { | ||
| 2236 | struct perf_event *event = vma->vm_file->private_data; | ||
| 2237 | |||
| 2238 | atomic_inc(&event->mmap_count); | ||
| 2239 | } | ||
| 2240 | |||
| 2241 | static void perf_mmap_close(struct vm_area_struct *vma) | ||
| 2242 | { | ||
| 2243 | struct perf_event *event = vma->vm_file->private_data; | ||
| 2244 | |||
| 2245 | WARN_ON_ONCE(event->ctx->parent_ctx); | ||
| 2246 | if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) { | ||
| 2247 | struct user_struct *user = current_user(); | ||
| 2248 | |||
| 2249 | atomic_long_sub(event->data->nr_pages + 1, &user->locked_vm); | ||
| 2250 | vma->vm_mm->locked_vm -= event->data->nr_locked; | ||
| 2251 | perf_mmap_data_free(event); | ||
| 2252 | mutex_unlock(&event->mmap_mutex); | ||
| 2253 | } | ||
| 2254 | } | ||
| 2255 | |||
| 2256 | static struct vm_operations_struct perf_mmap_vmops = { | ||
| 2257 | .open = perf_mmap_open, | ||
| 2258 | .close = perf_mmap_close, | ||
| 2259 | .fault = perf_mmap_fault, | ||
| 2260 | .page_mkwrite = perf_mmap_fault, | ||
| 2261 | }; | ||
| 2262 | |||
| 2263 | static int perf_mmap(struct file *file, struct vm_area_struct *vma) | ||
| 2264 | { | ||
| 2265 | struct perf_event *event = file->private_data; | ||
| 2266 | unsigned long user_locked, user_lock_limit; | ||
| 2267 | struct user_struct *user = current_user(); | ||
| 2268 | unsigned long locked, lock_limit; | ||
| 2269 | unsigned long vma_size; | ||
| 2270 | unsigned long nr_pages; | ||
| 2271 | long user_extra, extra; | ||
| 2272 | int ret = 0; | ||
| 2273 | |||
| 2274 | if (!(vma->vm_flags & VM_SHARED)) | ||
| 2275 | return -EINVAL; | ||
| 2276 | |||
| 2277 | vma_size = vma->vm_end - vma->vm_start; | ||
| 2278 | nr_pages = (vma_size / PAGE_SIZE) - 1; | ||
| 2279 | |||
| 2280 | /* | ||
| 2281 | * If we have data pages ensure they're a power-of-two number, so we | ||
| 2282 | * can do bitmasks instead of modulo. | ||
| 2283 | */ | ||
| 2284 | if (nr_pages != 0 && !is_power_of_2(nr_pages)) | ||
| 2285 | return -EINVAL; | ||
| 2286 | |||
| 2287 | if (vma_size != PAGE_SIZE * (1 + nr_pages)) | ||
| 2288 | return -EINVAL; | ||
| 2289 | |||
| 2290 | if (vma->vm_pgoff != 0) | ||
| 2291 | return -EINVAL; | ||
| 2292 | |||
| 2293 | WARN_ON_ONCE(event->ctx->parent_ctx); | ||
| 2294 | mutex_lock(&event->mmap_mutex); | ||
| 2295 | if (event->output) { | ||
| 2296 | ret = -EINVAL; | ||
| 2297 | goto unlock; | ||
| 2298 | } | ||
| 2299 | |||
| 2300 | if (atomic_inc_not_zero(&event->mmap_count)) { | ||
| 2301 | if (nr_pages != event->data->nr_pages) | ||
| 2302 | ret = -EINVAL; | ||
| 2303 | goto unlock; | ||
| 2304 | } | ||
| 2305 | |||
| 2306 | user_extra = nr_pages + 1; | ||
| 2307 | user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); | ||
| 2308 | |||
| 2309 | /* | ||
| 2310 | * Increase the limit linearly with more CPUs: | ||
| 2311 | */ | ||
| 2312 | user_lock_limit *= num_online_cpus(); | ||
| 2313 | |||
| 2314 | user_locked = atomic_long_read(&user->locked_vm) + user_extra; | ||
| 2315 | |||
| 2316 | extra = 0; | ||
| 2317 | if (user_locked > user_lock_limit) | ||
| 2318 | extra = user_locked - user_lock_limit; | ||
| 2319 | |||
| 2320 | lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur; | ||
| 2321 | lock_limit >>= PAGE_SHIFT; | ||
| 2322 | locked = vma->vm_mm->locked_vm + extra; | ||
| 2323 | |||
| 2324 | if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && | ||
| 2325 | !capable(CAP_IPC_LOCK)) { | ||
| 2326 | ret = -EPERM; | ||
| 2327 | goto unlock; | ||
| 2328 | } | ||
| 2329 | |||
| 2330 | WARN_ON(event->data); | ||
| 2331 | ret = perf_mmap_data_alloc(event, nr_pages); | ||
| 2332 | if (ret) | ||
| 2333 | goto unlock; | ||
| 2334 | |||
| 2335 | atomic_set(&event->mmap_count, 1); | ||
| 2336 | atomic_long_add(user_extra, &user->locked_vm); | ||
| 2337 | vma->vm_mm->locked_vm += extra; | ||
| 2338 | event->data->nr_locked = extra; | ||
| 2339 | if (vma->vm_flags & VM_WRITE) | ||
| 2340 | event->data->writable = 1; | ||
| 2341 | |||
| 2342 | unlock: | ||
| 2343 | mutex_unlock(&event->mmap_mutex); | ||
| 2344 | |||
| 2345 | vma->vm_flags |= VM_RESERVED; | ||
| 2346 | vma->vm_ops = &perf_mmap_vmops; | ||
| 2347 | |||
| 2348 | return ret; | ||
| 2349 | } | ||
| 2350 | |||
| 2351 | static int perf_fasync(int fd, struct file *filp, int on) | ||
| 2352 | { | ||
| 2353 | struct inode *inode = filp->f_path.dentry->d_inode; | ||
| 2354 | struct perf_event *event = filp->private_data; | ||
| 2355 | int retval; | ||
| 2356 | |||
| 2357 | mutex_lock(&inode->i_mutex); | ||
| 2358 | retval = fasync_helper(fd, filp, on, &event->fasync); | ||
| 2359 | mutex_unlock(&inode->i_mutex); | ||
| 2360 | |||
| 2361 | if (retval < 0) | ||
| 2362 | return retval; | ||
| 2363 | |||
| 2364 | return 0; | ||
| 2365 | } | ||
| 2366 | |||
| 2367 | static const struct file_operations perf_fops = { | ||
| 2368 | .release = perf_release, | ||
| 2369 | .read = perf_read, | ||
| 2370 | .poll = perf_poll, | ||
| 2371 | .unlocked_ioctl = perf_ioctl, | ||
| 2372 | .compat_ioctl = perf_ioctl, | ||
| 2373 | .mmap = perf_mmap, | ||
| 2374 | .fasync = perf_fasync, | ||
| 2375 | }; | ||
| 2376 | |||
| 2377 | /* | ||
| 2378 | * Perf event wakeup | ||
| 2379 | * | ||
| 2380 | * If there's data, ensure we set the poll() state and publish everything | ||
| 2381 | * to user-space before waking everybody up. | ||
| 2382 | */ | ||
| 2383 | |||
| 2384 | void perf_event_wakeup(struct perf_event *event) | ||
| 2385 | { | ||
| 2386 | wake_up_all(&event->waitq); | ||
| 2387 | |||
| 2388 | if (event->pending_kill) { | ||
| 2389 | kill_fasync(&event->fasync, SIGIO, event->pending_kill); | ||
| 2390 | event->pending_kill = 0; | ||
| 2391 | } | ||
| 2392 | } | ||
| 2393 | |||
| 2394 | /* | ||
| 2395 | * Pending wakeups | ||
| 2396 | * | ||
| 2397 | * Handle the case where we need to wakeup up from NMI (or rq->lock) context. | ||
| 2398 | * | ||
| 2399 | * The NMI bit means we cannot possibly take locks. Therefore, maintain a | ||
| 2400 | * single linked list and use cmpxchg() to add entries lockless. | ||
| 2401 | */ | ||
| 2402 | |||
| 2403 | static void perf_pending_event(struct perf_pending_entry *entry) | ||
| 2404 | { | ||
| 2405 | struct perf_event *event = container_of(entry, | ||
| 2406 | struct perf_event, pending); | ||
| 2407 | |||
| 2408 | if (event->pending_disable) { | ||
| 2409 | event->pending_disable = 0; | ||
| 2410 | __perf_event_disable(event); | ||
| 2411 | } | ||
| 2412 | |||
| 2413 | if (event->pending_wakeup) { | ||
| 2414 | event->pending_wakeup = 0; | ||
| 2415 | perf_event_wakeup(event); | ||
| 2416 | } | ||
| 2417 | } | ||
| 2418 | |||
| 2419 | #define PENDING_TAIL ((struct perf_pending_entry *)-1UL) | ||
| 2420 | |||
| 2421 | static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = { | ||
| 2422 | PENDING_TAIL, | ||
| 2423 | }; | ||
| 2424 | |||
| 2425 | static void perf_pending_queue(struct perf_pending_entry *entry, | ||
| 2426 | void (*func)(struct perf_pending_entry *)) | ||
| 2427 | { | ||
| 2428 | struct perf_pending_entry **head; | ||
| 2429 | |||
| 2430 | if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL) | ||
| 2431 | return; | ||
| 2432 | |||
| 2433 | entry->func = func; | ||
| 2434 | |||
| 2435 | head = &get_cpu_var(perf_pending_head); | ||
| 2436 | |||
| 2437 | do { | ||
| 2438 | entry->next = *head; | ||
| 2439 | } while (cmpxchg(head, entry->next, entry) != entry->next); | ||
| 2440 | |||
| 2441 | set_perf_event_pending(); | ||
| 2442 | |||
| 2443 | put_cpu_var(perf_pending_head); | ||
| 2444 | } | ||
| 2445 | |||
| 2446 | static int __perf_pending_run(void) | ||
| 2447 | { | ||
| 2448 | struct perf_pending_entry *list; | ||
| 2449 | int nr = 0; | ||
| 2450 | |||
| 2451 | list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL); | ||
| 2452 | while (list != PENDING_TAIL) { | ||
| 2453 | void (*func)(struct perf_pending_entry *); | ||
| 2454 | struct perf_pending_entry *entry = list; | ||
| 2455 | |||
| 2456 | list = list->next; | ||
| 2457 | |||
| 2458 | func = entry->func; | ||
| 2459 | entry->next = NULL; | ||
| 2460 | /* | ||
| 2461 | * Ensure we observe the unqueue before we issue the wakeup, | ||
| 2462 | * so that we won't be waiting forever. | ||
| 2463 | * -- see perf_not_pending(). | ||
| 2464 | */ | ||
| 2465 | smp_wmb(); | ||
| 2466 | |||
| 2467 | func(entry); | ||
| 2468 | nr++; | ||
| 2469 | } | ||
| 2470 | |||
| 2471 | return nr; | ||
| 2472 | } | ||
| 2473 | |||
| 2474 | static inline int perf_not_pending(struct perf_event *event) | ||
| 2475 | { | ||
| 2476 | /* | ||
| 2477 | * If we flush on whatever cpu we run, there is a chance we don't | ||
| 2478 | * need to wait. | ||
| 2479 | */ | ||
| 2480 | get_cpu(); | ||
| 2481 | __perf_pending_run(); | ||
| 2482 | put_cpu(); | ||
| 2483 | |||
| 2484 | /* | ||
| 2485 | * Ensure we see the proper queue state before going to sleep | ||
| 2486 | * so that we do not miss the wakeup. -- see perf_pending_handle() | ||
| 2487 | */ | ||
| 2488 | smp_rmb(); | ||
| 2489 | return event->pending.next == NULL; | ||
| 2490 | } | ||
| 2491 | |||
| 2492 | static void perf_pending_sync(struct perf_event *event) | ||
| 2493 | { | ||
| 2494 | wait_event(event->waitq, perf_not_pending(event)); | ||
| 2495 | } | ||
| 2496 | |||
| 2497 | void perf_event_do_pending(void) | ||
| 2498 | { | ||
| 2499 | __perf_pending_run(); | ||
| 2500 | } | ||
| 2501 | |||
| 2502 | /* | ||
| 2503 | * Callchain support -- arch specific | ||
| 2504 | */ | ||
| 2505 | |||
| 2506 | __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs) | ||
| 2507 | { | ||
| 2508 | return NULL; | ||
| 2509 | } | ||
| 2510 | |||
| 2511 | /* | ||
| 2512 | * Output | ||
| 2513 | */ | ||
| 2514 | static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail, | ||
| 2515 | unsigned long offset, unsigned long head) | ||
| 2516 | { | ||
| 2517 | unsigned long mask; | ||
| 2518 | |||
| 2519 | if (!data->writable) | ||
| 2520 | return true; | ||
| 2521 | |||
| 2522 | mask = (data->nr_pages << PAGE_SHIFT) - 1; | ||
| 2523 | |||
| 2524 | offset = (offset - tail) & mask; | ||
| 2525 | head = (head - tail) & mask; | ||
| 2526 | |||
| 2527 | if ((int)(head - offset) < 0) | ||
| 2528 | return false; | ||
| 2529 | |||
| 2530 | return true; | ||
| 2531 | } | ||
| 2532 | |||
| 2533 | static void perf_output_wakeup(struct perf_output_handle *handle) | ||
| 2534 | { | ||
| 2535 | atomic_set(&handle->data->poll, POLL_IN); | ||
| 2536 | |||
| 2537 | if (handle->nmi) { | ||
| 2538 | handle->event->pending_wakeup = 1; | ||
| 2539 | perf_pending_queue(&handle->event->pending, | ||
| 2540 | perf_pending_event); | ||
| 2541 | } else | ||
| 2542 | perf_event_wakeup(handle->event); | ||
| 2543 | } | ||
| 2544 | |||
| 2545 | /* | ||
| 2546 | * Curious locking construct. | ||
| 2547 | * | ||
| 2548 | * We need to ensure a later event_id doesn't publish a head when a former | ||
| 2549 | * event_id isn't done writing. However since we need to deal with NMIs we | ||
| 2550 | * cannot fully serialize things. | ||
| 2551 | * | ||
| 2552 | * What we do is serialize between CPUs so we only have to deal with NMI | ||
| 2553 | * nesting on a single CPU. | ||
| 2554 | * | ||
| 2555 | * We only publish the head (and generate a wakeup) when the outer-most | ||
| 2556 | * event_id completes. | ||
| 2557 | */ | ||
| 2558 | static void perf_output_lock(struct perf_output_handle *handle) | ||
| 2559 | { | ||
| 2560 | struct perf_mmap_data *data = handle->data; | ||
| 2561 | int cpu; | ||
| 2562 | |||
| 2563 | handle->locked = 0; | ||
| 2564 | |||
| 2565 | local_irq_save(handle->flags); | ||
| 2566 | cpu = smp_processor_id(); | ||
| 2567 | |||
| 2568 | if (in_nmi() && atomic_read(&data->lock) == cpu) | ||
| 2569 | return; | ||
| 2570 | |||
| 2571 | while (atomic_cmpxchg(&data->lock, -1, cpu) != -1) | ||
| 2572 | cpu_relax(); | ||
| 2573 | |||
| 2574 | handle->locked = 1; | ||
| 2575 | } | ||
| 2576 | |||
| 2577 | static void perf_output_unlock(struct perf_output_handle *handle) | ||
| 2578 | { | ||
| 2579 | struct perf_mmap_data *data = handle->data; | ||
| 2580 | unsigned long head; | ||
| 2581 | int cpu; | ||
| 2582 | |||
| 2583 | data->done_head = data->head; | ||
| 2584 | |||
| 2585 | if (!handle->locked) | ||
| 2586 | goto out; | ||
| 2587 | |||
| 2588 | again: | ||
| 2589 | /* | ||
| 2590 | * The xchg implies a full barrier that ensures all writes are done | ||
| 2591 | * before we publish the new head, matched by a rmb() in userspace when | ||
| 2592 | * reading this position. | ||
| 2593 | */ | ||
| 2594 | while ((head = atomic_long_xchg(&data->done_head, 0))) | ||
| 2595 | data->user_page->data_head = head; | ||
| 2596 | |||
| 2597 | /* | ||
| 2598 | * NMI can happen here, which means we can miss a done_head update. | ||
| 2599 | */ | ||
| 2600 | |||
| 2601 | cpu = atomic_xchg(&data->lock, -1); | ||
| 2602 | WARN_ON_ONCE(cpu != smp_processor_id()); | ||
| 2603 | |||
| 2604 | /* | ||
| 2605 | * Therefore we have to validate we did not indeed do so. | ||
| 2606 | */ | ||
| 2607 | if (unlikely(atomic_long_read(&data->done_head))) { | ||
| 2608 | /* | ||
| 2609 | * Since we had it locked, we can lock it again. | ||
| 2610 | */ | ||
| 2611 | while (atomic_cmpxchg(&data->lock, -1, cpu) != -1) | ||
| 2612 | cpu_relax(); | ||
| 2613 | |||
| 2614 | goto again; | ||
| 2615 | } | ||
| 2616 | |||
| 2617 | if (atomic_xchg(&data->wakeup, 0)) | ||
| 2618 | perf_output_wakeup(handle); | ||
| 2619 | out: | ||
| 2620 | local_irq_restore(handle->flags); | ||
| 2621 | } | ||
| 2622 | |||
| 2623 | void perf_output_copy(struct perf_output_handle *handle, | ||
| 2624 | const void *buf, unsigned int len) | ||
| 2625 | { | ||
| 2626 | unsigned int pages_mask; | ||
| 2627 | unsigned int offset; | ||
| 2628 | unsigned int size; | ||
| 2629 | void **pages; | ||
| 2630 | |||
| 2631 | offset = handle->offset; | ||
| 2632 | pages_mask = handle->data->nr_pages - 1; | ||
| 2633 | pages = handle->data->data_pages; | ||
| 2634 | |||
| 2635 | do { | ||
| 2636 | unsigned int page_offset; | ||
| 2637 | int nr; | ||
| 2638 | |||
| 2639 | nr = (offset >> PAGE_SHIFT) & pages_mask; | ||
| 2640 | page_offset = offset & (PAGE_SIZE - 1); | ||
| 2641 | size = min_t(unsigned int, PAGE_SIZE - page_offset, len); | ||
| 2642 | |||
| 2643 | memcpy(pages[nr] + page_offset, buf, size); | ||
| 2644 | |||
| 2645 | len -= size; | ||
| 2646 | buf += size; | ||
| 2647 | offset += size; | ||
| 2648 | } while (len); | ||
| 2649 | |||
| 2650 | handle->offset = offset; | ||
| 2651 | |||
| 2652 | /* | ||
| 2653 | * Check we didn't copy past our reservation window, taking the | ||
| 2654 | * possible unsigned int wrap into account. | ||
| 2655 | */ | ||
| 2656 | WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0); | ||
| 2657 | } | ||
| 2658 | |||
| 2659 | int perf_output_begin(struct perf_output_handle *handle, | ||
| 2660 | struct perf_event *event, unsigned int size, | ||
| 2661 | int nmi, int sample) | ||
| 2662 | { | ||
| 2663 | struct perf_event *output_event; | ||
| 2664 | struct perf_mmap_data *data; | ||
| 2665 | unsigned long tail, offset, head; | ||
| 2666 | int have_lost; | ||
| 2667 | struct { | ||
| 2668 | struct perf_event_header header; | ||
| 2669 | u64 id; | ||
| 2670 | u64 lost; | ||
| 2671 | } lost_event; | ||
| 2672 | |||
| 2673 | rcu_read_lock(); | ||
| 2674 | /* | ||
| 2675 | * For inherited events we send all the output towards the parent. | ||
| 2676 | */ | ||
| 2677 | if (event->parent) | ||
| 2678 | event = event->parent; | ||
| 2679 | |||
| 2680 | output_event = rcu_dereference(event->output); | ||
| 2681 | if (output_event) | ||
| 2682 | event = output_event; | ||
| 2683 | |||
| 2684 | data = rcu_dereference(event->data); | ||
| 2685 | if (!data) | ||
| 2686 | goto out; | ||
| 2687 | |||
| 2688 | handle->data = data; | ||
| 2689 | handle->event = event; | ||
| 2690 | handle->nmi = nmi; | ||
| 2691 | handle->sample = sample; | ||
| 2692 | |||
| 2693 | if (!data->nr_pages) | ||
| 2694 | goto fail; | ||
| 2695 | |||
| 2696 | have_lost = atomic_read(&data->lost); | ||
| 2697 | if (have_lost) | ||
| 2698 | size += sizeof(lost_event); | ||
| 2699 | |||
| 2700 | perf_output_lock(handle); | ||
| 2701 | |||
| 2702 | do { | ||
| 2703 | /* | ||
| 2704 | * Userspace could choose to issue a mb() before updating the | ||
| 2705 | * tail pointer. So that all reads will be completed before the | ||
| 2706 | * write is issued. | ||
| 2707 | */ | ||
| 2708 | tail = ACCESS_ONCE(data->user_page->data_tail); | ||
| 2709 | smp_rmb(); | ||
| 2710 | offset = head = atomic_long_read(&data->head); | ||
| 2711 | head += size; | ||
| 2712 | if (unlikely(!perf_output_space(data, tail, offset, head))) | ||
| 2713 | goto fail; | ||
| 2714 | } while (atomic_long_cmpxchg(&data->head, offset, head) != offset); | ||
| 2715 | |||
| 2716 | handle->offset = offset; | ||
| 2717 | handle->head = head; | ||
| 2718 | |||
| 2719 | if (head - tail > data->watermark) | ||
| 2720 | atomic_set(&data->wakeup, 1); | ||
| 2721 | |||
| 2722 | if (have_lost) { | ||
| 2723 | lost_event.header.type = PERF_RECORD_LOST; | ||
| 2724 | lost_event.header.misc = 0; | ||
| 2725 | lost_event.header.size = sizeof(lost_event); | ||
| 2726 | lost_event.id = event->id; | ||
| 2727 | lost_event.lost = atomic_xchg(&data->lost, 0); | ||
| 2728 | |||
| 2729 | perf_output_put(handle, lost_event); | ||
| 2730 | } | ||
| 2731 | |||
| 2732 | return 0; | ||
| 2733 | |||
| 2734 | fail: | ||
| 2735 | atomic_inc(&data->lost); | ||
| 2736 | perf_output_unlock(handle); | ||
| 2737 | out: | ||
| 2738 | rcu_read_unlock(); | ||
| 2739 | |||
| 2740 | return -ENOSPC; | ||
| 2741 | } | ||
| 2742 | |||
| 2743 | void perf_output_end(struct perf_output_handle *handle) | ||
| 2744 | { | ||
| 2745 | struct perf_event *event = handle->event; | ||
| 2746 | struct perf_mmap_data *data = handle->data; | ||
| 2747 | |||
| 2748 | int wakeup_events = event->attr.wakeup_events; | ||
| 2749 | |||
| 2750 | if (handle->sample && wakeup_events) { | ||
| 2751 | int events = atomic_inc_return(&data->events); | ||
| 2752 | if (events >= wakeup_events) { | ||
| 2753 | atomic_sub(wakeup_events, &data->events); | ||
| 2754 | atomic_set(&data->wakeup, 1); | ||
| 2755 | } | ||
| 2756 | } | ||
| 2757 | |||
| 2758 | perf_output_unlock(handle); | ||
| 2759 | rcu_read_unlock(); | ||
| 2760 | } | ||
| 2761 | |||
| 2762 | static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) | ||
| 2763 | { | ||
| 2764 | /* | ||
| 2765 | * only top level events have the pid namespace they were created in | ||
| 2766 | */ | ||
| 2767 | if (event->parent) | ||
| 2768 | event = event->parent; | ||
| 2769 | |||
| 2770 | return task_tgid_nr_ns(p, event->ns); | ||
| 2771 | } | ||
| 2772 | |||
| 2773 | static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) | ||
| 2774 | { | ||
| 2775 | /* | ||
| 2776 | * only top level events have the pid namespace they were created in | ||
| 2777 | */ | ||
| 2778 | if (event->parent) | ||
| 2779 | event = event->parent; | ||
| 2780 | |||
| 2781 | return task_pid_nr_ns(p, event->ns); | ||
| 2782 | } | ||
| 2783 | |||
| 2784 | static void perf_output_read_one(struct perf_output_handle *handle, | ||
| 2785 | struct perf_event *event) | ||
| 2786 | { | ||
| 2787 | u64 read_format = event->attr.read_format; | ||
| 2788 | u64 values[4]; | ||
| 2789 | int n = 0; | ||
| 2790 | |||
| 2791 | values[n++] = atomic64_read(&event->count); | ||
| 2792 | if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { | ||
| 2793 | values[n++] = event->total_time_enabled + | ||
| 2794 | atomic64_read(&event->child_total_time_enabled); | ||
| 2795 | } | ||
| 2796 | if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { | ||
| 2797 | values[n++] = event->total_time_running + | ||
| 2798 | atomic64_read(&event->child_total_time_running); | ||
| 2799 | } | ||
| 2800 | if (read_format & PERF_FORMAT_ID) | ||
| 2801 | values[n++] = primary_event_id(event); | ||
| 2802 | |||
| 2803 | perf_output_copy(handle, values, n * sizeof(u64)); | ||
| 2804 | } | ||
| 2805 | |||
| 2806 | /* | ||
| 2807 | * XXX PERF_FORMAT_GROUP vs inherited events seems difficult. | ||
| 2808 | */ | ||
| 2809 | static void perf_output_read_group(struct perf_output_handle *handle, | ||
| 2810 | struct perf_event *event) | ||
| 2811 | { | ||
| 2812 | struct perf_event *leader = event->group_leader, *sub; | ||
| 2813 | u64 read_format = event->attr.read_format; | ||
| 2814 | u64 values[5]; | ||
| 2815 | int n = 0; | ||
| 2816 | |||
| 2817 | values[n++] = 1 + leader->nr_siblings; | ||
| 2818 | |||
| 2819 | if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) | ||
| 2820 | values[n++] = leader->total_time_enabled; | ||
| 2821 | |||
| 2822 | if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) | ||
| 2823 | values[n++] = leader->total_time_running; | ||
| 2824 | |||
| 2825 | if (leader != event) | ||
| 2826 | leader->pmu->read(leader); | ||
| 2827 | |||
| 2828 | values[n++] = atomic64_read(&leader->count); | ||
| 2829 | if (read_format & PERF_FORMAT_ID) | ||
| 2830 | values[n++] = primary_event_id(leader); | ||
| 2831 | |||
| 2832 | perf_output_copy(handle, values, n * sizeof(u64)); | ||
| 2833 | |||
| 2834 | list_for_each_entry(sub, &leader->sibling_list, group_entry) { | ||
| 2835 | n = 0; | ||
| 2836 | |||
| 2837 | if (sub != event) | ||
| 2838 | sub->pmu->read(sub); | ||
| 2839 | |||
| 2840 | values[n++] = atomic64_read(&sub->count); | ||
| 2841 | if (read_format & PERF_FORMAT_ID) | ||
| 2842 | values[n++] = primary_event_id(sub); | ||
| 2843 | |||
| 2844 | perf_output_copy(handle, values, n * sizeof(u64)); | ||
| 2845 | } | ||
| 2846 | } | ||
| 2847 | |||
| 2848 | static void perf_output_read(struct perf_output_handle *handle, | ||
| 2849 | struct perf_event *event) | ||
| 2850 | { | ||
| 2851 | if (event->attr.read_format & PERF_FORMAT_GROUP) | ||
| 2852 | perf_output_read_group(handle, event); | ||
| 2853 | else | ||
| 2854 | perf_output_read_one(handle, event); | ||
| 2855 | } | ||
| 2856 | |||
| 2857 | void perf_output_sample(struct perf_output_handle *handle, | ||
| 2858 | struct perf_event_header *header, | ||
| 2859 | struct perf_sample_data *data, | ||
| 2860 | struct perf_event *event) | ||
| 2861 | { | ||
| 2862 | u64 sample_type = data->type; | ||
| 2863 | |||
| 2864 | perf_output_put(handle, *header); | ||
| 2865 | |||
| 2866 | if (sample_type & PERF_SAMPLE_IP) | ||
| 2867 | perf_output_put(handle, data->ip); | ||
| 2868 | |||
| 2869 | if (sample_type & PERF_SAMPLE_TID) | ||
| 2870 | perf_output_put(handle, data->tid_entry); | ||
| 2871 | |||
| 2872 | if (sample_type & PERF_SAMPLE_TIME) | ||
| 2873 | perf_output_put(handle, data->time); | ||
| 2874 | |||
| 2875 | if (sample_type & PERF_SAMPLE_ADDR) | ||
| 2876 | perf_output_put(handle, data->addr); | ||
| 2877 | |||
| 2878 | if (sample_type & PERF_SAMPLE_ID) | ||
| 2879 | perf_output_put(handle, data->id); | ||
| 2880 | |||
| 2881 | if (sample_type & PERF_SAMPLE_STREAM_ID) | ||
| 2882 | perf_output_put(handle, data->stream_id); | ||
| 2883 | |||
| 2884 | if (sample_type & PERF_SAMPLE_CPU) | ||
| 2885 | perf_output_put(handle, data->cpu_entry); | ||
| 2886 | |||
| 2887 | if (sample_type & PERF_SAMPLE_PERIOD) | ||
| 2888 | perf_output_put(handle, data->period); | ||
| 2889 | |||
| 2890 | if (sample_type & PERF_SAMPLE_READ) | ||
| 2891 | perf_output_read(handle, event); | ||
| 2892 | |||
| 2893 | if (sample_type & PERF_SAMPLE_CALLCHAIN) { | ||
| 2894 | if (data->callchain) { | ||
| 2895 | int size = 1; | ||
| 2896 | |||
| 2897 | if (data->callchain) | ||
| 2898 | size += data->callchain->nr; | ||
| 2899 | |||
| 2900 | size *= sizeof(u64); | ||
| 2901 | |||
| 2902 | perf_output_copy(handle, data->callchain, size); | ||
| 2903 | } else { | ||
| 2904 | u64 nr = 0; | ||
| 2905 | perf_output_put(handle, nr); | ||
| 2906 | } | ||
| 2907 | } | ||
| 2908 | |||
| 2909 | if (sample_type & PERF_SAMPLE_RAW) { | ||
| 2910 | if (data->raw) { | ||
| 2911 | perf_output_put(handle, data->raw->size); | ||
| 2912 | perf_output_copy(handle, data->raw->data, | ||
| 2913 | data->raw->size); | ||
| 2914 | } else { | ||
| 2915 | struct { | ||
| 2916 | u32 size; | ||
| 2917 | u32 data; | ||
| 2918 | } raw = { | ||
| 2919 | .size = sizeof(u32), | ||
| 2920 | .data = 0, | ||
| 2921 | }; | ||
| 2922 | perf_output_put(handle, raw); | ||
| 2923 | } | ||
| 2924 | } | ||
| 2925 | } | ||
| 2926 | |||
| 2927 | void perf_prepare_sample(struct perf_event_header *header, | ||
| 2928 | struct perf_sample_data *data, | ||
| 2929 | struct perf_event *event, | ||
| 2930 | struct pt_regs *regs) | ||
| 2931 | { | ||
| 2932 | u64 sample_type = event->attr.sample_type; | ||
| 2933 | |||
| 2934 | data->type = sample_type; | ||
| 2935 | |||
| 2936 | header->type = PERF_RECORD_SAMPLE; | ||
| 2937 | header->size = sizeof(*header); | ||
| 2938 | |||
| 2939 | header->misc = 0; | ||
| 2940 | header->misc |= perf_misc_flags(regs); | ||
| 2941 | |||
| 2942 | if (sample_type & PERF_SAMPLE_IP) { | ||
| 2943 | data->ip = perf_instruction_pointer(regs); | ||
| 2944 | |||
| 2945 | header->size += sizeof(data->ip); | ||
| 2946 | } | ||
| 2947 | |||
| 2948 | if (sample_type & PERF_SAMPLE_TID) { | ||
| 2949 | /* namespace issues */ | ||
| 2950 | data->tid_entry.pid = perf_event_pid(event, current); | ||
| 2951 | data->tid_entry.tid = perf_event_tid(event, current); | ||
| 2952 | |||
| 2953 | header->size += sizeof(data->tid_entry); | ||
| 2954 | } | ||
| 2955 | |||
| 2956 | if (sample_type & PERF_SAMPLE_TIME) { | ||
| 2957 | data->time = perf_clock(); | ||
| 2958 | |||
| 2959 | header->size += sizeof(data->time); | ||
| 2960 | } | ||
| 2961 | |||
| 2962 | if (sample_type & PERF_SAMPLE_ADDR) | ||
| 2963 | header->size += sizeof(data->addr); | ||
| 2964 | |||
| 2965 | if (sample_type & PERF_SAMPLE_ID) { | ||
| 2966 | data->id = primary_event_id(event); | ||
| 2967 | |||
| 2968 | header->size += sizeof(data->id); | ||
| 2969 | } | ||
| 2970 | |||
| 2971 | if (sample_type & PERF_SAMPLE_STREAM_ID) { | ||
| 2972 | data->stream_id = event->id; | ||
| 2973 | |||
| 2974 | header->size += sizeof(data->stream_id); | ||
| 2975 | } | ||
| 2976 | |||
| 2977 | if (sample_type & PERF_SAMPLE_CPU) { | ||
| 2978 | data->cpu_entry.cpu = raw_smp_processor_id(); | ||
| 2979 | data->cpu_entry.reserved = 0; | ||
| 2980 | |||
| 2981 | header->size += sizeof(data->cpu_entry); | ||
| 2982 | } | ||
| 2983 | |||
| 2984 | if (sample_type & PERF_SAMPLE_PERIOD) | ||
| 2985 | header->size += sizeof(data->period); | ||
| 2986 | |||
| 2987 | if (sample_type & PERF_SAMPLE_READ) | ||
| 2988 | header->size += perf_event_read_size(event); | ||
| 2989 | |||
| 2990 | if (sample_type & PERF_SAMPLE_CALLCHAIN) { | ||
| 2991 | int size = 1; | ||
| 2992 | |||
| 2993 | data->callchain = perf_callchain(regs); | ||
| 2994 | |||
| 2995 | if (data->callchain) | ||
| 2996 | size += data->callchain->nr; | ||
| 2997 | |||
| 2998 | header->size += size * sizeof(u64); | ||
| 2999 | } | ||
| 3000 | |||
| 3001 | if (sample_type & PERF_SAMPLE_RAW) { | ||
| 3002 | int size = sizeof(u32); | ||
| 3003 | |||
| 3004 | if (data->raw) | ||
| 3005 | size += data->raw->size; | ||
| 3006 | else | ||
| 3007 | size += sizeof(u32); | ||
| 3008 | |||
| 3009 | WARN_ON_ONCE(size & (sizeof(u64)-1)); | ||
| 3010 | header->size += size; | ||
| 3011 | } | ||
| 3012 | } | ||
| 3013 | |||
| 3014 | static void perf_event_output(struct perf_event *event, int nmi, | ||
| 3015 | struct perf_sample_data *data, | ||
| 3016 | struct pt_regs *regs) | ||
| 3017 | { | ||
| 3018 | struct perf_output_handle handle; | ||
| 3019 | struct perf_event_header header; | ||
| 3020 | |||
| 3021 | perf_prepare_sample(&header, data, event, regs); | ||
| 3022 | |||
| 3023 | if (perf_output_begin(&handle, event, header.size, nmi, 1)) | ||
| 3024 | return; | ||
| 3025 | |||
| 3026 | perf_output_sample(&handle, &header, data, event); | ||
| 3027 | |||
| 3028 | perf_output_end(&handle); | ||
| 3029 | } | ||
| 3030 | |||
| 3031 | /* | ||
| 3032 | * read event_id | ||
| 3033 | */ | ||
| 3034 | |||
| 3035 | struct perf_read_event { | ||
| 3036 | struct perf_event_header header; | ||
| 3037 | |||
| 3038 | u32 pid; | ||
| 3039 | u32 tid; | ||
| 3040 | }; | ||
| 3041 | |||
| 3042 | static void | ||
| 3043 | perf_event_read_event(struct perf_event *event, | ||
| 3044 | struct task_struct *task) | ||
| 3045 | { | ||
| 3046 | struct perf_output_handle handle; | ||
| 3047 | struct perf_read_event read_event = { | ||
| 3048 | .header = { | ||
| 3049 | .type = PERF_RECORD_READ, | ||
| 3050 | .misc = 0, | ||
| 3051 | .size = sizeof(read_event) + perf_event_read_size(event), | ||
| 3052 | }, | ||
| 3053 | .pid = perf_event_pid(event, task), | ||
| 3054 | .tid = perf_event_tid(event, task), | ||
| 3055 | }; | ||
| 3056 | int ret; | ||
| 3057 | |||
| 3058 | ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0); | ||
| 3059 | if (ret) | ||
| 3060 | return; | ||
| 3061 | |||
| 3062 | perf_output_put(&handle, read_event); | ||
| 3063 | perf_output_read(&handle, event); | ||
| 3064 | |||
| 3065 | perf_output_end(&handle); | ||
| 3066 | } | ||
| 3067 | |||
| 3068 | /* | ||
| 3069 | * task tracking -- fork/exit | ||
| 3070 | * | ||
| 3071 | * enabled by: attr.comm | attr.mmap | attr.task | ||
| 3072 | */ | ||
| 3073 | |||
| 3074 | struct perf_task_event { | ||
| 3075 | struct task_struct *task; | ||
| 3076 | struct perf_event_context *task_ctx; | ||
| 3077 | |||
| 3078 | struct { | ||
| 3079 | struct perf_event_header header; | ||
| 3080 | |||
| 3081 | u32 pid; | ||
| 3082 | u32 ppid; | ||
| 3083 | u32 tid; | ||
| 3084 | u32 ptid; | ||
| 3085 | u64 time; | ||
| 3086 | } event_id; | ||
| 3087 | }; | ||
| 3088 | |||
| 3089 | static void perf_event_task_output(struct perf_event *event, | ||
| 3090 | struct perf_task_event *task_event) | ||
| 3091 | { | ||
| 3092 | struct perf_output_handle handle; | ||
| 3093 | int size; | ||
| 3094 | struct task_struct *task = task_event->task; | ||
| 3095 | int ret; | ||
| 3096 | |||
| 3097 | size = task_event->event_id.header.size; | ||
| 3098 | ret = perf_output_begin(&handle, event, size, 0, 0); | ||
| 3099 | |||
| 3100 | if (ret) | ||
| 3101 | return; | ||
| 3102 | |||
| 3103 | task_event->event_id.pid = perf_event_pid(event, task); | ||
| 3104 | task_event->event_id.ppid = perf_event_pid(event, current); | ||
| 3105 | |||
| 3106 | task_event->event_id.tid = perf_event_tid(event, task); | ||
| 3107 | task_event->event_id.ptid = perf_event_tid(event, current); | ||
| 3108 | |||
| 3109 | task_event->event_id.time = perf_clock(); | ||
| 3110 | |||
| 3111 | perf_output_put(&handle, task_event->event_id); | ||
| 3112 | |||
| 3113 | perf_output_end(&handle); | ||
| 3114 | } | ||
| 3115 | |||
| 3116 | static int perf_event_task_match(struct perf_event *event) | ||
| 3117 | { | ||
| 3118 | if (event->attr.comm || event->attr.mmap || event->attr.task) | ||
| 3119 | return 1; | ||
| 3120 | |||
| 3121 | return 0; | ||
| 3122 | } | ||
| 3123 | |||
| 3124 | static void perf_event_task_ctx(struct perf_event_context *ctx, | ||
| 3125 | struct perf_task_event *task_event) | ||
| 3126 | { | ||
| 3127 | struct perf_event *event; | ||
| 3128 | |||
| 3129 | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) | ||
| 3130 | return; | ||
| 3131 | |||
| 3132 | rcu_read_lock(); | ||
| 3133 | list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { | ||
| 3134 | if (perf_event_task_match(event)) | ||
| 3135 | perf_event_task_output(event, task_event); | ||
| 3136 | } | ||
| 3137 | rcu_read_unlock(); | ||
| 3138 | } | ||
| 3139 | |||
| 3140 | static void perf_event_task_event(struct perf_task_event *task_event) | ||
| 3141 | { | ||
| 3142 | struct perf_cpu_context *cpuctx; | ||
| 3143 | struct perf_event_context *ctx = task_event->task_ctx; | ||
| 3144 | |||
| 3145 | cpuctx = &get_cpu_var(perf_cpu_context); | ||
| 3146 | perf_event_task_ctx(&cpuctx->ctx, task_event); | ||
| 3147 | put_cpu_var(perf_cpu_context); | ||
| 3148 | |||
| 3149 | rcu_read_lock(); | ||
| 3150 | if (!ctx) | ||
| 3151 | ctx = rcu_dereference(task_event->task->perf_event_ctxp); | ||
| 3152 | if (ctx) | ||
| 3153 | perf_event_task_ctx(ctx, task_event); | ||
| 3154 | rcu_read_unlock(); | ||
| 3155 | } | ||
| 3156 | |||
| 3157 | static void perf_event_task(struct task_struct *task, | ||
| 3158 | struct perf_event_context *task_ctx, | ||
| 3159 | int new) | ||
| 3160 | { | ||
| 3161 | struct perf_task_event task_event; | ||
| 3162 | |||
| 3163 | if (!atomic_read(&nr_comm_events) && | ||
| 3164 | !atomic_read(&nr_mmap_events) && | ||
| 3165 | !atomic_read(&nr_task_events)) | ||
| 3166 | return; | ||
| 3167 | |||
| 3168 | task_event = (struct perf_task_event){ | ||
| 3169 | .task = task, | ||
| 3170 | .task_ctx = task_ctx, | ||
| 3171 | .event_id = { | ||
| 3172 | .header = { | ||
| 3173 | .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, | ||
| 3174 | .misc = 0, | ||
| 3175 | .size = sizeof(task_event.event_id), | ||
| 3176 | }, | ||
| 3177 | /* .pid */ | ||
| 3178 | /* .ppid */ | ||
| 3179 | /* .tid */ | ||
| 3180 | /* .ptid */ | ||
| 3181 | }, | ||
| 3182 | }; | ||
| 3183 | |||
| 3184 | perf_event_task_event(&task_event); | ||
| 3185 | } | ||
| 3186 | |||
| 3187 | void perf_event_fork(struct task_struct *task) | ||
| 3188 | { | ||
| 3189 | perf_event_task(task, NULL, 1); | ||
| 3190 | } | ||
| 3191 | |||
| 3192 | /* | ||
| 3193 | * comm tracking | ||
| 3194 | */ | ||
| 3195 | |||
| 3196 | struct perf_comm_event { | ||
| 3197 | struct task_struct *task; | ||
| 3198 | char *comm; | ||
| 3199 | int comm_size; | ||
| 3200 | |||
| 3201 | struct { | ||
| 3202 | struct perf_event_header header; | ||
| 3203 | |||
| 3204 | u32 pid; | ||
| 3205 | u32 tid; | ||
| 3206 | } event_id; | ||
| 3207 | }; | ||
| 3208 | |||
| 3209 | static void perf_event_comm_output(struct perf_event *event, | ||
| 3210 | struct perf_comm_event *comm_event) | ||
| 3211 | { | ||
| 3212 | struct perf_output_handle handle; | ||
| 3213 | int size = comm_event->event_id.header.size; | ||
| 3214 | int ret = perf_output_begin(&handle, event, size, 0, 0); | ||
| 3215 | |||
| 3216 | if (ret) | ||
| 3217 | return; | ||
| 3218 | |||
| 3219 | comm_event->event_id.pid = perf_event_pid(event, comm_event->task); | ||
| 3220 | comm_event->event_id.tid = perf_event_tid(event, comm_event->task); | ||
| 3221 | |||
| 3222 | perf_output_put(&handle, comm_event->event_id); | ||
| 3223 | perf_output_copy(&handle, comm_event->comm, | ||
| 3224 | comm_event->comm_size); | ||
| 3225 | perf_output_end(&handle); | ||
| 3226 | } | ||
| 3227 | |||
| 3228 | static int perf_event_comm_match(struct perf_event *event) | ||
| 3229 | { | ||
| 3230 | if (event->attr.comm) | ||
| 3231 | return 1; | ||
| 3232 | |||
| 3233 | return 0; | ||
| 3234 | } | ||
| 3235 | |||
| 3236 | static void perf_event_comm_ctx(struct perf_event_context *ctx, | ||
| 3237 | struct perf_comm_event *comm_event) | ||
| 3238 | { | ||
| 3239 | struct perf_event *event; | ||
| 3240 | |||
| 3241 | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) | ||
| 3242 | return; | ||
| 3243 | |||
| 3244 | rcu_read_lock(); | ||
| 3245 | list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { | ||
| 3246 | if (perf_event_comm_match(event)) | ||
| 3247 | perf_event_comm_output(event, comm_event); | ||
| 3248 | } | ||
| 3249 | rcu_read_unlock(); | ||
| 3250 | } | ||
| 3251 | |||
| 3252 | static void perf_event_comm_event(struct perf_comm_event *comm_event) | ||
| 3253 | { | ||
| 3254 | struct perf_cpu_context *cpuctx; | ||
| 3255 | struct perf_event_context *ctx; | ||
| 3256 | unsigned int size; | ||
| 3257 | char comm[TASK_COMM_LEN]; | ||
| 3258 | |||
| 3259 | memset(comm, 0, sizeof(comm)); | ||
| 3260 | strncpy(comm, comm_event->task->comm, sizeof(comm)); | ||
| 3261 | size = ALIGN(strlen(comm)+1, sizeof(u64)); | ||
| 3262 | |||
| 3263 | comm_event->comm = comm; | ||
| 3264 | comm_event->comm_size = size; | ||
| 3265 | |||
| 3266 | comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; | ||
| 3267 | |||
| 3268 | cpuctx = &get_cpu_var(perf_cpu_context); | ||
| 3269 | perf_event_comm_ctx(&cpuctx->ctx, comm_event); | ||
| 3270 | put_cpu_var(perf_cpu_context); | ||
| 3271 | |||
| 3272 | rcu_read_lock(); | ||
| 3273 | /* | ||
| 3274 | * doesn't really matter which of the child contexts the | ||
| 3275 | * events ends up in. | ||
| 3276 | */ | ||
| 3277 | ctx = rcu_dereference(current->perf_event_ctxp); | ||
| 3278 | if (ctx) | ||
| 3279 | perf_event_comm_ctx(ctx, comm_event); | ||
| 3280 | rcu_read_unlock(); | ||
| 3281 | } | ||
| 3282 | |||
| 3283 | void perf_event_comm(struct task_struct *task) | ||
| 3284 | { | ||
| 3285 | struct perf_comm_event comm_event; | ||
| 3286 | |||
| 3287 | if (task->perf_event_ctxp) | ||
| 3288 | perf_event_enable_on_exec(task); | ||
| 3289 | |||
| 3290 | if (!atomic_read(&nr_comm_events)) | ||
| 3291 | return; | ||
| 3292 | |||
| 3293 | comm_event = (struct perf_comm_event){ | ||
| 3294 | .task = task, | ||
| 3295 | /* .comm */ | ||
| 3296 | /* .comm_size */ | ||
| 3297 | .event_id = { | ||
| 3298 | .header = { | ||
| 3299 | .type = PERF_RECORD_COMM, | ||
| 3300 | .misc = 0, | ||
| 3301 | /* .size */ | ||
| 3302 | }, | ||
| 3303 | /* .pid */ | ||
| 3304 | /* .tid */ | ||
| 3305 | }, | ||
| 3306 | }; | ||
| 3307 | |||
| 3308 | perf_event_comm_event(&comm_event); | ||
| 3309 | } | ||
| 3310 | |||
| 3311 | /* | ||
| 3312 | * mmap tracking | ||
| 3313 | */ | ||
| 3314 | |||
| 3315 | struct perf_mmap_event { | ||
| 3316 | struct vm_area_struct *vma; | ||
| 3317 | |||
| 3318 | const char *file_name; | ||
| 3319 | int file_size; | ||
| 3320 | |||
| 3321 | struct { | ||
| 3322 | struct perf_event_header header; | ||
| 3323 | |||
| 3324 | u32 pid; | ||
| 3325 | u32 tid; | ||
| 3326 | u64 start; | ||
| 3327 | u64 len; | ||
| 3328 | u64 pgoff; | ||
| 3329 | } event_id; | ||
| 3330 | }; | ||
| 3331 | |||
| 3332 | static void perf_event_mmap_output(struct perf_event *event, | ||
| 3333 | struct perf_mmap_event *mmap_event) | ||
| 3334 | { | ||
| 3335 | struct perf_output_handle handle; | ||
| 3336 | int size = mmap_event->event_id.header.size; | ||
| 3337 | int ret = perf_output_begin(&handle, event, size, 0, 0); | ||
| 3338 | |||
| 3339 | if (ret) | ||
| 3340 | return; | ||
| 3341 | |||
| 3342 | mmap_event->event_id.pid = perf_event_pid(event, current); | ||
| 3343 | mmap_event->event_id.tid = perf_event_tid(event, current); | ||
| 3344 | |||
| 3345 | perf_output_put(&handle, mmap_event->event_id); | ||
| 3346 | perf_output_copy(&handle, mmap_event->file_name, | ||
| 3347 | mmap_event->file_size); | ||
| 3348 | perf_output_end(&handle); | ||
| 3349 | } | ||
| 3350 | |||
| 3351 | static int perf_event_mmap_match(struct perf_event *event, | ||
| 3352 | struct perf_mmap_event *mmap_event) | ||
| 3353 | { | ||
| 3354 | if (event->attr.mmap) | ||
| 3355 | return 1; | ||
| 3356 | |||
| 3357 | return 0; | ||
| 3358 | } | ||
| 3359 | |||
| 3360 | static void perf_event_mmap_ctx(struct perf_event_context *ctx, | ||
| 3361 | struct perf_mmap_event *mmap_event) | ||
| 3362 | { | ||
| 3363 | struct perf_event *event; | ||
| 3364 | |||
| 3365 | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) | ||
| 3366 | return; | ||
| 3367 | |||
| 3368 | rcu_read_lock(); | ||
| 3369 | list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { | ||
| 3370 | if (perf_event_mmap_match(event, mmap_event)) | ||
| 3371 | perf_event_mmap_output(event, mmap_event); | ||
| 3372 | } | ||
| 3373 | rcu_read_unlock(); | ||
| 3374 | } | ||
| 3375 | |||
| 3376 | static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) | ||
| 3377 | { | ||
| 3378 | struct perf_cpu_context *cpuctx; | ||
| 3379 | struct perf_event_context *ctx; | ||
| 3380 | struct vm_area_struct *vma = mmap_event->vma; | ||
| 3381 | struct file *file = vma->vm_file; | ||
| 3382 | unsigned int size; | ||
| 3383 | char tmp[16]; | ||
| 3384 | char *buf = NULL; | ||
| 3385 | const char *name; | ||
| 3386 | |||
| 3387 | memset(tmp, 0, sizeof(tmp)); | ||
| 3388 | |||
| 3389 | if (file) { | ||
| 3390 | /* | ||
| 3391 | * d_path works from the end of the buffer backwards, so we | ||
| 3392 | * need to add enough zero bytes after the string to handle | ||
| 3393 | * the 64bit alignment we do later. | ||
| 3394 | */ | ||
| 3395 | buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL); | ||
| 3396 | if (!buf) { | ||
| 3397 | name = strncpy(tmp, "//enomem", sizeof(tmp)); | ||
| 3398 | goto got_name; | ||
| 3399 | } | ||
| 3400 | name = d_path(&file->f_path, buf, PATH_MAX); | ||
| 3401 | if (IS_ERR(name)) { | ||
| 3402 | name = strncpy(tmp, "//toolong", sizeof(tmp)); | ||
| 3403 | goto got_name; | ||
| 3404 | } | ||
| 3405 | } else { | ||
| 3406 | if (arch_vma_name(mmap_event->vma)) { | ||
| 3407 | name = strncpy(tmp, arch_vma_name(mmap_event->vma), | ||
| 3408 | sizeof(tmp)); | ||
| 3409 | goto got_name; | ||
| 3410 | } | ||
| 3411 | |||
| 3412 | if (!vma->vm_mm) { | ||
| 3413 | name = strncpy(tmp, "[vdso]", sizeof(tmp)); | ||
| 3414 | goto got_name; | ||
| 3415 | } | ||
| 3416 | |||
| 3417 | name = strncpy(tmp, "//anon", sizeof(tmp)); | ||
| 3418 | goto got_name; | ||
| 3419 | } | ||
| 3420 | |||
| 3421 | got_name: | ||
| 3422 | size = ALIGN(strlen(name)+1, sizeof(u64)); | ||
| 3423 | |||
| 3424 | mmap_event->file_name = name; | ||
| 3425 | mmap_event->file_size = size; | ||
| 3426 | |||
| 3427 | mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; | ||
| 3428 | |||
| 3429 | cpuctx = &get_cpu_var(perf_cpu_context); | ||
| 3430 | perf_event_mmap_ctx(&cpuctx->ctx, mmap_event); | ||
| 3431 | put_cpu_var(perf_cpu_context); | ||
| 3432 | |||
| 3433 | rcu_read_lock(); | ||
| 3434 | /* | ||
| 3435 | * doesn't really matter which of the child contexts the | ||
| 3436 | * events ends up in. | ||
| 3437 | */ | ||
| 3438 | ctx = rcu_dereference(current->perf_event_ctxp); | ||
| 3439 | if (ctx) | ||
| 3440 | perf_event_mmap_ctx(ctx, mmap_event); | ||
| 3441 | rcu_read_unlock(); | ||
| 3442 | |||
| 3443 | kfree(buf); | ||
| 3444 | } | ||
| 3445 | |||
| 3446 | void __perf_event_mmap(struct vm_area_struct *vma) | ||
| 3447 | { | ||
| 3448 | struct perf_mmap_event mmap_event; | ||
| 3449 | |||
| 3450 | if (!atomic_read(&nr_mmap_events)) | ||
| 3451 | return; | ||
| 3452 | |||
| 3453 | mmap_event = (struct perf_mmap_event){ | ||
| 3454 | .vma = vma, | ||
| 3455 | /* .file_name */ | ||
| 3456 | /* .file_size */ | ||
| 3457 | .event_id = { | ||
| 3458 | .header = { | ||
| 3459 | .type = PERF_RECORD_MMAP, | ||
| 3460 | .misc = 0, | ||
| 3461 | /* .size */ | ||
| 3462 | }, | ||
| 3463 | /* .pid */ | ||
| 3464 | /* .tid */ | ||
| 3465 | .start = vma->vm_start, | ||
| 3466 | .len = vma->vm_end - vma->vm_start, | ||
| 3467 | .pgoff = vma->vm_pgoff, | ||
| 3468 | }, | ||
| 3469 | }; | ||
| 3470 | |||
| 3471 | perf_event_mmap_event(&mmap_event); | ||
| 3472 | } | ||
| 3473 | |||
| 3474 | /* | ||
| 3475 | * IRQ throttle logging | ||
| 3476 | */ | ||
| 3477 | |||
| 3478 | static void perf_log_throttle(struct perf_event *event, int enable) | ||
| 3479 | { | ||
| 3480 | struct perf_output_handle handle; | ||
| 3481 | int ret; | ||
| 3482 | |||
| 3483 | struct { | ||
| 3484 | struct perf_event_header header; | ||
| 3485 | u64 time; | ||
| 3486 | u64 id; | ||
| 3487 | u64 stream_id; | ||
| 3488 | } throttle_event = { | ||
| 3489 | .header = { | ||
| 3490 | .type = PERF_RECORD_THROTTLE, | ||
| 3491 | .misc = 0, | ||
| 3492 | .size = sizeof(throttle_event), | ||
| 3493 | }, | ||
| 3494 | .time = perf_clock(), | ||
| 3495 | .id = primary_event_id(event), | ||
| 3496 | .stream_id = event->id, | ||
| 3497 | }; | ||
| 3498 | |||
| 3499 | if (enable) | ||
| 3500 | throttle_event.header.type = PERF_RECORD_UNTHROTTLE; | ||
| 3501 | |||
| 3502 | ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0); | ||
| 3503 | if (ret) | ||
| 3504 | return; | ||
| 3505 | |||
| 3506 | perf_output_put(&handle, throttle_event); | ||
| 3507 | perf_output_end(&handle); | ||
| 3508 | } | ||
| 3509 | |||
| 3510 | /* | ||
| 3511 | * Generic event overflow handling, sampling. | ||
| 3512 | */ | ||
| 3513 | |||
| 3514 | static int __perf_event_overflow(struct perf_event *event, int nmi, | ||
| 3515 | int throttle, struct perf_sample_data *data, | ||
| 3516 | struct pt_regs *regs) | ||
| 3517 | { | ||
| 3518 | int events = atomic_read(&event->event_limit); | ||
| 3519 | struct hw_perf_event *hwc = &event->hw; | ||
| 3520 | int ret = 0; | ||
| 3521 | |||
| 3522 | throttle = (throttle && event->pmu->unthrottle != NULL); | ||
| 3523 | |||
| 3524 | if (!throttle) { | ||
| 3525 | hwc->interrupts++; | ||
| 3526 | } else { | ||
| 3527 | if (hwc->interrupts != MAX_INTERRUPTS) { | ||
| 3528 | hwc->interrupts++; | ||
| 3529 | if (HZ * hwc->interrupts > | ||
| 3530 | (u64)sysctl_perf_event_sample_rate) { | ||
| 3531 | hwc->interrupts = MAX_INTERRUPTS; | ||
| 3532 | perf_log_throttle(event, 0); | ||
| 3533 | ret = 1; | ||
| 3534 | } | ||
| 3535 | } else { | ||
| 3536 | /* | ||
| 3537 | * Keep re-disabling events even though on the previous | ||
| 3538 | * pass we disabled it - just in case we raced with a | ||
| 3539 | * sched-in and the event got enabled again: | ||
| 3540 | */ | ||
| 3541 | ret = 1; | ||
| 3542 | } | ||
| 3543 | } | ||
| 3544 | |||
| 3545 | if (event->attr.freq) { | ||
| 3546 | u64 now = perf_clock(); | ||
| 3547 | s64 delta = now - hwc->freq_stamp; | ||
| 3548 | |||
| 3549 | hwc->freq_stamp = now; | ||
| 3550 | |||
| 3551 | if (delta > 0 && delta < TICK_NSEC) | ||
| 3552 | perf_adjust_period(event, NSEC_PER_SEC / (int)delta); | ||
| 3553 | } | ||
| 3554 | |||
| 3555 | /* | ||
| 3556 | * XXX event_limit might not quite work as expected on inherited | ||
| 3557 | * events | ||
| 3558 | */ | ||
| 3559 | |||
| 3560 | event->pending_kill = POLL_IN; | ||
| 3561 | if (events && atomic_dec_and_test(&event->event_limit)) { | ||
| 3562 | ret = 1; | ||
| 3563 | event->pending_kill = POLL_HUP; | ||
| 3564 | if (nmi) { | ||
| 3565 | event->pending_disable = 1; | ||
| 3566 | perf_pending_queue(&event->pending, | ||
| 3567 | perf_pending_event); | ||
| 3568 | } else | ||
| 3569 | perf_event_disable(event); | ||
| 3570 | } | ||
| 3571 | |||
| 3572 | perf_event_output(event, nmi, data, regs); | ||
| 3573 | return ret; | ||
| 3574 | } | ||
| 3575 | |||
| 3576 | int perf_event_overflow(struct perf_event *event, int nmi, | ||
| 3577 | struct perf_sample_data *data, | ||
| 3578 | struct pt_regs *regs) | ||
| 3579 | { | ||
| 3580 | return __perf_event_overflow(event, nmi, 1, data, regs); | ||
| 3581 | } | ||
| 3582 | |||
| 3583 | /* | ||
| 3584 | * Generic software event infrastructure | ||
| 3585 | */ | ||
| 3586 | |||
| 3587 | /* | ||
| 3588 | * We directly increment event->count and keep a second value in | ||
| 3589 | * event->hw.period_left to count intervals. This period event | ||
| 3590 | * is kept in the range [-sample_period, 0] so that we can use the | ||
| 3591 | * sign as trigger. | ||
| 3592 | */ | ||
| 3593 | |||
| 3594 | static u64 perf_swevent_set_period(struct perf_event *event) | ||
| 3595 | { | ||
| 3596 | struct hw_perf_event *hwc = &event->hw; | ||
| 3597 | u64 period = hwc->last_period; | ||
| 3598 | u64 nr, offset; | ||
| 3599 | s64 old, val; | ||
| 3600 | |||
| 3601 | hwc->last_period = hwc->sample_period; | ||
| 3602 | |||
| 3603 | again: | ||
| 3604 | old = val = atomic64_read(&hwc->period_left); | ||
| 3605 | if (val < 0) | ||
| 3606 | return 0; | ||
| 3607 | |||
| 3608 | nr = div64_u64(period + val, period); | ||
| 3609 | offset = nr * period; | ||
| 3610 | val -= offset; | ||
| 3611 | if (atomic64_cmpxchg(&hwc->period_left, old, val) != old) | ||
| 3612 | goto again; | ||
| 3613 | |||
| 3614 | return nr; | ||
| 3615 | } | ||
| 3616 | |||
| 3617 | static void perf_swevent_overflow(struct perf_event *event, | ||
| 3618 | int nmi, struct perf_sample_data *data, | ||
| 3619 | struct pt_regs *regs) | ||
| 3620 | { | ||
| 3621 | struct hw_perf_event *hwc = &event->hw; | ||
| 3622 | int throttle = 0; | ||
| 3623 | u64 overflow; | ||
| 3624 | |||
| 3625 | data->period = event->hw.last_period; | ||
| 3626 | overflow = perf_swevent_set_period(event); | ||
| 3627 | |||
| 3628 | if (hwc->interrupts == MAX_INTERRUPTS) | ||
| 3629 | return; | ||
| 3630 | |||
| 3631 | for (; overflow; overflow--) { | ||
| 3632 | if (__perf_event_overflow(event, nmi, throttle, | ||
| 3633 | data, regs)) { | ||
| 3634 | /* | ||
| 3635 | * We inhibit the overflow from happening when | ||
| 3636 | * hwc->interrupts == MAX_INTERRUPTS. | ||
| 3637 | */ | ||
| 3638 | break; | ||
| 3639 | } | ||
| 3640 | throttle = 1; | ||
| 3641 | } | ||
| 3642 | } | ||
| 3643 | |||
| 3644 | static void perf_swevent_unthrottle(struct perf_event *event) | ||
| 3645 | { | ||
| 3646 | /* | ||
| 3647 | * Nothing to do, we already reset hwc->interrupts. | ||
| 3648 | */ | ||
| 3649 | } | ||
| 3650 | |||
| 3651 | static void perf_swevent_add(struct perf_event *event, u64 nr, | ||
| 3652 | int nmi, struct perf_sample_data *data, | ||
| 3653 | struct pt_regs *regs) | ||
| 3654 | { | ||
| 3655 | struct hw_perf_event *hwc = &event->hw; | ||
| 3656 | |||
| 3657 | atomic64_add(nr, &event->count); | ||
| 3658 | |||
| 3659 | if (!hwc->sample_period) | ||
| 3660 | return; | ||
| 3661 | |||
| 3662 | if (!regs) | ||
| 3663 | return; | ||
| 3664 | |||
| 3665 | if (!atomic64_add_negative(nr, &hwc->period_left)) | ||
| 3666 | perf_swevent_overflow(event, nmi, data, regs); | ||
| 3667 | } | ||
| 3668 | |||
| 3669 | static int perf_swevent_is_counting(struct perf_event *event) | ||
| 3670 | { | ||
| 3671 | /* | ||
| 3672 | * The event is active, we're good! | ||
| 3673 | */ | ||
| 3674 | if (event->state == PERF_EVENT_STATE_ACTIVE) | ||
| 3675 | return 1; | ||
| 3676 | |||
| 3677 | /* | ||
| 3678 | * The event is off/error, not counting. | ||
| 3679 | */ | ||
| 3680 | if (event->state != PERF_EVENT_STATE_INACTIVE) | ||
| 3681 | return 0; | ||
| 3682 | |||
| 3683 | /* | ||
| 3684 | * The event is inactive, if the context is active | ||
| 3685 | * we're part of a group that didn't make it on the 'pmu', | ||
| 3686 | * not counting. | ||
| 3687 | */ | ||
| 3688 | if (event->ctx->is_active) | ||
| 3689 | return 0; | ||
| 3690 | |||
| 3691 | /* | ||
| 3692 | * We're inactive and the context is too, this means the | ||
| 3693 | * task is scheduled out, we're counting events that happen | ||
| 3694 | * to us, like migration events. | ||
| 3695 | */ | ||
| 3696 | return 1; | ||
| 3697 | } | ||
| 3698 | |||
| 3699 | static int perf_swevent_match(struct perf_event *event, | ||
| 3700 | enum perf_type_id type, | ||
| 3701 | u32 event_id, struct pt_regs *regs) | ||
| 3702 | { | ||
| 3703 | if (!perf_swevent_is_counting(event)) | ||
| 3704 | return 0; | ||
| 3705 | |||
| 3706 | if (event->attr.type != type) | ||
| 3707 | return 0; | ||
| 3708 | if (event->attr.config != event_id) | ||
| 3709 | return 0; | ||
| 3710 | |||
| 3711 | if (regs) { | ||
| 3712 | if (event->attr.exclude_user && user_mode(regs)) | ||
| 3713 | return 0; | ||
| 3714 | |||
| 3715 | if (event->attr.exclude_kernel && !user_mode(regs)) | ||
| 3716 | return 0; | ||
| 3717 | } | ||
| 3718 | |||
| 3719 | return 1; | ||
| 3720 | } | ||
| 3721 | |||
| 3722 | static void perf_swevent_ctx_event(struct perf_event_context *ctx, | ||
| 3723 | enum perf_type_id type, | ||
| 3724 | u32 event_id, u64 nr, int nmi, | ||
| 3725 | struct perf_sample_data *data, | ||
| 3726 | struct pt_regs *regs) | ||
| 3727 | { | ||
| 3728 | struct perf_event *event; | ||
| 3729 | |||
| 3730 | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) | ||
| 3731 | return; | ||
| 3732 | |||
| 3733 | rcu_read_lock(); | ||
| 3734 | list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { | ||
| 3735 | if (perf_swevent_match(event, type, event_id, regs)) | ||
| 3736 | perf_swevent_add(event, nr, nmi, data, regs); | ||
| 3737 | } | ||
| 3738 | rcu_read_unlock(); | ||
| 3739 | } | ||
| 3740 | |||
| 3741 | static int *perf_swevent_recursion_context(struct perf_cpu_context *cpuctx) | ||
| 3742 | { | ||
| 3743 | if (in_nmi()) | ||
| 3744 | return &cpuctx->recursion[3]; | ||
| 3745 | |||
| 3746 | if (in_irq()) | ||
| 3747 | return &cpuctx->recursion[2]; | ||
| 3748 | |||
| 3749 | if (in_softirq()) | ||
| 3750 | return &cpuctx->recursion[1]; | ||
| 3751 | |||
| 3752 | return &cpuctx->recursion[0]; | ||
| 3753 | } | ||
| 3754 | |||
| 3755 | static void do_perf_sw_event(enum perf_type_id type, u32 event_id, | ||
| 3756 | u64 nr, int nmi, | ||
| 3757 | struct perf_sample_data *data, | ||
| 3758 | struct pt_regs *regs) | ||
| 3759 | { | ||
| 3760 | struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context); | ||
| 3761 | int *recursion = perf_swevent_recursion_context(cpuctx); | ||
| 3762 | struct perf_event_context *ctx; | ||
| 3763 | |||
| 3764 | if (*recursion) | ||
| 3765 | goto out; | ||
| 3766 | |||
| 3767 | (*recursion)++; | ||
| 3768 | barrier(); | ||
| 3769 | |||
| 3770 | perf_swevent_ctx_event(&cpuctx->ctx, type, event_id, | ||
| 3771 | nr, nmi, data, regs); | ||
| 3772 | rcu_read_lock(); | ||
| 3773 | /* | ||
| 3774 | * doesn't really matter which of the child contexts the | ||
| 3775 | * events ends up in. | ||
| 3776 | */ | ||
| 3777 | ctx = rcu_dereference(current->perf_event_ctxp); | ||
| 3778 | if (ctx) | ||
| 3779 | perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs); | ||
| 3780 | rcu_read_unlock(); | ||
| 3781 | |||
| 3782 | barrier(); | ||
| 3783 | (*recursion)--; | ||
| 3784 | |||
| 3785 | out: | ||
| 3786 | put_cpu_var(perf_cpu_context); | ||
| 3787 | } | ||
| 3788 | |||
| 3789 | void __perf_sw_event(u32 event_id, u64 nr, int nmi, | ||
| 3790 | struct pt_regs *regs, u64 addr) | ||
| 3791 | { | ||
| 3792 | struct perf_sample_data data = { | ||
| 3793 | .addr = addr, | ||
| 3794 | }; | ||
| 3795 | |||
| 3796 | do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, | ||
| 3797 | &data, regs); | ||
| 3798 | } | ||
| 3799 | |||
| 3800 | static void perf_swevent_read(struct perf_event *event) | ||
| 3801 | { | ||
| 3802 | } | ||
| 3803 | |||
| 3804 | static int perf_swevent_enable(struct perf_event *event) | ||
| 3805 | { | ||
| 3806 | struct hw_perf_event *hwc = &event->hw; | ||
| 3807 | |||
| 3808 | if (hwc->sample_period) { | ||
| 3809 | hwc->last_period = hwc->sample_period; | ||
| 3810 | perf_swevent_set_period(event); | ||
| 3811 | } | ||
| 3812 | return 0; | ||
| 3813 | } | ||
| 3814 | |||
| 3815 | static void perf_swevent_disable(struct perf_event *event) | ||
| 3816 | { | ||
| 3817 | } | ||
| 3818 | |||
| 3819 | static const struct pmu perf_ops_generic = { | ||
| 3820 | .enable = perf_swevent_enable, | ||
| 3821 | .disable = perf_swevent_disable, | ||
| 3822 | .read = perf_swevent_read, | ||
| 3823 | .unthrottle = perf_swevent_unthrottle, | ||
| 3824 | }; | ||
| 3825 | |||
| 3826 | /* | ||
| 3827 | * hrtimer based swevent callback | ||
| 3828 | */ | ||
| 3829 | |||
| 3830 | static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) | ||
| 3831 | { | ||
| 3832 | enum hrtimer_restart ret = HRTIMER_RESTART; | ||
| 3833 | struct perf_sample_data data; | ||
| 3834 | struct pt_regs *regs; | ||
| 3835 | struct perf_event *event; | ||
| 3836 | u64 period; | ||
| 3837 | |||
| 3838 | event = container_of(hrtimer, struct perf_event, hw.hrtimer); | ||
| 3839 | event->pmu->read(event); | ||
| 3840 | |||
| 3841 | data.addr = 0; | ||
| 3842 | regs = get_irq_regs(); | ||
| 3843 | /* | ||
| 3844 | * In case we exclude kernel IPs or are somehow not in interrupt | ||
| 3845 | * context, provide the next best thing, the user IP. | ||
| 3846 | */ | ||
| 3847 | if ((event->attr.exclude_kernel || !regs) && | ||
| 3848 | !event->attr.exclude_user) | ||
| 3849 | regs = task_pt_regs(current); | ||
| 3850 | |||
| 3851 | if (regs) { | ||
| 3852 | if (perf_event_overflow(event, 0, &data, regs)) | ||
| 3853 | ret = HRTIMER_NORESTART; | ||
| 3854 | } | ||
| 3855 | |||
| 3856 | period = max_t(u64, 10000, event->hw.sample_period); | ||
| 3857 | hrtimer_forward_now(hrtimer, ns_to_ktime(period)); | ||
| 3858 | |||
| 3859 | return ret; | ||
| 3860 | } | ||
| 3861 | |||
| 3862 | /* | ||
| 3863 | * Software event: cpu wall time clock | ||
| 3864 | */ | ||
| 3865 | |||
| 3866 | static void cpu_clock_perf_event_update(struct perf_event *event) | ||
| 3867 | { | ||
| 3868 | int cpu = raw_smp_processor_id(); | ||
| 3869 | s64 prev; | ||
| 3870 | u64 now; | ||
| 3871 | |||
| 3872 | now = cpu_clock(cpu); | ||
| 3873 | prev = atomic64_read(&event->hw.prev_count); | ||
| 3874 | atomic64_set(&event->hw.prev_count, now); | ||
| 3875 | atomic64_add(now - prev, &event->count); | ||
| 3876 | } | ||
| 3877 | |||
| 3878 | static int cpu_clock_perf_event_enable(struct perf_event *event) | ||
| 3879 | { | ||
| 3880 | struct hw_perf_event *hwc = &event->hw; | ||
| 3881 | int cpu = raw_smp_processor_id(); | ||
| 3882 | |||
| 3883 | atomic64_set(&hwc->prev_count, cpu_clock(cpu)); | ||
| 3884 | hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | ||
| 3885 | hwc->hrtimer.function = perf_swevent_hrtimer; | ||
| 3886 | if (hwc->sample_period) { | ||
| 3887 | u64 period = max_t(u64, 10000, hwc->sample_period); | ||
| 3888 | __hrtimer_start_range_ns(&hwc->hrtimer, | ||
| 3889 | ns_to_ktime(period), 0, | ||
| 3890 | HRTIMER_MODE_REL, 0); | ||
| 3891 | } | ||
| 3892 | |||
| 3893 | return 0; | ||
| 3894 | } | ||
| 3895 | |||
| 3896 | static void cpu_clock_perf_event_disable(struct perf_event *event) | ||
| 3897 | { | ||
| 3898 | if (event->hw.sample_period) | ||
| 3899 | hrtimer_cancel(&event->hw.hrtimer); | ||
| 3900 | cpu_clock_perf_event_update(event); | ||
| 3901 | } | ||
| 3902 | |||
| 3903 | static void cpu_clock_perf_event_read(struct perf_event *event) | ||
| 3904 | { | ||
| 3905 | cpu_clock_perf_event_update(event); | ||
| 3906 | } | ||
| 3907 | |||
| 3908 | static const struct pmu perf_ops_cpu_clock = { | ||
| 3909 | .enable = cpu_clock_perf_event_enable, | ||
| 3910 | .disable = cpu_clock_perf_event_disable, | ||
| 3911 | .read = cpu_clock_perf_event_read, | ||
| 3912 | }; | ||
| 3913 | |||
| 3914 | /* | ||
| 3915 | * Software event: task time clock | ||
| 3916 | */ | ||
| 3917 | |||
| 3918 | static void task_clock_perf_event_update(struct perf_event *event, u64 now) | ||
| 3919 | { | ||
| 3920 | u64 prev; | ||
| 3921 | s64 delta; | ||
| 3922 | |||
| 3923 | prev = atomic64_xchg(&event->hw.prev_count, now); | ||
| 3924 | delta = now - prev; | ||
| 3925 | atomic64_add(delta, &event->count); | ||
| 3926 | } | ||
| 3927 | |||
| 3928 | static int task_clock_perf_event_enable(struct perf_event *event) | ||
| 3929 | { | ||
| 3930 | struct hw_perf_event *hwc = &event->hw; | ||
| 3931 | u64 now; | ||
| 3932 | |||
| 3933 | now = event->ctx->time; | ||
| 3934 | |||
| 3935 | atomic64_set(&hwc->prev_count, now); | ||
| 3936 | hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | ||
| 3937 | hwc->hrtimer.function = perf_swevent_hrtimer; | ||
| 3938 | if (hwc->sample_period) { | ||
| 3939 | u64 period = max_t(u64, 10000, hwc->sample_period); | ||
| 3940 | __hrtimer_start_range_ns(&hwc->hrtimer, | ||
| 3941 | ns_to_ktime(period), 0, | ||
| 3942 | HRTIMER_MODE_REL, 0); | ||
| 3943 | } | ||
| 3944 | |||
| 3945 | return 0; | ||
| 3946 | } | ||
| 3947 | |||
| 3948 | static void task_clock_perf_event_disable(struct perf_event *event) | ||
| 3949 | { | ||
| 3950 | if (event->hw.sample_period) | ||
| 3951 | hrtimer_cancel(&event->hw.hrtimer); | ||
| 3952 | task_clock_perf_event_update(event, event->ctx->time); | ||
| 3953 | |||
| 3954 | } | ||
| 3955 | |||
| 3956 | static void task_clock_perf_event_read(struct perf_event *event) | ||
| 3957 | { | ||
| 3958 | u64 time; | ||
| 3959 | |||
| 3960 | if (!in_nmi()) { | ||
| 3961 | update_context_time(event->ctx); | ||
| 3962 | time = event->ctx->time; | ||
| 3963 | } else { | ||
| 3964 | u64 now = perf_clock(); | ||
| 3965 | u64 delta = now - event->ctx->timestamp; | ||
| 3966 | time = event->ctx->time + delta; | ||
| 3967 | } | ||
| 3968 | |||
| 3969 | task_clock_perf_event_update(event, time); | ||
| 3970 | } | ||
| 3971 | |||
| 3972 | static const struct pmu perf_ops_task_clock = { | ||
| 3973 | .enable = task_clock_perf_event_enable, | ||
| 3974 | .disable = task_clock_perf_event_disable, | ||
| 3975 | .read = task_clock_perf_event_read, | ||
| 3976 | }; | ||
| 3977 | |||
| 3978 | #ifdef CONFIG_EVENT_PROFILE | ||
| 3979 | void perf_tp_event(int event_id, u64 addr, u64 count, void *record, | ||
| 3980 | int entry_size) | ||
| 3981 | { | ||
| 3982 | struct perf_raw_record raw = { | ||
| 3983 | .size = entry_size, | ||
| 3984 | .data = record, | ||
| 3985 | }; | ||
| 3986 | |||
| 3987 | struct perf_sample_data data = { | ||
| 3988 | .addr = addr, | ||
| 3989 | .raw = &raw, | ||
| 3990 | }; | ||
| 3991 | |||
| 3992 | struct pt_regs *regs = get_irq_regs(); | ||
| 3993 | |||
| 3994 | if (!regs) | ||
| 3995 | regs = task_pt_regs(current); | ||
| 3996 | |||
| 3997 | do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1, | ||
| 3998 | &data, regs); | ||
| 3999 | } | ||
| 4000 | EXPORT_SYMBOL_GPL(perf_tp_event); | ||
| 4001 | |||
| 4002 | extern int ftrace_profile_enable(int); | ||
| 4003 | extern void ftrace_profile_disable(int); | ||
| 4004 | |||
| 4005 | static void tp_perf_event_destroy(struct perf_event *event) | ||
| 4006 | { | ||
| 4007 | ftrace_profile_disable(event->attr.config); | ||
| 4008 | } | ||
| 4009 | |||
| 4010 | static const struct pmu *tp_perf_event_init(struct perf_event *event) | ||
| 4011 | { | ||
| 4012 | /* | ||
| 4013 | * Raw tracepoint data is a severe data leak, only allow root to | ||
| 4014 | * have these. | ||
| 4015 | */ | ||
| 4016 | if ((event->attr.sample_type & PERF_SAMPLE_RAW) && | ||
| 4017 | perf_paranoid_tracepoint_raw() && | ||
| 4018 | !capable(CAP_SYS_ADMIN)) | ||
| 4019 | return ERR_PTR(-EPERM); | ||
| 4020 | |||
| 4021 | if (ftrace_profile_enable(event->attr.config)) | ||
| 4022 | return NULL; | ||
| 4023 | |||
| 4024 | event->destroy = tp_perf_event_destroy; | ||
| 4025 | |||
| 4026 | return &perf_ops_generic; | ||
| 4027 | } | ||
| 4028 | #else | ||
| 4029 | static const struct pmu *tp_perf_event_init(struct perf_event *event) | ||
| 4030 | { | ||
| 4031 | return NULL; | ||
| 4032 | } | ||
| 4033 | #endif | ||
| 4034 | |||
| 4035 | atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX]; | ||
| 4036 | |||
| 4037 | static void sw_perf_event_destroy(struct perf_event *event) | ||
| 4038 | { | ||
| 4039 | u64 event_id = event->attr.config; | ||
| 4040 | |||
| 4041 | WARN_ON(event->parent); | ||
| 4042 | |||
| 4043 | atomic_dec(&perf_swevent_enabled[event_id]); | ||
| 4044 | } | ||
| 4045 | |||
| 4046 | static const struct pmu *sw_perf_event_init(struct perf_event *event) | ||
| 4047 | { | ||
| 4048 | const struct pmu *pmu = NULL; | ||
| 4049 | u64 event_id = event->attr.config; | ||
| 4050 | |||
| 4051 | /* | ||
| 4052 | * Software events (currently) can't in general distinguish | ||
| 4053 | * between user, kernel and hypervisor events. | ||
| 4054 | * However, context switches and cpu migrations are considered | ||
| 4055 | * to be kernel events, and page faults are never hypervisor | ||
| 4056 | * events. | ||
| 4057 | */ | ||
| 4058 | switch (event_id) { | ||
| 4059 | case PERF_COUNT_SW_CPU_CLOCK: | ||
| 4060 | pmu = &perf_ops_cpu_clock; | ||
| 4061 | |||
| 4062 | break; | ||
| 4063 | case PERF_COUNT_SW_TASK_CLOCK: | ||
| 4064 | /* | ||
| 4065 | * If the user instantiates this as a per-cpu event, | ||
| 4066 | * use the cpu_clock event instead. | ||
| 4067 | */ | ||
| 4068 | if (event->ctx->task) | ||
| 4069 | pmu = &perf_ops_task_clock; | ||
| 4070 | else | ||
| 4071 | pmu = &perf_ops_cpu_clock; | ||
| 4072 | |||
| 4073 | break; | ||
| 4074 | case PERF_COUNT_SW_PAGE_FAULTS: | ||
| 4075 | case PERF_COUNT_SW_PAGE_FAULTS_MIN: | ||
| 4076 | case PERF_COUNT_SW_PAGE_FAULTS_MAJ: | ||
| 4077 | case PERF_COUNT_SW_CONTEXT_SWITCHES: | ||
| 4078 | case PERF_COUNT_SW_CPU_MIGRATIONS: | ||
| 4079 | if (!event->parent) { | ||
| 4080 | atomic_inc(&perf_swevent_enabled[event_id]); | ||
| 4081 | event->destroy = sw_perf_event_destroy; | ||
| 4082 | } | ||
| 4083 | pmu = &perf_ops_generic; | ||
| 4084 | break; | ||
| 4085 | } | ||
| 4086 | |||
| 4087 | return pmu; | ||
| 4088 | } | ||
| 4089 | |||
| 4090 | /* | ||
| 4091 | * Allocate and initialize a event structure | ||
| 4092 | */ | ||
| 4093 | static struct perf_event * | ||
| 4094 | perf_event_alloc(struct perf_event_attr *attr, | ||
| 4095 | int cpu, | ||
| 4096 | struct perf_event_context *ctx, | ||
| 4097 | struct perf_event *group_leader, | ||
| 4098 | struct perf_event *parent_event, | ||
| 4099 | gfp_t gfpflags) | ||
| 4100 | { | ||
| 4101 | const struct pmu *pmu; | ||
| 4102 | struct perf_event *event; | ||
| 4103 | struct hw_perf_event *hwc; | ||
| 4104 | long err; | ||
| 4105 | |||
| 4106 | event = kzalloc(sizeof(*event), gfpflags); | ||
| 4107 | if (!event) | ||
| 4108 | return ERR_PTR(-ENOMEM); | ||
| 4109 | |||
| 4110 | /* | ||
| 4111 | * Single events are their own group leaders, with an | ||
| 4112 | * empty sibling list: | ||
| 4113 | */ | ||
| 4114 | if (!group_leader) | ||
| 4115 | group_leader = event; | ||
| 4116 | |||
| 4117 | mutex_init(&event->child_mutex); | ||
| 4118 | INIT_LIST_HEAD(&event->child_list); | ||
| 4119 | |||
| 4120 | INIT_LIST_HEAD(&event->group_entry); | ||
| 4121 | INIT_LIST_HEAD(&event->event_entry); | ||
| 4122 | INIT_LIST_HEAD(&event->sibling_list); | ||
| 4123 | init_waitqueue_head(&event->waitq); | ||
| 4124 | |||
| 4125 | mutex_init(&event->mmap_mutex); | ||
| 4126 | |||
| 4127 | event->cpu = cpu; | ||
| 4128 | event->attr = *attr; | ||
| 4129 | event->group_leader = group_leader; | ||
| 4130 | event->pmu = NULL; | ||
| 4131 | event->ctx = ctx; | ||
| 4132 | event->oncpu = -1; | ||
| 4133 | |||
| 4134 | event->parent = parent_event; | ||
| 4135 | |||
| 4136 | event->ns = get_pid_ns(current->nsproxy->pid_ns); | ||
| 4137 | event->id = atomic64_inc_return(&perf_event_id); | ||
| 4138 | |||
| 4139 | event->state = PERF_EVENT_STATE_INACTIVE; | ||
| 4140 | |||
| 4141 | if (attr->disabled) | ||
| 4142 | event->state = PERF_EVENT_STATE_OFF; | ||
| 4143 | |||
| 4144 | pmu = NULL; | ||
| 4145 | |||
| 4146 | hwc = &event->hw; | ||
| 4147 | hwc->sample_period = attr->sample_period; | ||
| 4148 | if (attr->freq && attr->sample_freq) | ||
| 4149 | hwc->sample_period = 1; | ||
| 4150 | hwc->last_period = hwc->sample_period; | ||
| 4151 | |||
| 4152 | atomic64_set(&hwc->period_left, hwc->sample_period); | ||
| 4153 | |||
| 4154 | /* | ||
| 4155 | * we currently do not support PERF_FORMAT_GROUP on inherited events | ||
| 4156 | */ | ||
| 4157 | if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP)) | ||
| 4158 | goto done; | ||
| 4159 | |||
| 4160 | switch (attr->type) { | ||
| 4161 | case PERF_TYPE_RAW: | ||
| 4162 | case PERF_TYPE_HARDWARE: | ||
| 4163 | case PERF_TYPE_HW_CACHE: | ||
| 4164 | pmu = hw_perf_event_init(event); | ||
| 4165 | break; | ||
| 4166 | |||
| 4167 | case PERF_TYPE_SOFTWARE: | ||
| 4168 | pmu = sw_perf_event_init(event); | ||
| 4169 | break; | ||
| 4170 | |||
| 4171 | case PERF_TYPE_TRACEPOINT: | ||
| 4172 | pmu = tp_perf_event_init(event); | ||
| 4173 | break; | ||
| 4174 | |||
| 4175 | default: | ||
| 4176 | break; | ||
| 4177 | } | ||
| 4178 | done: | ||
| 4179 | err = 0; | ||
| 4180 | if (!pmu) | ||
| 4181 | err = -EINVAL; | ||
| 4182 | else if (IS_ERR(pmu)) | ||
| 4183 | err = PTR_ERR(pmu); | ||
| 4184 | |||
| 4185 | if (err) { | ||
| 4186 | if (event->ns) | ||
| 4187 | put_pid_ns(event->ns); | ||
| 4188 | kfree(event); | ||
| 4189 | return ERR_PTR(err); | ||
| 4190 | } | ||
| 4191 | |||
| 4192 | event->pmu = pmu; | ||
| 4193 | |||
| 4194 | if (!event->parent) { | ||
| 4195 | atomic_inc(&nr_events); | ||
| 4196 | if (event->attr.mmap) | ||
| 4197 | atomic_inc(&nr_mmap_events); | ||
| 4198 | if (event->attr.comm) | ||
| 4199 | atomic_inc(&nr_comm_events); | ||
| 4200 | if (event->attr.task) | ||
| 4201 | atomic_inc(&nr_task_events); | ||
| 4202 | } | ||
| 4203 | |||
| 4204 | return event; | ||
| 4205 | } | ||
| 4206 | |||
| 4207 | static int perf_copy_attr(struct perf_event_attr __user *uattr, | ||
| 4208 | struct perf_event_attr *attr) | ||
| 4209 | { | ||
| 4210 | u32 size; | ||
| 4211 | int ret; | ||
| 4212 | |||
| 4213 | if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) | ||
| 4214 | return -EFAULT; | ||
| 4215 | |||
| 4216 | /* | ||
| 4217 | * zero the full structure, so that a short copy will be nice. | ||
| 4218 | */ | ||
| 4219 | memset(attr, 0, sizeof(*attr)); | ||
| 4220 | |||
| 4221 | ret = get_user(size, &uattr->size); | ||
| 4222 | if (ret) | ||
| 4223 | return ret; | ||
| 4224 | |||
| 4225 | if (size > PAGE_SIZE) /* silly large */ | ||
| 4226 | goto err_size; | ||
| 4227 | |||
| 4228 | if (!size) /* abi compat */ | ||
| 4229 | size = PERF_ATTR_SIZE_VER0; | ||
| 4230 | |||
| 4231 | if (size < PERF_ATTR_SIZE_VER0) | ||
| 4232 | goto err_size; | ||
| 4233 | |||
| 4234 | /* | ||
| 4235 | * If we're handed a bigger struct than we know of, | ||
| 4236 | * ensure all the unknown bits are 0 - i.e. new | ||
| 4237 | * user-space does not rely on any kernel feature | ||
| 4238 | * extensions we dont know about yet. | ||
| 4239 | */ | ||
| 4240 | if (size > sizeof(*attr)) { | ||
| 4241 | unsigned char __user *addr; | ||
| 4242 | unsigned char __user *end; | ||
| 4243 | unsigned char val; | ||
| 4244 | |||
| 4245 | addr = (void __user *)uattr + sizeof(*attr); | ||
| 4246 | end = (void __user *)uattr + size; | ||
| 4247 | |||
| 4248 | for (; addr < end; addr++) { | ||
| 4249 | ret = get_user(val, addr); | ||
| 4250 | if (ret) | ||
| 4251 | return ret; | ||
| 4252 | if (val) | ||
| 4253 | goto err_size; | ||
| 4254 | } | ||
| 4255 | size = sizeof(*attr); | ||
| 4256 | } | ||
| 4257 | |||
| 4258 | ret = copy_from_user(attr, uattr, size); | ||
| 4259 | if (ret) | ||
| 4260 | return -EFAULT; | ||
| 4261 | |||
| 4262 | /* | ||
| 4263 | * If the type exists, the corresponding creation will verify | ||
| 4264 | * the attr->config. | ||
| 4265 | */ | ||
| 4266 | if (attr->type >= PERF_TYPE_MAX) | ||
| 4267 | return -EINVAL; | ||
| 4268 | |||
| 4269 | if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) | ||
| 4270 | return -EINVAL; | ||
| 4271 | |||
| 4272 | if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) | ||
| 4273 | return -EINVAL; | ||
| 4274 | |||
| 4275 | if (attr->read_format & ~(PERF_FORMAT_MAX-1)) | ||
| 4276 | return -EINVAL; | ||
| 4277 | |||
| 4278 | out: | ||
| 4279 | return ret; | ||
| 4280 | |||
| 4281 | err_size: | ||
| 4282 | put_user(sizeof(*attr), &uattr->size); | ||
| 4283 | ret = -E2BIG; | ||
| 4284 | goto out; | ||
| 4285 | } | ||
| 4286 | |||
| 4287 | int perf_event_set_output(struct perf_event *event, int output_fd) | ||
| 4288 | { | ||
| 4289 | struct perf_event *output_event = NULL; | ||
| 4290 | struct file *output_file = NULL; | ||
| 4291 | struct perf_event *old_output; | ||
| 4292 | int fput_needed = 0; | ||
| 4293 | int ret = -EINVAL; | ||
| 4294 | |||
| 4295 | if (!output_fd) | ||
| 4296 | goto set; | ||
| 4297 | |||
| 4298 | output_file = fget_light(output_fd, &fput_needed); | ||
| 4299 | if (!output_file) | ||
| 4300 | return -EBADF; | ||
| 4301 | |||
| 4302 | if (output_file->f_op != &perf_fops) | ||
| 4303 | goto out; | ||
| 4304 | |||
| 4305 | output_event = output_file->private_data; | ||
| 4306 | |||
| 4307 | /* Don't chain output fds */ | ||
| 4308 | if (output_event->output) | ||
| 4309 | goto out; | ||
| 4310 | |||
| 4311 | /* Don't set an output fd when we already have an output channel */ | ||
| 4312 | if (event->data) | ||
| 4313 | goto out; | ||
| 4314 | |||
| 4315 | atomic_long_inc(&output_file->f_count); | ||
| 4316 | |||
| 4317 | set: | ||
| 4318 | mutex_lock(&event->mmap_mutex); | ||
| 4319 | old_output = event->output; | ||
| 4320 | rcu_assign_pointer(event->output, output_event); | ||
| 4321 | mutex_unlock(&event->mmap_mutex); | ||
| 4322 | |||
| 4323 | if (old_output) { | ||
| 4324 | /* | ||
| 4325 | * we need to make sure no existing perf_output_*() | ||
| 4326 | * is still referencing this event. | ||
| 4327 | */ | ||
| 4328 | synchronize_rcu(); | ||
| 4329 | fput(old_output->filp); | ||
| 4330 | } | ||
| 4331 | |||
| 4332 | ret = 0; | ||
| 4333 | out: | ||
| 4334 | fput_light(output_file, fput_needed); | ||
| 4335 | return ret; | ||
| 4336 | } | ||
| 4337 | |||
| 4338 | /** | ||
| 4339 | * sys_perf_event_open - open a performance event, associate it to a task/cpu | ||
| 4340 | * | ||
| 4341 | * @attr_uptr: event_id type attributes for monitoring/sampling | ||
| 4342 | * @pid: target pid | ||
| 4343 | * @cpu: target cpu | ||
| 4344 | * @group_fd: group leader event fd | ||
| 4345 | */ | ||
| 4346 | SYSCALL_DEFINE5(perf_event_open, | ||
| 4347 | struct perf_event_attr __user *, attr_uptr, | ||
| 4348 | pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) | ||
| 4349 | { | ||
| 4350 | struct perf_event *event, *group_leader; | ||
| 4351 | struct perf_event_attr attr; | ||
| 4352 | struct perf_event_context *ctx; | ||
| 4353 | struct file *event_file = NULL; | ||
| 4354 | struct file *group_file = NULL; | ||
| 4355 | int fput_needed = 0; | ||
| 4356 | int fput_needed2 = 0; | ||
| 4357 | int err; | ||
| 4358 | |||
| 4359 | /* for future expandability... */ | ||
| 4360 | if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT)) | ||
| 4361 | return -EINVAL; | ||
| 4362 | |||
| 4363 | err = perf_copy_attr(attr_uptr, &attr); | ||
| 4364 | if (err) | ||
| 4365 | return err; | ||
| 4366 | |||
| 4367 | if (!attr.exclude_kernel) { | ||
| 4368 | if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) | ||
| 4369 | return -EACCES; | ||
| 4370 | } | ||
| 4371 | |||
| 4372 | if (attr.freq) { | ||
| 4373 | if (attr.sample_freq > sysctl_perf_event_sample_rate) | ||
| 4374 | return -EINVAL; | ||
| 4375 | } | ||
| 4376 | |||
| 4377 | /* | ||
| 4378 | * Get the target context (task or percpu): | ||
| 4379 | */ | ||
| 4380 | ctx = find_get_context(pid, cpu); | ||
| 4381 | if (IS_ERR(ctx)) | ||
| 4382 | return PTR_ERR(ctx); | ||
| 4383 | |||
| 4384 | /* | ||
| 4385 | * Look up the group leader (we will attach this event to it): | ||
| 4386 | */ | ||
| 4387 | group_leader = NULL; | ||
| 4388 | if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) { | ||
| 4389 | err = -EINVAL; | ||
| 4390 | group_file = fget_light(group_fd, &fput_needed); | ||
| 4391 | if (!group_file) | ||
| 4392 | goto err_put_context; | ||
| 4393 | if (group_file->f_op != &perf_fops) | ||
| 4394 | goto err_put_context; | ||
| 4395 | |||
| 4396 | group_leader = group_file->private_data; | ||
| 4397 | /* | ||
| 4398 | * Do not allow a recursive hierarchy (this new sibling | ||
| 4399 | * becoming part of another group-sibling): | ||
| 4400 | */ | ||
| 4401 | if (group_leader->group_leader != group_leader) | ||
| 4402 | goto err_put_context; | ||
| 4403 | /* | ||
| 4404 | * Do not allow to attach to a group in a different | ||
| 4405 | * task or CPU context: | ||
| 4406 | */ | ||
| 4407 | if (group_leader->ctx != ctx) | ||
| 4408 | goto err_put_context; | ||
| 4409 | /* | ||
| 4410 | * Only a group leader can be exclusive or pinned | ||
| 4411 | */ | ||
| 4412 | if (attr.exclusive || attr.pinned) | ||
| 4413 | goto err_put_context; | ||
| 4414 | } | ||
| 4415 | |||
| 4416 | event = perf_event_alloc(&attr, cpu, ctx, group_leader, | ||
| 4417 | NULL, GFP_KERNEL); | ||
| 4418 | err = PTR_ERR(event); | ||
| 4419 | if (IS_ERR(event)) | ||
| 4420 | goto err_put_context; | ||
| 4421 | |||
| 4422 | err = anon_inode_getfd("[perf_event]", &perf_fops, event, 0); | ||
| 4423 | if (err < 0) | ||
| 4424 | goto err_free_put_context; | ||
| 4425 | |||
| 4426 | event_file = fget_light(err, &fput_needed2); | ||
| 4427 | if (!event_file) | ||
| 4428 | goto err_free_put_context; | ||
| 4429 | |||
| 4430 | if (flags & PERF_FLAG_FD_OUTPUT) { | ||
| 4431 | err = perf_event_set_output(event, group_fd); | ||
| 4432 | if (err) | ||
| 4433 | goto err_fput_free_put_context; | ||
| 4434 | } | ||
| 4435 | |||
| 4436 | event->filp = event_file; | ||
| 4437 | WARN_ON_ONCE(ctx->parent_ctx); | ||
| 4438 | mutex_lock(&ctx->mutex); | ||
| 4439 | perf_install_in_context(ctx, event, cpu); | ||
| 4440 | ++ctx->generation; | ||
| 4441 | mutex_unlock(&ctx->mutex); | ||
| 4442 | |||
| 4443 | event->owner = current; | ||
| 4444 | get_task_struct(current); | ||
| 4445 | mutex_lock(¤t->perf_event_mutex); | ||
| 4446 | list_add_tail(&event->owner_entry, ¤t->perf_event_list); | ||
| 4447 | mutex_unlock(¤t->perf_event_mutex); | ||
| 4448 | |||
| 4449 | err_fput_free_put_context: | ||
| 4450 | fput_light(event_file, fput_needed2); | ||
| 4451 | |||
| 4452 | err_free_put_context: | ||
| 4453 | if (err < 0) | ||
| 4454 | kfree(event); | ||
| 4455 | |||
| 4456 | err_put_context: | ||
| 4457 | if (err < 0) | ||
| 4458 | put_ctx(ctx); | ||
| 4459 | |||
| 4460 | fput_light(group_file, fput_needed); | ||
| 4461 | |||
| 4462 | return err; | ||
| 4463 | } | ||
| 4464 | |||
| 4465 | /* | ||
| 4466 | * inherit a event from parent task to child task: | ||
| 4467 | */ | ||
| 4468 | static struct perf_event * | ||
| 4469 | inherit_event(struct perf_event *parent_event, | ||
| 4470 | struct task_struct *parent, | ||
| 4471 | struct perf_event_context *parent_ctx, | ||
| 4472 | struct task_struct *child, | ||
| 4473 | struct perf_event *group_leader, | ||
| 4474 | struct perf_event_context *child_ctx) | ||
| 4475 | { | ||
| 4476 | struct perf_event *child_event; | ||
| 4477 | |||
| 4478 | /* | ||
| 4479 | * Instead of creating recursive hierarchies of events, | ||
| 4480 | * we link inherited events back to the original parent, | ||
| 4481 | * which has a filp for sure, which we use as the reference | ||
| 4482 | * count: | ||
| 4483 | */ | ||
| 4484 | if (parent_event->parent) | ||
| 4485 | parent_event = parent_event->parent; | ||
| 4486 | |||
| 4487 | child_event = perf_event_alloc(&parent_event->attr, | ||
| 4488 | parent_event->cpu, child_ctx, | ||
| 4489 | group_leader, parent_event, | ||
| 4490 | GFP_KERNEL); | ||
| 4491 | if (IS_ERR(child_event)) | ||
| 4492 | return child_event; | ||
| 4493 | get_ctx(child_ctx); | ||
| 4494 | |||
| 4495 | /* | ||
| 4496 | * Make the child state follow the state of the parent event, | ||
| 4497 | * not its attr.disabled bit. We hold the parent's mutex, | ||
| 4498 | * so we won't race with perf_event_{en, dis}able_family. | ||
| 4499 | */ | ||
| 4500 | if (parent_event->state >= PERF_EVENT_STATE_INACTIVE) | ||
| 4501 | child_event->state = PERF_EVENT_STATE_INACTIVE; | ||
| 4502 | else | ||
| 4503 | child_event->state = PERF_EVENT_STATE_OFF; | ||
| 4504 | |||
| 4505 | if (parent_event->attr.freq) | ||
| 4506 | child_event->hw.sample_period = parent_event->hw.sample_period; | ||
| 4507 | |||
| 4508 | /* | ||
| 4509 | * Link it up in the child's context: | ||
| 4510 | */ | ||
| 4511 | add_event_to_ctx(child_event, child_ctx); | ||
| 4512 | |||
| 4513 | /* | ||
| 4514 | * Get a reference to the parent filp - we will fput it | ||
| 4515 | * when the child event exits. This is safe to do because | ||
| 4516 | * we are in the parent and we know that the filp still | ||
| 4517 | * exists and has a nonzero count: | ||
| 4518 | */ | ||
| 4519 | atomic_long_inc(&parent_event->filp->f_count); | ||
| 4520 | |||
| 4521 | /* | ||
| 4522 | * Link this into the parent event's child list | ||
| 4523 | */ | ||
| 4524 | WARN_ON_ONCE(parent_event->ctx->parent_ctx); | ||
| 4525 | mutex_lock(&parent_event->child_mutex); | ||
| 4526 | list_add_tail(&child_event->child_list, &parent_event->child_list); | ||
| 4527 | mutex_unlock(&parent_event->child_mutex); | ||
| 4528 | |||
| 4529 | return child_event; | ||
| 4530 | } | ||
| 4531 | |||
| 4532 | static int inherit_group(struct perf_event *parent_event, | ||
| 4533 | struct task_struct *parent, | ||
| 4534 | struct perf_event_context *parent_ctx, | ||
| 4535 | struct task_struct *child, | ||
| 4536 | struct perf_event_context *child_ctx) | ||
| 4537 | { | ||
| 4538 | struct perf_event *leader; | ||
| 4539 | struct perf_event *sub; | ||
| 4540 | struct perf_event *child_ctr; | ||
| 4541 | |||
| 4542 | leader = inherit_event(parent_event, parent, parent_ctx, | ||
| 4543 | child, NULL, child_ctx); | ||
| 4544 | if (IS_ERR(leader)) | ||
| 4545 | return PTR_ERR(leader); | ||
| 4546 | list_for_each_entry(sub, &parent_event->sibling_list, group_entry) { | ||
| 4547 | child_ctr = inherit_event(sub, parent, parent_ctx, | ||
| 4548 | child, leader, child_ctx); | ||
| 4549 | if (IS_ERR(child_ctr)) | ||
| 4550 | return PTR_ERR(child_ctr); | ||
| 4551 | } | ||
| 4552 | return 0; | ||
| 4553 | } | ||
| 4554 | |||
| 4555 | static void sync_child_event(struct perf_event *child_event, | ||
| 4556 | struct task_struct *child) | ||
| 4557 | { | ||
| 4558 | struct perf_event *parent_event = child_event->parent; | ||
| 4559 | u64 child_val; | ||
| 4560 | |||
| 4561 | if (child_event->attr.inherit_stat) | ||
| 4562 | perf_event_read_event(child_event, child); | ||
| 4563 | |||
| 4564 | child_val = atomic64_read(&child_event->count); | ||
| 4565 | |||
| 4566 | /* | ||
| 4567 | * Add back the child's count to the parent's count: | ||
| 4568 | */ | ||
| 4569 | atomic64_add(child_val, &parent_event->count); | ||
| 4570 | atomic64_add(child_event->total_time_enabled, | ||
| 4571 | &parent_event->child_total_time_enabled); | ||
| 4572 | atomic64_add(child_event->total_time_running, | ||
| 4573 | &parent_event->child_total_time_running); | ||
| 4574 | |||
| 4575 | /* | ||
| 4576 | * Remove this event from the parent's list | ||
| 4577 | */ | ||
| 4578 | WARN_ON_ONCE(parent_event->ctx->parent_ctx); | ||
| 4579 | mutex_lock(&parent_event->child_mutex); | ||
| 4580 | list_del_init(&child_event->child_list); | ||
| 4581 | mutex_unlock(&parent_event->child_mutex); | ||
| 4582 | |||
| 4583 | /* | ||
| 4584 | * Release the parent event, if this was the last | ||
| 4585 | * reference to it. | ||
| 4586 | */ | ||
| 4587 | fput(parent_event->filp); | ||
| 4588 | } | ||
| 4589 | |||
| 4590 | static void | ||
| 4591 | __perf_event_exit_task(struct perf_event *child_event, | ||
| 4592 | struct perf_event_context *child_ctx, | ||
| 4593 | struct task_struct *child) | ||
| 4594 | { | ||
| 4595 | struct perf_event *parent_event; | ||
| 4596 | |||
| 4597 | update_event_times(child_event); | ||
| 4598 | perf_event_remove_from_context(child_event); | ||
| 4599 | |||
| 4600 | parent_event = child_event->parent; | ||
| 4601 | /* | ||
| 4602 | * It can happen that parent exits first, and has events | ||
| 4603 | * that are still around due to the child reference. These | ||
| 4604 | * events need to be zapped - but otherwise linger. | ||
| 4605 | */ | ||
| 4606 | if (parent_event) { | ||
| 4607 | sync_child_event(child_event, child); | ||
| 4608 | free_event(child_event); | ||
| 4609 | } | ||
| 4610 | } | ||
| 4611 | |||
| 4612 | /* | ||
| 4613 | * When a child task exits, feed back event values to parent events. | ||
| 4614 | */ | ||
| 4615 | void perf_event_exit_task(struct task_struct *child) | ||
| 4616 | { | ||
| 4617 | struct perf_event *child_event, *tmp; | ||
| 4618 | struct perf_event_context *child_ctx; | ||
| 4619 | unsigned long flags; | ||
| 4620 | |||
| 4621 | if (likely(!child->perf_event_ctxp)) { | ||
| 4622 | perf_event_task(child, NULL, 0); | ||
| 4623 | return; | ||
| 4624 | } | ||
| 4625 | |||
| 4626 | local_irq_save(flags); | ||
| 4627 | /* | ||
| 4628 | * We can't reschedule here because interrupts are disabled, | ||
| 4629 | * and either child is current or it is a task that can't be | ||
| 4630 | * scheduled, so we are now safe from rescheduling changing | ||
| 4631 | * our context. | ||
| 4632 | */ | ||
| 4633 | child_ctx = child->perf_event_ctxp; | ||
| 4634 | __perf_event_task_sched_out(child_ctx); | ||
| 4635 | |||
| 4636 | /* | ||
| 4637 | * Take the context lock here so that if find_get_context is | ||
| 4638 | * reading child->perf_event_ctxp, we wait until it has | ||
| 4639 | * incremented the context's refcount before we do put_ctx below. | ||
| 4640 | */ | ||
| 4641 | spin_lock(&child_ctx->lock); | ||
| 4642 | child->perf_event_ctxp = NULL; | ||
| 4643 | /* | ||
| 4644 | * If this context is a clone; unclone it so it can't get | ||
| 4645 | * swapped to another process while we're removing all | ||
| 4646 | * the events from it. | ||
| 4647 | */ | ||
| 4648 | unclone_ctx(child_ctx); | ||
| 4649 | spin_unlock_irqrestore(&child_ctx->lock, flags); | ||
| 4650 | |||
| 4651 | /* | ||
| 4652 | * Report the task dead after unscheduling the events so that we | ||
| 4653 | * won't get any samples after PERF_RECORD_EXIT. We can however still | ||
| 4654 | * get a few PERF_RECORD_READ events. | ||
| 4655 | */ | ||
| 4656 | perf_event_task(child, child_ctx, 0); | ||
| 4657 | |||
| 4658 | /* | ||
| 4659 | * We can recurse on the same lock type through: | ||
| 4660 | * | ||
| 4661 | * __perf_event_exit_task() | ||
| 4662 | * sync_child_event() | ||
| 4663 | * fput(parent_event->filp) | ||
| 4664 | * perf_release() | ||
| 4665 | * mutex_lock(&ctx->mutex) | ||
| 4666 | * | ||
| 4667 | * But since its the parent context it won't be the same instance. | ||
| 4668 | */ | ||
| 4669 | mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING); | ||
| 4670 | |||
| 4671 | again: | ||
| 4672 | list_for_each_entry_safe(child_event, tmp, &child_ctx->group_list, | ||
| 4673 | group_entry) | ||
| 4674 | __perf_event_exit_task(child_event, child_ctx, child); | ||
| 4675 | |||
| 4676 | /* | ||
| 4677 | * If the last event was a group event, it will have appended all | ||
| 4678 | * its siblings to the list, but we obtained 'tmp' before that which | ||
| 4679 | * will still point to the list head terminating the iteration. | ||
| 4680 | */ | ||
| 4681 | if (!list_empty(&child_ctx->group_list)) | ||
| 4682 | goto again; | ||
| 4683 | |||
| 4684 | mutex_unlock(&child_ctx->mutex); | ||
| 4685 | |||
| 4686 | put_ctx(child_ctx); | ||
| 4687 | } | ||
| 4688 | |||
| 4689 | /* | ||
| 4690 | * free an unexposed, unused context as created by inheritance by | ||
| 4691 | * init_task below, used by fork() in case of fail. | ||
| 4692 | */ | ||
| 4693 | void perf_event_free_task(struct task_struct *task) | ||
| 4694 | { | ||
| 4695 | struct perf_event_context *ctx = task->perf_event_ctxp; | ||
| 4696 | struct perf_event *event, *tmp; | ||
| 4697 | |||
| 4698 | if (!ctx) | ||
| 4699 | return; | ||
| 4700 | |||
| 4701 | mutex_lock(&ctx->mutex); | ||
| 4702 | again: | ||
| 4703 | list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry) { | ||
| 4704 | struct perf_event *parent = event->parent; | ||
| 4705 | |||
| 4706 | if (WARN_ON_ONCE(!parent)) | ||
| 4707 | continue; | ||
| 4708 | |||
| 4709 | mutex_lock(&parent->child_mutex); | ||
| 4710 | list_del_init(&event->child_list); | ||
| 4711 | mutex_unlock(&parent->child_mutex); | ||
| 4712 | |||
| 4713 | fput(parent->filp); | ||
| 4714 | |||
| 4715 | list_del_event(event, ctx); | ||
| 4716 | free_event(event); | ||
| 4717 | } | ||
| 4718 | |||
| 4719 | if (!list_empty(&ctx->group_list)) | ||
| 4720 | goto again; | ||
| 4721 | |||
| 4722 | mutex_unlock(&ctx->mutex); | ||
| 4723 | |||
| 4724 | put_ctx(ctx); | ||
| 4725 | } | ||
| 4726 | |||
| 4727 | /* | ||
| 4728 | * Initialize the perf_event context in task_struct | ||
| 4729 | */ | ||
| 4730 | int perf_event_init_task(struct task_struct *child) | ||
| 4731 | { | ||
| 4732 | struct perf_event_context *child_ctx, *parent_ctx; | ||
| 4733 | struct perf_event_context *cloned_ctx; | ||
| 4734 | struct perf_event *event; | ||
| 4735 | struct task_struct *parent = current; | ||
| 4736 | int inherited_all = 1; | ||
| 4737 | int ret = 0; | ||
| 4738 | |||
| 4739 | child->perf_event_ctxp = NULL; | ||
| 4740 | |||
| 4741 | mutex_init(&child->perf_event_mutex); | ||
| 4742 | INIT_LIST_HEAD(&child->perf_event_list); | ||
| 4743 | |||
| 4744 | if (likely(!parent->perf_event_ctxp)) | ||
| 4745 | return 0; | ||
| 4746 | |||
| 4747 | /* | ||
| 4748 | * This is executed from the parent task context, so inherit | ||
| 4749 | * events that have been marked for cloning. | ||
| 4750 | * First allocate and initialize a context for the child. | ||
| 4751 | */ | ||
| 4752 | |||
| 4753 | child_ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL); | ||
| 4754 | if (!child_ctx) | ||
| 4755 | return -ENOMEM; | ||
| 4756 | |||
| 4757 | __perf_event_init_context(child_ctx, child); | ||
| 4758 | child->perf_event_ctxp = child_ctx; | ||
| 4759 | get_task_struct(child); | ||
| 4760 | |||
| 4761 | /* | ||
| 4762 | * If the parent's context is a clone, pin it so it won't get | ||
| 4763 | * swapped under us. | ||
| 4764 | */ | ||
| 4765 | parent_ctx = perf_pin_task_context(parent); | ||
| 4766 | |||
| 4767 | /* | ||
| 4768 | * No need to check if parent_ctx != NULL here; since we saw | ||
| 4769 | * it non-NULL earlier, the only reason for it to become NULL | ||
| 4770 | * is if we exit, and since we're currently in the middle of | ||
| 4771 | * a fork we can't be exiting at the same time. | ||
| 4772 | */ | ||
| 4773 | |||
| 4774 | /* | ||
| 4775 | * Lock the parent list. No need to lock the child - not PID | ||
| 4776 | * hashed yet and not running, so nobody can access it. | ||
| 4777 | */ | ||
| 4778 | mutex_lock(&parent_ctx->mutex); | ||
| 4779 | |||
| 4780 | /* | ||
| 4781 | * We dont have to disable NMIs - we are only looking at | ||
| 4782 | * the list, not manipulating it: | ||
| 4783 | */ | ||
| 4784 | list_for_each_entry_rcu(event, &parent_ctx->event_list, event_entry) { | ||
| 4785 | if (event != event->group_leader) | ||
| 4786 | continue; | ||
| 4787 | |||
| 4788 | if (!event->attr.inherit) { | ||
| 4789 | inherited_all = 0; | ||
| 4790 | continue; | ||
| 4791 | } | ||
| 4792 | |||
| 4793 | ret = inherit_group(event, parent, parent_ctx, | ||
| 4794 | child, child_ctx); | ||
| 4795 | if (ret) { | ||
| 4796 | inherited_all = 0; | ||
| 4797 | break; | ||
| 4798 | } | ||
| 4799 | } | ||
| 4800 | |||
| 4801 | if (inherited_all) { | ||
| 4802 | /* | ||
| 4803 | * Mark the child context as a clone of the parent | ||
| 4804 | * context, or of whatever the parent is a clone of. | ||
| 4805 | * Note that if the parent is a clone, it could get | ||
| 4806 | * uncloned at any point, but that doesn't matter | ||
| 4807 | * because the list of events and the generation | ||
| 4808 | * count can't have changed since we took the mutex. | ||
| 4809 | */ | ||
| 4810 | cloned_ctx = rcu_dereference(parent_ctx->parent_ctx); | ||
| 4811 | if (cloned_ctx) { | ||
| 4812 | child_ctx->parent_ctx = cloned_ctx; | ||
| 4813 | child_ctx->parent_gen = parent_ctx->parent_gen; | ||
| 4814 | } else { | ||
| 4815 | child_ctx->parent_ctx = parent_ctx; | ||
| 4816 | child_ctx->parent_gen = parent_ctx->generation; | ||
| 4817 | } | ||
| 4818 | get_ctx(child_ctx->parent_ctx); | ||
| 4819 | } | ||
| 4820 | |||
| 4821 | mutex_unlock(&parent_ctx->mutex); | ||
| 4822 | |||
| 4823 | perf_unpin_context(parent_ctx); | ||
| 4824 | |||
| 4825 | return ret; | ||
| 4826 | } | ||
| 4827 | |||
| 4828 | static void __cpuinit perf_event_init_cpu(int cpu) | ||
| 4829 | { | ||
| 4830 | struct perf_cpu_context *cpuctx; | ||
| 4831 | |||
| 4832 | cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
| 4833 | __perf_event_init_context(&cpuctx->ctx, NULL); | ||
| 4834 | |||
| 4835 | spin_lock(&perf_resource_lock); | ||
| 4836 | cpuctx->max_pertask = perf_max_events - perf_reserved_percpu; | ||
| 4837 | spin_unlock(&perf_resource_lock); | ||
| 4838 | |||
| 4839 | hw_perf_event_setup(cpu); | ||
| 4840 | } | ||
| 4841 | |||
| 4842 | #ifdef CONFIG_HOTPLUG_CPU | ||
| 4843 | static void __perf_event_exit_cpu(void *info) | ||
| 4844 | { | ||
| 4845 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
| 4846 | struct perf_event_context *ctx = &cpuctx->ctx; | ||
| 4847 | struct perf_event *event, *tmp; | ||
| 4848 | |||
| 4849 | list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry) | ||
| 4850 | __perf_event_remove_from_context(event); | ||
| 4851 | } | ||
| 4852 | static void perf_event_exit_cpu(int cpu) | ||
| 4853 | { | ||
| 4854 | struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
| 4855 | struct perf_event_context *ctx = &cpuctx->ctx; | ||
| 4856 | |||
| 4857 | mutex_lock(&ctx->mutex); | ||
| 4858 | smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1); | ||
| 4859 | mutex_unlock(&ctx->mutex); | ||
| 4860 | } | ||
| 4861 | #else | ||
| 4862 | static inline void perf_event_exit_cpu(int cpu) { } | ||
| 4863 | #endif | ||
| 4864 | |||
| 4865 | static int __cpuinit | ||
| 4866 | perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) | ||
| 4867 | { | ||
| 4868 | unsigned int cpu = (long)hcpu; | ||
| 4869 | |||
| 4870 | switch (action) { | ||
| 4871 | |||
| 4872 | case CPU_UP_PREPARE: | ||
| 4873 | case CPU_UP_PREPARE_FROZEN: | ||
| 4874 | perf_event_init_cpu(cpu); | ||
| 4875 | break; | ||
| 4876 | |||
| 4877 | case CPU_ONLINE: | ||
| 4878 | case CPU_ONLINE_FROZEN: | ||
| 4879 | hw_perf_event_setup_online(cpu); | ||
| 4880 | break; | ||
| 4881 | |||
| 4882 | case CPU_DOWN_PREPARE: | ||
| 4883 | case CPU_DOWN_PREPARE_FROZEN: | ||
| 4884 | perf_event_exit_cpu(cpu); | ||
| 4885 | break; | ||
| 4886 | |||
| 4887 | default: | ||
| 4888 | break; | ||
| 4889 | } | ||
| 4890 | |||
| 4891 | return NOTIFY_OK; | ||
| 4892 | } | ||
| 4893 | |||
| 4894 | /* | ||
| 4895 | * This has to have a higher priority than migration_notifier in sched.c. | ||
| 4896 | */ | ||
| 4897 | static struct notifier_block __cpuinitdata perf_cpu_nb = { | ||
| 4898 | .notifier_call = perf_cpu_notify, | ||
| 4899 | .priority = 20, | ||
| 4900 | }; | ||
| 4901 | |||
| 4902 | void __init perf_event_init(void) | ||
| 4903 | { | ||
| 4904 | perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE, | ||
| 4905 | (void *)(long)smp_processor_id()); | ||
| 4906 | perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE, | ||
| 4907 | (void *)(long)smp_processor_id()); | ||
| 4908 | register_cpu_notifier(&perf_cpu_nb); | ||
| 4909 | } | ||
| 4910 | |||
| 4911 | static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf) | ||
| 4912 | { | ||
| 4913 | return sprintf(buf, "%d\n", perf_reserved_percpu); | ||
| 4914 | } | ||
| 4915 | |||
| 4916 | static ssize_t | ||
| 4917 | perf_set_reserve_percpu(struct sysdev_class *class, | ||
| 4918 | const char *buf, | ||
| 4919 | size_t count) | ||
| 4920 | { | ||
| 4921 | struct perf_cpu_context *cpuctx; | ||
| 4922 | unsigned long val; | ||
| 4923 | int err, cpu, mpt; | ||
| 4924 | |||
| 4925 | err = strict_strtoul(buf, 10, &val); | ||
| 4926 | if (err) | ||
| 4927 | return err; | ||
| 4928 | if (val > perf_max_events) | ||
| 4929 | return -EINVAL; | ||
| 4930 | |||
| 4931 | spin_lock(&perf_resource_lock); | ||
| 4932 | perf_reserved_percpu = val; | ||
| 4933 | for_each_online_cpu(cpu) { | ||
| 4934 | cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
| 4935 | spin_lock_irq(&cpuctx->ctx.lock); | ||
| 4936 | mpt = min(perf_max_events - cpuctx->ctx.nr_events, | ||
| 4937 | perf_max_events - perf_reserved_percpu); | ||
| 4938 | cpuctx->max_pertask = mpt; | ||
| 4939 | spin_unlock_irq(&cpuctx->ctx.lock); | ||
| 4940 | } | ||
| 4941 | spin_unlock(&perf_resource_lock); | ||
| 4942 | |||
| 4943 | return count; | ||
| 4944 | } | ||
| 4945 | |||
| 4946 | static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf) | ||
| 4947 | { | ||
| 4948 | return sprintf(buf, "%d\n", perf_overcommit); | ||
| 4949 | } | ||
| 4950 | |||
| 4951 | static ssize_t | ||
| 4952 | perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count) | ||
| 4953 | { | ||
| 4954 | unsigned long val; | ||
| 4955 | int err; | ||
| 4956 | |||
| 4957 | err = strict_strtoul(buf, 10, &val); | ||
| 4958 | if (err) | ||
| 4959 | return err; | ||
| 4960 | if (val > 1) | ||
| 4961 | return -EINVAL; | ||
| 4962 | |||
| 4963 | spin_lock(&perf_resource_lock); | ||
| 4964 | perf_overcommit = val; | ||
| 4965 | spin_unlock(&perf_resource_lock); | ||
| 4966 | |||
| 4967 | return count; | ||
| 4968 | } | ||
| 4969 | |||
| 4970 | static SYSDEV_CLASS_ATTR( | ||
| 4971 | reserve_percpu, | ||
| 4972 | 0644, | ||
| 4973 | perf_show_reserve_percpu, | ||
| 4974 | perf_set_reserve_percpu | ||
| 4975 | ); | ||
| 4976 | |||
| 4977 | static SYSDEV_CLASS_ATTR( | ||
| 4978 | overcommit, | ||
| 4979 | 0644, | ||
| 4980 | perf_show_overcommit, | ||
| 4981 | perf_set_overcommit | ||
| 4982 | ); | ||
| 4983 | |||
| 4984 | static struct attribute *perfclass_attrs[] = { | ||
| 4985 | &attr_reserve_percpu.attr, | ||
| 4986 | &attr_overcommit.attr, | ||
| 4987 | NULL | ||
| 4988 | }; | ||
| 4989 | |||
| 4990 | static struct attribute_group perfclass_attr_group = { | ||
| 4991 | .attrs = perfclass_attrs, | ||
| 4992 | .name = "perf_events", | ||
| 4993 | }; | ||
| 4994 | |||
| 4995 | static int __init perf_event_sysfs_init(void) | ||
| 4996 | { | ||
| 4997 | return sysfs_create_group(&cpu_sysdev_class.kset.kobj, | ||
| 4998 | &perfclass_attr_group); | ||
| 4999 | } | ||
| 5000 | device_initcall(perf_event_sysfs_init); | ||
diff --git a/kernel/pid.c b/kernel/pid.c index 31310b5d3f50..d3f722d20f9c 100644 --- a/kernel/pid.c +++ b/kernel/pid.c | |||
| @@ -40,7 +40,7 @@ | |||
| 40 | #define pid_hashfn(nr, ns) \ | 40 | #define pid_hashfn(nr, ns) \ |
| 41 | hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift) | 41 | hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift) |
| 42 | static struct hlist_head *pid_hash; | 42 | static struct hlist_head *pid_hash; |
| 43 | static int pidhash_shift; | 43 | static unsigned int pidhash_shift = 4; |
| 44 | struct pid init_struct_pid = INIT_STRUCT_PID; | 44 | struct pid init_struct_pid = INIT_STRUCT_PID; |
| 45 | 45 | ||
| 46 | int pid_max = PID_MAX_DEFAULT; | 46 | int pid_max = PID_MAX_DEFAULT; |
| @@ -499,19 +499,12 @@ struct pid *find_ge_pid(int nr, struct pid_namespace *ns) | |||
| 499 | void __init pidhash_init(void) | 499 | void __init pidhash_init(void) |
| 500 | { | 500 | { |
| 501 | int i, pidhash_size; | 501 | int i, pidhash_size; |
| 502 | unsigned long megabytes = nr_kernel_pages >> (20 - PAGE_SHIFT); | ||
| 503 | 502 | ||
| 504 | pidhash_shift = max(4, fls(megabytes * 4)); | 503 | pid_hash = alloc_large_system_hash("PID", sizeof(*pid_hash), 0, 18, |
| 505 | pidhash_shift = min(12, pidhash_shift); | 504 | HASH_EARLY | HASH_SMALL, |
| 505 | &pidhash_shift, NULL, 4096); | ||
| 506 | pidhash_size = 1 << pidhash_shift; | 506 | pidhash_size = 1 << pidhash_shift; |
| 507 | 507 | ||
| 508 | printk("PID hash table entries: %d (order: %d, %Zd bytes)\n", | ||
| 509 | pidhash_size, pidhash_shift, | ||
| 510 | pidhash_size * sizeof(struct hlist_head)); | ||
| 511 | |||
| 512 | pid_hash = alloc_bootmem(pidhash_size * sizeof(*(pid_hash))); | ||
| 513 | if (!pid_hash) | ||
| 514 | panic("Could not alloc pidhash!\n"); | ||
| 515 | for (i = 0; i < pidhash_size; i++) | 508 | for (i = 0; i < pidhash_size; i++) |
| 516 | INIT_HLIST_HEAD(&pid_hash[i]); | 509 | INIT_HLIST_HEAD(&pid_hash[i]); |
| 517 | } | 510 | } |
diff --git a/kernel/posix-cpu-timers.c b/kernel/posix-cpu-timers.c index bece7c0b67b2..e33a21cb9407 100644 --- a/kernel/posix-cpu-timers.c +++ b/kernel/posix-cpu-timers.c | |||
| @@ -521,11 +521,12 @@ void posix_cpu_timers_exit(struct task_struct *tsk) | |||
| 521 | } | 521 | } |
| 522 | void posix_cpu_timers_exit_group(struct task_struct *tsk) | 522 | void posix_cpu_timers_exit_group(struct task_struct *tsk) |
| 523 | { | 523 | { |
| 524 | struct task_cputime cputime; | 524 | struct signal_struct *const sig = tsk->signal; |
| 525 | 525 | ||
| 526 | thread_group_cputimer(tsk, &cputime); | ||
| 527 | cleanup_timers(tsk->signal->cpu_timers, | 526 | cleanup_timers(tsk->signal->cpu_timers, |
| 528 | cputime.utime, cputime.stime, cputime.sum_exec_runtime); | 527 | cputime_add(tsk->utime, sig->utime), |
| 528 | cputime_add(tsk->stime, sig->stime), | ||
| 529 | tsk->se.sum_exec_runtime + sig->sum_sched_runtime); | ||
| 529 | } | 530 | } |
| 530 | 531 | ||
| 531 | static void clear_dead_task(struct k_itimer *timer, union cpu_time_count now) | 532 | static void clear_dead_task(struct k_itimer *timer, union cpu_time_count now) |
diff --git a/kernel/posix-timers.c b/kernel/posix-timers.c index 052ec4d195c7..495440779ce3 100644 --- a/kernel/posix-timers.c +++ b/kernel/posix-timers.c | |||
| @@ -202,6 +202,12 @@ static int no_timer_create(struct k_itimer *new_timer) | |||
| 202 | return -EOPNOTSUPP; | 202 | return -EOPNOTSUPP; |
| 203 | } | 203 | } |
| 204 | 204 | ||
| 205 | static int no_nsleep(const clockid_t which_clock, int flags, | ||
| 206 | struct timespec *tsave, struct timespec __user *rmtp) | ||
| 207 | { | ||
| 208 | return -EOPNOTSUPP; | ||
| 209 | } | ||
| 210 | |||
| 205 | /* | 211 | /* |
| 206 | * Return nonzero if we know a priori this clockid_t value is bogus. | 212 | * Return nonzero if we know a priori this clockid_t value is bogus. |
| 207 | */ | 213 | */ |
| @@ -236,6 +242,25 @@ static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec *tp) | |||
| 236 | return 0; | 242 | return 0; |
| 237 | } | 243 | } |
| 238 | 244 | ||
| 245 | |||
| 246 | static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec *tp) | ||
| 247 | { | ||
| 248 | *tp = current_kernel_time(); | ||
| 249 | return 0; | ||
| 250 | } | ||
| 251 | |||
| 252 | static int posix_get_monotonic_coarse(clockid_t which_clock, | ||
| 253 | struct timespec *tp) | ||
| 254 | { | ||
| 255 | *tp = get_monotonic_coarse(); | ||
| 256 | return 0; | ||
| 257 | } | ||
| 258 | |||
| 259 | int posix_get_coarse_res(const clockid_t which_clock, struct timespec *tp) | ||
| 260 | { | ||
| 261 | *tp = ktime_to_timespec(KTIME_LOW_RES); | ||
| 262 | return 0; | ||
| 263 | } | ||
| 239 | /* | 264 | /* |
| 240 | * Initialize everything, well, just everything in Posix clocks/timers ;) | 265 | * Initialize everything, well, just everything in Posix clocks/timers ;) |
| 241 | */ | 266 | */ |
| @@ -254,11 +279,28 @@ static __init int init_posix_timers(void) | |||
| 254 | .clock_get = posix_get_monotonic_raw, | 279 | .clock_get = posix_get_monotonic_raw, |
| 255 | .clock_set = do_posix_clock_nosettime, | 280 | .clock_set = do_posix_clock_nosettime, |
| 256 | .timer_create = no_timer_create, | 281 | .timer_create = no_timer_create, |
| 282 | .nsleep = no_nsleep, | ||
| 283 | }; | ||
| 284 | struct k_clock clock_realtime_coarse = { | ||
| 285 | .clock_getres = posix_get_coarse_res, | ||
| 286 | .clock_get = posix_get_realtime_coarse, | ||
| 287 | .clock_set = do_posix_clock_nosettime, | ||
| 288 | .timer_create = no_timer_create, | ||
| 289 | .nsleep = no_nsleep, | ||
| 290 | }; | ||
| 291 | struct k_clock clock_monotonic_coarse = { | ||
| 292 | .clock_getres = posix_get_coarse_res, | ||
| 293 | .clock_get = posix_get_monotonic_coarse, | ||
| 294 | .clock_set = do_posix_clock_nosettime, | ||
| 295 | .timer_create = no_timer_create, | ||
| 296 | .nsleep = no_nsleep, | ||
| 257 | }; | 297 | }; |
| 258 | 298 | ||
| 259 | register_posix_clock(CLOCK_REALTIME, &clock_realtime); | 299 | register_posix_clock(CLOCK_REALTIME, &clock_realtime); |
| 260 | register_posix_clock(CLOCK_MONOTONIC, &clock_monotonic); | 300 | register_posix_clock(CLOCK_MONOTONIC, &clock_monotonic); |
| 261 | register_posix_clock(CLOCK_MONOTONIC_RAW, &clock_monotonic_raw); | 301 | register_posix_clock(CLOCK_MONOTONIC_RAW, &clock_monotonic_raw); |
| 302 | register_posix_clock(CLOCK_REALTIME_COARSE, &clock_realtime_coarse); | ||
| 303 | register_posix_clock(CLOCK_MONOTONIC_COARSE, &clock_monotonic_coarse); | ||
| 262 | 304 | ||
| 263 | posix_timers_cache = kmem_cache_create("posix_timers_cache", | 305 | posix_timers_cache = kmem_cache_create("posix_timers_cache", |
| 264 | sizeof (struct k_itimer), 0, SLAB_PANIC, | 306 | sizeof (struct k_itimer), 0, SLAB_PANIC, |
diff --git a/kernel/power/Kconfig b/kernel/power/Kconfig index 72067cbdb37f..91e09d3b2eb2 100644 --- a/kernel/power/Kconfig +++ b/kernel/power/Kconfig | |||
| @@ -208,3 +208,17 @@ config APM_EMULATION | |||
| 208 | random kernel OOPSes or reboots that don't seem to be related to | 208 | random kernel OOPSes or reboots that don't seem to be related to |
| 209 | anything, try disabling/enabling this option (or disabling/enabling | 209 | anything, try disabling/enabling this option (or disabling/enabling |
| 210 | APM in your BIOS). | 210 | APM in your BIOS). |
| 211 | |||
| 212 | config PM_RUNTIME | ||
| 213 | bool "Run-time PM core functionality" | ||
| 214 | depends on PM | ||
| 215 | ---help--- | ||
| 216 | Enable functionality allowing I/O devices to be put into energy-saving | ||
| 217 | (low power) states at run time (or autosuspended) after a specified | ||
| 218 | period of inactivity and woken up in response to a hardware-generated | ||
| 219 | wake-up event or a driver's request. | ||
| 220 | |||
| 221 | Hardware support is generally required for this functionality to work | ||
| 222 | and the bus type drivers of the buses the devices are on are | ||
| 223 | responsible for the actual handling of the autosuspend requests and | ||
| 224 | wake-up events. | ||
diff --git a/kernel/power/console.c b/kernel/power/console.c index a3961b205de7..5187136fe1de 100644 --- a/kernel/power/console.c +++ b/kernel/power/console.c | |||
| @@ -14,56 +14,13 @@ | |||
| 14 | #define SUSPEND_CONSOLE (MAX_NR_CONSOLES-1) | 14 | #define SUSPEND_CONSOLE (MAX_NR_CONSOLES-1) |
| 15 | 15 | ||
| 16 | static int orig_fgconsole, orig_kmsg; | 16 | static int orig_fgconsole, orig_kmsg; |
| 17 | static int disable_vt_switch; | ||
| 18 | |||
| 19 | /* | ||
| 20 | * Normally during a suspend, we allocate a new console and switch to it. | ||
| 21 | * When we resume, we switch back to the original console. This switch | ||
| 22 | * can be slow, so on systems where the framebuffer can handle restoration | ||
| 23 | * of video registers anyways, there's little point in doing the console | ||
| 24 | * switch. This function allows you to disable it by passing it '0'. | ||
| 25 | */ | ||
| 26 | void pm_set_vt_switch(int do_switch) | ||
| 27 | { | ||
| 28 | acquire_console_sem(); | ||
| 29 | disable_vt_switch = !do_switch; | ||
| 30 | release_console_sem(); | ||
| 31 | } | ||
| 32 | EXPORT_SYMBOL(pm_set_vt_switch); | ||
| 33 | 17 | ||
| 34 | int pm_prepare_console(void) | 18 | int pm_prepare_console(void) |
| 35 | { | 19 | { |
| 36 | acquire_console_sem(); | 20 | orig_fgconsole = vt_move_to_console(SUSPEND_CONSOLE, 1); |
| 37 | 21 | if (orig_fgconsole < 0) | |
| 38 | if (disable_vt_switch) { | ||
| 39 | release_console_sem(); | ||
| 40 | return 0; | ||
| 41 | } | ||
| 42 | |||
| 43 | orig_fgconsole = fg_console; | ||
| 44 | |||
| 45 | if (vc_allocate(SUSPEND_CONSOLE)) { | ||
| 46 | /* we can't have a free VC for now. Too bad, | ||
| 47 | * we don't want to mess the screen for now. */ | ||
| 48 | release_console_sem(); | ||
| 49 | return 1; | 22 | return 1; |
| 50 | } | ||
| 51 | 23 | ||
| 52 | if (set_console(SUSPEND_CONSOLE)) { | ||
| 53 | /* | ||
| 54 | * We're unable to switch to the SUSPEND_CONSOLE. | ||
| 55 | * Let the calling function know so it can decide | ||
| 56 | * what to do. | ||
| 57 | */ | ||
| 58 | release_console_sem(); | ||
| 59 | return 1; | ||
| 60 | } | ||
| 61 | release_console_sem(); | ||
| 62 | |||
| 63 | if (vt_waitactive(SUSPEND_CONSOLE)) { | ||
| 64 | pr_debug("Suspend: Can't switch VCs."); | ||
| 65 | return 1; | ||
| 66 | } | ||
| 67 | orig_kmsg = kmsg_redirect; | 24 | orig_kmsg = kmsg_redirect; |
| 68 | kmsg_redirect = SUSPEND_CONSOLE; | 25 | kmsg_redirect = SUSPEND_CONSOLE; |
| 69 | return 0; | 26 | return 0; |
| @@ -71,19 +28,9 @@ int pm_prepare_console(void) | |||
| 71 | 28 | ||
| 72 | void pm_restore_console(void) | 29 | void pm_restore_console(void) |
| 73 | { | 30 | { |
| 74 | acquire_console_sem(); | 31 | if (orig_fgconsole >= 0) { |
| 75 | if (disable_vt_switch) { | 32 | vt_move_to_console(orig_fgconsole, 0); |
| 76 | release_console_sem(); | 33 | kmsg_redirect = orig_kmsg; |
| 77 | return; | ||
| 78 | } | ||
| 79 | set_console(orig_fgconsole); | ||
| 80 | release_console_sem(); | ||
| 81 | |||
| 82 | if (vt_waitactive(orig_fgconsole)) { | ||
| 83 | pr_debug("Resume: Can't switch VCs."); | ||
| 84 | return; | ||
| 85 | } | 34 | } |
| 86 | |||
| 87 | kmsg_redirect = orig_kmsg; | ||
| 88 | } | 35 | } |
| 89 | #endif | 36 | #endif |
diff --git a/kernel/power/hibernate.c b/kernel/power/hibernate.c index 81d2e7464893..04b3a83d686f 100644 --- a/kernel/power/hibernate.c +++ b/kernel/power/hibernate.c | |||
| @@ -298,8 +298,8 @@ int hibernation_snapshot(int platform_mode) | |||
| 298 | if (error) | 298 | if (error) |
| 299 | return error; | 299 | return error; |
| 300 | 300 | ||
| 301 | /* Free memory before shutting down devices. */ | 301 | /* Preallocate image memory before shutting down devices. */ |
| 302 | error = swsusp_shrink_memory(); | 302 | error = hibernate_preallocate_memory(); |
| 303 | if (error) | 303 | if (error) |
| 304 | goto Close; | 304 | goto Close; |
| 305 | 305 | ||
| @@ -315,6 +315,10 @@ int hibernation_snapshot(int platform_mode) | |||
| 315 | /* Control returns here after successful restore */ | 315 | /* Control returns here after successful restore */ |
| 316 | 316 | ||
| 317 | Resume_devices: | 317 | Resume_devices: |
| 318 | /* We may need to release the preallocated image pages here. */ | ||
| 319 | if (error || !in_suspend) | ||
| 320 | swsusp_free(); | ||
| 321 | |||
| 318 | dpm_resume_end(in_suspend ? | 322 | dpm_resume_end(in_suspend ? |
| 319 | (error ? PMSG_RECOVER : PMSG_THAW) : PMSG_RESTORE); | 323 | (error ? PMSG_RECOVER : PMSG_THAW) : PMSG_RESTORE); |
| 320 | resume_console(); | 324 | resume_console(); |
| @@ -460,11 +464,11 @@ int hibernation_platform_enter(void) | |||
| 460 | 464 | ||
| 461 | error = hibernation_ops->prepare(); | 465 | error = hibernation_ops->prepare(); |
| 462 | if (error) | 466 | if (error) |
| 463 | goto Platofrm_finish; | 467 | goto Platform_finish; |
| 464 | 468 | ||
| 465 | error = disable_nonboot_cpus(); | 469 | error = disable_nonboot_cpus(); |
| 466 | if (error) | 470 | if (error) |
| 467 | goto Platofrm_finish; | 471 | goto Platform_finish; |
| 468 | 472 | ||
| 469 | local_irq_disable(); | 473 | local_irq_disable(); |
| 470 | sysdev_suspend(PMSG_HIBERNATE); | 474 | sysdev_suspend(PMSG_HIBERNATE); |
| @@ -476,7 +480,7 @@ int hibernation_platform_enter(void) | |||
| 476 | * We don't need to reenable the nonboot CPUs or resume consoles, since | 480 | * We don't need to reenable the nonboot CPUs or resume consoles, since |
| 477 | * the system is going to be halted anyway. | 481 | * the system is going to be halted anyway. |
| 478 | */ | 482 | */ |
| 479 | Platofrm_finish: | 483 | Platform_finish: |
| 480 | hibernation_ops->finish(); | 484 | hibernation_ops->finish(); |
| 481 | 485 | ||
| 482 | dpm_suspend_noirq(PMSG_RESTORE); | 486 | dpm_suspend_noirq(PMSG_RESTORE); |
| @@ -578,7 +582,10 @@ int hibernate(void) | |||
| 578 | goto Thaw; | 582 | goto Thaw; |
| 579 | 583 | ||
| 580 | error = hibernation_snapshot(hibernation_mode == HIBERNATION_PLATFORM); | 584 | error = hibernation_snapshot(hibernation_mode == HIBERNATION_PLATFORM); |
| 581 | if (in_suspend && !error) { | 585 | if (error) |
| 586 | goto Thaw; | ||
| 587 | |||
| 588 | if (in_suspend) { | ||
| 582 | unsigned int flags = 0; | 589 | unsigned int flags = 0; |
| 583 | 590 | ||
| 584 | if (hibernation_mode == HIBERNATION_PLATFORM) | 591 | if (hibernation_mode == HIBERNATION_PLATFORM) |
| @@ -590,8 +597,8 @@ int hibernate(void) | |||
| 590 | power_down(); | 597 | power_down(); |
| 591 | } else { | 598 | } else { |
| 592 | pr_debug("PM: Image restored successfully.\n"); | 599 | pr_debug("PM: Image restored successfully.\n"); |
| 593 | swsusp_free(); | ||
| 594 | } | 600 | } |
| 601 | |||
| 595 | Thaw: | 602 | Thaw: |
| 596 | thaw_processes(); | 603 | thaw_processes(); |
| 597 | Finish: | 604 | Finish: |
diff --git a/kernel/power/main.c b/kernel/power/main.c index f710e36930cc..347d2cc88cd0 100644 --- a/kernel/power/main.c +++ b/kernel/power/main.c | |||
| @@ -11,6 +11,7 @@ | |||
| 11 | #include <linux/kobject.h> | 11 | #include <linux/kobject.h> |
| 12 | #include <linux/string.h> | 12 | #include <linux/string.h> |
| 13 | #include <linux/resume-trace.h> | 13 | #include <linux/resume-trace.h> |
| 14 | #include <linux/workqueue.h> | ||
| 14 | 15 | ||
| 15 | #include "power.h" | 16 | #include "power.h" |
| 16 | 17 | ||
| @@ -217,8 +218,24 @@ static struct attribute_group attr_group = { | |||
| 217 | .attrs = g, | 218 | .attrs = g, |
| 218 | }; | 219 | }; |
| 219 | 220 | ||
| 221 | #ifdef CONFIG_PM_RUNTIME | ||
| 222 | struct workqueue_struct *pm_wq; | ||
| 223 | |||
| 224 | static int __init pm_start_workqueue(void) | ||
| 225 | { | ||
| 226 | pm_wq = create_freezeable_workqueue("pm"); | ||
| 227 | |||
| 228 | return pm_wq ? 0 : -ENOMEM; | ||
| 229 | } | ||
| 230 | #else | ||
| 231 | static inline int pm_start_workqueue(void) { return 0; } | ||
| 232 | #endif | ||
| 233 | |||
| 220 | static int __init pm_init(void) | 234 | static int __init pm_init(void) |
| 221 | { | 235 | { |
| 236 | int error = pm_start_workqueue(); | ||
| 237 | if (error) | ||
| 238 | return error; | ||
| 222 | power_kobj = kobject_create_and_add("power", NULL); | 239 | power_kobj = kobject_create_and_add("power", NULL); |
| 223 | if (!power_kobj) | 240 | if (!power_kobj) |
| 224 | return -ENOMEM; | 241 | return -ENOMEM; |
diff --git a/kernel/power/power.h b/kernel/power/power.h index 26d5a26f82e3..46c5a26630a3 100644 --- a/kernel/power/power.h +++ b/kernel/power/power.h | |||
| @@ -74,7 +74,7 @@ extern asmlinkage int swsusp_arch_resume(void); | |||
| 74 | 74 | ||
| 75 | extern int create_basic_memory_bitmaps(void); | 75 | extern int create_basic_memory_bitmaps(void); |
| 76 | extern void free_basic_memory_bitmaps(void); | 76 | extern void free_basic_memory_bitmaps(void); |
| 77 | extern int swsusp_shrink_memory(void); | 77 | extern int hibernate_preallocate_memory(void); |
| 78 | 78 | ||
| 79 | /** | 79 | /** |
| 80 | * Auxiliary structure used for reading the snapshot image data and | 80 | * Auxiliary structure used for reading the snapshot image data and |
diff --git a/kernel/power/process.c b/kernel/power/process.c index da2072d73811..cc2e55373b68 100644 --- a/kernel/power/process.c +++ b/kernel/power/process.c | |||
| @@ -9,6 +9,7 @@ | |||
| 9 | #undef DEBUG | 9 | #undef DEBUG |
| 10 | 10 | ||
| 11 | #include <linux/interrupt.h> | 11 | #include <linux/interrupt.h> |
| 12 | #include <linux/oom.h> | ||
| 12 | #include <linux/suspend.h> | 13 | #include <linux/suspend.h> |
| 13 | #include <linux/module.h> | 14 | #include <linux/module.h> |
| 14 | #include <linux/syscalls.h> | 15 | #include <linux/syscalls.h> |
diff --git a/kernel/power/snapshot.c b/kernel/power/snapshot.c index 523a451b45d3..36cb168e4330 100644 --- a/kernel/power/snapshot.c +++ b/kernel/power/snapshot.c | |||
| @@ -233,7 +233,7 @@ static void *chain_alloc(struct chain_allocator *ca, unsigned int size) | |||
| 233 | 233 | ||
| 234 | #define BM_END_OF_MAP (~0UL) | 234 | #define BM_END_OF_MAP (~0UL) |
| 235 | 235 | ||
| 236 | #define BM_BITS_PER_BLOCK (PAGE_SIZE << 3) | 236 | #define BM_BITS_PER_BLOCK (PAGE_SIZE * BITS_PER_BYTE) |
| 237 | 237 | ||
| 238 | struct bm_block { | 238 | struct bm_block { |
| 239 | struct list_head hook; /* hook into a list of bitmap blocks */ | 239 | struct list_head hook; /* hook into a list of bitmap blocks */ |
| @@ -275,7 +275,7 @@ static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free); | |||
| 275 | 275 | ||
| 276 | /** | 276 | /** |
| 277 | * create_bm_block_list - create a list of block bitmap objects | 277 | * create_bm_block_list - create a list of block bitmap objects |
| 278 | * @nr_blocks - number of blocks to allocate | 278 | * @pages - number of pages to track |
| 279 | * @list - list to put the allocated blocks into | 279 | * @list - list to put the allocated blocks into |
| 280 | * @ca - chain allocator to be used for allocating memory | 280 | * @ca - chain allocator to be used for allocating memory |
| 281 | */ | 281 | */ |
| @@ -619,7 +619,7 @@ __register_nosave_region(unsigned long start_pfn, unsigned long end_pfn, | |||
| 619 | BUG_ON(!region); | 619 | BUG_ON(!region); |
| 620 | } else | 620 | } else |
| 621 | /* This allocation cannot fail */ | 621 | /* This allocation cannot fail */ |
| 622 | region = alloc_bootmem_low(sizeof(struct nosave_region)); | 622 | region = alloc_bootmem(sizeof(struct nosave_region)); |
| 623 | region->start_pfn = start_pfn; | 623 | region->start_pfn = start_pfn; |
| 624 | region->end_pfn = end_pfn; | 624 | region->end_pfn = end_pfn; |
| 625 | list_add_tail(®ion->list, &nosave_regions); | 625 | list_add_tail(®ion->list, &nosave_regions); |
| @@ -853,7 +853,7 @@ static unsigned int count_highmem_pages(void) | |||
| 853 | struct zone *zone; | 853 | struct zone *zone; |
| 854 | unsigned int n = 0; | 854 | unsigned int n = 0; |
| 855 | 855 | ||
| 856 | for_each_zone(zone) { | 856 | for_each_populated_zone(zone) { |
| 857 | unsigned long pfn, max_zone_pfn; | 857 | unsigned long pfn, max_zone_pfn; |
| 858 | 858 | ||
| 859 | if (!is_highmem(zone)) | 859 | if (!is_highmem(zone)) |
| @@ -916,7 +916,7 @@ static unsigned int count_data_pages(void) | |||
| 916 | unsigned long pfn, max_zone_pfn; | 916 | unsigned long pfn, max_zone_pfn; |
| 917 | unsigned int n = 0; | 917 | unsigned int n = 0; |
| 918 | 918 | ||
| 919 | for_each_zone(zone) { | 919 | for_each_populated_zone(zone) { |
| 920 | if (is_highmem(zone)) | 920 | if (is_highmem(zone)) |
| 921 | continue; | 921 | continue; |
| 922 | 922 | ||
| @@ -1010,7 +1010,7 @@ copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm) | |||
| 1010 | struct zone *zone; | 1010 | struct zone *zone; |
| 1011 | unsigned long pfn; | 1011 | unsigned long pfn; |
| 1012 | 1012 | ||
| 1013 | for_each_zone(zone) { | 1013 | for_each_populated_zone(zone) { |
| 1014 | unsigned long max_zone_pfn; | 1014 | unsigned long max_zone_pfn; |
| 1015 | 1015 | ||
| 1016 | mark_free_pages(zone); | 1016 | mark_free_pages(zone); |
| @@ -1033,6 +1033,25 @@ copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm) | |||
| 1033 | static unsigned int nr_copy_pages; | 1033 | static unsigned int nr_copy_pages; |
| 1034 | /* Number of pages needed for saving the original pfns of the image pages */ | 1034 | /* Number of pages needed for saving the original pfns of the image pages */ |
| 1035 | static unsigned int nr_meta_pages; | 1035 | static unsigned int nr_meta_pages; |
| 1036 | /* | ||
| 1037 | * Numbers of normal and highmem page frames allocated for hibernation image | ||
| 1038 | * before suspending devices. | ||
| 1039 | */ | ||
| 1040 | unsigned int alloc_normal, alloc_highmem; | ||
| 1041 | /* | ||
| 1042 | * Memory bitmap used for marking saveable pages (during hibernation) or | ||
| 1043 | * hibernation image pages (during restore) | ||
| 1044 | */ | ||
| 1045 | static struct memory_bitmap orig_bm; | ||
| 1046 | /* | ||
| 1047 | * Memory bitmap used during hibernation for marking allocated page frames that | ||
| 1048 | * will contain copies of saveable pages. During restore it is initially used | ||
| 1049 | * for marking hibernation image pages, but then the set bits from it are | ||
| 1050 | * duplicated in @orig_bm and it is released. On highmem systems it is next | ||
| 1051 | * used for marking "safe" highmem pages, but it has to be reinitialized for | ||
| 1052 | * this purpose. | ||
| 1053 | */ | ||
| 1054 | static struct memory_bitmap copy_bm; | ||
| 1036 | 1055 | ||
| 1037 | /** | 1056 | /** |
| 1038 | * swsusp_free - free pages allocated for the suspend. | 1057 | * swsusp_free - free pages allocated for the suspend. |
| @@ -1046,7 +1065,7 @@ void swsusp_free(void) | |||
| 1046 | struct zone *zone; | 1065 | struct zone *zone; |
| 1047 | unsigned long pfn, max_zone_pfn; | 1066 | unsigned long pfn, max_zone_pfn; |
| 1048 | 1067 | ||
| 1049 | for_each_zone(zone) { | 1068 | for_each_populated_zone(zone) { |
| 1050 | max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; | 1069 | max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; |
| 1051 | for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) | 1070 | for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) |
| 1052 | if (pfn_valid(pfn)) { | 1071 | if (pfn_valid(pfn)) { |
| @@ -1064,74 +1083,286 @@ void swsusp_free(void) | |||
| 1064 | nr_meta_pages = 0; | 1083 | nr_meta_pages = 0; |
| 1065 | restore_pblist = NULL; | 1084 | restore_pblist = NULL; |
| 1066 | buffer = NULL; | 1085 | buffer = NULL; |
| 1086 | alloc_normal = 0; | ||
| 1087 | alloc_highmem = 0; | ||
| 1067 | } | 1088 | } |
| 1068 | 1089 | ||
| 1090 | /* Helper functions used for the shrinking of memory. */ | ||
| 1091 | |||
| 1092 | #define GFP_IMAGE (GFP_KERNEL | __GFP_NOWARN) | ||
| 1093 | |||
| 1069 | /** | 1094 | /** |
| 1070 | * swsusp_shrink_memory - Try to free as much memory as needed | 1095 | * preallocate_image_pages - Allocate a number of pages for hibernation image |
| 1071 | * | 1096 | * @nr_pages: Number of page frames to allocate. |
| 1072 | * ... but do not OOM-kill anyone | 1097 | * @mask: GFP flags to use for the allocation. |
| 1073 | * | 1098 | * |
| 1074 | * Notice: all userland should be stopped before it is called, or | 1099 | * Return value: Number of page frames actually allocated |
| 1075 | * livelock is possible. | 1100 | */ |
| 1101 | static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask) | ||
| 1102 | { | ||
| 1103 | unsigned long nr_alloc = 0; | ||
| 1104 | |||
| 1105 | while (nr_pages > 0) { | ||
| 1106 | struct page *page; | ||
| 1107 | |||
| 1108 | page = alloc_image_page(mask); | ||
| 1109 | if (!page) | ||
| 1110 | break; | ||
| 1111 | memory_bm_set_bit(©_bm, page_to_pfn(page)); | ||
| 1112 | if (PageHighMem(page)) | ||
| 1113 | alloc_highmem++; | ||
| 1114 | else | ||
| 1115 | alloc_normal++; | ||
| 1116 | nr_pages--; | ||
| 1117 | nr_alloc++; | ||
| 1118 | } | ||
| 1119 | |||
| 1120 | return nr_alloc; | ||
| 1121 | } | ||
| 1122 | |||
| 1123 | static unsigned long preallocate_image_memory(unsigned long nr_pages) | ||
| 1124 | { | ||
| 1125 | return preallocate_image_pages(nr_pages, GFP_IMAGE); | ||
| 1126 | } | ||
| 1127 | |||
| 1128 | #ifdef CONFIG_HIGHMEM | ||
| 1129 | static unsigned long preallocate_image_highmem(unsigned long nr_pages) | ||
| 1130 | { | ||
| 1131 | return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM); | ||
| 1132 | } | ||
| 1133 | |||
| 1134 | /** | ||
| 1135 | * __fraction - Compute (an approximation of) x * (multiplier / base) | ||
| 1076 | */ | 1136 | */ |
| 1137 | static unsigned long __fraction(u64 x, u64 multiplier, u64 base) | ||
| 1138 | { | ||
| 1139 | x *= multiplier; | ||
| 1140 | do_div(x, base); | ||
| 1141 | return (unsigned long)x; | ||
| 1142 | } | ||
| 1143 | |||
| 1144 | static unsigned long preallocate_highmem_fraction(unsigned long nr_pages, | ||
| 1145 | unsigned long highmem, | ||
| 1146 | unsigned long total) | ||
| 1147 | { | ||
| 1148 | unsigned long alloc = __fraction(nr_pages, highmem, total); | ||
| 1077 | 1149 | ||
| 1078 | #define SHRINK_BITE 10000 | 1150 | return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM); |
| 1079 | static inline unsigned long __shrink_memory(long tmp) | 1151 | } |
| 1152 | #else /* CONFIG_HIGHMEM */ | ||
| 1153 | static inline unsigned long preallocate_image_highmem(unsigned long nr_pages) | ||
| 1080 | { | 1154 | { |
| 1081 | if (tmp > SHRINK_BITE) | 1155 | return 0; |
| 1082 | tmp = SHRINK_BITE; | ||
| 1083 | return shrink_all_memory(tmp); | ||
| 1084 | } | 1156 | } |
| 1085 | 1157 | ||
| 1086 | int swsusp_shrink_memory(void) | 1158 | static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages, |
| 1159 | unsigned long highmem, | ||
| 1160 | unsigned long total) | ||
| 1161 | { | ||
| 1162 | return 0; | ||
| 1163 | } | ||
| 1164 | #endif /* CONFIG_HIGHMEM */ | ||
| 1165 | |||
| 1166 | /** | ||
| 1167 | * free_unnecessary_pages - Release preallocated pages not needed for the image | ||
| 1168 | */ | ||
| 1169 | static void free_unnecessary_pages(void) | ||
| 1170 | { | ||
| 1171 | unsigned long save_highmem, to_free_normal, to_free_highmem; | ||
| 1172 | |||
| 1173 | to_free_normal = alloc_normal - count_data_pages(); | ||
| 1174 | save_highmem = count_highmem_pages(); | ||
| 1175 | if (alloc_highmem > save_highmem) { | ||
| 1176 | to_free_highmem = alloc_highmem - save_highmem; | ||
| 1177 | } else { | ||
| 1178 | to_free_highmem = 0; | ||
| 1179 | to_free_normal -= save_highmem - alloc_highmem; | ||
| 1180 | } | ||
| 1181 | |||
| 1182 | memory_bm_position_reset(©_bm); | ||
| 1183 | |||
| 1184 | while (to_free_normal > 0 && to_free_highmem > 0) { | ||
| 1185 | unsigned long pfn = memory_bm_next_pfn(©_bm); | ||
| 1186 | struct page *page = pfn_to_page(pfn); | ||
| 1187 | |||
| 1188 | if (PageHighMem(page)) { | ||
| 1189 | if (!to_free_highmem) | ||
| 1190 | continue; | ||
| 1191 | to_free_highmem--; | ||
| 1192 | alloc_highmem--; | ||
| 1193 | } else { | ||
| 1194 | if (!to_free_normal) | ||
| 1195 | continue; | ||
| 1196 | to_free_normal--; | ||
| 1197 | alloc_normal--; | ||
| 1198 | } | ||
| 1199 | memory_bm_clear_bit(©_bm, pfn); | ||
| 1200 | swsusp_unset_page_forbidden(page); | ||
| 1201 | swsusp_unset_page_free(page); | ||
| 1202 | __free_page(page); | ||
| 1203 | } | ||
| 1204 | } | ||
| 1205 | |||
| 1206 | /** | ||
| 1207 | * minimum_image_size - Estimate the minimum acceptable size of an image | ||
| 1208 | * @saveable: Number of saveable pages in the system. | ||
| 1209 | * | ||
| 1210 | * We want to avoid attempting to free too much memory too hard, so estimate the | ||
| 1211 | * minimum acceptable size of a hibernation image to use as the lower limit for | ||
| 1212 | * preallocating memory. | ||
| 1213 | * | ||
| 1214 | * We assume that the minimum image size should be proportional to | ||
| 1215 | * | ||
| 1216 | * [number of saveable pages] - [number of pages that can be freed in theory] | ||
| 1217 | * | ||
| 1218 | * where the second term is the sum of (1) reclaimable slab pages, (2) active | ||
| 1219 | * and (3) inactive anonymouns pages, (4) active and (5) inactive file pages, | ||
| 1220 | * minus mapped file pages. | ||
| 1221 | */ | ||
| 1222 | static unsigned long minimum_image_size(unsigned long saveable) | ||
| 1223 | { | ||
| 1224 | unsigned long size; | ||
| 1225 | |||
| 1226 | size = global_page_state(NR_SLAB_RECLAIMABLE) | ||
| 1227 | + global_page_state(NR_ACTIVE_ANON) | ||
| 1228 | + global_page_state(NR_INACTIVE_ANON) | ||
| 1229 | + global_page_state(NR_ACTIVE_FILE) | ||
| 1230 | + global_page_state(NR_INACTIVE_FILE) | ||
| 1231 | - global_page_state(NR_FILE_MAPPED); | ||
| 1232 | |||
| 1233 | return saveable <= size ? 0 : saveable - size; | ||
| 1234 | } | ||
| 1235 | |||
| 1236 | /** | ||
| 1237 | * hibernate_preallocate_memory - Preallocate memory for hibernation image | ||
| 1238 | * | ||
| 1239 | * To create a hibernation image it is necessary to make a copy of every page | ||
| 1240 | * frame in use. We also need a number of page frames to be free during | ||
| 1241 | * hibernation for allocations made while saving the image and for device | ||
| 1242 | * drivers, in case they need to allocate memory from their hibernation | ||
| 1243 | * callbacks (these two numbers are given by PAGES_FOR_IO and SPARE_PAGES, | ||
| 1244 | * respectively, both of which are rough estimates). To make this happen, we | ||
| 1245 | * compute the total number of available page frames and allocate at least | ||
| 1246 | * | ||
| 1247 | * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2 + 2 * SPARE_PAGES | ||
| 1248 | * | ||
| 1249 | * of them, which corresponds to the maximum size of a hibernation image. | ||
| 1250 | * | ||
| 1251 | * If image_size is set below the number following from the above formula, | ||
| 1252 | * the preallocation of memory is continued until the total number of saveable | ||
| 1253 | * pages in the system is below the requested image size or the minimum | ||
| 1254 | * acceptable image size returned by minimum_image_size(), whichever is greater. | ||
| 1255 | */ | ||
| 1256 | int hibernate_preallocate_memory(void) | ||
| 1087 | { | 1257 | { |
| 1088 | long tmp; | ||
| 1089 | struct zone *zone; | 1258 | struct zone *zone; |
| 1090 | unsigned long pages = 0; | 1259 | unsigned long saveable, size, max_size, count, highmem, pages = 0; |
| 1091 | unsigned int i = 0; | 1260 | unsigned long alloc, save_highmem, pages_highmem; |
| 1092 | char *p = "-\\|/"; | ||
| 1093 | struct timeval start, stop; | 1261 | struct timeval start, stop; |
| 1262 | int error; | ||
| 1094 | 1263 | ||
| 1095 | printk(KERN_INFO "PM: Shrinking memory... "); | 1264 | printk(KERN_INFO "PM: Preallocating image memory... "); |
| 1096 | do_gettimeofday(&start); | 1265 | do_gettimeofday(&start); |
| 1097 | do { | ||
| 1098 | long size, highmem_size; | ||
| 1099 | |||
| 1100 | highmem_size = count_highmem_pages(); | ||
| 1101 | size = count_data_pages() + PAGES_FOR_IO + SPARE_PAGES; | ||
| 1102 | tmp = size; | ||
| 1103 | size += highmem_size; | ||
| 1104 | for_each_populated_zone(zone) { | ||
| 1105 | tmp += snapshot_additional_pages(zone); | ||
| 1106 | if (is_highmem(zone)) { | ||
| 1107 | highmem_size -= | ||
| 1108 | zone_page_state(zone, NR_FREE_PAGES); | ||
| 1109 | } else { | ||
| 1110 | tmp -= zone_page_state(zone, NR_FREE_PAGES); | ||
| 1111 | tmp += zone->lowmem_reserve[ZONE_NORMAL]; | ||
| 1112 | } | ||
| 1113 | } | ||
| 1114 | 1266 | ||
| 1115 | if (highmem_size < 0) | 1267 | error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY); |
| 1116 | highmem_size = 0; | 1268 | if (error) |
| 1269 | goto err_out; | ||
| 1117 | 1270 | ||
| 1118 | tmp += highmem_size; | 1271 | error = memory_bm_create(©_bm, GFP_IMAGE, PG_ANY); |
| 1119 | if (tmp > 0) { | 1272 | if (error) |
| 1120 | tmp = __shrink_memory(tmp); | 1273 | goto err_out; |
| 1121 | if (!tmp) | 1274 | |
| 1122 | return -ENOMEM; | 1275 | alloc_normal = 0; |
| 1123 | pages += tmp; | 1276 | alloc_highmem = 0; |
| 1124 | } else if (size > image_size / PAGE_SIZE) { | 1277 | |
| 1125 | tmp = __shrink_memory(size - (image_size / PAGE_SIZE)); | 1278 | /* Count the number of saveable data pages. */ |
| 1126 | pages += tmp; | 1279 | save_highmem = count_highmem_pages(); |
| 1127 | } | 1280 | saveable = count_data_pages(); |
| 1128 | printk("\b%c", p[i++%4]); | 1281 | |
| 1129 | } while (tmp > 0); | 1282 | /* |
| 1283 | * Compute the total number of page frames we can use (count) and the | ||
| 1284 | * number of pages needed for image metadata (size). | ||
| 1285 | */ | ||
| 1286 | count = saveable; | ||
| 1287 | saveable += save_highmem; | ||
| 1288 | highmem = save_highmem; | ||
| 1289 | size = 0; | ||
| 1290 | for_each_populated_zone(zone) { | ||
| 1291 | size += snapshot_additional_pages(zone); | ||
| 1292 | if (is_highmem(zone)) | ||
| 1293 | highmem += zone_page_state(zone, NR_FREE_PAGES); | ||
| 1294 | else | ||
| 1295 | count += zone_page_state(zone, NR_FREE_PAGES); | ||
| 1296 | } | ||
| 1297 | count += highmem; | ||
| 1298 | count -= totalreserve_pages; | ||
| 1299 | |||
| 1300 | /* Compute the maximum number of saveable pages to leave in memory. */ | ||
| 1301 | max_size = (count - (size + PAGES_FOR_IO)) / 2 - 2 * SPARE_PAGES; | ||
| 1302 | size = DIV_ROUND_UP(image_size, PAGE_SIZE); | ||
| 1303 | if (size > max_size) | ||
| 1304 | size = max_size; | ||
| 1305 | /* | ||
| 1306 | * If the maximum is not less than the current number of saveable pages | ||
| 1307 | * in memory, allocate page frames for the image and we're done. | ||
| 1308 | */ | ||
| 1309 | if (size >= saveable) { | ||
| 1310 | pages = preallocate_image_highmem(save_highmem); | ||
| 1311 | pages += preallocate_image_memory(saveable - pages); | ||
| 1312 | goto out; | ||
| 1313 | } | ||
| 1314 | |||
| 1315 | /* Estimate the minimum size of the image. */ | ||
| 1316 | pages = minimum_image_size(saveable); | ||
| 1317 | if (size < pages) | ||
| 1318 | size = min_t(unsigned long, pages, max_size); | ||
| 1319 | |||
| 1320 | /* | ||
| 1321 | * Let the memory management subsystem know that we're going to need a | ||
| 1322 | * large number of page frames to allocate and make it free some memory. | ||
| 1323 | * NOTE: If this is not done, performance will be hurt badly in some | ||
| 1324 | * test cases. | ||
| 1325 | */ | ||
| 1326 | shrink_all_memory(saveable - size); | ||
| 1327 | |||
| 1328 | /* | ||
| 1329 | * The number of saveable pages in memory was too high, so apply some | ||
| 1330 | * pressure to decrease it. First, make room for the largest possible | ||
| 1331 | * image and fail if that doesn't work. Next, try to decrease the size | ||
| 1332 | * of the image as much as indicated by 'size' using allocations from | ||
| 1333 | * highmem and non-highmem zones separately. | ||
| 1334 | */ | ||
| 1335 | pages_highmem = preallocate_image_highmem(highmem / 2); | ||
| 1336 | alloc = (count - max_size) - pages_highmem; | ||
| 1337 | pages = preallocate_image_memory(alloc); | ||
| 1338 | if (pages < alloc) | ||
| 1339 | goto err_out; | ||
| 1340 | size = max_size - size; | ||
| 1341 | alloc = size; | ||
| 1342 | size = preallocate_highmem_fraction(size, highmem, count); | ||
| 1343 | pages_highmem += size; | ||
| 1344 | alloc -= size; | ||
| 1345 | pages += preallocate_image_memory(alloc); | ||
| 1346 | pages += pages_highmem; | ||
| 1347 | |||
| 1348 | /* | ||
| 1349 | * We only need as many page frames for the image as there are saveable | ||
| 1350 | * pages in memory, but we have allocated more. Release the excessive | ||
| 1351 | * ones now. | ||
| 1352 | */ | ||
| 1353 | free_unnecessary_pages(); | ||
| 1354 | |||
| 1355 | out: | ||
| 1130 | do_gettimeofday(&stop); | 1356 | do_gettimeofday(&stop); |
| 1131 | printk("\bdone (%lu pages freed)\n", pages); | 1357 | printk(KERN_CONT "done (allocated %lu pages)\n", pages); |
| 1132 | swsusp_show_speed(&start, &stop, pages, "Freed"); | 1358 | swsusp_show_speed(&start, &stop, pages, "Allocated"); |
| 1133 | 1359 | ||
| 1134 | return 0; | 1360 | return 0; |
| 1361 | |||
| 1362 | err_out: | ||
| 1363 | printk(KERN_CONT "\n"); | ||
| 1364 | swsusp_free(); | ||
| 1365 | return -ENOMEM; | ||
| 1135 | } | 1366 | } |
| 1136 | 1367 | ||
| 1137 | #ifdef CONFIG_HIGHMEM | 1368 | #ifdef CONFIG_HIGHMEM |
| @@ -1142,7 +1373,7 @@ int swsusp_shrink_memory(void) | |||
| 1142 | 1373 | ||
| 1143 | static unsigned int count_pages_for_highmem(unsigned int nr_highmem) | 1374 | static unsigned int count_pages_for_highmem(unsigned int nr_highmem) |
| 1144 | { | 1375 | { |
| 1145 | unsigned int free_highmem = count_free_highmem_pages(); | 1376 | unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem; |
| 1146 | 1377 | ||
| 1147 | if (free_highmem >= nr_highmem) | 1378 | if (free_highmem >= nr_highmem) |
| 1148 | nr_highmem = 0; | 1379 | nr_highmem = 0; |
| @@ -1164,19 +1395,17 @@ count_pages_for_highmem(unsigned int nr_highmem) { return 0; } | |||
| 1164 | static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem) | 1395 | static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem) |
| 1165 | { | 1396 | { |
| 1166 | struct zone *zone; | 1397 | struct zone *zone; |
| 1167 | unsigned int free = 0, meta = 0; | 1398 | unsigned int free = alloc_normal; |
| 1168 | 1399 | ||
| 1169 | for_each_zone(zone) { | 1400 | for_each_populated_zone(zone) |
| 1170 | meta += snapshot_additional_pages(zone); | ||
| 1171 | if (!is_highmem(zone)) | 1401 | if (!is_highmem(zone)) |
| 1172 | free += zone_page_state(zone, NR_FREE_PAGES); | 1402 | free += zone_page_state(zone, NR_FREE_PAGES); |
| 1173 | } | ||
| 1174 | 1403 | ||
| 1175 | nr_pages += count_pages_for_highmem(nr_highmem); | 1404 | nr_pages += count_pages_for_highmem(nr_highmem); |
| 1176 | pr_debug("PM: Normal pages needed: %u + %u + %u, available pages: %u\n", | 1405 | pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n", |
| 1177 | nr_pages, PAGES_FOR_IO, meta, free); | 1406 | nr_pages, PAGES_FOR_IO, free); |
| 1178 | 1407 | ||
| 1179 | return free > nr_pages + PAGES_FOR_IO + meta; | 1408 | return free > nr_pages + PAGES_FOR_IO; |
| 1180 | } | 1409 | } |
| 1181 | 1410 | ||
| 1182 | #ifdef CONFIG_HIGHMEM | 1411 | #ifdef CONFIG_HIGHMEM |
| @@ -1198,7 +1427,7 @@ static inline int get_highmem_buffer(int safe_needed) | |||
| 1198 | */ | 1427 | */ |
| 1199 | 1428 | ||
| 1200 | static inline unsigned int | 1429 | static inline unsigned int |
| 1201 | alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int nr_highmem) | 1430 | alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem) |
| 1202 | { | 1431 | { |
| 1203 | unsigned int to_alloc = count_free_highmem_pages(); | 1432 | unsigned int to_alloc = count_free_highmem_pages(); |
| 1204 | 1433 | ||
| @@ -1218,7 +1447,7 @@ alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int nr_highmem) | |||
| 1218 | static inline int get_highmem_buffer(int safe_needed) { return 0; } | 1447 | static inline int get_highmem_buffer(int safe_needed) { return 0; } |
| 1219 | 1448 | ||
| 1220 | static inline unsigned int | 1449 | static inline unsigned int |
| 1221 | alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int n) { return 0; } | 1450 | alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) { return 0; } |
| 1222 | #endif /* CONFIG_HIGHMEM */ | 1451 | #endif /* CONFIG_HIGHMEM */ |
| 1223 | 1452 | ||
| 1224 | /** | 1453 | /** |
| @@ -1237,51 +1466,36 @@ static int | |||
| 1237 | swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm, | 1466 | swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm, |
| 1238 | unsigned int nr_pages, unsigned int nr_highmem) | 1467 | unsigned int nr_pages, unsigned int nr_highmem) |
| 1239 | { | 1468 | { |
| 1240 | int error; | 1469 | int error = 0; |
| 1241 | |||
| 1242 | error = memory_bm_create(orig_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY); | ||
| 1243 | if (error) | ||
| 1244 | goto Free; | ||
| 1245 | |||
| 1246 | error = memory_bm_create(copy_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY); | ||
| 1247 | if (error) | ||
| 1248 | goto Free; | ||
| 1249 | 1470 | ||
| 1250 | if (nr_highmem > 0) { | 1471 | if (nr_highmem > 0) { |
| 1251 | error = get_highmem_buffer(PG_ANY); | 1472 | error = get_highmem_buffer(PG_ANY); |
| 1252 | if (error) | 1473 | if (error) |
| 1253 | goto Free; | 1474 | goto err_out; |
| 1254 | 1475 | if (nr_highmem > alloc_highmem) { | |
| 1255 | nr_pages += alloc_highmem_image_pages(copy_bm, nr_highmem); | 1476 | nr_highmem -= alloc_highmem; |
| 1477 | nr_pages += alloc_highmem_pages(copy_bm, nr_highmem); | ||
| 1478 | } | ||
| 1256 | } | 1479 | } |
| 1257 | while (nr_pages-- > 0) { | 1480 | if (nr_pages > alloc_normal) { |
| 1258 | struct page *page = alloc_image_page(GFP_ATOMIC | __GFP_COLD); | 1481 | nr_pages -= alloc_normal; |
| 1259 | 1482 | while (nr_pages-- > 0) { | |
| 1260 | if (!page) | 1483 | struct page *page; |
| 1261 | goto Free; | ||
| 1262 | 1484 | ||
| 1263 | memory_bm_set_bit(copy_bm, page_to_pfn(page)); | 1485 | page = alloc_image_page(GFP_ATOMIC | __GFP_COLD); |
| 1486 | if (!page) | ||
| 1487 | goto err_out; | ||
| 1488 | memory_bm_set_bit(copy_bm, page_to_pfn(page)); | ||
| 1489 | } | ||
| 1264 | } | 1490 | } |
| 1491 | |||
| 1265 | return 0; | 1492 | return 0; |
| 1266 | 1493 | ||
| 1267 | Free: | 1494 | err_out: |
| 1268 | swsusp_free(); | 1495 | swsusp_free(); |
| 1269 | return -ENOMEM; | 1496 | return error; |
| 1270 | } | 1497 | } |
| 1271 | 1498 | ||
| 1272 | /* Memory bitmap used for marking saveable pages (during suspend) or the | ||
| 1273 | * suspend image pages (during resume) | ||
| 1274 | */ | ||
| 1275 | static struct memory_bitmap orig_bm; | ||
| 1276 | /* Memory bitmap used on suspend for marking allocated pages that will contain | ||
| 1277 | * the copies of saveable pages. During resume it is initially used for | ||
| 1278 | * marking the suspend image pages, but then its set bits are duplicated in | ||
| 1279 | * @orig_bm and it is released. Next, on systems with high memory, it may be | ||
| 1280 | * used for marking "safe" highmem pages, but it has to be reinitialized for | ||
| 1281 | * this purpose. | ||
| 1282 | */ | ||
| 1283 | static struct memory_bitmap copy_bm; | ||
| 1284 | |||
| 1285 | asmlinkage int swsusp_save(void) | 1499 | asmlinkage int swsusp_save(void) |
| 1286 | { | 1500 | { |
| 1287 | unsigned int nr_pages, nr_highmem; | 1501 | unsigned int nr_pages, nr_highmem; |
| @@ -1474,7 +1688,7 @@ static int mark_unsafe_pages(struct memory_bitmap *bm) | |||
| 1474 | unsigned long pfn, max_zone_pfn; | 1688 | unsigned long pfn, max_zone_pfn; |
| 1475 | 1689 | ||
| 1476 | /* Clear page flags */ | 1690 | /* Clear page flags */ |
| 1477 | for_each_zone(zone) { | 1691 | for_each_populated_zone(zone) { |
| 1478 | max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; | 1692 | max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; |
| 1479 | for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) | 1693 | for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) |
| 1480 | if (pfn_valid(pfn)) | 1694 | if (pfn_valid(pfn)) |
diff --git a/kernel/power/user.c b/kernel/power/user.c index ed97375daae9..bf0014d6a5f0 100644 --- a/kernel/power/user.c +++ b/kernel/power/user.c | |||
| @@ -23,7 +23,6 @@ | |||
| 23 | #include <linux/console.h> | 23 | #include <linux/console.h> |
| 24 | #include <linux/cpu.h> | 24 | #include <linux/cpu.h> |
| 25 | #include <linux/freezer.h> | 25 | #include <linux/freezer.h> |
| 26 | #include <linux/smp_lock.h> | ||
| 27 | #include <scsi/scsi_scan.h> | 26 | #include <scsi/scsi_scan.h> |
| 28 | 27 | ||
| 29 | #include <asm/uaccess.h> | 28 | #include <asm/uaccess.h> |
diff --git a/kernel/printk.c b/kernel/printk.c index b4d97b54c1ec..602033acd6c7 100644 --- a/kernel/printk.c +++ b/kernel/printk.c | |||
| @@ -37,6 +37,12 @@ | |||
| 37 | #include <asm/uaccess.h> | 37 | #include <asm/uaccess.h> |
| 38 | 38 | ||
| 39 | /* | 39 | /* |
| 40 | * for_each_console() allows you to iterate on each console | ||
| 41 | */ | ||
| 42 | #define for_each_console(con) \ | ||
| 43 | for (con = console_drivers; con != NULL; con = con->next) | ||
| 44 | |||
| 45 | /* | ||
| 40 | * Architectures can override it: | 46 | * Architectures can override it: |
| 41 | */ | 47 | */ |
| 42 | void asmlinkage __attribute__((weak)) early_printk(const char *fmt, ...) | 48 | void asmlinkage __attribute__((weak)) early_printk(const char *fmt, ...) |
| @@ -61,6 +67,8 @@ int console_printk[4] = { | |||
| 61 | DEFAULT_CONSOLE_LOGLEVEL, /* default_console_loglevel */ | 67 | DEFAULT_CONSOLE_LOGLEVEL, /* default_console_loglevel */ |
| 62 | }; | 68 | }; |
| 63 | 69 | ||
| 70 | static int saved_console_loglevel = -1; | ||
| 71 | |||
| 64 | /* | 72 | /* |
| 65 | * Low level drivers may need that to know if they can schedule in | 73 | * Low level drivers may need that to know if they can schedule in |
| 66 | * their unblank() callback or not. So let's export it. | 74 | * their unblank() callback or not. So let's export it. |
| @@ -372,10 +380,15 @@ int do_syslog(int type, char __user *buf, int len) | |||
| 372 | logged_chars = 0; | 380 | logged_chars = 0; |
| 373 | break; | 381 | break; |
| 374 | case 6: /* Disable logging to console */ | 382 | case 6: /* Disable logging to console */ |
| 383 | if (saved_console_loglevel == -1) | ||
| 384 | saved_console_loglevel = console_loglevel; | ||
| 375 | console_loglevel = minimum_console_loglevel; | 385 | console_loglevel = minimum_console_loglevel; |
| 376 | break; | 386 | break; |
| 377 | case 7: /* Enable logging to console */ | 387 | case 7: /* Enable logging to console */ |
| 378 | console_loglevel = default_console_loglevel; | 388 | if (saved_console_loglevel != -1) { |
| 389 | console_loglevel = saved_console_loglevel; | ||
| 390 | saved_console_loglevel = -1; | ||
| 391 | } | ||
| 379 | break; | 392 | break; |
| 380 | case 8: /* Set level of messages printed to console */ | 393 | case 8: /* Set level of messages printed to console */ |
| 381 | error = -EINVAL; | 394 | error = -EINVAL; |
| @@ -384,6 +397,8 @@ int do_syslog(int type, char __user *buf, int len) | |||
| 384 | if (len < minimum_console_loglevel) | 397 | if (len < minimum_console_loglevel) |
| 385 | len = minimum_console_loglevel; | 398 | len = minimum_console_loglevel; |
| 386 | console_loglevel = len; | 399 | console_loglevel = len; |
| 400 | /* Implicitly re-enable logging to console */ | ||
| 401 | saved_console_loglevel = -1; | ||
| 387 | error = 0; | 402 | error = 0; |
| 388 | break; | 403 | break; |
| 389 | case 9: /* Number of chars in the log buffer */ | 404 | case 9: /* Number of chars in the log buffer */ |
| @@ -412,7 +427,7 @@ static void __call_console_drivers(unsigned start, unsigned end) | |||
| 412 | { | 427 | { |
| 413 | struct console *con; | 428 | struct console *con; |
| 414 | 429 | ||
| 415 | for (con = console_drivers; con; con = con->next) { | 430 | for_each_console(con) { |
| 416 | if ((con->flags & CON_ENABLED) && con->write && | 431 | if ((con->flags & CON_ENABLED) && con->write && |
| 417 | (cpu_online(smp_processor_id()) || | 432 | (cpu_online(smp_processor_id()) || |
| 418 | (con->flags & CON_ANYTIME))) | 433 | (con->flags & CON_ANYTIME))) |
| @@ -544,7 +559,7 @@ static int have_callable_console(void) | |||
| 544 | { | 559 | { |
| 545 | struct console *con; | 560 | struct console *con; |
| 546 | 561 | ||
| 547 | for (con = console_drivers; con; con = con->next) | 562 | for_each_console(con) |
| 548 | if (con->flags & CON_ANYTIME) | 563 | if (con->flags & CON_ANYTIME) |
| 549 | return 1; | 564 | return 1; |
| 550 | 565 | ||
| @@ -1060,12 +1075,6 @@ void __sched console_conditional_schedule(void) | |||
| 1060 | } | 1075 | } |
| 1061 | EXPORT_SYMBOL(console_conditional_schedule); | 1076 | EXPORT_SYMBOL(console_conditional_schedule); |
| 1062 | 1077 | ||
| 1063 | void console_print(const char *s) | ||
| 1064 | { | ||
| 1065 | printk(KERN_EMERG "%s", s); | ||
| 1066 | } | ||
| 1067 | EXPORT_SYMBOL(console_print); | ||
| 1068 | |||
| 1069 | void console_unblank(void) | 1078 | void console_unblank(void) |
| 1070 | { | 1079 | { |
| 1071 | struct console *c; | 1080 | struct console *c; |
| @@ -1082,7 +1091,7 @@ void console_unblank(void) | |||
| 1082 | 1091 | ||
| 1083 | console_locked = 1; | 1092 | console_locked = 1; |
| 1084 | console_may_schedule = 0; | 1093 | console_may_schedule = 0; |
| 1085 | for (c = console_drivers; c != NULL; c = c->next) | 1094 | for_each_console(c) |
| 1086 | if ((c->flags & CON_ENABLED) && c->unblank) | 1095 | if ((c->flags & CON_ENABLED) && c->unblank) |
| 1087 | c->unblank(); | 1096 | c->unblank(); |
| 1088 | release_console_sem(); | 1097 | release_console_sem(); |
| @@ -1097,7 +1106,7 @@ struct tty_driver *console_device(int *index) | |||
| 1097 | struct tty_driver *driver = NULL; | 1106 | struct tty_driver *driver = NULL; |
| 1098 | 1107 | ||
| 1099 | acquire_console_sem(); | 1108 | acquire_console_sem(); |
| 1100 | for (c = console_drivers; c != NULL; c = c->next) { | 1109 | for_each_console(c) { |
| 1101 | if (!c->device) | 1110 | if (!c->device) |
| 1102 | continue; | 1111 | continue; |
| 1103 | driver = c->device(c, index); | 1112 | driver = c->device(c, index); |
| @@ -1134,25 +1143,49 @@ EXPORT_SYMBOL(console_start); | |||
| 1134 | * to register the console printing procedure with printk() and to | 1143 | * to register the console printing procedure with printk() and to |
| 1135 | * print any messages that were printed by the kernel before the | 1144 | * print any messages that were printed by the kernel before the |
| 1136 | * console driver was initialized. | 1145 | * console driver was initialized. |
| 1146 | * | ||
| 1147 | * This can happen pretty early during the boot process (because of | ||
| 1148 | * early_printk) - sometimes before setup_arch() completes - be careful | ||
| 1149 | * of what kernel features are used - they may not be initialised yet. | ||
| 1150 | * | ||
| 1151 | * There are two types of consoles - bootconsoles (early_printk) and | ||
| 1152 | * "real" consoles (everything which is not a bootconsole) which are | ||
| 1153 | * handled differently. | ||
| 1154 | * - Any number of bootconsoles can be registered at any time. | ||
| 1155 | * - As soon as a "real" console is registered, all bootconsoles | ||
| 1156 | * will be unregistered automatically. | ||
| 1157 | * - Once a "real" console is registered, any attempt to register a | ||
| 1158 | * bootconsoles will be rejected | ||
| 1137 | */ | 1159 | */ |
| 1138 | void register_console(struct console *console) | 1160 | void register_console(struct console *newcon) |
| 1139 | { | 1161 | { |
| 1140 | int i; | 1162 | int i; |
| 1141 | unsigned long flags; | 1163 | unsigned long flags; |
| 1142 | struct console *bootconsole = NULL; | 1164 | struct console *bcon = NULL; |
| 1143 | 1165 | ||
| 1144 | if (console_drivers) { | 1166 | /* |
| 1145 | if (console->flags & CON_BOOT) | 1167 | * before we register a new CON_BOOT console, make sure we don't |
| 1146 | return; | 1168 | * already have a valid console |
| 1147 | if (console_drivers->flags & CON_BOOT) | 1169 | */ |
| 1148 | bootconsole = console_drivers; | 1170 | if (console_drivers && newcon->flags & CON_BOOT) { |
| 1171 | /* find the last or real console */ | ||
| 1172 | for_each_console(bcon) { | ||
| 1173 | if (!(bcon->flags & CON_BOOT)) { | ||
| 1174 | printk(KERN_INFO "Too late to register bootconsole %s%d\n", | ||
| 1175 | newcon->name, newcon->index); | ||
| 1176 | return; | ||
| 1177 | } | ||
| 1178 | } | ||
| 1149 | } | 1179 | } |
| 1150 | 1180 | ||
| 1151 | if (preferred_console < 0 || bootconsole || !console_drivers) | 1181 | if (console_drivers && console_drivers->flags & CON_BOOT) |
| 1182 | bcon = console_drivers; | ||
| 1183 | |||
| 1184 | if (preferred_console < 0 || bcon || !console_drivers) | ||
| 1152 | preferred_console = selected_console; | 1185 | preferred_console = selected_console; |
| 1153 | 1186 | ||
| 1154 | if (console->early_setup) | 1187 | if (newcon->early_setup) |
| 1155 | console->early_setup(); | 1188 | newcon->early_setup(); |
| 1156 | 1189 | ||
| 1157 | /* | 1190 | /* |
| 1158 | * See if we want to use this console driver. If we | 1191 | * See if we want to use this console driver. If we |
| @@ -1160,13 +1193,13 @@ void register_console(struct console *console) | |||
| 1160 | * that registers here. | 1193 | * that registers here. |
| 1161 | */ | 1194 | */ |
| 1162 | if (preferred_console < 0) { | 1195 | if (preferred_console < 0) { |
| 1163 | if (console->index < 0) | 1196 | if (newcon->index < 0) |
| 1164 | console->index = 0; | 1197 | newcon->index = 0; |
| 1165 | if (console->setup == NULL || | 1198 | if (newcon->setup == NULL || |
| 1166 | console->setup(console, NULL) == 0) { | 1199 | newcon->setup(newcon, NULL) == 0) { |
| 1167 | console->flags |= CON_ENABLED; | 1200 | newcon->flags |= CON_ENABLED; |
| 1168 | if (console->device) { | 1201 | if (newcon->device) { |
| 1169 | console->flags |= CON_CONSDEV; | 1202 | newcon->flags |= CON_CONSDEV; |
| 1170 | preferred_console = 0; | 1203 | preferred_console = 0; |
| 1171 | } | 1204 | } |
| 1172 | } | 1205 | } |
| @@ -1178,64 +1211,62 @@ void register_console(struct console *console) | |||
| 1178 | */ | 1211 | */ |
| 1179 | for (i = 0; i < MAX_CMDLINECONSOLES && console_cmdline[i].name[0]; | 1212 | for (i = 0; i < MAX_CMDLINECONSOLES && console_cmdline[i].name[0]; |
| 1180 | i++) { | 1213 | i++) { |
| 1181 | if (strcmp(console_cmdline[i].name, console->name) != 0) | 1214 | if (strcmp(console_cmdline[i].name, newcon->name) != 0) |
| 1182 | continue; | 1215 | continue; |
| 1183 | if (console->index >= 0 && | 1216 | if (newcon->index >= 0 && |
| 1184 | console->index != console_cmdline[i].index) | 1217 | newcon->index != console_cmdline[i].index) |
| 1185 | continue; | 1218 | continue; |
| 1186 | if (console->index < 0) | 1219 | if (newcon->index < 0) |
| 1187 | console->index = console_cmdline[i].index; | 1220 | newcon->index = console_cmdline[i].index; |
| 1188 | #ifdef CONFIG_A11Y_BRAILLE_CONSOLE | 1221 | #ifdef CONFIG_A11Y_BRAILLE_CONSOLE |
| 1189 | if (console_cmdline[i].brl_options) { | 1222 | if (console_cmdline[i].brl_options) { |
| 1190 | console->flags |= CON_BRL; | 1223 | newcon->flags |= CON_BRL; |
| 1191 | braille_register_console(console, | 1224 | braille_register_console(newcon, |
| 1192 | console_cmdline[i].index, | 1225 | console_cmdline[i].index, |
| 1193 | console_cmdline[i].options, | 1226 | console_cmdline[i].options, |
| 1194 | console_cmdline[i].brl_options); | 1227 | console_cmdline[i].brl_options); |
| 1195 | return; | 1228 | return; |
| 1196 | } | 1229 | } |
| 1197 | #endif | 1230 | #endif |
| 1198 | if (console->setup && | 1231 | if (newcon->setup && |
| 1199 | console->setup(console, console_cmdline[i].options) != 0) | 1232 | newcon->setup(newcon, console_cmdline[i].options) != 0) |
| 1200 | break; | 1233 | break; |
| 1201 | console->flags |= CON_ENABLED; | 1234 | newcon->flags |= CON_ENABLED; |
| 1202 | console->index = console_cmdline[i].index; | 1235 | newcon->index = console_cmdline[i].index; |
| 1203 | if (i == selected_console) { | 1236 | if (i == selected_console) { |
| 1204 | console->flags |= CON_CONSDEV; | 1237 | newcon->flags |= CON_CONSDEV; |
| 1205 | preferred_console = selected_console; | 1238 | preferred_console = selected_console; |
| 1206 | } | 1239 | } |
| 1207 | break; | 1240 | break; |
| 1208 | } | 1241 | } |
| 1209 | 1242 | ||
| 1210 | if (!(console->flags & CON_ENABLED)) | 1243 | if (!(newcon->flags & CON_ENABLED)) |
| 1211 | return; | 1244 | return; |
| 1212 | 1245 | ||
| 1213 | if (bootconsole && (console->flags & CON_CONSDEV)) { | 1246 | /* |
| 1214 | printk(KERN_INFO "console handover: boot [%s%d] -> real [%s%d]\n", | 1247 | * If we have a bootconsole, and are switching to a real console, |
| 1215 | bootconsole->name, bootconsole->index, | 1248 | * don't print everything out again, since when the boot console, and |
| 1216 | console->name, console->index); | 1249 | * the real console are the same physical device, it's annoying to |
| 1217 | unregister_console(bootconsole); | 1250 | * see the beginning boot messages twice |
| 1218 | console->flags &= ~CON_PRINTBUFFER; | 1251 | */ |
| 1219 | } else { | 1252 | if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) |
| 1220 | printk(KERN_INFO "console [%s%d] enabled\n", | 1253 | newcon->flags &= ~CON_PRINTBUFFER; |
| 1221 | console->name, console->index); | ||
| 1222 | } | ||
| 1223 | 1254 | ||
| 1224 | /* | 1255 | /* |
| 1225 | * Put this console in the list - keep the | 1256 | * Put this console in the list - keep the |
| 1226 | * preferred driver at the head of the list. | 1257 | * preferred driver at the head of the list. |
| 1227 | */ | 1258 | */ |
| 1228 | acquire_console_sem(); | 1259 | acquire_console_sem(); |
| 1229 | if ((console->flags & CON_CONSDEV) || console_drivers == NULL) { | 1260 | if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) { |
| 1230 | console->next = console_drivers; | 1261 | newcon->next = console_drivers; |
| 1231 | console_drivers = console; | 1262 | console_drivers = newcon; |
| 1232 | if (console->next) | 1263 | if (newcon->next) |
| 1233 | console->next->flags &= ~CON_CONSDEV; | 1264 | newcon->next->flags &= ~CON_CONSDEV; |
| 1234 | } else { | 1265 | } else { |
| 1235 | console->next = console_drivers->next; | 1266 | newcon->next = console_drivers->next; |
| 1236 | console_drivers->next = console; | 1267 | console_drivers->next = newcon; |
| 1237 | } | 1268 | } |
| 1238 | if (console->flags & CON_PRINTBUFFER) { | 1269 | if (newcon->flags & CON_PRINTBUFFER) { |
| 1239 | /* | 1270 | /* |
| 1240 | * release_console_sem() will print out the buffered messages | 1271 | * release_console_sem() will print out the buffered messages |
| 1241 | * for us. | 1272 | * for us. |
| @@ -1245,6 +1276,28 @@ void register_console(struct console *console) | |||
| 1245 | spin_unlock_irqrestore(&logbuf_lock, flags); | 1276 | spin_unlock_irqrestore(&logbuf_lock, flags); |
| 1246 | } | 1277 | } |
| 1247 | release_console_sem(); | 1278 | release_console_sem(); |
| 1279 | |||
| 1280 | /* | ||
| 1281 | * By unregistering the bootconsoles after we enable the real console | ||
| 1282 | * we get the "console xxx enabled" message on all the consoles - | ||
| 1283 | * boot consoles, real consoles, etc - this is to ensure that end | ||
| 1284 | * users know there might be something in the kernel's log buffer that | ||
| 1285 | * went to the bootconsole (that they do not see on the real console) | ||
| 1286 | */ | ||
| 1287 | if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) { | ||
| 1288 | /* we need to iterate through twice, to make sure we print | ||
| 1289 | * everything out, before we unregister the console(s) | ||
| 1290 | */ | ||
| 1291 | printk(KERN_INFO "console [%s%d] enabled, bootconsole disabled\n", | ||
| 1292 | newcon->name, newcon->index); | ||
| 1293 | for_each_console(bcon) | ||
| 1294 | if (bcon->flags & CON_BOOT) | ||
| 1295 | unregister_console(bcon); | ||
| 1296 | } else { | ||
| 1297 | printk(KERN_INFO "%sconsole [%s%d] enabled\n", | ||
| 1298 | (newcon->flags & CON_BOOT) ? "boot" : "" , | ||
| 1299 | newcon->name, newcon->index); | ||
| 1300 | } | ||
| 1248 | } | 1301 | } |
| 1249 | EXPORT_SYMBOL(register_console); | 1302 | EXPORT_SYMBOL(register_console); |
| 1250 | 1303 | ||
| @@ -1287,11 +1340,13 @@ EXPORT_SYMBOL(unregister_console); | |||
| 1287 | 1340 | ||
| 1288 | static int __init disable_boot_consoles(void) | 1341 | static int __init disable_boot_consoles(void) |
| 1289 | { | 1342 | { |
| 1290 | if (console_drivers != NULL) { | 1343 | struct console *con; |
| 1291 | if (console_drivers->flags & CON_BOOT) { | 1344 | |
| 1345 | for_each_console(con) { | ||
| 1346 | if (con->flags & CON_BOOT) { | ||
| 1292 | printk(KERN_INFO "turn off boot console %s%d\n", | 1347 | printk(KERN_INFO "turn off boot console %s%d\n", |
| 1293 | console_drivers->name, console_drivers->index); | 1348 | con->name, con->index); |
| 1294 | return unregister_console(console_drivers); | 1349 | unregister_console(con); |
| 1295 | } | 1350 | } |
| 1296 | } | 1351 | } |
| 1297 | return 0; | 1352 | return 0; |
diff --git a/kernel/profile.c b/kernel/profile.c index 69911b5745eb..a55d3a367ae8 100644 --- a/kernel/profile.c +++ b/kernel/profile.c | |||
| @@ -117,11 +117,12 @@ int __ref profile_init(void) | |||
| 117 | 117 | ||
| 118 | cpumask_copy(prof_cpu_mask, cpu_possible_mask); | 118 | cpumask_copy(prof_cpu_mask, cpu_possible_mask); |
| 119 | 119 | ||
| 120 | prof_buffer = kzalloc(buffer_bytes, GFP_KERNEL); | 120 | prof_buffer = kzalloc(buffer_bytes, GFP_KERNEL|__GFP_NOWARN); |
| 121 | if (prof_buffer) | 121 | if (prof_buffer) |
| 122 | return 0; | 122 | return 0; |
| 123 | 123 | ||
| 124 | prof_buffer = alloc_pages_exact(buffer_bytes, GFP_KERNEL|__GFP_ZERO); | 124 | prof_buffer = alloc_pages_exact(buffer_bytes, |
| 125 | GFP_KERNEL|__GFP_ZERO|__GFP_NOWARN); | ||
| 125 | if (prof_buffer) | 126 | if (prof_buffer) |
| 126 | return 0; | 127 | return 0; |
| 127 | 128 | ||
| @@ -441,48 +442,51 @@ void profile_tick(int type) | |||
| 441 | 442 | ||
| 442 | #ifdef CONFIG_PROC_FS | 443 | #ifdef CONFIG_PROC_FS |
| 443 | #include <linux/proc_fs.h> | 444 | #include <linux/proc_fs.h> |
| 445 | #include <linux/seq_file.h> | ||
| 444 | #include <asm/uaccess.h> | 446 | #include <asm/uaccess.h> |
| 445 | 447 | ||
| 446 | static int prof_cpu_mask_read_proc(char *page, char **start, off_t off, | 448 | static int prof_cpu_mask_proc_show(struct seq_file *m, void *v) |
| 447 | int count, int *eof, void *data) | ||
| 448 | { | 449 | { |
| 449 | int len = cpumask_scnprintf(page, count, data); | 450 | seq_cpumask(m, prof_cpu_mask); |
| 450 | if (count - len < 2) | 451 | seq_putc(m, '\n'); |
| 451 | return -EINVAL; | 452 | return 0; |
| 452 | len += sprintf(page + len, "\n"); | ||
| 453 | return len; | ||
| 454 | } | 453 | } |
| 455 | 454 | ||
| 456 | static int prof_cpu_mask_write_proc(struct file *file, | 455 | static int prof_cpu_mask_proc_open(struct inode *inode, struct file *file) |
| 457 | const char __user *buffer, unsigned long count, void *data) | 456 | { |
| 457 | return single_open(file, prof_cpu_mask_proc_show, NULL); | ||
| 458 | } | ||
| 459 | |||
| 460 | static ssize_t prof_cpu_mask_proc_write(struct file *file, | ||
| 461 | const char __user *buffer, size_t count, loff_t *pos) | ||
| 458 | { | 462 | { |
| 459 | struct cpumask *mask = data; | ||
| 460 | unsigned long full_count = count, err; | ||
| 461 | cpumask_var_t new_value; | 463 | cpumask_var_t new_value; |
| 464 | int err; | ||
| 462 | 465 | ||
| 463 | if (!alloc_cpumask_var(&new_value, GFP_KERNEL)) | 466 | if (!alloc_cpumask_var(&new_value, GFP_KERNEL)) |
| 464 | return -ENOMEM; | 467 | return -ENOMEM; |
| 465 | 468 | ||
| 466 | err = cpumask_parse_user(buffer, count, new_value); | 469 | err = cpumask_parse_user(buffer, count, new_value); |
| 467 | if (!err) { | 470 | if (!err) { |
| 468 | cpumask_copy(mask, new_value); | 471 | cpumask_copy(prof_cpu_mask, new_value); |
| 469 | err = full_count; | 472 | err = count; |
| 470 | } | 473 | } |
| 471 | free_cpumask_var(new_value); | 474 | free_cpumask_var(new_value); |
| 472 | return err; | 475 | return err; |
| 473 | } | 476 | } |
| 474 | 477 | ||
| 478 | static const struct file_operations prof_cpu_mask_proc_fops = { | ||
| 479 | .open = prof_cpu_mask_proc_open, | ||
| 480 | .read = seq_read, | ||
| 481 | .llseek = seq_lseek, | ||
| 482 | .release = single_release, | ||
| 483 | .write = prof_cpu_mask_proc_write, | ||
| 484 | }; | ||
| 485 | |||
| 475 | void create_prof_cpu_mask(struct proc_dir_entry *root_irq_dir) | 486 | void create_prof_cpu_mask(struct proc_dir_entry *root_irq_dir) |
| 476 | { | 487 | { |
| 477 | struct proc_dir_entry *entry; | ||
| 478 | |||
| 479 | /* create /proc/irq/prof_cpu_mask */ | 488 | /* create /proc/irq/prof_cpu_mask */ |
| 480 | entry = create_proc_entry("prof_cpu_mask", 0600, root_irq_dir); | 489 | proc_create("prof_cpu_mask", 0600, root_irq_dir, &prof_cpu_mask_proc_fops); |
| 481 | if (!entry) | ||
| 482 | return; | ||
| 483 | entry->data = prof_cpu_mask; | ||
| 484 | entry->read_proc = prof_cpu_mask_read_proc; | ||
| 485 | entry->write_proc = prof_cpu_mask_write_proc; | ||
| 486 | } | 490 | } |
| 487 | 491 | ||
| 488 | /* | 492 | /* |
diff --git a/kernel/ptrace.c b/kernel/ptrace.c index 61c78b2c07ba..307c285af59e 100644 --- a/kernel/ptrace.c +++ b/kernel/ptrace.c | |||
| @@ -152,7 +152,7 @@ int __ptrace_may_access(struct task_struct *task, unsigned int mode) | |||
| 152 | if (!dumpable && !capable(CAP_SYS_PTRACE)) | 152 | if (!dumpable && !capable(CAP_SYS_PTRACE)) |
| 153 | return -EPERM; | 153 | return -EPERM; |
| 154 | 154 | ||
| 155 | return security_ptrace_may_access(task, mode); | 155 | return security_ptrace_access_check(task, mode); |
| 156 | } | 156 | } |
| 157 | 157 | ||
| 158 | bool ptrace_may_access(struct task_struct *task, unsigned int mode) | 158 | bool ptrace_may_access(struct task_struct *task, unsigned int mode) |
| @@ -181,8 +181,8 @@ int ptrace_attach(struct task_struct *task) | |||
| 181 | * interference; SUID, SGID and LSM creds get determined differently | 181 | * interference; SUID, SGID and LSM creds get determined differently |
| 182 | * under ptrace. | 182 | * under ptrace. |
| 183 | */ | 183 | */ |
| 184 | retval = mutex_lock_interruptible(&task->cred_guard_mutex); | 184 | retval = -ERESTARTNOINTR; |
| 185 | if (retval < 0) | 185 | if (mutex_lock_interruptible(&task->cred_guard_mutex)) |
| 186 | goto out; | 186 | goto out; |
| 187 | 187 | ||
| 188 | task_lock(task); | 188 | task_lock(task); |
diff --git a/kernel/rcuclassic.c b/kernel/rcuclassic.c deleted file mode 100644 index 0f2b0b311304..000000000000 --- a/kernel/rcuclassic.c +++ /dev/null | |||
| @@ -1,807 +0,0 @@ | |||
| 1 | /* | ||
| 2 | * Read-Copy Update mechanism for mutual exclusion | ||
| 3 | * | ||
| 4 | * This program is free software; you can redistribute it and/or modify | ||
| 5 | * it under the terms of the GNU General Public License as published by | ||
| 6 | * the Free Software Foundation; either version 2 of the License, or | ||
| 7 | * (at your option) any later version. | ||
| 8 | * | ||
| 9 | * This program is distributed in the hope that it will be useful, | ||
| 10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
| 11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
| 12 | * GNU General Public License for more details. | ||
| 13 | * | ||
| 14 | * You should have received a copy of the GNU General Public License | ||
| 15 | * along with this program; if not, write to the Free Software | ||
| 16 | * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | ||
| 17 | * | ||
| 18 | * Copyright IBM Corporation, 2001 | ||
| 19 | * | ||
| 20 | * Authors: Dipankar Sarma <dipankar@in.ibm.com> | ||
| 21 | * Manfred Spraul <manfred@colorfullife.com> | ||
| 22 | * | ||
| 23 | * Based on the original work by Paul McKenney <paulmck@us.ibm.com> | ||
| 24 | * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. | ||
| 25 | * Papers: | ||
| 26 | * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf | ||
| 27 | * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001) | ||
| 28 | * | ||
| 29 | * For detailed explanation of Read-Copy Update mechanism see - | ||
| 30 | * Documentation/RCU | ||
| 31 | * | ||
| 32 | */ | ||
| 33 | #include <linux/types.h> | ||
| 34 | #include <linux/kernel.h> | ||
| 35 | #include <linux/init.h> | ||
| 36 | #include <linux/spinlock.h> | ||
| 37 | #include <linux/smp.h> | ||
| 38 | #include <linux/rcupdate.h> | ||
| 39 | #include <linux/interrupt.h> | ||
| 40 | #include <linux/sched.h> | ||
| 41 | #include <asm/atomic.h> | ||
| 42 | #include <linux/bitops.h> | ||
| 43 | #include <linux/module.h> | ||
| 44 | #include <linux/completion.h> | ||
| 45 | #include <linux/moduleparam.h> | ||
| 46 | #include <linux/percpu.h> | ||
| 47 | #include <linux/notifier.h> | ||
| 48 | #include <linux/cpu.h> | ||
| 49 | #include <linux/mutex.h> | ||
| 50 | #include <linux/time.h> | ||
| 51 | |||
| 52 | #ifdef CONFIG_DEBUG_LOCK_ALLOC | ||
| 53 | static struct lock_class_key rcu_lock_key; | ||
| 54 | struct lockdep_map rcu_lock_map = | ||
| 55 | STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key); | ||
| 56 | EXPORT_SYMBOL_GPL(rcu_lock_map); | ||
| 57 | #endif | ||
| 58 | |||
| 59 | |||
| 60 | /* Definition for rcupdate control block. */ | ||
| 61 | static struct rcu_ctrlblk rcu_ctrlblk = { | ||
| 62 | .cur = -300, | ||
| 63 | .completed = -300, | ||
| 64 | .pending = -300, | ||
| 65 | .lock = __SPIN_LOCK_UNLOCKED(&rcu_ctrlblk.lock), | ||
| 66 | .cpumask = CPU_BITS_NONE, | ||
| 67 | }; | ||
| 68 | |||
| 69 | static struct rcu_ctrlblk rcu_bh_ctrlblk = { | ||
| 70 | .cur = -300, | ||
| 71 | .completed = -300, | ||
| 72 | .pending = -300, | ||
| 73 | .lock = __SPIN_LOCK_UNLOCKED(&rcu_bh_ctrlblk.lock), | ||
| 74 | .cpumask = CPU_BITS_NONE, | ||
| 75 | }; | ||
| 76 | |||
| 77 | static DEFINE_PER_CPU(struct rcu_data, rcu_data); | ||
| 78 | static DEFINE_PER_CPU(struct rcu_data, rcu_bh_data); | ||
| 79 | |||
| 80 | /* | ||
| 81 | * Increment the quiescent state counter. | ||
| 82 | * The counter is a bit degenerated: We do not need to know | ||
| 83 | * how many quiescent states passed, just if there was at least | ||
| 84 | * one since the start of the grace period. Thus just a flag. | ||
| 85 | */ | ||
| 86 | void rcu_qsctr_inc(int cpu) | ||
| 87 | { | ||
| 88 | struct rcu_data *rdp = &per_cpu(rcu_data, cpu); | ||
| 89 | rdp->passed_quiesc = 1; | ||
| 90 | } | ||
| 91 | |||
| 92 | void rcu_bh_qsctr_inc(int cpu) | ||
| 93 | { | ||
| 94 | struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu); | ||
| 95 | rdp->passed_quiesc = 1; | ||
| 96 | } | ||
| 97 | |||
| 98 | static int blimit = 10; | ||
| 99 | static int qhimark = 10000; | ||
| 100 | static int qlowmark = 100; | ||
| 101 | |||
| 102 | #ifdef CONFIG_SMP | ||
| 103 | static void force_quiescent_state(struct rcu_data *rdp, | ||
| 104 | struct rcu_ctrlblk *rcp) | ||
| 105 | { | ||
| 106 | int cpu; | ||
| 107 | unsigned long flags; | ||
| 108 | |||
| 109 | set_need_resched(); | ||
| 110 | spin_lock_irqsave(&rcp->lock, flags); | ||
| 111 | if (unlikely(!rcp->signaled)) { | ||
| 112 | rcp->signaled = 1; | ||
| 113 | /* | ||
| 114 | * Don't send IPI to itself. With irqs disabled, | ||
| 115 | * rdp->cpu is the current cpu. | ||
| 116 | * | ||
| 117 | * cpu_online_mask is updated by the _cpu_down() | ||
| 118 | * using __stop_machine(). Since we're in irqs disabled | ||
| 119 | * section, __stop_machine() is not exectuting, hence | ||
| 120 | * the cpu_online_mask is stable. | ||
| 121 | * | ||
| 122 | * However, a cpu might have been offlined _just_ before | ||
| 123 | * we disabled irqs while entering here. | ||
| 124 | * And rcu subsystem might not yet have handled the CPU_DEAD | ||
| 125 | * notification, leading to the offlined cpu's bit | ||
| 126 | * being set in the rcp->cpumask. | ||
| 127 | * | ||
| 128 | * Hence cpumask = (rcp->cpumask & cpu_online_mask) to prevent | ||
| 129 | * sending smp_reschedule() to an offlined CPU. | ||
| 130 | */ | ||
| 131 | for_each_cpu_and(cpu, | ||
| 132 | to_cpumask(rcp->cpumask), cpu_online_mask) { | ||
| 133 | if (cpu != rdp->cpu) | ||
| 134 | smp_send_reschedule(cpu); | ||
| 135 | } | ||
| 136 | } | ||
| 137 | spin_unlock_irqrestore(&rcp->lock, flags); | ||
| 138 | } | ||
| 139 | #else | ||
| 140 | static inline void force_quiescent_state(struct rcu_data *rdp, | ||
| 141 | struct rcu_ctrlblk *rcp) | ||
| 142 | { | ||
| 143 | set_need_resched(); | ||
| 144 | } | ||
| 145 | #endif | ||
| 146 | |||
| 147 | static void __call_rcu(struct rcu_head *head, struct rcu_ctrlblk *rcp, | ||
| 148 | struct rcu_data *rdp) | ||
| 149 | { | ||
| 150 | long batch; | ||
| 151 | |||
| 152 | head->next = NULL; | ||
| 153 | smp_mb(); /* Read of rcu->cur must happen after any change by caller. */ | ||
| 154 | |||
| 155 | /* | ||
| 156 | * Determine the batch number of this callback. | ||
| 157 | * | ||
| 158 | * Using ACCESS_ONCE to avoid the following error when gcc eliminates | ||
| 159 | * local variable "batch" and emits codes like this: | ||
| 160 | * 1) rdp->batch = rcp->cur + 1 # gets old value | ||
| 161 | * ...... | ||
| 162 | * 2)rcu_batch_after(rcp->cur + 1, rdp->batch) # gets new value | ||
| 163 | * then [*nxttail[0], *nxttail[1]) may contain callbacks | ||
| 164 | * that batch# = rdp->batch, see the comment of struct rcu_data. | ||
| 165 | */ | ||
| 166 | batch = ACCESS_ONCE(rcp->cur) + 1; | ||
| 167 | |||
| 168 | if (rdp->nxtlist && rcu_batch_after(batch, rdp->batch)) { | ||
| 169 | /* process callbacks */ | ||
| 170 | rdp->nxttail[0] = rdp->nxttail[1]; | ||
| 171 | rdp->nxttail[1] = rdp->nxttail[2]; | ||
| 172 | if (rcu_batch_after(batch - 1, rdp->batch)) | ||
| 173 | rdp->nxttail[0] = rdp->nxttail[2]; | ||
| 174 | } | ||
| 175 | |||
| 176 | rdp->batch = batch; | ||
| 177 | *rdp->nxttail[2] = head; | ||
| 178 | rdp->nxttail[2] = &head->next; | ||
| 179 | |||
| 180 | if (unlikely(++rdp->qlen > qhimark)) { | ||
| 181 | rdp->blimit = INT_MAX; | ||
| 182 | force_quiescent_state(rdp, &rcu_ctrlblk); | ||
| 183 | } | ||
| 184 | } | ||
| 185 | |||
| 186 | #ifdef CONFIG_RCU_CPU_STALL_DETECTOR | ||
| 187 | |||
| 188 | static void record_gp_stall_check_time(struct rcu_ctrlblk *rcp) | ||
| 189 | { | ||
| 190 | rcp->gp_start = jiffies; | ||
| 191 | rcp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK; | ||
| 192 | } | ||
| 193 | |||
| 194 | static void print_other_cpu_stall(struct rcu_ctrlblk *rcp) | ||
| 195 | { | ||
| 196 | int cpu; | ||
| 197 | long delta; | ||
| 198 | unsigned long flags; | ||
| 199 | |||
| 200 | /* Only let one CPU complain about others per time interval. */ | ||
| 201 | |||
| 202 | spin_lock_irqsave(&rcp->lock, flags); | ||
| 203 | delta = jiffies - rcp->jiffies_stall; | ||
| 204 | if (delta < 2 || rcp->cur != rcp->completed) { | ||
| 205 | spin_unlock_irqrestore(&rcp->lock, flags); | ||
| 206 | return; | ||
| 207 | } | ||
| 208 | rcp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK; | ||
| 209 | spin_unlock_irqrestore(&rcp->lock, flags); | ||
| 210 | |||
| 211 | /* OK, time to rat on our buddy... */ | ||
| 212 | |||
| 213 | printk(KERN_ERR "INFO: RCU detected CPU stalls:"); | ||
| 214 | for_each_possible_cpu(cpu) { | ||
| 215 | if (cpumask_test_cpu(cpu, to_cpumask(rcp->cpumask))) | ||
| 216 | printk(" %d", cpu); | ||
| 217 | } | ||
| 218 | printk(" (detected by %d, t=%ld jiffies)\n", | ||
| 219 | smp_processor_id(), (long)(jiffies - rcp->gp_start)); | ||
| 220 | } | ||
| 221 | |||
| 222 | static void print_cpu_stall(struct rcu_ctrlblk *rcp) | ||
| 223 | { | ||
| 224 | unsigned long flags; | ||
| 225 | |||
| 226 | printk(KERN_ERR "INFO: RCU detected CPU %d stall (t=%lu/%lu jiffies)\n", | ||
| 227 | smp_processor_id(), jiffies, | ||
| 228 | jiffies - rcp->gp_start); | ||
| 229 | dump_stack(); | ||
| 230 | spin_lock_irqsave(&rcp->lock, flags); | ||
| 231 | if ((long)(jiffies - rcp->jiffies_stall) >= 0) | ||
| 232 | rcp->jiffies_stall = | ||
| 233 | jiffies + RCU_SECONDS_TILL_STALL_RECHECK; | ||
| 234 | spin_unlock_irqrestore(&rcp->lock, flags); | ||
| 235 | set_need_resched(); /* kick ourselves to get things going. */ | ||
| 236 | } | ||
| 237 | |||
| 238 | static void check_cpu_stall(struct rcu_ctrlblk *rcp) | ||
| 239 | { | ||
| 240 | long delta; | ||
| 241 | |||
| 242 | delta = jiffies - rcp->jiffies_stall; | ||
| 243 | if (cpumask_test_cpu(smp_processor_id(), to_cpumask(rcp->cpumask)) && | ||
| 244 | delta >= 0) { | ||
| 245 | |||
| 246 | /* We haven't checked in, so go dump stack. */ | ||
| 247 | print_cpu_stall(rcp); | ||
| 248 | |||
| 249 | } else if (rcp->cur != rcp->completed && delta >= 2) { | ||
| 250 | |||
| 251 | /* They had two seconds to dump stack, so complain. */ | ||
| 252 | print_other_cpu_stall(rcp); | ||
| 253 | } | ||
| 254 | } | ||
| 255 | |||
| 256 | #else /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ | ||
| 257 | |||
| 258 | static void record_gp_stall_check_time(struct rcu_ctrlblk *rcp) | ||
| 259 | { | ||
| 260 | } | ||
| 261 | |||
| 262 | static inline void check_cpu_stall(struct rcu_ctrlblk *rcp) | ||
| 263 | { | ||
| 264 | } | ||
| 265 | |||
| 266 | #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ | ||
| 267 | |||
| 268 | /** | ||
| 269 | * call_rcu - Queue an RCU callback for invocation after a grace period. | ||
| 270 | * @head: structure to be used for queueing the RCU updates. | ||
| 271 | * @func: actual update function to be invoked after the grace period | ||
| 272 | * | ||
| 273 | * The update function will be invoked some time after a full grace | ||
| 274 | * period elapses, in other words after all currently executing RCU | ||
| 275 | * read-side critical sections have completed. RCU read-side critical | ||
| 276 | * sections are delimited by rcu_read_lock() and rcu_read_unlock(), | ||
| 277 | * and may be nested. | ||
| 278 | */ | ||
| 279 | void call_rcu(struct rcu_head *head, | ||
| 280 | void (*func)(struct rcu_head *rcu)) | ||
| 281 | { | ||
| 282 | unsigned long flags; | ||
| 283 | |||
| 284 | head->func = func; | ||
| 285 | local_irq_save(flags); | ||
| 286 | __call_rcu(head, &rcu_ctrlblk, &__get_cpu_var(rcu_data)); | ||
| 287 | local_irq_restore(flags); | ||
| 288 | } | ||
| 289 | EXPORT_SYMBOL_GPL(call_rcu); | ||
| 290 | |||
| 291 | /** | ||
| 292 | * call_rcu_bh - Queue an RCU for invocation after a quicker grace period. | ||
| 293 | * @head: structure to be used for queueing the RCU updates. | ||
| 294 | * @func: actual update function to be invoked after the grace period | ||
| 295 | * | ||
| 296 | * The update function will be invoked some time after a full grace | ||
| 297 | * period elapses, in other words after all currently executing RCU | ||
| 298 | * read-side critical sections have completed. call_rcu_bh() assumes | ||
| 299 | * that the read-side critical sections end on completion of a softirq | ||
| 300 | * handler. This means that read-side critical sections in process | ||
| 301 | * context must not be interrupted by softirqs. This interface is to be | ||
| 302 | * used when most of the read-side critical sections are in softirq context. | ||
| 303 | * RCU read-side critical sections are delimited by rcu_read_lock() and | ||
| 304 | * rcu_read_unlock(), * if in interrupt context or rcu_read_lock_bh() | ||
| 305 | * and rcu_read_unlock_bh(), if in process context. These may be nested. | ||
| 306 | */ | ||
| 307 | void call_rcu_bh(struct rcu_head *head, | ||
| 308 | void (*func)(struct rcu_head *rcu)) | ||
| 309 | { | ||
| 310 | unsigned long flags; | ||
| 311 | |||
| 312 | head->func = func; | ||
| 313 | local_irq_save(flags); | ||
| 314 | __call_rcu(head, &rcu_bh_ctrlblk, &__get_cpu_var(rcu_bh_data)); | ||
| 315 | local_irq_restore(flags); | ||
| 316 | } | ||
| 317 | EXPORT_SYMBOL_GPL(call_rcu_bh); | ||
| 318 | |||
| 319 | /* | ||
| 320 | * Return the number of RCU batches processed thus far. Useful | ||
| 321 | * for debug and statistics. | ||
| 322 | */ | ||
| 323 | long rcu_batches_completed(void) | ||
| 324 | { | ||
| 325 | return rcu_ctrlblk.completed; | ||
| 326 | } | ||
| 327 | EXPORT_SYMBOL_GPL(rcu_batches_completed); | ||
| 328 | |||
| 329 | /* | ||
| 330 | * Return the number of RCU batches processed thus far. Useful | ||
| 331 | * for debug and statistics. | ||
| 332 | */ | ||
| 333 | long rcu_batches_completed_bh(void) | ||
| 334 | { | ||
| 335 | return rcu_bh_ctrlblk.completed; | ||
| 336 | } | ||
| 337 | EXPORT_SYMBOL_GPL(rcu_batches_completed_bh); | ||
| 338 | |||
| 339 | /* Raises the softirq for processing rcu_callbacks. */ | ||
| 340 | static inline void raise_rcu_softirq(void) | ||
| 341 | { | ||
| 342 | raise_softirq(RCU_SOFTIRQ); | ||
| 343 | } | ||
| 344 | |||
| 345 | /* | ||
| 346 | * Invoke the completed RCU callbacks. They are expected to be in | ||
| 347 | * a per-cpu list. | ||
| 348 | */ | ||
| 349 | static void rcu_do_batch(struct rcu_data *rdp) | ||
| 350 | { | ||
| 351 | unsigned long flags; | ||
| 352 | struct rcu_head *next, *list; | ||
| 353 | int count = 0; | ||
| 354 | |||
| 355 | list = rdp->donelist; | ||
| 356 | while (list) { | ||
| 357 | next = list->next; | ||
| 358 | prefetch(next); | ||
| 359 | list->func(list); | ||
| 360 | list = next; | ||
| 361 | if (++count >= rdp->blimit) | ||
| 362 | break; | ||
| 363 | } | ||
| 364 | rdp->donelist = list; | ||
| 365 | |||
| 366 | local_irq_save(flags); | ||
| 367 | rdp->qlen -= count; | ||
| 368 | local_irq_restore(flags); | ||
| 369 | if (rdp->blimit == INT_MAX && rdp->qlen <= qlowmark) | ||
| 370 | rdp->blimit = blimit; | ||
| 371 | |||
| 372 | if (!rdp->donelist) | ||
| 373 | rdp->donetail = &rdp->donelist; | ||
| 374 | else | ||
| 375 | raise_rcu_softirq(); | ||
| 376 | } | ||
| 377 | |||
| 378 | /* | ||
| 379 | * Grace period handling: | ||
| 380 | * The grace period handling consists out of two steps: | ||
| 381 | * - A new grace period is started. | ||
| 382 | * This is done by rcu_start_batch. The start is not broadcasted to | ||
| 383 | * all cpus, they must pick this up by comparing rcp->cur with | ||
| 384 | * rdp->quiescbatch. All cpus are recorded in the | ||
| 385 | * rcu_ctrlblk.cpumask bitmap. | ||
| 386 | * - All cpus must go through a quiescent state. | ||
| 387 | * Since the start of the grace period is not broadcasted, at least two | ||
| 388 | * calls to rcu_check_quiescent_state are required: | ||
| 389 | * The first call just notices that a new grace period is running. The | ||
| 390 | * following calls check if there was a quiescent state since the beginning | ||
| 391 | * of the grace period. If so, it updates rcu_ctrlblk.cpumask. If | ||
| 392 | * the bitmap is empty, then the grace period is completed. | ||
| 393 | * rcu_check_quiescent_state calls rcu_start_batch(0) to start the next grace | ||
| 394 | * period (if necessary). | ||
| 395 | */ | ||
| 396 | |||
| 397 | /* | ||
| 398 | * Register a new batch of callbacks, and start it up if there is currently no | ||
| 399 | * active batch and the batch to be registered has not already occurred. | ||
| 400 | * Caller must hold rcu_ctrlblk.lock. | ||
| 401 | */ | ||
| 402 | static void rcu_start_batch(struct rcu_ctrlblk *rcp) | ||
| 403 | { | ||
| 404 | if (rcp->cur != rcp->pending && | ||
| 405 | rcp->completed == rcp->cur) { | ||
| 406 | rcp->cur++; | ||
| 407 | record_gp_stall_check_time(rcp); | ||
| 408 | |||
| 409 | /* | ||
| 410 | * Accessing nohz_cpu_mask before incrementing rcp->cur needs a | ||
| 411 | * Barrier Otherwise it can cause tickless idle CPUs to be | ||
| 412 | * included in rcp->cpumask, which will extend graceperiods | ||
| 413 | * unnecessarily. | ||
| 414 | */ | ||
| 415 | smp_mb(); | ||
| 416 | cpumask_andnot(to_cpumask(rcp->cpumask), | ||
| 417 | cpu_online_mask, nohz_cpu_mask); | ||
| 418 | |||
| 419 | rcp->signaled = 0; | ||
| 420 | } | ||
| 421 | } | ||
| 422 | |||
| 423 | /* | ||
| 424 | * cpu went through a quiescent state since the beginning of the grace period. | ||
| 425 | * Clear it from the cpu mask and complete the grace period if it was the last | ||
| 426 | * cpu. Start another grace period if someone has further entries pending | ||
| 427 | */ | ||
| 428 | static void cpu_quiet(int cpu, struct rcu_ctrlblk *rcp) | ||
| 429 | { | ||
| 430 | cpumask_clear_cpu(cpu, to_cpumask(rcp->cpumask)); | ||
| 431 | if (cpumask_empty(to_cpumask(rcp->cpumask))) { | ||
| 432 | /* batch completed ! */ | ||
| 433 | rcp->completed = rcp->cur; | ||
| 434 | rcu_start_batch(rcp); | ||
| 435 | } | ||
| 436 | } | ||
| 437 | |||
| 438 | /* | ||
| 439 | * Check if the cpu has gone through a quiescent state (say context | ||
| 440 | * switch). If so and if it already hasn't done so in this RCU | ||
| 441 | * quiescent cycle, then indicate that it has done so. | ||
| 442 | */ | ||
| 443 | static void rcu_check_quiescent_state(struct rcu_ctrlblk *rcp, | ||
| 444 | struct rcu_data *rdp) | ||
| 445 | { | ||
| 446 | unsigned long flags; | ||
| 447 | |||
| 448 | if (rdp->quiescbatch != rcp->cur) { | ||
| 449 | /* start new grace period: */ | ||
| 450 | rdp->qs_pending = 1; | ||
| 451 | rdp->passed_quiesc = 0; | ||
| 452 | rdp->quiescbatch = rcp->cur; | ||
| 453 | return; | ||
| 454 | } | ||
| 455 | |||
| 456 | /* Grace period already completed for this cpu? | ||
| 457 | * qs_pending is checked instead of the actual bitmap to avoid | ||
| 458 | * cacheline trashing. | ||
| 459 | */ | ||
| 460 | if (!rdp->qs_pending) | ||
| 461 | return; | ||
| 462 | |||
| 463 | /* | ||
| 464 | * Was there a quiescent state since the beginning of the grace | ||
| 465 | * period? If no, then exit and wait for the next call. | ||
| 466 | */ | ||
| 467 | if (!rdp->passed_quiesc) | ||
| 468 | return; | ||
| 469 | rdp->qs_pending = 0; | ||
| 470 | |||
| 471 | spin_lock_irqsave(&rcp->lock, flags); | ||
| 472 | /* | ||
| 473 | * rdp->quiescbatch/rcp->cur and the cpu bitmap can come out of sync | ||
| 474 | * during cpu startup. Ignore the quiescent state. | ||
| 475 | */ | ||
| 476 | if (likely(rdp->quiescbatch == rcp->cur)) | ||
| 477 | cpu_quiet(rdp->cpu, rcp); | ||
| 478 | |||
| 479 | spin_unlock_irqrestore(&rcp->lock, flags); | ||
| 480 | } | ||
| 481 | |||
| 482 | |||
| 483 | #ifdef CONFIG_HOTPLUG_CPU | ||
| 484 | |||
| 485 | /* warning! helper for rcu_offline_cpu. do not use elsewhere without reviewing | ||
| 486 | * locking requirements, the list it's pulling from has to belong to a cpu | ||
| 487 | * which is dead and hence not processing interrupts. | ||
| 488 | */ | ||
| 489 | static void rcu_move_batch(struct rcu_data *this_rdp, struct rcu_head *list, | ||
| 490 | struct rcu_head **tail, long batch) | ||
| 491 | { | ||
| 492 | unsigned long flags; | ||
| 493 | |||
| 494 | if (list) { | ||
| 495 | local_irq_save(flags); | ||
| 496 | this_rdp->batch = batch; | ||
| 497 | *this_rdp->nxttail[2] = list; | ||
| 498 | this_rdp->nxttail[2] = tail; | ||
| 499 | local_irq_restore(flags); | ||
| 500 | } | ||
| 501 | } | ||
| 502 | |||
| 503 | static void __rcu_offline_cpu(struct rcu_data *this_rdp, | ||
| 504 | struct rcu_ctrlblk *rcp, struct rcu_data *rdp) | ||
| 505 | { | ||
| 506 | unsigned long flags; | ||
| 507 | |||
| 508 | /* | ||
| 509 | * if the cpu going offline owns the grace period | ||
| 510 | * we can block indefinitely waiting for it, so flush | ||
| 511 | * it here | ||
| 512 | */ | ||
| 513 | spin_lock_irqsave(&rcp->lock, flags); | ||
| 514 | if (rcp->cur != rcp->completed) | ||
| 515 | cpu_quiet(rdp->cpu, rcp); | ||
| 516 | rcu_move_batch(this_rdp, rdp->donelist, rdp->donetail, rcp->cur + 1); | ||
| 517 | rcu_move_batch(this_rdp, rdp->nxtlist, rdp->nxttail[2], rcp->cur + 1); | ||
| 518 | spin_unlock(&rcp->lock); | ||
| 519 | |||
| 520 | this_rdp->qlen += rdp->qlen; | ||
| 521 | local_irq_restore(flags); | ||
| 522 | } | ||
| 523 | |||
| 524 | static void rcu_offline_cpu(int cpu) | ||
| 525 | { | ||
| 526 | struct rcu_data *this_rdp = &get_cpu_var(rcu_data); | ||
| 527 | struct rcu_data *this_bh_rdp = &get_cpu_var(rcu_bh_data); | ||
| 528 | |||
| 529 | __rcu_offline_cpu(this_rdp, &rcu_ctrlblk, | ||
| 530 | &per_cpu(rcu_data, cpu)); | ||
| 531 | __rcu_offline_cpu(this_bh_rdp, &rcu_bh_ctrlblk, | ||
| 532 | &per_cpu(rcu_bh_data, cpu)); | ||
| 533 | put_cpu_var(rcu_data); | ||
| 534 | put_cpu_var(rcu_bh_data); | ||
| 535 | } | ||
| 536 | |||
| 537 | #else | ||
| 538 | |||
| 539 | static void rcu_offline_cpu(int cpu) | ||
| 540 | { | ||
| 541 | } | ||
| 542 | |||
| 543 | #endif | ||
| 544 | |||
| 545 | /* | ||
| 546 | * This does the RCU processing work from softirq context. | ||
| 547 | */ | ||
| 548 | static void __rcu_process_callbacks(struct rcu_ctrlblk *rcp, | ||
| 549 | struct rcu_data *rdp) | ||
| 550 | { | ||
| 551 | unsigned long flags; | ||
| 552 | long completed_snap; | ||
| 553 | |||
| 554 | if (rdp->nxtlist) { | ||
| 555 | local_irq_save(flags); | ||
| 556 | completed_snap = ACCESS_ONCE(rcp->completed); | ||
| 557 | |||
| 558 | /* | ||
| 559 | * move the other grace-period-completed entries to | ||
| 560 | * [rdp->nxtlist, *rdp->nxttail[0]) temporarily | ||
| 561 | */ | ||
| 562 | if (!rcu_batch_before(completed_snap, rdp->batch)) | ||
| 563 | rdp->nxttail[0] = rdp->nxttail[1] = rdp->nxttail[2]; | ||
| 564 | else if (!rcu_batch_before(completed_snap, rdp->batch - 1)) | ||
| 565 | rdp->nxttail[0] = rdp->nxttail[1]; | ||
| 566 | |||
| 567 | /* | ||
| 568 | * the grace period for entries in | ||
| 569 | * [rdp->nxtlist, *rdp->nxttail[0]) has completed and | ||
| 570 | * move these entries to donelist | ||
| 571 | */ | ||
| 572 | if (rdp->nxttail[0] != &rdp->nxtlist) { | ||
| 573 | *rdp->donetail = rdp->nxtlist; | ||
| 574 | rdp->donetail = rdp->nxttail[0]; | ||
| 575 | rdp->nxtlist = *rdp->nxttail[0]; | ||
| 576 | *rdp->donetail = NULL; | ||
| 577 | |||
| 578 | if (rdp->nxttail[1] == rdp->nxttail[0]) | ||
| 579 | rdp->nxttail[1] = &rdp->nxtlist; | ||
| 580 | if (rdp->nxttail[2] == rdp->nxttail[0]) | ||
| 581 | rdp->nxttail[2] = &rdp->nxtlist; | ||
| 582 | rdp->nxttail[0] = &rdp->nxtlist; | ||
| 583 | } | ||
| 584 | |||
| 585 | local_irq_restore(flags); | ||
| 586 | |||
| 587 | if (rcu_batch_after(rdp->batch, rcp->pending)) { | ||
| 588 | unsigned long flags2; | ||
| 589 | |||
| 590 | /* and start it/schedule start if it's a new batch */ | ||
| 591 | spin_lock_irqsave(&rcp->lock, flags2); | ||
| 592 | if (rcu_batch_after(rdp->batch, rcp->pending)) { | ||
| 593 | rcp->pending = rdp->batch; | ||
| 594 | rcu_start_batch(rcp); | ||
| 595 | } | ||
| 596 | spin_unlock_irqrestore(&rcp->lock, flags2); | ||
| 597 | } | ||
| 598 | } | ||
| 599 | |||
| 600 | rcu_check_quiescent_state(rcp, rdp); | ||
| 601 | if (rdp->donelist) | ||
| 602 | rcu_do_batch(rdp); | ||
| 603 | } | ||
| 604 | |||
| 605 | static void rcu_process_callbacks(struct softirq_action *unused) | ||
| 606 | { | ||
| 607 | /* | ||
| 608 | * Memory references from any prior RCU read-side critical sections | ||
| 609 | * executed by the interrupted code must be see before any RCU | ||
| 610 | * grace-period manupulations below. | ||
| 611 | */ | ||
| 612 | |||
| 613 | smp_mb(); /* See above block comment. */ | ||
| 614 | |||
| 615 | __rcu_process_callbacks(&rcu_ctrlblk, &__get_cpu_var(rcu_data)); | ||
| 616 | __rcu_process_callbacks(&rcu_bh_ctrlblk, &__get_cpu_var(rcu_bh_data)); | ||
| 617 | |||
| 618 | /* | ||
| 619 | * Memory references from any later RCU read-side critical sections | ||
| 620 | * executed by the interrupted code must be see after any RCU | ||
| 621 | * grace-period manupulations above. | ||
| 622 | */ | ||
| 623 | |||
| 624 | smp_mb(); /* See above block comment. */ | ||
| 625 | } | ||
| 626 | |||
| 627 | static int __rcu_pending(struct rcu_ctrlblk *rcp, struct rcu_data *rdp) | ||
| 628 | { | ||
| 629 | /* Check for CPU stalls, if enabled. */ | ||
| 630 | check_cpu_stall(rcp); | ||
| 631 | |||
| 632 | if (rdp->nxtlist) { | ||
| 633 | long completed_snap = ACCESS_ONCE(rcp->completed); | ||
| 634 | |||
| 635 | /* | ||
| 636 | * This cpu has pending rcu entries and the grace period | ||
| 637 | * for them has completed. | ||
| 638 | */ | ||
| 639 | if (!rcu_batch_before(completed_snap, rdp->batch)) | ||
| 640 | return 1; | ||
| 641 | if (!rcu_batch_before(completed_snap, rdp->batch - 1) && | ||
| 642 | rdp->nxttail[0] != rdp->nxttail[1]) | ||
| 643 | return 1; | ||
| 644 | if (rdp->nxttail[0] != &rdp->nxtlist) | ||
| 645 | return 1; | ||
| 646 | |||
| 647 | /* | ||
| 648 | * This cpu has pending rcu entries and the new batch | ||
| 649 | * for then hasn't been started nor scheduled start | ||
| 650 | */ | ||
| 651 | if (rcu_batch_after(rdp->batch, rcp->pending)) | ||
| 652 | return 1; | ||
| 653 | } | ||
| 654 | |||
| 655 | /* This cpu has finished callbacks to invoke */ | ||
| 656 | if (rdp->donelist) | ||
| 657 | return 1; | ||
| 658 | |||
| 659 | /* The rcu core waits for a quiescent state from the cpu */ | ||
| 660 | if (rdp->quiescbatch != rcp->cur || rdp->qs_pending) | ||
| 661 | return 1; | ||
| 662 | |||
| 663 | /* nothing to do */ | ||
| 664 | return 0; | ||
| 665 | } | ||
| 666 | |||
| 667 | /* | ||
| 668 | * Check to see if there is any immediate RCU-related work to be done | ||
| 669 | * by the current CPU, returning 1 if so. This function is part of the | ||
| 670 | * RCU implementation; it is -not- an exported member of the RCU API. | ||
| 671 | */ | ||
| 672 | int rcu_pending(int cpu) | ||
| 673 | { | ||
| 674 | return __rcu_pending(&rcu_ctrlblk, &per_cpu(rcu_data, cpu)) || | ||
| 675 | __rcu_pending(&rcu_bh_ctrlblk, &per_cpu(rcu_bh_data, cpu)); | ||
| 676 | } | ||
| 677 | |||
| 678 | /* | ||
| 679 | * Check to see if any future RCU-related work will need to be done | ||
| 680 | * by the current CPU, even if none need be done immediately, returning | ||
| 681 | * 1 if so. This function is part of the RCU implementation; it is -not- | ||
| 682 | * an exported member of the RCU API. | ||
| 683 | */ | ||
| 684 | int rcu_needs_cpu(int cpu) | ||
| 685 | { | ||
| 686 | struct rcu_data *rdp = &per_cpu(rcu_data, cpu); | ||
| 687 | struct rcu_data *rdp_bh = &per_cpu(rcu_bh_data, cpu); | ||
| 688 | |||
| 689 | return !!rdp->nxtlist || !!rdp_bh->nxtlist || rcu_pending(cpu); | ||
| 690 | } | ||
| 691 | |||
| 692 | /* | ||
| 693 | * Top-level function driving RCU grace-period detection, normally | ||
| 694 | * invoked from the scheduler-clock interrupt. This function simply | ||
| 695 | * increments counters that are read only from softirq by this same | ||
| 696 | * CPU, so there are no memory barriers required. | ||
| 697 | */ | ||
| 698 | void rcu_check_callbacks(int cpu, int user) | ||
| 699 | { | ||
| 700 | if (user || | ||
| 701 | (idle_cpu(cpu) && rcu_scheduler_active && | ||
| 702 | !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) { | ||
| 703 | |||
| 704 | /* | ||
| 705 | * Get here if this CPU took its interrupt from user | ||
| 706 | * mode or from the idle loop, and if this is not a | ||
| 707 | * nested interrupt. In this case, the CPU is in | ||
| 708 | * a quiescent state, so count it. | ||
| 709 | * | ||
| 710 | * Also do a memory barrier. This is needed to handle | ||
| 711 | * the case where writes from a preempt-disable section | ||
| 712 | * of code get reordered into schedule() by this CPU's | ||
| 713 | * write buffer. The memory barrier makes sure that | ||
| 714 | * the rcu_qsctr_inc() and rcu_bh_qsctr_inc() are see | ||
| 715 | * by other CPUs to happen after any such write. | ||
| 716 | */ | ||
| 717 | |||
| 718 | smp_mb(); /* See above block comment. */ | ||
| 719 | rcu_qsctr_inc(cpu); | ||
| 720 | rcu_bh_qsctr_inc(cpu); | ||
| 721 | |||
| 722 | } else if (!in_softirq()) { | ||
| 723 | |||
| 724 | /* | ||
| 725 | * Get here if this CPU did not take its interrupt from | ||
| 726 | * softirq, in other words, if it is not interrupting | ||
| 727 | * a rcu_bh read-side critical section. This is an _bh | ||
| 728 | * critical section, so count it. The memory barrier | ||
| 729 | * is needed for the same reason as is the above one. | ||
| 730 | */ | ||
| 731 | |||
| 732 | smp_mb(); /* See above block comment. */ | ||
| 733 | rcu_bh_qsctr_inc(cpu); | ||
| 734 | } | ||
| 735 | raise_rcu_softirq(); | ||
| 736 | } | ||
| 737 | |||
| 738 | static void __cpuinit rcu_init_percpu_data(int cpu, struct rcu_ctrlblk *rcp, | ||
| 739 | struct rcu_data *rdp) | ||
| 740 | { | ||
| 741 | unsigned long flags; | ||
| 742 | |||
| 743 | spin_lock_irqsave(&rcp->lock, flags); | ||
| 744 | memset(rdp, 0, sizeof(*rdp)); | ||
| 745 | rdp->nxttail[0] = rdp->nxttail[1] = rdp->nxttail[2] = &rdp->nxtlist; | ||
| 746 | rdp->donetail = &rdp->donelist; | ||
| 747 | rdp->quiescbatch = rcp->completed; | ||
| 748 | rdp->qs_pending = 0; | ||
| 749 | rdp->cpu = cpu; | ||
| 750 | rdp->blimit = blimit; | ||
| 751 | spin_unlock_irqrestore(&rcp->lock, flags); | ||
| 752 | } | ||
| 753 | |||
| 754 | static void __cpuinit rcu_online_cpu(int cpu) | ||
| 755 | { | ||
| 756 | struct rcu_data *rdp = &per_cpu(rcu_data, cpu); | ||
| 757 | struct rcu_data *bh_rdp = &per_cpu(rcu_bh_data, cpu); | ||
| 758 | |||
| 759 | rcu_init_percpu_data(cpu, &rcu_ctrlblk, rdp); | ||
| 760 | rcu_init_percpu_data(cpu, &rcu_bh_ctrlblk, bh_rdp); | ||
| 761 | open_softirq(RCU_SOFTIRQ, rcu_process_callbacks); | ||
| 762 | } | ||
| 763 | |||
| 764 | static int __cpuinit rcu_cpu_notify(struct notifier_block *self, | ||
| 765 | unsigned long action, void *hcpu) | ||
| 766 | { | ||
| 767 | long cpu = (long)hcpu; | ||
| 768 | |||
| 769 | switch (action) { | ||
| 770 | case CPU_UP_PREPARE: | ||
| 771 | case CPU_UP_PREPARE_FROZEN: | ||
| 772 | rcu_online_cpu(cpu); | ||
| 773 | break; | ||
| 774 | case CPU_DEAD: | ||
| 775 | case CPU_DEAD_FROZEN: | ||
| 776 | rcu_offline_cpu(cpu); | ||
| 777 | break; | ||
| 778 | default: | ||
| 779 | break; | ||
| 780 | } | ||
| 781 | return NOTIFY_OK; | ||
| 782 | } | ||
| 783 | |||
| 784 | static struct notifier_block __cpuinitdata rcu_nb = { | ||
| 785 | .notifier_call = rcu_cpu_notify, | ||
| 786 | }; | ||
| 787 | |||
| 788 | /* | ||
| 789 | * Initializes rcu mechanism. Assumed to be called early. | ||
| 790 | * That is before local timer(SMP) or jiffie timer (uniproc) is setup. | ||
| 791 | * Note that rcu_qsctr and friends are implicitly | ||
| 792 | * initialized due to the choice of ``0'' for RCU_CTR_INVALID. | ||
| 793 | */ | ||
| 794 | void __init __rcu_init(void) | ||
| 795 | { | ||
| 796 | #ifdef CONFIG_RCU_CPU_STALL_DETECTOR | ||
| 797 | printk(KERN_INFO "RCU-based detection of stalled CPUs is enabled.\n"); | ||
| 798 | #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ | ||
| 799 | rcu_cpu_notify(&rcu_nb, CPU_UP_PREPARE, | ||
| 800 | (void *)(long)smp_processor_id()); | ||
| 801 | /* Register notifier for non-boot CPUs */ | ||
| 802 | register_cpu_notifier(&rcu_nb); | ||
| 803 | } | ||
| 804 | |||
| 805 | module_param(blimit, int, 0); | ||
| 806 | module_param(qhimark, int, 0); | ||
| 807 | module_param(qlowmark, int, 0); | ||
diff --git a/kernel/rcupdate.c b/kernel/rcupdate.c index a967c9feb90a..37ac45483082 100644 --- a/kernel/rcupdate.c +++ b/kernel/rcupdate.c | |||
| @@ -19,7 +19,7 @@ | |||
| 19 | * | 19 | * |
| 20 | * Authors: Dipankar Sarma <dipankar@in.ibm.com> | 20 | * Authors: Dipankar Sarma <dipankar@in.ibm.com> |
| 21 | * Manfred Spraul <manfred@colorfullife.com> | 21 | * Manfred Spraul <manfred@colorfullife.com> |
| 22 | * | 22 | * |
| 23 | * Based on the original work by Paul McKenney <paulmck@us.ibm.com> | 23 | * Based on the original work by Paul McKenney <paulmck@us.ibm.com> |
| 24 | * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. | 24 | * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. |
| 25 | * Papers: | 25 | * Papers: |
| @@ -27,7 +27,7 @@ | |||
| 27 | * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001) | 27 | * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001) |
| 28 | * | 28 | * |
| 29 | * For detailed explanation of Read-Copy Update mechanism see - | 29 | * For detailed explanation of Read-Copy Update mechanism see - |
| 30 | * http://lse.sourceforge.net/locking/rcupdate.html | 30 | * http://lse.sourceforge.net/locking/rcupdate.html |
| 31 | * | 31 | * |
| 32 | */ | 32 | */ |
| 33 | #include <linux/types.h> | 33 | #include <linux/types.h> |
| @@ -74,6 +74,8 @@ void wakeme_after_rcu(struct rcu_head *head) | |||
| 74 | complete(&rcu->completion); | 74 | complete(&rcu->completion); |
| 75 | } | 75 | } |
| 76 | 76 | ||
| 77 | #ifdef CONFIG_TREE_PREEMPT_RCU | ||
| 78 | |||
| 77 | /** | 79 | /** |
| 78 | * synchronize_rcu - wait until a grace period has elapsed. | 80 | * synchronize_rcu - wait until a grace period has elapsed. |
| 79 | * | 81 | * |
| @@ -87,7 +89,7 @@ void synchronize_rcu(void) | |||
| 87 | { | 89 | { |
| 88 | struct rcu_synchronize rcu; | 90 | struct rcu_synchronize rcu; |
| 89 | 91 | ||
| 90 | if (rcu_blocking_is_gp()) | 92 | if (!rcu_scheduler_active) |
| 91 | return; | 93 | return; |
| 92 | 94 | ||
| 93 | init_completion(&rcu.completion); | 95 | init_completion(&rcu.completion); |
| @@ -98,6 +100,70 @@ void synchronize_rcu(void) | |||
| 98 | } | 100 | } |
| 99 | EXPORT_SYMBOL_GPL(synchronize_rcu); | 101 | EXPORT_SYMBOL_GPL(synchronize_rcu); |
| 100 | 102 | ||
| 103 | #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ | ||
| 104 | |||
| 105 | /** | ||
| 106 | * synchronize_sched - wait until an rcu-sched grace period has elapsed. | ||
| 107 | * | ||
| 108 | * Control will return to the caller some time after a full rcu-sched | ||
| 109 | * grace period has elapsed, in other words after all currently executing | ||
| 110 | * rcu-sched read-side critical sections have completed. These read-side | ||
| 111 | * critical sections are delimited by rcu_read_lock_sched() and | ||
| 112 | * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(), | ||
| 113 | * local_irq_disable(), and so on may be used in place of | ||
| 114 | * rcu_read_lock_sched(). | ||
| 115 | * | ||
| 116 | * This means that all preempt_disable code sequences, including NMI and | ||
| 117 | * hardware-interrupt handlers, in progress on entry will have completed | ||
| 118 | * before this primitive returns. However, this does not guarantee that | ||
| 119 | * softirq handlers will have completed, since in some kernels, these | ||
| 120 | * handlers can run in process context, and can block. | ||
| 121 | * | ||
| 122 | * This primitive provides the guarantees made by the (now removed) | ||
| 123 | * synchronize_kernel() API. In contrast, synchronize_rcu() only | ||
| 124 | * guarantees that rcu_read_lock() sections will have completed. | ||
| 125 | * In "classic RCU", these two guarantees happen to be one and | ||
| 126 | * the same, but can differ in realtime RCU implementations. | ||
| 127 | */ | ||
| 128 | void synchronize_sched(void) | ||
| 129 | { | ||
| 130 | struct rcu_synchronize rcu; | ||
| 131 | |||
| 132 | if (rcu_blocking_is_gp()) | ||
| 133 | return; | ||
| 134 | |||
| 135 | init_completion(&rcu.completion); | ||
| 136 | /* Will wake me after RCU finished. */ | ||
| 137 | call_rcu_sched(&rcu.head, wakeme_after_rcu); | ||
| 138 | /* Wait for it. */ | ||
| 139 | wait_for_completion(&rcu.completion); | ||
| 140 | } | ||
| 141 | EXPORT_SYMBOL_GPL(synchronize_sched); | ||
| 142 | |||
| 143 | /** | ||
| 144 | * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed. | ||
| 145 | * | ||
| 146 | * Control will return to the caller some time after a full rcu_bh grace | ||
| 147 | * period has elapsed, in other words after all currently executing rcu_bh | ||
| 148 | * read-side critical sections have completed. RCU read-side critical | ||
| 149 | * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(), | ||
| 150 | * and may be nested. | ||
| 151 | */ | ||
| 152 | void synchronize_rcu_bh(void) | ||
| 153 | { | ||
| 154 | struct rcu_synchronize rcu; | ||
| 155 | |||
| 156 | if (rcu_blocking_is_gp()) | ||
| 157 | return; | ||
| 158 | |||
| 159 | init_completion(&rcu.completion); | ||
| 160 | /* Will wake me after RCU finished. */ | ||
| 161 | call_rcu_bh(&rcu.head, wakeme_after_rcu); | ||
| 162 | /* Wait for it. */ | ||
| 163 | wait_for_completion(&rcu.completion); | ||
| 164 | } | ||
| 165 | EXPORT_SYMBOL_GPL(synchronize_rcu_bh); | ||
| 166 | |||
| 101 | static void rcu_barrier_callback(struct rcu_head *notused) | 167 | static void rcu_barrier_callback(struct rcu_head *notused) |
| 102 | { | 168 | { |
| 103 | if (atomic_dec_and_test(&rcu_barrier_cpu_count)) | 169 | if (atomic_dec_and_test(&rcu_barrier_cpu_count)) |
| @@ -129,6 +195,7 @@ static void rcu_barrier_func(void *type) | |||
| 129 | static inline void wait_migrated_callbacks(void) | 195 | static inline void wait_migrated_callbacks(void) |
| 130 | { | 196 | { |
| 131 | wait_event(rcu_migrate_wq, !atomic_read(&rcu_migrate_type_count)); | 197 | wait_event(rcu_migrate_wq, !atomic_read(&rcu_migrate_type_count)); |
| 198 | smp_mb(); /* In case we didn't sleep. */ | ||
| 132 | } | 199 | } |
| 133 | 200 | ||
| 134 | /* | 201 | /* |
| @@ -192,9 +259,13 @@ static void rcu_migrate_callback(struct rcu_head *notused) | |||
| 192 | wake_up(&rcu_migrate_wq); | 259 | wake_up(&rcu_migrate_wq); |
| 193 | } | 260 | } |
| 194 | 261 | ||
| 262 | extern int rcu_cpu_notify(struct notifier_block *self, | ||
| 263 | unsigned long action, void *hcpu); | ||
| 264 | |||
| 195 | static int __cpuinit rcu_barrier_cpu_hotplug(struct notifier_block *self, | 265 | static int __cpuinit rcu_barrier_cpu_hotplug(struct notifier_block *self, |
| 196 | unsigned long action, void *hcpu) | 266 | unsigned long action, void *hcpu) |
| 197 | { | 267 | { |
| 268 | rcu_cpu_notify(self, action, hcpu); | ||
| 198 | if (action == CPU_DYING) { | 269 | if (action == CPU_DYING) { |
| 199 | /* | 270 | /* |
| 200 | * preempt_disable() in on_each_cpu() prevents stop_machine(), | 271 | * preempt_disable() in on_each_cpu() prevents stop_machine(), |
| @@ -209,7 +280,8 @@ static int __cpuinit rcu_barrier_cpu_hotplug(struct notifier_block *self, | |||
| 209 | call_rcu_bh(rcu_migrate_head, rcu_migrate_callback); | 280 | call_rcu_bh(rcu_migrate_head, rcu_migrate_callback); |
| 210 | call_rcu_sched(rcu_migrate_head + 1, rcu_migrate_callback); | 281 | call_rcu_sched(rcu_migrate_head + 1, rcu_migrate_callback); |
| 211 | call_rcu(rcu_migrate_head + 2, rcu_migrate_callback); | 282 | call_rcu(rcu_migrate_head + 2, rcu_migrate_callback); |
| 212 | } else if (action == CPU_POST_DEAD) { | 283 | } else if (action == CPU_DOWN_PREPARE) { |
| 284 | /* Don't need to wait until next removal operation. */ | ||
| 213 | /* rcu_migrate_head is protected by cpu_add_remove_lock */ | 285 | /* rcu_migrate_head is protected by cpu_add_remove_lock */ |
| 214 | wait_migrated_callbacks(); | 286 | wait_migrated_callbacks(); |
| 215 | } | 287 | } |
| @@ -219,8 +291,18 @@ static int __cpuinit rcu_barrier_cpu_hotplug(struct notifier_block *self, | |||
| 219 | 291 | ||
| 220 | void __init rcu_init(void) | 292 | void __init rcu_init(void) |
| 221 | { | 293 | { |
| 294 | int i; | ||
| 295 | |||
| 222 | __rcu_init(); | 296 | __rcu_init(); |
| 223 | hotcpu_notifier(rcu_barrier_cpu_hotplug, 0); | 297 | cpu_notifier(rcu_barrier_cpu_hotplug, 0); |
| 298 | |||
| 299 | /* | ||
| 300 | * We don't need protection against CPU-hotplug here because | ||
| 301 | * this is called early in boot, before either interrupts | ||
| 302 | * or the scheduler are operational. | ||
| 303 | */ | ||
| 304 | for_each_online_cpu(i) | ||
| 305 | rcu_barrier_cpu_hotplug(NULL, CPU_UP_PREPARE, (void *)(long)i); | ||
| 224 | } | 306 | } |
| 225 | 307 | ||
| 226 | void rcu_scheduler_starting(void) | 308 | void rcu_scheduler_starting(void) |
diff --git a/kernel/rcupreempt.c b/kernel/rcupreempt.c deleted file mode 100644 index beb0e659adcc..000000000000 --- a/kernel/rcupreempt.c +++ /dev/null | |||
| @@ -1,1539 +0,0 @@ | |||
| 1 | /* | ||
| 2 | * Read-Copy Update mechanism for mutual exclusion, realtime implementation | ||
| 3 | * | ||
| 4 | * This program is free software; you can redistribute it and/or modify | ||
| 5 | * it under the terms of the GNU General Public License as published by | ||
| 6 | * the Free Software Foundation; either version 2 of the License, or | ||
| 7 | * (at your option) any later version. | ||
| 8 | * | ||
| 9 | * This program is distributed in the hope that it will be useful, | ||
| 10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
| 11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
| 12 | * GNU General Public License for more details. | ||
| 13 | * | ||
| 14 | * You should have received a copy of the GNU General Public License | ||
| 15 | * along with this program; if not, write to the Free Software | ||
| 16 | * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | ||
| 17 | * | ||
| 18 | * Copyright IBM Corporation, 2006 | ||
| 19 | * | ||
| 20 | * Authors: Paul E. McKenney <paulmck@us.ibm.com> | ||
| 21 | * With thanks to Esben Nielsen, Bill Huey, and Ingo Molnar | ||
| 22 | * for pushing me away from locks and towards counters, and | ||
| 23 | * to Suparna Bhattacharya for pushing me completely away | ||
| 24 | * from atomic instructions on the read side. | ||
| 25 | * | ||
| 26 | * - Added handling of Dynamic Ticks | ||
| 27 | * Copyright 2007 - Paul E. Mckenney <paulmck@us.ibm.com> | ||
| 28 | * - Steven Rostedt <srostedt@redhat.com> | ||
| 29 | * | ||
| 30 | * Papers: http://www.rdrop.com/users/paulmck/RCU | ||
| 31 | * | ||
| 32 | * Design Document: http://lwn.net/Articles/253651/ | ||
| 33 | * | ||
| 34 | * For detailed explanation of Read-Copy Update mechanism see - | ||
| 35 | * Documentation/RCU/ *.txt | ||
| 36 | * | ||
| 37 | */ | ||
| 38 | #include <linux/types.h> | ||
| 39 | #include <linux/kernel.h> | ||
| 40 | #include <linux/init.h> | ||
| 41 | #include <linux/spinlock.h> | ||
| 42 | #include <linux/smp.h> | ||
| 43 | #include <linux/rcupdate.h> | ||
| 44 | #include <linux/interrupt.h> | ||
| 45 | #include <linux/sched.h> | ||
| 46 | #include <asm/atomic.h> | ||
| 47 | #include <linux/bitops.h> | ||
| 48 | #include <linux/module.h> | ||
| 49 | #include <linux/kthread.h> | ||
| 50 | #include <linux/completion.h> | ||
| 51 | #include <linux/moduleparam.h> | ||
| 52 | #include <linux/percpu.h> | ||
| 53 | #include <linux/notifier.h> | ||
| 54 | #include <linux/cpu.h> | ||
| 55 | #include <linux/random.h> | ||
| 56 | #include <linux/delay.h> | ||
| 57 | #include <linux/cpumask.h> | ||
| 58 | #include <linux/rcupreempt_trace.h> | ||
| 59 | #include <asm/byteorder.h> | ||
| 60 | |||
| 61 | /* | ||
| 62 | * PREEMPT_RCU data structures. | ||
| 63 | */ | ||
| 64 | |||
| 65 | /* | ||
| 66 | * GP_STAGES specifies the number of times the state machine has | ||
| 67 | * to go through the all the rcu_try_flip_states (see below) | ||
| 68 | * in a single Grace Period. | ||
| 69 | * | ||
| 70 | * GP in GP_STAGES stands for Grace Period ;) | ||
| 71 | */ | ||
| 72 | #define GP_STAGES 2 | ||
| 73 | struct rcu_data { | ||
| 74 | spinlock_t lock; /* Protect rcu_data fields. */ | ||
| 75 | long completed; /* Number of last completed batch. */ | ||
| 76 | int waitlistcount; | ||
| 77 | struct rcu_head *nextlist; | ||
| 78 | struct rcu_head **nexttail; | ||
| 79 | struct rcu_head *waitlist[GP_STAGES]; | ||
| 80 | struct rcu_head **waittail[GP_STAGES]; | ||
| 81 | struct rcu_head *donelist; /* from waitlist & waitschedlist */ | ||
| 82 | struct rcu_head **donetail; | ||
| 83 | long rcu_flipctr[2]; | ||
| 84 | struct rcu_head *nextschedlist; | ||
| 85 | struct rcu_head **nextschedtail; | ||
| 86 | struct rcu_head *waitschedlist; | ||
| 87 | struct rcu_head **waitschedtail; | ||
| 88 | int rcu_sched_sleeping; | ||
| 89 | #ifdef CONFIG_RCU_TRACE | ||
| 90 | struct rcupreempt_trace trace; | ||
| 91 | #endif /* #ifdef CONFIG_RCU_TRACE */ | ||
| 92 | }; | ||
| 93 | |||
| 94 | /* | ||
| 95 | * States for rcu_try_flip() and friends. | ||
| 96 | */ | ||
| 97 | |||
| 98 | enum rcu_try_flip_states { | ||
| 99 | |||
| 100 | /* | ||
| 101 | * Stay here if nothing is happening. Flip the counter if somthing | ||
| 102 | * starts happening. Denoted by "I" | ||
| 103 | */ | ||
| 104 | rcu_try_flip_idle_state, | ||
| 105 | |||
| 106 | /* | ||
| 107 | * Wait here for all CPUs to notice that the counter has flipped. This | ||
| 108 | * prevents the old set of counters from ever being incremented once | ||
| 109 | * we leave this state, which in turn is necessary because we cannot | ||
| 110 | * test any individual counter for zero -- we can only check the sum. | ||
| 111 | * Denoted by "A". | ||
| 112 | */ | ||
| 113 | rcu_try_flip_waitack_state, | ||
| 114 | |||
| 115 | /* | ||
| 116 | * Wait here for the sum of the old per-CPU counters to reach zero. | ||
| 117 | * Denoted by "Z". | ||
| 118 | */ | ||
| 119 | rcu_try_flip_waitzero_state, | ||
| 120 | |||
| 121 | /* | ||
| 122 | * Wait here for each of the other CPUs to execute a memory barrier. | ||
| 123 | * This is necessary to ensure that these other CPUs really have | ||
| 124 | * completed executing their RCU read-side critical sections, despite | ||
| 125 | * their CPUs wildly reordering memory. Denoted by "M". | ||
| 126 | */ | ||
| 127 | rcu_try_flip_waitmb_state, | ||
| 128 | }; | ||
| 129 | |||
| 130 | /* | ||
| 131 | * States for rcu_ctrlblk.rcu_sched_sleep. | ||
| 132 | */ | ||
| 133 | |||
| 134 | enum rcu_sched_sleep_states { | ||
| 135 | rcu_sched_not_sleeping, /* Not sleeping, callbacks need GP. */ | ||
| 136 | rcu_sched_sleep_prep, /* Thinking of sleeping, rechecking. */ | ||
| 137 | rcu_sched_sleeping, /* Sleeping, awaken if GP needed. */ | ||
| 138 | }; | ||
| 139 | |||
| 140 | struct rcu_ctrlblk { | ||
| 141 | spinlock_t fliplock; /* Protect state-machine transitions. */ | ||
| 142 | long completed; /* Number of last completed batch. */ | ||
| 143 | enum rcu_try_flip_states rcu_try_flip_state; /* The current state of | ||
| 144 | the rcu state machine */ | ||
| 145 | spinlock_t schedlock; /* Protect rcu_sched sleep state. */ | ||
| 146 | enum rcu_sched_sleep_states sched_sleep; /* rcu_sched state. */ | ||
| 147 | wait_queue_head_t sched_wq; /* Place for rcu_sched to sleep. */ | ||
| 148 | }; | ||
| 149 | |||
| 150 | struct rcu_dyntick_sched { | ||
| 151 | int dynticks; | ||
| 152 | int dynticks_snap; | ||
| 153 | int sched_qs; | ||
| 154 | int sched_qs_snap; | ||
| 155 | int sched_dynticks_snap; | ||
| 156 | }; | ||
| 157 | |||
| 158 | static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_dyntick_sched, rcu_dyntick_sched) = { | ||
| 159 | .dynticks = 1, | ||
| 160 | }; | ||
| 161 | |||
| 162 | void rcu_qsctr_inc(int cpu) | ||
| 163 | { | ||
| 164 | struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu); | ||
| 165 | |||
| 166 | rdssp->sched_qs++; | ||
| 167 | } | ||
| 168 | |||
| 169 | #ifdef CONFIG_NO_HZ | ||
| 170 | |||
| 171 | void rcu_enter_nohz(void) | ||
| 172 | { | ||
| 173 | static DEFINE_RATELIMIT_STATE(rs, 10 * HZ, 1); | ||
| 174 | |||
| 175 | smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */ | ||
| 176 | __get_cpu_var(rcu_dyntick_sched).dynticks++; | ||
| 177 | WARN_ON_RATELIMIT(__get_cpu_var(rcu_dyntick_sched).dynticks & 0x1, &rs); | ||
| 178 | } | ||
| 179 | |||
| 180 | void rcu_exit_nohz(void) | ||
| 181 | { | ||
| 182 | static DEFINE_RATELIMIT_STATE(rs, 10 * HZ, 1); | ||
| 183 | |||
| 184 | __get_cpu_var(rcu_dyntick_sched).dynticks++; | ||
| 185 | smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */ | ||
| 186 | WARN_ON_RATELIMIT(!(__get_cpu_var(rcu_dyntick_sched).dynticks & 0x1), | ||
| 187 | &rs); | ||
| 188 | } | ||
| 189 | |||
| 190 | #endif /* CONFIG_NO_HZ */ | ||
| 191 | |||
| 192 | |||
| 193 | static DEFINE_PER_CPU(struct rcu_data, rcu_data); | ||
| 194 | |||
| 195 | static struct rcu_ctrlblk rcu_ctrlblk = { | ||
| 196 | .fliplock = __SPIN_LOCK_UNLOCKED(rcu_ctrlblk.fliplock), | ||
| 197 | .completed = 0, | ||
| 198 | .rcu_try_flip_state = rcu_try_flip_idle_state, | ||
| 199 | .schedlock = __SPIN_LOCK_UNLOCKED(rcu_ctrlblk.schedlock), | ||
| 200 | .sched_sleep = rcu_sched_not_sleeping, | ||
| 201 | .sched_wq = __WAIT_QUEUE_HEAD_INITIALIZER(rcu_ctrlblk.sched_wq), | ||
| 202 | }; | ||
| 203 | |||
| 204 | static struct task_struct *rcu_sched_grace_period_task; | ||
| 205 | |||
| 206 | #ifdef CONFIG_RCU_TRACE | ||
| 207 | static char *rcu_try_flip_state_names[] = | ||
| 208 | { "idle", "waitack", "waitzero", "waitmb" }; | ||
| 209 | #endif /* #ifdef CONFIG_RCU_TRACE */ | ||
| 210 | |||
| 211 | static DECLARE_BITMAP(rcu_cpu_online_map, NR_CPUS) __read_mostly | ||
| 212 | = CPU_BITS_NONE; | ||
| 213 | |||
| 214 | /* | ||
| 215 | * Enum and per-CPU flag to determine when each CPU has seen | ||
| 216 | * the most recent counter flip. | ||
| 217 | */ | ||
| 218 | |||
| 219 | enum rcu_flip_flag_values { | ||
| 220 | rcu_flip_seen, /* Steady/initial state, last flip seen. */ | ||
| 221 | /* Only GP detector can update. */ | ||
| 222 | rcu_flipped /* Flip just completed, need confirmation. */ | ||
| 223 | /* Only corresponding CPU can update. */ | ||
| 224 | }; | ||
| 225 | static DEFINE_PER_CPU_SHARED_ALIGNED(enum rcu_flip_flag_values, rcu_flip_flag) | ||
| 226 | = rcu_flip_seen; | ||
| 227 | |||
| 228 | /* | ||
| 229 | * Enum and per-CPU flag to determine when each CPU has executed the | ||
| 230 | * needed memory barrier to fence in memory references from its last RCU | ||
| 231 | * read-side critical section in the just-completed grace period. | ||
| 232 | */ | ||
| 233 | |||
| 234 | enum rcu_mb_flag_values { | ||
| 235 | rcu_mb_done, /* Steady/initial state, no mb()s required. */ | ||
| 236 | /* Only GP detector can update. */ | ||
| 237 | rcu_mb_needed /* Flip just completed, need an mb(). */ | ||
| 238 | /* Only corresponding CPU can update. */ | ||
| 239 | }; | ||
| 240 | static DEFINE_PER_CPU_SHARED_ALIGNED(enum rcu_mb_flag_values, rcu_mb_flag) | ||
| 241 | = rcu_mb_done; | ||
| 242 | |||
| 243 | /* | ||
| 244 | * RCU_DATA_ME: find the current CPU's rcu_data structure. | ||
| 245 | * RCU_DATA_CPU: find the specified CPU's rcu_data structure. | ||
| 246 | */ | ||
| 247 | #define RCU_DATA_ME() (&__get_cpu_var(rcu_data)) | ||
| 248 | #define RCU_DATA_CPU(cpu) (&per_cpu(rcu_data, cpu)) | ||
| 249 | |||
| 250 | /* | ||
| 251 | * Helper macro for tracing when the appropriate rcu_data is not | ||
| 252 | * cached in a local variable, but where the CPU number is so cached. | ||
| 253 | */ | ||
| 254 | #define RCU_TRACE_CPU(f, cpu) RCU_TRACE(f, &(RCU_DATA_CPU(cpu)->trace)); | ||
| 255 | |||
| 256 | /* | ||
| 257 | * Helper macro for tracing when the appropriate rcu_data is not | ||
| 258 | * cached in a local variable. | ||
| 259 | */ | ||
| 260 | #define RCU_TRACE_ME(f) RCU_TRACE(f, &(RCU_DATA_ME()->trace)); | ||
| 261 | |||
| 262 | /* | ||
| 263 | * Helper macro for tracing when the appropriate rcu_data is pointed | ||
| 264 | * to by a local variable. | ||
| 265 | */ | ||
| 266 | #define RCU_TRACE_RDP(f, rdp) RCU_TRACE(f, &((rdp)->trace)); | ||
| 267 | |||
| 268 | #define RCU_SCHED_BATCH_TIME (HZ / 50) | ||
| 269 | |||
| 270 | /* | ||
| 271 | * Return the number of RCU batches processed thus far. Useful | ||
| 272 | * for debug and statistics. | ||
| 273 | */ | ||
| 274 | long rcu_batches_completed(void) | ||
| 275 | { | ||
| 276 | return rcu_ctrlblk.completed; | ||
| 277 | } | ||
| 278 | EXPORT_SYMBOL_GPL(rcu_batches_completed); | ||
| 279 | |||
| 280 | void __rcu_read_lock(void) | ||
| 281 | { | ||
| 282 | int idx; | ||
| 283 | struct task_struct *t = current; | ||
| 284 | int nesting; | ||
| 285 | |||
| 286 | nesting = ACCESS_ONCE(t->rcu_read_lock_nesting); | ||
| 287 | if (nesting != 0) { | ||
| 288 | |||
| 289 | /* An earlier rcu_read_lock() covers us, just count it. */ | ||
| 290 | |||
| 291 | t->rcu_read_lock_nesting = nesting + 1; | ||
| 292 | |||
| 293 | } else { | ||
| 294 | unsigned long flags; | ||
| 295 | |||
| 296 | /* | ||
| 297 | * We disable interrupts for the following reasons: | ||
| 298 | * - If we get scheduling clock interrupt here, and we | ||
| 299 | * end up acking the counter flip, it's like a promise | ||
| 300 | * that we will never increment the old counter again. | ||
| 301 | * Thus we will break that promise if that | ||
| 302 | * scheduling clock interrupt happens between the time | ||
| 303 | * we pick the .completed field and the time that we | ||
| 304 | * increment our counter. | ||
| 305 | * | ||
| 306 | * - We don't want to be preempted out here. | ||
| 307 | * | ||
| 308 | * NMIs can still occur, of course, and might themselves | ||
| 309 | * contain rcu_read_lock(). | ||
| 310 | */ | ||
| 311 | |||
| 312 | local_irq_save(flags); | ||
| 313 | |||
| 314 | /* | ||
| 315 | * Outermost nesting of rcu_read_lock(), so increment | ||
| 316 | * the current counter for the current CPU. Use volatile | ||
| 317 | * casts to prevent the compiler from reordering. | ||
| 318 | */ | ||
| 319 | |||
| 320 | idx = ACCESS_ONCE(rcu_ctrlblk.completed) & 0x1; | ||
| 321 | ACCESS_ONCE(RCU_DATA_ME()->rcu_flipctr[idx])++; | ||
| 322 | |||
| 323 | /* | ||
| 324 | * Now that the per-CPU counter has been incremented, we | ||
| 325 | * are protected from races with rcu_read_lock() invoked | ||
| 326 | * from NMI handlers on this CPU. We can therefore safely | ||
| 327 | * increment the nesting counter, relieving further NMIs | ||
| 328 | * of the need to increment the per-CPU counter. | ||
| 329 | */ | ||
| 330 | |||
| 331 | ACCESS_ONCE(t->rcu_read_lock_nesting) = nesting + 1; | ||
| 332 | |||
| 333 | /* | ||
| 334 | * Now that we have preventing any NMIs from storing | ||
| 335 | * to the ->rcu_flipctr_idx, we can safely use it to | ||
| 336 | * remember which counter to decrement in the matching | ||
| 337 | * rcu_read_unlock(). | ||
| 338 | */ | ||
| 339 | |||
| 340 | ACCESS_ONCE(t->rcu_flipctr_idx) = idx; | ||
| 341 | local_irq_restore(flags); | ||
| 342 | } | ||
| 343 | } | ||
| 344 | EXPORT_SYMBOL_GPL(__rcu_read_lock); | ||
| 345 | |||
| 346 | void __rcu_read_unlock(void) | ||
| 347 | { | ||
| 348 | int idx; | ||
| 349 | struct task_struct *t = current; | ||
| 350 | int nesting; | ||
| 351 | |||
| 352 | nesting = ACCESS_ONCE(t->rcu_read_lock_nesting); | ||
| 353 | if (nesting > 1) { | ||
| 354 | |||
| 355 | /* | ||
| 356 | * We are still protected by the enclosing rcu_read_lock(), | ||
| 357 | * so simply decrement the counter. | ||
| 358 | */ | ||
| 359 | |||
| 360 | t->rcu_read_lock_nesting = nesting - 1; | ||
| 361 | |||
| 362 | } else { | ||
| 363 | unsigned long flags; | ||
| 364 | |||
| 365 | /* | ||
| 366 | * Disable local interrupts to prevent the grace-period | ||
| 367 | * detection state machine from seeing us half-done. | ||
| 368 | * NMIs can still occur, of course, and might themselves | ||
| 369 | * contain rcu_read_lock() and rcu_read_unlock(). | ||
| 370 | */ | ||
| 371 | |||
| 372 | local_irq_save(flags); | ||
| 373 | |||
| 374 | /* | ||
| 375 | * Outermost nesting of rcu_read_unlock(), so we must | ||
| 376 | * decrement the current counter for the current CPU. | ||
| 377 | * This must be done carefully, because NMIs can | ||
| 378 | * occur at any point in this code, and any rcu_read_lock() | ||
| 379 | * and rcu_read_unlock() pairs in the NMI handlers | ||
| 380 | * must interact non-destructively with this code. | ||
| 381 | * Lots of volatile casts, and -very- careful ordering. | ||
| 382 | * | ||
| 383 | * Changes to this code, including this one, must be | ||
| 384 | * inspected, validated, and tested extremely carefully!!! | ||
| 385 | */ | ||
| 386 | |||
| 387 | /* | ||
| 388 | * First, pick up the index. | ||
| 389 | */ | ||
| 390 | |||
| 391 | idx = ACCESS_ONCE(t->rcu_flipctr_idx); | ||
| 392 | |||
| 393 | /* | ||
| 394 | * Now that we have fetched the counter index, it is | ||
| 395 | * safe to decrement the per-task RCU nesting counter. | ||
| 396 | * After this, any interrupts or NMIs will increment and | ||
| 397 | * decrement the per-CPU counters. | ||
| 398 | */ | ||
| 399 | ACCESS_ONCE(t->rcu_read_lock_nesting) = nesting - 1; | ||
| 400 | |||
| 401 | /* | ||
| 402 | * It is now safe to decrement this task's nesting count. | ||
| 403 | * NMIs that occur after this statement will route their | ||
| 404 | * rcu_read_lock() calls through this "else" clause, and | ||
| 405 | * will thus start incrementing the per-CPU counter on | ||
| 406 | * their own. They will also clobber ->rcu_flipctr_idx, | ||
| 407 | * but that is OK, since we have already fetched it. | ||
| 408 | */ | ||
| 409 | |||
| 410 | ACCESS_ONCE(RCU_DATA_ME()->rcu_flipctr[idx])--; | ||
| 411 | local_irq_restore(flags); | ||
| 412 | } | ||
| 413 | } | ||
| 414 | EXPORT_SYMBOL_GPL(__rcu_read_unlock); | ||
| 415 | |||
| 416 | /* | ||
| 417 | * If a global counter flip has occurred since the last time that we | ||
| 418 | * advanced callbacks, advance them. Hardware interrupts must be | ||
| 419 | * disabled when calling this function. | ||
| 420 | */ | ||
| 421 | static void __rcu_advance_callbacks(struct rcu_data *rdp) | ||
| 422 | { | ||
| 423 | int cpu; | ||
| 424 | int i; | ||
| 425 | int wlc = 0; | ||
| 426 | |||
| 427 | if (rdp->completed != rcu_ctrlblk.completed) { | ||
| 428 | if (rdp->waitlist[GP_STAGES - 1] != NULL) { | ||
| 429 | *rdp->donetail = rdp->waitlist[GP_STAGES - 1]; | ||
| 430 | rdp->donetail = rdp->waittail[GP_STAGES - 1]; | ||
| 431 | RCU_TRACE_RDP(rcupreempt_trace_move2done, rdp); | ||
| 432 | } | ||
| 433 | for (i = GP_STAGES - 2; i >= 0; i--) { | ||
| 434 | if (rdp->waitlist[i] != NULL) { | ||
| 435 | rdp->waitlist[i + 1] = rdp->waitlist[i]; | ||
| 436 | rdp->waittail[i + 1] = rdp->waittail[i]; | ||
| 437 | wlc++; | ||
| 438 | } else { | ||
| 439 | rdp->waitlist[i + 1] = NULL; | ||
| 440 | rdp->waittail[i + 1] = | ||
| 441 | &rdp->waitlist[i + 1]; | ||
| 442 | } | ||
| 443 | } | ||
| 444 | if (rdp->nextlist != NULL) { | ||
| 445 | rdp->waitlist[0] = rdp->nextlist; | ||
| 446 | rdp->waittail[0] = rdp->nexttail; | ||
| 447 | wlc++; | ||
| 448 | rdp->nextlist = NULL; | ||
| 449 | rdp->nexttail = &rdp->nextlist; | ||
| 450 | RCU_TRACE_RDP(rcupreempt_trace_move2wait, rdp); | ||
| 451 | } else { | ||
| 452 | rdp->waitlist[0] = NULL; | ||
| 453 | rdp->waittail[0] = &rdp->waitlist[0]; | ||
| 454 | } | ||
| 455 | rdp->waitlistcount = wlc; | ||
| 456 | rdp->completed = rcu_ctrlblk.completed; | ||
| 457 | } | ||
| 458 | |||
| 459 | /* | ||
| 460 | * Check to see if this CPU needs to report that it has seen | ||
| 461 | * the most recent counter flip, thereby declaring that all | ||
| 462 | * subsequent rcu_read_lock() invocations will respect this flip. | ||
| 463 | */ | ||
| 464 | |||
| 465 | cpu = raw_smp_processor_id(); | ||
| 466 | if (per_cpu(rcu_flip_flag, cpu) == rcu_flipped) { | ||
| 467 | smp_mb(); /* Subsequent counter accesses must see new value */ | ||
| 468 | per_cpu(rcu_flip_flag, cpu) = rcu_flip_seen; | ||
| 469 | smp_mb(); /* Subsequent RCU read-side critical sections */ | ||
| 470 | /* seen -after- acknowledgement. */ | ||
| 471 | } | ||
| 472 | } | ||
| 473 | |||
| 474 | #ifdef CONFIG_NO_HZ | ||
| 475 | static DEFINE_PER_CPU(int, rcu_update_flag); | ||
| 476 | |||
| 477 | /** | ||
| 478 | * rcu_irq_enter - Called from Hard irq handlers and NMI/SMI. | ||
| 479 | * | ||
| 480 | * If the CPU was idle with dynamic ticks active, this updates the | ||
| 481 | * rcu_dyntick_sched.dynticks to let the RCU handling know that the | ||
| 482 | * CPU is active. | ||
| 483 | */ | ||
| 484 | void rcu_irq_enter(void) | ||
| 485 | { | ||
| 486 | int cpu = smp_processor_id(); | ||
| 487 | struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu); | ||
| 488 | |||
| 489 | if (per_cpu(rcu_update_flag, cpu)) | ||
| 490 | per_cpu(rcu_update_flag, cpu)++; | ||
| 491 | |||
| 492 | /* | ||
| 493 | * Only update if we are coming from a stopped ticks mode | ||
| 494 | * (rcu_dyntick_sched.dynticks is even). | ||
| 495 | */ | ||
| 496 | if (!in_interrupt() && | ||
| 497 | (rdssp->dynticks & 0x1) == 0) { | ||
| 498 | /* | ||
| 499 | * The following might seem like we could have a race | ||
| 500 | * with NMI/SMIs. But this really isn't a problem. | ||
| 501 | * Here we do a read/modify/write, and the race happens | ||
| 502 | * when an NMI/SMI comes in after the read and before | ||
| 503 | * the write. But NMI/SMIs will increment this counter | ||
| 504 | * twice before returning, so the zero bit will not | ||
| 505 | * be corrupted by the NMI/SMI which is the most important | ||
| 506 | * part. | ||
| 507 | * | ||
| 508 | * The only thing is that we would bring back the counter | ||
| 509 | * to a postion that it was in during the NMI/SMI. | ||
| 510 | * But the zero bit would be set, so the rest of the | ||
| 511 | * counter would again be ignored. | ||
| 512 | * | ||
| 513 | * On return from the IRQ, the counter may have the zero | ||
| 514 | * bit be 0 and the counter the same as the return from | ||
| 515 | * the NMI/SMI. If the state machine was so unlucky to | ||
| 516 | * see that, it still doesn't matter, since all | ||
| 517 | * RCU read-side critical sections on this CPU would | ||
| 518 | * have already completed. | ||
| 519 | */ | ||
| 520 | rdssp->dynticks++; | ||
| 521 | /* | ||
| 522 | * The following memory barrier ensures that any | ||
| 523 | * rcu_read_lock() primitives in the irq handler | ||
| 524 | * are seen by other CPUs to follow the above | ||
| 525 | * increment to rcu_dyntick_sched.dynticks. This is | ||
| 526 | * required in order for other CPUs to correctly | ||
| 527 | * determine when it is safe to advance the RCU | ||
| 528 | * grace-period state machine. | ||
| 529 | */ | ||
| 530 | smp_mb(); /* see above block comment. */ | ||
| 531 | /* | ||
| 532 | * Since we can't determine the dynamic tick mode from | ||
| 533 | * the rcu_dyntick_sched.dynticks after this routine, | ||
| 534 | * we use a second flag to acknowledge that we came | ||
| 535 | * from an idle state with ticks stopped. | ||
| 536 | */ | ||
| 537 | per_cpu(rcu_update_flag, cpu)++; | ||
| 538 | /* | ||
| 539 | * If we take an NMI/SMI now, they will also increment | ||
| 540 | * the rcu_update_flag, and will not update the | ||
| 541 | * rcu_dyntick_sched.dynticks on exit. That is for | ||
| 542 | * this IRQ to do. | ||
| 543 | */ | ||
| 544 | } | ||
| 545 | } | ||
| 546 | |||
| 547 | /** | ||
| 548 | * rcu_irq_exit - Called from exiting Hard irq context. | ||
| 549 | * | ||
| 550 | * If the CPU was idle with dynamic ticks active, update the | ||
| 551 | * rcu_dyntick_sched.dynticks to put let the RCU handling be | ||
| 552 | * aware that the CPU is going back to idle with no ticks. | ||
| 553 | */ | ||
| 554 | void rcu_irq_exit(void) | ||
| 555 | { | ||
| 556 | int cpu = smp_processor_id(); | ||
| 557 | struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu); | ||
| 558 | |||
| 559 | /* | ||
| 560 | * rcu_update_flag is set if we interrupted the CPU | ||
| 561 | * when it was idle with ticks stopped. | ||
| 562 | * Once this occurs, we keep track of interrupt nesting | ||
| 563 | * because a NMI/SMI could also come in, and we still | ||
| 564 | * only want the IRQ that started the increment of the | ||
| 565 | * rcu_dyntick_sched.dynticks to be the one that modifies | ||
| 566 | * it on exit. | ||
| 567 | */ | ||
| 568 | if (per_cpu(rcu_update_flag, cpu)) { | ||
| 569 | if (--per_cpu(rcu_update_flag, cpu)) | ||
| 570 | return; | ||
| 571 | |||
| 572 | /* This must match the interrupt nesting */ | ||
| 573 | WARN_ON(in_interrupt()); | ||
| 574 | |||
| 575 | /* | ||
| 576 | * If an NMI/SMI happens now we are still | ||
| 577 | * protected by the rcu_dyntick_sched.dynticks being odd. | ||
| 578 | */ | ||
| 579 | |||
| 580 | /* | ||
| 581 | * The following memory barrier ensures that any | ||
| 582 | * rcu_read_unlock() primitives in the irq handler | ||
| 583 | * are seen by other CPUs to preceed the following | ||
| 584 | * increment to rcu_dyntick_sched.dynticks. This | ||
| 585 | * is required in order for other CPUs to determine | ||
| 586 | * when it is safe to advance the RCU grace-period | ||
| 587 | * state machine. | ||
| 588 | */ | ||
| 589 | smp_mb(); /* see above block comment. */ | ||
| 590 | rdssp->dynticks++; | ||
| 591 | WARN_ON(rdssp->dynticks & 0x1); | ||
| 592 | } | ||
| 593 | } | ||
| 594 | |||
| 595 | void rcu_nmi_enter(void) | ||
| 596 | { | ||
| 597 | rcu_irq_enter(); | ||
| 598 | } | ||
| 599 | |||
| 600 | void rcu_nmi_exit(void) | ||
| 601 | { | ||
| 602 | rcu_irq_exit(); | ||
| 603 | } | ||
| 604 | |||
| 605 | static void dyntick_save_progress_counter(int cpu) | ||
| 606 | { | ||
| 607 | struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu); | ||
| 608 | |||
| 609 | rdssp->dynticks_snap = rdssp->dynticks; | ||
| 610 | } | ||
| 611 | |||
| 612 | static inline int | ||
| 613 | rcu_try_flip_waitack_needed(int cpu) | ||
| 614 | { | ||
| 615 | long curr; | ||
| 616 | long snap; | ||
| 617 | struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu); | ||
| 618 | |||
| 619 | curr = rdssp->dynticks; | ||
| 620 | snap = rdssp->dynticks_snap; | ||
| 621 | smp_mb(); /* force ordering with cpu entering/leaving dynticks. */ | ||
| 622 | |||
| 623 | /* | ||
| 624 | * If the CPU remained in dynticks mode for the entire time | ||
| 625 | * and didn't take any interrupts, NMIs, SMIs, or whatever, | ||
| 626 | * then it cannot be in the middle of an rcu_read_lock(), so | ||
| 627 | * the next rcu_read_lock() it executes must use the new value | ||
| 628 | * of the counter. So we can safely pretend that this CPU | ||
| 629 | * already acknowledged the counter. | ||
| 630 | */ | ||
| 631 | |||
| 632 | if ((curr == snap) && ((curr & 0x1) == 0)) | ||
| 633 | return 0; | ||
| 634 | |||
| 635 | /* | ||
| 636 | * If the CPU passed through or entered a dynticks idle phase with | ||
| 637 | * no active irq handlers, then, as above, we can safely pretend | ||
| 638 | * that this CPU already acknowledged the counter. | ||
| 639 | */ | ||
| 640 | |||
| 641 | if ((curr - snap) > 2 || (curr & 0x1) == 0) | ||
| 642 | return 0; | ||
| 643 | |||
| 644 | /* We need this CPU to explicitly acknowledge the counter flip. */ | ||
| 645 | |||
| 646 | return 1; | ||
| 647 | } | ||
| 648 | |||
| 649 | static inline int | ||
| 650 | rcu_try_flip_waitmb_needed(int cpu) | ||
| 651 | { | ||
| 652 | long curr; | ||
| 653 | long snap; | ||
| 654 | struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu); | ||
| 655 | |||
| 656 | curr = rdssp->dynticks; | ||
| 657 | snap = rdssp->dynticks_snap; | ||
| 658 | smp_mb(); /* force ordering with cpu entering/leaving dynticks. */ | ||
| 659 | |||
| 660 | /* | ||
| 661 | * If the CPU remained in dynticks mode for the entire time | ||
| 662 | * and didn't take any interrupts, NMIs, SMIs, or whatever, | ||
| 663 | * then it cannot have executed an RCU read-side critical section | ||
| 664 | * during that time, so there is no need for it to execute a | ||
| 665 | * memory barrier. | ||
| 666 | */ | ||
| 667 | |||
| 668 | if ((curr == snap) && ((curr & 0x1) == 0)) | ||
| 669 | return 0; | ||
| 670 | |||
| 671 | /* | ||
| 672 | * If the CPU either entered or exited an outermost interrupt, | ||
| 673 | * SMI, NMI, or whatever handler, then we know that it executed | ||
| 674 | * a memory barrier when doing so. So we don't need another one. | ||
| 675 | */ | ||
| 676 | if (curr != snap) | ||
| 677 | return 0; | ||
| 678 | |||
| 679 | /* We need the CPU to execute a memory barrier. */ | ||
| 680 | |||
| 681 | return 1; | ||
| 682 | } | ||
| 683 | |||
| 684 | static void dyntick_save_progress_counter_sched(int cpu) | ||
| 685 | { | ||
| 686 | struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu); | ||
| 687 | |||
| 688 | rdssp->sched_dynticks_snap = rdssp->dynticks; | ||
| 689 | } | ||
| 690 | |||
| 691 | static int rcu_qsctr_inc_needed_dyntick(int cpu) | ||
| 692 | { | ||
| 693 | long curr; | ||
| 694 | long snap; | ||
| 695 | struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu); | ||
| 696 | |||
| 697 | curr = rdssp->dynticks; | ||
| 698 | snap = rdssp->sched_dynticks_snap; | ||
| 699 | smp_mb(); /* force ordering with cpu entering/leaving dynticks. */ | ||
| 700 | |||
| 701 | /* | ||
| 702 | * If the CPU remained in dynticks mode for the entire time | ||
| 703 | * and didn't take any interrupts, NMIs, SMIs, or whatever, | ||
| 704 | * then it cannot be in the middle of an rcu_read_lock(), so | ||
| 705 | * the next rcu_read_lock() it executes must use the new value | ||
| 706 | * of the counter. Therefore, this CPU has been in a quiescent | ||
| 707 | * state the entire time, and we don't need to wait for it. | ||
| 708 | */ | ||
| 709 | |||
| 710 | if ((curr == snap) && ((curr & 0x1) == 0)) | ||
| 711 | return 0; | ||
| 712 | |||
| 713 | /* | ||
| 714 | * If the CPU passed through or entered a dynticks idle phase with | ||
| 715 | * no active irq handlers, then, as above, this CPU has already | ||
| 716 | * passed through a quiescent state. | ||
| 717 | */ | ||
| 718 | |||
| 719 | if ((curr - snap) > 2 || (snap & 0x1) == 0) | ||
| 720 | return 0; | ||
| 721 | |||
| 722 | /* We need this CPU to go through a quiescent state. */ | ||
| 723 | |||
| 724 | return 1; | ||
| 725 | } | ||
| 726 | |||
| 727 | #else /* !CONFIG_NO_HZ */ | ||
| 728 | |||
| 729 | # define dyntick_save_progress_counter(cpu) do { } while (0) | ||
| 730 | # define rcu_try_flip_waitack_needed(cpu) (1) | ||
| 731 | # define rcu_try_flip_waitmb_needed(cpu) (1) | ||
| 732 | |||
| 733 | # define dyntick_save_progress_counter_sched(cpu) do { } while (0) | ||
| 734 | # define rcu_qsctr_inc_needed_dyntick(cpu) (1) | ||
| 735 | |||
| 736 | #endif /* CONFIG_NO_HZ */ | ||
| 737 | |||
| 738 | static void save_qsctr_sched(int cpu) | ||
| 739 | { | ||
| 740 | struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu); | ||
| 741 | |||
| 742 | rdssp->sched_qs_snap = rdssp->sched_qs; | ||
| 743 | } | ||
| 744 | |||
| 745 | static inline int rcu_qsctr_inc_needed(int cpu) | ||
| 746 | { | ||
| 747 | struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu); | ||
| 748 | |||
| 749 | /* | ||
| 750 | * If there has been a quiescent state, no more need to wait | ||
| 751 | * on this CPU. | ||
| 752 | */ | ||
| 753 | |||
| 754 | if (rdssp->sched_qs != rdssp->sched_qs_snap) { | ||
| 755 | smp_mb(); /* force ordering with cpu entering schedule(). */ | ||
| 756 | return 0; | ||
| 757 | } | ||
| 758 | |||
| 759 | /* We need this CPU to go through a quiescent state. */ | ||
| 760 | |||
| 761 | return 1; | ||
| 762 | } | ||
| 763 | |||
| 764 | /* | ||
| 765 | * Get here when RCU is idle. Decide whether we need to | ||
| 766 | * move out of idle state, and return non-zero if so. | ||
| 767 | * "Straightforward" approach for the moment, might later | ||
| 768 | * use callback-list lengths, grace-period duration, or | ||
| 769 | * some such to determine when to exit idle state. | ||
| 770 | * Might also need a pre-idle test that does not acquire | ||
| 771 | * the lock, but let's get the simple case working first... | ||
| 772 | */ | ||
| 773 | |||
| 774 | static int | ||
| 775 | rcu_try_flip_idle(void) | ||
| 776 | { | ||
| 777 | int cpu; | ||
| 778 | |||
| 779 | RCU_TRACE_ME(rcupreempt_trace_try_flip_i1); | ||
| 780 | if (!rcu_pending(smp_processor_id())) { | ||
| 781 | RCU_TRACE_ME(rcupreempt_trace_try_flip_ie1); | ||
| 782 | return 0; | ||
| 783 | } | ||
| 784 | |||
| 785 | /* | ||
| 786 | * Do the flip. | ||
| 787 | */ | ||
| 788 | |||
| 789 | RCU_TRACE_ME(rcupreempt_trace_try_flip_g1); | ||
| 790 | rcu_ctrlblk.completed++; /* stands in for rcu_try_flip_g2 */ | ||
| 791 | |||
| 792 | /* | ||
| 793 | * Need a memory barrier so that other CPUs see the new | ||
| 794 | * counter value before they see the subsequent change of all | ||
| 795 | * the rcu_flip_flag instances to rcu_flipped. | ||
| 796 | */ | ||
| 797 | |||
| 798 | smp_mb(); /* see above block comment. */ | ||
| 799 | |||
| 800 | /* Now ask each CPU for acknowledgement of the flip. */ | ||
| 801 | |||
| 802 | for_each_cpu(cpu, to_cpumask(rcu_cpu_online_map)) { | ||
| 803 | per_cpu(rcu_flip_flag, cpu) = rcu_flipped; | ||
| 804 | dyntick_save_progress_counter(cpu); | ||
| 805 | } | ||
| 806 | |||
| 807 | return 1; | ||
| 808 | } | ||
| 809 | |||
| 810 | /* | ||
| 811 | * Wait for CPUs to acknowledge the flip. | ||
| 812 | */ | ||
| 813 | |||
| 814 | static int | ||
| 815 | rcu_try_flip_waitack(void) | ||
| 816 | { | ||
| 817 | int cpu; | ||
| 818 | |||
| 819 | RCU_TRACE_ME(rcupreempt_trace_try_flip_a1); | ||
| 820 | for_each_cpu(cpu, to_cpumask(rcu_cpu_online_map)) | ||
| 821 | if (rcu_try_flip_waitack_needed(cpu) && | ||
| 822 | per_cpu(rcu_flip_flag, cpu) != rcu_flip_seen) { | ||
| 823 | RCU_TRACE_ME(rcupreempt_trace_try_flip_ae1); | ||
| 824 | return 0; | ||
| 825 | } | ||
| 826 | |||
| 827 | /* | ||
| 828 | * Make sure our checks above don't bleed into subsequent | ||
| 829 | * waiting for the sum of the counters to reach zero. | ||
| 830 | */ | ||
| 831 | |||
| 832 | smp_mb(); /* see above block comment. */ | ||
| 833 | RCU_TRACE_ME(rcupreempt_trace_try_flip_a2); | ||
| 834 | return 1; | ||
| 835 | } | ||
| 836 | |||
| 837 | /* | ||
| 838 | * Wait for collective ``last'' counter to reach zero, | ||
| 839 | * then tell all CPUs to do an end-of-grace-period memory barrier. | ||
| 840 | */ | ||
| 841 | |||
| 842 | static int | ||
| 843 | rcu_try_flip_waitzero(void) | ||
| 844 | { | ||
| 845 | int cpu; | ||
| 846 | int lastidx = !(rcu_ctrlblk.completed & 0x1); | ||
| 847 | int sum = 0; | ||
| 848 | |||
| 849 | /* Check to see if the sum of the "last" counters is zero. */ | ||
| 850 | |||
| 851 | RCU_TRACE_ME(rcupreempt_trace_try_flip_z1); | ||
| 852 | for_each_cpu(cpu, to_cpumask(rcu_cpu_online_map)) | ||
| 853 | sum += RCU_DATA_CPU(cpu)->rcu_flipctr[lastidx]; | ||
| 854 | if (sum != 0) { | ||
| 855 | RCU_TRACE_ME(rcupreempt_trace_try_flip_ze1); | ||
| 856 | return 0; | ||
| 857 | } | ||
| 858 | |||
| 859 | /* | ||
| 860 | * This ensures that the other CPUs see the call for | ||
| 861 | * memory barriers -after- the sum to zero has been | ||
| 862 | * detected here | ||
| 863 | */ | ||
| 864 | smp_mb(); /* ^^^^^^^^^^^^ */ | ||
| 865 | |||
| 866 | /* Call for a memory barrier from each CPU. */ | ||
| 867 | for_each_cpu(cpu, to_cpumask(rcu_cpu_online_map)) { | ||
| 868 | per_cpu(rcu_mb_flag, cpu) = rcu_mb_needed; | ||
| 869 | dyntick_save_progress_counter(cpu); | ||
| 870 | } | ||
| 871 | |||
| 872 | RCU_TRACE_ME(rcupreempt_trace_try_flip_z2); | ||
| 873 | return 1; | ||
| 874 | } | ||
| 875 | |||
| 876 | /* | ||
| 877 | * Wait for all CPUs to do their end-of-grace-period memory barrier. | ||
| 878 | * Return 0 once all CPUs have done so. | ||
| 879 | */ | ||
| 880 | |||
| 881 | static int | ||
| 882 | rcu_try_flip_waitmb(void) | ||
| 883 | { | ||
| 884 | int cpu; | ||
| 885 | |||
| 886 | RCU_TRACE_ME(rcupreempt_trace_try_flip_m1); | ||
| 887 | for_each_cpu(cpu, to_cpumask(rcu_cpu_online_map)) | ||
| 888 | if (rcu_try_flip_waitmb_needed(cpu) && | ||
| 889 | per_cpu(rcu_mb_flag, cpu) != rcu_mb_done) { | ||
| 890 | RCU_TRACE_ME(rcupreempt_trace_try_flip_me1); | ||
| 891 | return 0; | ||
| 892 | } | ||
| 893 | |||
| 894 | smp_mb(); /* Ensure that the above checks precede any following flip. */ | ||
| 895 | RCU_TRACE_ME(rcupreempt_trace_try_flip_m2); | ||
| 896 | return 1; | ||
| 897 | } | ||
| 898 | |||
| 899 | /* | ||
| 900 | * Attempt a single flip of the counters. Remember, a single flip does | ||
| 901 | * -not- constitute a grace period. Instead, the interval between | ||
| 902 | * at least GP_STAGES consecutive flips is a grace period. | ||
| 903 | * | ||
| 904 | * If anyone is nuts enough to run this CONFIG_PREEMPT_RCU implementation | ||
| 905 | * on a large SMP, they might want to use a hierarchical organization of | ||
| 906 | * the per-CPU-counter pairs. | ||
| 907 | */ | ||
| 908 | static void rcu_try_flip(void) | ||
| 909 | { | ||
| 910 | unsigned long flags; | ||
| 911 | |||
| 912 | RCU_TRACE_ME(rcupreempt_trace_try_flip_1); | ||
| 913 | if (unlikely(!spin_trylock_irqsave(&rcu_ctrlblk.fliplock, flags))) { | ||
| 914 | RCU_TRACE_ME(rcupreempt_trace_try_flip_e1); | ||
| 915 | return; | ||
| 916 | } | ||
| 917 | |||
| 918 | /* | ||
| 919 | * Take the next transition(s) through the RCU grace-period | ||
| 920 | * flip-counter state machine. | ||
| 921 | */ | ||
| 922 | |||
| 923 | switch (rcu_ctrlblk.rcu_try_flip_state) { | ||
| 924 | case rcu_try_flip_idle_state: | ||
| 925 | if (rcu_try_flip_idle()) | ||
| 926 | rcu_ctrlblk.rcu_try_flip_state = | ||
| 927 | rcu_try_flip_waitack_state; | ||
| 928 | break; | ||
| 929 | case rcu_try_flip_waitack_state: | ||
| 930 | if (rcu_try_flip_waitack()) | ||
| 931 | rcu_ctrlblk.rcu_try_flip_state = | ||
| 932 | rcu_try_flip_waitzero_state; | ||
| 933 | break; | ||
| 934 | case rcu_try_flip_waitzero_state: | ||
| 935 | if (rcu_try_flip_waitzero()) | ||
| 936 | rcu_ctrlblk.rcu_try_flip_state = | ||
| 937 | rcu_try_flip_waitmb_state; | ||
| 938 | break; | ||
| 939 | case rcu_try_flip_waitmb_state: | ||
| 940 | if (rcu_try_flip_waitmb()) | ||
| 941 | rcu_ctrlblk.rcu_try_flip_state = | ||
| 942 | rcu_try_flip_idle_state; | ||
| 943 | } | ||
| 944 | spin_unlock_irqrestore(&rcu_ctrlblk.fliplock, flags); | ||
| 945 | } | ||
| 946 | |||
| 947 | /* | ||
| 948 | * Check to see if this CPU needs to do a memory barrier in order to | ||
| 949 | * ensure that any prior RCU read-side critical sections have committed | ||
| 950 | * their counter manipulations and critical-section memory references | ||
| 951 | * before declaring the grace period to be completed. | ||
| 952 | */ | ||
| 953 | static void rcu_check_mb(int cpu) | ||
| 954 | { | ||
| 955 | if (per_cpu(rcu_mb_flag, cpu) == rcu_mb_needed) { | ||
| 956 | smp_mb(); /* Ensure RCU read-side accesses are visible. */ | ||
| 957 | per_cpu(rcu_mb_flag, cpu) = rcu_mb_done; | ||
| 958 | } | ||
| 959 | } | ||
| 960 | |||
| 961 | void rcu_check_callbacks(int cpu, int user) | ||
| 962 | { | ||
| 963 | unsigned long flags; | ||
| 964 | struct rcu_data *rdp = RCU_DATA_CPU(cpu); | ||
| 965 | |||
| 966 | /* | ||
| 967 | * If this CPU took its interrupt from user mode or from the | ||
| 968 | * idle loop, and this is not a nested interrupt, then | ||
| 969 | * this CPU has to have exited all prior preept-disable | ||
| 970 | * sections of code. So increment the counter to note this. | ||
| 971 | * | ||
| 972 | * The memory barrier is needed to handle the case where | ||
| 973 | * writes from a preempt-disable section of code get reordered | ||
| 974 | * into schedule() by this CPU's write buffer. So the memory | ||
| 975 | * barrier makes sure that the rcu_qsctr_inc() is seen by other | ||
| 976 | * CPUs to happen after any such write. | ||
| 977 | */ | ||
| 978 | |||
| 979 | if (user || | ||
| 980 | (idle_cpu(cpu) && !in_softirq() && | ||
| 981 | hardirq_count() <= (1 << HARDIRQ_SHIFT))) { | ||
| 982 | smp_mb(); /* Guard against aggressive schedule(). */ | ||
| 983 | rcu_qsctr_inc(cpu); | ||
| 984 | } | ||
| 985 | |||
| 986 | rcu_check_mb(cpu); | ||
| 987 | if (rcu_ctrlblk.completed == rdp->completed) | ||
| 988 | rcu_try_flip(); | ||
| 989 | spin_lock_irqsave(&rdp->lock, flags); | ||
| 990 | RCU_TRACE_RDP(rcupreempt_trace_check_callbacks, rdp); | ||
| 991 | __rcu_advance_callbacks(rdp); | ||
| 992 | if (rdp->donelist == NULL) { | ||
| 993 | spin_unlock_irqrestore(&rdp->lock, flags); | ||
| 994 | } else { | ||
| 995 | spin_unlock_irqrestore(&rdp->lock, flags); | ||
| 996 | raise_softirq(RCU_SOFTIRQ); | ||
| 997 | } | ||
| 998 | } | ||
| 999 | |||
| 1000 | /* | ||
| 1001 | * Needed by dynticks, to make sure all RCU processing has finished | ||
| 1002 | * when we go idle: | ||
| 1003 | */ | ||
| 1004 | void rcu_advance_callbacks(int cpu, int user) | ||
| 1005 | { | ||
| 1006 | unsigned long flags; | ||
| 1007 | struct rcu_data *rdp = RCU_DATA_CPU(cpu); | ||
| 1008 | |||
| 1009 | if (rcu_ctrlblk.completed == rdp->completed) { | ||
| 1010 | rcu_try_flip(); | ||
| 1011 | if (rcu_ctrlblk.completed == rdp->completed) | ||
| 1012 | return; | ||
| 1013 | } | ||
| 1014 | spin_lock_irqsave(&rdp->lock, flags); | ||
| 1015 | RCU_TRACE_RDP(rcupreempt_trace_check_callbacks, rdp); | ||
| 1016 | __rcu_advance_callbacks(rdp); | ||
| 1017 | spin_unlock_irqrestore(&rdp->lock, flags); | ||
| 1018 | } | ||
| 1019 | |||
| 1020 | #ifdef CONFIG_HOTPLUG_CPU | ||
| 1021 | #define rcu_offline_cpu_enqueue(srclist, srctail, dstlist, dsttail) do { \ | ||
| 1022 | *dsttail = srclist; \ | ||
| 1023 | if (srclist != NULL) { \ | ||
| 1024 | dsttail = srctail; \ | ||
| 1025 | srclist = NULL; \ | ||
| 1026 | srctail = &srclist;\ | ||
| 1027 | } \ | ||
| 1028 | } while (0) | ||
| 1029 | |||
| 1030 | void rcu_offline_cpu(int cpu) | ||
| 1031 | { | ||
| 1032 | int i; | ||
| 1033 | struct rcu_head *list = NULL; | ||
| 1034 | unsigned long flags; | ||
| 1035 | struct rcu_data *rdp = RCU_DATA_CPU(cpu); | ||
| 1036 | struct rcu_head *schedlist = NULL; | ||
| 1037 | struct rcu_head **schedtail = &schedlist; | ||
| 1038 | struct rcu_head **tail = &list; | ||
| 1039 | |||
| 1040 | /* | ||
| 1041 | * Remove all callbacks from the newly dead CPU, retaining order. | ||
| 1042 | * Otherwise rcu_barrier() will fail | ||
| 1043 | */ | ||
| 1044 | |||
| 1045 | spin_lock_irqsave(&rdp->lock, flags); | ||
| 1046 | rcu_offline_cpu_enqueue(rdp->donelist, rdp->donetail, list, tail); | ||
| 1047 | for (i = GP_STAGES - 1; i >= 0; i--) | ||
| 1048 | rcu_offline_cpu_enqueue(rdp->waitlist[i], rdp->waittail[i], | ||
| 1049 | list, tail); | ||
| 1050 | rcu_offline_cpu_enqueue(rdp->nextlist, rdp->nexttail, list, tail); | ||
| 1051 | rcu_offline_cpu_enqueue(rdp->waitschedlist, rdp->waitschedtail, | ||
| 1052 | schedlist, schedtail); | ||
| 1053 | rcu_offline_cpu_enqueue(rdp->nextschedlist, rdp->nextschedtail, | ||
| 1054 | schedlist, schedtail); | ||
| 1055 | rdp->rcu_sched_sleeping = 0; | ||
| 1056 | spin_unlock_irqrestore(&rdp->lock, flags); | ||
| 1057 | rdp->waitlistcount = 0; | ||
| 1058 | |||
| 1059 | /* Disengage the newly dead CPU from the grace-period computation. */ | ||
| 1060 | |||
| 1061 | spin_lock_irqsave(&rcu_ctrlblk.fliplock, flags); | ||
| 1062 | rcu_check_mb(cpu); | ||
| 1063 | if (per_cpu(rcu_flip_flag, cpu) == rcu_flipped) { | ||
| 1064 | smp_mb(); /* Subsequent counter accesses must see new value */ | ||
| 1065 | per_cpu(rcu_flip_flag, cpu) = rcu_flip_seen; | ||
| 1066 | smp_mb(); /* Subsequent RCU read-side critical sections */ | ||
| 1067 | /* seen -after- acknowledgement. */ | ||
| 1068 | } | ||
| 1069 | |||
| 1070 | RCU_DATA_ME()->rcu_flipctr[0] += RCU_DATA_CPU(cpu)->rcu_flipctr[0]; | ||
| 1071 | RCU_DATA_ME()->rcu_flipctr[1] += RCU_DATA_CPU(cpu)->rcu_flipctr[1]; | ||
| 1072 | |||
| 1073 | RCU_DATA_CPU(cpu)->rcu_flipctr[0] = 0; | ||
| 1074 | RCU_DATA_CPU(cpu)->rcu_flipctr[1] = 0; | ||
| 1075 | |||
| 1076 | cpumask_clear_cpu(cpu, to_cpumask(rcu_cpu_online_map)); | ||
| 1077 | |||
| 1078 | spin_unlock_irqrestore(&rcu_ctrlblk.fliplock, flags); | ||
| 1079 | |||
| 1080 | /* | ||
| 1081 | * Place the removed callbacks on the current CPU's queue. | ||
| 1082 | * Make them all start a new grace period: simple approach, | ||
| 1083 | * in theory could starve a given set of callbacks, but | ||
| 1084 | * you would need to be doing some serious CPU hotplugging | ||
| 1085 | * to make this happen. If this becomes a problem, adding | ||
| 1086 | * a synchronize_rcu() to the hotplug path would be a simple | ||
| 1087 | * fix. | ||
| 1088 | */ | ||
| 1089 | |||
| 1090 | local_irq_save(flags); /* disable preempt till we know what lock. */ | ||
| 1091 | rdp = RCU_DATA_ME(); | ||
| 1092 | spin_lock(&rdp->lock); | ||
| 1093 | *rdp->nexttail = list; | ||
| 1094 | if (list) | ||
| 1095 | rdp->nexttail = tail; | ||
| 1096 | *rdp->nextschedtail = schedlist; | ||
| 1097 | if (schedlist) | ||
| 1098 | rdp->nextschedtail = schedtail; | ||
| 1099 | spin_unlock_irqrestore(&rdp->lock, flags); | ||
| 1100 | } | ||
| 1101 | |||
| 1102 | #else /* #ifdef CONFIG_HOTPLUG_CPU */ | ||
| 1103 | |||
| 1104 | void rcu_offline_cpu(int cpu) | ||
| 1105 | { | ||
| 1106 | } | ||
| 1107 | |||
| 1108 | #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */ | ||
| 1109 | |||
| 1110 | void __cpuinit rcu_online_cpu(int cpu) | ||
| 1111 | { | ||
| 1112 | unsigned long flags; | ||
| 1113 | struct rcu_data *rdp; | ||
| 1114 | |||
| 1115 | spin_lock_irqsave(&rcu_ctrlblk.fliplock, flags); | ||
| 1116 | cpumask_set_cpu(cpu, to_cpumask(rcu_cpu_online_map)); | ||
| 1117 | spin_unlock_irqrestore(&rcu_ctrlblk.fliplock, flags); | ||
| 1118 | |||
| 1119 | /* | ||
| 1120 | * The rcu_sched grace-period processing might have bypassed | ||
| 1121 | * this CPU, given that it was not in the rcu_cpu_online_map | ||
| 1122 | * when the grace-period scan started. This means that the | ||
| 1123 | * grace-period task might sleep. So make sure that if this | ||
| 1124 | * should happen, the first callback posted to this CPU will | ||
| 1125 | * wake up the grace-period task if need be. | ||
| 1126 | */ | ||
| 1127 | |||
| 1128 | rdp = RCU_DATA_CPU(cpu); | ||
| 1129 | spin_lock_irqsave(&rdp->lock, flags); | ||
| 1130 | rdp->rcu_sched_sleeping = 1; | ||
| 1131 | spin_unlock_irqrestore(&rdp->lock, flags); | ||
| 1132 | } | ||
| 1133 | |||
| 1134 | static void rcu_process_callbacks(struct softirq_action *unused) | ||
| 1135 | { | ||
| 1136 | unsigned long flags; | ||
| 1137 | struct rcu_head *next, *list; | ||
| 1138 | struct rcu_data *rdp; | ||
| 1139 | |||
| 1140 | local_irq_save(flags); | ||
| 1141 | rdp = RCU_DATA_ME(); | ||
| 1142 | spin_lock(&rdp->lock); | ||
| 1143 | list = rdp->donelist; | ||
| 1144 | if (list == NULL) { | ||
| 1145 | spin_unlock_irqrestore(&rdp->lock, flags); | ||
| 1146 | return; | ||
| 1147 | } | ||
| 1148 | rdp->donelist = NULL; | ||
| 1149 | rdp->donetail = &rdp->donelist; | ||
| 1150 | RCU_TRACE_RDP(rcupreempt_trace_done_remove, rdp); | ||
| 1151 | spin_unlock_irqrestore(&rdp->lock, flags); | ||
| 1152 | while (list) { | ||
| 1153 | next = list->next; | ||
| 1154 | list->func(list); | ||
| 1155 | list = next; | ||
| 1156 | RCU_TRACE_ME(rcupreempt_trace_invoke); | ||
| 1157 | } | ||
| 1158 | } | ||
| 1159 | |||
| 1160 | void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) | ||
| 1161 | { | ||
| 1162 | unsigned long flags; | ||
| 1163 | struct rcu_data *rdp; | ||
| 1164 | |||
| 1165 | head->func = func; | ||
| 1166 | head->next = NULL; | ||
| 1167 | local_irq_save(flags); | ||
| 1168 | rdp = RCU_DATA_ME(); | ||
| 1169 | spin_lock(&rdp->lock); | ||
| 1170 | __rcu_advance_callbacks(rdp); | ||
| 1171 | *rdp->nexttail = head; | ||
| 1172 | rdp->nexttail = &head->next; | ||
| 1173 | RCU_TRACE_RDP(rcupreempt_trace_next_add, rdp); | ||
| 1174 | spin_unlock_irqrestore(&rdp->lock, flags); | ||
| 1175 | } | ||
| 1176 | EXPORT_SYMBOL_GPL(call_rcu); | ||
| 1177 | |||
| 1178 | void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) | ||
| 1179 | { | ||
| 1180 | unsigned long flags; | ||
| 1181 | struct rcu_data *rdp; | ||
| 1182 | int wake_gp = 0; | ||
| 1183 | |||
| 1184 | head->func = func; | ||
| 1185 | head->next = NULL; | ||
| 1186 | local_irq_save(flags); | ||
| 1187 | rdp = RCU_DATA_ME(); | ||
| 1188 | spin_lock(&rdp->lock); | ||
| 1189 | *rdp->nextschedtail = head; | ||
| 1190 | rdp->nextschedtail = &head->next; | ||
| 1191 | if (rdp->rcu_sched_sleeping) { | ||
| 1192 | |||
| 1193 | /* Grace-period processing might be sleeping... */ | ||
| 1194 | |||
| 1195 | rdp->rcu_sched_sleeping = 0; | ||
| 1196 | wake_gp = 1; | ||
| 1197 | } | ||
| 1198 | spin_unlock_irqrestore(&rdp->lock, flags); | ||
| 1199 | if (wake_gp) { | ||
| 1200 | |||
| 1201 | /* Wake up grace-period processing, unless someone beat us. */ | ||
| 1202 | |||
| 1203 | spin_lock_irqsave(&rcu_ctrlblk.schedlock, flags); | ||
| 1204 | if (rcu_ctrlblk.sched_sleep != rcu_sched_sleeping) | ||
| 1205 | wake_gp = 0; | ||
| 1206 | rcu_ctrlblk.sched_sleep = rcu_sched_not_sleeping; | ||
| 1207 | spin_unlock_irqrestore(&rcu_ctrlblk.schedlock, flags); | ||
| 1208 | if (wake_gp) | ||
| 1209 | wake_up_interruptible(&rcu_ctrlblk.sched_wq); | ||
| 1210 | } | ||
| 1211 | } | ||
| 1212 | EXPORT_SYMBOL_GPL(call_rcu_sched); | ||
| 1213 | |||
| 1214 | /* | ||
| 1215 | * Wait until all currently running preempt_disable() code segments | ||
| 1216 | * (including hardware-irq-disable segments) complete. Note that | ||
| 1217 | * in -rt this does -not- necessarily result in all currently executing | ||
| 1218 | * interrupt -handlers- having completed. | ||
| 1219 | */ | ||
| 1220 | void __synchronize_sched(void) | ||
| 1221 | { | ||
| 1222 | struct rcu_synchronize rcu; | ||
| 1223 | |||
| 1224 | if (num_online_cpus() == 1) | ||
| 1225 | return; /* blocking is gp if only one CPU! */ | ||
| 1226 | |||
| 1227 | init_completion(&rcu.completion); | ||
| 1228 | /* Will wake me after RCU finished. */ | ||
| 1229 | call_rcu_sched(&rcu.head, wakeme_after_rcu); | ||
| 1230 | /* Wait for it. */ | ||
| 1231 | wait_for_completion(&rcu.completion); | ||
| 1232 | } | ||
| 1233 | EXPORT_SYMBOL_GPL(__synchronize_sched); | ||
| 1234 | |||
| 1235 | /* | ||
| 1236 | * kthread function that manages call_rcu_sched grace periods. | ||
| 1237 | */ | ||
| 1238 | static int rcu_sched_grace_period(void *arg) | ||
| 1239 | { | ||
| 1240 | int couldsleep; /* might sleep after current pass. */ | ||
| 1241 | int couldsleepnext = 0; /* might sleep after next pass. */ | ||
| 1242 | int cpu; | ||
| 1243 | unsigned long flags; | ||
| 1244 | struct rcu_data *rdp; | ||
| 1245 | int ret; | ||
| 1246 | |||
| 1247 | /* | ||
| 1248 | * Each pass through the following loop handles one | ||
| 1249 | * rcu_sched grace period cycle. | ||
| 1250 | */ | ||
| 1251 | do { | ||
| 1252 | /* Save each CPU's current state. */ | ||
| 1253 | |||
| 1254 | for_each_online_cpu(cpu) { | ||
| 1255 | dyntick_save_progress_counter_sched(cpu); | ||
| 1256 | save_qsctr_sched(cpu); | ||
| 1257 | } | ||
| 1258 | |||
| 1259 | /* | ||
| 1260 | * Sleep for about an RCU grace-period's worth to | ||
| 1261 | * allow better batching and to consume less CPU. | ||
| 1262 | */ | ||
| 1263 | schedule_timeout_interruptible(RCU_SCHED_BATCH_TIME); | ||
| 1264 | |||
| 1265 | /* | ||
| 1266 | * If there was nothing to do last time, prepare to | ||
| 1267 | * sleep at the end of the current grace period cycle. | ||
| 1268 | */ | ||
| 1269 | couldsleep = couldsleepnext; | ||
| 1270 | couldsleepnext = 1; | ||
| 1271 | if (couldsleep) { | ||
| 1272 | spin_lock_irqsave(&rcu_ctrlblk.schedlock, flags); | ||
| 1273 | rcu_ctrlblk.sched_sleep = rcu_sched_sleep_prep; | ||
| 1274 | spin_unlock_irqrestore(&rcu_ctrlblk.schedlock, flags); | ||
| 1275 | } | ||
| 1276 | |||
| 1277 | /* | ||
| 1278 | * Wait on each CPU in turn to have either visited | ||
| 1279 | * a quiescent state or been in dynticks-idle mode. | ||
| 1280 | */ | ||
| 1281 | for_each_online_cpu(cpu) { | ||
| 1282 | while (rcu_qsctr_inc_needed(cpu) && | ||
| 1283 | rcu_qsctr_inc_needed_dyntick(cpu)) { | ||
| 1284 | /* resched_cpu(cpu); @@@ */ | ||
| 1285 | schedule_timeout_interruptible(1); | ||
| 1286 | } | ||
| 1287 | } | ||
| 1288 | |||
| 1289 | /* Advance callbacks for each CPU. */ | ||
| 1290 | |||
| 1291 | for_each_online_cpu(cpu) { | ||
| 1292 | |||
| 1293 | rdp = RCU_DATA_CPU(cpu); | ||
| 1294 | spin_lock_irqsave(&rdp->lock, flags); | ||
| 1295 | |||
| 1296 | /* | ||
| 1297 | * We are running on this CPU irq-disabled, so no | ||
| 1298 | * CPU can go offline until we re-enable irqs. | ||
| 1299 | * The current CPU might have already gone | ||
| 1300 | * offline (between the for_each_offline_cpu and | ||
| 1301 | * the spin_lock_irqsave), but in that case all its | ||
| 1302 | * callback lists will be empty, so no harm done. | ||
| 1303 | * | ||
| 1304 | * Advance the callbacks! We share normal RCU's | ||
| 1305 | * donelist, since callbacks are invoked the | ||
| 1306 | * same way in either case. | ||
| 1307 | */ | ||
| 1308 | if (rdp->waitschedlist != NULL) { | ||
| 1309 | *rdp->donetail = rdp->waitschedlist; | ||
| 1310 | rdp->donetail = rdp->waitschedtail; | ||
| 1311 | |||
| 1312 | /* | ||
| 1313 | * Next rcu_check_callbacks() will | ||
| 1314 | * do the required raise_softirq(). | ||
| 1315 | */ | ||
| 1316 | } | ||
| 1317 | if (rdp->nextschedlist != NULL) { | ||
| 1318 | rdp->waitschedlist = rdp->nextschedlist; | ||
| 1319 | rdp->waitschedtail = rdp->nextschedtail; | ||
| 1320 | couldsleep = 0; | ||
| 1321 | couldsleepnext = 0; | ||
| 1322 | } else { | ||
| 1323 | rdp->waitschedlist = NULL; | ||
| 1324 | rdp->waitschedtail = &rdp->waitschedlist; | ||
| 1325 | } | ||
| 1326 | rdp->nextschedlist = NULL; | ||
| 1327 | rdp->nextschedtail = &rdp->nextschedlist; | ||
| 1328 | |||
| 1329 | /* Mark sleep intention. */ | ||
| 1330 | |||
| 1331 | rdp->rcu_sched_sleeping = couldsleep; | ||
| 1332 | |||
| 1333 | spin_unlock_irqrestore(&rdp->lock, flags); | ||
| 1334 | } | ||
| 1335 | |||
| 1336 | /* If we saw callbacks on the last scan, go deal with them. */ | ||
| 1337 | |||
| 1338 | if (!couldsleep) | ||
| 1339 | continue; | ||
| 1340 | |||
| 1341 | /* Attempt to block... */ | ||
| 1342 | |||
| 1343 | spin_lock_irqsave(&rcu_ctrlblk.schedlock, flags); | ||
| 1344 | if (rcu_ctrlblk.sched_sleep != rcu_sched_sleep_prep) { | ||
| 1345 | |||
| 1346 | /* | ||
| 1347 | * Someone posted a callback after we scanned. | ||
| 1348 | * Go take care of it. | ||
| 1349 | */ | ||
| 1350 | spin_unlock_irqrestore(&rcu_ctrlblk.schedlock, flags); | ||
| 1351 | couldsleepnext = 0; | ||
| 1352 | continue; | ||
| 1353 | } | ||
| 1354 | |||
| 1355 | /* Block until the next person posts a callback. */ | ||
| 1356 | |||
| 1357 | rcu_ctrlblk.sched_sleep = rcu_sched_sleeping; | ||
| 1358 | spin_unlock_irqrestore(&rcu_ctrlblk.schedlock, flags); | ||
| 1359 | ret = 0; /* unused */ | ||
| 1360 | __wait_event_interruptible(rcu_ctrlblk.sched_wq, | ||
| 1361 | rcu_ctrlblk.sched_sleep != rcu_sched_sleeping, | ||
| 1362 | ret); | ||
| 1363 | |||
| 1364 | couldsleepnext = 0; | ||
| 1365 | |||
| 1366 | } while (!kthread_should_stop()); | ||
| 1367 | |||
| 1368 | return (0); | ||
| 1369 | } | ||
| 1370 | |||
| 1371 | /* | ||
| 1372 | * Check to see if any future RCU-related work will need to be done | ||
| 1373 | * by the current CPU, even if none need be done immediately, returning | ||
| 1374 | * 1 if so. Assumes that notifiers would take care of handling any | ||
| 1375 | * outstanding requests from the RCU core. | ||
| 1376 | * | ||
| 1377 | * This function is part of the RCU implementation; it is -not- | ||
| 1378 | * an exported member of the RCU API. | ||
| 1379 | */ | ||
| 1380 | int rcu_needs_cpu(int cpu) | ||
| 1381 | { | ||
| 1382 | struct rcu_data *rdp = RCU_DATA_CPU(cpu); | ||
| 1383 | |||
| 1384 | return (rdp->donelist != NULL || | ||
| 1385 | !!rdp->waitlistcount || | ||
| 1386 | rdp->nextlist != NULL || | ||
| 1387 | rdp->nextschedlist != NULL || | ||
| 1388 | rdp->waitschedlist != NULL); | ||
| 1389 | } | ||
| 1390 | |||
| 1391 | int rcu_pending(int cpu) | ||
| 1392 | { | ||
| 1393 | struct rcu_data *rdp = RCU_DATA_CPU(cpu); | ||
| 1394 | |||
| 1395 | /* The CPU has at least one callback queued somewhere. */ | ||
| 1396 | |||
| 1397 | if (rdp->donelist != NULL || | ||
| 1398 | !!rdp->waitlistcount || | ||
| 1399 | rdp->nextlist != NULL || | ||
| 1400 | rdp->nextschedlist != NULL || | ||
| 1401 | rdp->waitschedlist != NULL) | ||
| 1402 | return 1; | ||
| 1403 | |||
| 1404 | /* The RCU core needs an acknowledgement from this CPU. */ | ||
| 1405 | |||
| 1406 | if ((per_cpu(rcu_flip_flag, cpu) == rcu_flipped) || | ||
| 1407 | (per_cpu(rcu_mb_flag, cpu) == rcu_mb_needed)) | ||
| 1408 | return 1; | ||
| 1409 | |||
| 1410 | /* This CPU has fallen behind the global grace-period number. */ | ||
| 1411 | |||
| 1412 | if (rdp->completed != rcu_ctrlblk.completed) | ||
| 1413 | return 1; | ||
| 1414 | |||
| 1415 | /* Nothing needed from this CPU. */ | ||
| 1416 | |||
| 1417 | return 0; | ||
| 1418 | } | ||
| 1419 | |||
| 1420 | static int __cpuinit rcu_cpu_notify(struct notifier_block *self, | ||
| 1421 | unsigned long action, void *hcpu) | ||
| 1422 | { | ||
| 1423 | long cpu = (long)hcpu; | ||
| 1424 | |||
| 1425 | switch (action) { | ||
| 1426 | case CPU_UP_PREPARE: | ||
| 1427 | case CPU_UP_PREPARE_FROZEN: | ||
| 1428 | rcu_online_cpu(cpu); | ||
| 1429 | break; | ||
| 1430 | case CPU_UP_CANCELED: | ||
| 1431 | case CPU_UP_CANCELED_FROZEN: | ||
| 1432 | case CPU_DEAD: | ||
| 1433 | case CPU_DEAD_FROZEN: | ||
| 1434 | rcu_offline_cpu(cpu); | ||
| 1435 | break; | ||
| 1436 | default: | ||
| 1437 | break; | ||
| 1438 | } | ||
| 1439 | return NOTIFY_OK; | ||
| 1440 | } | ||
| 1441 | |||
| 1442 | static struct notifier_block __cpuinitdata rcu_nb = { | ||
| 1443 | .notifier_call = rcu_cpu_notify, | ||
| 1444 | }; | ||
| 1445 | |||
| 1446 | void __init __rcu_init(void) | ||
| 1447 | { | ||
| 1448 | int cpu; | ||
| 1449 | int i; | ||
| 1450 | struct rcu_data *rdp; | ||
| 1451 | |||
| 1452 | printk(KERN_NOTICE "Preemptible RCU implementation.\n"); | ||
| 1453 | for_each_possible_cpu(cpu) { | ||
| 1454 | rdp = RCU_DATA_CPU(cpu); | ||
| 1455 | spin_lock_init(&rdp->lock); | ||
| 1456 | rdp->completed = 0; | ||
| 1457 | rdp->waitlistcount = 0; | ||
| 1458 | rdp->nextlist = NULL; | ||
| 1459 | rdp->nexttail = &rdp->nextlist; | ||
| 1460 | for (i = 0; i < GP_STAGES; i++) { | ||
| 1461 | rdp->waitlist[i] = NULL; | ||
| 1462 | rdp->waittail[i] = &rdp->waitlist[i]; | ||
| 1463 | } | ||
| 1464 | rdp->donelist = NULL; | ||
| 1465 | rdp->donetail = &rdp->donelist; | ||
| 1466 | rdp->rcu_flipctr[0] = 0; | ||
| 1467 | rdp->rcu_flipctr[1] = 0; | ||
| 1468 | rdp->nextschedlist = NULL; | ||
| 1469 | rdp->nextschedtail = &rdp->nextschedlist; | ||
| 1470 | rdp->waitschedlist = NULL; | ||
| 1471 | rdp->waitschedtail = &rdp->waitschedlist; | ||
| 1472 | rdp->rcu_sched_sleeping = 0; | ||
| 1473 | } | ||
| 1474 | register_cpu_notifier(&rcu_nb); | ||
| 1475 | |||
| 1476 | /* | ||
| 1477 | * We don't need protection against CPU-Hotplug here | ||
| 1478 | * since | ||
| 1479 | * a) If a CPU comes online while we are iterating over the | ||
| 1480 | * cpu_online_mask below, we would only end up making a | ||
| 1481 | * duplicate call to rcu_online_cpu() which sets the corresponding | ||
| 1482 | * CPU's mask in the rcu_cpu_online_map. | ||
| 1483 | * | ||
| 1484 | * b) A CPU cannot go offline at this point in time since the user | ||
| 1485 | * does not have access to the sysfs interface, nor do we | ||
| 1486 | * suspend the system. | ||
| 1487 | */ | ||
| 1488 | for_each_online_cpu(cpu) | ||
| 1489 | rcu_cpu_notify(&rcu_nb, CPU_UP_PREPARE, (void *)(long) cpu); | ||
| 1490 | |||
| 1491 | open_softirq(RCU_SOFTIRQ, rcu_process_callbacks); | ||
| 1492 | } | ||
| 1493 | |||
| 1494 | /* | ||
| 1495 | * Late-boot-time RCU initialization that must wait until after scheduler | ||
| 1496 | * has been initialized. | ||
| 1497 | */ | ||
| 1498 | void __init rcu_init_sched(void) | ||
| 1499 | { | ||
| 1500 | rcu_sched_grace_period_task = kthread_run(rcu_sched_grace_period, | ||
| 1501 | NULL, | ||
| 1502 | "rcu_sched_grace_period"); | ||
| 1503 | WARN_ON(IS_ERR(rcu_sched_grace_period_task)); | ||
| 1504 | } | ||
| 1505 | |||
| 1506 | #ifdef CONFIG_RCU_TRACE | ||
| 1507 | long *rcupreempt_flipctr(int cpu) | ||
| 1508 | { | ||
| 1509 | return &RCU_DATA_CPU(cpu)->rcu_flipctr[0]; | ||
| 1510 | } | ||
| 1511 | EXPORT_SYMBOL_GPL(rcupreempt_flipctr); | ||
| 1512 | |||
| 1513 | int rcupreempt_flip_flag(int cpu) | ||
| 1514 | { | ||
| 1515 | return per_cpu(rcu_flip_flag, cpu); | ||
| 1516 | } | ||
| 1517 | EXPORT_SYMBOL_GPL(rcupreempt_flip_flag); | ||
| 1518 | |||
| 1519 | int rcupreempt_mb_flag(int cpu) | ||
| 1520 | { | ||
| 1521 | return per_cpu(rcu_mb_flag, cpu); | ||
| 1522 | } | ||
| 1523 | EXPORT_SYMBOL_GPL(rcupreempt_mb_flag); | ||
| 1524 | |||
| 1525 | char *rcupreempt_try_flip_state_name(void) | ||
| 1526 | { | ||
| 1527 | return rcu_try_flip_state_names[rcu_ctrlblk.rcu_try_flip_state]; | ||
| 1528 | } | ||
| 1529 | EXPORT_SYMBOL_GPL(rcupreempt_try_flip_state_name); | ||
| 1530 | |||
| 1531 | struct rcupreempt_trace *rcupreempt_trace_cpu(int cpu) | ||
| 1532 | { | ||
| 1533 | struct rcu_data *rdp = RCU_DATA_CPU(cpu); | ||
| 1534 | |||
| 1535 | return &rdp->trace; | ||
| 1536 | } | ||
| 1537 | EXPORT_SYMBOL_GPL(rcupreempt_trace_cpu); | ||
| 1538 | |||
| 1539 | #endif /* #ifdef RCU_TRACE */ | ||
diff --git a/kernel/rcupreempt_trace.c b/kernel/rcupreempt_trace.c deleted file mode 100644 index 7c2665cac172..000000000000 --- a/kernel/rcupreempt_trace.c +++ /dev/null | |||
| @@ -1,334 +0,0 @@ | |||
| 1 | /* | ||
| 2 | * Read-Copy Update tracing for realtime implementation | ||
| 3 | * | ||
| 4 | * This program is free software; you can redistribute it and/or modify | ||
| 5 | * it under the terms of the GNU General Public License as published by | ||
| 6 | * the Free Software Foundation; either version 2 of the License, or | ||
| 7 | * (at your option) any later version. | ||
| 8 | * | ||
| 9 | * This program is distributed in the hope that it will be useful, | ||
| 10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
| 11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
| 12 | * GNU General Public License for more details. | ||
| 13 | * | ||
| 14 | * You should have received a copy of the GNU General Public License | ||
| 15 | * along with this program; if not, write to the Free Software | ||
| 16 | * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | ||
| 17 | * | ||
| 18 | * Copyright IBM Corporation, 2006 | ||
| 19 | * | ||
| 20 | * Papers: http://www.rdrop.com/users/paulmck/RCU | ||
| 21 | * | ||
| 22 | * For detailed explanation of Read-Copy Update mechanism see - | ||
| 23 | * Documentation/RCU/ *.txt | ||
| 24 | * | ||
| 25 | */ | ||
| 26 | #include <linux/types.h> | ||
| 27 | #include <linux/kernel.h> | ||
| 28 | #include <linux/init.h> | ||
| 29 | #include <linux/spinlock.h> | ||
| 30 | #include <linux/smp.h> | ||
| 31 | #include <linux/rcupdate.h> | ||
| 32 | #include <linux/interrupt.h> | ||
| 33 | #include <linux/sched.h> | ||
| 34 | #include <asm/atomic.h> | ||
| 35 | #include <linux/bitops.h> | ||
| 36 | #include <linux/module.h> | ||
| 37 | #include <linux/completion.h> | ||
| 38 | #include <linux/moduleparam.h> | ||
| 39 | #include <linux/percpu.h> | ||
| 40 | #include <linux/notifier.h> | ||
| 41 | #include <linux/cpu.h> | ||
| 42 | #include <linux/mutex.h> | ||
| 43 | #include <linux/rcupreempt_trace.h> | ||
| 44 | #include <linux/debugfs.h> | ||
| 45 | |||
| 46 | static struct mutex rcupreempt_trace_mutex; | ||
| 47 | static char *rcupreempt_trace_buf; | ||
| 48 | #define RCUPREEMPT_TRACE_BUF_SIZE 4096 | ||
| 49 | |||
| 50 | void rcupreempt_trace_move2done(struct rcupreempt_trace *trace) | ||
| 51 | { | ||
| 52 | trace->done_length += trace->wait_length; | ||
| 53 | trace->done_add += trace->wait_length; | ||
| 54 | trace->wait_length = 0; | ||
| 55 | } | ||
| 56 | void rcupreempt_trace_move2wait(struct rcupreempt_trace *trace) | ||
| 57 | { | ||
| 58 | trace->wait_length += trace->next_length; | ||
| 59 | trace->wait_add += trace->next_length; | ||
| 60 | trace->next_length = 0; | ||
| 61 | } | ||
| 62 | void rcupreempt_trace_try_flip_1(struct rcupreempt_trace *trace) | ||
| 63 | { | ||
| 64 | atomic_inc(&trace->rcu_try_flip_1); | ||
| 65 | } | ||
| 66 | void rcupreempt_trace_try_flip_e1(struct rcupreempt_trace *trace) | ||
| 67 | { | ||
| 68 | atomic_inc(&trace->rcu_try_flip_e1); | ||
| 69 | } | ||
| 70 | void rcupreempt_trace_try_flip_i1(struct rcupreempt_trace *trace) | ||
| 71 | { | ||
| 72 | trace->rcu_try_flip_i1++; | ||
| 73 | } | ||
| 74 | void rcupreempt_trace_try_flip_ie1(struct rcupreempt_trace *trace) | ||
| 75 | { | ||
| 76 | trace->rcu_try_flip_ie1++; | ||
| 77 | } | ||
| 78 | void rcupreempt_trace_try_flip_g1(struct rcupreempt_trace *trace) | ||
| 79 | { | ||
| 80 | trace->rcu_try_flip_g1++; | ||
| 81 | } | ||
| 82 | void rcupreempt_trace_try_flip_a1(struct rcupreempt_trace *trace) | ||
| 83 | { | ||
| 84 | trace->rcu_try_flip_a1++; | ||
| 85 | } | ||
| 86 | void rcupreempt_trace_try_flip_ae1(struct rcupreempt_trace *trace) | ||
| 87 | { | ||
| 88 | trace->rcu_try_flip_ae1++; | ||
| 89 | } | ||
| 90 | void rcupreempt_trace_try_flip_a2(struct rcupreempt_trace *trace) | ||
| 91 | { | ||
| 92 | trace->rcu_try_flip_a2++; | ||
| 93 | } | ||
| 94 | void rcupreempt_trace_try_flip_z1(struct rcupreempt_trace *trace) | ||
| 95 | { | ||
| 96 | trace->rcu_try_flip_z1++; | ||
| 97 | } | ||
| 98 | void rcupreempt_trace_try_flip_ze1(struct rcupreempt_trace *trace) | ||
| 99 | { | ||
| 100 | trace->rcu_try_flip_ze1++; | ||
| 101 | } | ||
| 102 | void rcupreempt_trace_try_flip_z2(struct rcupreempt_trace *trace) | ||
| 103 | { | ||
| 104 | trace->rcu_try_flip_z2++; | ||
| 105 | } | ||
| 106 | void rcupreempt_trace_try_flip_m1(struct rcupreempt_trace *trace) | ||
| 107 | { | ||
| 108 | trace->rcu_try_flip_m1++; | ||
| 109 | } | ||
| 110 | void rcupreempt_trace_try_flip_me1(struct rcupreempt_trace *trace) | ||
| 111 | { | ||
| 112 | trace->rcu_try_flip_me1++; | ||
| 113 | } | ||
| 114 | void rcupreempt_trace_try_flip_m2(struct rcupreempt_trace *trace) | ||
| 115 | { | ||
| 116 | trace->rcu_try_flip_m2++; | ||
| 117 | } | ||
| 118 | void rcupreempt_trace_check_callbacks(struct rcupreempt_trace *trace) | ||
| 119 | { | ||
| 120 | trace->rcu_check_callbacks++; | ||
| 121 | } | ||
| 122 | void rcupreempt_trace_done_remove(struct rcupreempt_trace *trace) | ||
| 123 | { | ||
| 124 | trace->done_remove += trace->done_length; | ||
| 125 | trace->done_length = 0; | ||
| 126 | } | ||
| 127 | void rcupreempt_trace_invoke(struct rcupreempt_trace *trace) | ||
| 128 | { | ||
| 129 | atomic_inc(&trace->done_invoked); | ||
| 130 | } | ||
| 131 | void rcupreempt_trace_next_add(struct rcupreempt_trace *trace) | ||
| 132 | { | ||
| 133 | trace->next_add++; | ||
| 134 | trace->next_length++; | ||
| 135 | } | ||
| 136 | |||
| 137 | static void rcupreempt_trace_sum(struct rcupreempt_trace *sp) | ||
| 138 | { | ||
| 139 | struct rcupreempt_trace *cp; | ||
| 140 | int cpu; | ||
| 141 | |||
| 142 | memset(sp, 0, sizeof(*sp)); | ||
| 143 | for_each_possible_cpu(cpu) { | ||
| 144 | cp = rcupreempt_trace_cpu(cpu); | ||
| 145 | sp->next_length += cp->next_length; | ||
| 146 | sp->next_add += cp->next_add; | ||
| 147 | sp->wait_length += cp->wait_length; | ||
| 148 | sp->wait_add += cp->wait_add; | ||
| 149 | sp->done_length += cp->done_length; | ||
| 150 | sp->done_add += cp->done_add; | ||
| 151 | sp->done_remove += cp->done_remove; | ||
| 152 | atomic_add(atomic_read(&cp->done_invoked), &sp->done_invoked); | ||
| 153 | sp->rcu_check_callbacks += cp->rcu_check_callbacks; | ||
| 154 | atomic_add(atomic_read(&cp->rcu_try_flip_1), | ||
| 155 | &sp->rcu_try_flip_1); | ||
| 156 | atomic_add(atomic_read(&cp->rcu_try_flip_e1), | ||
| 157 | &sp->rcu_try_flip_e1); | ||
| 158 | sp->rcu_try_flip_i1 += cp->rcu_try_flip_i1; | ||
| 159 | sp->rcu_try_flip_ie1 += cp->rcu_try_flip_ie1; | ||
| 160 | sp->rcu_try_flip_g1 += cp->rcu_try_flip_g1; | ||
| 161 | sp->rcu_try_flip_a1 += cp->rcu_try_flip_a1; | ||
| 162 | sp->rcu_try_flip_ae1 += cp->rcu_try_flip_ae1; | ||
| 163 | sp->rcu_try_flip_a2 += cp->rcu_try_flip_a2; | ||
| 164 | sp->rcu_try_flip_z1 += cp->rcu_try_flip_z1; | ||
| 165 | sp->rcu_try_flip_ze1 += cp->rcu_try_flip_ze1; | ||
| 166 | sp->rcu_try_flip_z2 += cp->rcu_try_flip_z2; | ||
| 167 | sp->rcu_try_flip_m1 += cp->rcu_try_flip_m1; | ||
| 168 | sp->rcu_try_flip_me1 += cp->rcu_try_flip_me1; | ||
| 169 | sp->rcu_try_flip_m2 += cp->rcu_try_flip_m2; | ||
| 170 | } | ||
| 171 | } | ||
| 172 | |||
| 173 | static ssize_t rcustats_read(struct file *filp, char __user *buffer, | ||
| 174 | size_t count, loff_t *ppos) | ||
| 175 | { | ||
| 176 | struct rcupreempt_trace trace; | ||
| 177 | ssize_t bcount; | ||
| 178 | int cnt = 0; | ||
| 179 | |||
| 180 | rcupreempt_trace_sum(&trace); | ||
| 181 | mutex_lock(&rcupreempt_trace_mutex); | ||
| 182 | snprintf(&rcupreempt_trace_buf[cnt], RCUPREEMPT_TRACE_BUF_SIZE - cnt, | ||
| 183 | "ggp=%ld rcc=%ld\n", | ||
| 184 | rcu_batches_completed(), | ||
| 185 | trace.rcu_check_callbacks); | ||
| 186 | snprintf(&rcupreempt_trace_buf[cnt], RCUPREEMPT_TRACE_BUF_SIZE - cnt, | ||
| 187 | "na=%ld nl=%ld wa=%ld wl=%ld da=%ld dl=%ld dr=%ld di=%d\n" | ||
| 188 | "1=%d e1=%d i1=%ld ie1=%ld g1=%ld a1=%ld ae1=%ld a2=%ld\n" | ||
| 189 | "z1=%ld ze1=%ld z2=%ld m1=%ld me1=%ld m2=%ld\n", | ||
| 190 | |||
| 191 | trace.next_add, trace.next_length, | ||
| 192 | trace.wait_add, trace.wait_length, | ||
| 193 | trace.done_add, trace.done_length, | ||
| 194 | trace.done_remove, atomic_read(&trace.done_invoked), | ||
| 195 | atomic_read(&trace.rcu_try_flip_1), | ||
| 196 | atomic_read(&trace.rcu_try_flip_e1), | ||
| 197 | trace.rcu_try_flip_i1, trace.rcu_try_flip_ie1, | ||
| 198 | trace.rcu_try_flip_g1, | ||
| 199 | trace.rcu_try_flip_a1, trace.rcu_try_flip_ae1, | ||
| 200 | trace.rcu_try_flip_a2, | ||
| 201 | trace.rcu_try_flip_z1, trace.rcu_try_flip_ze1, | ||
| 202 | trace.rcu_try_flip_z2, | ||
| 203 | trace.rcu_try_flip_m1, trace.rcu_try_flip_me1, | ||
| 204 | trace.rcu_try_flip_m2); | ||
| 205 | bcount = simple_read_from_buffer(buffer, count, ppos, | ||
| 206 | rcupreempt_trace_buf, strlen(rcupreempt_trace_buf)); | ||
| 207 | mutex_unlock(&rcupreempt_trace_mutex); | ||
| 208 | return bcount; | ||
| 209 | } | ||
| 210 | |||
| 211 | static ssize_t rcugp_read(struct file *filp, char __user *buffer, | ||
| 212 | size_t count, loff_t *ppos) | ||
| 213 | { | ||
| 214 | long oldgp = rcu_batches_completed(); | ||
| 215 | ssize_t bcount; | ||
| 216 | |||
| 217 | mutex_lock(&rcupreempt_trace_mutex); | ||
| 218 | synchronize_rcu(); | ||
| 219 | snprintf(rcupreempt_trace_buf, RCUPREEMPT_TRACE_BUF_SIZE, | ||
| 220 | "oldggp=%ld newggp=%ld\n", oldgp, rcu_batches_completed()); | ||
| 221 | bcount = simple_read_from_buffer(buffer, count, ppos, | ||
| 222 | rcupreempt_trace_buf, strlen(rcupreempt_trace_buf)); | ||
| 223 | mutex_unlock(&rcupreempt_trace_mutex); | ||
| 224 | return bcount; | ||
| 225 | } | ||
| 226 | |||
| 227 | static ssize_t rcuctrs_read(struct file *filp, char __user *buffer, | ||
| 228 | size_t count, loff_t *ppos) | ||
| 229 | { | ||
| 230 | int cnt = 0; | ||
| 231 | int cpu; | ||
| 232 | int f = rcu_batches_completed() & 0x1; | ||
| 233 | ssize_t bcount; | ||
| 234 | |||
| 235 | mutex_lock(&rcupreempt_trace_mutex); | ||
| 236 | |||
| 237 | cnt += snprintf(&rcupreempt_trace_buf[cnt], RCUPREEMPT_TRACE_BUF_SIZE, | ||
| 238 | "CPU last cur F M\n"); | ||
| 239 | for_each_online_cpu(cpu) { | ||
| 240 | long *flipctr = rcupreempt_flipctr(cpu); | ||
| 241 | cnt += snprintf(&rcupreempt_trace_buf[cnt], | ||
| 242 | RCUPREEMPT_TRACE_BUF_SIZE - cnt, | ||
| 243 | "%3d %4ld %3ld %d %d\n", | ||
| 244 | cpu, | ||
| 245 | flipctr[!f], | ||
| 246 | flipctr[f], | ||
| 247 | rcupreempt_flip_flag(cpu), | ||
| 248 | rcupreempt_mb_flag(cpu)); | ||
| 249 | } | ||
| 250 | cnt += snprintf(&rcupreempt_trace_buf[cnt], | ||
| 251 | RCUPREEMPT_TRACE_BUF_SIZE - cnt, | ||
| 252 | "ggp = %ld, state = %s\n", | ||
| 253 | rcu_batches_completed(), | ||
| 254 | rcupreempt_try_flip_state_name()); | ||
| 255 | cnt += snprintf(&rcupreempt_trace_buf[cnt], | ||
| 256 | RCUPREEMPT_TRACE_BUF_SIZE - cnt, | ||
| 257 | "\n"); | ||
| 258 | bcount = simple_read_from_buffer(buffer, count, ppos, | ||
| 259 | rcupreempt_trace_buf, strlen(rcupreempt_trace_buf)); | ||
| 260 | mutex_unlock(&rcupreempt_trace_mutex); | ||
| 261 | return bcount; | ||
| 262 | } | ||
| 263 | |||
| 264 | static struct file_operations rcustats_fops = { | ||
| 265 | .owner = THIS_MODULE, | ||
| 266 | .read = rcustats_read, | ||
| 267 | }; | ||
| 268 | |||
| 269 | static struct file_operations rcugp_fops = { | ||
| 270 | .owner = THIS_MODULE, | ||
| 271 | .read = rcugp_read, | ||
| 272 | }; | ||
| 273 | |||
| 274 | static struct file_operations rcuctrs_fops = { | ||
| 275 | .owner = THIS_MODULE, | ||
| 276 | .read = rcuctrs_read, | ||
| 277 | }; | ||
| 278 | |||
| 279 | static struct dentry *rcudir, *statdir, *ctrsdir, *gpdir; | ||
| 280 | static int rcupreempt_debugfs_init(void) | ||
| 281 | { | ||
| 282 | rcudir = debugfs_create_dir("rcu", NULL); | ||
| 283 | if (!rcudir) | ||
| 284 | goto out; | ||
| 285 | statdir = debugfs_create_file("rcustats", 0444, rcudir, | ||
| 286 | NULL, &rcustats_fops); | ||
| 287 | if (!statdir) | ||
| 288 | goto free_out; | ||
| 289 | |||
| 290 | gpdir = debugfs_create_file("rcugp", 0444, rcudir, NULL, &rcugp_fops); | ||
| 291 | if (!gpdir) | ||
| 292 | goto free_out; | ||
| 293 | |||
| 294 | ctrsdir = debugfs_create_file("rcuctrs", 0444, rcudir, | ||
| 295 | NULL, &rcuctrs_fops); | ||
| 296 | if (!ctrsdir) | ||
| 297 | goto free_out; | ||
| 298 | return 0; | ||
| 299 | free_out: | ||
| 300 | if (statdir) | ||
| 301 | debugfs_remove(statdir); | ||
| 302 | if (gpdir) | ||
| 303 | debugfs_remove(gpdir); | ||
| 304 | debugfs_remove(rcudir); | ||
| 305 | out: | ||
| 306 | return 1; | ||
| 307 | } | ||
| 308 | |||
| 309 | static int __init rcupreempt_trace_init(void) | ||
| 310 | { | ||
| 311 | int ret; | ||
| 312 | |||
| 313 | mutex_init(&rcupreempt_trace_mutex); | ||
| 314 | rcupreempt_trace_buf = kmalloc(RCUPREEMPT_TRACE_BUF_SIZE, GFP_KERNEL); | ||
| 315 | if (!rcupreempt_trace_buf) | ||
| 316 | return 1; | ||
| 317 | ret = rcupreempt_debugfs_init(); | ||
| 318 | if (ret) | ||
| 319 | kfree(rcupreempt_trace_buf); | ||
| 320 | return ret; | ||
| 321 | } | ||
| 322 | |||
| 323 | static void __exit rcupreempt_trace_cleanup(void) | ||
| 324 | { | ||
| 325 | debugfs_remove(statdir); | ||
| 326 | debugfs_remove(gpdir); | ||
| 327 | debugfs_remove(ctrsdir); | ||
| 328 | debugfs_remove(rcudir); | ||
| 329 | kfree(rcupreempt_trace_buf); | ||
| 330 | } | ||
| 331 | |||
| 332 | |||
| 333 | module_init(rcupreempt_trace_init); | ||
| 334 | module_exit(rcupreempt_trace_cleanup); | ||
diff --git a/kernel/rcutorture.c b/kernel/rcutorture.c index 9b4a975a4b4a..233768f21f97 100644 --- a/kernel/rcutorture.c +++ b/kernel/rcutorture.c | |||
| @@ -18,7 +18,7 @@ | |||
| 18 | * Copyright (C) IBM Corporation, 2005, 2006 | 18 | * Copyright (C) IBM Corporation, 2005, 2006 |
| 19 | * | 19 | * |
| 20 | * Authors: Paul E. McKenney <paulmck@us.ibm.com> | 20 | * Authors: Paul E. McKenney <paulmck@us.ibm.com> |
| 21 | * Josh Triplett <josh@freedesktop.org> | 21 | * Josh Triplett <josh@freedesktop.org> |
| 22 | * | 22 | * |
| 23 | * See also: Documentation/RCU/torture.txt | 23 | * See also: Documentation/RCU/torture.txt |
| 24 | */ | 24 | */ |
| @@ -50,7 +50,7 @@ | |||
| 50 | 50 | ||
| 51 | MODULE_LICENSE("GPL"); | 51 | MODULE_LICENSE("GPL"); |
| 52 | MODULE_AUTHOR("Paul E. McKenney <paulmck@us.ibm.com> and " | 52 | MODULE_AUTHOR("Paul E. McKenney <paulmck@us.ibm.com> and " |
| 53 | "Josh Triplett <josh@freedesktop.org>"); | 53 | "Josh Triplett <josh@freedesktop.org>"); |
| 54 | 54 | ||
| 55 | static int nreaders = -1; /* # reader threads, defaults to 2*ncpus */ | 55 | static int nreaders = -1; /* # reader threads, defaults to 2*ncpus */ |
| 56 | static int nfakewriters = 4; /* # fake writer threads */ | 56 | static int nfakewriters = 4; /* # fake writer threads */ |
| @@ -110,8 +110,8 @@ struct rcu_torture { | |||
| 110 | }; | 110 | }; |
| 111 | 111 | ||
| 112 | static LIST_HEAD(rcu_torture_freelist); | 112 | static LIST_HEAD(rcu_torture_freelist); |
| 113 | static struct rcu_torture *rcu_torture_current = NULL; | 113 | static struct rcu_torture *rcu_torture_current; |
| 114 | static long rcu_torture_current_version = 0; | 114 | static long rcu_torture_current_version; |
| 115 | static struct rcu_torture rcu_tortures[10 * RCU_TORTURE_PIPE_LEN]; | 115 | static struct rcu_torture rcu_tortures[10 * RCU_TORTURE_PIPE_LEN]; |
| 116 | static DEFINE_SPINLOCK(rcu_torture_lock); | 116 | static DEFINE_SPINLOCK(rcu_torture_lock); |
| 117 | static DEFINE_PER_CPU(long [RCU_TORTURE_PIPE_LEN + 1], rcu_torture_count) = | 117 | static DEFINE_PER_CPU(long [RCU_TORTURE_PIPE_LEN + 1], rcu_torture_count) = |
| @@ -124,11 +124,11 @@ static atomic_t n_rcu_torture_alloc_fail; | |||
| 124 | static atomic_t n_rcu_torture_free; | 124 | static atomic_t n_rcu_torture_free; |
| 125 | static atomic_t n_rcu_torture_mberror; | 125 | static atomic_t n_rcu_torture_mberror; |
| 126 | static atomic_t n_rcu_torture_error; | 126 | static atomic_t n_rcu_torture_error; |
| 127 | static long n_rcu_torture_timers = 0; | 127 | static long n_rcu_torture_timers; |
| 128 | static struct list_head rcu_torture_removed; | 128 | static struct list_head rcu_torture_removed; |
| 129 | static cpumask_var_t shuffle_tmp_mask; | 129 | static cpumask_var_t shuffle_tmp_mask; |
| 130 | 130 | ||
| 131 | static int stutter_pause_test = 0; | 131 | static int stutter_pause_test; |
| 132 | 132 | ||
| 133 | #if defined(MODULE) || defined(CONFIG_RCU_TORTURE_TEST_RUNNABLE) | 133 | #if defined(MODULE) || defined(CONFIG_RCU_TORTURE_TEST_RUNNABLE) |
| 134 | #define RCUTORTURE_RUNNABLE_INIT 1 | 134 | #define RCUTORTURE_RUNNABLE_INIT 1 |
| @@ -257,17 +257,18 @@ struct rcu_torture_ops { | |||
| 257 | void (*init)(void); | 257 | void (*init)(void); |
| 258 | void (*cleanup)(void); | 258 | void (*cleanup)(void); |
| 259 | int (*readlock)(void); | 259 | int (*readlock)(void); |
| 260 | void (*readdelay)(struct rcu_random_state *rrsp); | 260 | void (*read_delay)(struct rcu_random_state *rrsp); |
| 261 | void (*readunlock)(int idx); | 261 | void (*readunlock)(int idx); |
| 262 | int (*completed)(void); | 262 | int (*completed)(void); |
| 263 | void (*deferredfree)(struct rcu_torture *p); | 263 | void (*deferred_free)(struct rcu_torture *p); |
| 264 | void (*sync)(void); | 264 | void (*sync)(void); |
| 265 | void (*cb_barrier)(void); | 265 | void (*cb_barrier)(void); |
| 266 | int (*stats)(char *page); | 266 | int (*stats)(char *page); |
| 267 | int irqcapable; | 267 | int irq_capable; |
| 268 | char *name; | 268 | char *name; |
| 269 | }; | 269 | }; |
| 270 | static struct rcu_torture_ops *cur_ops = NULL; | 270 | |
| 271 | static struct rcu_torture_ops *cur_ops; | ||
| 271 | 272 | ||
| 272 | /* | 273 | /* |
| 273 | * Definitions for rcu torture testing. | 274 | * Definitions for rcu torture testing. |
| @@ -281,14 +282,17 @@ static int rcu_torture_read_lock(void) __acquires(RCU) | |||
| 281 | 282 | ||
| 282 | static void rcu_read_delay(struct rcu_random_state *rrsp) | 283 | static void rcu_read_delay(struct rcu_random_state *rrsp) |
| 283 | { | 284 | { |
| 284 | long delay; | 285 | const unsigned long shortdelay_us = 200; |
| 285 | const long longdelay = 200; | 286 | const unsigned long longdelay_ms = 50; |
| 286 | 287 | ||
| 287 | /* We want there to be long-running readers, but not all the time. */ | 288 | /* We want a short delay sometimes to make a reader delay the grace |
| 289 | * period, and we want a long delay occasionally to trigger | ||
| 290 | * force_quiescent_state. */ | ||
| 288 | 291 | ||
| 289 | delay = rcu_random(rrsp) % (nrealreaders * 2 * longdelay); | 292 | if (!(rcu_random(rrsp) % (nrealreaders * 2000 * longdelay_ms))) |
| 290 | if (!delay) | 293 | mdelay(longdelay_ms); |
| 291 | udelay(longdelay); | 294 | if (!(rcu_random(rrsp) % (nrealreaders * 2 * shortdelay_us))) |
| 295 | udelay(shortdelay_us); | ||
| 292 | } | 296 | } |
| 293 | 297 | ||
| 294 | static void rcu_torture_read_unlock(int idx) __releases(RCU) | 298 | static void rcu_torture_read_unlock(int idx) __releases(RCU) |
| @@ -320,7 +324,7 @@ rcu_torture_cb(struct rcu_head *p) | |||
| 320 | rp->rtort_mbtest = 0; | 324 | rp->rtort_mbtest = 0; |
| 321 | rcu_torture_free(rp); | 325 | rcu_torture_free(rp); |
| 322 | } else | 326 | } else |
| 323 | cur_ops->deferredfree(rp); | 327 | cur_ops->deferred_free(rp); |
| 324 | } | 328 | } |
| 325 | 329 | ||
| 326 | static void rcu_torture_deferred_free(struct rcu_torture *p) | 330 | static void rcu_torture_deferred_free(struct rcu_torture *p) |
| @@ -329,18 +333,18 @@ static void rcu_torture_deferred_free(struct rcu_torture *p) | |||
| 329 | } | 333 | } |
| 330 | 334 | ||
| 331 | static struct rcu_torture_ops rcu_ops = { | 335 | static struct rcu_torture_ops rcu_ops = { |
| 332 | .init = NULL, | 336 | .init = NULL, |
| 333 | .cleanup = NULL, | 337 | .cleanup = NULL, |
| 334 | .readlock = rcu_torture_read_lock, | 338 | .readlock = rcu_torture_read_lock, |
| 335 | .readdelay = rcu_read_delay, | 339 | .read_delay = rcu_read_delay, |
| 336 | .readunlock = rcu_torture_read_unlock, | 340 | .readunlock = rcu_torture_read_unlock, |
| 337 | .completed = rcu_torture_completed, | 341 | .completed = rcu_torture_completed, |
| 338 | .deferredfree = rcu_torture_deferred_free, | 342 | .deferred_free = rcu_torture_deferred_free, |
| 339 | .sync = synchronize_rcu, | 343 | .sync = synchronize_rcu, |
| 340 | .cb_barrier = rcu_barrier, | 344 | .cb_barrier = rcu_barrier, |
| 341 | .stats = NULL, | 345 | .stats = NULL, |
| 342 | .irqcapable = 1, | 346 | .irq_capable = 1, |
| 343 | .name = "rcu" | 347 | .name = "rcu" |
| 344 | }; | 348 | }; |
| 345 | 349 | ||
| 346 | static void rcu_sync_torture_deferred_free(struct rcu_torture *p) | 350 | static void rcu_sync_torture_deferred_free(struct rcu_torture *p) |
| @@ -370,18 +374,18 @@ static void rcu_sync_torture_init(void) | |||
| 370 | } | 374 | } |
| 371 | 375 | ||
| 372 | static struct rcu_torture_ops rcu_sync_ops = { | 376 | static struct rcu_torture_ops rcu_sync_ops = { |
| 373 | .init = rcu_sync_torture_init, | 377 | .init = rcu_sync_torture_init, |
| 374 | .cleanup = NULL, | 378 | .cleanup = NULL, |
| 375 | .readlock = rcu_torture_read_lock, | 379 | .readlock = rcu_torture_read_lock, |
| 376 | .readdelay = rcu_read_delay, | 380 | .read_delay = rcu_read_delay, |
| 377 | .readunlock = rcu_torture_read_unlock, | 381 | .readunlock = rcu_torture_read_unlock, |
| 378 | .completed = rcu_torture_completed, | 382 | .completed = rcu_torture_completed, |
| 379 | .deferredfree = rcu_sync_torture_deferred_free, | 383 | .deferred_free = rcu_sync_torture_deferred_free, |
| 380 | .sync = synchronize_rcu, | 384 | .sync = synchronize_rcu, |
| 381 | .cb_barrier = NULL, | 385 | .cb_barrier = NULL, |
| 382 | .stats = NULL, | 386 | .stats = NULL, |
| 383 | .irqcapable = 1, | 387 | .irq_capable = 1, |
| 384 | .name = "rcu_sync" | 388 | .name = "rcu_sync" |
| 385 | }; | 389 | }; |
| 386 | 390 | ||
| 387 | /* | 391 | /* |
| @@ -432,33 +436,33 @@ static void rcu_bh_torture_synchronize(void) | |||
| 432 | } | 436 | } |
| 433 | 437 | ||
| 434 | static struct rcu_torture_ops rcu_bh_ops = { | 438 | static struct rcu_torture_ops rcu_bh_ops = { |
| 435 | .init = NULL, | 439 | .init = NULL, |
| 436 | .cleanup = NULL, | 440 | .cleanup = NULL, |
| 437 | .readlock = rcu_bh_torture_read_lock, | 441 | .readlock = rcu_bh_torture_read_lock, |
| 438 | .readdelay = rcu_read_delay, /* just reuse rcu's version. */ | 442 | .read_delay = rcu_read_delay, /* just reuse rcu's version. */ |
| 439 | .readunlock = rcu_bh_torture_read_unlock, | 443 | .readunlock = rcu_bh_torture_read_unlock, |
| 440 | .completed = rcu_bh_torture_completed, | 444 | .completed = rcu_bh_torture_completed, |
| 441 | .deferredfree = rcu_bh_torture_deferred_free, | 445 | .deferred_free = rcu_bh_torture_deferred_free, |
| 442 | .sync = rcu_bh_torture_synchronize, | 446 | .sync = rcu_bh_torture_synchronize, |
| 443 | .cb_barrier = rcu_barrier_bh, | 447 | .cb_barrier = rcu_barrier_bh, |
| 444 | .stats = NULL, | 448 | .stats = NULL, |
| 445 | .irqcapable = 1, | 449 | .irq_capable = 1, |
| 446 | .name = "rcu_bh" | 450 | .name = "rcu_bh" |
| 447 | }; | 451 | }; |
| 448 | 452 | ||
| 449 | static struct rcu_torture_ops rcu_bh_sync_ops = { | 453 | static struct rcu_torture_ops rcu_bh_sync_ops = { |
| 450 | .init = rcu_sync_torture_init, | 454 | .init = rcu_sync_torture_init, |
| 451 | .cleanup = NULL, | 455 | .cleanup = NULL, |
| 452 | .readlock = rcu_bh_torture_read_lock, | 456 | .readlock = rcu_bh_torture_read_lock, |
| 453 | .readdelay = rcu_read_delay, /* just reuse rcu's version. */ | 457 | .read_delay = rcu_read_delay, /* just reuse rcu's version. */ |
| 454 | .readunlock = rcu_bh_torture_read_unlock, | 458 | .readunlock = rcu_bh_torture_read_unlock, |
| 455 | .completed = rcu_bh_torture_completed, | 459 | .completed = rcu_bh_torture_completed, |
| 456 | .deferredfree = rcu_sync_torture_deferred_free, | 460 | .deferred_free = rcu_sync_torture_deferred_free, |
| 457 | .sync = rcu_bh_torture_synchronize, | 461 | .sync = rcu_bh_torture_synchronize, |
| 458 | .cb_barrier = NULL, | 462 | .cb_barrier = NULL, |
| 459 | .stats = NULL, | 463 | .stats = NULL, |
| 460 | .irqcapable = 1, | 464 | .irq_capable = 1, |
| 461 | .name = "rcu_bh_sync" | 465 | .name = "rcu_bh_sync" |
| 462 | }; | 466 | }; |
| 463 | 467 | ||
| 464 | /* | 468 | /* |
| @@ -530,17 +534,17 @@ static int srcu_torture_stats(char *page) | |||
| 530 | } | 534 | } |
| 531 | 535 | ||
| 532 | static struct rcu_torture_ops srcu_ops = { | 536 | static struct rcu_torture_ops srcu_ops = { |
| 533 | .init = srcu_torture_init, | 537 | .init = srcu_torture_init, |
| 534 | .cleanup = srcu_torture_cleanup, | 538 | .cleanup = srcu_torture_cleanup, |
| 535 | .readlock = srcu_torture_read_lock, | 539 | .readlock = srcu_torture_read_lock, |
| 536 | .readdelay = srcu_read_delay, | 540 | .read_delay = srcu_read_delay, |
| 537 | .readunlock = srcu_torture_read_unlock, | 541 | .readunlock = srcu_torture_read_unlock, |
| 538 | .completed = srcu_torture_completed, | 542 | .completed = srcu_torture_completed, |
| 539 | .deferredfree = rcu_sync_torture_deferred_free, | 543 | .deferred_free = rcu_sync_torture_deferred_free, |
| 540 | .sync = srcu_torture_synchronize, | 544 | .sync = srcu_torture_synchronize, |
| 541 | .cb_barrier = NULL, | 545 | .cb_barrier = NULL, |
| 542 | .stats = srcu_torture_stats, | 546 | .stats = srcu_torture_stats, |
| 543 | .name = "srcu" | 547 | .name = "srcu" |
| 544 | }; | 548 | }; |
| 545 | 549 | ||
| 546 | /* | 550 | /* |
| @@ -574,32 +578,49 @@ static void sched_torture_synchronize(void) | |||
| 574 | } | 578 | } |
| 575 | 579 | ||
| 576 | static struct rcu_torture_ops sched_ops = { | 580 | static struct rcu_torture_ops sched_ops = { |
| 577 | .init = rcu_sync_torture_init, | 581 | .init = rcu_sync_torture_init, |
| 578 | .cleanup = NULL, | 582 | .cleanup = NULL, |
| 579 | .readlock = sched_torture_read_lock, | 583 | .readlock = sched_torture_read_lock, |
| 580 | .readdelay = rcu_read_delay, /* just reuse rcu's version. */ | 584 | .read_delay = rcu_read_delay, /* just reuse rcu's version. */ |
| 581 | .readunlock = sched_torture_read_unlock, | 585 | .readunlock = sched_torture_read_unlock, |
| 582 | .completed = sched_torture_completed, | 586 | .completed = sched_torture_completed, |
| 583 | .deferredfree = rcu_sched_torture_deferred_free, | 587 | .deferred_free = rcu_sched_torture_deferred_free, |
| 584 | .sync = sched_torture_synchronize, | 588 | .sync = sched_torture_synchronize, |
| 585 | .cb_barrier = rcu_barrier_sched, | 589 | .cb_barrier = rcu_barrier_sched, |
| 586 | .stats = NULL, | 590 | .stats = NULL, |
| 587 | .irqcapable = 1, | 591 | .irq_capable = 1, |
| 588 | .name = "sched" | 592 | .name = "sched" |
| 589 | }; | 593 | }; |
| 590 | 594 | ||
| 591 | static struct rcu_torture_ops sched_ops_sync = { | 595 | static struct rcu_torture_ops sched_ops_sync = { |
| 592 | .init = rcu_sync_torture_init, | 596 | .init = rcu_sync_torture_init, |
| 593 | .cleanup = NULL, | 597 | .cleanup = NULL, |
| 594 | .readlock = sched_torture_read_lock, | 598 | .readlock = sched_torture_read_lock, |
| 595 | .readdelay = rcu_read_delay, /* just reuse rcu's version. */ | 599 | .read_delay = rcu_read_delay, /* just reuse rcu's version. */ |
| 596 | .readunlock = sched_torture_read_unlock, | 600 | .readunlock = sched_torture_read_unlock, |
| 597 | .completed = sched_torture_completed, | 601 | .completed = sched_torture_completed, |
| 598 | .deferredfree = rcu_sync_torture_deferred_free, | 602 | .deferred_free = rcu_sync_torture_deferred_free, |
| 599 | .sync = sched_torture_synchronize, | 603 | .sync = sched_torture_synchronize, |
| 600 | .cb_barrier = NULL, | 604 | .cb_barrier = NULL, |
| 601 | .stats = NULL, | 605 | .stats = NULL, |
| 602 | .name = "sched_sync" | 606 | .name = "sched_sync" |
| 607 | }; | ||
| 608 | |||
| 609 | extern int rcu_expedited_torture_stats(char *page); | ||
| 610 | |||
| 611 | static struct rcu_torture_ops sched_expedited_ops = { | ||
| 612 | .init = rcu_sync_torture_init, | ||
| 613 | .cleanup = NULL, | ||
| 614 | .readlock = sched_torture_read_lock, | ||
| 615 | .read_delay = rcu_read_delay, /* just reuse rcu's version. */ | ||
| 616 | .readunlock = sched_torture_read_unlock, | ||
| 617 | .completed = sched_torture_completed, | ||
| 618 | .deferred_free = rcu_sync_torture_deferred_free, | ||
| 619 | .sync = synchronize_sched_expedited, | ||
| 620 | .cb_barrier = NULL, | ||
| 621 | .stats = rcu_expedited_torture_stats, | ||
| 622 | .irq_capable = 1, | ||
| 623 | .name = "sched_expedited" | ||
| 603 | }; | 624 | }; |
| 604 | 625 | ||
| 605 | /* | 626 | /* |
| @@ -621,7 +642,8 @@ rcu_torture_writer(void *arg) | |||
| 621 | 642 | ||
| 622 | do { | 643 | do { |
| 623 | schedule_timeout_uninterruptible(1); | 644 | schedule_timeout_uninterruptible(1); |
| 624 | if ((rp = rcu_torture_alloc()) == NULL) | 645 | rp = rcu_torture_alloc(); |
| 646 | if (rp == NULL) | ||
| 625 | continue; | 647 | continue; |
| 626 | rp->rtort_pipe_count = 0; | 648 | rp->rtort_pipe_count = 0; |
| 627 | udelay(rcu_random(&rand) & 0x3ff); | 649 | udelay(rcu_random(&rand) & 0x3ff); |
| @@ -635,7 +657,7 @@ rcu_torture_writer(void *arg) | |||
| 635 | i = RCU_TORTURE_PIPE_LEN; | 657 | i = RCU_TORTURE_PIPE_LEN; |
| 636 | atomic_inc(&rcu_torture_wcount[i]); | 658 | atomic_inc(&rcu_torture_wcount[i]); |
| 637 | old_rp->rtort_pipe_count++; | 659 | old_rp->rtort_pipe_count++; |
| 638 | cur_ops->deferredfree(old_rp); | 660 | cur_ops->deferred_free(old_rp); |
| 639 | } | 661 | } |
| 640 | rcu_torture_current_version++; | 662 | rcu_torture_current_version++; |
| 641 | oldbatch = cur_ops->completed(); | 663 | oldbatch = cur_ops->completed(); |
| @@ -700,7 +722,7 @@ static void rcu_torture_timer(unsigned long unused) | |||
| 700 | if (p->rtort_mbtest == 0) | 722 | if (p->rtort_mbtest == 0) |
| 701 | atomic_inc(&n_rcu_torture_mberror); | 723 | atomic_inc(&n_rcu_torture_mberror); |
| 702 | spin_lock(&rand_lock); | 724 | spin_lock(&rand_lock); |
| 703 | cur_ops->readdelay(&rand); | 725 | cur_ops->read_delay(&rand); |
| 704 | n_rcu_torture_timers++; | 726 | n_rcu_torture_timers++; |
| 705 | spin_unlock(&rand_lock); | 727 | spin_unlock(&rand_lock); |
| 706 | preempt_disable(); | 728 | preempt_disable(); |
| @@ -738,11 +760,11 @@ rcu_torture_reader(void *arg) | |||
| 738 | 760 | ||
| 739 | VERBOSE_PRINTK_STRING("rcu_torture_reader task started"); | 761 | VERBOSE_PRINTK_STRING("rcu_torture_reader task started"); |
| 740 | set_user_nice(current, 19); | 762 | set_user_nice(current, 19); |
| 741 | if (irqreader && cur_ops->irqcapable) | 763 | if (irqreader && cur_ops->irq_capable) |
| 742 | setup_timer_on_stack(&t, rcu_torture_timer, 0); | 764 | setup_timer_on_stack(&t, rcu_torture_timer, 0); |
| 743 | 765 | ||
| 744 | do { | 766 | do { |
| 745 | if (irqreader && cur_ops->irqcapable) { | 767 | if (irqreader && cur_ops->irq_capable) { |
| 746 | if (!timer_pending(&t)) | 768 | if (!timer_pending(&t)) |
| 747 | mod_timer(&t, 1); | 769 | mod_timer(&t, 1); |
| 748 | } | 770 | } |
| @@ -757,7 +779,7 @@ rcu_torture_reader(void *arg) | |||
| 757 | } | 779 | } |
| 758 | if (p->rtort_mbtest == 0) | 780 | if (p->rtort_mbtest == 0) |
| 759 | atomic_inc(&n_rcu_torture_mberror); | 781 | atomic_inc(&n_rcu_torture_mberror); |
| 760 | cur_ops->readdelay(&rand); | 782 | cur_ops->read_delay(&rand); |
| 761 | preempt_disable(); | 783 | preempt_disable(); |
| 762 | pipe_count = p->rtort_pipe_count; | 784 | pipe_count = p->rtort_pipe_count; |
| 763 | if (pipe_count > RCU_TORTURE_PIPE_LEN) { | 785 | if (pipe_count > RCU_TORTURE_PIPE_LEN) { |
| @@ -778,7 +800,7 @@ rcu_torture_reader(void *arg) | |||
| 778 | } while (!kthread_should_stop() && fullstop == FULLSTOP_DONTSTOP); | 800 | } while (!kthread_should_stop() && fullstop == FULLSTOP_DONTSTOP); |
| 779 | VERBOSE_PRINTK_STRING("rcu_torture_reader task stopping"); | 801 | VERBOSE_PRINTK_STRING("rcu_torture_reader task stopping"); |
| 780 | rcutorture_shutdown_absorb("rcu_torture_reader"); | 802 | rcutorture_shutdown_absorb("rcu_torture_reader"); |
| 781 | if (irqreader && cur_ops->irqcapable) | 803 | if (irqreader && cur_ops->irq_capable) |
| 782 | del_timer_sync(&t); | 804 | del_timer_sync(&t); |
| 783 | while (!kthread_should_stop()) | 805 | while (!kthread_should_stop()) |
| 784 | schedule_timeout_uninterruptible(1); | 806 | schedule_timeout_uninterruptible(1); |
| @@ -1078,6 +1100,7 @@ rcu_torture_init(void) | |||
| 1078 | int firsterr = 0; | 1100 | int firsterr = 0; |
| 1079 | static struct rcu_torture_ops *torture_ops[] = | 1101 | static struct rcu_torture_ops *torture_ops[] = |
| 1080 | { &rcu_ops, &rcu_sync_ops, &rcu_bh_ops, &rcu_bh_sync_ops, | 1102 | { &rcu_ops, &rcu_sync_ops, &rcu_bh_ops, &rcu_bh_sync_ops, |
| 1103 | &sched_expedited_ops, | ||
| 1081 | &srcu_ops, &sched_ops, &sched_ops_sync, }; | 1104 | &srcu_ops, &sched_ops, &sched_ops_sync, }; |
| 1082 | 1105 | ||
| 1083 | mutex_lock(&fullstop_mutex); | 1106 | mutex_lock(&fullstop_mutex); |
| @@ -1092,7 +1115,7 @@ rcu_torture_init(void) | |||
| 1092 | printk(KERN_ALERT "rcutorture: invalid torture type: \"%s\"\n", | 1115 | printk(KERN_ALERT "rcutorture: invalid torture type: \"%s\"\n", |
| 1093 | torture_type); | 1116 | torture_type); |
| 1094 | mutex_unlock(&fullstop_mutex); | 1117 | mutex_unlock(&fullstop_mutex); |
| 1095 | return (-EINVAL); | 1118 | return -EINVAL; |
| 1096 | } | 1119 | } |
| 1097 | if (cur_ops->init) | 1120 | if (cur_ops->init) |
| 1098 | cur_ops->init(); /* no "goto unwind" prior to this point!!! */ | 1121 | cur_ops->init(); /* no "goto unwind" prior to this point!!! */ |
| @@ -1143,7 +1166,7 @@ rcu_torture_init(void) | |||
| 1143 | goto unwind; | 1166 | goto unwind; |
| 1144 | } | 1167 | } |
| 1145 | fakewriter_tasks = kzalloc(nfakewriters * sizeof(fakewriter_tasks[0]), | 1168 | fakewriter_tasks = kzalloc(nfakewriters * sizeof(fakewriter_tasks[0]), |
| 1146 | GFP_KERNEL); | 1169 | GFP_KERNEL); |
| 1147 | if (fakewriter_tasks == NULL) { | 1170 | if (fakewriter_tasks == NULL) { |
| 1148 | VERBOSE_PRINTK_ERRSTRING("out of memory"); | 1171 | VERBOSE_PRINTK_ERRSTRING("out of memory"); |
| 1149 | firsterr = -ENOMEM; | 1172 | firsterr = -ENOMEM; |
| @@ -1152,7 +1175,7 @@ rcu_torture_init(void) | |||
| 1152 | for (i = 0; i < nfakewriters; i++) { | 1175 | for (i = 0; i < nfakewriters; i++) { |
| 1153 | VERBOSE_PRINTK_STRING("Creating rcu_torture_fakewriter task"); | 1176 | VERBOSE_PRINTK_STRING("Creating rcu_torture_fakewriter task"); |
| 1154 | fakewriter_tasks[i] = kthread_run(rcu_torture_fakewriter, NULL, | 1177 | fakewriter_tasks[i] = kthread_run(rcu_torture_fakewriter, NULL, |
| 1155 | "rcu_torture_fakewriter"); | 1178 | "rcu_torture_fakewriter"); |
| 1156 | if (IS_ERR(fakewriter_tasks[i])) { | 1179 | if (IS_ERR(fakewriter_tasks[i])) { |
| 1157 | firsterr = PTR_ERR(fakewriter_tasks[i]); | 1180 | firsterr = PTR_ERR(fakewriter_tasks[i]); |
| 1158 | VERBOSE_PRINTK_ERRSTRING("Failed to create fakewriter"); | 1181 | VERBOSE_PRINTK_ERRSTRING("Failed to create fakewriter"); |
diff --git a/kernel/rcutree.c b/kernel/rcutree.c index 0dccfbba6d26..52b06f6e158c 100644 --- a/kernel/rcutree.c +++ b/kernel/rcutree.c | |||
| @@ -25,7 +25,7 @@ | |||
| 25 | * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. | 25 | * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. |
| 26 | * | 26 | * |
| 27 | * For detailed explanation of Read-Copy Update mechanism see - | 27 | * For detailed explanation of Read-Copy Update mechanism see - |
| 28 | * Documentation/RCU | 28 | * Documentation/RCU |
| 29 | */ | 29 | */ |
| 30 | #include <linux/types.h> | 30 | #include <linux/types.h> |
| 31 | #include <linux/kernel.h> | 31 | #include <linux/kernel.h> |
| @@ -35,6 +35,7 @@ | |||
| 35 | #include <linux/rcupdate.h> | 35 | #include <linux/rcupdate.h> |
| 36 | #include <linux/interrupt.h> | 36 | #include <linux/interrupt.h> |
| 37 | #include <linux/sched.h> | 37 | #include <linux/sched.h> |
| 38 | #include <linux/nmi.h> | ||
| 38 | #include <asm/atomic.h> | 39 | #include <asm/atomic.h> |
| 39 | #include <linux/bitops.h> | 40 | #include <linux/bitops.h> |
| 40 | #include <linux/module.h> | 41 | #include <linux/module.h> |
| @@ -46,6 +47,8 @@ | |||
| 46 | #include <linux/mutex.h> | 47 | #include <linux/mutex.h> |
| 47 | #include <linux/time.h> | 48 | #include <linux/time.h> |
| 48 | 49 | ||
| 50 | #include "rcutree.h" | ||
| 51 | |||
| 49 | #ifdef CONFIG_DEBUG_LOCK_ALLOC | 52 | #ifdef CONFIG_DEBUG_LOCK_ALLOC |
| 50 | static struct lock_class_key rcu_lock_key; | 53 | static struct lock_class_key rcu_lock_key; |
| 51 | struct lockdep_map rcu_lock_map = | 54 | struct lockdep_map rcu_lock_map = |
| @@ -72,30 +75,55 @@ EXPORT_SYMBOL_GPL(rcu_lock_map); | |||
| 72 | .n_force_qs_ngp = 0, \ | 75 | .n_force_qs_ngp = 0, \ |
| 73 | } | 76 | } |
| 74 | 77 | ||
| 75 | struct rcu_state rcu_state = RCU_STATE_INITIALIZER(rcu_state); | 78 | struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched_state); |
| 76 | DEFINE_PER_CPU(struct rcu_data, rcu_data); | 79 | DEFINE_PER_CPU(struct rcu_data, rcu_sched_data); |
| 77 | 80 | ||
| 78 | struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state); | 81 | struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state); |
| 79 | DEFINE_PER_CPU(struct rcu_data, rcu_bh_data); | 82 | DEFINE_PER_CPU(struct rcu_data, rcu_bh_data); |
| 80 | 83 | ||
| 84 | extern long rcu_batches_completed_sched(void); | ||
| 85 | static struct rcu_node *rcu_get_root(struct rcu_state *rsp); | ||
| 86 | static void cpu_quiet_msk(unsigned long mask, struct rcu_state *rsp, | ||
| 87 | struct rcu_node *rnp, unsigned long flags); | ||
| 88 | static void cpu_quiet_msk_finish(struct rcu_state *rsp, unsigned long flags); | ||
| 89 | #ifdef CONFIG_HOTPLUG_CPU | ||
| 90 | static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp); | ||
| 91 | #endif /* #ifdef CONFIG_HOTPLUG_CPU */ | ||
| 92 | static void __rcu_process_callbacks(struct rcu_state *rsp, | ||
| 93 | struct rcu_data *rdp); | ||
| 94 | static void __call_rcu(struct rcu_head *head, | ||
| 95 | void (*func)(struct rcu_head *rcu), | ||
| 96 | struct rcu_state *rsp); | ||
| 97 | static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp); | ||
| 98 | static void __cpuinit rcu_init_percpu_data(int cpu, struct rcu_state *rsp, | ||
| 99 | int preemptable); | ||
| 100 | |||
| 101 | #include "rcutree_plugin.h" | ||
| 102 | |||
| 81 | /* | 103 | /* |
| 82 | * Increment the quiescent state counter. | 104 | * Note a quiescent state. Because we do not need to know |
| 83 | * The counter is a bit degenerated: We do not need to know | ||
| 84 | * how many quiescent states passed, just if there was at least | 105 | * how many quiescent states passed, just if there was at least |
| 85 | * one since the start of the grace period. Thus just a flag. | 106 | * one since the start of the grace period, this just sets a flag. |
| 86 | */ | 107 | */ |
| 87 | void rcu_qsctr_inc(int cpu) | 108 | void rcu_sched_qs(int cpu) |
| 88 | { | 109 | { |
| 89 | struct rcu_data *rdp = &per_cpu(rcu_data, cpu); | 110 | struct rcu_data *rdp; |
| 90 | rdp->passed_quiesc = 1; | 111 | |
| 112 | rdp = &per_cpu(rcu_sched_data, cpu); | ||
| 91 | rdp->passed_quiesc_completed = rdp->completed; | 113 | rdp->passed_quiesc_completed = rdp->completed; |
| 114 | barrier(); | ||
| 115 | rdp->passed_quiesc = 1; | ||
| 116 | rcu_preempt_note_context_switch(cpu); | ||
| 92 | } | 117 | } |
| 93 | 118 | ||
| 94 | void rcu_bh_qsctr_inc(int cpu) | 119 | void rcu_bh_qs(int cpu) |
| 95 | { | 120 | { |
| 96 | struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu); | 121 | struct rcu_data *rdp; |
| 97 | rdp->passed_quiesc = 1; | 122 | |
| 123 | rdp = &per_cpu(rcu_bh_data, cpu); | ||
| 98 | rdp->passed_quiesc_completed = rdp->completed; | 124 | rdp->passed_quiesc_completed = rdp->completed; |
| 125 | barrier(); | ||
| 126 | rdp->passed_quiesc = 1; | ||
| 99 | } | 127 | } |
| 100 | 128 | ||
| 101 | #ifdef CONFIG_NO_HZ | 129 | #ifdef CONFIG_NO_HZ |
| @@ -110,15 +138,16 @@ static int qhimark = 10000; /* If this many pending, ignore blimit. */ | |||
| 110 | static int qlowmark = 100; /* Once only this many pending, use blimit. */ | 138 | static int qlowmark = 100; /* Once only this many pending, use blimit. */ |
| 111 | 139 | ||
| 112 | static void force_quiescent_state(struct rcu_state *rsp, int relaxed); | 140 | static void force_quiescent_state(struct rcu_state *rsp, int relaxed); |
| 141 | static int rcu_pending(int cpu); | ||
| 113 | 142 | ||
| 114 | /* | 143 | /* |
| 115 | * Return the number of RCU batches processed thus far for debug & stats. | 144 | * Return the number of RCU-sched batches processed thus far for debug & stats. |
| 116 | */ | 145 | */ |
| 117 | long rcu_batches_completed(void) | 146 | long rcu_batches_completed_sched(void) |
| 118 | { | 147 | { |
| 119 | return rcu_state.completed; | 148 | return rcu_sched_state.completed; |
| 120 | } | 149 | } |
| 121 | EXPORT_SYMBOL_GPL(rcu_batches_completed); | 150 | EXPORT_SYMBOL_GPL(rcu_batches_completed_sched); |
| 122 | 151 | ||
| 123 | /* | 152 | /* |
| 124 | * Return the number of RCU BH batches processed thus far for debug & stats. | 153 | * Return the number of RCU BH batches processed thus far for debug & stats. |
| @@ -181,6 +210,10 @@ static int rcu_implicit_offline_qs(struct rcu_data *rdp) | |||
| 181 | return 1; | 210 | return 1; |
| 182 | } | 211 | } |
| 183 | 212 | ||
| 213 | /* If preemptable RCU, no point in sending reschedule IPI. */ | ||
| 214 | if (rdp->preemptable) | ||
| 215 | return 0; | ||
| 216 | |||
| 184 | /* The CPU is online, so send it a reschedule IPI. */ | 217 | /* The CPU is online, so send it a reschedule IPI. */ |
| 185 | if (rdp->cpu != smp_processor_id()) | 218 | if (rdp->cpu != smp_processor_id()) |
| 186 | smp_send_reschedule(rdp->cpu); | 219 | smp_send_reschedule(rdp->cpu); |
| @@ -193,7 +226,6 @@ static int rcu_implicit_offline_qs(struct rcu_data *rdp) | |||
| 193 | #endif /* #ifdef CONFIG_SMP */ | 226 | #endif /* #ifdef CONFIG_SMP */ |
| 194 | 227 | ||
| 195 | #ifdef CONFIG_NO_HZ | 228 | #ifdef CONFIG_NO_HZ |
| 196 | static DEFINE_RATELIMIT_STATE(rcu_rs, 10 * HZ, 5); | ||
| 197 | 229 | ||
| 198 | /** | 230 | /** |
| 199 | * rcu_enter_nohz - inform RCU that current CPU is entering nohz | 231 | * rcu_enter_nohz - inform RCU that current CPU is entering nohz |
| @@ -213,7 +245,7 @@ void rcu_enter_nohz(void) | |||
| 213 | rdtp = &__get_cpu_var(rcu_dynticks); | 245 | rdtp = &__get_cpu_var(rcu_dynticks); |
| 214 | rdtp->dynticks++; | 246 | rdtp->dynticks++; |
| 215 | rdtp->dynticks_nesting--; | 247 | rdtp->dynticks_nesting--; |
| 216 | WARN_ON_RATELIMIT(rdtp->dynticks & 0x1, &rcu_rs); | 248 | WARN_ON_ONCE(rdtp->dynticks & 0x1); |
| 217 | local_irq_restore(flags); | 249 | local_irq_restore(flags); |
| 218 | } | 250 | } |
| 219 | 251 | ||
| @@ -232,7 +264,7 @@ void rcu_exit_nohz(void) | |||
| 232 | rdtp = &__get_cpu_var(rcu_dynticks); | 264 | rdtp = &__get_cpu_var(rcu_dynticks); |
| 233 | rdtp->dynticks++; | 265 | rdtp->dynticks++; |
| 234 | rdtp->dynticks_nesting++; | 266 | rdtp->dynticks_nesting++; |
| 235 | WARN_ON_RATELIMIT(!(rdtp->dynticks & 0x1), &rcu_rs); | 267 | WARN_ON_ONCE(!(rdtp->dynticks & 0x1)); |
| 236 | local_irq_restore(flags); | 268 | local_irq_restore(flags); |
| 237 | smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */ | 269 | smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */ |
| 238 | } | 270 | } |
| @@ -251,7 +283,7 @@ void rcu_nmi_enter(void) | |||
| 251 | if (rdtp->dynticks & 0x1) | 283 | if (rdtp->dynticks & 0x1) |
| 252 | return; | 284 | return; |
| 253 | rdtp->dynticks_nmi++; | 285 | rdtp->dynticks_nmi++; |
| 254 | WARN_ON_RATELIMIT(!(rdtp->dynticks_nmi & 0x1), &rcu_rs); | 286 | WARN_ON_ONCE(!(rdtp->dynticks_nmi & 0x1)); |
| 255 | smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */ | 287 | smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */ |
| 256 | } | 288 | } |
| 257 | 289 | ||
| @@ -270,7 +302,7 @@ void rcu_nmi_exit(void) | |||
| 270 | return; | 302 | return; |
| 271 | smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */ | 303 | smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */ |
| 272 | rdtp->dynticks_nmi++; | 304 | rdtp->dynticks_nmi++; |
| 273 | WARN_ON_RATELIMIT(rdtp->dynticks_nmi & 0x1, &rcu_rs); | 305 | WARN_ON_ONCE(rdtp->dynticks_nmi & 0x1); |
| 274 | } | 306 | } |
| 275 | 307 | ||
| 276 | /** | 308 | /** |
| @@ -286,7 +318,7 @@ void rcu_irq_enter(void) | |||
| 286 | if (rdtp->dynticks_nesting++) | 318 | if (rdtp->dynticks_nesting++) |
| 287 | return; | 319 | return; |
| 288 | rdtp->dynticks++; | 320 | rdtp->dynticks++; |
| 289 | WARN_ON_RATELIMIT(!(rdtp->dynticks & 0x1), &rcu_rs); | 321 | WARN_ON_ONCE(!(rdtp->dynticks & 0x1)); |
| 290 | smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */ | 322 | smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */ |
| 291 | } | 323 | } |
| 292 | 324 | ||
| @@ -305,10 +337,10 @@ void rcu_irq_exit(void) | |||
| 305 | return; | 337 | return; |
| 306 | smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */ | 338 | smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */ |
| 307 | rdtp->dynticks++; | 339 | rdtp->dynticks++; |
| 308 | WARN_ON_RATELIMIT(rdtp->dynticks & 0x1, &rcu_rs); | 340 | WARN_ON_ONCE(rdtp->dynticks & 0x1); |
| 309 | 341 | ||
| 310 | /* If the interrupt queued a callback, get out of dyntick mode. */ | 342 | /* If the interrupt queued a callback, get out of dyntick mode. */ |
| 311 | if (__get_cpu_var(rcu_data).nxtlist || | 343 | if (__get_cpu_var(rcu_sched_data).nxtlist || |
| 312 | __get_cpu_var(rcu_bh_data).nxtlist) | 344 | __get_cpu_var(rcu_bh_data).nxtlist) |
| 313 | set_need_resched(); | 345 | set_need_resched(); |
| 314 | } | 346 | } |
| @@ -461,6 +493,7 @@ static void print_other_cpu_stall(struct rcu_state *rsp) | |||
| 461 | 493 | ||
| 462 | printk(KERN_ERR "INFO: RCU detected CPU stalls:"); | 494 | printk(KERN_ERR "INFO: RCU detected CPU stalls:"); |
| 463 | for (; rnp_cur < rnp_end; rnp_cur++) { | 495 | for (; rnp_cur < rnp_end; rnp_cur++) { |
| 496 | rcu_print_task_stall(rnp); | ||
| 464 | if (rnp_cur->qsmask == 0) | 497 | if (rnp_cur->qsmask == 0) |
| 465 | continue; | 498 | continue; |
| 466 | for (cpu = 0; cpu <= rnp_cur->grphi - rnp_cur->grplo; cpu++) | 499 | for (cpu = 0; cpu <= rnp_cur->grphi - rnp_cur->grplo; cpu++) |
| @@ -469,6 +502,8 @@ static void print_other_cpu_stall(struct rcu_state *rsp) | |||
| 469 | } | 502 | } |
| 470 | printk(" (detected by %d, t=%ld jiffies)\n", | 503 | printk(" (detected by %d, t=%ld jiffies)\n", |
| 471 | smp_processor_id(), (long)(jiffies - rsp->gp_start)); | 504 | smp_processor_id(), (long)(jiffies - rsp->gp_start)); |
| 505 | trigger_all_cpu_backtrace(); | ||
| 506 | |||
| 472 | force_quiescent_state(rsp, 0); /* Kick them all. */ | 507 | force_quiescent_state(rsp, 0); /* Kick them all. */ |
| 473 | } | 508 | } |
| 474 | 509 | ||
| @@ -479,12 +514,14 @@ static void print_cpu_stall(struct rcu_state *rsp) | |||
| 479 | 514 | ||
| 480 | printk(KERN_ERR "INFO: RCU detected CPU %d stall (t=%lu jiffies)\n", | 515 | printk(KERN_ERR "INFO: RCU detected CPU %d stall (t=%lu jiffies)\n", |
| 481 | smp_processor_id(), jiffies - rsp->gp_start); | 516 | smp_processor_id(), jiffies - rsp->gp_start); |
| 482 | dump_stack(); | 517 | trigger_all_cpu_backtrace(); |
| 518 | |||
| 483 | spin_lock_irqsave(&rnp->lock, flags); | 519 | spin_lock_irqsave(&rnp->lock, flags); |
| 484 | if ((long)(jiffies - rsp->jiffies_stall) >= 0) | 520 | if ((long)(jiffies - rsp->jiffies_stall) >= 0) |
| 485 | rsp->jiffies_stall = | 521 | rsp->jiffies_stall = |
| 486 | jiffies + RCU_SECONDS_TILL_STALL_RECHECK; | 522 | jiffies + RCU_SECONDS_TILL_STALL_RECHECK; |
| 487 | spin_unlock_irqrestore(&rnp->lock, flags); | 523 | spin_unlock_irqrestore(&rnp->lock, flags); |
| 524 | |||
| 488 | set_need_resched(); /* kick ourselves to get things going. */ | 525 | set_need_resched(); /* kick ourselves to get things going. */ |
| 489 | } | 526 | } |
| 490 | 527 | ||
| @@ -564,8 +601,6 @@ rcu_start_gp(struct rcu_state *rsp, unsigned long flags) | |||
| 564 | { | 601 | { |
| 565 | struct rcu_data *rdp = rsp->rda[smp_processor_id()]; | 602 | struct rcu_data *rdp = rsp->rda[smp_processor_id()]; |
| 566 | struct rcu_node *rnp = rcu_get_root(rsp); | 603 | struct rcu_node *rnp = rcu_get_root(rsp); |
| 567 | struct rcu_node *rnp_cur; | ||
| 568 | struct rcu_node *rnp_end; | ||
| 569 | 604 | ||
| 570 | if (!cpu_needs_another_gp(rsp, rdp)) { | 605 | if (!cpu_needs_another_gp(rsp, rdp)) { |
| 571 | spin_unlock_irqrestore(&rnp->lock, flags); | 606 | spin_unlock_irqrestore(&rnp->lock, flags); |
| @@ -574,6 +609,7 @@ rcu_start_gp(struct rcu_state *rsp, unsigned long flags) | |||
| 574 | 609 | ||
| 575 | /* Advance to a new grace period and initialize state. */ | 610 | /* Advance to a new grace period and initialize state. */ |
| 576 | rsp->gpnum++; | 611 | rsp->gpnum++; |
| 612 | WARN_ON_ONCE(rsp->signaled == RCU_GP_INIT); | ||
| 577 | rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */ | 613 | rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */ |
| 578 | rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS; | 614 | rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS; |
| 579 | record_gp_stall_check_time(rsp); | 615 | record_gp_stall_check_time(rsp); |
| @@ -590,7 +626,9 @@ rcu_start_gp(struct rcu_state *rsp, unsigned long flags) | |||
| 590 | 626 | ||
| 591 | /* Special-case the common single-level case. */ | 627 | /* Special-case the common single-level case. */ |
| 592 | if (NUM_RCU_NODES == 1) { | 628 | if (NUM_RCU_NODES == 1) { |
| 629 | rcu_preempt_check_blocked_tasks(rnp); | ||
| 593 | rnp->qsmask = rnp->qsmaskinit; | 630 | rnp->qsmask = rnp->qsmaskinit; |
| 631 | rnp->gpnum = rsp->gpnum; | ||
| 594 | rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */ | 632 | rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */ |
| 595 | spin_unlock_irqrestore(&rnp->lock, flags); | 633 | spin_unlock_irqrestore(&rnp->lock, flags); |
| 596 | return; | 634 | return; |
| @@ -603,42 +641,28 @@ rcu_start_gp(struct rcu_state *rsp, unsigned long flags) | |||
| 603 | spin_lock(&rsp->onofflock); /* irqs already disabled. */ | 641 | spin_lock(&rsp->onofflock); /* irqs already disabled. */ |
| 604 | 642 | ||
| 605 | /* | 643 | /* |
| 606 | * Set the quiescent-state-needed bits in all the non-leaf RCU | 644 | * Set the quiescent-state-needed bits in all the rcu_node |
| 607 | * nodes for all currently online CPUs. This operation relies | 645 | * structures for all currently online CPUs in breadth-first |
| 608 | * on the layout of the hierarchy within the rsp->node[] array. | 646 | * order, starting from the root rcu_node structure. This |
| 609 | * Note that other CPUs will access only the leaves of the | 647 | * operation relies on the layout of the hierarchy within the |
| 610 | * hierarchy, which still indicate that no grace period is in | 648 | * rsp->node[] array. Note that other CPUs will access only |
| 611 | * progress. In addition, we have excluded CPU-hotplug operations. | 649 | * the leaves of the hierarchy, which still indicate that no |
| 612 | * | 650 | * grace period is in progress, at least until the corresponding |
| 613 | * We therefore do not need to hold any locks. Any required | 651 | * leaf node has been initialized. In addition, we have excluded |
| 614 | * memory barriers will be supplied by the locks guarding the | 652 | * CPU-hotplug operations. |
| 615 | * leaf rcu_nodes in the hierarchy. | ||
| 616 | */ | ||
| 617 | |||
| 618 | rnp_end = rsp->level[NUM_RCU_LVLS - 1]; | ||
| 619 | for (rnp_cur = &rsp->node[0]; rnp_cur < rnp_end; rnp_cur++) | ||
| 620 | rnp_cur->qsmask = rnp_cur->qsmaskinit; | ||
| 621 | |||
| 622 | /* | ||
| 623 | * Now set up the leaf nodes. Here we must be careful. First, | ||
| 624 | * we need to hold the lock in order to exclude other CPUs, which | ||
| 625 | * might be contending for the leaf nodes' locks. Second, as | ||
| 626 | * soon as we initialize a given leaf node, its CPUs might run | ||
| 627 | * up the rest of the hierarchy. We must therefore acquire locks | ||
| 628 | * for each node that we touch during this stage. (But we still | ||
| 629 | * are excluding CPU-hotplug operations.) | ||
| 630 | * | 653 | * |
| 631 | * Note that the grace period cannot complete until we finish | 654 | * Note that the grace period cannot complete until we finish |
| 632 | * the initialization process, as there will be at least one | 655 | * the initialization process, as there will be at least one |
| 633 | * qsmask bit set in the root node until that time, namely the | 656 | * qsmask bit set in the root node until that time, namely the |
| 634 | * one corresponding to this CPU. | 657 | * one corresponding to this CPU, due to the fact that we have |
| 658 | * irqs disabled. | ||
| 635 | */ | 659 | */ |
| 636 | rnp_end = &rsp->node[NUM_RCU_NODES]; | 660 | for (rnp = &rsp->node[0]; rnp < &rsp->node[NUM_RCU_NODES]; rnp++) { |
| 637 | rnp_cur = rsp->level[NUM_RCU_LVLS - 1]; | 661 | spin_lock(&rnp->lock); /* irqs already disabled. */ |
| 638 | for (; rnp_cur < rnp_end; rnp_cur++) { | 662 | rcu_preempt_check_blocked_tasks(rnp); |
| 639 | spin_lock(&rnp_cur->lock); /* irqs already disabled. */ | 663 | rnp->qsmask = rnp->qsmaskinit; |
| 640 | rnp_cur->qsmask = rnp_cur->qsmaskinit; | 664 | rnp->gpnum = rsp->gpnum; |
| 641 | spin_unlock(&rnp_cur->lock); /* irqs already disabled. */ | 665 | spin_unlock(&rnp->lock); /* irqs already disabled. */ |
| 642 | } | 666 | } |
| 643 | 667 | ||
| 644 | rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */ | 668 | rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */ |
| @@ -674,6 +698,20 @@ rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp) | |||
| 674 | } | 698 | } |
| 675 | 699 | ||
| 676 | /* | 700 | /* |
| 701 | * Clean up after the prior grace period and let rcu_start_gp() start up | ||
| 702 | * the next grace period if one is needed. Note that the caller must | ||
| 703 | * hold rnp->lock, as required by rcu_start_gp(), which will release it. | ||
| 704 | */ | ||
| 705 | static void cpu_quiet_msk_finish(struct rcu_state *rsp, unsigned long flags) | ||
| 706 | __releases(rnp->lock) | ||
| 707 | { | ||
| 708 | WARN_ON_ONCE(rsp->completed == rsp->gpnum); | ||
| 709 | rsp->completed = rsp->gpnum; | ||
| 710 | rcu_process_gp_end(rsp, rsp->rda[smp_processor_id()]); | ||
| 711 | rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */ | ||
| 712 | } | ||
| 713 | |||
| 714 | /* | ||
| 677 | * Similar to cpu_quiet(), for which it is a helper function. Allows | 715 | * Similar to cpu_quiet(), for which it is a helper function. Allows |
| 678 | * a group of CPUs to be quieted at one go, though all the CPUs in the | 716 | * a group of CPUs to be quieted at one go, though all the CPUs in the |
| 679 | * group must be represented by the same leaf rcu_node structure. | 717 | * group must be represented by the same leaf rcu_node structure. |
| @@ -685,6 +723,8 @@ cpu_quiet_msk(unsigned long mask, struct rcu_state *rsp, struct rcu_node *rnp, | |||
| 685 | unsigned long flags) | 723 | unsigned long flags) |
| 686 | __releases(rnp->lock) | 724 | __releases(rnp->lock) |
| 687 | { | 725 | { |
| 726 | struct rcu_node *rnp_c; | ||
| 727 | |||
| 688 | /* Walk up the rcu_node hierarchy. */ | 728 | /* Walk up the rcu_node hierarchy. */ |
| 689 | for (;;) { | 729 | for (;;) { |
| 690 | if (!(rnp->qsmask & mask)) { | 730 | if (!(rnp->qsmask & mask)) { |
| @@ -694,7 +734,7 @@ cpu_quiet_msk(unsigned long mask, struct rcu_state *rsp, struct rcu_node *rnp, | |||
| 694 | return; | 734 | return; |
| 695 | } | 735 | } |
| 696 | rnp->qsmask &= ~mask; | 736 | rnp->qsmask &= ~mask; |
| 697 | if (rnp->qsmask != 0) { | 737 | if (rnp->qsmask != 0 || rcu_preempted_readers(rnp)) { |
| 698 | 738 | ||
| 699 | /* Other bits still set at this level, so done. */ | 739 | /* Other bits still set at this level, so done. */ |
| 700 | spin_unlock_irqrestore(&rnp->lock, flags); | 740 | spin_unlock_irqrestore(&rnp->lock, flags); |
| @@ -708,28 +748,26 @@ cpu_quiet_msk(unsigned long mask, struct rcu_state *rsp, struct rcu_node *rnp, | |||
| 708 | break; | 748 | break; |
| 709 | } | 749 | } |
| 710 | spin_unlock_irqrestore(&rnp->lock, flags); | 750 | spin_unlock_irqrestore(&rnp->lock, flags); |
| 751 | rnp_c = rnp; | ||
| 711 | rnp = rnp->parent; | 752 | rnp = rnp->parent; |
| 712 | spin_lock_irqsave(&rnp->lock, flags); | 753 | spin_lock_irqsave(&rnp->lock, flags); |
| 754 | WARN_ON_ONCE(rnp_c->qsmask); | ||
| 713 | } | 755 | } |
| 714 | 756 | ||
| 715 | /* | 757 | /* |
| 716 | * Get here if we are the last CPU to pass through a quiescent | 758 | * Get here if we are the last CPU to pass through a quiescent |
| 717 | * state for this grace period. Clean up and let rcu_start_gp() | 759 | * state for this grace period. Invoke cpu_quiet_msk_finish() |
| 718 | * start up the next grace period if one is needed. Note that | 760 | * to clean up and start the next grace period if one is needed. |
| 719 | * we still hold rnp->lock, as required by rcu_start_gp(), which | ||
| 720 | * will release it. | ||
| 721 | */ | 761 | */ |
| 722 | rsp->completed = rsp->gpnum; | 762 | cpu_quiet_msk_finish(rsp, flags); /* releases rnp->lock. */ |
| 723 | rcu_process_gp_end(rsp, rsp->rda[smp_processor_id()]); | ||
| 724 | rcu_start_gp(rsp, flags); /* releases rnp->lock. */ | ||
| 725 | } | 763 | } |
| 726 | 764 | ||
| 727 | /* | 765 | /* |
| 728 | * Record a quiescent state for the specified CPU, which must either be | 766 | * Record a quiescent state for the specified CPU, which must either be |
| 729 | * the current CPU or an offline CPU. The lastcomp argument is used to | 767 | * the current CPU. The lastcomp argument is used to make sure we are |
| 730 | * make sure we are still in the grace period of interest. We don't want | 768 | * still in the grace period of interest. We don't want to end the current |
| 731 | * to end the current grace period based on quiescent states detected in | 769 | * grace period based on quiescent states detected in an earlier grace |
| 732 | * an earlier grace period! | 770 | * period! |
| 733 | */ | 771 | */ |
| 734 | static void | 772 | static void |
| 735 | cpu_quiet(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp) | 773 | cpu_quiet(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp) |
| @@ -764,7 +802,6 @@ cpu_quiet(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp) | |||
| 764 | * This GP can't end until cpu checks in, so all of our | 802 | * This GP can't end until cpu checks in, so all of our |
| 765 | * callbacks can be processed during the next GP. | 803 | * callbacks can be processed during the next GP. |
| 766 | */ | 804 | */ |
| 767 | rdp = rsp->rda[smp_processor_id()]; | ||
| 768 | rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL]; | 805 | rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL]; |
| 769 | 806 | ||
| 770 | cpu_quiet_msk(mask, rsp, rnp, flags); /* releases rnp->lock */ | 807 | cpu_quiet_msk(mask, rsp, rnp, flags); /* releases rnp->lock */ |
| @@ -822,30 +859,28 @@ static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp) | |||
| 822 | spin_lock_irqsave(&rsp->onofflock, flags); | 859 | spin_lock_irqsave(&rsp->onofflock, flags); |
| 823 | 860 | ||
| 824 | /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */ | 861 | /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */ |
| 825 | rnp = rdp->mynode; | 862 | rnp = rdp->mynode; /* this is the outgoing CPU's rnp. */ |
| 826 | mask = rdp->grpmask; /* rnp->grplo is constant. */ | 863 | mask = rdp->grpmask; /* rnp->grplo is constant. */ |
| 827 | do { | 864 | do { |
| 828 | spin_lock(&rnp->lock); /* irqs already disabled. */ | 865 | spin_lock(&rnp->lock); /* irqs already disabled. */ |
| 829 | rnp->qsmaskinit &= ~mask; | 866 | rnp->qsmaskinit &= ~mask; |
| 830 | if (rnp->qsmaskinit != 0) { | 867 | if (rnp->qsmaskinit != 0) { |
| 831 | spin_unlock(&rnp->lock); /* irqs already disabled. */ | 868 | spin_unlock(&rnp->lock); /* irqs remain disabled. */ |
| 832 | break; | 869 | break; |
| 833 | } | 870 | } |
| 871 | rcu_preempt_offline_tasks(rsp, rnp, rdp); | ||
| 834 | mask = rnp->grpmask; | 872 | mask = rnp->grpmask; |
| 835 | spin_unlock(&rnp->lock); /* irqs already disabled. */ | 873 | spin_unlock(&rnp->lock); /* irqs remain disabled. */ |
| 836 | rnp = rnp->parent; | 874 | rnp = rnp->parent; |
| 837 | } while (rnp != NULL); | 875 | } while (rnp != NULL); |
| 838 | lastcomp = rsp->completed; | 876 | lastcomp = rsp->completed; |
| 839 | 877 | ||
| 840 | spin_unlock(&rsp->onofflock); /* irqs remain disabled. */ | 878 | spin_unlock(&rsp->onofflock); /* irqs remain disabled. */ |
| 841 | 879 | ||
| 842 | /* Being offline is a quiescent state, so go record it. */ | ||
| 843 | cpu_quiet(cpu, rsp, rdp, lastcomp); | ||
| 844 | |||
| 845 | /* | 880 | /* |
| 846 | * Move callbacks from the outgoing CPU to the running CPU. | 881 | * Move callbacks from the outgoing CPU to the running CPU. |
| 847 | * Note that the outgoing CPU is now quiscent, so it is now | 882 | * Note that the outgoing CPU is now quiscent, so it is now |
| 848 | * (uncharacteristically) safe to access it rcu_data structure. | 883 | * (uncharacteristically) safe to access its rcu_data structure. |
| 849 | * Note also that we must carefully retain the order of the | 884 | * Note also that we must carefully retain the order of the |
| 850 | * outgoing CPU's callbacks in order for rcu_barrier() to work | 885 | * outgoing CPU's callbacks in order for rcu_barrier() to work |
| 851 | * correctly. Finally, note that we start all the callbacks | 886 | * correctly. Finally, note that we start all the callbacks |
| @@ -876,8 +911,9 @@ static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp) | |||
| 876 | */ | 911 | */ |
| 877 | static void rcu_offline_cpu(int cpu) | 912 | static void rcu_offline_cpu(int cpu) |
| 878 | { | 913 | { |
| 879 | __rcu_offline_cpu(cpu, &rcu_state); | 914 | __rcu_offline_cpu(cpu, &rcu_sched_state); |
| 880 | __rcu_offline_cpu(cpu, &rcu_bh_state); | 915 | __rcu_offline_cpu(cpu, &rcu_bh_state); |
| 916 | rcu_preempt_offline_cpu(cpu); | ||
| 881 | } | 917 | } |
| 882 | 918 | ||
| 883 | #else /* #ifdef CONFIG_HOTPLUG_CPU */ | 919 | #else /* #ifdef CONFIG_HOTPLUG_CPU */ |
| @@ -963,6 +999,8 @@ static void rcu_do_batch(struct rcu_data *rdp) | |||
| 963 | */ | 999 | */ |
| 964 | void rcu_check_callbacks(int cpu, int user) | 1000 | void rcu_check_callbacks(int cpu, int user) |
| 965 | { | 1001 | { |
| 1002 | if (!rcu_pending(cpu)) | ||
| 1003 | return; /* if nothing for RCU to do. */ | ||
| 966 | if (user || | 1004 | if (user || |
| 967 | (idle_cpu(cpu) && rcu_scheduler_active && | 1005 | (idle_cpu(cpu) && rcu_scheduler_active && |
| 968 | !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) { | 1006 | !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) { |
| @@ -971,17 +1009,16 @@ void rcu_check_callbacks(int cpu, int user) | |||
| 971 | * Get here if this CPU took its interrupt from user | 1009 | * Get here if this CPU took its interrupt from user |
| 972 | * mode or from the idle loop, and if this is not a | 1010 | * mode or from the idle loop, and if this is not a |
| 973 | * nested interrupt. In this case, the CPU is in | 1011 | * nested interrupt. In this case, the CPU is in |
| 974 | * a quiescent state, so count it. | 1012 | * a quiescent state, so note it. |
| 975 | * | 1013 | * |
| 976 | * No memory barrier is required here because both | 1014 | * No memory barrier is required here because both |
| 977 | * rcu_qsctr_inc() and rcu_bh_qsctr_inc() reference | 1015 | * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local |
| 978 | * only CPU-local variables that other CPUs neither | 1016 | * variables that other CPUs neither access nor modify, |
| 979 | * access nor modify, at least not while the corresponding | 1017 | * at least not while the corresponding CPU is online. |
| 980 | * CPU is online. | ||
| 981 | */ | 1018 | */ |
| 982 | 1019 | ||
| 983 | rcu_qsctr_inc(cpu); | 1020 | rcu_sched_qs(cpu); |
| 984 | rcu_bh_qsctr_inc(cpu); | 1021 | rcu_bh_qs(cpu); |
| 985 | 1022 | ||
| 986 | } else if (!in_softirq()) { | 1023 | } else if (!in_softirq()) { |
| 987 | 1024 | ||
| @@ -989,11 +1026,12 @@ void rcu_check_callbacks(int cpu, int user) | |||
| 989 | * Get here if this CPU did not take its interrupt from | 1026 | * Get here if this CPU did not take its interrupt from |
| 990 | * softirq, in other words, if it is not interrupting | 1027 | * softirq, in other words, if it is not interrupting |
| 991 | * a rcu_bh read-side critical section. This is an _bh | 1028 | * a rcu_bh read-side critical section. This is an _bh |
| 992 | * critical section, so count it. | 1029 | * critical section, so note it. |
| 993 | */ | 1030 | */ |
| 994 | 1031 | ||
| 995 | rcu_bh_qsctr_inc(cpu); | 1032 | rcu_bh_qs(cpu); |
| 996 | } | 1033 | } |
| 1034 | rcu_preempt_check_callbacks(cpu); | ||
| 997 | raise_softirq(RCU_SOFTIRQ); | 1035 | raise_softirq(RCU_SOFTIRQ); |
| 998 | } | 1036 | } |
| 999 | 1037 | ||
| @@ -1132,6 +1170,8 @@ __rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp) | |||
| 1132 | { | 1170 | { |
| 1133 | unsigned long flags; | 1171 | unsigned long flags; |
| 1134 | 1172 | ||
| 1173 | WARN_ON_ONCE(rdp->beenonline == 0); | ||
| 1174 | |||
| 1135 | /* | 1175 | /* |
| 1136 | * If an RCU GP has gone long enough, go check for dyntick | 1176 | * If an RCU GP has gone long enough, go check for dyntick |
| 1137 | * idle CPUs and, if needed, send resched IPIs. | 1177 | * idle CPUs and, if needed, send resched IPIs. |
| @@ -1170,8 +1210,10 @@ static void rcu_process_callbacks(struct softirq_action *unused) | |||
| 1170 | */ | 1210 | */ |
| 1171 | smp_mb(); /* See above block comment. */ | 1211 | smp_mb(); /* See above block comment. */ |
| 1172 | 1212 | ||
| 1173 | __rcu_process_callbacks(&rcu_state, &__get_cpu_var(rcu_data)); | 1213 | __rcu_process_callbacks(&rcu_sched_state, |
| 1214 | &__get_cpu_var(rcu_sched_data)); | ||
| 1174 | __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data)); | 1215 | __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data)); |
| 1216 | rcu_preempt_process_callbacks(); | ||
| 1175 | 1217 | ||
| 1176 | /* | 1218 | /* |
| 1177 | * Memory references from any later RCU read-side critical sections | 1219 | * Memory references from any later RCU read-side critical sections |
| @@ -1227,13 +1269,13 @@ __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu), | |||
| 1227 | } | 1269 | } |
| 1228 | 1270 | ||
| 1229 | /* | 1271 | /* |
| 1230 | * Queue an RCU callback for invocation after a grace period. | 1272 | * Queue an RCU-sched callback for invocation after a grace period. |
| 1231 | */ | 1273 | */ |
| 1232 | void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) | 1274 | void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) |
| 1233 | { | 1275 | { |
| 1234 | __call_rcu(head, func, &rcu_state); | 1276 | __call_rcu(head, func, &rcu_sched_state); |
| 1235 | } | 1277 | } |
| 1236 | EXPORT_SYMBOL_GPL(call_rcu); | 1278 | EXPORT_SYMBOL_GPL(call_rcu_sched); |
| 1237 | 1279 | ||
| 1238 | /* | 1280 | /* |
| 1239 | * Queue an RCU for invocation after a quicker grace period. | 1281 | * Queue an RCU for invocation after a quicker grace period. |
| @@ -1305,10 +1347,11 @@ static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp) | |||
| 1305 | * by the current CPU, returning 1 if so. This function is part of the | 1347 | * by the current CPU, returning 1 if so. This function is part of the |
| 1306 | * RCU implementation; it is -not- an exported member of the RCU API. | 1348 | * RCU implementation; it is -not- an exported member of the RCU API. |
| 1307 | */ | 1349 | */ |
| 1308 | int rcu_pending(int cpu) | 1350 | static int rcu_pending(int cpu) |
| 1309 | { | 1351 | { |
| 1310 | return __rcu_pending(&rcu_state, &per_cpu(rcu_data, cpu)) || | 1352 | return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) || |
| 1311 | __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)); | 1353 | __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) || |
| 1354 | rcu_preempt_pending(cpu); | ||
| 1312 | } | 1355 | } |
| 1313 | 1356 | ||
| 1314 | /* | 1357 | /* |
| @@ -1320,27 +1363,46 @@ int rcu_pending(int cpu) | |||
| 1320 | int rcu_needs_cpu(int cpu) | 1363 | int rcu_needs_cpu(int cpu) |
| 1321 | { | 1364 | { |
| 1322 | /* RCU callbacks either ready or pending? */ | 1365 | /* RCU callbacks either ready or pending? */ |
| 1323 | return per_cpu(rcu_data, cpu).nxtlist || | 1366 | return per_cpu(rcu_sched_data, cpu).nxtlist || |
| 1324 | per_cpu(rcu_bh_data, cpu).nxtlist; | 1367 | per_cpu(rcu_bh_data, cpu).nxtlist || |
| 1368 | rcu_preempt_needs_cpu(cpu); | ||
| 1325 | } | 1369 | } |
| 1326 | 1370 | ||
| 1327 | /* | 1371 | /* |
| 1328 | * Initialize a CPU's per-CPU RCU data. We take this "scorched earth" | 1372 | * Do boot-time initialization of a CPU's per-CPU RCU data. |
| 1329 | * approach so that we don't have to worry about how long the CPU has | ||
| 1330 | * been gone, or whether it ever was online previously. We do trust the | ||
| 1331 | * ->mynode field, as it is constant for a given struct rcu_data and | ||
| 1332 | * initialized during early boot. | ||
| 1333 | * | ||
| 1334 | * Note that only one online or offline event can be happening at a given | ||
| 1335 | * time. Note also that we can accept some slop in the rsp->completed | ||
| 1336 | * access due to the fact that this CPU cannot possibly have any RCU | ||
| 1337 | * callbacks in flight yet. | ||
| 1338 | */ | 1373 | */ |
| 1339 | static void __cpuinit | 1374 | static void __init |
| 1340 | rcu_init_percpu_data(int cpu, struct rcu_state *rsp) | 1375 | rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp) |
| 1341 | { | 1376 | { |
| 1342 | unsigned long flags; | 1377 | unsigned long flags; |
| 1343 | int i; | 1378 | int i; |
| 1379 | struct rcu_data *rdp = rsp->rda[cpu]; | ||
| 1380 | struct rcu_node *rnp = rcu_get_root(rsp); | ||
| 1381 | |||
| 1382 | /* Set up local state, ensuring consistent view of global state. */ | ||
| 1383 | spin_lock_irqsave(&rnp->lock, flags); | ||
| 1384 | rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo); | ||
| 1385 | rdp->nxtlist = NULL; | ||
| 1386 | for (i = 0; i < RCU_NEXT_SIZE; i++) | ||
| 1387 | rdp->nxttail[i] = &rdp->nxtlist; | ||
| 1388 | rdp->qlen = 0; | ||
| 1389 | #ifdef CONFIG_NO_HZ | ||
| 1390 | rdp->dynticks = &per_cpu(rcu_dynticks, cpu); | ||
| 1391 | #endif /* #ifdef CONFIG_NO_HZ */ | ||
| 1392 | rdp->cpu = cpu; | ||
| 1393 | spin_unlock_irqrestore(&rnp->lock, flags); | ||
| 1394 | } | ||
| 1395 | |||
| 1396 | /* | ||
| 1397 | * Initialize a CPU's per-CPU RCU data. Note that only one online or | ||
| 1398 | * offline event can be happening at a given time. Note also that we | ||
| 1399 | * can accept some slop in the rsp->completed access due to the fact | ||
| 1400 | * that this CPU cannot possibly have any RCU callbacks in flight yet. | ||
| 1401 | */ | ||
| 1402 | static void __cpuinit | ||
| 1403 | rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptable) | ||
| 1404 | { | ||
| 1405 | unsigned long flags; | ||
| 1344 | long lastcomp; | 1406 | long lastcomp; |
| 1345 | unsigned long mask; | 1407 | unsigned long mask; |
| 1346 | struct rcu_data *rdp = rsp->rda[cpu]; | 1408 | struct rcu_data *rdp = rsp->rda[cpu]; |
| @@ -1354,17 +1416,9 @@ rcu_init_percpu_data(int cpu, struct rcu_state *rsp) | |||
| 1354 | rdp->passed_quiesc = 0; /* We could be racing with new GP, */ | 1416 | rdp->passed_quiesc = 0; /* We could be racing with new GP, */ |
| 1355 | rdp->qs_pending = 1; /* so set up to respond to current GP. */ | 1417 | rdp->qs_pending = 1; /* so set up to respond to current GP. */ |
| 1356 | rdp->beenonline = 1; /* We have now been online. */ | 1418 | rdp->beenonline = 1; /* We have now been online. */ |
| 1419 | rdp->preemptable = preemptable; | ||
| 1357 | rdp->passed_quiesc_completed = lastcomp - 1; | 1420 | rdp->passed_quiesc_completed = lastcomp - 1; |
| 1358 | rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo); | ||
| 1359 | rdp->nxtlist = NULL; | ||
| 1360 | for (i = 0; i < RCU_NEXT_SIZE; i++) | ||
| 1361 | rdp->nxttail[i] = &rdp->nxtlist; | ||
| 1362 | rdp->qlen = 0; | ||
| 1363 | rdp->blimit = blimit; | 1421 | rdp->blimit = blimit; |
| 1364 | #ifdef CONFIG_NO_HZ | ||
| 1365 | rdp->dynticks = &per_cpu(rcu_dynticks, cpu); | ||
| 1366 | #endif /* #ifdef CONFIG_NO_HZ */ | ||
| 1367 | rdp->cpu = cpu; | ||
| 1368 | spin_unlock(&rnp->lock); /* irqs remain disabled. */ | 1422 | spin_unlock(&rnp->lock); /* irqs remain disabled. */ |
| 1369 | 1423 | ||
| 1370 | /* | 1424 | /* |
| @@ -1387,34 +1441,21 @@ rcu_init_percpu_data(int cpu, struct rcu_state *rsp) | |||
| 1387 | rnp = rnp->parent; | 1441 | rnp = rnp->parent; |
| 1388 | } while (rnp != NULL && !(rnp->qsmaskinit & mask)); | 1442 | } while (rnp != NULL && !(rnp->qsmaskinit & mask)); |
| 1389 | 1443 | ||
| 1390 | spin_unlock(&rsp->onofflock); /* irqs remain disabled. */ | 1444 | spin_unlock_irqrestore(&rsp->onofflock, flags); |
| 1391 | |||
| 1392 | /* | ||
| 1393 | * A new grace period might start here. If so, we will be part of | ||
| 1394 | * it, and its gpnum will be greater than ours, so we will | ||
| 1395 | * participate. It is also possible for the gpnum to have been | ||
| 1396 | * incremented before this function was called, and the bitmasks | ||
| 1397 | * to not be filled out until now, in which case we will also | ||
| 1398 | * participate due to our gpnum being behind. | ||
| 1399 | */ | ||
| 1400 | |||
| 1401 | /* Since it is coming online, the CPU is in a quiescent state. */ | ||
| 1402 | cpu_quiet(cpu, rsp, rdp, lastcomp); | ||
| 1403 | local_irq_restore(flags); | ||
| 1404 | } | 1445 | } |
| 1405 | 1446 | ||
| 1406 | static void __cpuinit rcu_online_cpu(int cpu) | 1447 | static void __cpuinit rcu_online_cpu(int cpu) |
| 1407 | { | 1448 | { |
| 1408 | rcu_init_percpu_data(cpu, &rcu_state); | 1449 | rcu_init_percpu_data(cpu, &rcu_sched_state, 0); |
| 1409 | rcu_init_percpu_data(cpu, &rcu_bh_state); | 1450 | rcu_init_percpu_data(cpu, &rcu_bh_state, 0); |
| 1410 | open_softirq(RCU_SOFTIRQ, rcu_process_callbacks); | 1451 | rcu_preempt_init_percpu_data(cpu); |
| 1411 | } | 1452 | } |
| 1412 | 1453 | ||
| 1413 | /* | 1454 | /* |
| 1414 | * Handle CPU online/offline notifcation events. | 1455 | * Handle CPU online/offline notification events. |
| 1415 | */ | 1456 | */ |
| 1416 | static int __cpuinit rcu_cpu_notify(struct notifier_block *self, | 1457 | int __cpuinit rcu_cpu_notify(struct notifier_block *self, |
| 1417 | unsigned long action, void *hcpu) | 1458 | unsigned long action, void *hcpu) |
| 1418 | { | 1459 | { |
| 1419 | long cpu = (long)hcpu; | 1460 | long cpu = (long)hcpu; |
| 1420 | 1461 | ||
| @@ -1486,6 +1527,7 @@ static void __init rcu_init_one(struct rcu_state *rsp) | |||
| 1486 | rnp = rsp->level[i]; | 1527 | rnp = rsp->level[i]; |
| 1487 | for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) { | 1528 | for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) { |
| 1488 | spin_lock_init(&rnp->lock); | 1529 | spin_lock_init(&rnp->lock); |
| 1530 | rnp->gpnum = 0; | ||
| 1489 | rnp->qsmask = 0; | 1531 | rnp->qsmask = 0; |
| 1490 | rnp->qsmaskinit = 0; | 1532 | rnp->qsmaskinit = 0; |
| 1491 | rnp->grplo = j * cpustride; | 1533 | rnp->grplo = j * cpustride; |
| @@ -1503,16 +1545,20 @@ static void __init rcu_init_one(struct rcu_state *rsp) | |||
| 1503 | j / rsp->levelspread[i - 1]; | 1545 | j / rsp->levelspread[i - 1]; |
| 1504 | } | 1546 | } |
| 1505 | rnp->level = i; | 1547 | rnp->level = i; |
| 1548 | INIT_LIST_HEAD(&rnp->blocked_tasks[0]); | ||
| 1549 | INIT_LIST_HEAD(&rnp->blocked_tasks[1]); | ||
| 1506 | } | 1550 | } |
| 1507 | } | 1551 | } |
| 1508 | } | 1552 | } |
| 1509 | 1553 | ||
| 1510 | /* | 1554 | /* |
| 1511 | * Helper macro for __rcu_init(). To be used nowhere else! | 1555 | * Helper macro for __rcu_init() and __rcu_init_preempt(). To be used |
| 1512 | * Assigns leaf node pointers into each CPU's rcu_data structure. | 1556 | * nowhere else! Assigns leaf node pointers into each CPU's rcu_data |
| 1557 | * structure. | ||
| 1513 | */ | 1558 | */ |
| 1514 | #define RCU_DATA_PTR_INIT(rsp, rcu_data) \ | 1559 | #define RCU_INIT_FLAVOR(rsp, rcu_data) \ |
| 1515 | do { \ | 1560 | do { \ |
| 1561 | rcu_init_one(rsp); \ | ||
| 1516 | rnp = (rsp)->level[NUM_RCU_LVLS - 1]; \ | 1562 | rnp = (rsp)->level[NUM_RCU_LVLS - 1]; \ |
| 1517 | j = 0; \ | 1563 | j = 0; \ |
| 1518 | for_each_possible_cpu(i) { \ | 1564 | for_each_possible_cpu(i) { \ |
| @@ -1520,33 +1566,43 @@ do { \ | |||
| 1520 | j++; \ | 1566 | j++; \ |
| 1521 | per_cpu(rcu_data, i).mynode = &rnp[j]; \ | 1567 | per_cpu(rcu_data, i).mynode = &rnp[j]; \ |
| 1522 | (rsp)->rda[i] = &per_cpu(rcu_data, i); \ | 1568 | (rsp)->rda[i] = &per_cpu(rcu_data, i); \ |
| 1569 | rcu_boot_init_percpu_data(i, rsp); \ | ||
| 1523 | } \ | 1570 | } \ |
| 1524 | } while (0) | 1571 | } while (0) |
| 1525 | 1572 | ||
| 1526 | static struct notifier_block __cpuinitdata rcu_nb = { | 1573 | #ifdef CONFIG_TREE_PREEMPT_RCU |
| 1527 | .notifier_call = rcu_cpu_notify, | 1574 | |
| 1528 | }; | 1575 | void __init __rcu_init_preempt(void) |
| 1576 | { | ||
| 1577 | int i; /* All used by RCU_INIT_FLAVOR(). */ | ||
| 1578 | int j; | ||
| 1579 | struct rcu_node *rnp; | ||
| 1580 | |||
| 1581 | RCU_INIT_FLAVOR(&rcu_preempt_state, rcu_preempt_data); | ||
| 1582 | } | ||
| 1583 | |||
| 1584 | #else /* #ifdef CONFIG_TREE_PREEMPT_RCU */ | ||
| 1585 | |||
| 1586 | void __init __rcu_init_preempt(void) | ||
| 1587 | { | ||
| 1588 | } | ||
| 1589 | |||
| 1590 | #endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */ | ||
| 1529 | 1591 | ||
| 1530 | void __init __rcu_init(void) | 1592 | void __init __rcu_init(void) |
| 1531 | { | 1593 | { |
| 1532 | int i; /* All used by RCU_DATA_PTR_INIT(). */ | 1594 | int i; /* All used by RCU_INIT_FLAVOR(). */ |
| 1533 | int j; | 1595 | int j; |
| 1534 | struct rcu_node *rnp; | 1596 | struct rcu_node *rnp; |
| 1535 | 1597 | ||
| 1536 | printk(KERN_WARNING "Experimental hierarchical RCU implementation.\n"); | 1598 | rcu_bootup_announce(); |
| 1537 | #ifdef CONFIG_RCU_CPU_STALL_DETECTOR | 1599 | #ifdef CONFIG_RCU_CPU_STALL_DETECTOR |
| 1538 | printk(KERN_INFO "RCU-based detection of stalled CPUs is enabled.\n"); | 1600 | printk(KERN_INFO "RCU-based detection of stalled CPUs is enabled.\n"); |
| 1539 | #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ | 1601 | #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ |
| 1540 | rcu_init_one(&rcu_state); | 1602 | RCU_INIT_FLAVOR(&rcu_sched_state, rcu_sched_data); |
| 1541 | RCU_DATA_PTR_INIT(&rcu_state, rcu_data); | 1603 | RCU_INIT_FLAVOR(&rcu_bh_state, rcu_bh_data); |
| 1542 | rcu_init_one(&rcu_bh_state); | 1604 | __rcu_init_preempt(); |
| 1543 | RCU_DATA_PTR_INIT(&rcu_bh_state, rcu_bh_data); | 1605 | open_softirq(RCU_SOFTIRQ, rcu_process_callbacks); |
| 1544 | |||
| 1545 | for_each_online_cpu(i) | ||
| 1546 | rcu_cpu_notify(&rcu_nb, CPU_UP_PREPARE, (void *)(long)i); | ||
| 1547 | /* Register notifier for non-boot CPUs */ | ||
| 1548 | register_cpu_notifier(&rcu_nb); | ||
| 1549 | printk(KERN_WARNING "Experimental hierarchical RCU init done.\n"); | ||
| 1550 | } | 1606 | } |
| 1551 | 1607 | ||
| 1552 | module_param(blimit, int, 0); | 1608 | module_param(blimit, int, 0); |
diff --git a/kernel/rcutree.h b/kernel/rcutree.h index 5e872bbf07f5..8e8287a983c2 100644 --- a/kernel/rcutree.h +++ b/kernel/rcutree.h | |||
| @@ -1,10 +1,259 @@ | |||
| 1 | /* | ||
| 2 | * Read-Copy Update mechanism for mutual exclusion (tree-based version) | ||
| 3 | * Internal non-public definitions. | ||
| 4 | * | ||
| 5 | * This program is free software; you can redistribute it and/or modify | ||
| 6 | * it under the terms of the GNU General Public License as published by | ||
| 7 | * the Free Software Foundation; either version 2 of the License, or | ||
| 8 | * (at your option) any later version. | ||
| 9 | * | ||
| 10 | * This program is distributed in the hope that it will be useful, | ||
| 11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
| 12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
| 13 | * GNU General Public License for more details. | ||
| 14 | * | ||
| 15 | * You should have received a copy of the GNU General Public License | ||
| 16 | * along with this program; if not, write to the Free Software | ||
| 17 | * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | ||
| 18 | * | ||
| 19 | * Copyright IBM Corporation, 2008 | ||
| 20 | * | ||
| 21 | * Author: Ingo Molnar <mingo@elte.hu> | ||
| 22 | * Paul E. McKenney <paulmck@linux.vnet.ibm.com> | ||
| 23 | */ | ||
| 24 | |||
| 25 | #include <linux/cache.h> | ||
| 26 | #include <linux/spinlock.h> | ||
| 27 | #include <linux/threads.h> | ||
| 28 | #include <linux/cpumask.h> | ||
| 29 | #include <linux/seqlock.h> | ||
| 30 | |||
| 31 | /* | ||
| 32 | * Define shape of hierarchy based on NR_CPUS and CONFIG_RCU_FANOUT. | ||
| 33 | * In theory, it should be possible to add more levels straightforwardly. | ||
| 34 | * In practice, this has not been tested, so there is probably some | ||
| 35 | * bug somewhere. | ||
| 36 | */ | ||
| 37 | #define MAX_RCU_LVLS 3 | ||
| 38 | #define RCU_FANOUT (CONFIG_RCU_FANOUT) | ||
| 39 | #define RCU_FANOUT_SQ (RCU_FANOUT * RCU_FANOUT) | ||
| 40 | #define RCU_FANOUT_CUBE (RCU_FANOUT_SQ * RCU_FANOUT) | ||
| 41 | |||
| 42 | #if NR_CPUS <= RCU_FANOUT | ||
| 43 | # define NUM_RCU_LVLS 1 | ||
| 44 | # define NUM_RCU_LVL_0 1 | ||
| 45 | # define NUM_RCU_LVL_1 (NR_CPUS) | ||
| 46 | # define NUM_RCU_LVL_2 0 | ||
| 47 | # define NUM_RCU_LVL_3 0 | ||
| 48 | #elif NR_CPUS <= RCU_FANOUT_SQ | ||
| 49 | # define NUM_RCU_LVLS 2 | ||
| 50 | # define NUM_RCU_LVL_0 1 | ||
| 51 | # define NUM_RCU_LVL_1 (((NR_CPUS) + RCU_FANOUT - 1) / RCU_FANOUT) | ||
| 52 | # define NUM_RCU_LVL_2 (NR_CPUS) | ||
| 53 | # define NUM_RCU_LVL_3 0 | ||
| 54 | #elif NR_CPUS <= RCU_FANOUT_CUBE | ||
| 55 | # define NUM_RCU_LVLS 3 | ||
| 56 | # define NUM_RCU_LVL_0 1 | ||
| 57 | # define NUM_RCU_LVL_1 (((NR_CPUS) + RCU_FANOUT_SQ - 1) / RCU_FANOUT_SQ) | ||
| 58 | # define NUM_RCU_LVL_2 (((NR_CPUS) + (RCU_FANOUT) - 1) / (RCU_FANOUT)) | ||
| 59 | # define NUM_RCU_LVL_3 NR_CPUS | ||
| 60 | #else | ||
| 61 | # error "CONFIG_RCU_FANOUT insufficient for NR_CPUS" | ||
| 62 | #endif /* #if (NR_CPUS) <= RCU_FANOUT */ | ||
| 63 | |||
| 64 | #define RCU_SUM (NUM_RCU_LVL_0 + NUM_RCU_LVL_1 + NUM_RCU_LVL_2 + NUM_RCU_LVL_3) | ||
| 65 | #define NUM_RCU_NODES (RCU_SUM - NR_CPUS) | ||
| 66 | |||
| 67 | /* | ||
| 68 | * Dynticks per-CPU state. | ||
| 69 | */ | ||
| 70 | struct rcu_dynticks { | ||
| 71 | int dynticks_nesting; /* Track nesting level, sort of. */ | ||
| 72 | int dynticks; /* Even value for dynticks-idle, else odd. */ | ||
| 73 | int dynticks_nmi; /* Even value for either dynticks-idle or */ | ||
| 74 | /* not in nmi handler, else odd. So this */ | ||
| 75 | /* remains even for nmi from irq handler. */ | ||
| 76 | }; | ||
| 77 | |||
| 78 | /* | ||
| 79 | * Definition for node within the RCU grace-period-detection hierarchy. | ||
| 80 | */ | ||
| 81 | struct rcu_node { | ||
| 82 | spinlock_t lock; | ||
| 83 | long gpnum; /* Current grace period for this node. */ | ||
| 84 | /* This will either be equal to or one */ | ||
| 85 | /* behind the root rcu_node's gpnum. */ | ||
| 86 | unsigned long qsmask; /* CPUs or groups that need to switch in */ | ||
| 87 | /* order for current grace period to proceed.*/ | ||
| 88 | unsigned long qsmaskinit; | ||
| 89 | /* Per-GP initialization for qsmask. */ | ||
| 90 | unsigned long grpmask; /* Mask to apply to parent qsmask. */ | ||
| 91 | int grplo; /* lowest-numbered CPU or group here. */ | ||
| 92 | int grphi; /* highest-numbered CPU or group here. */ | ||
| 93 | u8 grpnum; /* CPU/group number for next level up. */ | ||
| 94 | u8 level; /* root is at level 0. */ | ||
| 95 | struct rcu_node *parent; | ||
| 96 | struct list_head blocked_tasks[2]; | ||
| 97 | /* Tasks blocked in RCU read-side critsect. */ | ||
| 98 | } ____cacheline_internodealigned_in_smp; | ||
| 99 | |||
| 100 | /* Index values for nxttail array in struct rcu_data. */ | ||
| 101 | #define RCU_DONE_TAIL 0 /* Also RCU_WAIT head. */ | ||
| 102 | #define RCU_WAIT_TAIL 1 /* Also RCU_NEXT_READY head. */ | ||
| 103 | #define RCU_NEXT_READY_TAIL 2 /* Also RCU_NEXT head. */ | ||
| 104 | #define RCU_NEXT_TAIL 3 | ||
| 105 | #define RCU_NEXT_SIZE 4 | ||
| 106 | |||
| 107 | /* Per-CPU data for read-copy update. */ | ||
| 108 | struct rcu_data { | ||
| 109 | /* 1) quiescent-state and grace-period handling : */ | ||
| 110 | long completed; /* Track rsp->completed gp number */ | ||
| 111 | /* in order to detect GP end. */ | ||
| 112 | long gpnum; /* Highest gp number that this CPU */ | ||
| 113 | /* is aware of having started. */ | ||
| 114 | long passed_quiesc_completed; | ||
| 115 | /* Value of completed at time of qs. */ | ||
| 116 | bool passed_quiesc; /* User-mode/idle loop etc. */ | ||
| 117 | bool qs_pending; /* Core waits for quiesc state. */ | ||
| 118 | bool beenonline; /* CPU online at least once. */ | ||
| 119 | bool preemptable; /* Preemptable RCU? */ | ||
| 120 | struct rcu_node *mynode; /* This CPU's leaf of hierarchy */ | ||
| 121 | unsigned long grpmask; /* Mask to apply to leaf qsmask. */ | ||
| 122 | |||
| 123 | /* 2) batch handling */ | ||
| 124 | /* | ||
| 125 | * If nxtlist is not NULL, it is partitioned as follows. | ||
| 126 | * Any of the partitions might be empty, in which case the | ||
| 127 | * pointer to that partition will be equal to the pointer for | ||
| 128 | * the following partition. When the list is empty, all of | ||
| 129 | * the nxttail elements point to nxtlist, which is NULL. | ||
| 130 | * | ||
| 131 | * [*nxttail[RCU_NEXT_READY_TAIL], NULL = *nxttail[RCU_NEXT_TAIL]): | ||
| 132 | * Entries that might have arrived after current GP ended | ||
| 133 | * [*nxttail[RCU_WAIT_TAIL], *nxttail[RCU_NEXT_READY_TAIL]): | ||
| 134 | * Entries known to have arrived before current GP ended | ||
| 135 | * [*nxttail[RCU_DONE_TAIL], *nxttail[RCU_WAIT_TAIL]): | ||
| 136 | * Entries that batch # <= ->completed - 1: waiting for current GP | ||
| 137 | * [nxtlist, *nxttail[RCU_DONE_TAIL]): | ||
| 138 | * Entries that batch # <= ->completed | ||
| 139 | * The grace period for these entries has completed, and | ||
| 140 | * the other grace-period-completed entries may be moved | ||
| 141 | * here temporarily in rcu_process_callbacks(). | ||
| 142 | */ | ||
| 143 | struct rcu_head *nxtlist; | ||
| 144 | struct rcu_head **nxttail[RCU_NEXT_SIZE]; | ||
| 145 | long qlen; /* # of queued callbacks */ | ||
| 146 | long blimit; /* Upper limit on a processed batch */ | ||
| 147 | |||
| 148 | #ifdef CONFIG_NO_HZ | ||
| 149 | /* 3) dynticks interface. */ | ||
| 150 | struct rcu_dynticks *dynticks; /* Shared per-CPU dynticks state. */ | ||
| 151 | int dynticks_snap; /* Per-GP tracking for dynticks. */ | ||
| 152 | int dynticks_nmi_snap; /* Per-GP tracking for dynticks_nmi. */ | ||
| 153 | #endif /* #ifdef CONFIG_NO_HZ */ | ||
| 154 | |||
| 155 | /* 4) reasons this CPU needed to be kicked by force_quiescent_state */ | ||
| 156 | #ifdef CONFIG_NO_HZ | ||
| 157 | unsigned long dynticks_fqs; /* Kicked due to dynticks idle. */ | ||
| 158 | #endif /* #ifdef CONFIG_NO_HZ */ | ||
| 159 | unsigned long offline_fqs; /* Kicked due to being offline. */ | ||
| 160 | unsigned long resched_ipi; /* Sent a resched IPI. */ | ||
| 161 | |||
| 162 | /* 5) __rcu_pending() statistics. */ | ||
| 163 | long n_rcu_pending; /* rcu_pending() calls since boot. */ | ||
| 164 | long n_rp_qs_pending; | ||
| 165 | long n_rp_cb_ready; | ||
| 166 | long n_rp_cpu_needs_gp; | ||
| 167 | long n_rp_gp_completed; | ||
| 168 | long n_rp_gp_started; | ||
| 169 | long n_rp_need_fqs; | ||
| 170 | long n_rp_need_nothing; | ||
| 171 | |||
| 172 | int cpu; | ||
| 173 | }; | ||
| 174 | |||
| 175 | /* Values for signaled field in struct rcu_state. */ | ||
| 176 | #define RCU_GP_INIT 0 /* Grace period being initialized. */ | ||
| 177 | #define RCU_SAVE_DYNTICK 1 /* Need to scan dyntick state. */ | ||
| 178 | #define RCU_FORCE_QS 2 /* Need to force quiescent state. */ | ||
| 179 | #ifdef CONFIG_NO_HZ | ||
| 180 | #define RCU_SIGNAL_INIT RCU_SAVE_DYNTICK | ||
| 181 | #else /* #ifdef CONFIG_NO_HZ */ | ||
| 182 | #define RCU_SIGNAL_INIT RCU_FORCE_QS | ||
| 183 | #endif /* #else #ifdef CONFIG_NO_HZ */ | ||
| 184 | |||
| 185 | #define RCU_JIFFIES_TILL_FORCE_QS 3 /* for rsp->jiffies_force_qs */ | ||
| 186 | #ifdef CONFIG_RCU_CPU_STALL_DETECTOR | ||
| 187 | #define RCU_SECONDS_TILL_STALL_CHECK (10 * HZ) /* for rsp->jiffies_stall */ | ||
| 188 | #define RCU_SECONDS_TILL_STALL_RECHECK (30 * HZ) /* for rsp->jiffies_stall */ | ||
| 189 | #define RCU_STALL_RAT_DELAY 2 /* Allow other CPUs time */ | ||
| 190 | /* to take at least one */ | ||
| 191 | /* scheduling clock irq */ | ||
| 192 | /* before ratting on them. */ | ||
| 193 | |||
| 194 | #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ | ||
| 195 | |||
| 196 | /* | ||
| 197 | * RCU global state, including node hierarchy. This hierarchy is | ||
| 198 | * represented in "heap" form in a dense array. The root (first level) | ||
| 199 | * of the hierarchy is in ->node[0] (referenced by ->level[0]), the second | ||
| 200 | * level in ->node[1] through ->node[m] (->node[1] referenced by ->level[1]), | ||
| 201 | * and the third level in ->node[m+1] and following (->node[m+1] referenced | ||
| 202 | * by ->level[2]). The number of levels is determined by the number of | ||
| 203 | * CPUs and by CONFIG_RCU_FANOUT. Small systems will have a "hierarchy" | ||
| 204 | * consisting of a single rcu_node. | ||
| 205 | */ | ||
| 206 | struct rcu_state { | ||
| 207 | struct rcu_node node[NUM_RCU_NODES]; /* Hierarchy. */ | ||
| 208 | struct rcu_node *level[NUM_RCU_LVLS]; /* Hierarchy levels. */ | ||
| 209 | u32 levelcnt[MAX_RCU_LVLS + 1]; /* # nodes in each level. */ | ||
| 210 | u8 levelspread[NUM_RCU_LVLS]; /* kids/node in each level. */ | ||
| 211 | struct rcu_data *rda[NR_CPUS]; /* array of rdp pointers. */ | ||
| 212 | |||
| 213 | /* The following fields are guarded by the root rcu_node's lock. */ | ||
| 214 | |||
| 215 | u8 signaled ____cacheline_internodealigned_in_smp; | ||
| 216 | /* Force QS state. */ | ||
| 217 | long gpnum; /* Current gp number. */ | ||
| 218 | long completed; /* # of last completed gp. */ | ||
| 219 | spinlock_t onofflock; /* exclude on/offline and */ | ||
| 220 | /* starting new GP. */ | ||
| 221 | spinlock_t fqslock; /* Only one task forcing */ | ||
| 222 | /* quiescent states. */ | ||
| 223 | unsigned long jiffies_force_qs; /* Time at which to invoke */ | ||
| 224 | /* force_quiescent_state(). */ | ||
| 225 | unsigned long n_force_qs; /* Number of calls to */ | ||
| 226 | /* force_quiescent_state(). */ | ||
| 227 | unsigned long n_force_qs_lh; /* ~Number of calls leaving */ | ||
| 228 | /* due to lock unavailable. */ | ||
| 229 | unsigned long n_force_qs_ngp; /* Number of calls leaving */ | ||
| 230 | /* due to no GP active. */ | ||
| 231 | #ifdef CONFIG_RCU_CPU_STALL_DETECTOR | ||
| 232 | unsigned long gp_start; /* Time at which GP started, */ | ||
| 233 | /* but in jiffies. */ | ||
| 234 | unsigned long jiffies_stall; /* Time at which to check */ | ||
| 235 | /* for CPU stalls. */ | ||
| 236 | #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ | ||
| 237 | #ifdef CONFIG_NO_HZ | ||
| 238 | long dynticks_completed; /* Value of completed @ snap. */ | ||
| 239 | #endif /* #ifdef CONFIG_NO_HZ */ | ||
| 240 | }; | ||
| 241 | |||
| 242 | #ifdef RCU_TREE_NONCORE | ||
| 1 | 243 | ||
| 2 | /* | 244 | /* |
| 3 | * RCU implementation internal declarations: | 245 | * RCU implementation internal declarations: |
| 4 | */ | 246 | */ |
| 5 | extern struct rcu_state rcu_state; | 247 | extern struct rcu_state rcu_sched_state; |
| 6 | DECLARE_PER_CPU(struct rcu_data, rcu_data); | 248 | DECLARE_PER_CPU(struct rcu_data, rcu_sched_data); |
| 7 | 249 | ||
| 8 | extern struct rcu_state rcu_bh_state; | 250 | extern struct rcu_state rcu_bh_state; |
| 9 | DECLARE_PER_CPU(struct rcu_data, rcu_bh_data); | 251 | DECLARE_PER_CPU(struct rcu_data, rcu_bh_data); |
| 10 | 252 | ||
| 253 | #ifdef CONFIG_TREE_PREEMPT_RCU | ||
| 254 | extern struct rcu_state rcu_preempt_state; | ||
| 255 | DECLARE_PER_CPU(struct rcu_data, rcu_preempt_data); | ||
| 256 | #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ | ||
| 257 | |||
| 258 | #endif /* #ifdef RCU_TREE_NONCORE */ | ||
| 259 | |||
diff --git a/kernel/rcutree_plugin.h b/kernel/rcutree_plugin.h new file mode 100644 index 000000000000..1cee04f627eb --- /dev/null +++ b/kernel/rcutree_plugin.h | |||
| @@ -0,0 +1,566 @@ | |||
| 1 | /* | ||
| 2 | * Read-Copy Update mechanism for mutual exclusion (tree-based version) | ||
| 3 | * Internal non-public definitions that provide either classic | ||
| 4 | * or preemptable semantics. | ||
| 5 | * | ||
| 6 | * This program is free software; you can redistribute it and/or modify | ||
| 7 | * it under the terms of the GNU General Public License as published by | ||
| 8 | * the Free Software Foundation; either version 2 of the License, or | ||
| 9 | * (at your option) any later version. | ||
| 10 | * | ||
| 11 | * This program is distributed in the hope that it will be useful, | ||
| 12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
| 13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
| 14 | * GNU General Public License for more details. | ||
| 15 | * | ||
| 16 | * You should have received a copy of the GNU General Public License | ||
| 17 | * along with this program; if not, write to the Free Software | ||
| 18 | * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | ||
| 19 | * | ||
| 20 | * Copyright Red Hat, 2009 | ||
| 21 | * Copyright IBM Corporation, 2009 | ||
| 22 | * | ||
| 23 | * Author: Ingo Molnar <mingo@elte.hu> | ||
| 24 | * Paul E. McKenney <paulmck@linux.vnet.ibm.com> | ||
| 25 | */ | ||
| 26 | |||
| 27 | |||
| 28 | #ifdef CONFIG_TREE_PREEMPT_RCU | ||
| 29 | |||
| 30 | struct rcu_state rcu_preempt_state = RCU_STATE_INITIALIZER(rcu_preempt_state); | ||
| 31 | DEFINE_PER_CPU(struct rcu_data, rcu_preempt_data); | ||
| 32 | |||
| 33 | /* | ||
| 34 | * Tell them what RCU they are running. | ||
| 35 | */ | ||
| 36 | static inline void rcu_bootup_announce(void) | ||
| 37 | { | ||
| 38 | printk(KERN_INFO | ||
| 39 | "Experimental preemptable hierarchical RCU implementation.\n"); | ||
| 40 | } | ||
| 41 | |||
| 42 | /* | ||
| 43 | * Return the number of RCU-preempt batches processed thus far | ||
| 44 | * for debug and statistics. | ||
| 45 | */ | ||
| 46 | long rcu_batches_completed_preempt(void) | ||
| 47 | { | ||
| 48 | return rcu_preempt_state.completed; | ||
| 49 | } | ||
| 50 | EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt); | ||
| 51 | |||
| 52 | /* | ||
| 53 | * Return the number of RCU batches processed thus far for debug & stats. | ||
| 54 | */ | ||
| 55 | long rcu_batches_completed(void) | ||
| 56 | { | ||
| 57 | return rcu_batches_completed_preempt(); | ||
| 58 | } | ||
| 59 | EXPORT_SYMBOL_GPL(rcu_batches_completed); | ||
| 60 | |||
| 61 | /* | ||
| 62 | * Record a preemptable-RCU quiescent state for the specified CPU. Note | ||
| 63 | * that this just means that the task currently running on the CPU is | ||
| 64 | * not in a quiescent state. There might be any number of tasks blocked | ||
| 65 | * while in an RCU read-side critical section. | ||
| 66 | */ | ||
| 67 | static void rcu_preempt_qs(int cpu) | ||
| 68 | { | ||
| 69 | struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu); | ||
| 70 | rdp->passed_quiesc_completed = rdp->completed; | ||
| 71 | barrier(); | ||
| 72 | rdp->passed_quiesc = 1; | ||
| 73 | } | ||
| 74 | |||
| 75 | /* | ||
| 76 | * We have entered the scheduler, and the current task might soon be | ||
| 77 | * context-switched away from. If this task is in an RCU read-side | ||
| 78 | * critical section, we will no longer be able to rely on the CPU to | ||
| 79 | * record that fact, so we enqueue the task on the appropriate entry | ||
| 80 | * of the blocked_tasks[] array. The task will dequeue itself when | ||
| 81 | * it exits the outermost enclosing RCU read-side critical section. | ||
| 82 | * Therefore, the current grace period cannot be permitted to complete | ||
| 83 | * until the blocked_tasks[] entry indexed by the low-order bit of | ||
| 84 | * rnp->gpnum empties. | ||
| 85 | * | ||
| 86 | * Caller must disable preemption. | ||
| 87 | */ | ||
| 88 | static void rcu_preempt_note_context_switch(int cpu) | ||
| 89 | { | ||
| 90 | struct task_struct *t = current; | ||
| 91 | unsigned long flags; | ||
| 92 | int phase; | ||
| 93 | struct rcu_data *rdp; | ||
| 94 | struct rcu_node *rnp; | ||
| 95 | |||
| 96 | if (t->rcu_read_lock_nesting && | ||
| 97 | (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) { | ||
| 98 | |||
| 99 | /* Possibly blocking in an RCU read-side critical section. */ | ||
| 100 | rdp = rcu_preempt_state.rda[cpu]; | ||
| 101 | rnp = rdp->mynode; | ||
| 102 | spin_lock_irqsave(&rnp->lock, flags); | ||
| 103 | t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED; | ||
| 104 | t->rcu_blocked_node = rnp; | ||
| 105 | |||
| 106 | /* | ||
| 107 | * If this CPU has already checked in, then this task | ||
| 108 | * will hold up the next grace period rather than the | ||
| 109 | * current grace period. Queue the task accordingly. | ||
| 110 | * If the task is queued for the current grace period | ||
| 111 | * (i.e., this CPU has not yet passed through a quiescent | ||
| 112 | * state for the current grace period), then as long | ||
| 113 | * as that task remains queued, the current grace period | ||
| 114 | * cannot end. | ||
| 115 | * | ||
| 116 | * But first, note that the current CPU must still be | ||
| 117 | * on line! | ||
| 118 | */ | ||
| 119 | WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0); | ||
| 120 | WARN_ON_ONCE(!list_empty(&t->rcu_node_entry)); | ||
| 121 | phase = (rnp->gpnum + !(rnp->qsmask & rdp->grpmask)) & 0x1; | ||
| 122 | list_add(&t->rcu_node_entry, &rnp->blocked_tasks[phase]); | ||
| 123 | spin_unlock_irqrestore(&rnp->lock, flags); | ||
| 124 | } | ||
| 125 | |||
| 126 | /* | ||
| 127 | * Either we were not in an RCU read-side critical section to | ||
| 128 | * begin with, or we have now recorded that critical section | ||
| 129 | * globally. Either way, we can now note a quiescent state | ||
| 130 | * for this CPU. Again, if we were in an RCU read-side critical | ||
| 131 | * section, and if that critical section was blocking the current | ||
| 132 | * grace period, then the fact that the task has been enqueued | ||
| 133 | * means that we continue to block the current grace period. | ||
| 134 | */ | ||
| 135 | rcu_preempt_qs(cpu); | ||
| 136 | local_irq_save(flags); | ||
| 137 | t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS; | ||
| 138 | local_irq_restore(flags); | ||
| 139 | } | ||
| 140 | |||
| 141 | /* | ||
| 142 | * Tree-preemptable RCU implementation for rcu_read_lock(). | ||
| 143 | * Just increment ->rcu_read_lock_nesting, shared state will be updated | ||
| 144 | * if we block. | ||
| 145 | */ | ||
| 146 | void __rcu_read_lock(void) | ||
| 147 | { | ||
| 148 | ACCESS_ONCE(current->rcu_read_lock_nesting)++; | ||
| 149 | barrier(); /* needed if we ever invoke rcu_read_lock in rcutree.c */ | ||
| 150 | } | ||
| 151 | EXPORT_SYMBOL_GPL(__rcu_read_lock); | ||
| 152 | |||
| 153 | static void rcu_read_unlock_special(struct task_struct *t) | ||
| 154 | { | ||
| 155 | int empty; | ||
| 156 | unsigned long flags; | ||
| 157 | unsigned long mask; | ||
| 158 | struct rcu_node *rnp; | ||
| 159 | int special; | ||
| 160 | |||
| 161 | /* NMI handlers cannot block and cannot safely manipulate state. */ | ||
| 162 | if (in_nmi()) | ||
| 163 | return; | ||
| 164 | |||
| 165 | local_irq_save(flags); | ||
| 166 | |||
| 167 | /* | ||
| 168 | * If RCU core is waiting for this CPU to exit critical section, | ||
| 169 | * let it know that we have done so. | ||
| 170 | */ | ||
| 171 | special = t->rcu_read_unlock_special; | ||
| 172 | if (special & RCU_READ_UNLOCK_NEED_QS) { | ||
| 173 | t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS; | ||
| 174 | rcu_preempt_qs(smp_processor_id()); | ||
| 175 | } | ||
| 176 | |||
| 177 | /* Hardware IRQ handlers cannot block. */ | ||
| 178 | if (in_irq()) { | ||
| 179 | local_irq_restore(flags); | ||
| 180 | return; | ||
| 181 | } | ||
| 182 | |||
| 183 | /* Clean up if blocked during RCU read-side critical section. */ | ||
| 184 | if (special & RCU_READ_UNLOCK_BLOCKED) { | ||
| 185 | t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED; | ||
| 186 | |||
| 187 | /* | ||
| 188 | * Remove this task from the list it blocked on. The | ||
| 189 | * task can migrate while we acquire the lock, but at | ||
| 190 | * most one time. So at most two passes through loop. | ||
| 191 | */ | ||
| 192 | for (;;) { | ||
| 193 | rnp = t->rcu_blocked_node; | ||
| 194 | spin_lock(&rnp->lock); /* irqs already disabled. */ | ||
| 195 | if (rnp == t->rcu_blocked_node) | ||
| 196 | break; | ||
| 197 | spin_unlock(&rnp->lock); /* irqs remain disabled. */ | ||
| 198 | } | ||
| 199 | empty = list_empty(&rnp->blocked_tasks[rnp->gpnum & 0x1]); | ||
| 200 | list_del_init(&t->rcu_node_entry); | ||
| 201 | t->rcu_blocked_node = NULL; | ||
| 202 | |||
| 203 | /* | ||
| 204 | * If this was the last task on the current list, and if | ||
| 205 | * we aren't waiting on any CPUs, report the quiescent state. | ||
| 206 | * Note that both cpu_quiet_msk_finish() and cpu_quiet_msk() | ||
| 207 | * drop rnp->lock and restore irq. | ||
| 208 | */ | ||
| 209 | if (!empty && rnp->qsmask == 0 && | ||
| 210 | list_empty(&rnp->blocked_tasks[rnp->gpnum & 0x1])) { | ||
| 211 | struct rcu_node *rnp_p; | ||
| 212 | |||
| 213 | if (rnp->parent == NULL) { | ||
| 214 | /* Only one rcu_node in the tree. */ | ||
| 215 | cpu_quiet_msk_finish(&rcu_preempt_state, flags); | ||
| 216 | return; | ||
| 217 | } | ||
| 218 | /* Report up the rest of the hierarchy. */ | ||
| 219 | mask = rnp->grpmask; | ||
| 220 | spin_unlock_irqrestore(&rnp->lock, flags); | ||
| 221 | rnp_p = rnp->parent; | ||
| 222 | spin_lock_irqsave(&rnp_p->lock, flags); | ||
| 223 | WARN_ON_ONCE(rnp->qsmask); | ||
| 224 | cpu_quiet_msk(mask, &rcu_preempt_state, rnp_p, flags); | ||
| 225 | return; | ||
| 226 | } | ||
| 227 | spin_unlock(&rnp->lock); | ||
| 228 | } | ||
| 229 | local_irq_restore(flags); | ||
| 230 | } | ||
| 231 | |||
| 232 | /* | ||
| 233 | * Tree-preemptable RCU implementation for rcu_read_unlock(). | ||
| 234 | * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost | ||
| 235 | * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then | ||
| 236 | * invoke rcu_read_unlock_special() to clean up after a context switch | ||
| 237 | * in an RCU read-side critical section and other special cases. | ||
| 238 | */ | ||
| 239 | void __rcu_read_unlock(void) | ||
| 240 | { | ||
| 241 | struct task_struct *t = current; | ||
| 242 | |||
| 243 | barrier(); /* needed if we ever invoke rcu_read_unlock in rcutree.c */ | ||
| 244 | if (--ACCESS_ONCE(t->rcu_read_lock_nesting) == 0 && | ||
| 245 | unlikely(ACCESS_ONCE(t->rcu_read_unlock_special))) | ||
| 246 | rcu_read_unlock_special(t); | ||
| 247 | } | ||
| 248 | EXPORT_SYMBOL_GPL(__rcu_read_unlock); | ||
| 249 | |||
| 250 | #ifdef CONFIG_RCU_CPU_STALL_DETECTOR | ||
| 251 | |||
| 252 | /* | ||
| 253 | * Scan the current list of tasks blocked within RCU read-side critical | ||
| 254 | * sections, printing out the tid of each. | ||
| 255 | */ | ||
| 256 | static void rcu_print_task_stall(struct rcu_node *rnp) | ||
| 257 | { | ||
| 258 | unsigned long flags; | ||
| 259 | struct list_head *lp; | ||
| 260 | int phase = rnp->gpnum & 0x1; | ||
| 261 | struct task_struct *t; | ||
| 262 | |||
| 263 | if (!list_empty(&rnp->blocked_tasks[phase])) { | ||
| 264 | spin_lock_irqsave(&rnp->lock, flags); | ||
| 265 | phase = rnp->gpnum & 0x1; /* re-read under lock. */ | ||
| 266 | lp = &rnp->blocked_tasks[phase]; | ||
| 267 | list_for_each_entry(t, lp, rcu_node_entry) | ||
| 268 | printk(" P%d", t->pid); | ||
| 269 | spin_unlock_irqrestore(&rnp->lock, flags); | ||
| 270 | } | ||
| 271 | } | ||
| 272 | |||
| 273 | #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ | ||
| 274 | |||
| 275 | /* | ||
| 276 | * Check that the list of blocked tasks for the newly completed grace | ||
| 277 | * period is in fact empty. It is a serious bug to complete a grace | ||
| 278 | * period that still has RCU readers blocked! This function must be | ||
| 279 | * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock | ||
| 280 | * must be held by the caller. | ||
| 281 | */ | ||
| 282 | static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) | ||
| 283 | { | ||
| 284 | WARN_ON_ONCE(!list_empty(&rnp->blocked_tasks[rnp->gpnum & 0x1])); | ||
| 285 | WARN_ON_ONCE(rnp->qsmask); | ||
| 286 | } | ||
| 287 | |||
| 288 | /* | ||
| 289 | * Check for preempted RCU readers for the specified rcu_node structure. | ||
| 290 | * If the caller needs a reliable answer, it must hold the rcu_node's | ||
| 291 | * >lock. | ||
| 292 | */ | ||
| 293 | static int rcu_preempted_readers(struct rcu_node *rnp) | ||
| 294 | { | ||
| 295 | return !list_empty(&rnp->blocked_tasks[rnp->gpnum & 0x1]); | ||
| 296 | } | ||
| 297 | |||
| 298 | #ifdef CONFIG_HOTPLUG_CPU | ||
| 299 | |||
| 300 | /* | ||
| 301 | * Handle tasklist migration for case in which all CPUs covered by the | ||
| 302 | * specified rcu_node have gone offline. Move them up to the root | ||
| 303 | * rcu_node. The reason for not just moving them to the immediate | ||
| 304 | * parent is to remove the need for rcu_read_unlock_special() to | ||
| 305 | * make more than two attempts to acquire the target rcu_node's lock. | ||
| 306 | * | ||
| 307 | * The caller must hold rnp->lock with irqs disabled. | ||
| 308 | */ | ||
| 309 | static void rcu_preempt_offline_tasks(struct rcu_state *rsp, | ||
| 310 | struct rcu_node *rnp, | ||
| 311 | struct rcu_data *rdp) | ||
| 312 | { | ||
| 313 | int i; | ||
| 314 | struct list_head *lp; | ||
| 315 | struct list_head *lp_root; | ||
| 316 | struct rcu_node *rnp_root = rcu_get_root(rsp); | ||
| 317 | struct task_struct *tp; | ||
| 318 | |||
| 319 | if (rnp == rnp_root) { | ||
| 320 | WARN_ONCE(1, "Last CPU thought to be offlined?"); | ||
| 321 | return; /* Shouldn't happen: at least one CPU online. */ | ||
| 322 | } | ||
| 323 | WARN_ON_ONCE(rnp != rdp->mynode && | ||
| 324 | (!list_empty(&rnp->blocked_tasks[0]) || | ||
| 325 | !list_empty(&rnp->blocked_tasks[1]))); | ||
| 326 | |||
| 327 | /* | ||
| 328 | * Move tasks up to root rcu_node. Rely on the fact that the | ||
| 329 | * root rcu_node can be at most one ahead of the rest of the | ||
| 330 | * rcu_nodes in terms of gp_num value. This fact allows us to | ||
| 331 | * move the blocked_tasks[] array directly, element by element. | ||
| 332 | */ | ||
| 333 | for (i = 0; i < 2; i++) { | ||
| 334 | lp = &rnp->blocked_tasks[i]; | ||
| 335 | lp_root = &rnp_root->blocked_tasks[i]; | ||
| 336 | while (!list_empty(lp)) { | ||
| 337 | tp = list_entry(lp->next, typeof(*tp), rcu_node_entry); | ||
| 338 | spin_lock(&rnp_root->lock); /* irqs already disabled */ | ||
| 339 | list_del(&tp->rcu_node_entry); | ||
| 340 | tp->rcu_blocked_node = rnp_root; | ||
| 341 | list_add(&tp->rcu_node_entry, lp_root); | ||
| 342 | spin_unlock(&rnp_root->lock); /* irqs remain disabled */ | ||
| 343 | } | ||
| 344 | } | ||
| 345 | } | ||
| 346 | |||
| 347 | /* | ||
| 348 | * Do CPU-offline processing for preemptable RCU. | ||
| 349 | */ | ||
| 350 | static void rcu_preempt_offline_cpu(int cpu) | ||
| 351 | { | ||
| 352 | __rcu_offline_cpu(cpu, &rcu_preempt_state); | ||
| 353 | } | ||
| 354 | |||
| 355 | #endif /* #ifdef CONFIG_HOTPLUG_CPU */ | ||
| 356 | |||
| 357 | /* | ||
| 358 | * Check for a quiescent state from the current CPU. When a task blocks, | ||
| 359 | * the task is recorded in the corresponding CPU's rcu_node structure, | ||
| 360 | * which is checked elsewhere. | ||
| 361 | * | ||
| 362 | * Caller must disable hard irqs. | ||
| 363 | */ | ||
| 364 | static void rcu_preempt_check_callbacks(int cpu) | ||
| 365 | { | ||
| 366 | struct task_struct *t = current; | ||
| 367 | |||
| 368 | if (t->rcu_read_lock_nesting == 0) { | ||
| 369 | t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS; | ||
| 370 | rcu_preempt_qs(cpu); | ||
| 371 | return; | ||
| 372 | } | ||
| 373 | if (per_cpu(rcu_preempt_data, cpu).qs_pending) | ||
| 374 | t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS; | ||
| 375 | } | ||
| 376 | |||
| 377 | /* | ||
| 378 | * Process callbacks for preemptable RCU. | ||
| 379 | */ | ||
| 380 | static void rcu_preempt_process_callbacks(void) | ||
| 381 | { | ||
| 382 | __rcu_process_callbacks(&rcu_preempt_state, | ||
| 383 | &__get_cpu_var(rcu_preempt_data)); | ||
| 384 | } | ||
| 385 | |||
| 386 | /* | ||
| 387 | * Queue a preemptable-RCU callback for invocation after a grace period. | ||
| 388 | */ | ||
| 389 | void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) | ||
| 390 | { | ||
| 391 | __call_rcu(head, func, &rcu_preempt_state); | ||
| 392 | } | ||
| 393 | EXPORT_SYMBOL_GPL(call_rcu); | ||
| 394 | |||
| 395 | /* | ||
| 396 | * Check to see if there is any immediate preemptable-RCU-related work | ||
| 397 | * to be done. | ||
| 398 | */ | ||
| 399 | static int rcu_preempt_pending(int cpu) | ||
| 400 | { | ||
| 401 | return __rcu_pending(&rcu_preempt_state, | ||
| 402 | &per_cpu(rcu_preempt_data, cpu)); | ||
| 403 | } | ||
| 404 | |||
| 405 | /* | ||
| 406 | * Does preemptable RCU need the CPU to stay out of dynticks mode? | ||
| 407 | */ | ||
| 408 | static int rcu_preempt_needs_cpu(int cpu) | ||
| 409 | { | ||
| 410 | return !!per_cpu(rcu_preempt_data, cpu).nxtlist; | ||
| 411 | } | ||
| 412 | |||
| 413 | /* | ||
| 414 | * Initialize preemptable RCU's per-CPU data. | ||
| 415 | */ | ||
| 416 | static void __cpuinit rcu_preempt_init_percpu_data(int cpu) | ||
| 417 | { | ||
| 418 | rcu_init_percpu_data(cpu, &rcu_preempt_state, 1); | ||
| 419 | } | ||
| 420 | |||
| 421 | /* | ||
| 422 | * Check for a task exiting while in a preemptable-RCU read-side | ||
| 423 | * critical section, clean up if so. No need to issue warnings, | ||
| 424 | * as debug_check_no_locks_held() already does this if lockdep | ||
| 425 | * is enabled. | ||
| 426 | */ | ||
| 427 | void exit_rcu(void) | ||
| 428 | { | ||
| 429 | struct task_struct *t = current; | ||
| 430 | |||
| 431 | if (t->rcu_read_lock_nesting == 0) | ||
| 432 | return; | ||
| 433 | t->rcu_read_lock_nesting = 1; | ||
| 434 | rcu_read_unlock(); | ||
| 435 | } | ||
| 436 | |||
| 437 | #else /* #ifdef CONFIG_TREE_PREEMPT_RCU */ | ||
| 438 | |||
| 439 | /* | ||
| 440 | * Tell them what RCU they are running. | ||
| 441 | */ | ||
| 442 | static inline void rcu_bootup_announce(void) | ||
| 443 | { | ||
| 444 | printk(KERN_INFO "Hierarchical RCU implementation.\n"); | ||
| 445 | } | ||
| 446 | |||
| 447 | /* | ||
| 448 | * Return the number of RCU batches processed thus far for debug & stats. | ||
| 449 | */ | ||
| 450 | long rcu_batches_completed(void) | ||
| 451 | { | ||
| 452 | return rcu_batches_completed_sched(); | ||
| 453 | } | ||
| 454 | EXPORT_SYMBOL_GPL(rcu_batches_completed); | ||
| 455 | |||
| 456 | /* | ||
| 457 | * Because preemptable RCU does not exist, we never have to check for | ||
| 458 | * CPUs being in quiescent states. | ||
| 459 | */ | ||
| 460 | static void rcu_preempt_note_context_switch(int cpu) | ||
| 461 | { | ||
| 462 | } | ||
| 463 | |||
| 464 | #ifdef CONFIG_RCU_CPU_STALL_DETECTOR | ||
| 465 | |||
| 466 | /* | ||
| 467 | * Because preemptable RCU does not exist, we never have to check for | ||
| 468 | * tasks blocked within RCU read-side critical sections. | ||
| 469 | */ | ||
| 470 | static void rcu_print_task_stall(struct rcu_node *rnp) | ||
| 471 | { | ||
| 472 | } | ||
| 473 | |||
| 474 | #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ | ||
| 475 | |||
| 476 | /* | ||
| 477 | * Because there is no preemptable RCU, there can be no readers blocked, | ||
| 478 | * so there is no need to check for blocked tasks. So check only for | ||
| 479 | * bogus qsmask values. | ||
| 480 | */ | ||
| 481 | static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) | ||
| 482 | { | ||
| 483 | WARN_ON_ONCE(rnp->qsmask); | ||
| 484 | } | ||
| 485 | |||
| 486 | /* | ||
| 487 | * Because preemptable RCU does not exist, there are never any preempted | ||
| 488 | * RCU readers. | ||
| 489 | */ | ||
| 490 | static int rcu_preempted_readers(struct rcu_node *rnp) | ||
| 491 | { | ||
| 492 | return 0; | ||
| 493 | } | ||
| 494 | |||
| 495 | #ifdef CONFIG_HOTPLUG_CPU | ||
| 496 | |||
| 497 | /* | ||
| 498 | * Because preemptable RCU does not exist, it never needs to migrate | ||
| 499 | * tasks that were blocked within RCU read-side critical sections. | ||
| 500 | */ | ||
| 501 | static void rcu_preempt_offline_tasks(struct rcu_state *rsp, | ||
| 502 | struct rcu_node *rnp, | ||
| 503 | struct rcu_data *rdp) | ||
| 504 | { | ||
| 505 | } | ||
| 506 | |||
| 507 | /* | ||
| 508 | * Because preemptable RCU does not exist, it never needs CPU-offline | ||
| 509 | * processing. | ||
| 510 | */ | ||
| 511 | static void rcu_preempt_offline_cpu(int cpu) | ||
| 512 | { | ||
| 513 | } | ||
| 514 | |||
| 515 | #endif /* #ifdef CONFIG_HOTPLUG_CPU */ | ||
| 516 | |||
| 517 | /* | ||
| 518 | * Because preemptable RCU does not exist, it never has any callbacks | ||
| 519 | * to check. | ||
| 520 | */ | ||
| 521 | void rcu_preempt_check_callbacks(int cpu) | ||
| 522 | { | ||
| 523 | } | ||
| 524 | |||
| 525 | /* | ||
| 526 | * Because preemptable RCU does not exist, it never has any callbacks | ||
| 527 | * to process. | ||
| 528 | */ | ||
| 529 | void rcu_preempt_process_callbacks(void) | ||
| 530 | { | ||
| 531 | } | ||
| 532 | |||
| 533 | /* | ||
| 534 | * In classic RCU, call_rcu() is just call_rcu_sched(). | ||
| 535 | */ | ||
| 536 | void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) | ||
| 537 | { | ||
| 538 | call_rcu_sched(head, func); | ||
| 539 | } | ||
| 540 | EXPORT_SYMBOL_GPL(call_rcu); | ||
| 541 | |||
| 542 | /* | ||
| 543 | * Because preemptable RCU does not exist, it never has any work to do. | ||
| 544 | */ | ||
| 545 | static int rcu_preempt_pending(int cpu) | ||
| 546 | { | ||
| 547 | return 0; | ||
| 548 | } | ||
| 549 | |||
| 550 | /* | ||
| 551 | * Because preemptable RCU does not exist, it never needs any CPU. | ||
| 552 | */ | ||
| 553 | static int rcu_preempt_needs_cpu(int cpu) | ||
| 554 | { | ||
| 555 | return 0; | ||
| 556 | } | ||
| 557 | |||
| 558 | /* | ||
| 559 | * Because preemptable RCU does not exist, there is no per-CPU | ||
| 560 | * data to initialize. | ||
| 561 | */ | ||
| 562 | static void __cpuinit rcu_preempt_init_percpu_data(int cpu) | ||
| 563 | { | ||
| 564 | } | ||
| 565 | |||
| 566 | #endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */ | ||
diff --git a/kernel/rcutree_trace.c b/kernel/rcutree_trace.c index fe1dcdbf1ca3..c89f5e9fd173 100644 --- a/kernel/rcutree_trace.c +++ b/kernel/rcutree_trace.c | |||
| @@ -20,7 +20,7 @@ | |||
| 20 | * Papers: http://www.rdrop.com/users/paulmck/RCU | 20 | * Papers: http://www.rdrop.com/users/paulmck/RCU |
| 21 | * | 21 | * |
| 22 | * For detailed explanation of Read-Copy Update mechanism see - | 22 | * For detailed explanation of Read-Copy Update mechanism see - |
| 23 | * Documentation/RCU | 23 | * Documentation/RCU |
| 24 | * | 24 | * |
| 25 | */ | 25 | */ |
| 26 | #include <linux/types.h> | 26 | #include <linux/types.h> |
| @@ -43,6 +43,7 @@ | |||
| 43 | #include <linux/debugfs.h> | 43 | #include <linux/debugfs.h> |
| 44 | #include <linux/seq_file.h> | 44 | #include <linux/seq_file.h> |
| 45 | 45 | ||
| 46 | #define RCU_TREE_NONCORE | ||
| 46 | #include "rcutree.h" | 47 | #include "rcutree.h" |
| 47 | 48 | ||
| 48 | static void print_one_rcu_data(struct seq_file *m, struct rcu_data *rdp) | 49 | static void print_one_rcu_data(struct seq_file *m, struct rcu_data *rdp) |
| @@ -76,8 +77,12 @@ static void print_one_rcu_data(struct seq_file *m, struct rcu_data *rdp) | |||
| 76 | 77 | ||
| 77 | static int show_rcudata(struct seq_file *m, void *unused) | 78 | static int show_rcudata(struct seq_file *m, void *unused) |
| 78 | { | 79 | { |
| 79 | seq_puts(m, "rcu:\n"); | 80 | #ifdef CONFIG_TREE_PREEMPT_RCU |
| 80 | PRINT_RCU_DATA(rcu_data, print_one_rcu_data, m); | 81 | seq_puts(m, "rcu_preempt:\n"); |
| 82 | PRINT_RCU_DATA(rcu_preempt_data, print_one_rcu_data, m); | ||
| 83 | #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ | ||
| 84 | seq_puts(m, "rcu_sched:\n"); | ||
| 85 | PRINT_RCU_DATA(rcu_sched_data, print_one_rcu_data, m); | ||
| 81 | seq_puts(m, "rcu_bh:\n"); | 86 | seq_puts(m, "rcu_bh:\n"); |
| 82 | PRINT_RCU_DATA(rcu_bh_data, print_one_rcu_data, m); | 87 | PRINT_RCU_DATA(rcu_bh_data, print_one_rcu_data, m); |
| 83 | return 0; | 88 | return 0; |
| @@ -102,7 +107,7 @@ static void print_one_rcu_data_csv(struct seq_file *m, struct rcu_data *rdp) | |||
| 102 | return; | 107 | return; |
| 103 | seq_printf(m, "%d,%s,%ld,%ld,%d,%ld,%d", | 108 | seq_printf(m, "%d,%s,%ld,%ld,%d,%ld,%d", |
| 104 | rdp->cpu, | 109 | rdp->cpu, |
| 105 | cpu_is_offline(rdp->cpu) ? "\"Y\"" : "\"N\"", | 110 | cpu_is_offline(rdp->cpu) ? "\"N\"" : "\"Y\"", |
| 106 | rdp->completed, rdp->gpnum, | 111 | rdp->completed, rdp->gpnum, |
| 107 | rdp->passed_quiesc, rdp->passed_quiesc_completed, | 112 | rdp->passed_quiesc, rdp->passed_quiesc_completed, |
| 108 | rdp->qs_pending); | 113 | rdp->qs_pending); |
| @@ -124,8 +129,12 @@ static int show_rcudata_csv(struct seq_file *m, void *unused) | |||
| 124 | seq_puts(m, "\"dt\",\"dt nesting\",\"dn\",\"df\","); | 129 | seq_puts(m, "\"dt\",\"dt nesting\",\"dn\",\"df\","); |
| 125 | #endif /* #ifdef CONFIG_NO_HZ */ | 130 | #endif /* #ifdef CONFIG_NO_HZ */ |
| 126 | seq_puts(m, "\"of\",\"ri\",\"ql\",\"b\"\n"); | 131 | seq_puts(m, "\"of\",\"ri\",\"ql\",\"b\"\n"); |
| 127 | seq_puts(m, "\"rcu:\"\n"); | 132 | #ifdef CONFIG_TREE_PREEMPT_RCU |
| 128 | PRINT_RCU_DATA(rcu_data, print_one_rcu_data_csv, m); | 133 | seq_puts(m, "\"rcu_preempt:\"\n"); |
| 134 | PRINT_RCU_DATA(rcu_preempt_data, print_one_rcu_data_csv, m); | ||
| 135 | #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ | ||
| 136 | seq_puts(m, "\"rcu_sched:\"\n"); | ||
| 137 | PRINT_RCU_DATA(rcu_sched_data, print_one_rcu_data_csv, m); | ||
| 129 | seq_puts(m, "\"rcu_bh:\"\n"); | 138 | seq_puts(m, "\"rcu_bh:\"\n"); |
| 130 | PRINT_RCU_DATA(rcu_bh_data, print_one_rcu_data_csv, m); | 139 | PRINT_RCU_DATA(rcu_bh_data, print_one_rcu_data_csv, m); |
| 131 | return 0; | 140 | return 0; |
| @@ -171,8 +180,12 @@ static void print_one_rcu_state(struct seq_file *m, struct rcu_state *rsp) | |||
| 171 | 180 | ||
| 172 | static int show_rcuhier(struct seq_file *m, void *unused) | 181 | static int show_rcuhier(struct seq_file *m, void *unused) |
| 173 | { | 182 | { |
| 174 | seq_puts(m, "rcu:\n"); | 183 | #ifdef CONFIG_TREE_PREEMPT_RCU |
| 175 | print_one_rcu_state(m, &rcu_state); | 184 | seq_puts(m, "rcu_preempt:\n"); |
| 185 | print_one_rcu_state(m, &rcu_preempt_state); | ||
| 186 | #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ | ||
| 187 | seq_puts(m, "rcu_sched:\n"); | ||
| 188 | print_one_rcu_state(m, &rcu_sched_state); | ||
| 176 | seq_puts(m, "rcu_bh:\n"); | 189 | seq_puts(m, "rcu_bh:\n"); |
| 177 | print_one_rcu_state(m, &rcu_bh_state); | 190 | print_one_rcu_state(m, &rcu_bh_state); |
| 178 | return 0; | 191 | return 0; |
| @@ -193,8 +206,12 @@ static struct file_operations rcuhier_fops = { | |||
| 193 | 206 | ||
| 194 | static int show_rcugp(struct seq_file *m, void *unused) | 207 | static int show_rcugp(struct seq_file *m, void *unused) |
| 195 | { | 208 | { |
| 196 | seq_printf(m, "rcu: completed=%ld gpnum=%ld\n", | 209 | #ifdef CONFIG_TREE_PREEMPT_RCU |
| 197 | rcu_state.completed, rcu_state.gpnum); | 210 | seq_printf(m, "rcu_preempt: completed=%ld gpnum=%ld\n", |
| 211 | rcu_preempt_state.completed, rcu_preempt_state.gpnum); | ||
| 212 | #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ | ||
| 213 | seq_printf(m, "rcu_sched: completed=%ld gpnum=%ld\n", | ||
| 214 | rcu_sched_state.completed, rcu_sched_state.gpnum); | ||
| 198 | seq_printf(m, "rcu_bh: completed=%ld gpnum=%ld\n", | 215 | seq_printf(m, "rcu_bh: completed=%ld gpnum=%ld\n", |
| 199 | rcu_bh_state.completed, rcu_bh_state.gpnum); | 216 | rcu_bh_state.completed, rcu_bh_state.gpnum); |
| 200 | return 0; | 217 | return 0; |
| @@ -243,8 +260,12 @@ static void print_rcu_pendings(struct seq_file *m, struct rcu_state *rsp) | |||
| 243 | 260 | ||
| 244 | static int show_rcu_pending(struct seq_file *m, void *unused) | 261 | static int show_rcu_pending(struct seq_file *m, void *unused) |
| 245 | { | 262 | { |
| 246 | seq_puts(m, "rcu:\n"); | 263 | #ifdef CONFIG_TREE_PREEMPT_RCU |
| 247 | print_rcu_pendings(m, &rcu_state); | 264 | seq_puts(m, "rcu_preempt:\n"); |
| 265 | print_rcu_pendings(m, &rcu_preempt_state); | ||
| 266 | #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ | ||
| 267 | seq_puts(m, "rcu_sched:\n"); | ||
| 268 | print_rcu_pendings(m, &rcu_sched_state); | ||
| 248 | seq_puts(m, "rcu_bh:\n"); | 269 | seq_puts(m, "rcu_bh:\n"); |
| 249 | print_rcu_pendings(m, &rcu_bh_state); | 270 | print_rcu_pendings(m, &rcu_bh_state); |
| 250 | return 0; | 271 | return 0; |
| @@ -264,62 +285,47 @@ static struct file_operations rcu_pending_fops = { | |||
| 264 | }; | 285 | }; |
| 265 | 286 | ||
| 266 | static struct dentry *rcudir; | 287 | static struct dentry *rcudir; |
| 267 | static struct dentry *datadir; | ||
| 268 | static struct dentry *datadir_csv; | ||
| 269 | static struct dentry *gpdir; | ||
| 270 | static struct dentry *hierdir; | ||
| 271 | static struct dentry *rcu_pendingdir; | ||
| 272 | 288 | ||
| 273 | static int __init rcuclassic_trace_init(void) | 289 | static int __init rcuclassic_trace_init(void) |
| 274 | { | 290 | { |
| 291 | struct dentry *retval; | ||
| 292 | |||
| 275 | rcudir = debugfs_create_dir("rcu", NULL); | 293 | rcudir = debugfs_create_dir("rcu", NULL); |
| 276 | if (!rcudir) | 294 | if (!rcudir) |
| 277 | goto out; | 295 | goto free_out; |
| 278 | 296 | ||
| 279 | datadir = debugfs_create_file("rcudata", 0444, rcudir, | 297 | retval = debugfs_create_file("rcudata", 0444, rcudir, |
| 280 | NULL, &rcudata_fops); | 298 | NULL, &rcudata_fops); |
| 281 | if (!datadir) | 299 | if (!retval) |
| 282 | goto free_out; | 300 | goto free_out; |
| 283 | 301 | ||
| 284 | datadir_csv = debugfs_create_file("rcudata.csv", 0444, rcudir, | 302 | retval = debugfs_create_file("rcudata.csv", 0444, rcudir, |
| 285 | NULL, &rcudata_csv_fops); | 303 | NULL, &rcudata_csv_fops); |
| 286 | if (!datadir_csv) | 304 | if (!retval) |
| 287 | goto free_out; | 305 | goto free_out; |
| 288 | 306 | ||
| 289 | gpdir = debugfs_create_file("rcugp", 0444, rcudir, NULL, &rcugp_fops); | 307 | retval = debugfs_create_file("rcugp", 0444, rcudir, NULL, &rcugp_fops); |
| 290 | if (!gpdir) | 308 | if (!retval) |
| 291 | goto free_out; | 309 | goto free_out; |
| 292 | 310 | ||
| 293 | hierdir = debugfs_create_file("rcuhier", 0444, rcudir, | 311 | retval = debugfs_create_file("rcuhier", 0444, rcudir, |
| 294 | NULL, &rcuhier_fops); | 312 | NULL, &rcuhier_fops); |
| 295 | if (!hierdir) | 313 | if (!retval) |
| 296 | goto free_out; | 314 | goto free_out; |
| 297 | 315 | ||
| 298 | rcu_pendingdir = debugfs_create_file("rcu_pending", 0444, rcudir, | 316 | retval = debugfs_create_file("rcu_pending", 0444, rcudir, |
| 299 | NULL, &rcu_pending_fops); | 317 | NULL, &rcu_pending_fops); |
| 300 | if (!rcu_pendingdir) | 318 | if (!retval) |
| 301 | goto free_out; | 319 | goto free_out; |
| 302 | return 0; | 320 | return 0; |
| 303 | free_out: | 321 | free_out: |
| 304 | if (datadir) | 322 | debugfs_remove_recursive(rcudir); |
| 305 | debugfs_remove(datadir); | ||
| 306 | if (datadir_csv) | ||
| 307 | debugfs_remove(datadir_csv); | ||
| 308 | if (gpdir) | ||
| 309 | debugfs_remove(gpdir); | ||
| 310 | debugfs_remove(rcudir); | ||
| 311 | out: | ||
| 312 | return 1; | 323 | return 1; |
| 313 | } | 324 | } |
| 314 | 325 | ||
| 315 | static void __exit rcuclassic_trace_cleanup(void) | 326 | static void __exit rcuclassic_trace_cleanup(void) |
| 316 | { | 327 | { |
| 317 | debugfs_remove(datadir); | 328 | debugfs_remove_recursive(rcudir); |
| 318 | debugfs_remove(datadir_csv); | ||
| 319 | debugfs_remove(gpdir); | ||
| 320 | debugfs_remove(hierdir); | ||
| 321 | debugfs_remove(rcu_pendingdir); | ||
| 322 | debugfs_remove(rcudir); | ||
| 323 | } | 329 | } |
| 324 | 330 | ||
| 325 | 331 | ||
diff --git a/kernel/resource.c b/kernel/resource.c index ac5f3a36923f..78b087221c15 100644 --- a/kernel/resource.c +++ b/kernel/resource.c | |||
| @@ -787,7 +787,7 @@ static int __init reserve_setup(char *str) | |||
| 787 | static struct resource reserve[MAXRESERVE]; | 787 | static struct resource reserve[MAXRESERVE]; |
| 788 | 788 | ||
| 789 | for (;;) { | 789 | for (;;) { |
| 790 | int io_start, io_num; | 790 | unsigned int io_start, io_num; |
| 791 | int x = reserved; | 791 | int x = reserved; |
| 792 | 792 | ||
| 793 | if (get_option (&str, &io_start) != 2) | 793 | if (get_option (&str, &io_start) != 2) |
diff --git a/kernel/rtmutex.c b/kernel/rtmutex.c index fcd107a78c5a..29bd4baf9e75 100644 --- a/kernel/rtmutex.c +++ b/kernel/rtmutex.c | |||
| @@ -1039,16 +1039,14 @@ int rt_mutex_start_proxy_lock(struct rt_mutex *lock, | |||
| 1039 | if (!rt_mutex_owner(lock) || try_to_steal_lock(lock, task)) { | 1039 | if (!rt_mutex_owner(lock) || try_to_steal_lock(lock, task)) { |
| 1040 | /* We got the lock for task. */ | 1040 | /* We got the lock for task. */ |
| 1041 | debug_rt_mutex_lock(lock); | 1041 | debug_rt_mutex_lock(lock); |
| 1042 | |||
| 1043 | rt_mutex_set_owner(lock, task, 0); | 1042 | rt_mutex_set_owner(lock, task, 0); |
| 1044 | 1043 | spin_unlock(&lock->wait_lock); | |
| 1045 | rt_mutex_deadlock_account_lock(lock, task); | 1044 | rt_mutex_deadlock_account_lock(lock, task); |
| 1046 | return 1; | 1045 | return 1; |
| 1047 | } | 1046 | } |
| 1048 | 1047 | ||
| 1049 | ret = task_blocks_on_rt_mutex(lock, waiter, task, detect_deadlock); | 1048 | ret = task_blocks_on_rt_mutex(lock, waiter, task, detect_deadlock); |
| 1050 | 1049 | ||
| 1051 | |||
| 1052 | if (ret && !waiter->task) { | 1050 | if (ret && !waiter->task) { |
| 1053 | /* | 1051 | /* |
| 1054 | * Reset the return value. We might have | 1052 | * Reset the return value. We might have |
diff --git a/kernel/sched.c b/kernel/sched.c index 7c9098d186e6..0ac9053c21d6 100644 --- a/kernel/sched.c +++ b/kernel/sched.c | |||
| @@ -39,7 +39,7 @@ | |||
| 39 | #include <linux/completion.h> | 39 | #include <linux/completion.h> |
| 40 | #include <linux/kernel_stat.h> | 40 | #include <linux/kernel_stat.h> |
| 41 | #include <linux/debug_locks.h> | 41 | #include <linux/debug_locks.h> |
| 42 | #include <linux/perf_counter.h> | 42 | #include <linux/perf_event.h> |
| 43 | #include <linux/security.h> | 43 | #include <linux/security.h> |
| 44 | #include <linux/notifier.h> | 44 | #include <linux/notifier.h> |
| 45 | #include <linux/profile.h> | 45 | #include <linux/profile.h> |
| @@ -64,7 +64,6 @@ | |||
| 64 | #include <linux/tsacct_kern.h> | 64 | #include <linux/tsacct_kern.h> |
| 65 | #include <linux/kprobes.h> | 65 | #include <linux/kprobes.h> |
| 66 | #include <linux/delayacct.h> | 66 | #include <linux/delayacct.h> |
| 67 | #include <linux/reciprocal_div.h> | ||
| 68 | #include <linux/unistd.h> | 67 | #include <linux/unistd.h> |
| 69 | #include <linux/pagemap.h> | 68 | #include <linux/pagemap.h> |
| 70 | #include <linux/hrtimer.h> | 69 | #include <linux/hrtimer.h> |
| @@ -120,30 +119,6 @@ | |||
| 120 | */ | 119 | */ |
| 121 | #define RUNTIME_INF ((u64)~0ULL) | 120 | #define RUNTIME_INF ((u64)~0ULL) |
| 122 | 121 | ||
| 123 | #ifdef CONFIG_SMP | ||
| 124 | |||
| 125 | static void double_rq_lock(struct rq *rq1, struct rq *rq2); | ||
| 126 | |||
| 127 | /* | ||
| 128 | * Divide a load by a sched group cpu_power : (load / sg->__cpu_power) | ||
| 129 | * Since cpu_power is a 'constant', we can use a reciprocal divide. | ||
| 130 | */ | ||
| 131 | static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load) | ||
| 132 | { | ||
| 133 | return reciprocal_divide(load, sg->reciprocal_cpu_power); | ||
| 134 | } | ||
| 135 | |||
| 136 | /* | ||
| 137 | * Each time a sched group cpu_power is changed, | ||
| 138 | * we must compute its reciprocal value | ||
| 139 | */ | ||
| 140 | static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val) | ||
| 141 | { | ||
| 142 | sg->__cpu_power += val; | ||
| 143 | sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power); | ||
| 144 | } | ||
| 145 | #endif | ||
| 146 | |||
| 147 | static inline int rt_policy(int policy) | 122 | static inline int rt_policy(int policy) |
| 148 | { | 123 | { |
| 149 | if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR)) | 124 | if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR)) |
| @@ -309,8 +284,8 @@ void set_tg_uid(struct user_struct *user) | |||
| 309 | 284 | ||
| 310 | /* | 285 | /* |
| 311 | * Root task group. | 286 | * Root task group. |
| 312 | * Every UID task group (including init_task_group aka UID-0) will | 287 | * Every UID task group (including init_task_group aka UID-0) will |
| 313 | * be a child to this group. | 288 | * be a child to this group. |
| 314 | */ | 289 | */ |
| 315 | struct task_group root_task_group; | 290 | struct task_group root_task_group; |
| 316 | 291 | ||
| @@ -318,12 +293,12 @@ struct task_group root_task_group; | |||
| 318 | /* Default task group's sched entity on each cpu */ | 293 | /* Default task group's sched entity on each cpu */ |
| 319 | static DEFINE_PER_CPU(struct sched_entity, init_sched_entity); | 294 | static DEFINE_PER_CPU(struct sched_entity, init_sched_entity); |
| 320 | /* Default task group's cfs_rq on each cpu */ | 295 | /* Default task group's cfs_rq on each cpu */ |
| 321 | static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp; | 296 | static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq); |
| 322 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | 297 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
| 323 | 298 | ||
| 324 | #ifdef CONFIG_RT_GROUP_SCHED | 299 | #ifdef CONFIG_RT_GROUP_SCHED |
| 325 | static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity); | 300 | static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity); |
| 326 | static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp; | 301 | static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq); |
| 327 | #endif /* CONFIG_RT_GROUP_SCHED */ | 302 | #endif /* CONFIG_RT_GROUP_SCHED */ |
| 328 | #else /* !CONFIG_USER_SCHED */ | 303 | #else /* !CONFIG_USER_SCHED */ |
| 329 | #define root_task_group init_task_group | 304 | #define root_task_group init_task_group |
| @@ -401,13 +376,6 @@ static inline void set_task_rq(struct task_struct *p, unsigned int cpu) | |||
| 401 | 376 | ||
| 402 | #else | 377 | #else |
| 403 | 378 | ||
| 404 | #ifdef CONFIG_SMP | ||
| 405 | static int root_task_group_empty(void) | ||
| 406 | { | ||
| 407 | return 1; | ||
| 408 | } | ||
| 409 | #endif | ||
| 410 | |||
| 411 | static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } | 379 | static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } |
| 412 | static inline struct task_group *task_group(struct task_struct *p) | 380 | static inline struct task_group *task_group(struct task_struct *p) |
| 413 | { | 381 | { |
| @@ -493,6 +461,7 @@ struct rt_rq { | |||
| 493 | #endif | 461 | #endif |
| 494 | #ifdef CONFIG_SMP | 462 | #ifdef CONFIG_SMP |
| 495 | unsigned long rt_nr_migratory; | 463 | unsigned long rt_nr_migratory; |
| 464 | unsigned long rt_nr_total; | ||
| 496 | int overloaded; | 465 | int overloaded; |
| 497 | struct plist_head pushable_tasks; | 466 | struct plist_head pushable_tasks; |
| 498 | #endif | 467 | #endif |
| @@ -536,14 +505,6 @@ struct root_domain { | |||
| 536 | #ifdef CONFIG_SMP | 505 | #ifdef CONFIG_SMP |
| 537 | struct cpupri cpupri; | 506 | struct cpupri cpupri; |
| 538 | #endif | 507 | #endif |
| 539 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | ||
| 540 | /* | ||
| 541 | * Preferred wake up cpu nominated by sched_mc balance that will be | ||
| 542 | * used when most cpus are idle in the system indicating overall very | ||
| 543 | * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2) | ||
| 544 | */ | ||
| 545 | unsigned int sched_mc_preferred_wakeup_cpu; | ||
| 546 | #endif | ||
| 547 | }; | 508 | }; |
| 548 | 509 | ||
| 549 | /* | 510 | /* |
| @@ -615,6 +576,7 @@ struct rq { | |||
| 615 | 576 | ||
| 616 | unsigned char idle_at_tick; | 577 | unsigned char idle_at_tick; |
| 617 | /* For active balancing */ | 578 | /* For active balancing */ |
| 579 | int post_schedule; | ||
| 618 | int active_balance; | 580 | int active_balance; |
| 619 | int push_cpu; | 581 | int push_cpu; |
| 620 | /* cpu of this runqueue: */ | 582 | /* cpu of this runqueue: */ |
| @@ -625,6 +587,9 @@ struct rq { | |||
| 625 | 587 | ||
| 626 | struct task_struct *migration_thread; | 588 | struct task_struct *migration_thread; |
| 627 | struct list_head migration_queue; | 589 | struct list_head migration_queue; |
| 590 | |||
| 591 | u64 rt_avg; | ||
| 592 | u64 age_stamp; | ||
| 628 | #endif | 593 | #endif |
| 629 | 594 | ||
| 630 | /* calc_load related fields */ | 595 | /* calc_load related fields */ |
| @@ -664,9 +629,10 @@ struct rq { | |||
| 664 | 629 | ||
| 665 | static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); | 630 | static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); |
| 666 | 631 | ||
| 667 | static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync) | 632 | static inline |
| 633 | void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) | ||
| 668 | { | 634 | { |
| 669 | rq->curr->sched_class->check_preempt_curr(rq, p, sync); | 635 | rq->curr->sched_class->check_preempt_curr(rq, p, flags); |
| 670 | } | 636 | } |
| 671 | 637 | ||
| 672 | static inline int cpu_of(struct rq *rq) | 638 | static inline int cpu_of(struct rq *rq) |
| @@ -692,6 +658,7 @@ static inline int cpu_of(struct rq *rq) | |||
| 692 | #define this_rq() (&__get_cpu_var(runqueues)) | 658 | #define this_rq() (&__get_cpu_var(runqueues)) |
| 693 | #define task_rq(p) cpu_rq(task_cpu(p)) | 659 | #define task_rq(p) cpu_rq(task_cpu(p)) |
| 694 | #define cpu_curr(cpu) (cpu_rq(cpu)->curr) | 660 | #define cpu_curr(cpu) (cpu_rq(cpu)->curr) |
| 661 | #define raw_rq() (&__raw_get_cpu_var(runqueues)) | ||
| 695 | 662 | ||
| 696 | inline void update_rq_clock(struct rq *rq) | 663 | inline void update_rq_clock(struct rq *rq) |
| 697 | { | 664 | { |
| @@ -714,15 +681,9 @@ inline void update_rq_clock(struct rq *rq) | |||
| 714 | * This interface allows printk to be called with the runqueue lock | 681 | * This interface allows printk to be called with the runqueue lock |
| 715 | * held and know whether or not it is OK to wake up the klogd. | 682 | * held and know whether or not it is OK to wake up the klogd. |
| 716 | */ | 683 | */ |
| 717 | int runqueue_is_locked(void) | 684 | int runqueue_is_locked(int cpu) |
| 718 | { | 685 | { |
| 719 | int cpu = get_cpu(); | 686 | return spin_is_locked(&cpu_rq(cpu)->lock); |
| 720 | struct rq *rq = cpu_rq(cpu); | ||
| 721 | int ret; | ||
| 722 | |||
| 723 | ret = spin_is_locked(&rq->lock); | ||
| 724 | put_cpu(); | ||
| 725 | return ret; | ||
| 726 | } | 687 | } |
| 727 | 688 | ||
| 728 | /* | 689 | /* |
| @@ -860,6 +821,14 @@ unsigned int sysctl_sched_shares_ratelimit = 250000; | |||
| 860 | unsigned int sysctl_sched_shares_thresh = 4; | 821 | unsigned int sysctl_sched_shares_thresh = 4; |
| 861 | 822 | ||
| 862 | /* | 823 | /* |
| 824 | * period over which we average the RT time consumption, measured | ||
| 825 | * in ms. | ||
| 826 | * | ||
| 827 | * default: 1s | ||
| 828 | */ | ||
| 829 | const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; | ||
| 830 | |||
| 831 | /* | ||
| 863 | * period over which we measure -rt task cpu usage in us. | 832 | * period over which we measure -rt task cpu usage in us. |
| 864 | * default: 1s | 833 | * default: 1s |
| 865 | */ | 834 | */ |
| @@ -1277,12 +1246,37 @@ void wake_up_idle_cpu(int cpu) | |||
| 1277 | } | 1246 | } |
| 1278 | #endif /* CONFIG_NO_HZ */ | 1247 | #endif /* CONFIG_NO_HZ */ |
| 1279 | 1248 | ||
| 1249 | static u64 sched_avg_period(void) | ||
| 1250 | { | ||
| 1251 | return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2; | ||
| 1252 | } | ||
| 1253 | |||
| 1254 | static void sched_avg_update(struct rq *rq) | ||
| 1255 | { | ||
| 1256 | s64 period = sched_avg_period(); | ||
| 1257 | |||
| 1258 | while ((s64)(rq->clock - rq->age_stamp) > period) { | ||
| 1259 | rq->age_stamp += period; | ||
| 1260 | rq->rt_avg /= 2; | ||
| 1261 | } | ||
| 1262 | } | ||
| 1263 | |||
| 1264 | static void sched_rt_avg_update(struct rq *rq, u64 rt_delta) | ||
| 1265 | { | ||
| 1266 | rq->rt_avg += rt_delta; | ||
| 1267 | sched_avg_update(rq); | ||
| 1268 | } | ||
| 1269 | |||
| 1280 | #else /* !CONFIG_SMP */ | 1270 | #else /* !CONFIG_SMP */ |
| 1281 | static void resched_task(struct task_struct *p) | 1271 | static void resched_task(struct task_struct *p) |
| 1282 | { | 1272 | { |
| 1283 | assert_spin_locked(&task_rq(p)->lock); | 1273 | assert_spin_locked(&task_rq(p)->lock); |
| 1284 | set_tsk_need_resched(p); | 1274 | set_tsk_need_resched(p); |
| 1285 | } | 1275 | } |
| 1276 | |||
| 1277 | static void sched_rt_avg_update(struct rq *rq, u64 rt_delta) | ||
| 1278 | { | ||
| 1279 | } | ||
| 1286 | #endif /* CONFIG_SMP */ | 1280 | #endif /* CONFIG_SMP */ |
| 1287 | 1281 | ||
| 1288 | #if BITS_PER_LONG == 32 | 1282 | #if BITS_PER_LONG == 32 |
| @@ -1493,8 +1487,65 @@ static int tg_nop(struct task_group *tg, void *data) | |||
| 1493 | #endif | 1487 | #endif |
| 1494 | 1488 | ||
| 1495 | #ifdef CONFIG_SMP | 1489 | #ifdef CONFIG_SMP |
| 1496 | static unsigned long source_load(int cpu, int type); | 1490 | /* Used instead of source_load when we know the type == 0 */ |
| 1497 | static unsigned long target_load(int cpu, int type); | 1491 | static unsigned long weighted_cpuload(const int cpu) |
| 1492 | { | ||
| 1493 | return cpu_rq(cpu)->load.weight; | ||
| 1494 | } | ||
| 1495 | |||
| 1496 | /* | ||
| 1497 | * Return a low guess at the load of a migration-source cpu weighted | ||
| 1498 | * according to the scheduling class and "nice" value. | ||
| 1499 | * | ||
| 1500 | * We want to under-estimate the load of migration sources, to | ||
| 1501 | * balance conservatively. | ||
| 1502 | */ | ||
| 1503 | static unsigned long source_load(int cpu, int type) | ||
| 1504 | { | ||
| 1505 | struct rq *rq = cpu_rq(cpu); | ||
| 1506 | unsigned long total = weighted_cpuload(cpu); | ||
| 1507 | |||
| 1508 | if (type == 0 || !sched_feat(LB_BIAS)) | ||
| 1509 | return total; | ||
| 1510 | |||
| 1511 | return min(rq->cpu_load[type-1], total); | ||
| 1512 | } | ||
| 1513 | |||
| 1514 | /* | ||
| 1515 | * Return a high guess at the load of a migration-target cpu weighted | ||
| 1516 | * according to the scheduling class and "nice" value. | ||
| 1517 | */ | ||
| 1518 | static unsigned long target_load(int cpu, int type) | ||
| 1519 | { | ||
| 1520 | struct rq *rq = cpu_rq(cpu); | ||
| 1521 | unsigned long total = weighted_cpuload(cpu); | ||
| 1522 | |||
| 1523 | if (type == 0 || !sched_feat(LB_BIAS)) | ||
| 1524 | return total; | ||
| 1525 | |||
| 1526 | return max(rq->cpu_load[type-1], total); | ||
| 1527 | } | ||
| 1528 | |||
| 1529 | static struct sched_group *group_of(int cpu) | ||
| 1530 | { | ||
| 1531 | struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd); | ||
| 1532 | |||
| 1533 | if (!sd) | ||
| 1534 | return NULL; | ||
| 1535 | |||
| 1536 | return sd->groups; | ||
| 1537 | } | ||
| 1538 | |||
| 1539 | static unsigned long power_of(int cpu) | ||
| 1540 | { | ||
| 1541 | struct sched_group *group = group_of(cpu); | ||
| 1542 | |||
| 1543 | if (!group) | ||
| 1544 | return SCHED_LOAD_SCALE; | ||
| 1545 | |||
| 1546 | return group->cpu_power; | ||
| 1547 | } | ||
| 1548 | |||
| 1498 | static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd); | 1549 | static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd); |
| 1499 | 1550 | ||
| 1500 | static unsigned long cpu_avg_load_per_task(int cpu) | 1551 | static unsigned long cpu_avg_load_per_task(int cpu) |
| @@ -1512,28 +1563,35 @@ static unsigned long cpu_avg_load_per_task(int cpu) | |||
| 1512 | 1563 | ||
| 1513 | #ifdef CONFIG_FAIR_GROUP_SCHED | 1564 | #ifdef CONFIG_FAIR_GROUP_SCHED |
| 1514 | 1565 | ||
| 1566 | struct update_shares_data { | ||
| 1567 | unsigned long rq_weight[NR_CPUS]; | ||
| 1568 | }; | ||
| 1569 | |||
| 1570 | static DEFINE_PER_CPU(struct update_shares_data, update_shares_data); | ||
| 1571 | |||
| 1515 | static void __set_se_shares(struct sched_entity *se, unsigned long shares); | 1572 | static void __set_se_shares(struct sched_entity *se, unsigned long shares); |
| 1516 | 1573 | ||
| 1517 | /* | 1574 | /* |
| 1518 | * Calculate and set the cpu's group shares. | 1575 | * Calculate and set the cpu's group shares. |
| 1519 | */ | 1576 | */ |
| 1520 | static void | 1577 | static void update_group_shares_cpu(struct task_group *tg, int cpu, |
| 1521 | update_group_shares_cpu(struct task_group *tg, int cpu, | 1578 | unsigned long sd_shares, |
| 1522 | unsigned long sd_shares, unsigned long sd_rq_weight) | 1579 | unsigned long sd_rq_weight, |
| 1580 | struct update_shares_data *usd) | ||
| 1523 | { | 1581 | { |
| 1524 | unsigned long shares; | 1582 | unsigned long shares, rq_weight; |
| 1525 | unsigned long rq_weight; | 1583 | int boost = 0; |
| 1526 | 1584 | ||
| 1527 | if (!tg->se[cpu]) | 1585 | rq_weight = usd->rq_weight[cpu]; |
| 1528 | return; | 1586 | if (!rq_weight) { |
| 1529 | 1587 | boost = 1; | |
| 1530 | rq_weight = tg->cfs_rq[cpu]->rq_weight; | 1588 | rq_weight = NICE_0_LOAD; |
| 1589 | } | ||
| 1531 | 1590 | ||
| 1532 | /* | 1591 | /* |
| 1533 | * \Sum shares * rq_weight | 1592 | * \Sum_j shares_j * rq_weight_i |
| 1534 | * shares = ----------------------- | 1593 | * shares_i = ----------------------------- |
| 1535 | * \Sum rq_weight | 1594 | * \Sum_j rq_weight_j |
| 1536 | * | ||
| 1537 | */ | 1595 | */ |
| 1538 | shares = (sd_shares * rq_weight) / sd_rq_weight; | 1596 | shares = (sd_shares * rq_weight) / sd_rq_weight; |
| 1539 | shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES); | 1597 | shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES); |
| @@ -1544,8 +1602,8 @@ update_group_shares_cpu(struct task_group *tg, int cpu, | |||
| 1544 | unsigned long flags; | 1602 | unsigned long flags; |
| 1545 | 1603 | ||
| 1546 | spin_lock_irqsave(&rq->lock, flags); | 1604 | spin_lock_irqsave(&rq->lock, flags); |
| 1547 | tg->cfs_rq[cpu]->shares = shares; | 1605 | tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight; |
| 1548 | 1606 | tg->cfs_rq[cpu]->shares = boost ? 0 : shares; | |
| 1549 | __set_se_shares(tg->se[cpu], shares); | 1607 | __set_se_shares(tg->se[cpu], shares); |
| 1550 | spin_unlock_irqrestore(&rq->lock, flags); | 1608 | spin_unlock_irqrestore(&rq->lock, flags); |
| 1551 | } | 1609 | } |
| @@ -1558,22 +1616,30 @@ update_group_shares_cpu(struct task_group *tg, int cpu, | |||
| 1558 | */ | 1616 | */ |
| 1559 | static int tg_shares_up(struct task_group *tg, void *data) | 1617 | static int tg_shares_up(struct task_group *tg, void *data) |
| 1560 | { | 1618 | { |
| 1561 | unsigned long weight, rq_weight = 0; | 1619 | unsigned long weight, rq_weight = 0, shares = 0; |
| 1562 | unsigned long shares = 0; | 1620 | struct update_shares_data *usd; |
| 1563 | struct sched_domain *sd = data; | 1621 | struct sched_domain *sd = data; |
| 1622 | unsigned long flags; | ||
| 1564 | int i; | 1623 | int i; |
| 1565 | 1624 | ||
| 1625 | if (!tg->se[0]) | ||
| 1626 | return 0; | ||
| 1627 | |||
| 1628 | local_irq_save(flags); | ||
| 1629 | usd = &__get_cpu_var(update_shares_data); | ||
| 1630 | |||
| 1566 | for_each_cpu(i, sched_domain_span(sd)) { | 1631 | for_each_cpu(i, sched_domain_span(sd)) { |
| 1632 | weight = tg->cfs_rq[i]->load.weight; | ||
| 1633 | usd->rq_weight[i] = weight; | ||
| 1634 | |||
| 1567 | /* | 1635 | /* |
| 1568 | * If there are currently no tasks on the cpu pretend there | 1636 | * If there are currently no tasks on the cpu pretend there |
| 1569 | * is one of average load so that when a new task gets to | 1637 | * is one of average load so that when a new task gets to |
| 1570 | * run here it will not get delayed by group starvation. | 1638 | * run here it will not get delayed by group starvation. |
| 1571 | */ | 1639 | */ |
| 1572 | weight = tg->cfs_rq[i]->load.weight; | ||
| 1573 | if (!weight) | 1640 | if (!weight) |
| 1574 | weight = NICE_0_LOAD; | 1641 | weight = NICE_0_LOAD; |
| 1575 | 1642 | ||
| 1576 | tg->cfs_rq[i]->rq_weight = weight; | ||
| 1577 | rq_weight += weight; | 1643 | rq_weight += weight; |
| 1578 | shares += tg->cfs_rq[i]->shares; | 1644 | shares += tg->cfs_rq[i]->shares; |
| 1579 | } | 1645 | } |
| @@ -1585,7 +1651,9 @@ static int tg_shares_up(struct task_group *tg, void *data) | |||
| 1585 | shares = tg->shares; | 1651 | shares = tg->shares; |
| 1586 | 1652 | ||
| 1587 | for_each_cpu(i, sched_domain_span(sd)) | 1653 | for_each_cpu(i, sched_domain_span(sd)) |
| 1588 | update_group_shares_cpu(tg, i, shares, rq_weight); | 1654 | update_group_shares_cpu(tg, i, shares, rq_weight, usd); |
| 1655 | |||
| 1656 | local_irq_restore(flags); | ||
| 1589 | 1657 | ||
| 1590 | return 0; | 1658 | return 0; |
| 1591 | } | 1659 | } |
| @@ -1615,8 +1683,14 @@ static int tg_load_down(struct task_group *tg, void *data) | |||
| 1615 | 1683 | ||
| 1616 | static void update_shares(struct sched_domain *sd) | 1684 | static void update_shares(struct sched_domain *sd) |
| 1617 | { | 1685 | { |
| 1618 | u64 now = cpu_clock(raw_smp_processor_id()); | 1686 | s64 elapsed; |
| 1619 | s64 elapsed = now - sd->last_update; | 1687 | u64 now; |
| 1688 | |||
| 1689 | if (root_task_group_empty()) | ||
| 1690 | return; | ||
| 1691 | |||
| 1692 | now = cpu_clock(raw_smp_processor_id()); | ||
| 1693 | elapsed = now - sd->last_update; | ||
| 1620 | 1694 | ||
| 1621 | if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) { | 1695 | if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) { |
| 1622 | sd->last_update = now; | 1696 | sd->last_update = now; |
| @@ -1626,6 +1700,9 @@ static void update_shares(struct sched_domain *sd) | |||
| 1626 | 1700 | ||
| 1627 | static void update_shares_locked(struct rq *rq, struct sched_domain *sd) | 1701 | static void update_shares_locked(struct rq *rq, struct sched_domain *sd) |
| 1628 | { | 1702 | { |
| 1703 | if (root_task_group_empty()) | ||
| 1704 | return; | ||
| 1705 | |||
| 1629 | spin_unlock(&rq->lock); | 1706 | spin_unlock(&rq->lock); |
| 1630 | update_shares(sd); | 1707 | update_shares(sd); |
| 1631 | spin_lock(&rq->lock); | 1708 | spin_lock(&rq->lock); |
| @@ -1633,6 +1710,9 @@ static void update_shares_locked(struct rq *rq, struct sched_domain *sd) | |||
| 1633 | 1710 | ||
| 1634 | static void update_h_load(long cpu) | 1711 | static void update_h_load(long cpu) |
| 1635 | { | 1712 | { |
| 1713 | if (root_task_group_empty()) | ||
| 1714 | return; | ||
| 1715 | |||
| 1636 | walk_tg_tree(tg_load_down, tg_nop, (void *)cpu); | 1716 | walk_tg_tree(tg_load_down, tg_nop, (void *)cpu); |
| 1637 | } | 1717 | } |
| 1638 | 1718 | ||
| @@ -1650,6 +1730,8 @@ static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd) | |||
| 1650 | 1730 | ||
| 1651 | #ifdef CONFIG_PREEMPT | 1731 | #ifdef CONFIG_PREEMPT |
| 1652 | 1732 | ||
| 1733 | static void double_rq_lock(struct rq *rq1, struct rq *rq2); | ||
| 1734 | |||
| 1653 | /* | 1735 | /* |
| 1654 | * fair double_lock_balance: Safely acquires both rq->locks in a fair | 1736 | * fair double_lock_balance: Safely acquires both rq->locks in a fair |
| 1655 | * way at the expense of forcing extra atomic operations in all | 1737 | * way at the expense of forcing extra atomic operations in all |
| @@ -1914,13 +1996,6 @@ static inline void check_class_changed(struct rq *rq, struct task_struct *p, | |||
| 1914 | } | 1996 | } |
| 1915 | 1997 | ||
| 1916 | #ifdef CONFIG_SMP | 1998 | #ifdef CONFIG_SMP |
| 1917 | |||
| 1918 | /* Used instead of source_load when we know the type == 0 */ | ||
| 1919 | static unsigned long weighted_cpuload(const int cpu) | ||
| 1920 | { | ||
| 1921 | return cpu_rq(cpu)->load.weight; | ||
| 1922 | } | ||
| 1923 | |||
| 1924 | /* | 1999 | /* |
| 1925 | * Is this task likely cache-hot: | 2000 | * Is this task likely cache-hot: |
| 1926 | */ | 2001 | */ |
| @@ -1978,7 +2053,7 @@ void set_task_cpu(struct task_struct *p, unsigned int new_cpu) | |||
| 1978 | if (task_hot(p, old_rq->clock, NULL)) | 2053 | if (task_hot(p, old_rq->clock, NULL)) |
| 1979 | schedstat_inc(p, se.nr_forced2_migrations); | 2054 | schedstat_inc(p, se.nr_forced2_migrations); |
| 1980 | #endif | 2055 | #endif |
| 1981 | perf_swcounter_event(PERF_COUNT_SW_CPU_MIGRATIONS, | 2056 | perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, |
| 1982 | 1, 1, NULL, 0); | 2057 | 1, 1, NULL, 0); |
| 1983 | } | 2058 | } |
| 1984 | p->se.vruntime -= old_cfsrq->min_vruntime - | 2059 | p->se.vruntime -= old_cfsrq->min_vruntime - |
| @@ -2194,186 +2269,6 @@ void kick_process(struct task_struct *p) | |||
| 2194 | preempt_enable(); | 2269 | preempt_enable(); |
| 2195 | } | 2270 | } |
| 2196 | EXPORT_SYMBOL_GPL(kick_process); | 2271 | EXPORT_SYMBOL_GPL(kick_process); |
| 2197 | |||
| 2198 | /* | ||
| 2199 | * Return a low guess at the load of a migration-source cpu weighted | ||
| 2200 | * according to the scheduling class and "nice" value. | ||
| 2201 | * | ||
| 2202 | * We want to under-estimate the load of migration sources, to | ||
| 2203 | * balance conservatively. | ||
| 2204 | */ | ||
| 2205 | static unsigned long source_load(int cpu, int type) | ||
| 2206 | { | ||
| 2207 | struct rq *rq = cpu_rq(cpu); | ||
| 2208 | unsigned long total = weighted_cpuload(cpu); | ||
| 2209 | |||
| 2210 | if (type == 0 || !sched_feat(LB_BIAS)) | ||
| 2211 | return total; | ||
| 2212 | |||
| 2213 | return min(rq->cpu_load[type-1], total); | ||
| 2214 | } | ||
| 2215 | |||
| 2216 | /* | ||
| 2217 | * Return a high guess at the load of a migration-target cpu weighted | ||
| 2218 | * according to the scheduling class and "nice" value. | ||
| 2219 | */ | ||
| 2220 | static unsigned long target_load(int cpu, int type) | ||
| 2221 | { | ||
| 2222 | struct rq *rq = cpu_rq(cpu); | ||
| 2223 | unsigned long total = weighted_cpuload(cpu); | ||
| 2224 | |||
| 2225 | if (type == 0 || !sched_feat(LB_BIAS)) | ||
| 2226 | return total; | ||
| 2227 | |||
| 2228 | return max(rq->cpu_load[type-1], total); | ||
| 2229 | } | ||
| 2230 | |||
| 2231 | /* | ||
| 2232 | * find_idlest_group finds and returns the least busy CPU group within the | ||
| 2233 | * domain. | ||
| 2234 | */ | ||
| 2235 | static struct sched_group * | ||
| 2236 | find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) | ||
| 2237 | { | ||
| 2238 | struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups; | ||
| 2239 | unsigned long min_load = ULONG_MAX, this_load = 0; | ||
| 2240 | int load_idx = sd->forkexec_idx; | ||
| 2241 | int imbalance = 100 + (sd->imbalance_pct-100)/2; | ||
| 2242 | |||
| 2243 | do { | ||
| 2244 | unsigned long load, avg_load; | ||
| 2245 | int local_group; | ||
| 2246 | int i; | ||
| 2247 | |||
| 2248 | /* Skip over this group if it has no CPUs allowed */ | ||
| 2249 | if (!cpumask_intersects(sched_group_cpus(group), | ||
| 2250 | &p->cpus_allowed)) | ||
| 2251 | continue; | ||
| 2252 | |||
| 2253 | local_group = cpumask_test_cpu(this_cpu, | ||
| 2254 | sched_group_cpus(group)); | ||
| 2255 | |||
| 2256 | /* Tally up the load of all CPUs in the group */ | ||
| 2257 | avg_load = 0; | ||
| 2258 | |||
| 2259 | for_each_cpu(i, sched_group_cpus(group)) { | ||
| 2260 | /* Bias balancing toward cpus of our domain */ | ||
| 2261 | if (local_group) | ||
| 2262 | load = source_load(i, load_idx); | ||
| 2263 | else | ||
| 2264 | load = target_load(i, load_idx); | ||
| 2265 | |||
| 2266 | avg_load += load; | ||
| 2267 | } | ||
| 2268 | |||
| 2269 | /* Adjust by relative CPU power of the group */ | ||
| 2270 | avg_load = sg_div_cpu_power(group, | ||
| 2271 | avg_load * SCHED_LOAD_SCALE); | ||
| 2272 | |||
| 2273 | if (local_group) { | ||
| 2274 | this_load = avg_load; | ||
| 2275 | this = group; | ||
| 2276 | } else if (avg_load < min_load) { | ||
| 2277 | min_load = avg_load; | ||
| 2278 | idlest = group; | ||
| 2279 | } | ||
| 2280 | } while (group = group->next, group != sd->groups); | ||
| 2281 | |||
| 2282 | if (!idlest || 100*this_load < imbalance*min_load) | ||
| 2283 | return NULL; | ||
| 2284 | return idlest; | ||
| 2285 | } | ||
| 2286 | |||
| 2287 | /* | ||
| 2288 | * find_idlest_cpu - find the idlest cpu among the cpus in group. | ||
| 2289 | */ | ||
| 2290 | static int | ||
| 2291 | find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) | ||
| 2292 | { | ||
| 2293 | unsigned long load, min_load = ULONG_MAX; | ||
| 2294 | int idlest = -1; | ||
| 2295 | int i; | ||
| 2296 | |||
| 2297 | /* Traverse only the allowed CPUs */ | ||
| 2298 | for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) { | ||
| 2299 | load = weighted_cpuload(i); | ||
| 2300 | |||
| 2301 | if (load < min_load || (load == min_load && i == this_cpu)) { | ||
| 2302 | min_load = load; | ||
| 2303 | idlest = i; | ||
| 2304 | } | ||
| 2305 | } | ||
| 2306 | |||
| 2307 | return idlest; | ||
| 2308 | } | ||
| 2309 | |||
| 2310 | /* | ||
| 2311 | * sched_balance_self: balance the current task (running on cpu) in domains | ||
| 2312 | * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and | ||
| 2313 | * SD_BALANCE_EXEC. | ||
| 2314 | * | ||
| 2315 | * Balance, ie. select the least loaded group. | ||
| 2316 | * | ||
| 2317 | * Returns the target CPU number, or the same CPU if no balancing is needed. | ||
| 2318 | * | ||
| 2319 | * preempt must be disabled. | ||
| 2320 | */ | ||
| 2321 | static int sched_balance_self(int cpu, int flag) | ||
| 2322 | { | ||
| 2323 | struct task_struct *t = current; | ||
| 2324 | struct sched_domain *tmp, *sd = NULL; | ||
| 2325 | |||
| 2326 | for_each_domain(cpu, tmp) { | ||
| 2327 | /* | ||
| 2328 | * If power savings logic is enabled for a domain, stop there. | ||
| 2329 | */ | ||
| 2330 | if (tmp->flags & SD_POWERSAVINGS_BALANCE) | ||
| 2331 | break; | ||
| 2332 | if (tmp->flags & flag) | ||
| 2333 | sd = tmp; | ||
| 2334 | } | ||
| 2335 | |||
| 2336 | if (sd) | ||
| 2337 | update_shares(sd); | ||
| 2338 | |||
| 2339 | while (sd) { | ||
| 2340 | struct sched_group *group; | ||
| 2341 | int new_cpu, weight; | ||
| 2342 | |||
| 2343 | if (!(sd->flags & flag)) { | ||
| 2344 | sd = sd->child; | ||
| 2345 | continue; | ||
| 2346 | } | ||
| 2347 | |||
| 2348 | group = find_idlest_group(sd, t, cpu); | ||
| 2349 | if (!group) { | ||
| 2350 | sd = sd->child; | ||
| 2351 | continue; | ||
| 2352 | } | ||
| 2353 | |||
| 2354 | new_cpu = find_idlest_cpu(group, t, cpu); | ||
| 2355 | if (new_cpu == -1 || new_cpu == cpu) { | ||
| 2356 | /* Now try balancing at a lower domain level of cpu */ | ||
| 2357 | sd = sd->child; | ||
| 2358 | continue; | ||
| 2359 | } | ||
| 2360 | |||
| 2361 | /* Now try balancing at a lower domain level of new_cpu */ | ||
| 2362 | cpu = new_cpu; | ||
| 2363 | weight = cpumask_weight(sched_domain_span(sd)); | ||
| 2364 | sd = NULL; | ||
| 2365 | for_each_domain(cpu, tmp) { | ||
| 2366 | if (weight <= cpumask_weight(sched_domain_span(tmp))) | ||
| 2367 | break; | ||
| 2368 | if (tmp->flags & flag) | ||
| 2369 | sd = tmp; | ||
| 2370 | } | ||
| 2371 | /* while loop will break here if sd == NULL */ | ||
| 2372 | } | ||
| 2373 | |||
| 2374 | return cpu; | ||
| 2375 | } | ||
| 2376 | |||
| 2377 | #endif /* CONFIG_SMP */ | 2272 | #endif /* CONFIG_SMP */ |
| 2378 | 2273 | ||
| 2379 | /** | 2274 | /** |
| @@ -2411,37 +2306,22 @@ void task_oncpu_function_call(struct task_struct *p, | |||
| 2411 | * | 2306 | * |
| 2412 | * returns failure only if the task is already active. | 2307 | * returns failure only if the task is already active. |
| 2413 | */ | 2308 | */ |
| 2414 | static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync) | 2309 | static int try_to_wake_up(struct task_struct *p, unsigned int state, |
| 2310 | int wake_flags) | ||
| 2415 | { | 2311 | { |
| 2416 | int cpu, orig_cpu, this_cpu, success = 0; | 2312 | int cpu, orig_cpu, this_cpu, success = 0; |
| 2417 | unsigned long flags; | 2313 | unsigned long flags; |
| 2418 | long old_state; | ||
| 2419 | struct rq *rq; | 2314 | struct rq *rq; |
| 2420 | 2315 | ||
| 2421 | if (!sched_feat(SYNC_WAKEUPS)) | 2316 | if (!sched_feat(SYNC_WAKEUPS)) |
| 2422 | sync = 0; | 2317 | wake_flags &= ~WF_SYNC; |
| 2423 | 2318 | ||
| 2424 | #ifdef CONFIG_SMP | 2319 | this_cpu = get_cpu(); |
| 2425 | if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) { | ||
| 2426 | struct sched_domain *sd; | ||
| 2427 | |||
| 2428 | this_cpu = raw_smp_processor_id(); | ||
| 2429 | cpu = task_cpu(p); | ||
| 2430 | |||
| 2431 | for_each_domain(this_cpu, sd) { | ||
| 2432 | if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { | ||
| 2433 | update_shares(sd); | ||
| 2434 | break; | ||
| 2435 | } | ||
| 2436 | } | ||
| 2437 | } | ||
| 2438 | #endif | ||
| 2439 | 2320 | ||
| 2440 | smp_wmb(); | 2321 | smp_wmb(); |
| 2441 | rq = task_rq_lock(p, &flags); | 2322 | rq = task_rq_lock(p, &flags); |
| 2442 | update_rq_clock(rq); | 2323 | update_rq_clock(rq); |
| 2443 | old_state = p->state; | 2324 | if (!(p->state & state)) |
| 2444 | if (!(old_state & state)) | ||
| 2445 | goto out; | 2325 | goto out; |
| 2446 | 2326 | ||
| 2447 | if (p->se.on_rq) | 2327 | if (p->se.on_rq) |
| @@ -2449,27 +2329,29 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync) | |||
| 2449 | 2329 | ||
| 2450 | cpu = task_cpu(p); | 2330 | cpu = task_cpu(p); |
| 2451 | orig_cpu = cpu; | 2331 | orig_cpu = cpu; |
| 2452 | this_cpu = smp_processor_id(); | ||
| 2453 | 2332 | ||
| 2454 | #ifdef CONFIG_SMP | 2333 | #ifdef CONFIG_SMP |
| 2455 | if (unlikely(task_running(rq, p))) | 2334 | if (unlikely(task_running(rq, p))) |
| 2456 | goto out_activate; | 2335 | goto out_activate; |
| 2457 | 2336 | ||
| 2458 | cpu = p->sched_class->select_task_rq(p, sync); | 2337 | /* |
| 2459 | if (cpu != orig_cpu) { | 2338 | * In order to handle concurrent wakeups and release the rq->lock |
| 2339 | * we put the task in TASK_WAKING state. | ||
| 2340 | * | ||
| 2341 | * First fix up the nr_uninterruptible count: | ||
| 2342 | */ | ||
| 2343 | if (task_contributes_to_load(p)) | ||
| 2344 | rq->nr_uninterruptible--; | ||
| 2345 | p->state = TASK_WAKING; | ||
| 2346 | task_rq_unlock(rq, &flags); | ||
| 2347 | |||
| 2348 | cpu = p->sched_class->select_task_rq(p, SD_BALANCE_WAKE, wake_flags); | ||
| 2349 | if (cpu != orig_cpu) | ||
| 2460 | set_task_cpu(p, cpu); | 2350 | set_task_cpu(p, cpu); |
| 2461 | task_rq_unlock(rq, &flags); | ||
| 2462 | /* might preempt at this point */ | ||
| 2463 | rq = task_rq_lock(p, &flags); | ||
| 2464 | old_state = p->state; | ||
| 2465 | if (!(old_state & state)) | ||
| 2466 | goto out; | ||
| 2467 | if (p->se.on_rq) | ||
| 2468 | goto out_running; | ||
| 2469 | 2351 | ||
| 2470 | this_cpu = smp_processor_id(); | 2352 | rq = task_rq_lock(p, &flags); |
| 2471 | cpu = task_cpu(p); | 2353 | WARN_ON(p->state != TASK_WAKING); |
| 2472 | } | 2354 | cpu = task_cpu(p); |
| 2473 | 2355 | ||
| 2474 | #ifdef CONFIG_SCHEDSTATS | 2356 | #ifdef CONFIG_SCHEDSTATS |
| 2475 | schedstat_inc(rq, ttwu_count); | 2357 | schedstat_inc(rq, ttwu_count); |
| @@ -2489,7 +2371,7 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync) | |||
| 2489 | out_activate: | 2371 | out_activate: |
| 2490 | #endif /* CONFIG_SMP */ | 2372 | #endif /* CONFIG_SMP */ |
| 2491 | schedstat_inc(p, se.nr_wakeups); | 2373 | schedstat_inc(p, se.nr_wakeups); |
| 2492 | if (sync) | 2374 | if (wake_flags & WF_SYNC) |
| 2493 | schedstat_inc(p, se.nr_wakeups_sync); | 2375 | schedstat_inc(p, se.nr_wakeups_sync); |
| 2494 | if (orig_cpu != cpu) | 2376 | if (orig_cpu != cpu) |
| 2495 | schedstat_inc(p, se.nr_wakeups_migrate); | 2377 | schedstat_inc(p, se.nr_wakeups_migrate); |
| @@ -2518,7 +2400,7 @@ out_activate: | |||
| 2518 | 2400 | ||
| 2519 | out_running: | 2401 | out_running: |
| 2520 | trace_sched_wakeup(rq, p, success); | 2402 | trace_sched_wakeup(rq, p, success); |
| 2521 | check_preempt_curr(rq, p, sync); | 2403 | check_preempt_curr(rq, p, wake_flags); |
| 2522 | 2404 | ||
| 2523 | p->state = TASK_RUNNING; | 2405 | p->state = TASK_RUNNING; |
| 2524 | #ifdef CONFIG_SMP | 2406 | #ifdef CONFIG_SMP |
| @@ -2527,6 +2409,7 @@ out_running: | |||
| 2527 | #endif | 2409 | #endif |
| 2528 | out: | 2410 | out: |
| 2529 | task_rq_unlock(rq, &flags); | 2411 | task_rq_unlock(rq, &flags); |
| 2412 | put_cpu(); | ||
| 2530 | 2413 | ||
| 2531 | return success; | 2414 | return success; |
| 2532 | } | 2415 | } |
| @@ -2569,17 +2452,40 @@ static void __sched_fork(struct task_struct *p) | |||
| 2569 | p->se.avg_overlap = 0; | 2452 | p->se.avg_overlap = 0; |
| 2570 | p->se.start_runtime = 0; | 2453 | p->se.start_runtime = 0; |
| 2571 | p->se.avg_wakeup = sysctl_sched_wakeup_granularity; | 2454 | p->se.avg_wakeup = sysctl_sched_wakeup_granularity; |
| 2455 | p->se.avg_running = 0; | ||
| 2572 | 2456 | ||
| 2573 | #ifdef CONFIG_SCHEDSTATS | 2457 | #ifdef CONFIG_SCHEDSTATS |
| 2574 | p->se.wait_start = 0; | 2458 | p->se.wait_start = 0; |
| 2575 | p->se.sum_sleep_runtime = 0; | 2459 | p->se.wait_max = 0; |
| 2576 | p->se.sleep_start = 0; | 2460 | p->se.wait_count = 0; |
| 2577 | p->se.block_start = 0; | 2461 | p->se.wait_sum = 0; |
| 2578 | p->se.sleep_max = 0; | 2462 | |
| 2579 | p->se.block_max = 0; | 2463 | p->se.sleep_start = 0; |
| 2580 | p->se.exec_max = 0; | 2464 | p->se.sleep_max = 0; |
| 2581 | p->se.slice_max = 0; | 2465 | p->se.sum_sleep_runtime = 0; |
| 2582 | p->se.wait_max = 0; | 2466 | |
| 2467 | p->se.block_start = 0; | ||
| 2468 | p->se.block_max = 0; | ||
| 2469 | p->se.exec_max = 0; | ||
| 2470 | p->se.slice_max = 0; | ||
| 2471 | |||
| 2472 | p->se.nr_migrations_cold = 0; | ||
| 2473 | p->se.nr_failed_migrations_affine = 0; | ||
| 2474 | p->se.nr_failed_migrations_running = 0; | ||
| 2475 | p->se.nr_failed_migrations_hot = 0; | ||
| 2476 | p->se.nr_forced_migrations = 0; | ||
| 2477 | p->se.nr_forced2_migrations = 0; | ||
| 2478 | |||
| 2479 | p->se.nr_wakeups = 0; | ||
| 2480 | p->se.nr_wakeups_sync = 0; | ||
| 2481 | p->se.nr_wakeups_migrate = 0; | ||
| 2482 | p->se.nr_wakeups_local = 0; | ||
| 2483 | p->se.nr_wakeups_remote = 0; | ||
| 2484 | p->se.nr_wakeups_affine = 0; | ||
| 2485 | p->se.nr_wakeups_affine_attempts = 0; | ||
| 2486 | p->se.nr_wakeups_passive = 0; | ||
| 2487 | p->se.nr_wakeups_idle = 0; | ||
| 2488 | |||
| 2583 | #endif | 2489 | #endif |
| 2584 | 2490 | ||
| 2585 | INIT_LIST_HEAD(&p->rt.run_list); | 2491 | INIT_LIST_HEAD(&p->rt.run_list); |
| @@ -2608,18 +2514,41 @@ void sched_fork(struct task_struct *p, int clone_flags) | |||
| 2608 | 2514 | ||
| 2609 | __sched_fork(p); | 2515 | __sched_fork(p); |
| 2610 | 2516 | ||
| 2611 | #ifdef CONFIG_SMP | ||
| 2612 | cpu = sched_balance_self(cpu, SD_BALANCE_FORK); | ||
| 2613 | #endif | ||
| 2614 | set_task_cpu(p, cpu); | ||
| 2615 | |||
| 2616 | /* | 2517 | /* |
| 2617 | * Make sure we do not leak PI boosting priority to the child: | 2518 | * Make sure we do not leak PI boosting priority to the child. |
| 2618 | */ | 2519 | */ |
| 2619 | p->prio = current->normal_prio; | 2520 | p->prio = current->normal_prio; |
| 2521 | |||
| 2522 | /* | ||
| 2523 | * Revert to default priority/policy on fork if requested. | ||
| 2524 | */ | ||
| 2525 | if (unlikely(p->sched_reset_on_fork)) { | ||
| 2526 | if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) | ||
| 2527 | p->policy = SCHED_NORMAL; | ||
| 2528 | |||
| 2529 | if (p->normal_prio < DEFAULT_PRIO) | ||
| 2530 | p->prio = DEFAULT_PRIO; | ||
| 2531 | |||
| 2532 | if (PRIO_TO_NICE(p->static_prio) < 0) { | ||
| 2533 | p->static_prio = NICE_TO_PRIO(0); | ||
| 2534 | set_load_weight(p); | ||
| 2535 | } | ||
| 2536 | |||
| 2537 | /* | ||
| 2538 | * We don't need the reset flag anymore after the fork. It has | ||
| 2539 | * fulfilled its duty: | ||
| 2540 | */ | ||
| 2541 | p->sched_reset_on_fork = 0; | ||
| 2542 | } | ||
| 2543 | |||
| 2620 | if (!rt_prio(p->prio)) | 2544 | if (!rt_prio(p->prio)) |
| 2621 | p->sched_class = &fair_sched_class; | 2545 | p->sched_class = &fair_sched_class; |
| 2622 | 2546 | ||
| 2547 | #ifdef CONFIG_SMP | ||
| 2548 | cpu = p->sched_class->select_task_rq(p, SD_BALANCE_FORK, 0); | ||
| 2549 | #endif | ||
| 2550 | set_task_cpu(p, cpu); | ||
| 2551 | |||
| 2623 | #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) | 2552 | #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) |
| 2624 | if (likely(sched_info_on())) | 2553 | if (likely(sched_info_on())) |
| 2625 | memset(&p->sched_info, 0, sizeof(p->sched_info)); | 2554 | memset(&p->sched_info, 0, sizeof(p->sched_info)); |
| @@ -2665,7 +2594,7 @@ void wake_up_new_task(struct task_struct *p, unsigned long clone_flags) | |||
| 2665 | inc_nr_running(rq); | 2594 | inc_nr_running(rq); |
| 2666 | } | 2595 | } |
| 2667 | trace_sched_wakeup_new(rq, p, 1); | 2596 | trace_sched_wakeup_new(rq, p, 1); |
| 2668 | check_preempt_curr(rq, p, 0); | 2597 | check_preempt_curr(rq, p, WF_FORK); |
| 2669 | #ifdef CONFIG_SMP | 2598 | #ifdef CONFIG_SMP |
| 2670 | if (p->sched_class->task_wake_up) | 2599 | if (p->sched_class->task_wake_up) |
| 2671 | p->sched_class->task_wake_up(rq, p); | 2600 | p->sched_class->task_wake_up(rq, p); |
| @@ -2773,12 +2702,6 @@ static void finish_task_switch(struct rq *rq, struct task_struct *prev) | |||
| 2773 | { | 2702 | { |
| 2774 | struct mm_struct *mm = rq->prev_mm; | 2703 | struct mm_struct *mm = rq->prev_mm; |
| 2775 | long prev_state; | 2704 | long prev_state; |
| 2776 | #ifdef CONFIG_SMP | ||
| 2777 | int post_schedule = 0; | ||
| 2778 | |||
| 2779 | if (current->sched_class->needs_post_schedule) | ||
| 2780 | post_schedule = current->sched_class->needs_post_schedule(rq); | ||
| 2781 | #endif | ||
| 2782 | 2705 | ||
| 2783 | rq->prev_mm = NULL; | 2706 | rq->prev_mm = NULL; |
| 2784 | 2707 | ||
| @@ -2795,12 +2718,8 @@ static void finish_task_switch(struct rq *rq, struct task_struct *prev) | |||
| 2795 | */ | 2718 | */ |
| 2796 | prev_state = prev->state; | 2719 | prev_state = prev->state; |
| 2797 | finish_arch_switch(prev); | 2720 | finish_arch_switch(prev); |
| 2798 | perf_counter_task_sched_in(current, cpu_of(rq)); | 2721 | perf_event_task_sched_in(current, cpu_of(rq)); |
| 2799 | finish_lock_switch(rq, prev); | 2722 | finish_lock_switch(rq, prev); |
| 2800 | #ifdef CONFIG_SMP | ||
| 2801 | if (post_schedule) | ||
| 2802 | current->sched_class->post_schedule(rq); | ||
| 2803 | #endif | ||
| 2804 | 2723 | ||
| 2805 | fire_sched_in_preempt_notifiers(current); | 2724 | fire_sched_in_preempt_notifiers(current); |
| 2806 | if (mm) | 2725 | if (mm) |
| @@ -2815,6 +2734,42 @@ static void finish_task_switch(struct rq *rq, struct task_struct *prev) | |||
| 2815 | } | 2734 | } |
| 2816 | } | 2735 | } |
| 2817 | 2736 | ||
| 2737 | #ifdef CONFIG_SMP | ||
| 2738 | |||
| 2739 | /* assumes rq->lock is held */ | ||
| 2740 | static inline void pre_schedule(struct rq *rq, struct task_struct *prev) | ||
| 2741 | { | ||
| 2742 | if (prev->sched_class->pre_schedule) | ||
| 2743 | prev->sched_class->pre_schedule(rq, prev); | ||
| 2744 | } | ||
| 2745 | |||
| 2746 | /* rq->lock is NOT held, but preemption is disabled */ | ||
| 2747 | static inline void post_schedule(struct rq *rq) | ||
| 2748 | { | ||
| 2749 | if (rq->post_schedule) { | ||
| 2750 | unsigned long flags; | ||
| 2751 | |||
| 2752 | spin_lock_irqsave(&rq->lock, flags); | ||
| 2753 | if (rq->curr->sched_class->post_schedule) | ||
| 2754 | rq->curr->sched_class->post_schedule(rq); | ||
| 2755 | spin_unlock_irqrestore(&rq->lock, flags); | ||
| 2756 | |||
| 2757 | rq->post_schedule = 0; | ||
| 2758 | } | ||
| 2759 | } | ||
| 2760 | |||
| 2761 | #else | ||
| 2762 | |||
| 2763 | static inline void pre_schedule(struct rq *rq, struct task_struct *p) | ||
| 2764 | { | ||
| 2765 | } | ||
| 2766 | |||
| 2767 | static inline void post_schedule(struct rq *rq) | ||
| 2768 | { | ||
| 2769 | } | ||
| 2770 | |||
| 2771 | #endif | ||
| 2772 | |||
| 2818 | /** | 2773 | /** |
| 2819 | * schedule_tail - first thing a freshly forked thread must call. | 2774 | * schedule_tail - first thing a freshly forked thread must call. |
| 2820 | * @prev: the thread we just switched away from. | 2775 | * @prev: the thread we just switched away from. |
| @@ -2825,6 +2780,13 @@ asmlinkage void schedule_tail(struct task_struct *prev) | |||
| 2825 | struct rq *rq = this_rq(); | 2780 | struct rq *rq = this_rq(); |
| 2826 | 2781 | ||
| 2827 | finish_task_switch(rq, prev); | 2782 | finish_task_switch(rq, prev); |
| 2783 | |||
| 2784 | /* | ||
| 2785 | * FIXME: do we need to worry about rq being invalidated by the | ||
| 2786 | * task_switch? | ||
| 2787 | */ | ||
| 2788 | post_schedule(rq); | ||
| 2789 | |||
| 2828 | #ifdef __ARCH_WANT_UNLOCKED_CTXSW | 2790 | #ifdef __ARCH_WANT_UNLOCKED_CTXSW |
| 2829 | /* In this case, finish_task_switch does not reenable preemption */ | 2791 | /* In this case, finish_task_switch does not reenable preemption */ |
| 2830 | preempt_enable(); | 2792 | preempt_enable(); |
| @@ -2942,6 +2904,19 @@ unsigned long nr_iowait(void) | |||
| 2942 | return sum; | 2904 | return sum; |
| 2943 | } | 2905 | } |
| 2944 | 2906 | ||
| 2907 | unsigned long nr_iowait_cpu(void) | ||
| 2908 | { | ||
| 2909 | struct rq *this = this_rq(); | ||
| 2910 | return atomic_read(&this->nr_iowait); | ||
| 2911 | } | ||
| 2912 | |||
| 2913 | unsigned long this_cpu_load(void) | ||
| 2914 | { | ||
| 2915 | struct rq *this = this_rq(); | ||
| 2916 | return this->cpu_load[0]; | ||
| 2917 | } | ||
| 2918 | |||
| 2919 | |||
| 2945 | /* Variables and functions for calc_load */ | 2920 | /* Variables and functions for calc_load */ |
| 2946 | static atomic_long_t calc_load_tasks; | 2921 | static atomic_long_t calc_load_tasks; |
| 2947 | static unsigned long calc_load_update; | 2922 | static unsigned long calc_load_update; |
| @@ -3141,7 +3116,7 @@ out: | |||
| 3141 | void sched_exec(void) | 3116 | void sched_exec(void) |
| 3142 | { | 3117 | { |
| 3143 | int new_cpu, this_cpu = get_cpu(); | 3118 | int new_cpu, this_cpu = get_cpu(); |
| 3144 | new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC); | 3119 | new_cpu = current->sched_class->select_task_rq(current, SD_BALANCE_EXEC, 0); |
| 3145 | put_cpu(); | 3120 | put_cpu(); |
| 3146 | if (new_cpu != this_cpu) | 3121 | if (new_cpu != this_cpu) |
| 3147 | sched_migrate_task(current, new_cpu); | 3122 | sched_migrate_task(current, new_cpu); |
| @@ -3356,9 +3331,10 @@ static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, | |||
| 3356 | { | 3331 | { |
| 3357 | const struct sched_class *class; | 3332 | const struct sched_class *class; |
| 3358 | 3333 | ||
| 3359 | for (class = sched_class_highest; class; class = class->next) | 3334 | for_each_class(class) { |
| 3360 | if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle)) | 3335 | if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle)) |
| 3361 | return 1; | 3336 | return 1; |
| 3337 | } | ||
| 3362 | 3338 | ||
| 3363 | return 0; | 3339 | return 0; |
| 3364 | } | 3340 | } |
| @@ -3521,7 +3497,7 @@ static inline void update_sd_power_savings_stats(struct sched_group *group, | |||
| 3521 | * capacity but still has some space to pick up some load | 3497 | * capacity but still has some space to pick up some load |
| 3522 | * from other group and save more power | 3498 | * from other group and save more power |
| 3523 | */ | 3499 | */ |
| 3524 | if (sgs->sum_nr_running > sgs->group_capacity - 1) | 3500 | if (sgs->sum_nr_running + 1 > sgs->group_capacity) |
| 3525 | return; | 3501 | return; |
| 3526 | 3502 | ||
| 3527 | if (sgs->sum_nr_running > sds->leader_nr_running || | 3503 | if (sgs->sum_nr_running > sds->leader_nr_running || |
| @@ -3560,11 +3536,6 @@ static inline int check_power_save_busiest_group(struct sd_lb_stats *sds, | |||
| 3560 | *imbalance = sds->min_load_per_task; | 3536 | *imbalance = sds->min_load_per_task; |
| 3561 | sds->busiest = sds->group_min; | 3537 | sds->busiest = sds->group_min; |
| 3562 | 3538 | ||
| 3563 | if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) { | ||
| 3564 | cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu = | ||
| 3565 | group_first_cpu(sds->group_leader); | ||
| 3566 | } | ||
| 3567 | |||
| 3568 | return 1; | 3539 | return 1; |
| 3569 | 3540 | ||
| 3570 | } | 3541 | } |
| @@ -3589,6 +3560,102 @@ static inline int check_power_save_busiest_group(struct sd_lb_stats *sds, | |||
| 3589 | #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ | 3560 | #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ |
| 3590 | 3561 | ||
| 3591 | 3562 | ||
| 3563 | unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu) | ||
| 3564 | { | ||
| 3565 | return SCHED_LOAD_SCALE; | ||
| 3566 | } | ||
| 3567 | |||
| 3568 | unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu) | ||
| 3569 | { | ||
| 3570 | return default_scale_freq_power(sd, cpu); | ||
| 3571 | } | ||
| 3572 | |||
| 3573 | unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu) | ||
| 3574 | { | ||
| 3575 | unsigned long weight = cpumask_weight(sched_domain_span(sd)); | ||
| 3576 | unsigned long smt_gain = sd->smt_gain; | ||
| 3577 | |||
| 3578 | smt_gain /= weight; | ||
| 3579 | |||
| 3580 | return smt_gain; | ||
| 3581 | } | ||
| 3582 | |||
| 3583 | unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu) | ||
| 3584 | { | ||
| 3585 | return default_scale_smt_power(sd, cpu); | ||
| 3586 | } | ||
| 3587 | |||
| 3588 | unsigned long scale_rt_power(int cpu) | ||
| 3589 | { | ||
| 3590 | struct rq *rq = cpu_rq(cpu); | ||
| 3591 | u64 total, available; | ||
| 3592 | |||
| 3593 | sched_avg_update(rq); | ||
| 3594 | |||
| 3595 | total = sched_avg_period() + (rq->clock - rq->age_stamp); | ||
| 3596 | available = total - rq->rt_avg; | ||
| 3597 | |||
| 3598 | if (unlikely((s64)total < SCHED_LOAD_SCALE)) | ||
| 3599 | total = SCHED_LOAD_SCALE; | ||
| 3600 | |||
| 3601 | total >>= SCHED_LOAD_SHIFT; | ||
| 3602 | |||
| 3603 | return div_u64(available, total); | ||
| 3604 | } | ||
| 3605 | |||
| 3606 | static void update_cpu_power(struct sched_domain *sd, int cpu) | ||
| 3607 | { | ||
| 3608 | unsigned long weight = cpumask_weight(sched_domain_span(sd)); | ||
| 3609 | unsigned long power = SCHED_LOAD_SCALE; | ||
| 3610 | struct sched_group *sdg = sd->groups; | ||
| 3611 | |||
| 3612 | if (sched_feat(ARCH_POWER)) | ||
| 3613 | power *= arch_scale_freq_power(sd, cpu); | ||
| 3614 | else | ||
| 3615 | power *= default_scale_freq_power(sd, cpu); | ||
| 3616 | |||
| 3617 | power >>= SCHED_LOAD_SHIFT; | ||
| 3618 | |||
| 3619 | if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) { | ||
| 3620 | if (sched_feat(ARCH_POWER)) | ||
| 3621 | power *= arch_scale_smt_power(sd, cpu); | ||
| 3622 | else | ||
| 3623 | power *= default_scale_smt_power(sd, cpu); | ||
| 3624 | |||
| 3625 | power >>= SCHED_LOAD_SHIFT; | ||
| 3626 | } | ||
| 3627 | |||
| 3628 | power *= scale_rt_power(cpu); | ||
| 3629 | power >>= SCHED_LOAD_SHIFT; | ||
| 3630 | |||
| 3631 | if (!power) | ||
| 3632 | power = 1; | ||
| 3633 | |||
| 3634 | sdg->cpu_power = power; | ||
| 3635 | } | ||
| 3636 | |||
| 3637 | static void update_group_power(struct sched_domain *sd, int cpu) | ||
| 3638 | { | ||
| 3639 | struct sched_domain *child = sd->child; | ||
| 3640 | struct sched_group *group, *sdg = sd->groups; | ||
| 3641 | unsigned long power; | ||
| 3642 | |||
| 3643 | if (!child) { | ||
| 3644 | update_cpu_power(sd, cpu); | ||
| 3645 | return; | ||
| 3646 | } | ||
| 3647 | |||
| 3648 | power = 0; | ||
| 3649 | |||
| 3650 | group = child->groups; | ||
| 3651 | do { | ||
| 3652 | power += group->cpu_power; | ||
| 3653 | group = group->next; | ||
| 3654 | } while (group != child->groups); | ||
| 3655 | |||
| 3656 | sdg->cpu_power = power; | ||
| 3657 | } | ||
| 3658 | |||
| 3592 | /** | 3659 | /** |
| 3593 | * update_sg_lb_stats - Update sched_group's statistics for load balancing. | 3660 | * update_sg_lb_stats - Update sched_group's statistics for load balancing. |
| 3594 | * @group: sched_group whose statistics are to be updated. | 3661 | * @group: sched_group whose statistics are to be updated. |
| @@ -3601,7 +3668,8 @@ static inline int check_power_save_busiest_group(struct sd_lb_stats *sds, | |||
| 3601 | * @balance: Should we balance. | 3668 | * @balance: Should we balance. |
| 3602 | * @sgs: variable to hold the statistics for this group. | 3669 | * @sgs: variable to hold the statistics for this group. |
| 3603 | */ | 3670 | */ |
| 3604 | static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu, | 3671 | static inline void update_sg_lb_stats(struct sched_domain *sd, |
| 3672 | struct sched_group *group, int this_cpu, | ||
| 3605 | enum cpu_idle_type idle, int load_idx, int *sd_idle, | 3673 | enum cpu_idle_type idle, int load_idx, int *sd_idle, |
| 3606 | int local_group, const struct cpumask *cpus, | 3674 | int local_group, const struct cpumask *cpus, |
| 3607 | int *balance, struct sg_lb_stats *sgs) | 3675 | int *balance, struct sg_lb_stats *sgs) |
| @@ -3612,8 +3680,11 @@ static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu, | |||
| 3612 | unsigned long sum_avg_load_per_task; | 3680 | unsigned long sum_avg_load_per_task; |
| 3613 | unsigned long avg_load_per_task; | 3681 | unsigned long avg_load_per_task; |
| 3614 | 3682 | ||
| 3615 | if (local_group) | 3683 | if (local_group) { |
| 3616 | balance_cpu = group_first_cpu(group); | 3684 | balance_cpu = group_first_cpu(group); |
| 3685 | if (balance_cpu == this_cpu) | ||
| 3686 | update_group_power(sd, this_cpu); | ||
| 3687 | } | ||
| 3617 | 3688 | ||
| 3618 | /* Tally up the load of all CPUs in the group */ | 3689 | /* Tally up the load of all CPUs in the group */ |
| 3619 | sum_avg_load_per_task = avg_load_per_task = 0; | 3690 | sum_avg_load_per_task = avg_load_per_task = 0; |
| @@ -3662,8 +3733,7 @@ static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu, | |||
| 3662 | } | 3733 | } |
| 3663 | 3734 | ||
| 3664 | /* Adjust by relative CPU power of the group */ | 3735 | /* Adjust by relative CPU power of the group */ |
| 3665 | sgs->avg_load = sg_div_cpu_power(group, | 3736 | sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power; |
| 3666 | sgs->group_load * SCHED_LOAD_SCALE); | ||
| 3667 | 3737 | ||
| 3668 | 3738 | ||
| 3669 | /* | 3739 | /* |
| @@ -3675,14 +3745,14 @@ static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu, | |||
| 3675 | * normalized nr_running number somewhere that negates | 3745 | * normalized nr_running number somewhere that negates |
| 3676 | * the hierarchy? | 3746 | * the hierarchy? |
| 3677 | */ | 3747 | */ |
| 3678 | avg_load_per_task = sg_div_cpu_power(group, | 3748 | avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) / |
| 3679 | sum_avg_load_per_task * SCHED_LOAD_SCALE); | 3749 | group->cpu_power; |
| 3680 | 3750 | ||
| 3681 | if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task) | 3751 | if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task) |
| 3682 | sgs->group_imb = 1; | 3752 | sgs->group_imb = 1; |
| 3683 | 3753 | ||
| 3684 | sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE; | 3754 | sgs->group_capacity = |
| 3685 | 3755 | DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE); | |
| 3686 | } | 3756 | } |
| 3687 | 3757 | ||
| 3688 | /** | 3758 | /** |
| @@ -3700,9 +3770,13 @@ static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu, | |||
| 3700 | const struct cpumask *cpus, int *balance, | 3770 | const struct cpumask *cpus, int *balance, |
| 3701 | struct sd_lb_stats *sds) | 3771 | struct sd_lb_stats *sds) |
| 3702 | { | 3772 | { |
| 3773 | struct sched_domain *child = sd->child; | ||
| 3703 | struct sched_group *group = sd->groups; | 3774 | struct sched_group *group = sd->groups; |
| 3704 | struct sg_lb_stats sgs; | 3775 | struct sg_lb_stats sgs; |
| 3705 | int load_idx; | 3776 | int load_idx, prefer_sibling = 0; |
| 3777 | |||
| 3778 | if (child && child->flags & SD_PREFER_SIBLING) | ||
| 3779 | prefer_sibling = 1; | ||
| 3706 | 3780 | ||
| 3707 | init_sd_power_savings_stats(sd, sds, idle); | 3781 | init_sd_power_savings_stats(sd, sds, idle); |
| 3708 | load_idx = get_sd_load_idx(sd, idle); | 3782 | load_idx = get_sd_load_idx(sd, idle); |
| @@ -3713,14 +3787,22 @@ static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu, | |||
| 3713 | local_group = cpumask_test_cpu(this_cpu, | 3787 | local_group = cpumask_test_cpu(this_cpu, |
| 3714 | sched_group_cpus(group)); | 3788 | sched_group_cpus(group)); |
| 3715 | memset(&sgs, 0, sizeof(sgs)); | 3789 | memset(&sgs, 0, sizeof(sgs)); |
| 3716 | update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle, | 3790 | update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle, |
| 3717 | local_group, cpus, balance, &sgs); | 3791 | local_group, cpus, balance, &sgs); |
| 3718 | 3792 | ||
| 3719 | if (local_group && balance && !(*balance)) | 3793 | if (local_group && balance && !(*balance)) |
| 3720 | return; | 3794 | return; |
| 3721 | 3795 | ||
| 3722 | sds->total_load += sgs.group_load; | 3796 | sds->total_load += sgs.group_load; |
| 3723 | sds->total_pwr += group->__cpu_power; | 3797 | sds->total_pwr += group->cpu_power; |
| 3798 | |||
| 3799 | /* | ||
| 3800 | * In case the child domain prefers tasks go to siblings | ||
| 3801 | * first, lower the group capacity to one so that we'll try | ||
| 3802 | * and move all the excess tasks away. | ||
| 3803 | */ | ||
| 3804 | if (prefer_sibling) | ||
| 3805 | sgs.group_capacity = min(sgs.group_capacity, 1UL); | ||
| 3724 | 3806 | ||
| 3725 | if (local_group) { | 3807 | if (local_group) { |
| 3726 | sds->this_load = sgs.avg_load; | 3808 | sds->this_load = sgs.avg_load; |
| @@ -3740,7 +3822,6 @@ static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu, | |||
| 3740 | update_sd_power_savings_stats(group, sds, local_group, &sgs); | 3822 | update_sd_power_savings_stats(group, sds, local_group, &sgs); |
| 3741 | group = group->next; | 3823 | group = group->next; |
| 3742 | } while (group != sd->groups); | 3824 | } while (group != sd->groups); |
| 3743 | |||
| 3744 | } | 3825 | } |
| 3745 | 3826 | ||
| 3746 | /** | 3827 | /** |
| @@ -3778,28 +3859,28 @@ static inline void fix_small_imbalance(struct sd_lb_stats *sds, | |||
| 3778 | * moving them. | 3859 | * moving them. |
| 3779 | */ | 3860 | */ |
| 3780 | 3861 | ||
| 3781 | pwr_now += sds->busiest->__cpu_power * | 3862 | pwr_now += sds->busiest->cpu_power * |
| 3782 | min(sds->busiest_load_per_task, sds->max_load); | 3863 | min(sds->busiest_load_per_task, sds->max_load); |
| 3783 | pwr_now += sds->this->__cpu_power * | 3864 | pwr_now += sds->this->cpu_power * |
| 3784 | min(sds->this_load_per_task, sds->this_load); | 3865 | min(sds->this_load_per_task, sds->this_load); |
| 3785 | pwr_now /= SCHED_LOAD_SCALE; | 3866 | pwr_now /= SCHED_LOAD_SCALE; |
| 3786 | 3867 | ||
| 3787 | /* Amount of load we'd subtract */ | 3868 | /* Amount of load we'd subtract */ |
| 3788 | tmp = sg_div_cpu_power(sds->busiest, | 3869 | tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) / |
| 3789 | sds->busiest_load_per_task * SCHED_LOAD_SCALE); | 3870 | sds->busiest->cpu_power; |
| 3790 | if (sds->max_load > tmp) | 3871 | if (sds->max_load > tmp) |
| 3791 | pwr_move += sds->busiest->__cpu_power * | 3872 | pwr_move += sds->busiest->cpu_power * |
| 3792 | min(sds->busiest_load_per_task, sds->max_load - tmp); | 3873 | min(sds->busiest_load_per_task, sds->max_load - tmp); |
| 3793 | 3874 | ||
| 3794 | /* Amount of load we'd add */ | 3875 | /* Amount of load we'd add */ |
| 3795 | if (sds->max_load * sds->busiest->__cpu_power < | 3876 | if (sds->max_load * sds->busiest->cpu_power < |
| 3796 | sds->busiest_load_per_task * SCHED_LOAD_SCALE) | 3877 | sds->busiest_load_per_task * SCHED_LOAD_SCALE) |
| 3797 | tmp = sg_div_cpu_power(sds->this, | 3878 | tmp = (sds->max_load * sds->busiest->cpu_power) / |
| 3798 | sds->max_load * sds->busiest->__cpu_power); | 3879 | sds->this->cpu_power; |
| 3799 | else | 3880 | else |
| 3800 | tmp = sg_div_cpu_power(sds->this, | 3881 | tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) / |
| 3801 | sds->busiest_load_per_task * SCHED_LOAD_SCALE); | 3882 | sds->this->cpu_power; |
| 3802 | pwr_move += sds->this->__cpu_power * | 3883 | pwr_move += sds->this->cpu_power * |
| 3803 | min(sds->this_load_per_task, sds->this_load + tmp); | 3884 | min(sds->this_load_per_task, sds->this_load + tmp); |
| 3804 | pwr_move /= SCHED_LOAD_SCALE; | 3885 | pwr_move /= SCHED_LOAD_SCALE; |
| 3805 | 3886 | ||
| @@ -3834,8 +3915,8 @@ static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu, | |||
| 3834 | sds->max_load - sds->busiest_load_per_task); | 3915 | sds->max_load - sds->busiest_load_per_task); |
| 3835 | 3916 | ||
| 3836 | /* How much load to actually move to equalise the imbalance */ | 3917 | /* How much load to actually move to equalise the imbalance */ |
| 3837 | *imbalance = min(max_pull * sds->busiest->__cpu_power, | 3918 | *imbalance = min(max_pull * sds->busiest->cpu_power, |
| 3838 | (sds->avg_load - sds->this_load) * sds->this->__cpu_power) | 3919 | (sds->avg_load - sds->this_load) * sds->this->cpu_power) |
| 3839 | / SCHED_LOAD_SCALE; | 3920 | / SCHED_LOAD_SCALE; |
| 3840 | 3921 | ||
| 3841 | /* | 3922 | /* |
| @@ -3965,15 +4046,18 @@ find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle, | |||
| 3965 | int i; | 4046 | int i; |
| 3966 | 4047 | ||
| 3967 | for_each_cpu(i, sched_group_cpus(group)) { | 4048 | for_each_cpu(i, sched_group_cpus(group)) { |
| 4049 | unsigned long power = power_of(i); | ||
| 4050 | unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE); | ||
| 3968 | unsigned long wl; | 4051 | unsigned long wl; |
| 3969 | 4052 | ||
| 3970 | if (!cpumask_test_cpu(i, cpus)) | 4053 | if (!cpumask_test_cpu(i, cpus)) |
| 3971 | continue; | 4054 | continue; |
| 3972 | 4055 | ||
| 3973 | rq = cpu_rq(i); | 4056 | rq = cpu_rq(i); |
| 3974 | wl = weighted_cpuload(i); | 4057 | wl = weighted_cpuload(i) * SCHED_LOAD_SCALE; |
| 4058 | wl /= power; | ||
| 3975 | 4059 | ||
| 3976 | if (rq->nr_running == 1 && wl > imbalance) | 4060 | if (capacity && rq->nr_running == 1 && wl > imbalance) |
| 3977 | continue; | 4061 | continue; |
| 3978 | 4062 | ||
| 3979 | if (wl > max_load) { | 4063 | if (wl > max_load) { |
| @@ -5122,7 +5206,7 @@ void scheduler_tick(void) | |||
| 5122 | curr->sched_class->task_tick(rq, curr, 0); | 5206 | curr->sched_class->task_tick(rq, curr, 0); |
| 5123 | spin_unlock(&rq->lock); | 5207 | spin_unlock(&rq->lock); |
| 5124 | 5208 | ||
| 5125 | perf_counter_task_tick(curr, cpu); | 5209 | perf_event_task_tick(curr, cpu); |
| 5126 | 5210 | ||
| 5127 | #ifdef CONFIG_SMP | 5211 | #ifdef CONFIG_SMP |
| 5128 | rq->idle_at_tick = idle_cpu(cpu); | 5212 | rq->idle_at_tick = idle_cpu(cpu); |
| @@ -5234,14 +5318,13 @@ static inline void schedule_debug(struct task_struct *prev) | |||
| 5234 | #endif | 5318 | #endif |
| 5235 | } | 5319 | } |
| 5236 | 5320 | ||
| 5237 | static void put_prev_task(struct rq *rq, struct task_struct *prev) | 5321 | static void put_prev_task(struct rq *rq, struct task_struct *p) |
| 5238 | { | 5322 | { |
| 5239 | if (prev->state == TASK_RUNNING) { | 5323 | u64 runtime = p->se.sum_exec_runtime - p->se.prev_sum_exec_runtime; |
| 5240 | u64 runtime = prev->se.sum_exec_runtime; | ||
| 5241 | 5324 | ||
| 5242 | runtime -= prev->se.prev_sum_exec_runtime; | 5325 | update_avg(&p->se.avg_running, runtime); |
| 5243 | runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost); | ||
| 5244 | 5326 | ||
| 5327 | if (p->state == TASK_RUNNING) { | ||
| 5245 | /* | 5328 | /* |
| 5246 | * In order to avoid avg_overlap growing stale when we are | 5329 | * In order to avoid avg_overlap growing stale when we are |
| 5247 | * indeed overlapping and hence not getting put to sleep, grow | 5330 | * indeed overlapping and hence not getting put to sleep, grow |
| @@ -5251,9 +5334,12 @@ static void put_prev_task(struct rq *rq, struct task_struct *prev) | |||
| 5251 | * correlates to the amount of cache footprint a task can | 5334 | * correlates to the amount of cache footprint a task can |
| 5252 | * build up. | 5335 | * build up. |
| 5253 | */ | 5336 | */ |
| 5254 | update_avg(&prev->se.avg_overlap, runtime); | 5337 | runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost); |
| 5338 | update_avg(&p->se.avg_overlap, runtime); | ||
| 5339 | } else { | ||
| 5340 | update_avg(&p->se.avg_running, 0); | ||
| 5255 | } | 5341 | } |
| 5256 | prev->sched_class->put_prev_task(rq, prev); | 5342 | p->sched_class->put_prev_task(rq, p); |
| 5257 | } | 5343 | } |
| 5258 | 5344 | ||
| 5259 | /* | 5345 | /* |
| @@ -5302,7 +5388,7 @@ need_resched: | |||
| 5302 | preempt_disable(); | 5388 | preempt_disable(); |
| 5303 | cpu = smp_processor_id(); | 5389 | cpu = smp_processor_id(); |
| 5304 | rq = cpu_rq(cpu); | 5390 | rq = cpu_rq(cpu); |
| 5305 | rcu_qsctr_inc(cpu); | 5391 | rcu_sched_qs(cpu); |
| 5306 | prev = rq->curr; | 5392 | prev = rq->curr; |
| 5307 | switch_count = &prev->nivcsw; | 5393 | switch_count = &prev->nivcsw; |
| 5308 | 5394 | ||
| @@ -5326,10 +5412,7 @@ need_resched_nonpreemptible: | |||
| 5326 | switch_count = &prev->nvcsw; | 5412 | switch_count = &prev->nvcsw; |
| 5327 | } | 5413 | } |
| 5328 | 5414 | ||
| 5329 | #ifdef CONFIG_SMP | 5415 | pre_schedule(rq, prev); |
| 5330 | if (prev->sched_class->pre_schedule) | ||
| 5331 | prev->sched_class->pre_schedule(rq, prev); | ||
| 5332 | #endif | ||
| 5333 | 5416 | ||
| 5334 | if (unlikely(!rq->nr_running)) | 5417 | if (unlikely(!rq->nr_running)) |
| 5335 | idle_balance(cpu, rq); | 5418 | idle_balance(cpu, rq); |
| @@ -5339,7 +5422,7 @@ need_resched_nonpreemptible: | |||
| 5339 | 5422 | ||
| 5340 | if (likely(prev != next)) { | 5423 | if (likely(prev != next)) { |
| 5341 | sched_info_switch(prev, next); | 5424 | sched_info_switch(prev, next); |
| 5342 | perf_counter_task_sched_out(prev, next, cpu); | 5425 | perf_event_task_sched_out(prev, next, cpu); |
| 5343 | 5426 | ||
| 5344 | rq->nr_switches++; | 5427 | rq->nr_switches++; |
| 5345 | rq->curr = next; | 5428 | rq->curr = next; |
| @@ -5355,6 +5438,8 @@ need_resched_nonpreemptible: | |||
| 5355 | } else | 5438 | } else |
| 5356 | spin_unlock_irq(&rq->lock); | 5439 | spin_unlock_irq(&rq->lock); |
| 5357 | 5440 | ||
| 5441 | post_schedule(rq); | ||
| 5442 | |||
| 5358 | if (unlikely(reacquire_kernel_lock(current) < 0)) | 5443 | if (unlikely(reacquire_kernel_lock(current) < 0)) |
| 5359 | goto need_resched_nonpreemptible; | 5444 | goto need_resched_nonpreemptible; |
| 5360 | 5445 | ||
| @@ -5486,10 +5571,10 @@ asmlinkage void __sched preempt_schedule_irq(void) | |||
| 5486 | 5571 | ||
| 5487 | #endif /* CONFIG_PREEMPT */ | 5572 | #endif /* CONFIG_PREEMPT */ |
| 5488 | 5573 | ||
| 5489 | int default_wake_function(wait_queue_t *curr, unsigned mode, int sync, | 5574 | int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags, |
| 5490 | void *key) | 5575 | void *key) |
| 5491 | { | 5576 | { |
| 5492 | return try_to_wake_up(curr->private, mode, sync); | 5577 | return try_to_wake_up(curr->private, mode, wake_flags); |
| 5493 | } | 5578 | } |
| 5494 | EXPORT_SYMBOL(default_wake_function); | 5579 | EXPORT_SYMBOL(default_wake_function); |
| 5495 | 5580 | ||
| @@ -5503,14 +5588,14 @@ EXPORT_SYMBOL(default_wake_function); | |||
| 5503 | * zero in this (rare) case, and we handle it by continuing to scan the queue. | 5588 | * zero in this (rare) case, and we handle it by continuing to scan the queue. |
| 5504 | */ | 5589 | */ |
| 5505 | static void __wake_up_common(wait_queue_head_t *q, unsigned int mode, | 5590 | static void __wake_up_common(wait_queue_head_t *q, unsigned int mode, |
| 5506 | int nr_exclusive, int sync, void *key) | 5591 | int nr_exclusive, int wake_flags, void *key) |
| 5507 | { | 5592 | { |
| 5508 | wait_queue_t *curr, *next; | 5593 | wait_queue_t *curr, *next; |
| 5509 | 5594 | ||
| 5510 | list_for_each_entry_safe(curr, next, &q->task_list, task_list) { | 5595 | list_for_each_entry_safe(curr, next, &q->task_list, task_list) { |
| 5511 | unsigned flags = curr->flags; | 5596 | unsigned flags = curr->flags; |
| 5512 | 5597 | ||
| 5513 | if (curr->func(curr, mode, sync, key) && | 5598 | if (curr->func(curr, mode, wake_flags, key) && |
| 5514 | (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive) | 5599 | (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive) |
| 5515 | break; | 5600 | break; |
| 5516 | } | 5601 | } |
| @@ -5571,16 +5656,16 @@ void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode, | |||
| 5571 | int nr_exclusive, void *key) | 5656 | int nr_exclusive, void *key) |
| 5572 | { | 5657 | { |
| 5573 | unsigned long flags; | 5658 | unsigned long flags; |
| 5574 | int sync = 1; | 5659 | int wake_flags = WF_SYNC; |
| 5575 | 5660 | ||
| 5576 | if (unlikely(!q)) | 5661 | if (unlikely(!q)) |
| 5577 | return; | 5662 | return; |
| 5578 | 5663 | ||
| 5579 | if (unlikely(!nr_exclusive)) | 5664 | if (unlikely(!nr_exclusive)) |
| 5580 | sync = 0; | 5665 | wake_flags = 0; |
| 5581 | 5666 | ||
| 5582 | spin_lock_irqsave(&q->lock, flags); | 5667 | spin_lock_irqsave(&q->lock, flags); |
| 5583 | __wake_up_common(q, mode, nr_exclusive, sync, key); | 5668 | __wake_up_common(q, mode, nr_exclusive, wake_flags, key); |
| 5584 | spin_unlock_irqrestore(&q->lock, flags); | 5669 | spin_unlock_irqrestore(&q->lock, flags); |
| 5585 | } | 5670 | } |
| 5586 | EXPORT_SYMBOL_GPL(__wake_up_sync_key); | 5671 | EXPORT_SYMBOL_GPL(__wake_up_sync_key); |
| @@ -6100,17 +6185,25 @@ static int __sched_setscheduler(struct task_struct *p, int policy, | |||
| 6100 | unsigned long flags; | 6185 | unsigned long flags; |
| 6101 | const struct sched_class *prev_class = p->sched_class; | 6186 | const struct sched_class *prev_class = p->sched_class; |
| 6102 | struct rq *rq; | 6187 | struct rq *rq; |
| 6188 | int reset_on_fork; | ||
| 6103 | 6189 | ||
| 6104 | /* may grab non-irq protected spin_locks */ | 6190 | /* may grab non-irq protected spin_locks */ |
| 6105 | BUG_ON(in_interrupt()); | 6191 | BUG_ON(in_interrupt()); |
| 6106 | recheck: | 6192 | recheck: |
| 6107 | /* double check policy once rq lock held */ | 6193 | /* double check policy once rq lock held */ |
| 6108 | if (policy < 0) | 6194 | if (policy < 0) { |
| 6195 | reset_on_fork = p->sched_reset_on_fork; | ||
| 6109 | policy = oldpolicy = p->policy; | 6196 | policy = oldpolicy = p->policy; |
| 6110 | else if (policy != SCHED_FIFO && policy != SCHED_RR && | 6197 | } else { |
| 6111 | policy != SCHED_NORMAL && policy != SCHED_BATCH && | 6198 | reset_on_fork = !!(policy & SCHED_RESET_ON_FORK); |
| 6112 | policy != SCHED_IDLE) | 6199 | policy &= ~SCHED_RESET_ON_FORK; |
| 6113 | return -EINVAL; | 6200 | |
| 6201 | if (policy != SCHED_FIFO && policy != SCHED_RR && | ||
| 6202 | policy != SCHED_NORMAL && policy != SCHED_BATCH && | ||
| 6203 | policy != SCHED_IDLE) | ||
| 6204 | return -EINVAL; | ||
| 6205 | } | ||
| 6206 | |||
| 6114 | /* | 6207 | /* |
| 6115 | * Valid priorities for SCHED_FIFO and SCHED_RR are | 6208 | * Valid priorities for SCHED_FIFO and SCHED_RR are |
| 6116 | * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, | 6209 | * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, |
| @@ -6154,6 +6247,10 @@ recheck: | |||
| 6154 | /* can't change other user's priorities */ | 6247 | /* can't change other user's priorities */ |
| 6155 | if (!check_same_owner(p)) | 6248 | if (!check_same_owner(p)) |
| 6156 | return -EPERM; | 6249 | return -EPERM; |
| 6250 | |||
| 6251 | /* Normal users shall not reset the sched_reset_on_fork flag */ | ||
| 6252 | if (p->sched_reset_on_fork && !reset_on_fork) | ||
| 6253 | return -EPERM; | ||
| 6157 | } | 6254 | } |
| 6158 | 6255 | ||
| 6159 | if (user) { | 6256 | if (user) { |
| @@ -6197,6 +6294,8 @@ recheck: | |||
| 6197 | if (running) | 6294 | if (running) |
| 6198 | p->sched_class->put_prev_task(rq, p); | 6295 | p->sched_class->put_prev_task(rq, p); |
| 6199 | 6296 | ||
| 6297 | p->sched_reset_on_fork = reset_on_fork; | ||
| 6298 | |||
| 6200 | oldprio = p->prio; | 6299 | oldprio = p->prio; |
| 6201 | __setscheduler(rq, p, policy, param->sched_priority); | 6300 | __setscheduler(rq, p, policy, param->sched_priority); |
| 6202 | 6301 | ||
| @@ -6313,14 +6412,15 @@ SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) | |||
| 6313 | if (p) { | 6412 | if (p) { |
| 6314 | retval = security_task_getscheduler(p); | 6413 | retval = security_task_getscheduler(p); |
| 6315 | if (!retval) | 6414 | if (!retval) |
| 6316 | retval = p->policy; | 6415 | retval = p->policy |
| 6416 | | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); | ||
| 6317 | } | 6417 | } |
| 6318 | read_unlock(&tasklist_lock); | 6418 | read_unlock(&tasklist_lock); |
| 6319 | return retval; | 6419 | return retval; |
| 6320 | } | 6420 | } |
| 6321 | 6421 | ||
| 6322 | /** | 6422 | /** |
| 6323 | * sys_sched_getscheduler - get the RT priority of a thread | 6423 | * sys_sched_getparam - get the RT priority of a thread |
| 6324 | * @pid: the pid in question. | 6424 | * @pid: the pid in question. |
| 6325 | * @param: structure containing the RT priority. | 6425 | * @param: structure containing the RT priority. |
| 6326 | */ | 6426 | */ |
| @@ -6541,27 +6641,21 @@ SYSCALL_DEFINE0(sched_yield) | |||
| 6541 | return 0; | 6641 | return 0; |
| 6542 | } | 6642 | } |
| 6543 | 6643 | ||
| 6644 | static inline int should_resched(void) | ||
| 6645 | { | ||
| 6646 | return need_resched() && !(preempt_count() & PREEMPT_ACTIVE); | ||
| 6647 | } | ||
| 6648 | |||
| 6544 | static void __cond_resched(void) | 6649 | static void __cond_resched(void) |
| 6545 | { | 6650 | { |
| 6546 | #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP | 6651 | add_preempt_count(PREEMPT_ACTIVE); |
| 6547 | __might_sleep(__FILE__, __LINE__); | 6652 | schedule(); |
| 6548 | #endif | 6653 | sub_preempt_count(PREEMPT_ACTIVE); |
| 6549 | /* | ||
| 6550 | * The BKS might be reacquired before we have dropped | ||
| 6551 | * PREEMPT_ACTIVE, which could trigger a second | ||
| 6552 | * cond_resched() call. | ||
| 6553 | */ | ||
| 6554 | do { | ||
| 6555 | add_preempt_count(PREEMPT_ACTIVE); | ||
| 6556 | schedule(); | ||
| 6557 | sub_preempt_count(PREEMPT_ACTIVE); | ||
| 6558 | } while (need_resched()); | ||
| 6559 | } | 6654 | } |
| 6560 | 6655 | ||
| 6561 | int __sched _cond_resched(void) | 6656 | int __sched _cond_resched(void) |
| 6562 | { | 6657 | { |
| 6563 | if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) && | 6658 | if (should_resched()) { |
| 6564 | system_state == SYSTEM_RUNNING) { | ||
| 6565 | __cond_resched(); | 6659 | __cond_resched(); |
| 6566 | return 1; | 6660 | return 1; |
| 6567 | } | 6661 | } |
| @@ -6570,21 +6664,23 @@ int __sched _cond_resched(void) | |||
| 6570 | EXPORT_SYMBOL(_cond_resched); | 6664 | EXPORT_SYMBOL(_cond_resched); |
| 6571 | 6665 | ||
| 6572 | /* | 6666 | /* |
| 6573 | * cond_resched_lock() - if a reschedule is pending, drop the given lock, | 6667 | * __cond_resched_lock() - if a reschedule is pending, drop the given lock, |
| 6574 | * call schedule, and on return reacquire the lock. | 6668 | * call schedule, and on return reacquire the lock. |
| 6575 | * | 6669 | * |
| 6576 | * This works OK both with and without CONFIG_PREEMPT. We do strange low-level | 6670 | * This works OK both with and without CONFIG_PREEMPT. We do strange low-level |
| 6577 | * operations here to prevent schedule() from being called twice (once via | 6671 | * operations here to prevent schedule() from being called twice (once via |
| 6578 | * spin_unlock(), once by hand). | 6672 | * spin_unlock(), once by hand). |
| 6579 | */ | 6673 | */ |
| 6580 | int cond_resched_lock(spinlock_t *lock) | 6674 | int __cond_resched_lock(spinlock_t *lock) |
| 6581 | { | 6675 | { |
| 6582 | int resched = need_resched() && system_state == SYSTEM_RUNNING; | 6676 | int resched = should_resched(); |
| 6583 | int ret = 0; | 6677 | int ret = 0; |
| 6584 | 6678 | ||
| 6679 | lockdep_assert_held(lock); | ||
| 6680 | |||
| 6585 | if (spin_needbreak(lock) || resched) { | 6681 | if (spin_needbreak(lock) || resched) { |
| 6586 | spin_unlock(lock); | 6682 | spin_unlock(lock); |
| 6587 | if (resched && need_resched()) | 6683 | if (resched) |
| 6588 | __cond_resched(); | 6684 | __cond_resched(); |
| 6589 | else | 6685 | else |
| 6590 | cpu_relax(); | 6686 | cpu_relax(); |
| @@ -6593,13 +6689,13 @@ int cond_resched_lock(spinlock_t *lock) | |||
| 6593 | } | 6689 | } |
| 6594 | return ret; | 6690 | return ret; |
| 6595 | } | 6691 | } |
| 6596 | EXPORT_SYMBOL(cond_resched_lock); | 6692 | EXPORT_SYMBOL(__cond_resched_lock); |
| 6597 | 6693 | ||
| 6598 | int __sched cond_resched_softirq(void) | 6694 | int __sched __cond_resched_softirq(void) |
| 6599 | { | 6695 | { |
| 6600 | BUG_ON(!in_softirq()); | 6696 | BUG_ON(!in_softirq()); |
| 6601 | 6697 | ||
| 6602 | if (need_resched() && system_state == SYSTEM_RUNNING) { | 6698 | if (should_resched()) { |
| 6603 | local_bh_enable(); | 6699 | local_bh_enable(); |
| 6604 | __cond_resched(); | 6700 | __cond_resched(); |
| 6605 | local_bh_disable(); | 6701 | local_bh_disable(); |
| @@ -6607,7 +6703,7 @@ int __sched cond_resched_softirq(void) | |||
| 6607 | } | 6703 | } |
| 6608 | return 0; | 6704 | return 0; |
| 6609 | } | 6705 | } |
| 6610 | EXPORT_SYMBOL(cond_resched_softirq); | 6706 | EXPORT_SYMBOL(__cond_resched_softirq); |
| 6611 | 6707 | ||
| 6612 | /** | 6708 | /** |
| 6613 | * yield - yield the current processor to other threads. | 6709 | * yield - yield the current processor to other threads. |
| @@ -6631,11 +6727,13 @@ EXPORT_SYMBOL(yield); | |||
| 6631 | */ | 6727 | */ |
| 6632 | void __sched io_schedule(void) | 6728 | void __sched io_schedule(void) |
| 6633 | { | 6729 | { |
| 6634 | struct rq *rq = &__raw_get_cpu_var(runqueues); | 6730 | struct rq *rq = raw_rq(); |
| 6635 | 6731 | ||
| 6636 | delayacct_blkio_start(); | 6732 | delayacct_blkio_start(); |
| 6637 | atomic_inc(&rq->nr_iowait); | 6733 | atomic_inc(&rq->nr_iowait); |
| 6734 | current->in_iowait = 1; | ||
| 6638 | schedule(); | 6735 | schedule(); |
| 6736 | current->in_iowait = 0; | ||
| 6639 | atomic_dec(&rq->nr_iowait); | 6737 | atomic_dec(&rq->nr_iowait); |
| 6640 | delayacct_blkio_end(); | 6738 | delayacct_blkio_end(); |
| 6641 | } | 6739 | } |
| @@ -6643,12 +6741,14 @@ EXPORT_SYMBOL(io_schedule); | |||
| 6643 | 6741 | ||
| 6644 | long __sched io_schedule_timeout(long timeout) | 6742 | long __sched io_schedule_timeout(long timeout) |
| 6645 | { | 6743 | { |
| 6646 | struct rq *rq = &__raw_get_cpu_var(runqueues); | 6744 | struct rq *rq = raw_rq(); |
| 6647 | long ret; | 6745 | long ret; |
| 6648 | 6746 | ||
| 6649 | delayacct_blkio_start(); | 6747 | delayacct_blkio_start(); |
| 6650 | atomic_inc(&rq->nr_iowait); | 6748 | atomic_inc(&rq->nr_iowait); |
| 6749 | current->in_iowait = 1; | ||
| 6651 | ret = schedule_timeout(timeout); | 6750 | ret = schedule_timeout(timeout); |
| 6751 | current->in_iowait = 0; | ||
| 6652 | atomic_dec(&rq->nr_iowait); | 6752 | atomic_dec(&rq->nr_iowait); |
| 6653 | delayacct_blkio_end(); | 6753 | delayacct_blkio_end(); |
| 6654 | return ret; | 6754 | return ret; |
| @@ -6732,23 +6832,8 @@ SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, | |||
| 6732 | if (retval) | 6832 | if (retval) |
| 6733 | goto out_unlock; | 6833 | goto out_unlock; |
| 6734 | 6834 | ||
| 6735 | /* | 6835 | time_slice = p->sched_class->get_rr_interval(p); |
| 6736 | * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER | ||
| 6737 | * tasks that are on an otherwise idle runqueue: | ||
| 6738 | */ | ||
| 6739 | time_slice = 0; | ||
| 6740 | if (p->policy == SCHED_RR) { | ||
| 6741 | time_slice = DEF_TIMESLICE; | ||
| 6742 | } else if (p->policy != SCHED_FIFO) { | ||
| 6743 | struct sched_entity *se = &p->se; | ||
| 6744 | unsigned long flags; | ||
| 6745 | struct rq *rq; | ||
| 6746 | 6836 | ||
| 6747 | rq = task_rq_lock(p, &flags); | ||
| 6748 | if (rq->cfs.load.weight) | ||
| 6749 | time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se)); | ||
| 6750 | task_rq_unlock(rq, &flags); | ||
| 6751 | } | ||
| 6752 | read_unlock(&tasklist_lock); | 6837 | read_unlock(&tasklist_lock); |
| 6753 | jiffies_to_timespec(time_slice, &t); | 6838 | jiffies_to_timespec(time_slice, &t); |
| 6754 | retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; | 6839 | retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; |
| @@ -6965,8 +7050,12 @@ int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) | |||
| 6965 | 7050 | ||
| 6966 | if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) { | 7051 | if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) { |
| 6967 | /* Need help from migration thread: drop lock and wait. */ | 7052 | /* Need help from migration thread: drop lock and wait. */ |
| 7053 | struct task_struct *mt = rq->migration_thread; | ||
| 7054 | |||
| 7055 | get_task_struct(mt); | ||
| 6968 | task_rq_unlock(rq, &flags); | 7056 | task_rq_unlock(rq, &flags); |
| 6969 | wake_up_process(rq->migration_thread); | 7057 | wake_up_process(rq->migration_thread); |
| 7058 | put_task_struct(mt); | ||
| 6970 | wait_for_completion(&req.done); | 7059 | wait_for_completion(&req.done); |
| 6971 | tlb_migrate_finish(p->mm); | 7060 | tlb_migrate_finish(p->mm); |
| 6972 | return 0; | 7061 | return 0; |
| @@ -7024,6 +7113,11 @@ fail: | |||
| 7024 | return ret; | 7113 | return ret; |
| 7025 | } | 7114 | } |
| 7026 | 7115 | ||
| 7116 | #define RCU_MIGRATION_IDLE 0 | ||
| 7117 | #define RCU_MIGRATION_NEED_QS 1 | ||
| 7118 | #define RCU_MIGRATION_GOT_QS 2 | ||
| 7119 | #define RCU_MIGRATION_MUST_SYNC 3 | ||
| 7120 | |||
| 7027 | /* | 7121 | /* |
| 7028 | * migration_thread - this is a highprio system thread that performs | 7122 | * migration_thread - this is a highprio system thread that performs |
| 7029 | * thread migration by bumping thread off CPU then 'pushing' onto | 7123 | * thread migration by bumping thread off CPU then 'pushing' onto |
| @@ -7031,6 +7125,7 @@ fail: | |||
| 7031 | */ | 7125 | */ |
| 7032 | static int migration_thread(void *data) | 7126 | static int migration_thread(void *data) |
| 7033 | { | 7127 | { |
| 7128 | int badcpu; | ||
| 7034 | int cpu = (long)data; | 7129 | int cpu = (long)data; |
| 7035 | struct rq *rq; | 7130 | struct rq *rq; |
| 7036 | 7131 | ||
| @@ -7065,8 +7160,17 @@ static int migration_thread(void *data) | |||
| 7065 | req = list_entry(head->next, struct migration_req, list); | 7160 | req = list_entry(head->next, struct migration_req, list); |
| 7066 | list_del_init(head->next); | 7161 | list_del_init(head->next); |
| 7067 | 7162 | ||
| 7068 | spin_unlock(&rq->lock); | 7163 | if (req->task != NULL) { |
| 7069 | __migrate_task(req->task, cpu, req->dest_cpu); | 7164 | spin_unlock(&rq->lock); |
| 7165 | __migrate_task(req->task, cpu, req->dest_cpu); | ||
| 7166 | } else if (likely(cpu == (badcpu = smp_processor_id()))) { | ||
| 7167 | req->dest_cpu = RCU_MIGRATION_GOT_QS; | ||
| 7168 | spin_unlock(&rq->lock); | ||
| 7169 | } else { | ||
| 7170 | req->dest_cpu = RCU_MIGRATION_MUST_SYNC; | ||
| 7171 | spin_unlock(&rq->lock); | ||
| 7172 | WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu); | ||
| 7173 | } | ||
| 7070 | local_irq_enable(); | 7174 | local_irq_enable(); |
| 7071 | 7175 | ||
| 7072 | complete(&req->done); | 7176 | complete(&req->done); |
| @@ -7262,6 +7366,7 @@ static void migrate_dead_tasks(unsigned int dead_cpu) | |||
| 7262 | static void calc_global_load_remove(struct rq *rq) | 7366 | static void calc_global_load_remove(struct rq *rq) |
| 7263 | { | 7367 | { |
| 7264 | atomic_long_sub(rq->calc_load_active, &calc_load_tasks); | 7368 | atomic_long_sub(rq->calc_load_active, &calc_load_tasks); |
| 7369 | rq->calc_load_active = 0; | ||
| 7265 | } | 7370 | } |
| 7266 | #endif /* CONFIG_HOTPLUG_CPU */ | 7371 | #endif /* CONFIG_HOTPLUG_CPU */ |
| 7267 | 7372 | ||
| @@ -7488,6 +7593,7 @@ migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) | |||
| 7488 | task_rq_unlock(rq, &flags); | 7593 | task_rq_unlock(rq, &flags); |
| 7489 | get_task_struct(p); | 7594 | get_task_struct(p); |
| 7490 | cpu_rq(cpu)->migration_thread = p; | 7595 | cpu_rq(cpu)->migration_thread = p; |
| 7596 | rq->calc_load_update = calc_load_update; | ||
| 7491 | break; | 7597 | break; |
| 7492 | 7598 | ||
| 7493 | case CPU_ONLINE: | 7599 | case CPU_ONLINE: |
| @@ -7498,8 +7604,6 @@ migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) | |||
| 7498 | /* Update our root-domain */ | 7604 | /* Update our root-domain */ |
| 7499 | rq = cpu_rq(cpu); | 7605 | rq = cpu_rq(cpu); |
| 7500 | spin_lock_irqsave(&rq->lock, flags); | 7606 | spin_lock_irqsave(&rq->lock, flags); |
| 7501 | rq->calc_load_update = calc_load_update; | ||
| 7502 | rq->calc_load_active = 0; | ||
| 7503 | if (rq->rd) { | 7607 | if (rq->rd) { |
| 7504 | BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); | 7608 | BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); |
| 7505 | 7609 | ||
| @@ -7580,7 +7684,7 @@ migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) | |||
| 7580 | /* | 7684 | /* |
| 7581 | * Register at high priority so that task migration (migrate_all_tasks) | 7685 | * Register at high priority so that task migration (migrate_all_tasks) |
| 7582 | * happens before everything else. This has to be lower priority than | 7686 | * happens before everything else. This has to be lower priority than |
| 7583 | * the notifier in the perf_counter subsystem, though. | 7687 | * the notifier in the perf_event subsystem, though. |
| 7584 | */ | 7688 | */ |
| 7585 | static struct notifier_block __cpuinitdata migration_notifier = { | 7689 | static struct notifier_block __cpuinitdata migration_notifier = { |
| 7586 | .notifier_call = migration_call, | 7690 | .notifier_call = migration_call, |
| @@ -7598,7 +7702,7 @@ static int __init migration_init(void) | |||
| 7598 | migration_call(&migration_notifier, CPU_ONLINE, cpu); | 7702 | migration_call(&migration_notifier, CPU_ONLINE, cpu); |
| 7599 | register_cpu_notifier(&migration_notifier); | 7703 | register_cpu_notifier(&migration_notifier); |
| 7600 | 7704 | ||
| 7601 | return err; | 7705 | return 0; |
| 7602 | } | 7706 | } |
| 7603 | early_initcall(migration_init); | 7707 | early_initcall(migration_init); |
| 7604 | #endif | 7708 | #endif |
| @@ -7645,7 +7749,7 @@ static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, | |||
| 7645 | break; | 7749 | break; |
| 7646 | } | 7750 | } |
| 7647 | 7751 | ||
| 7648 | if (!group->__cpu_power) { | 7752 | if (!group->cpu_power) { |
| 7649 | printk(KERN_CONT "\n"); | 7753 | printk(KERN_CONT "\n"); |
| 7650 | printk(KERN_ERR "ERROR: domain->cpu_power not " | 7754 | printk(KERN_ERR "ERROR: domain->cpu_power not " |
| 7651 | "set\n"); | 7755 | "set\n"); |
| @@ -7669,9 +7773,9 @@ static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, | |||
| 7669 | cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group)); | 7773 | cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group)); |
| 7670 | 7774 | ||
| 7671 | printk(KERN_CONT " %s", str); | 7775 | printk(KERN_CONT " %s", str); |
| 7672 | if (group->__cpu_power != SCHED_LOAD_SCALE) { | 7776 | if (group->cpu_power != SCHED_LOAD_SCALE) { |
| 7673 | printk(KERN_CONT " (__cpu_power = %d)", | 7777 | printk(KERN_CONT " (cpu_power = %d)", |
| 7674 | group->__cpu_power); | 7778 | group->cpu_power); |
| 7675 | } | 7779 | } |
| 7676 | 7780 | ||
| 7677 | group = group->next; | 7781 | group = group->next; |
| @@ -7736,9 +7840,7 @@ static int sd_degenerate(struct sched_domain *sd) | |||
| 7736 | } | 7840 | } |
| 7737 | 7841 | ||
| 7738 | /* Following flags don't use groups */ | 7842 | /* Following flags don't use groups */ |
| 7739 | if (sd->flags & (SD_WAKE_IDLE | | 7843 | if (sd->flags & (SD_WAKE_AFFINE)) |
| 7740 | SD_WAKE_AFFINE | | ||
| 7741 | SD_WAKE_BALANCE)) | ||
| 7742 | return 0; | 7844 | return 0; |
| 7743 | 7845 | ||
| 7744 | return 1; | 7846 | return 1; |
| @@ -7755,10 +7857,6 @@ sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) | |||
| 7755 | if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) | 7857 | if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) |
| 7756 | return 0; | 7858 | return 0; |
| 7757 | 7859 | ||
| 7758 | /* Does parent contain flags not in child? */ | ||
| 7759 | /* WAKE_BALANCE is a subset of WAKE_AFFINE */ | ||
| 7760 | if (cflags & SD_WAKE_AFFINE) | ||
| 7761 | pflags &= ~SD_WAKE_BALANCE; | ||
| 7762 | /* Flags needing groups don't count if only 1 group in parent */ | 7860 | /* Flags needing groups don't count if only 1 group in parent */ |
| 7763 | if (parent->groups == parent->groups->next) { | 7861 | if (parent->groups == parent->groups->next) { |
| 7764 | pflags &= ~(SD_LOAD_BALANCE | | 7862 | pflags &= ~(SD_LOAD_BALANCE | |
| @@ -7814,7 +7912,7 @@ static void rq_attach_root(struct rq *rq, struct root_domain *rd) | |||
| 7814 | rq->rd = rd; | 7912 | rq->rd = rd; |
| 7815 | 7913 | ||
| 7816 | cpumask_set_cpu(rq->cpu, rd->span); | 7914 | cpumask_set_cpu(rq->cpu, rd->span); |
| 7817 | if (cpumask_test_cpu(rq->cpu, cpu_online_mask)) | 7915 | if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) |
| 7818 | set_rq_online(rq); | 7916 | set_rq_online(rq); |
| 7819 | 7917 | ||
| 7820 | spin_unlock_irqrestore(&rq->lock, flags); | 7918 | spin_unlock_irqrestore(&rq->lock, flags); |
| @@ -7956,7 +8054,7 @@ init_sched_build_groups(const struct cpumask *span, | |||
| 7956 | continue; | 8054 | continue; |
| 7957 | 8055 | ||
| 7958 | cpumask_clear(sched_group_cpus(sg)); | 8056 | cpumask_clear(sched_group_cpus(sg)); |
| 7959 | sg->__cpu_power = 0; | 8057 | sg->cpu_power = 0; |
| 7960 | 8058 | ||
| 7961 | for_each_cpu(j, span) { | 8059 | for_each_cpu(j, span) { |
| 7962 | if (group_fn(j, cpu_map, NULL, tmpmask) != group) | 8060 | if (group_fn(j, cpu_map, NULL, tmpmask) != group) |
| @@ -8064,6 +8162,39 @@ struct static_sched_domain { | |||
| 8064 | DECLARE_BITMAP(span, CONFIG_NR_CPUS); | 8162 | DECLARE_BITMAP(span, CONFIG_NR_CPUS); |
| 8065 | }; | 8163 | }; |
| 8066 | 8164 | ||
| 8165 | struct s_data { | ||
| 8166 | #ifdef CONFIG_NUMA | ||
| 8167 | int sd_allnodes; | ||
| 8168 | cpumask_var_t domainspan; | ||
| 8169 | cpumask_var_t covered; | ||
| 8170 | cpumask_var_t notcovered; | ||
| 8171 | #endif | ||
| 8172 | cpumask_var_t nodemask; | ||
| 8173 | cpumask_var_t this_sibling_map; | ||
| 8174 | cpumask_var_t this_core_map; | ||
| 8175 | cpumask_var_t send_covered; | ||
| 8176 | cpumask_var_t tmpmask; | ||
| 8177 | struct sched_group **sched_group_nodes; | ||
| 8178 | struct root_domain *rd; | ||
| 8179 | }; | ||
| 8180 | |||
| 8181 | enum s_alloc { | ||
| 8182 | sa_sched_groups = 0, | ||
| 8183 | sa_rootdomain, | ||
| 8184 | sa_tmpmask, | ||
| 8185 | sa_send_covered, | ||
| 8186 | sa_this_core_map, | ||
| 8187 | sa_this_sibling_map, | ||
| 8188 | sa_nodemask, | ||
| 8189 | sa_sched_group_nodes, | ||
| 8190 | #ifdef CONFIG_NUMA | ||
| 8191 | sa_notcovered, | ||
| 8192 | sa_covered, | ||
| 8193 | sa_domainspan, | ||
| 8194 | #endif | ||
| 8195 | sa_none, | ||
| 8196 | }; | ||
| 8197 | |||
| 8067 | /* | 8198 | /* |
| 8068 | * SMT sched-domains: | 8199 | * SMT sched-domains: |
| 8069 | */ | 8200 | */ |
| @@ -8181,11 +8312,76 @@ static void init_numa_sched_groups_power(struct sched_group *group_head) | |||
| 8181 | continue; | 8312 | continue; |
| 8182 | } | 8313 | } |
| 8183 | 8314 | ||
| 8184 | sg_inc_cpu_power(sg, sd->groups->__cpu_power); | 8315 | sg->cpu_power += sd->groups->cpu_power; |
| 8185 | } | 8316 | } |
| 8186 | sg = sg->next; | 8317 | sg = sg->next; |
| 8187 | } while (sg != group_head); | 8318 | } while (sg != group_head); |
| 8188 | } | 8319 | } |
| 8320 | |||
| 8321 | static int build_numa_sched_groups(struct s_data *d, | ||
| 8322 | const struct cpumask *cpu_map, int num) | ||
| 8323 | { | ||
| 8324 | struct sched_domain *sd; | ||
| 8325 | struct sched_group *sg, *prev; | ||
| 8326 | int n, j; | ||
| 8327 | |||
| 8328 | cpumask_clear(d->covered); | ||
| 8329 | cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map); | ||
| 8330 | if (cpumask_empty(d->nodemask)) { | ||
| 8331 | d->sched_group_nodes[num] = NULL; | ||
| 8332 | goto out; | ||
| 8333 | } | ||
| 8334 | |||
| 8335 | sched_domain_node_span(num, d->domainspan); | ||
| 8336 | cpumask_and(d->domainspan, d->domainspan, cpu_map); | ||
| 8337 | |||
| 8338 | sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(), | ||
| 8339 | GFP_KERNEL, num); | ||
| 8340 | if (!sg) { | ||
| 8341 | printk(KERN_WARNING "Can not alloc domain group for node %d\n", | ||
| 8342 | num); | ||
| 8343 | return -ENOMEM; | ||
| 8344 | } | ||
| 8345 | d->sched_group_nodes[num] = sg; | ||
| 8346 | |||
| 8347 | for_each_cpu(j, d->nodemask) { | ||
| 8348 | sd = &per_cpu(node_domains, j).sd; | ||
| 8349 | sd->groups = sg; | ||
| 8350 | } | ||
| 8351 | |||
| 8352 | sg->cpu_power = 0; | ||
| 8353 | cpumask_copy(sched_group_cpus(sg), d->nodemask); | ||
| 8354 | sg->next = sg; | ||
| 8355 | cpumask_or(d->covered, d->covered, d->nodemask); | ||
| 8356 | |||
| 8357 | prev = sg; | ||
| 8358 | for (j = 0; j < nr_node_ids; j++) { | ||
| 8359 | n = (num + j) % nr_node_ids; | ||
| 8360 | cpumask_complement(d->notcovered, d->covered); | ||
| 8361 | cpumask_and(d->tmpmask, d->notcovered, cpu_map); | ||
| 8362 | cpumask_and(d->tmpmask, d->tmpmask, d->domainspan); | ||
| 8363 | if (cpumask_empty(d->tmpmask)) | ||
| 8364 | break; | ||
| 8365 | cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n)); | ||
| 8366 | if (cpumask_empty(d->tmpmask)) | ||
| 8367 | continue; | ||
| 8368 | sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(), | ||
| 8369 | GFP_KERNEL, num); | ||
| 8370 | if (!sg) { | ||
| 8371 | printk(KERN_WARNING | ||
| 8372 | "Can not alloc domain group for node %d\n", j); | ||
| 8373 | return -ENOMEM; | ||
| 8374 | } | ||
| 8375 | sg->cpu_power = 0; | ||
| 8376 | cpumask_copy(sched_group_cpus(sg), d->tmpmask); | ||
| 8377 | sg->next = prev->next; | ||
| 8378 | cpumask_or(d->covered, d->covered, d->tmpmask); | ||
| 8379 | prev->next = sg; | ||
| 8380 | prev = sg; | ||
| 8381 | } | ||
| 8382 | out: | ||
| 8383 | return 0; | ||
| 8384 | } | ||
| 8189 | #endif /* CONFIG_NUMA */ | 8385 | #endif /* CONFIG_NUMA */ |
| 8190 | 8386 | ||
| 8191 | #ifdef CONFIG_NUMA | 8387 | #ifdef CONFIG_NUMA |
| @@ -8239,15 +8435,13 @@ static void free_sched_groups(const struct cpumask *cpu_map, | |||
| 8239 | * there are asymmetries in the topology. If there are asymmetries, group | 8435 | * there are asymmetries in the topology. If there are asymmetries, group |
| 8240 | * having more cpu_power will pickup more load compared to the group having | 8436 | * having more cpu_power will pickup more load compared to the group having |
| 8241 | * less cpu_power. | 8437 | * less cpu_power. |
| 8242 | * | ||
| 8243 | * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents | ||
| 8244 | * the maximum number of tasks a group can handle in the presence of other idle | ||
| 8245 | * or lightly loaded groups in the same sched domain. | ||
| 8246 | */ | 8438 | */ |
| 8247 | static void init_sched_groups_power(int cpu, struct sched_domain *sd) | 8439 | static void init_sched_groups_power(int cpu, struct sched_domain *sd) |
| 8248 | { | 8440 | { |
| 8249 | struct sched_domain *child; | 8441 | struct sched_domain *child; |
| 8250 | struct sched_group *group; | 8442 | struct sched_group *group; |
| 8443 | long power; | ||
| 8444 | int weight; | ||
| 8251 | 8445 | ||
| 8252 | WARN_ON(!sd || !sd->groups); | 8446 | WARN_ON(!sd || !sd->groups); |
| 8253 | 8447 | ||
| @@ -8256,28 +8450,32 @@ static void init_sched_groups_power(int cpu, struct sched_domain *sd) | |||
| 8256 | 8450 | ||
| 8257 | child = sd->child; | 8451 | child = sd->child; |
| 8258 | 8452 | ||
| 8259 | sd->groups->__cpu_power = 0; | 8453 | sd->groups->cpu_power = 0; |
| 8260 | 8454 | ||
| 8261 | /* | 8455 | if (!child) { |
| 8262 | * For perf policy, if the groups in child domain share resources | 8456 | power = SCHED_LOAD_SCALE; |
| 8263 | * (for example cores sharing some portions of the cache hierarchy | 8457 | weight = cpumask_weight(sched_domain_span(sd)); |
| 8264 | * or SMT), then set this domain groups cpu_power such that each group | 8458 | /* |
| 8265 | * can handle only one task, when there are other idle groups in the | 8459 | * SMT siblings share the power of a single core. |
| 8266 | * same sched domain. | 8460 | * Usually multiple threads get a better yield out of |
| 8267 | */ | 8461 | * that one core than a single thread would have, |
| 8268 | if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) && | 8462 | * reflect that in sd->smt_gain. |
| 8269 | (child->flags & | 8463 | */ |
| 8270 | (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) { | 8464 | if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) { |
| 8271 | sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE); | 8465 | power *= sd->smt_gain; |
| 8466 | power /= weight; | ||
| 8467 | power >>= SCHED_LOAD_SHIFT; | ||
| 8468 | } | ||
| 8469 | sd->groups->cpu_power += power; | ||
| 8272 | return; | 8470 | return; |
| 8273 | } | 8471 | } |
| 8274 | 8472 | ||
| 8275 | /* | 8473 | /* |
| 8276 | * add cpu_power of each child group to this groups cpu_power | 8474 | * Add cpu_power of each child group to this groups cpu_power. |
| 8277 | */ | 8475 | */ |
| 8278 | group = child->groups; | 8476 | group = child->groups; |
| 8279 | do { | 8477 | do { |
| 8280 | sg_inc_cpu_power(sd->groups, group->__cpu_power); | 8478 | sd->groups->cpu_power += group->cpu_power; |
| 8281 | group = group->next; | 8479 | group = group->next; |
| 8282 | } while (group != child->groups); | 8480 | } while (group != child->groups); |
| 8283 | } | 8481 | } |
| @@ -8344,287 +8542,292 @@ static void set_domain_attribute(struct sched_domain *sd, | |||
| 8344 | request = attr->relax_domain_level; | 8542 | request = attr->relax_domain_level; |
| 8345 | if (request < sd->level) { | 8543 | if (request < sd->level) { |
| 8346 | /* turn off idle balance on this domain */ | 8544 | /* turn off idle balance on this domain */ |
| 8347 | sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE); | 8545 | sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); |
| 8348 | } else { | 8546 | } else { |
| 8349 | /* turn on idle balance on this domain */ | 8547 | /* turn on idle balance on this domain */ |
| 8350 | sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE); | 8548 | sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); |
| 8549 | } | ||
| 8550 | } | ||
| 8551 | |||
| 8552 | static void __free_domain_allocs(struct s_data *d, enum s_alloc what, | ||
| 8553 | const struct cpumask *cpu_map) | ||
| 8554 | { | ||
| 8555 | switch (what) { | ||
| 8556 | case sa_sched_groups: | ||
| 8557 | free_sched_groups(cpu_map, d->tmpmask); /* fall through */ | ||
| 8558 | d->sched_group_nodes = NULL; | ||
| 8559 | case sa_rootdomain: | ||
| 8560 | free_rootdomain(d->rd); /* fall through */ | ||
| 8561 | case sa_tmpmask: | ||
| 8562 | free_cpumask_var(d->tmpmask); /* fall through */ | ||
| 8563 | case sa_send_covered: | ||
| 8564 | free_cpumask_var(d->send_covered); /* fall through */ | ||
| 8565 | case sa_this_core_map: | ||
| 8566 | free_cpumask_var(d->this_core_map); /* fall through */ | ||
| 8567 | case sa_this_sibling_map: | ||
| 8568 | free_cpumask_var(d->this_sibling_map); /* fall through */ | ||
| 8569 | case sa_nodemask: | ||
| 8570 | free_cpumask_var(d->nodemask); /* fall through */ | ||
| 8571 | case sa_sched_group_nodes: | ||
| 8572 | #ifdef CONFIG_NUMA | ||
| 8573 | kfree(d->sched_group_nodes); /* fall through */ | ||
| 8574 | case sa_notcovered: | ||
| 8575 | free_cpumask_var(d->notcovered); /* fall through */ | ||
| 8576 | case sa_covered: | ||
| 8577 | free_cpumask_var(d->covered); /* fall through */ | ||
| 8578 | case sa_domainspan: | ||
| 8579 | free_cpumask_var(d->domainspan); /* fall through */ | ||
| 8580 | #endif | ||
| 8581 | case sa_none: | ||
| 8582 | break; | ||
| 8351 | } | 8583 | } |
| 8352 | } | 8584 | } |
| 8353 | 8585 | ||
| 8354 | /* | 8586 | static enum s_alloc __visit_domain_allocation_hell(struct s_data *d, |
| 8355 | * Build sched domains for a given set of cpus and attach the sched domains | 8587 | const struct cpumask *cpu_map) |
| 8356 | * to the individual cpus | ||
| 8357 | */ | ||
| 8358 | static int __build_sched_domains(const struct cpumask *cpu_map, | ||
| 8359 | struct sched_domain_attr *attr) | ||
| 8360 | { | 8588 | { |
| 8361 | int i, err = -ENOMEM; | ||
| 8362 | struct root_domain *rd; | ||
| 8363 | cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered, | ||
| 8364 | tmpmask; | ||
| 8365 | #ifdef CONFIG_NUMA | 8589 | #ifdef CONFIG_NUMA |
| 8366 | cpumask_var_t domainspan, covered, notcovered; | 8590 | if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL)) |
| 8367 | struct sched_group **sched_group_nodes = NULL; | 8591 | return sa_none; |
| 8368 | int sd_allnodes = 0; | 8592 | if (!alloc_cpumask_var(&d->covered, GFP_KERNEL)) |
| 8369 | 8593 | return sa_domainspan; | |
| 8370 | if (!alloc_cpumask_var(&domainspan, GFP_KERNEL)) | 8594 | if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL)) |
| 8371 | goto out; | 8595 | return sa_covered; |
| 8372 | if (!alloc_cpumask_var(&covered, GFP_KERNEL)) | 8596 | /* Allocate the per-node list of sched groups */ |
| 8373 | goto free_domainspan; | 8597 | d->sched_group_nodes = kcalloc(nr_node_ids, |
| 8374 | if (!alloc_cpumask_var(¬covered, GFP_KERNEL)) | 8598 | sizeof(struct sched_group *), GFP_KERNEL); |
| 8375 | goto free_covered; | 8599 | if (!d->sched_group_nodes) { |
| 8376 | #endif | ||
| 8377 | |||
| 8378 | if (!alloc_cpumask_var(&nodemask, GFP_KERNEL)) | ||
| 8379 | goto free_notcovered; | ||
| 8380 | if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL)) | ||
| 8381 | goto free_nodemask; | ||
| 8382 | if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL)) | ||
| 8383 | goto free_this_sibling_map; | ||
| 8384 | if (!alloc_cpumask_var(&send_covered, GFP_KERNEL)) | ||
| 8385 | goto free_this_core_map; | ||
| 8386 | if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL)) | ||
| 8387 | goto free_send_covered; | ||
| 8388 | |||
| 8389 | #ifdef CONFIG_NUMA | ||
| 8390 | /* | ||
| 8391 | * Allocate the per-node list of sched groups | ||
| 8392 | */ | ||
| 8393 | sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *), | ||
| 8394 | GFP_KERNEL); | ||
| 8395 | if (!sched_group_nodes) { | ||
| 8396 | printk(KERN_WARNING "Can not alloc sched group node list\n"); | 8600 | printk(KERN_WARNING "Can not alloc sched group node list\n"); |
| 8397 | goto free_tmpmask; | 8601 | return sa_notcovered; |
| 8398 | } | 8602 | } |
| 8399 | #endif | 8603 | sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes; |
| 8400 | 8604 | #endif | |
| 8401 | rd = alloc_rootdomain(); | 8605 | if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL)) |
| 8402 | if (!rd) { | 8606 | return sa_sched_group_nodes; |
| 8607 | if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL)) | ||
| 8608 | return sa_nodemask; | ||
| 8609 | if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL)) | ||
| 8610 | return sa_this_sibling_map; | ||
| 8611 | if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL)) | ||
| 8612 | return sa_this_core_map; | ||
| 8613 | if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL)) | ||
| 8614 | return sa_send_covered; | ||
| 8615 | d->rd = alloc_rootdomain(); | ||
| 8616 | if (!d->rd) { | ||
| 8403 | printk(KERN_WARNING "Cannot alloc root domain\n"); | 8617 | printk(KERN_WARNING "Cannot alloc root domain\n"); |
| 8404 | goto free_sched_groups; | 8618 | return sa_tmpmask; |
| 8405 | } | 8619 | } |
| 8620 | return sa_rootdomain; | ||
| 8621 | } | ||
| 8406 | 8622 | ||
| 8623 | static struct sched_domain *__build_numa_sched_domains(struct s_data *d, | ||
| 8624 | const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i) | ||
| 8625 | { | ||
| 8626 | struct sched_domain *sd = NULL; | ||
| 8407 | #ifdef CONFIG_NUMA | 8627 | #ifdef CONFIG_NUMA |
| 8408 | sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes; | 8628 | struct sched_domain *parent; |
| 8409 | #endif | ||
| 8410 | |||
| 8411 | /* | ||
| 8412 | * Set up domains for cpus specified by the cpu_map. | ||
| 8413 | */ | ||
| 8414 | for_each_cpu(i, cpu_map) { | ||
| 8415 | struct sched_domain *sd = NULL, *p; | ||
| 8416 | |||
| 8417 | cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map); | ||
| 8418 | |||
| 8419 | #ifdef CONFIG_NUMA | ||
| 8420 | if (cpumask_weight(cpu_map) > | ||
| 8421 | SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) { | ||
| 8422 | sd = &per_cpu(allnodes_domains, i).sd; | ||
| 8423 | SD_INIT(sd, ALLNODES); | ||
| 8424 | set_domain_attribute(sd, attr); | ||
| 8425 | cpumask_copy(sched_domain_span(sd), cpu_map); | ||
| 8426 | cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask); | ||
| 8427 | p = sd; | ||
| 8428 | sd_allnodes = 1; | ||
| 8429 | } else | ||
| 8430 | p = NULL; | ||
| 8431 | 8629 | ||
| 8432 | sd = &per_cpu(node_domains, i).sd; | 8630 | d->sd_allnodes = 0; |
| 8433 | SD_INIT(sd, NODE); | 8631 | if (cpumask_weight(cpu_map) > |
| 8632 | SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) { | ||
| 8633 | sd = &per_cpu(allnodes_domains, i).sd; | ||
| 8634 | SD_INIT(sd, ALLNODES); | ||
| 8434 | set_domain_attribute(sd, attr); | 8635 | set_domain_attribute(sd, attr); |
| 8435 | sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd)); | 8636 | cpumask_copy(sched_domain_span(sd), cpu_map); |
| 8436 | sd->parent = p; | 8637 | cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask); |
| 8437 | if (p) | 8638 | d->sd_allnodes = 1; |
| 8438 | p->child = sd; | 8639 | } |
| 8439 | cpumask_and(sched_domain_span(sd), | 8640 | parent = sd; |
| 8440 | sched_domain_span(sd), cpu_map); | 8641 | |
| 8642 | sd = &per_cpu(node_domains, i).sd; | ||
| 8643 | SD_INIT(sd, NODE); | ||
| 8644 | set_domain_attribute(sd, attr); | ||
| 8645 | sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd)); | ||
| 8646 | sd->parent = parent; | ||
| 8647 | if (parent) | ||
| 8648 | parent->child = sd; | ||
| 8649 | cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map); | ||
| 8441 | #endif | 8650 | #endif |
| 8651 | return sd; | ||
| 8652 | } | ||
| 8442 | 8653 | ||
| 8443 | p = sd; | 8654 | static struct sched_domain *__build_cpu_sched_domain(struct s_data *d, |
| 8444 | sd = &per_cpu(phys_domains, i).sd; | 8655 | const struct cpumask *cpu_map, struct sched_domain_attr *attr, |
| 8445 | SD_INIT(sd, CPU); | 8656 | struct sched_domain *parent, int i) |
| 8446 | set_domain_attribute(sd, attr); | 8657 | { |
| 8447 | cpumask_copy(sched_domain_span(sd), nodemask); | 8658 | struct sched_domain *sd; |
| 8448 | sd->parent = p; | 8659 | sd = &per_cpu(phys_domains, i).sd; |
| 8449 | if (p) | 8660 | SD_INIT(sd, CPU); |
| 8450 | p->child = sd; | 8661 | set_domain_attribute(sd, attr); |
| 8451 | cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask); | 8662 | cpumask_copy(sched_domain_span(sd), d->nodemask); |
| 8663 | sd->parent = parent; | ||
| 8664 | if (parent) | ||
| 8665 | parent->child = sd; | ||
| 8666 | cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask); | ||
| 8667 | return sd; | ||
| 8668 | } | ||
| 8452 | 8669 | ||
| 8670 | static struct sched_domain *__build_mc_sched_domain(struct s_data *d, | ||
| 8671 | const struct cpumask *cpu_map, struct sched_domain_attr *attr, | ||
| 8672 | struct sched_domain *parent, int i) | ||
| 8673 | { | ||
| 8674 | struct sched_domain *sd = parent; | ||
| 8453 | #ifdef CONFIG_SCHED_MC | 8675 | #ifdef CONFIG_SCHED_MC |
| 8454 | p = sd; | 8676 | sd = &per_cpu(core_domains, i).sd; |
| 8455 | sd = &per_cpu(core_domains, i).sd; | 8677 | SD_INIT(sd, MC); |
| 8456 | SD_INIT(sd, MC); | 8678 | set_domain_attribute(sd, attr); |
| 8457 | set_domain_attribute(sd, attr); | 8679 | cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i)); |
| 8458 | cpumask_and(sched_domain_span(sd), cpu_map, | 8680 | sd->parent = parent; |
| 8459 | cpu_coregroup_mask(i)); | 8681 | parent->child = sd; |
| 8460 | sd->parent = p; | 8682 | cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask); |
| 8461 | p->child = sd; | ||
| 8462 | cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask); | ||
| 8463 | #endif | 8683 | #endif |
| 8684 | return sd; | ||
| 8685 | } | ||
| 8464 | 8686 | ||
| 8687 | static struct sched_domain *__build_smt_sched_domain(struct s_data *d, | ||
| 8688 | const struct cpumask *cpu_map, struct sched_domain_attr *attr, | ||
| 8689 | struct sched_domain *parent, int i) | ||
| 8690 | { | ||
| 8691 | struct sched_domain *sd = parent; | ||
| 8465 | #ifdef CONFIG_SCHED_SMT | 8692 | #ifdef CONFIG_SCHED_SMT |
| 8466 | p = sd; | 8693 | sd = &per_cpu(cpu_domains, i).sd; |
| 8467 | sd = &per_cpu(cpu_domains, i).sd; | 8694 | SD_INIT(sd, SIBLING); |
| 8468 | SD_INIT(sd, SIBLING); | 8695 | set_domain_attribute(sd, attr); |
| 8469 | set_domain_attribute(sd, attr); | 8696 | cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i)); |
| 8470 | cpumask_and(sched_domain_span(sd), | 8697 | sd->parent = parent; |
| 8471 | topology_thread_cpumask(i), cpu_map); | 8698 | parent->child = sd; |
| 8472 | sd->parent = p; | 8699 | cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask); |
| 8473 | p->child = sd; | ||
| 8474 | cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask); | ||
| 8475 | #endif | 8700 | #endif |
| 8476 | } | 8701 | return sd; |
| 8702 | } | ||
| 8477 | 8703 | ||
| 8704 | static void build_sched_groups(struct s_data *d, enum sched_domain_level l, | ||
| 8705 | const struct cpumask *cpu_map, int cpu) | ||
| 8706 | { | ||
| 8707 | switch (l) { | ||
| 8478 | #ifdef CONFIG_SCHED_SMT | 8708 | #ifdef CONFIG_SCHED_SMT |
| 8479 | /* Set up CPU (sibling) groups */ | 8709 | case SD_LV_SIBLING: /* set up CPU (sibling) groups */ |
| 8480 | for_each_cpu(i, cpu_map) { | 8710 | cpumask_and(d->this_sibling_map, cpu_map, |
| 8481 | cpumask_and(this_sibling_map, | 8711 | topology_thread_cpumask(cpu)); |
| 8482 | topology_thread_cpumask(i), cpu_map); | 8712 | if (cpu == cpumask_first(d->this_sibling_map)) |
| 8483 | if (i != cpumask_first(this_sibling_map)) | 8713 | init_sched_build_groups(d->this_sibling_map, cpu_map, |
| 8484 | continue; | 8714 | &cpu_to_cpu_group, |
| 8485 | 8715 | d->send_covered, d->tmpmask); | |
| 8486 | init_sched_build_groups(this_sibling_map, cpu_map, | 8716 | break; |
| 8487 | &cpu_to_cpu_group, | ||
| 8488 | send_covered, tmpmask); | ||
| 8489 | } | ||
| 8490 | #endif | 8717 | #endif |
| 8491 | |||
| 8492 | #ifdef CONFIG_SCHED_MC | 8718 | #ifdef CONFIG_SCHED_MC |
| 8493 | /* Set up multi-core groups */ | 8719 | case SD_LV_MC: /* set up multi-core groups */ |
| 8494 | for_each_cpu(i, cpu_map) { | 8720 | cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu)); |
| 8495 | cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map); | 8721 | if (cpu == cpumask_first(d->this_core_map)) |
| 8496 | if (i != cpumask_first(this_core_map)) | 8722 | init_sched_build_groups(d->this_core_map, cpu_map, |
| 8497 | continue; | 8723 | &cpu_to_core_group, |
| 8498 | 8724 | d->send_covered, d->tmpmask); | |
| 8499 | init_sched_build_groups(this_core_map, cpu_map, | 8725 | break; |
| 8500 | &cpu_to_core_group, | ||
| 8501 | send_covered, tmpmask); | ||
| 8502 | } | ||
| 8503 | #endif | 8726 | #endif |
| 8504 | 8727 | case SD_LV_CPU: /* set up physical groups */ | |
| 8505 | /* Set up physical groups */ | 8728 | cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map); |
| 8506 | for (i = 0; i < nr_node_ids; i++) { | 8729 | if (!cpumask_empty(d->nodemask)) |
| 8507 | cpumask_and(nodemask, cpumask_of_node(i), cpu_map); | 8730 | init_sched_build_groups(d->nodemask, cpu_map, |
| 8508 | if (cpumask_empty(nodemask)) | 8731 | &cpu_to_phys_group, |
| 8509 | continue; | 8732 | d->send_covered, d->tmpmask); |
| 8510 | 8733 | break; | |
| 8511 | init_sched_build_groups(nodemask, cpu_map, | ||
| 8512 | &cpu_to_phys_group, | ||
| 8513 | send_covered, tmpmask); | ||
| 8514 | } | ||
| 8515 | |||
| 8516 | #ifdef CONFIG_NUMA | 8734 | #ifdef CONFIG_NUMA |
| 8517 | /* Set up node groups */ | 8735 | case SD_LV_ALLNODES: |
| 8518 | if (sd_allnodes) { | 8736 | init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group, |
| 8519 | init_sched_build_groups(cpu_map, cpu_map, | 8737 | d->send_covered, d->tmpmask); |
| 8520 | &cpu_to_allnodes_group, | 8738 | break; |
| 8521 | send_covered, tmpmask); | 8739 | #endif |
| 8740 | default: | ||
| 8741 | break; | ||
| 8522 | } | 8742 | } |
| 8743 | } | ||
| 8523 | 8744 | ||
| 8524 | for (i = 0; i < nr_node_ids; i++) { | 8745 | /* |
| 8525 | /* Set up node groups */ | 8746 | * Build sched domains for a given set of cpus and attach the sched domains |
| 8526 | struct sched_group *sg, *prev; | 8747 | * to the individual cpus |
| 8527 | int j; | 8748 | */ |
| 8528 | 8749 | static int __build_sched_domains(const struct cpumask *cpu_map, | |
| 8529 | cpumask_clear(covered); | 8750 | struct sched_domain_attr *attr) |
| 8530 | cpumask_and(nodemask, cpumask_of_node(i), cpu_map); | 8751 | { |
| 8531 | if (cpumask_empty(nodemask)) { | 8752 | enum s_alloc alloc_state = sa_none; |
| 8532 | sched_group_nodes[i] = NULL; | 8753 | struct s_data d; |
| 8533 | continue; | 8754 | struct sched_domain *sd; |
| 8534 | } | 8755 | int i; |
| 8756 | #ifdef CONFIG_NUMA | ||
| 8757 | d.sd_allnodes = 0; | ||
| 8758 | #endif | ||
| 8535 | 8759 | ||
| 8536 | sched_domain_node_span(i, domainspan); | 8760 | alloc_state = __visit_domain_allocation_hell(&d, cpu_map); |
| 8537 | cpumask_and(domainspan, domainspan, cpu_map); | 8761 | if (alloc_state != sa_rootdomain) |
| 8762 | goto error; | ||
| 8763 | alloc_state = sa_sched_groups; | ||
| 8538 | 8764 | ||
| 8539 | sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(), | 8765 | /* |
| 8540 | GFP_KERNEL, i); | 8766 | * Set up domains for cpus specified by the cpu_map. |
| 8541 | if (!sg) { | 8767 | */ |
| 8542 | printk(KERN_WARNING "Can not alloc domain group for " | 8768 | for_each_cpu(i, cpu_map) { |
| 8543 | "node %d\n", i); | 8769 | cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)), |
| 8544 | goto error; | 8770 | cpu_map); |
| 8545 | } | ||
| 8546 | sched_group_nodes[i] = sg; | ||
| 8547 | for_each_cpu(j, nodemask) { | ||
| 8548 | struct sched_domain *sd; | ||
| 8549 | 8771 | ||
| 8550 | sd = &per_cpu(node_domains, j).sd; | 8772 | sd = __build_numa_sched_domains(&d, cpu_map, attr, i); |
| 8551 | sd->groups = sg; | 8773 | sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i); |
| 8552 | } | 8774 | sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i); |
| 8553 | sg->__cpu_power = 0; | 8775 | sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i); |
| 8554 | cpumask_copy(sched_group_cpus(sg), nodemask); | 8776 | } |
| 8555 | sg->next = sg; | ||
| 8556 | cpumask_or(covered, covered, nodemask); | ||
| 8557 | prev = sg; | ||
| 8558 | 8777 | ||
| 8559 | for (j = 0; j < nr_node_ids; j++) { | 8778 | for_each_cpu(i, cpu_map) { |
| 8560 | int n = (i + j) % nr_node_ids; | 8779 | build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i); |
| 8780 | build_sched_groups(&d, SD_LV_MC, cpu_map, i); | ||
| 8781 | } | ||
| 8561 | 8782 | ||
| 8562 | cpumask_complement(notcovered, covered); | 8783 | /* Set up physical groups */ |
| 8563 | cpumask_and(tmpmask, notcovered, cpu_map); | 8784 | for (i = 0; i < nr_node_ids; i++) |
| 8564 | cpumask_and(tmpmask, tmpmask, domainspan); | 8785 | build_sched_groups(&d, SD_LV_CPU, cpu_map, i); |
| 8565 | if (cpumask_empty(tmpmask)) | ||
| 8566 | break; | ||
| 8567 | 8786 | ||
| 8568 | cpumask_and(tmpmask, tmpmask, cpumask_of_node(n)); | 8787 | #ifdef CONFIG_NUMA |
| 8569 | if (cpumask_empty(tmpmask)) | 8788 | /* Set up node groups */ |
| 8570 | continue; | 8789 | if (d.sd_allnodes) |
| 8790 | build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0); | ||
| 8571 | 8791 | ||
| 8572 | sg = kmalloc_node(sizeof(struct sched_group) + | 8792 | for (i = 0; i < nr_node_ids; i++) |
| 8573 | cpumask_size(), | 8793 | if (build_numa_sched_groups(&d, cpu_map, i)) |
| 8574 | GFP_KERNEL, i); | 8794 | goto error; |
| 8575 | if (!sg) { | ||
| 8576 | printk(KERN_WARNING | ||
| 8577 | "Can not alloc domain group for node %d\n", j); | ||
| 8578 | goto error; | ||
| 8579 | } | ||
| 8580 | sg->__cpu_power = 0; | ||
| 8581 | cpumask_copy(sched_group_cpus(sg), tmpmask); | ||
| 8582 | sg->next = prev->next; | ||
| 8583 | cpumask_or(covered, covered, tmpmask); | ||
| 8584 | prev->next = sg; | ||
| 8585 | prev = sg; | ||
| 8586 | } | ||
| 8587 | } | ||
| 8588 | #endif | 8795 | #endif |
| 8589 | 8796 | ||
| 8590 | /* Calculate CPU power for physical packages and nodes */ | 8797 | /* Calculate CPU power for physical packages and nodes */ |
| 8591 | #ifdef CONFIG_SCHED_SMT | 8798 | #ifdef CONFIG_SCHED_SMT |
| 8592 | for_each_cpu(i, cpu_map) { | 8799 | for_each_cpu(i, cpu_map) { |
| 8593 | struct sched_domain *sd = &per_cpu(cpu_domains, i).sd; | 8800 | sd = &per_cpu(cpu_domains, i).sd; |
| 8594 | |||
| 8595 | init_sched_groups_power(i, sd); | 8801 | init_sched_groups_power(i, sd); |
| 8596 | } | 8802 | } |
| 8597 | #endif | 8803 | #endif |
| 8598 | #ifdef CONFIG_SCHED_MC | 8804 | #ifdef CONFIG_SCHED_MC |
| 8599 | for_each_cpu(i, cpu_map) { | 8805 | for_each_cpu(i, cpu_map) { |
| 8600 | struct sched_domain *sd = &per_cpu(core_domains, i).sd; | 8806 | sd = &per_cpu(core_domains, i).sd; |
| 8601 | |||
| 8602 | init_sched_groups_power(i, sd); | 8807 | init_sched_groups_power(i, sd); |
| 8603 | } | 8808 | } |
| 8604 | #endif | 8809 | #endif |
| 8605 | 8810 | ||
| 8606 | for_each_cpu(i, cpu_map) { | 8811 | for_each_cpu(i, cpu_map) { |
| 8607 | struct sched_domain *sd = &per_cpu(phys_domains, i).sd; | 8812 | sd = &per_cpu(phys_domains, i).sd; |
| 8608 | |||
| 8609 | init_sched_groups_power(i, sd); | 8813 | init_sched_groups_power(i, sd); |
| 8610 | } | 8814 | } |
| 8611 | 8815 | ||
| 8612 | #ifdef CONFIG_NUMA | 8816 | #ifdef CONFIG_NUMA |
| 8613 | for (i = 0; i < nr_node_ids; i++) | 8817 | for (i = 0; i < nr_node_ids; i++) |
| 8614 | init_numa_sched_groups_power(sched_group_nodes[i]); | 8818 | init_numa_sched_groups_power(d.sched_group_nodes[i]); |
| 8615 | 8819 | ||
| 8616 | if (sd_allnodes) { | 8820 | if (d.sd_allnodes) { |
| 8617 | struct sched_group *sg; | 8821 | struct sched_group *sg; |
| 8618 | 8822 | ||
| 8619 | cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg, | 8823 | cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg, |
| 8620 | tmpmask); | 8824 | d.tmpmask); |
| 8621 | init_numa_sched_groups_power(sg); | 8825 | init_numa_sched_groups_power(sg); |
| 8622 | } | 8826 | } |
| 8623 | #endif | 8827 | #endif |
| 8624 | 8828 | ||
| 8625 | /* Attach the domains */ | 8829 | /* Attach the domains */ |
| 8626 | for_each_cpu(i, cpu_map) { | 8830 | for_each_cpu(i, cpu_map) { |
| 8627 | struct sched_domain *sd; | ||
| 8628 | #ifdef CONFIG_SCHED_SMT | 8831 | #ifdef CONFIG_SCHED_SMT |
| 8629 | sd = &per_cpu(cpu_domains, i).sd; | 8832 | sd = &per_cpu(cpu_domains, i).sd; |
| 8630 | #elif defined(CONFIG_SCHED_MC) | 8833 | #elif defined(CONFIG_SCHED_MC) |
| @@ -8632,44 +8835,16 @@ static int __build_sched_domains(const struct cpumask *cpu_map, | |||
| 8632 | #else | 8835 | #else |
| 8633 | sd = &per_cpu(phys_domains, i).sd; | 8836 | sd = &per_cpu(phys_domains, i).sd; |
| 8634 | #endif | 8837 | #endif |
| 8635 | cpu_attach_domain(sd, rd, i); | 8838 | cpu_attach_domain(sd, d.rd, i); |
| 8636 | } | 8839 | } |
| 8637 | 8840 | ||
| 8638 | err = 0; | 8841 | d.sched_group_nodes = NULL; /* don't free this we still need it */ |
| 8639 | 8842 | __free_domain_allocs(&d, sa_tmpmask, cpu_map); | |
| 8640 | free_tmpmask: | 8843 | return 0; |
| 8641 | free_cpumask_var(tmpmask); | ||
| 8642 | free_send_covered: | ||
| 8643 | free_cpumask_var(send_covered); | ||
| 8644 | free_this_core_map: | ||
| 8645 | free_cpumask_var(this_core_map); | ||
| 8646 | free_this_sibling_map: | ||
| 8647 | free_cpumask_var(this_sibling_map); | ||
| 8648 | free_nodemask: | ||
| 8649 | free_cpumask_var(nodemask); | ||
| 8650 | free_notcovered: | ||
| 8651 | #ifdef CONFIG_NUMA | ||
| 8652 | free_cpumask_var(notcovered); | ||
| 8653 | free_covered: | ||
| 8654 | free_cpumask_var(covered); | ||
| 8655 | free_domainspan: | ||
| 8656 | free_cpumask_var(domainspan); | ||
| 8657 | out: | ||
| 8658 | #endif | ||
| 8659 | return err; | ||
| 8660 | |||
| 8661 | free_sched_groups: | ||
| 8662 | #ifdef CONFIG_NUMA | ||
| 8663 | kfree(sched_group_nodes); | ||
| 8664 | #endif | ||
| 8665 | goto free_tmpmask; | ||
| 8666 | 8844 | ||
| 8667 | #ifdef CONFIG_NUMA | ||
| 8668 | error: | 8845 | error: |
| 8669 | free_sched_groups(cpu_map, tmpmask); | 8846 | __free_domain_allocs(&d, alloc_state, cpu_map); |
| 8670 | free_rootdomain(rd); | 8847 | return -ENOMEM; |
| 8671 | goto free_tmpmask; | ||
| 8672 | #endif | ||
| 8673 | } | 8848 | } |
| 8674 | 8849 | ||
| 8675 | static int build_sched_domains(const struct cpumask *cpu_map) | 8850 | static int build_sched_domains(const struct cpumask *cpu_map) |
| @@ -8988,6 +9163,7 @@ void __init sched_init_smp(void) | |||
| 8988 | cpumask_var_t non_isolated_cpus; | 9163 | cpumask_var_t non_isolated_cpus; |
| 8989 | 9164 | ||
| 8990 | alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); | 9165 | alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); |
| 9166 | alloc_cpumask_var(&fallback_doms, GFP_KERNEL); | ||
| 8991 | 9167 | ||
| 8992 | #if defined(CONFIG_NUMA) | 9168 | #if defined(CONFIG_NUMA) |
| 8993 | sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **), | 9169 | sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **), |
| @@ -9019,7 +9195,6 @@ void __init sched_init_smp(void) | |||
| 9019 | sched_init_granularity(); | 9195 | sched_init_granularity(); |
| 9020 | free_cpumask_var(non_isolated_cpus); | 9196 | free_cpumask_var(non_isolated_cpus); |
| 9021 | 9197 | ||
| 9022 | alloc_cpumask_var(&fallback_doms, GFP_KERNEL); | ||
| 9023 | init_sched_rt_class(); | 9198 | init_sched_rt_class(); |
| 9024 | } | 9199 | } |
| 9025 | #else | 9200 | #else |
| @@ -9070,7 +9245,7 @@ static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq) | |||
| 9070 | #ifdef CONFIG_SMP | 9245 | #ifdef CONFIG_SMP |
| 9071 | rt_rq->rt_nr_migratory = 0; | 9246 | rt_rq->rt_nr_migratory = 0; |
| 9072 | rt_rq->overloaded = 0; | 9247 | rt_rq->overloaded = 0; |
| 9073 | plist_head_init(&rq->rt.pushable_tasks, &rq->lock); | 9248 | plist_head_init(&rt_rq->pushable_tasks, &rq->lock); |
| 9074 | #endif | 9249 | #endif |
| 9075 | 9250 | ||
| 9076 | rt_rq->rt_time = 0; | 9251 | rt_rq->rt_time = 0; |
| @@ -9277,11 +9452,11 @@ void __init sched_init(void) | |||
| 9277 | * system cpu resource, based on the weight assigned to root | 9452 | * system cpu resource, based on the weight assigned to root |
| 9278 | * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished | 9453 | * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished |
| 9279 | * by letting tasks of init_task_group sit in a separate cfs_rq | 9454 | * by letting tasks of init_task_group sit in a separate cfs_rq |
| 9280 | * (init_cfs_rq) and having one entity represent this group of | 9455 | * (init_tg_cfs_rq) and having one entity represent this group of |
| 9281 | * tasks in rq->cfs (i.e init_task_group->se[] != NULL). | 9456 | * tasks in rq->cfs (i.e init_task_group->se[] != NULL). |
| 9282 | */ | 9457 | */ |
| 9283 | init_tg_cfs_entry(&init_task_group, | 9458 | init_tg_cfs_entry(&init_task_group, |
| 9284 | &per_cpu(init_cfs_rq, i), | 9459 | &per_cpu(init_tg_cfs_rq, i), |
| 9285 | &per_cpu(init_sched_entity, i), i, 1, | 9460 | &per_cpu(init_sched_entity, i), i, 1, |
| 9286 | root_task_group.se[i]); | 9461 | root_task_group.se[i]); |
| 9287 | 9462 | ||
| @@ -9307,6 +9482,7 @@ void __init sched_init(void) | |||
| 9307 | #ifdef CONFIG_SMP | 9482 | #ifdef CONFIG_SMP |
| 9308 | rq->sd = NULL; | 9483 | rq->sd = NULL; |
| 9309 | rq->rd = NULL; | 9484 | rq->rd = NULL; |
| 9485 | rq->post_schedule = 0; | ||
| 9310 | rq->active_balance = 0; | 9486 | rq->active_balance = 0; |
| 9311 | rq->next_balance = jiffies; | 9487 | rq->next_balance = jiffies; |
| 9312 | rq->push_cpu = 0; | 9488 | rq->push_cpu = 0; |
| @@ -9365,19 +9541,26 @@ void __init sched_init(void) | |||
| 9365 | alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); | 9541 | alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); |
| 9366 | #endif /* SMP */ | 9542 | #endif /* SMP */ |
| 9367 | 9543 | ||
| 9368 | perf_counter_init(); | 9544 | perf_event_init(); |
| 9369 | 9545 | ||
| 9370 | scheduler_running = 1; | 9546 | scheduler_running = 1; |
| 9371 | } | 9547 | } |
| 9372 | 9548 | ||
| 9373 | #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP | 9549 | #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP |
| 9374 | void __might_sleep(char *file, int line) | 9550 | static inline int preempt_count_equals(int preempt_offset) |
| 9551 | { | ||
| 9552 | int nested = preempt_count() & ~PREEMPT_ACTIVE; | ||
| 9553 | |||
| 9554 | return (nested == PREEMPT_INATOMIC_BASE + preempt_offset); | ||
| 9555 | } | ||
| 9556 | |||
| 9557 | void __might_sleep(char *file, int line, int preempt_offset) | ||
| 9375 | { | 9558 | { |
| 9376 | #ifdef in_atomic | 9559 | #ifdef in_atomic |
| 9377 | static unsigned long prev_jiffy; /* ratelimiting */ | 9560 | static unsigned long prev_jiffy; /* ratelimiting */ |
| 9378 | 9561 | ||
| 9379 | if ((!in_atomic() && !irqs_disabled()) || | 9562 | if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) || |
| 9380 | system_state != SYSTEM_RUNNING || oops_in_progress) | 9563 | system_state != SYSTEM_RUNNING || oops_in_progress) |
| 9381 | return; | 9564 | return; |
| 9382 | if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) | 9565 | if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) |
| 9383 | return; | 9566 | return; |
| @@ -10554,3 +10737,113 @@ struct cgroup_subsys cpuacct_subsys = { | |||
| 10554 | .subsys_id = cpuacct_subsys_id, | 10737 | .subsys_id = cpuacct_subsys_id, |
| 10555 | }; | 10738 | }; |
| 10556 | #endif /* CONFIG_CGROUP_CPUACCT */ | 10739 | #endif /* CONFIG_CGROUP_CPUACCT */ |
| 10740 | |||
| 10741 | #ifndef CONFIG_SMP | ||
| 10742 | |||
| 10743 | int rcu_expedited_torture_stats(char *page) | ||
| 10744 | { | ||
| 10745 | return 0; | ||
| 10746 | } | ||
| 10747 | EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats); | ||
| 10748 | |||
| 10749 | void synchronize_sched_expedited(void) | ||
| 10750 | { | ||
| 10751 | } | ||
| 10752 | EXPORT_SYMBOL_GPL(synchronize_sched_expedited); | ||
| 10753 | |||
| 10754 | #else /* #ifndef CONFIG_SMP */ | ||
| 10755 | |||
| 10756 | static DEFINE_PER_CPU(struct migration_req, rcu_migration_req); | ||
| 10757 | static DEFINE_MUTEX(rcu_sched_expedited_mutex); | ||
| 10758 | |||
| 10759 | #define RCU_EXPEDITED_STATE_POST -2 | ||
| 10760 | #define RCU_EXPEDITED_STATE_IDLE -1 | ||
| 10761 | |||
| 10762 | static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE; | ||
| 10763 | |||
| 10764 | int rcu_expedited_torture_stats(char *page) | ||
| 10765 | { | ||
| 10766 | int cnt = 0; | ||
| 10767 | int cpu; | ||
| 10768 | |||
| 10769 | cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state); | ||
| 10770 | for_each_online_cpu(cpu) { | ||
| 10771 | cnt += sprintf(&page[cnt], " %d:%d", | ||
| 10772 | cpu, per_cpu(rcu_migration_req, cpu).dest_cpu); | ||
| 10773 | } | ||
| 10774 | cnt += sprintf(&page[cnt], "\n"); | ||
| 10775 | return cnt; | ||
| 10776 | } | ||
| 10777 | EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats); | ||
| 10778 | |||
| 10779 | static long synchronize_sched_expedited_count; | ||
| 10780 | |||
| 10781 | /* | ||
| 10782 | * Wait for an rcu-sched grace period to elapse, but use "big hammer" | ||
| 10783 | * approach to force grace period to end quickly. This consumes | ||
| 10784 | * significant time on all CPUs, and is thus not recommended for | ||
| 10785 | * any sort of common-case code. | ||
| 10786 | * | ||
| 10787 | * Note that it is illegal to call this function while holding any | ||
| 10788 | * lock that is acquired by a CPU-hotplug notifier. Failing to | ||
| 10789 | * observe this restriction will result in deadlock. | ||
| 10790 | */ | ||
| 10791 | void synchronize_sched_expedited(void) | ||
| 10792 | { | ||
| 10793 | int cpu; | ||
| 10794 | unsigned long flags; | ||
| 10795 | bool need_full_sync = 0; | ||
| 10796 | struct rq *rq; | ||
| 10797 | struct migration_req *req; | ||
| 10798 | long snap; | ||
| 10799 | int trycount = 0; | ||
| 10800 | |||
| 10801 | smp_mb(); /* ensure prior mod happens before capturing snap. */ | ||
| 10802 | snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1; | ||
| 10803 | get_online_cpus(); | ||
| 10804 | while (!mutex_trylock(&rcu_sched_expedited_mutex)) { | ||
| 10805 | put_online_cpus(); | ||
| 10806 | if (trycount++ < 10) | ||
| 10807 | udelay(trycount * num_online_cpus()); | ||
| 10808 | else { | ||
| 10809 | synchronize_sched(); | ||
| 10810 | return; | ||
| 10811 | } | ||
| 10812 | if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) { | ||
| 10813 | smp_mb(); /* ensure test happens before caller kfree */ | ||
| 10814 | return; | ||
| 10815 | } | ||
| 10816 | get_online_cpus(); | ||
| 10817 | } | ||
| 10818 | rcu_expedited_state = RCU_EXPEDITED_STATE_POST; | ||
| 10819 | for_each_online_cpu(cpu) { | ||
| 10820 | rq = cpu_rq(cpu); | ||
| 10821 | req = &per_cpu(rcu_migration_req, cpu); | ||
| 10822 | init_completion(&req->done); | ||
| 10823 | req->task = NULL; | ||
| 10824 | req->dest_cpu = RCU_MIGRATION_NEED_QS; | ||
| 10825 | spin_lock_irqsave(&rq->lock, flags); | ||
| 10826 | list_add(&req->list, &rq->migration_queue); | ||
| 10827 | spin_unlock_irqrestore(&rq->lock, flags); | ||
| 10828 | wake_up_process(rq->migration_thread); | ||
| 10829 | } | ||
| 10830 | for_each_online_cpu(cpu) { | ||
| 10831 | rcu_expedited_state = cpu; | ||
| 10832 | req = &per_cpu(rcu_migration_req, cpu); | ||
| 10833 | rq = cpu_rq(cpu); | ||
| 10834 | wait_for_completion(&req->done); | ||
| 10835 | spin_lock_irqsave(&rq->lock, flags); | ||
| 10836 | if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC)) | ||
| 10837 | need_full_sync = 1; | ||
| 10838 | req->dest_cpu = RCU_MIGRATION_IDLE; | ||
| 10839 | spin_unlock_irqrestore(&rq->lock, flags); | ||
| 10840 | } | ||
| 10841 | rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE; | ||
| 10842 | mutex_unlock(&rcu_sched_expedited_mutex); | ||
| 10843 | put_online_cpus(); | ||
| 10844 | if (need_full_sync) | ||
| 10845 | synchronize_sched(); | ||
| 10846 | } | ||
| 10847 | EXPORT_SYMBOL_GPL(synchronize_sched_expedited); | ||
| 10848 | |||
| 10849 | #endif /* #else #ifndef CONFIG_SMP */ | ||
diff --git a/kernel/sched_clock.c b/kernel/sched_clock.c index e1d16c9a7680..ac2e1dc708bd 100644 --- a/kernel/sched_clock.c +++ b/kernel/sched_clock.c | |||
| @@ -48,13 +48,6 @@ static __read_mostly int sched_clock_running; | |||
| 48 | __read_mostly int sched_clock_stable; | 48 | __read_mostly int sched_clock_stable; |
| 49 | 49 | ||
| 50 | struct sched_clock_data { | 50 | struct sched_clock_data { |
| 51 | /* | ||
| 52 | * Raw spinlock - this is a special case: this might be called | ||
| 53 | * from within instrumentation code so we dont want to do any | ||
| 54 | * instrumentation ourselves. | ||
| 55 | */ | ||
| 56 | raw_spinlock_t lock; | ||
| 57 | |||
| 58 | u64 tick_raw; | 51 | u64 tick_raw; |
| 59 | u64 tick_gtod; | 52 | u64 tick_gtod; |
| 60 | u64 clock; | 53 | u64 clock; |
| @@ -80,7 +73,6 @@ void sched_clock_init(void) | |||
| 80 | for_each_possible_cpu(cpu) { | 73 | for_each_possible_cpu(cpu) { |
| 81 | struct sched_clock_data *scd = cpu_sdc(cpu); | 74 | struct sched_clock_data *scd = cpu_sdc(cpu); |
| 82 | 75 | ||
| 83 | scd->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED; | ||
| 84 | scd->tick_raw = 0; | 76 | scd->tick_raw = 0; |
| 85 | scd->tick_gtod = ktime_now; | 77 | scd->tick_gtod = ktime_now; |
| 86 | scd->clock = ktime_now; | 78 | scd->clock = ktime_now; |
| @@ -109,14 +101,19 @@ static inline u64 wrap_max(u64 x, u64 y) | |||
| 109 | * - filter out backward motion | 101 | * - filter out backward motion |
| 110 | * - use the GTOD tick value to create a window to filter crazy TSC values | 102 | * - use the GTOD tick value to create a window to filter crazy TSC values |
| 111 | */ | 103 | */ |
| 112 | static u64 __update_sched_clock(struct sched_clock_data *scd, u64 now) | 104 | static u64 sched_clock_local(struct sched_clock_data *scd) |
| 113 | { | 105 | { |
| 114 | s64 delta = now - scd->tick_raw; | 106 | u64 now, clock, old_clock, min_clock, max_clock; |
| 115 | u64 clock, min_clock, max_clock; | 107 | s64 delta; |
| 116 | 108 | ||
| 109 | again: | ||
| 110 | now = sched_clock(); | ||
| 111 | delta = now - scd->tick_raw; | ||
| 117 | if (unlikely(delta < 0)) | 112 | if (unlikely(delta < 0)) |
| 118 | delta = 0; | 113 | delta = 0; |
| 119 | 114 | ||
| 115 | old_clock = scd->clock; | ||
| 116 | |||
| 120 | /* | 117 | /* |
| 121 | * scd->clock = clamp(scd->tick_gtod + delta, | 118 | * scd->clock = clamp(scd->tick_gtod + delta, |
| 122 | * max(scd->tick_gtod, scd->clock), | 119 | * max(scd->tick_gtod, scd->clock), |
| @@ -124,84 +121,73 @@ static u64 __update_sched_clock(struct sched_clock_data *scd, u64 now) | |||
| 124 | */ | 121 | */ |
| 125 | 122 | ||
| 126 | clock = scd->tick_gtod + delta; | 123 | clock = scd->tick_gtod + delta; |
| 127 | min_clock = wrap_max(scd->tick_gtod, scd->clock); | 124 | min_clock = wrap_max(scd->tick_gtod, old_clock); |
| 128 | max_clock = wrap_max(scd->clock, scd->tick_gtod + TICK_NSEC); | 125 | max_clock = wrap_max(old_clock, scd->tick_gtod + TICK_NSEC); |
| 129 | 126 | ||
| 130 | clock = wrap_max(clock, min_clock); | 127 | clock = wrap_max(clock, min_clock); |
| 131 | clock = wrap_min(clock, max_clock); | 128 | clock = wrap_min(clock, max_clock); |
| 132 | 129 | ||
| 133 | scd->clock = clock; | 130 | if (cmpxchg(&scd->clock, old_clock, clock) != old_clock) |
| 131 | goto again; | ||
| 134 | 132 | ||
| 135 | return scd->clock; | 133 | return clock; |
| 136 | } | 134 | } |
| 137 | 135 | ||
| 138 | static void lock_double_clock(struct sched_clock_data *data1, | 136 | static u64 sched_clock_remote(struct sched_clock_data *scd) |
| 139 | struct sched_clock_data *data2) | ||
| 140 | { | 137 | { |
| 141 | if (data1 < data2) { | 138 | struct sched_clock_data *my_scd = this_scd(); |
| 142 | __raw_spin_lock(&data1->lock); | 139 | u64 this_clock, remote_clock; |
| 143 | __raw_spin_lock(&data2->lock); | 140 | u64 *ptr, old_val, val; |
| 141 | |||
| 142 | sched_clock_local(my_scd); | ||
| 143 | again: | ||
| 144 | this_clock = my_scd->clock; | ||
| 145 | remote_clock = scd->clock; | ||
| 146 | |||
| 147 | /* | ||
| 148 | * Use the opportunity that we have both locks | ||
| 149 | * taken to couple the two clocks: we take the | ||
| 150 | * larger time as the latest time for both | ||
| 151 | * runqueues. (this creates monotonic movement) | ||
| 152 | */ | ||
| 153 | if (likely((s64)(remote_clock - this_clock) < 0)) { | ||
| 154 | ptr = &scd->clock; | ||
| 155 | old_val = remote_clock; | ||
| 156 | val = this_clock; | ||
| 144 | } else { | 157 | } else { |
| 145 | __raw_spin_lock(&data2->lock); | 158 | /* |
| 146 | __raw_spin_lock(&data1->lock); | 159 | * Should be rare, but possible: |
| 160 | */ | ||
| 161 | ptr = &my_scd->clock; | ||
| 162 | old_val = this_clock; | ||
| 163 | val = remote_clock; | ||
| 147 | } | 164 | } |
| 165 | |||
| 166 | if (cmpxchg(ptr, old_val, val) != old_val) | ||
| 167 | goto again; | ||
| 168 | |||
| 169 | return val; | ||
| 148 | } | 170 | } |
| 149 | 171 | ||
| 150 | u64 sched_clock_cpu(int cpu) | 172 | u64 sched_clock_cpu(int cpu) |
| 151 | { | 173 | { |
| 152 | u64 now, clock, this_clock, remote_clock; | ||
| 153 | struct sched_clock_data *scd; | 174 | struct sched_clock_data *scd; |
| 175 | u64 clock; | ||
| 176 | |||
| 177 | WARN_ON_ONCE(!irqs_disabled()); | ||
| 154 | 178 | ||
| 155 | if (sched_clock_stable) | 179 | if (sched_clock_stable) |
| 156 | return sched_clock(); | 180 | return sched_clock(); |
| 157 | 181 | ||
| 158 | scd = cpu_sdc(cpu); | ||
| 159 | |||
| 160 | /* | ||
| 161 | * Normally this is not called in NMI context - but if it is, | ||
| 162 | * trying to do any locking here is totally lethal. | ||
| 163 | */ | ||
| 164 | if (unlikely(in_nmi())) | ||
| 165 | return scd->clock; | ||
| 166 | |||
| 167 | if (unlikely(!sched_clock_running)) | 182 | if (unlikely(!sched_clock_running)) |
| 168 | return 0ull; | 183 | return 0ull; |
| 169 | 184 | ||
| 170 | WARN_ON_ONCE(!irqs_disabled()); | 185 | scd = cpu_sdc(cpu); |
| 171 | now = sched_clock(); | ||
| 172 | |||
| 173 | if (cpu != raw_smp_processor_id()) { | ||
| 174 | struct sched_clock_data *my_scd = this_scd(); | ||
| 175 | |||
| 176 | lock_double_clock(scd, my_scd); | ||
| 177 | |||
| 178 | this_clock = __update_sched_clock(my_scd, now); | ||
| 179 | remote_clock = scd->clock; | ||
| 180 | |||
| 181 | /* | ||
| 182 | * Use the opportunity that we have both locks | ||
| 183 | * taken to couple the two clocks: we take the | ||
| 184 | * larger time as the latest time for both | ||
| 185 | * runqueues. (this creates monotonic movement) | ||
| 186 | */ | ||
| 187 | if (likely((s64)(remote_clock - this_clock) < 0)) { | ||
| 188 | clock = this_clock; | ||
| 189 | scd->clock = clock; | ||
| 190 | } else { | ||
| 191 | /* | ||
| 192 | * Should be rare, but possible: | ||
| 193 | */ | ||
| 194 | clock = remote_clock; | ||
| 195 | my_scd->clock = remote_clock; | ||
| 196 | } | ||
| 197 | |||
| 198 | __raw_spin_unlock(&my_scd->lock); | ||
| 199 | } else { | ||
| 200 | __raw_spin_lock(&scd->lock); | ||
| 201 | clock = __update_sched_clock(scd, now); | ||
| 202 | } | ||
| 203 | 186 | ||
| 204 | __raw_spin_unlock(&scd->lock); | 187 | if (cpu != smp_processor_id()) |
| 188 | clock = sched_clock_remote(scd); | ||
| 189 | else | ||
| 190 | clock = sched_clock_local(scd); | ||
| 205 | 191 | ||
| 206 | return clock; | 192 | return clock; |
| 207 | } | 193 | } |
| @@ -223,11 +209,9 @@ void sched_clock_tick(void) | |||
| 223 | now_gtod = ktime_to_ns(ktime_get()); | 209 | now_gtod = ktime_to_ns(ktime_get()); |
| 224 | now = sched_clock(); | 210 | now = sched_clock(); |
| 225 | 211 | ||
| 226 | __raw_spin_lock(&scd->lock); | ||
| 227 | scd->tick_raw = now; | 212 | scd->tick_raw = now; |
| 228 | scd->tick_gtod = now_gtod; | 213 | scd->tick_gtod = now_gtod; |
| 229 | __update_sched_clock(scd, now); | 214 | sched_clock_local(scd); |
| 230 | __raw_spin_unlock(&scd->lock); | ||
| 231 | } | 215 | } |
| 232 | 216 | ||
| 233 | /* | 217 | /* |
diff --git a/kernel/sched_cpupri.c b/kernel/sched_cpupri.c index e6c251790dde..0f052fc674d5 100644 --- a/kernel/sched_cpupri.c +++ b/kernel/sched_cpupri.c | |||
| @@ -81,8 +81,21 @@ int cpupri_find(struct cpupri *cp, struct task_struct *p, | |||
| 81 | if (cpumask_any_and(&p->cpus_allowed, vec->mask) >= nr_cpu_ids) | 81 | if (cpumask_any_and(&p->cpus_allowed, vec->mask) >= nr_cpu_ids) |
| 82 | continue; | 82 | continue; |
| 83 | 83 | ||
| 84 | if (lowest_mask) | 84 | if (lowest_mask) { |
| 85 | cpumask_and(lowest_mask, &p->cpus_allowed, vec->mask); | 85 | cpumask_and(lowest_mask, &p->cpus_allowed, vec->mask); |
| 86 | |||
| 87 | /* | ||
| 88 | * We have to ensure that we have at least one bit | ||
| 89 | * still set in the array, since the map could have | ||
| 90 | * been concurrently emptied between the first and | ||
| 91 | * second reads of vec->mask. If we hit this | ||
| 92 | * condition, simply act as though we never hit this | ||
| 93 | * priority level and continue on. | ||
| 94 | */ | ||
| 95 | if (cpumask_any(lowest_mask) >= nr_cpu_ids) | ||
| 96 | continue; | ||
| 97 | } | ||
| 98 | |||
| 86 | return 1; | 99 | return 1; |
| 87 | } | 100 | } |
| 88 | 101 | ||
| @@ -114,21 +127,11 @@ void cpupri_set(struct cpupri *cp, int cpu, int newpri) | |||
| 114 | 127 | ||
| 115 | /* | 128 | /* |
| 116 | * If the cpu was currently mapped to a different value, we | 129 | * If the cpu was currently mapped to a different value, we |
| 117 | * first need to unmap the old value | 130 | * need to map it to the new value then remove the old value. |
| 131 | * Note, we must add the new value first, otherwise we risk the | ||
| 132 | * cpu being cleared from pri_active, and this cpu could be | ||
| 133 | * missed for a push or pull. | ||
| 118 | */ | 134 | */ |
| 119 | if (likely(oldpri != CPUPRI_INVALID)) { | ||
| 120 | struct cpupri_vec *vec = &cp->pri_to_cpu[oldpri]; | ||
| 121 | |||
| 122 | spin_lock_irqsave(&vec->lock, flags); | ||
| 123 | |||
| 124 | vec->count--; | ||
| 125 | if (!vec->count) | ||
| 126 | clear_bit(oldpri, cp->pri_active); | ||
| 127 | cpumask_clear_cpu(cpu, vec->mask); | ||
| 128 | |||
| 129 | spin_unlock_irqrestore(&vec->lock, flags); | ||
| 130 | } | ||
| 131 | |||
| 132 | if (likely(newpri != CPUPRI_INVALID)) { | 135 | if (likely(newpri != CPUPRI_INVALID)) { |
| 133 | struct cpupri_vec *vec = &cp->pri_to_cpu[newpri]; | 136 | struct cpupri_vec *vec = &cp->pri_to_cpu[newpri]; |
| 134 | 137 | ||
| @@ -141,6 +144,18 @@ void cpupri_set(struct cpupri *cp, int cpu, int newpri) | |||
| 141 | 144 | ||
| 142 | spin_unlock_irqrestore(&vec->lock, flags); | 145 | spin_unlock_irqrestore(&vec->lock, flags); |
| 143 | } | 146 | } |
| 147 | if (likely(oldpri != CPUPRI_INVALID)) { | ||
| 148 | struct cpupri_vec *vec = &cp->pri_to_cpu[oldpri]; | ||
| 149 | |||
| 150 | spin_lock_irqsave(&vec->lock, flags); | ||
| 151 | |||
| 152 | vec->count--; | ||
| 153 | if (!vec->count) | ||
| 154 | clear_bit(oldpri, cp->pri_active); | ||
| 155 | cpumask_clear_cpu(cpu, vec->mask); | ||
| 156 | |||
| 157 | spin_unlock_irqrestore(&vec->lock, flags); | ||
| 158 | } | ||
| 144 | 159 | ||
| 145 | *currpri = newpri; | 160 | *currpri = newpri; |
| 146 | } | 161 | } |
diff --git a/kernel/sched_debug.c b/kernel/sched_debug.c index 70c7e0b79946..efb84409bc43 100644 --- a/kernel/sched_debug.c +++ b/kernel/sched_debug.c | |||
| @@ -395,6 +395,7 @@ void proc_sched_show_task(struct task_struct *p, struct seq_file *m) | |||
| 395 | PN(se.sum_exec_runtime); | 395 | PN(se.sum_exec_runtime); |
| 396 | PN(se.avg_overlap); | 396 | PN(se.avg_overlap); |
| 397 | PN(se.avg_wakeup); | 397 | PN(se.avg_wakeup); |
| 398 | PN(se.avg_running); | ||
| 398 | 399 | ||
| 399 | nr_switches = p->nvcsw + p->nivcsw; | 400 | nr_switches = p->nvcsw + p->nivcsw; |
| 400 | 401 | ||
| @@ -409,6 +410,8 @@ void proc_sched_show_task(struct task_struct *p, struct seq_file *m) | |||
| 409 | PN(se.wait_max); | 410 | PN(se.wait_max); |
| 410 | PN(se.wait_sum); | 411 | PN(se.wait_sum); |
| 411 | P(se.wait_count); | 412 | P(se.wait_count); |
| 413 | PN(se.iowait_sum); | ||
| 414 | P(se.iowait_count); | ||
| 412 | P(sched_info.bkl_count); | 415 | P(sched_info.bkl_count); |
| 413 | P(se.nr_migrations); | 416 | P(se.nr_migrations); |
| 414 | P(se.nr_migrations_cold); | 417 | P(se.nr_migrations_cold); |
| @@ -479,6 +482,8 @@ void proc_sched_set_task(struct task_struct *p) | |||
| 479 | p->se.wait_max = 0; | 482 | p->se.wait_max = 0; |
| 480 | p->se.wait_sum = 0; | 483 | p->se.wait_sum = 0; |
| 481 | p->se.wait_count = 0; | 484 | p->se.wait_count = 0; |
| 485 | p->se.iowait_sum = 0; | ||
| 486 | p->se.iowait_count = 0; | ||
| 482 | p->se.sleep_max = 0; | 487 | p->se.sleep_max = 0; |
| 483 | p->se.sum_sleep_runtime = 0; | 488 | p->se.sum_sleep_runtime = 0; |
| 484 | p->se.block_max = 0; | 489 | p->se.block_max = 0; |
diff --git a/kernel/sched_fair.c b/kernel/sched_fair.c index ba7fd6e9556f..ecc637a0d591 100644 --- a/kernel/sched_fair.c +++ b/kernel/sched_fair.c | |||
| @@ -24,7 +24,7 @@ | |||
| 24 | 24 | ||
| 25 | /* | 25 | /* |
| 26 | * Targeted preemption latency for CPU-bound tasks: | 26 | * Targeted preemption latency for CPU-bound tasks: |
| 27 | * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds) | 27 | * (default: 5ms * (1 + ilog(ncpus)), units: nanoseconds) |
| 28 | * | 28 | * |
| 29 | * NOTE: this latency value is not the same as the concept of | 29 | * NOTE: this latency value is not the same as the concept of |
| 30 | * 'timeslice length' - timeslices in CFS are of variable length | 30 | * 'timeslice length' - timeslices in CFS are of variable length |
| @@ -34,13 +34,13 @@ | |||
| 34 | * (to see the precise effective timeslice length of your workload, | 34 | * (to see the precise effective timeslice length of your workload, |
| 35 | * run vmstat and monitor the context-switches (cs) field) | 35 | * run vmstat and monitor the context-switches (cs) field) |
| 36 | */ | 36 | */ |
| 37 | unsigned int sysctl_sched_latency = 20000000ULL; | 37 | unsigned int sysctl_sched_latency = 5000000ULL; |
| 38 | 38 | ||
| 39 | /* | 39 | /* |
| 40 | * Minimal preemption granularity for CPU-bound tasks: | 40 | * Minimal preemption granularity for CPU-bound tasks: |
| 41 | * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds) | 41 | * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) |
| 42 | */ | 42 | */ |
| 43 | unsigned int sysctl_sched_min_granularity = 4000000ULL; | 43 | unsigned int sysctl_sched_min_granularity = 1000000ULL; |
| 44 | 44 | ||
| 45 | /* | 45 | /* |
| 46 | * is kept at sysctl_sched_latency / sysctl_sched_min_granularity | 46 | * is kept at sysctl_sched_latency / sysctl_sched_min_granularity |
| @@ -48,10 +48,10 @@ unsigned int sysctl_sched_min_granularity = 4000000ULL; | |||
| 48 | static unsigned int sched_nr_latency = 5; | 48 | static unsigned int sched_nr_latency = 5; |
| 49 | 49 | ||
| 50 | /* | 50 | /* |
| 51 | * After fork, child runs first. (default) If set to 0 then | 51 | * After fork, child runs first. If set to 0 (default) then |
| 52 | * parent will (try to) run first. | 52 | * parent will (try to) run first. |
| 53 | */ | 53 | */ |
| 54 | const_debug unsigned int sysctl_sched_child_runs_first = 1; | 54 | unsigned int sysctl_sched_child_runs_first __read_mostly; |
| 55 | 55 | ||
| 56 | /* | 56 | /* |
| 57 | * sys_sched_yield() compat mode | 57 | * sys_sched_yield() compat mode |
| @@ -63,13 +63,13 @@ unsigned int __read_mostly sysctl_sched_compat_yield; | |||
| 63 | 63 | ||
| 64 | /* | 64 | /* |
| 65 | * SCHED_OTHER wake-up granularity. | 65 | * SCHED_OTHER wake-up granularity. |
| 66 | * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds) | 66 | * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) |
| 67 | * | 67 | * |
| 68 | * This option delays the preemption effects of decoupled workloads | 68 | * This option delays the preemption effects of decoupled workloads |
| 69 | * and reduces their over-scheduling. Synchronous workloads will still | 69 | * and reduces their over-scheduling. Synchronous workloads will still |
| 70 | * have immediate wakeup/sleep latencies. | 70 | * have immediate wakeup/sleep latencies. |
| 71 | */ | 71 | */ |
| 72 | unsigned int sysctl_sched_wakeup_granularity = 5000000UL; | 72 | unsigned int sysctl_sched_wakeup_granularity = 1000000UL; |
| 73 | 73 | ||
| 74 | const_debug unsigned int sysctl_sched_migration_cost = 500000UL; | 74 | const_debug unsigned int sysctl_sched_migration_cost = 500000UL; |
| 75 | 75 | ||
| @@ -79,11 +79,6 @@ static const struct sched_class fair_sched_class; | |||
| 79 | * CFS operations on generic schedulable entities: | 79 | * CFS operations on generic schedulable entities: |
| 80 | */ | 80 | */ |
| 81 | 81 | ||
| 82 | static inline struct task_struct *task_of(struct sched_entity *se) | ||
| 83 | { | ||
| 84 | return container_of(se, struct task_struct, se); | ||
| 85 | } | ||
| 86 | |||
| 87 | #ifdef CONFIG_FAIR_GROUP_SCHED | 82 | #ifdef CONFIG_FAIR_GROUP_SCHED |
| 88 | 83 | ||
| 89 | /* cpu runqueue to which this cfs_rq is attached */ | 84 | /* cpu runqueue to which this cfs_rq is attached */ |
| @@ -95,6 +90,14 @@ static inline struct rq *rq_of(struct cfs_rq *cfs_rq) | |||
| 95 | /* An entity is a task if it doesn't "own" a runqueue */ | 90 | /* An entity is a task if it doesn't "own" a runqueue */ |
| 96 | #define entity_is_task(se) (!se->my_q) | 91 | #define entity_is_task(se) (!se->my_q) |
| 97 | 92 | ||
| 93 | static inline struct task_struct *task_of(struct sched_entity *se) | ||
| 94 | { | ||
| 95 | #ifdef CONFIG_SCHED_DEBUG | ||
| 96 | WARN_ON_ONCE(!entity_is_task(se)); | ||
| 97 | #endif | ||
| 98 | return container_of(se, struct task_struct, se); | ||
| 99 | } | ||
| 100 | |||
| 98 | /* Walk up scheduling entities hierarchy */ | 101 | /* Walk up scheduling entities hierarchy */ |
| 99 | #define for_each_sched_entity(se) \ | 102 | #define for_each_sched_entity(se) \ |
| 100 | for (; se; se = se->parent) | 103 | for (; se; se = se->parent) |
| @@ -186,7 +189,12 @@ find_matching_se(struct sched_entity **se, struct sched_entity **pse) | |||
| 186 | } | 189 | } |
| 187 | } | 190 | } |
| 188 | 191 | ||
| 189 | #else /* CONFIG_FAIR_GROUP_SCHED */ | 192 | #else /* !CONFIG_FAIR_GROUP_SCHED */ |
| 193 | |||
| 194 | static inline struct task_struct *task_of(struct sched_entity *se) | ||
| 195 | { | ||
| 196 | return container_of(se, struct task_struct, se); | ||
| 197 | } | ||
| 190 | 198 | ||
| 191 | static inline struct rq *rq_of(struct cfs_rq *cfs_rq) | 199 | static inline struct rq *rq_of(struct cfs_rq *cfs_rq) |
| 192 | { | 200 | { |
| @@ -266,6 +274,12 @@ static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) | |||
| 266 | return min_vruntime; | 274 | return min_vruntime; |
| 267 | } | 275 | } |
| 268 | 276 | ||
| 277 | static inline int entity_before(struct sched_entity *a, | ||
| 278 | struct sched_entity *b) | ||
| 279 | { | ||
| 280 | return (s64)(a->vruntime - b->vruntime) < 0; | ||
| 281 | } | ||
| 282 | |||
| 269 | static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se) | 283 | static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se) |
| 270 | { | 284 | { |
| 271 | return se->vruntime - cfs_rq->min_vruntime; | 285 | return se->vruntime - cfs_rq->min_vruntime; |
| @@ -499,6 +513,7 @@ static void update_curr(struct cfs_rq *cfs_rq) | |||
| 499 | if (entity_is_task(curr)) { | 513 | if (entity_is_task(curr)) { |
| 500 | struct task_struct *curtask = task_of(curr); | 514 | struct task_struct *curtask = task_of(curr); |
| 501 | 515 | ||
| 516 | trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); | ||
| 502 | cpuacct_charge(curtask, delta_exec); | 517 | cpuacct_charge(curtask, delta_exec); |
| 503 | account_group_exec_runtime(curtask, delta_exec); | 518 | account_group_exec_runtime(curtask, delta_exec); |
| 504 | } | 519 | } |
| @@ -531,6 +546,12 @@ update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) | |||
| 531 | schedstat_set(se->wait_count, se->wait_count + 1); | 546 | schedstat_set(se->wait_count, se->wait_count + 1); |
| 532 | schedstat_set(se->wait_sum, se->wait_sum + | 547 | schedstat_set(se->wait_sum, se->wait_sum + |
| 533 | rq_of(cfs_rq)->clock - se->wait_start); | 548 | rq_of(cfs_rq)->clock - se->wait_start); |
| 549 | #ifdef CONFIG_SCHEDSTATS | ||
| 550 | if (entity_is_task(se)) { | ||
| 551 | trace_sched_stat_wait(task_of(se), | ||
| 552 | rq_of(cfs_rq)->clock - se->wait_start); | ||
| 553 | } | ||
| 554 | #endif | ||
| 534 | schedstat_set(se->wait_start, 0); | 555 | schedstat_set(se->wait_start, 0); |
| 535 | } | 556 | } |
| 536 | 557 | ||
| @@ -605,9 +626,13 @@ account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) | |||
| 605 | static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) | 626 | static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) |
| 606 | { | 627 | { |
| 607 | #ifdef CONFIG_SCHEDSTATS | 628 | #ifdef CONFIG_SCHEDSTATS |
| 629 | struct task_struct *tsk = NULL; | ||
| 630 | |||
| 631 | if (entity_is_task(se)) | ||
| 632 | tsk = task_of(se); | ||
| 633 | |||
| 608 | if (se->sleep_start) { | 634 | if (se->sleep_start) { |
| 609 | u64 delta = rq_of(cfs_rq)->clock - se->sleep_start; | 635 | u64 delta = rq_of(cfs_rq)->clock - se->sleep_start; |
| 610 | struct task_struct *tsk = task_of(se); | ||
| 611 | 636 | ||
| 612 | if ((s64)delta < 0) | 637 | if ((s64)delta < 0) |
| 613 | delta = 0; | 638 | delta = 0; |
| @@ -618,11 +643,13 @@ static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) | |||
| 618 | se->sleep_start = 0; | 643 | se->sleep_start = 0; |
| 619 | se->sum_sleep_runtime += delta; | 644 | se->sum_sleep_runtime += delta; |
| 620 | 645 | ||
| 621 | account_scheduler_latency(tsk, delta >> 10, 1); | 646 | if (tsk) { |
| 647 | account_scheduler_latency(tsk, delta >> 10, 1); | ||
| 648 | trace_sched_stat_sleep(tsk, delta); | ||
| 649 | } | ||
| 622 | } | 650 | } |
| 623 | if (se->block_start) { | 651 | if (se->block_start) { |
| 624 | u64 delta = rq_of(cfs_rq)->clock - se->block_start; | 652 | u64 delta = rq_of(cfs_rq)->clock - se->block_start; |
| 625 | struct task_struct *tsk = task_of(se); | ||
| 626 | 653 | ||
| 627 | if ((s64)delta < 0) | 654 | if ((s64)delta < 0) |
| 628 | delta = 0; | 655 | delta = 0; |
| @@ -633,17 +660,25 @@ static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) | |||
| 633 | se->block_start = 0; | 660 | se->block_start = 0; |
| 634 | se->sum_sleep_runtime += delta; | 661 | se->sum_sleep_runtime += delta; |
| 635 | 662 | ||
| 636 | /* | 663 | if (tsk) { |
| 637 | * Blocking time is in units of nanosecs, so shift by 20 to | 664 | if (tsk->in_iowait) { |
| 638 | * get a milliseconds-range estimation of the amount of | 665 | se->iowait_sum += delta; |
| 639 | * time that the task spent sleeping: | 666 | se->iowait_count++; |
| 640 | */ | 667 | trace_sched_stat_iowait(tsk, delta); |
| 641 | if (unlikely(prof_on == SLEEP_PROFILING)) { | 668 | } |
| 642 | 669 | ||
| 643 | profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk), | 670 | /* |
| 644 | delta >> 20); | 671 | * Blocking time is in units of nanosecs, so shift by |
| 672 | * 20 to get a milliseconds-range estimation of the | ||
| 673 | * amount of time that the task spent sleeping: | ||
| 674 | */ | ||
| 675 | if (unlikely(prof_on == SLEEP_PROFILING)) { | ||
| 676 | profile_hits(SLEEP_PROFILING, | ||
| 677 | (void *)get_wchan(tsk), | ||
| 678 | delta >> 20); | ||
| 679 | } | ||
| 680 | account_scheduler_latency(tsk, delta >> 10, 0); | ||
| 645 | } | 681 | } |
| 646 | account_scheduler_latency(tsk, delta >> 10, 0); | ||
| 647 | } | 682 | } |
| 648 | #endif | 683 | #endif |
| 649 | } | 684 | } |
| @@ -675,28 +710,33 @@ place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) | |||
| 675 | if (initial && sched_feat(START_DEBIT)) | 710 | if (initial && sched_feat(START_DEBIT)) |
| 676 | vruntime += sched_vslice(cfs_rq, se); | 711 | vruntime += sched_vslice(cfs_rq, se); |
| 677 | 712 | ||
| 678 | if (!initial) { | 713 | /* sleeps up to a single latency don't count. */ |
| 679 | /* sleeps upto a single latency don't count. */ | 714 | if (!initial && sched_feat(FAIR_SLEEPERS)) { |
| 680 | if (sched_feat(NEW_FAIR_SLEEPERS)) { | 715 | unsigned long thresh = sysctl_sched_latency; |
| 681 | unsigned long thresh = sysctl_sched_latency; | ||
| 682 | 716 | ||
| 683 | /* | 717 | /* |
| 684 | * Convert the sleeper threshold into virtual time. | 718 | * Convert the sleeper threshold into virtual time. |
| 685 | * SCHED_IDLE is a special sub-class. We care about | 719 | * SCHED_IDLE is a special sub-class. We care about |
| 686 | * fairness only relative to other SCHED_IDLE tasks, | 720 | * fairness only relative to other SCHED_IDLE tasks, |
| 687 | * all of which have the same weight. | 721 | * all of which have the same weight. |
| 688 | */ | 722 | */ |
| 689 | if (sched_feat(NORMALIZED_SLEEPER) && | 723 | if (sched_feat(NORMALIZED_SLEEPER) && (!entity_is_task(se) || |
| 690 | task_of(se)->policy != SCHED_IDLE) | 724 | task_of(se)->policy != SCHED_IDLE)) |
| 691 | thresh = calc_delta_fair(thresh, se); | 725 | thresh = calc_delta_fair(thresh, se); |
| 692 | 726 | ||
| 693 | vruntime -= thresh; | 727 | /* |
| 694 | } | 728 | * Halve their sleep time's effect, to allow |
| 729 | * for a gentler effect of sleepers: | ||
| 730 | */ | ||
| 731 | if (sched_feat(GENTLE_FAIR_SLEEPERS)) | ||
| 732 | thresh >>= 1; | ||
| 695 | 733 | ||
| 696 | /* ensure we never gain time by being placed backwards. */ | 734 | vruntime -= thresh; |
| 697 | vruntime = max_vruntime(se->vruntime, vruntime); | ||
| 698 | } | 735 | } |
| 699 | 736 | ||
| 737 | /* ensure we never gain time by being placed backwards. */ | ||
| 738 | vruntime = max_vruntime(se->vruntime, vruntime); | ||
| 739 | |||
| 700 | se->vruntime = vruntime; | 740 | se->vruntime = vruntime; |
| 701 | } | 741 | } |
| 702 | 742 | ||
| @@ -722,10 +762,10 @@ enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup) | |||
| 722 | 762 | ||
| 723 | static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) | 763 | static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) |
| 724 | { | 764 | { |
| 725 | if (cfs_rq->last == se) | 765 | if (!se || cfs_rq->last == se) |
| 726 | cfs_rq->last = NULL; | 766 | cfs_rq->last = NULL; |
| 727 | 767 | ||
| 728 | if (cfs_rq->next == se) | 768 | if (!se || cfs_rq->next == se) |
| 729 | cfs_rq->next = NULL; | 769 | cfs_rq->next = NULL; |
| 730 | } | 770 | } |
| 731 | 771 | ||
| @@ -1016,7 +1056,7 @@ static void yield_task_fair(struct rq *rq) | |||
| 1016 | /* | 1056 | /* |
| 1017 | * Already in the rightmost position? | 1057 | * Already in the rightmost position? |
| 1018 | */ | 1058 | */ |
| 1019 | if (unlikely(!rightmost || rightmost->vruntime < se->vruntime)) | 1059 | if (unlikely(!rightmost || entity_before(rightmost, se))) |
| 1020 | return; | 1060 | return; |
| 1021 | 1061 | ||
| 1022 | /* | 1062 | /* |
| @@ -1027,79 +1067,6 @@ static void yield_task_fair(struct rq *rq) | |||
| 1027 | se->vruntime = rightmost->vruntime + 1; | 1067 | se->vruntime = rightmost->vruntime + 1; |
| 1028 | } | 1068 | } |
| 1029 | 1069 | ||
| 1030 | /* | ||
| 1031 | * wake_idle() will wake a task on an idle cpu if task->cpu is | ||
| 1032 | * not idle and an idle cpu is available. The span of cpus to | ||
| 1033 | * search starts with cpus closest then further out as needed, | ||
| 1034 | * so we always favor a closer, idle cpu. | ||
| 1035 | * Domains may include CPUs that are not usable for migration, | ||
| 1036 | * hence we need to mask them out (cpu_active_mask) | ||
| 1037 | * | ||
| 1038 | * Returns the CPU we should wake onto. | ||
| 1039 | */ | ||
| 1040 | #if defined(ARCH_HAS_SCHED_WAKE_IDLE) | ||
| 1041 | static int wake_idle(int cpu, struct task_struct *p) | ||
| 1042 | { | ||
| 1043 | struct sched_domain *sd; | ||
| 1044 | int i; | ||
| 1045 | unsigned int chosen_wakeup_cpu; | ||
| 1046 | int this_cpu; | ||
| 1047 | |||
| 1048 | /* | ||
| 1049 | * At POWERSAVINGS_BALANCE_WAKEUP level, if both this_cpu and prev_cpu | ||
| 1050 | * are idle and this is not a kernel thread and this task's affinity | ||
| 1051 | * allows it to be moved to preferred cpu, then just move! | ||
| 1052 | */ | ||
| 1053 | |||
| 1054 | this_cpu = smp_processor_id(); | ||
| 1055 | chosen_wakeup_cpu = | ||
| 1056 | cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu; | ||
| 1057 | |||
| 1058 | if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP && | ||
| 1059 | idle_cpu(cpu) && idle_cpu(this_cpu) && | ||
| 1060 | p->mm && !(p->flags & PF_KTHREAD) && | ||
| 1061 | cpu_isset(chosen_wakeup_cpu, p->cpus_allowed)) | ||
| 1062 | return chosen_wakeup_cpu; | ||
| 1063 | |||
| 1064 | /* | ||
| 1065 | * If it is idle, then it is the best cpu to run this task. | ||
| 1066 | * | ||
| 1067 | * This cpu is also the best, if it has more than one task already. | ||
| 1068 | * Siblings must be also busy(in most cases) as they didn't already | ||
| 1069 | * pickup the extra load from this cpu and hence we need not check | ||
| 1070 | * sibling runqueue info. This will avoid the checks and cache miss | ||
| 1071 | * penalities associated with that. | ||
| 1072 | */ | ||
| 1073 | if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1) | ||
| 1074 | return cpu; | ||
| 1075 | |||
| 1076 | for_each_domain(cpu, sd) { | ||
| 1077 | if ((sd->flags & SD_WAKE_IDLE) | ||
| 1078 | || ((sd->flags & SD_WAKE_IDLE_FAR) | ||
| 1079 | && !task_hot(p, task_rq(p)->clock, sd))) { | ||
| 1080 | for_each_cpu_and(i, sched_domain_span(sd), | ||
| 1081 | &p->cpus_allowed) { | ||
| 1082 | if (cpu_active(i) && idle_cpu(i)) { | ||
| 1083 | if (i != task_cpu(p)) { | ||
| 1084 | schedstat_inc(p, | ||
| 1085 | se.nr_wakeups_idle); | ||
| 1086 | } | ||
| 1087 | return i; | ||
| 1088 | } | ||
| 1089 | } | ||
| 1090 | } else { | ||
| 1091 | break; | ||
| 1092 | } | ||
| 1093 | } | ||
| 1094 | return cpu; | ||
| 1095 | } | ||
| 1096 | #else /* !ARCH_HAS_SCHED_WAKE_IDLE*/ | ||
| 1097 | static inline int wake_idle(int cpu, struct task_struct *p) | ||
| 1098 | { | ||
| 1099 | return cpu; | ||
| 1100 | } | ||
| 1101 | #endif | ||
| 1102 | |||
| 1103 | #ifdef CONFIG_SMP | 1070 | #ifdef CONFIG_SMP |
| 1104 | 1071 | ||
| 1105 | #ifdef CONFIG_FAIR_GROUP_SCHED | 1072 | #ifdef CONFIG_FAIR_GROUP_SCHED |
| @@ -1186,25 +1153,34 @@ static inline unsigned long effective_load(struct task_group *tg, int cpu, | |||
| 1186 | 1153 | ||
| 1187 | #endif | 1154 | #endif |
| 1188 | 1155 | ||
| 1189 | static int | 1156 | static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync) |
| 1190 | wake_affine(struct sched_domain *this_sd, struct rq *this_rq, | ||
| 1191 | struct task_struct *p, int prev_cpu, int this_cpu, int sync, | ||
| 1192 | int idx, unsigned long load, unsigned long this_load, | ||
| 1193 | unsigned int imbalance) | ||
| 1194 | { | 1157 | { |
| 1195 | struct task_struct *curr = this_rq->curr; | 1158 | struct task_struct *curr = current; |
| 1196 | struct task_group *tg; | 1159 | unsigned long this_load, load; |
| 1197 | unsigned long tl = this_load; | 1160 | int idx, this_cpu, prev_cpu; |
| 1198 | unsigned long tl_per_task; | 1161 | unsigned long tl_per_task; |
| 1162 | unsigned int imbalance; | ||
| 1163 | struct task_group *tg; | ||
| 1199 | unsigned long weight; | 1164 | unsigned long weight; |
| 1200 | int balanced; | 1165 | int balanced; |
| 1201 | 1166 | ||
| 1202 | if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS)) | 1167 | idx = sd->wake_idx; |
| 1203 | return 0; | 1168 | this_cpu = smp_processor_id(); |
| 1169 | prev_cpu = task_cpu(p); | ||
| 1170 | load = source_load(prev_cpu, idx); | ||
| 1171 | this_load = target_load(this_cpu, idx); | ||
| 1204 | 1172 | ||
| 1205 | if (sync && (curr->se.avg_overlap > sysctl_sched_migration_cost || | 1173 | if (sync) { |
| 1206 | p->se.avg_overlap > sysctl_sched_migration_cost)) | 1174 | if (sched_feat(SYNC_LESS) && |
| 1207 | sync = 0; | 1175 | (curr->se.avg_overlap > sysctl_sched_migration_cost || |
| 1176 | p->se.avg_overlap > sysctl_sched_migration_cost)) | ||
| 1177 | sync = 0; | ||
| 1178 | } else { | ||
| 1179 | if (sched_feat(SYNC_MORE) && | ||
| 1180 | (curr->se.avg_overlap < sysctl_sched_migration_cost && | ||
| 1181 | p->se.avg_overlap < sysctl_sched_migration_cost)) | ||
| 1182 | sync = 1; | ||
| 1183 | } | ||
| 1208 | 1184 | ||
| 1209 | /* | 1185 | /* |
| 1210 | * If sync wakeup then subtract the (maximum possible) | 1186 | * If sync wakeup then subtract the (maximum possible) |
| @@ -1215,14 +1191,26 @@ wake_affine(struct sched_domain *this_sd, struct rq *this_rq, | |||
| 1215 | tg = task_group(current); | 1191 | tg = task_group(current); |
| 1216 | weight = current->se.load.weight; | 1192 | weight = current->se.load.weight; |
| 1217 | 1193 | ||
| 1218 | tl += effective_load(tg, this_cpu, -weight, -weight); | 1194 | this_load += effective_load(tg, this_cpu, -weight, -weight); |
| 1219 | load += effective_load(tg, prev_cpu, 0, -weight); | 1195 | load += effective_load(tg, prev_cpu, 0, -weight); |
| 1220 | } | 1196 | } |
| 1221 | 1197 | ||
| 1222 | tg = task_group(p); | 1198 | tg = task_group(p); |
| 1223 | weight = p->se.load.weight; | 1199 | weight = p->se.load.weight; |
| 1224 | 1200 | ||
| 1225 | balanced = 100*(tl + effective_load(tg, this_cpu, weight, weight)) <= | 1201 | imbalance = 100 + (sd->imbalance_pct - 100) / 2; |
| 1202 | |||
| 1203 | /* | ||
| 1204 | * In low-load situations, where prev_cpu is idle and this_cpu is idle | ||
| 1205 | * due to the sync cause above having dropped this_load to 0, we'll | ||
| 1206 | * always have an imbalance, but there's really nothing you can do | ||
| 1207 | * about that, so that's good too. | ||
| 1208 | * | ||
| 1209 | * Otherwise check if either cpus are near enough in load to allow this | ||
| 1210 | * task to be woken on this_cpu. | ||
| 1211 | */ | ||
| 1212 | balanced = !this_load || | ||
| 1213 | 100*(this_load + effective_load(tg, this_cpu, weight, weight)) <= | ||
| 1226 | imbalance*(load + effective_load(tg, prev_cpu, 0, weight)); | 1214 | imbalance*(load + effective_load(tg, prev_cpu, 0, weight)); |
| 1227 | 1215 | ||
| 1228 | /* | 1216 | /* |
| @@ -1236,14 +1224,15 @@ wake_affine(struct sched_domain *this_sd, struct rq *this_rq, | |||
| 1236 | schedstat_inc(p, se.nr_wakeups_affine_attempts); | 1224 | schedstat_inc(p, se.nr_wakeups_affine_attempts); |
| 1237 | tl_per_task = cpu_avg_load_per_task(this_cpu); | 1225 | tl_per_task = cpu_avg_load_per_task(this_cpu); |
| 1238 | 1226 | ||
| 1239 | if (balanced || (tl <= load && tl + target_load(prev_cpu, idx) <= | 1227 | if (balanced || |
| 1240 | tl_per_task)) { | 1228 | (this_load <= load && |
| 1229 | this_load + target_load(prev_cpu, idx) <= tl_per_task)) { | ||
| 1241 | /* | 1230 | /* |
| 1242 | * This domain has SD_WAKE_AFFINE and | 1231 | * This domain has SD_WAKE_AFFINE and |
| 1243 | * p is cache cold in this domain, and | 1232 | * p is cache cold in this domain, and |
| 1244 | * there is no bad imbalance. | 1233 | * there is no bad imbalance. |
| 1245 | */ | 1234 | */ |
| 1246 | schedstat_inc(this_sd, ttwu_move_affine); | 1235 | schedstat_inc(sd, ttwu_move_affine); |
| 1247 | schedstat_inc(p, se.nr_wakeups_affine); | 1236 | schedstat_inc(p, se.nr_wakeups_affine); |
| 1248 | 1237 | ||
| 1249 | return 1; | 1238 | return 1; |
| @@ -1251,67 +1240,216 @@ wake_affine(struct sched_domain *this_sd, struct rq *this_rq, | |||
| 1251 | return 0; | 1240 | return 0; |
| 1252 | } | 1241 | } |
| 1253 | 1242 | ||
| 1254 | static int select_task_rq_fair(struct task_struct *p, int sync) | 1243 | /* |
| 1244 | * find_idlest_group finds and returns the least busy CPU group within the | ||
| 1245 | * domain. | ||
| 1246 | */ | ||
| 1247 | static struct sched_group * | ||
| 1248 | find_idlest_group(struct sched_domain *sd, struct task_struct *p, | ||
| 1249 | int this_cpu, int load_idx) | ||
| 1255 | { | 1250 | { |
| 1256 | struct sched_domain *sd, *this_sd = NULL; | 1251 | struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups; |
| 1257 | int prev_cpu, this_cpu, new_cpu; | 1252 | unsigned long min_load = ULONG_MAX, this_load = 0; |
| 1258 | unsigned long load, this_load; | 1253 | int imbalance = 100 + (sd->imbalance_pct-100)/2; |
| 1259 | struct rq *this_rq; | ||
| 1260 | unsigned int imbalance; | ||
| 1261 | int idx; | ||
| 1262 | 1254 | ||
| 1263 | prev_cpu = task_cpu(p); | 1255 | do { |
| 1264 | this_cpu = smp_processor_id(); | 1256 | unsigned long load, avg_load; |
| 1265 | this_rq = cpu_rq(this_cpu); | 1257 | int local_group; |
| 1266 | new_cpu = prev_cpu; | 1258 | int i; |
| 1267 | 1259 | ||
| 1268 | if (prev_cpu == this_cpu) | 1260 | /* Skip over this group if it has no CPUs allowed */ |
| 1269 | goto out; | 1261 | if (!cpumask_intersects(sched_group_cpus(group), |
| 1270 | /* | 1262 | &p->cpus_allowed)) |
| 1271 | * 'this_sd' is the first domain that both | 1263 | continue; |
| 1272 | * this_cpu and prev_cpu are present in: | 1264 | |
| 1273 | */ | 1265 | local_group = cpumask_test_cpu(this_cpu, |
| 1274 | for_each_domain(this_cpu, sd) { | 1266 | sched_group_cpus(group)); |
| 1275 | if (cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) { | 1267 | |
| 1276 | this_sd = sd; | 1268 | /* Tally up the load of all CPUs in the group */ |
| 1277 | break; | 1269 | avg_load = 0; |
| 1270 | |||
| 1271 | for_each_cpu(i, sched_group_cpus(group)) { | ||
| 1272 | /* Bias balancing toward cpus of our domain */ | ||
| 1273 | if (local_group) | ||
| 1274 | load = source_load(i, load_idx); | ||
| 1275 | else | ||
| 1276 | load = target_load(i, load_idx); | ||
| 1277 | |||
| 1278 | avg_load += load; | ||
| 1279 | } | ||
| 1280 | |||
| 1281 | /* Adjust by relative CPU power of the group */ | ||
| 1282 | avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power; | ||
| 1283 | |||
| 1284 | if (local_group) { | ||
| 1285 | this_load = avg_load; | ||
| 1286 | this = group; | ||
| 1287 | } else if (avg_load < min_load) { | ||
| 1288 | min_load = avg_load; | ||
| 1289 | idlest = group; | ||
| 1290 | } | ||
| 1291 | } while (group = group->next, group != sd->groups); | ||
| 1292 | |||
| 1293 | if (!idlest || 100*this_load < imbalance*min_load) | ||
| 1294 | return NULL; | ||
| 1295 | return idlest; | ||
| 1296 | } | ||
| 1297 | |||
| 1298 | /* | ||
| 1299 | * find_idlest_cpu - find the idlest cpu among the cpus in group. | ||
| 1300 | */ | ||
| 1301 | static int | ||
| 1302 | find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) | ||
| 1303 | { | ||
| 1304 | unsigned long load, min_load = ULONG_MAX; | ||
| 1305 | int idlest = -1; | ||
| 1306 | int i; | ||
| 1307 | |||
| 1308 | /* Traverse only the allowed CPUs */ | ||
| 1309 | for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) { | ||
| 1310 | load = weighted_cpuload(i); | ||
| 1311 | |||
| 1312 | if (load < min_load || (load == min_load && i == this_cpu)) { | ||
| 1313 | min_load = load; | ||
| 1314 | idlest = i; | ||
| 1278 | } | 1315 | } |
| 1279 | } | 1316 | } |
| 1280 | 1317 | ||
| 1281 | if (unlikely(!cpumask_test_cpu(this_cpu, &p->cpus_allowed))) | 1318 | return idlest; |
| 1282 | goto out; | 1319 | } |
| 1283 | 1320 | ||
| 1284 | /* | 1321 | /* |
| 1285 | * Check for affine wakeup and passive balancing possibilities. | 1322 | * sched_balance_self: balance the current task (running on cpu) in domains |
| 1286 | */ | 1323 | * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and |
| 1287 | if (!this_sd) | 1324 | * SD_BALANCE_EXEC. |
| 1325 | * | ||
| 1326 | * Balance, ie. select the least loaded group. | ||
| 1327 | * | ||
| 1328 | * Returns the target CPU number, or the same CPU if no balancing is needed. | ||
| 1329 | * | ||
| 1330 | * preempt must be disabled. | ||
| 1331 | */ | ||
| 1332 | static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags) | ||
| 1333 | { | ||
| 1334 | struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL; | ||
| 1335 | int cpu = smp_processor_id(); | ||
| 1336 | int prev_cpu = task_cpu(p); | ||
| 1337 | int new_cpu = cpu; | ||
| 1338 | int want_affine = 0; | ||
| 1339 | int want_sd = 1; | ||
| 1340 | int sync = wake_flags & WF_SYNC; | ||
| 1341 | |||
| 1342 | if (sd_flag & SD_BALANCE_WAKE) { | ||
| 1343 | if (sched_feat(AFFINE_WAKEUPS) && | ||
| 1344 | cpumask_test_cpu(cpu, &p->cpus_allowed)) | ||
| 1345 | want_affine = 1; | ||
| 1346 | new_cpu = prev_cpu; | ||
| 1347 | } | ||
| 1348 | |||
| 1349 | rcu_read_lock(); | ||
| 1350 | for_each_domain(cpu, tmp) { | ||
| 1351 | /* | ||
| 1352 | * If power savings logic is enabled for a domain, see if we | ||
| 1353 | * are not overloaded, if so, don't balance wider. | ||
| 1354 | */ | ||
| 1355 | if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) { | ||
| 1356 | unsigned long power = 0; | ||
| 1357 | unsigned long nr_running = 0; | ||
| 1358 | unsigned long capacity; | ||
| 1359 | int i; | ||
| 1360 | |||
| 1361 | for_each_cpu(i, sched_domain_span(tmp)) { | ||
| 1362 | power += power_of(i); | ||
| 1363 | nr_running += cpu_rq(i)->cfs.nr_running; | ||
| 1364 | } | ||
| 1365 | |||
| 1366 | capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE); | ||
| 1367 | |||
| 1368 | if (tmp->flags & SD_POWERSAVINGS_BALANCE) | ||
| 1369 | nr_running /= 2; | ||
| 1370 | |||
| 1371 | if (nr_running < capacity) | ||
| 1372 | want_sd = 0; | ||
| 1373 | } | ||
| 1374 | |||
| 1375 | if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && | ||
| 1376 | cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { | ||
| 1377 | |||
| 1378 | affine_sd = tmp; | ||
| 1379 | want_affine = 0; | ||
| 1380 | } | ||
| 1381 | |||
| 1382 | if (!want_sd && !want_affine) | ||
| 1383 | break; | ||
| 1384 | |||
| 1385 | if (!(tmp->flags & sd_flag)) | ||
| 1386 | continue; | ||
| 1387 | |||
| 1388 | if (want_sd) | ||
| 1389 | sd = tmp; | ||
| 1390 | } | ||
| 1391 | |||
| 1392 | if (sched_feat(LB_SHARES_UPDATE)) { | ||
| 1393 | /* | ||
| 1394 | * Pick the largest domain to update shares over | ||
| 1395 | */ | ||
| 1396 | tmp = sd; | ||
| 1397 | if (affine_sd && (!tmp || | ||
| 1398 | cpumask_weight(sched_domain_span(affine_sd)) > | ||
| 1399 | cpumask_weight(sched_domain_span(sd)))) | ||
| 1400 | tmp = affine_sd; | ||
| 1401 | |||
| 1402 | if (tmp) | ||
| 1403 | update_shares(tmp); | ||
| 1404 | } | ||
| 1405 | |||
| 1406 | if (affine_sd && wake_affine(affine_sd, p, sync)) { | ||
| 1407 | new_cpu = cpu; | ||
| 1288 | goto out; | 1408 | goto out; |
| 1409 | } | ||
| 1289 | 1410 | ||
| 1290 | idx = this_sd->wake_idx; | 1411 | while (sd) { |
| 1412 | int load_idx = sd->forkexec_idx; | ||
| 1413 | struct sched_group *group; | ||
| 1414 | int weight; | ||
| 1291 | 1415 | ||
| 1292 | imbalance = 100 + (this_sd->imbalance_pct - 100) / 2; | 1416 | if (!(sd->flags & sd_flag)) { |
| 1417 | sd = sd->child; | ||
| 1418 | continue; | ||
| 1419 | } | ||
| 1293 | 1420 | ||
| 1294 | load = source_load(prev_cpu, idx); | 1421 | if (sd_flag & SD_BALANCE_WAKE) |
| 1295 | this_load = target_load(this_cpu, idx); | 1422 | load_idx = sd->wake_idx; |
| 1423 | |||
| 1424 | group = find_idlest_group(sd, p, cpu, load_idx); | ||
| 1425 | if (!group) { | ||
| 1426 | sd = sd->child; | ||
| 1427 | continue; | ||
| 1428 | } | ||
| 1296 | 1429 | ||
| 1297 | if (wake_affine(this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx, | 1430 | new_cpu = find_idlest_cpu(group, p, cpu); |
| 1298 | load, this_load, imbalance)) | 1431 | if (new_cpu == -1 || new_cpu == cpu) { |
| 1299 | return this_cpu; | 1432 | /* Now try balancing at a lower domain level of cpu */ |
| 1433 | sd = sd->child; | ||
| 1434 | continue; | ||
| 1435 | } | ||
| 1300 | 1436 | ||
| 1301 | /* | 1437 | /* Now try balancing at a lower domain level of new_cpu */ |
| 1302 | * Start passive balancing when half the imbalance_pct | 1438 | cpu = new_cpu; |
| 1303 | * limit is reached. | 1439 | weight = cpumask_weight(sched_domain_span(sd)); |
| 1304 | */ | 1440 | sd = NULL; |
| 1305 | if (this_sd->flags & SD_WAKE_BALANCE) { | 1441 | for_each_domain(cpu, tmp) { |
| 1306 | if (imbalance*this_load <= 100*load) { | 1442 | if (weight <= cpumask_weight(sched_domain_span(tmp))) |
| 1307 | schedstat_inc(this_sd, ttwu_move_balance); | 1443 | break; |
| 1308 | schedstat_inc(p, se.nr_wakeups_passive); | 1444 | if (tmp->flags & sd_flag) |
| 1309 | return this_cpu; | 1445 | sd = tmp; |
| 1310 | } | 1446 | } |
| 1447 | /* while loop will break here if sd == NULL */ | ||
| 1311 | } | 1448 | } |
| 1312 | 1449 | ||
| 1313 | out: | 1450 | out: |
| 1314 | return wake_idle(new_cpu, p); | 1451 | rcu_read_unlock(); |
| 1452 | return new_cpu; | ||
| 1315 | } | 1453 | } |
| 1316 | #endif /* CONFIG_SMP */ | 1454 | #endif /* CONFIG_SMP */ |
| 1317 | 1455 | ||
| @@ -1424,11 +1562,12 @@ static void set_next_buddy(struct sched_entity *se) | |||
| 1424 | /* | 1562 | /* |
| 1425 | * Preempt the current task with a newly woken task if needed: | 1563 | * Preempt the current task with a newly woken task if needed: |
| 1426 | */ | 1564 | */ |
| 1427 | static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync) | 1565 | static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) |
| 1428 | { | 1566 | { |
| 1429 | struct task_struct *curr = rq->curr; | 1567 | struct task_struct *curr = rq->curr; |
| 1430 | struct sched_entity *se = &curr->se, *pse = &p->se; | 1568 | struct sched_entity *se = &curr->se, *pse = &p->se; |
| 1431 | struct cfs_rq *cfs_rq = task_cfs_rq(curr); | 1569 | struct cfs_rq *cfs_rq = task_cfs_rq(curr); |
| 1570 | int sync = wake_flags & WF_SYNC; | ||
| 1432 | 1571 | ||
| 1433 | update_curr(cfs_rq); | 1572 | update_curr(cfs_rq); |
| 1434 | 1573 | ||
| @@ -1454,7 +1593,8 @@ static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync) | |||
| 1454 | */ | 1593 | */ |
| 1455 | if (sched_feat(LAST_BUDDY) && likely(se->on_rq && curr != rq->idle)) | 1594 | if (sched_feat(LAST_BUDDY) && likely(se->on_rq && curr != rq->idle)) |
| 1456 | set_last_buddy(se); | 1595 | set_last_buddy(se); |
| 1457 | set_next_buddy(pse); | 1596 | if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK)) |
| 1597 | set_next_buddy(pse); | ||
| 1458 | 1598 | ||
| 1459 | /* | 1599 | /* |
| 1460 | * We can come here with TIF_NEED_RESCHED already set from new task | 1600 | * We can come here with TIF_NEED_RESCHED already set from new task |
| @@ -1476,16 +1616,25 @@ static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync) | |||
| 1476 | return; | 1616 | return; |
| 1477 | } | 1617 | } |
| 1478 | 1618 | ||
| 1479 | if (!sched_feat(WAKEUP_PREEMPT)) | 1619 | if ((sched_feat(WAKEUP_SYNC) && sync) || |
| 1480 | return; | 1620 | (sched_feat(WAKEUP_OVERLAP) && |
| 1481 | 1621 | (se->avg_overlap < sysctl_sched_migration_cost && | |
| 1482 | if (sched_feat(WAKEUP_OVERLAP) && (sync || | 1622 | pse->avg_overlap < sysctl_sched_migration_cost))) { |
| 1483 | (se->avg_overlap < sysctl_sched_migration_cost && | ||
| 1484 | pse->avg_overlap < sysctl_sched_migration_cost))) { | ||
| 1485 | resched_task(curr); | 1623 | resched_task(curr); |
| 1486 | return; | 1624 | return; |
| 1487 | } | 1625 | } |
| 1488 | 1626 | ||
| 1627 | if (sched_feat(WAKEUP_RUNNING)) { | ||
| 1628 | if (pse->avg_running < se->avg_running) { | ||
| 1629 | set_next_buddy(pse); | ||
| 1630 | resched_task(curr); | ||
| 1631 | return; | ||
| 1632 | } | ||
| 1633 | } | ||
| 1634 | |||
| 1635 | if (!sched_feat(WAKEUP_PREEMPT)) | ||
| 1636 | return; | ||
| 1637 | |||
| 1489 | find_matching_se(&se, &pse); | 1638 | find_matching_se(&se, &pse); |
| 1490 | 1639 | ||
| 1491 | BUG_ON(!pse); | 1640 | BUG_ON(!pse); |
| @@ -1508,8 +1657,13 @@ static struct task_struct *pick_next_task_fair(struct rq *rq) | |||
| 1508 | /* | 1657 | /* |
| 1509 | * If se was a buddy, clear it so that it will have to earn | 1658 | * If se was a buddy, clear it so that it will have to earn |
| 1510 | * the favour again. | 1659 | * the favour again. |
| 1660 | * | ||
| 1661 | * If se was not a buddy, clear the buddies because neither | ||
| 1662 | * was elegible to run, let them earn it again. | ||
| 1663 | * | ||
| 1664 | * IOW. unconditionally clear buddies. | ||
| 1511 | */ | 1665 | */ |
| 1512 | __clear_buddies(cfs_rq, se); | 1666 | __clear_buddies(cfs_rq, NULL); |
| 1513 | set_next_entity(cfs_rq, se); | 1667 | set_next_entity(cfs_rq, se); |
| 1514 | cfs_rq = group_cfs_rq(se); | 1668 | cfs_rq = group_cfs_rq(se); |
| 1515 | } while (cfs_rq); | 1669 | } while (cfs_rq); |
| @@ -1708,11 +1862,13 @@ static void task_new_fair(struct rq *rq, struct task_struct *p) | |||
| 1708 | sched_info_queued(p); | 1862 | sched_info_queued(p); |
| 1709 | 1863 | ||
| 1710 | update_curr(cfs_rq); | 1864 | update_curr(cfs_rq); |
| 1865 | if (curr) | ||
| 1866 | se->vruntime = curr->vruntime; | ||
| 1711 | place_entity(cfs_rq, se, 1); | 1867 | place_entity(cfs_rq, se, 1); |
| 1712 | 1868 | ||
| 1713 | /* 'curr' will be NULL if the child belongs to a different group */ | 1869 | /* 'curr' will be NULL if the child belongs to a different group */ |
| 1714 | if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) && | 1870 | if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) && |
| 1715 | curr && curr->vruntime < se->vruntime) { | 1871 | curr && entity_before(curr, se)) { |
| 1716 | /* | 1872 | /* |
| 1717 | * Upon rescheduling, sched_class::put_prev_task() will place | 1873 | * Upon rescheduling, sched_class::put_prev_task() will place |
| 1718 | * 'current' within the tree based on its new key value. | 1874 | * 'current' within the tree based on its new key value. |
| @@ -1783,6 +1939,25 @@ static void moved_group_fair(struct task_struct *p) | |||
| 1783 | } | 1939 | } |
| 1784 | #endif | 1940 | #endif |
| 1785 | 1941 | ||
| 1942 | unsigned int get_rr_interval_fair(struct task_struct *task) | ||
| 1943 | { | ||
| 1944 | struct sched_entity *se = &task->se; | ||
| 1945 | unsigned long flags; | ||
| 1946 | struct rq *rq; | ||
| 1947 | unsigned int rr_interval = 0; | ||
| 1948 | |||
| 1949 | /* | ||
| 1950 | * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise | ||
| 1951 | * idle runqueue: | ||
| 1952 | */ | ||
| 1953 | rq = task_rq_lock(task, &flags); | ||
| 1954 | if (rq->cfs.load.weight) | ||
| 1955 | rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se)); | ||
| 1956 | task_rq_unlock(rq, &flags); | ||
| 1957 | |||
| 1958 | return rr_interval; | ||
| 1959 | } | ||
| 1960 | |||
| 1786 | /* | 1961 | /* |
| 1787 | * All the scheduling class methods: | 1962 | * All the scheduling class methods: |
| 1788 | */ | 1963 | */ |
| @@ -1811,6 +1986,8 @@ static const struct sched_class fair_sched_class = { | |||
| 1811 | .prio_changed = prio_changed_fair, | 1986 | .prio_changed = prio_changed_fair, |
| 1812 | .switched_to = switched_to_fair, | 1987 | .switched_to = switched_to_fair, |
| 1813 | 1988 | ||
| 1989 | .get_rr_interval = get_rr_interval_fair, | ||
| 1990 | |||
| 1814 | #ifdef CONFIG_FAIR_GROUP_SCHED | 1991 | #ifdef CONFIG_FAIR_GROUP_SCHED |
| 1815 | .moved_group = moved_group_fair, | 1992 | .moved_group = moved_group_fair, |
| 1816 | #endif | 1993 | #endif |
diff --git a/kernel/sched_features.h b/kernel/sched_features.h index 4569bfa7df9b..0d94083582c7 100644 --- a/kernel/sched_features.h +++ b/kernel/sched_features.h | |||
| @@ -1,17 +1,123 @@ | |||
| 1 | SCHED_FEAT(NEW_FAIR_SLEEPERS, 1) | 1 | /* |
| 2 | * Disregards a certain amount of sleep time (sched_latency_ns) and | ||
| 3 | * considers the task to be running during that period. This gives it | ||
| 4 | * a service deficit on wakeup, allowing it to run sooner. | ||
| 5 | */ | ||
| 6 | SCHED_FEAT(FAIR_SLEEPERS, 1) | ||
| 7 | |||
| 8 | /* | ||
| 9 | * Only give sleepers 50% of their service deficit. This allows | ||
| 10 | * them to run sooner, but does not allow tons of sleepers to | ||
| 11 | * rip the spread apart. | ||
| 12 | */ | ||
| 13 | SCHED_FEAT(GENTLE_FAIR_SLEEPERS, 1) | ||
| 14 | |||
| 15 | /* | ||
| 16 | * By not normalizing the sleep time, heavy tasks get an effective | ||
| 17 | * longer period, and lighter task an effective shorter period they | ||
| 18 | * are considered running. | ||
| 19 | */ | ||
| 2 | SCHED_FEAT(NORMALIZED_SLEEPER, 0) | 20 | SCHED_FEAT(NORMALIZED_SLEEPER, 0) |
| 3 | SCHED_FEAT(ADAPTIVE_GRAN, 1) | 21 | |
| 4 | SCHED_FEAT(WAKEUP_PREEMPT, 1) | 22 | /* |
| 23 | * Place new tasks ahead so that they do not starve already running | ||
| 24 | * tasks | ||
| 25 | */ | ||
| 5 | SCHED_FEAT(START_DEBIT, 1) | 26 | SCHED_FEAT(START_DEBIT, 1) |
| 27 | |||
| 28 | /* | ||
| 29 | * Should wakeups try to preempt running tasks. | ||
| 30 | */ | ||
| 31 | SCHED_FEAT(WAKEUP_PREEMPT, 1) | ||
| 32 | |||
| 33 | /* | ||
| 34 | * Compute wakeup_gran based on task behaviour, clipped to | ||
| 35 | * [0, sched_wakeup_gran_ns] | ||
| 36 | */ | ||
| 37 | SCHED_FEAT(ADAPTIVE_GRAN, 1) | ||
| 38 | |||
| 39 | /* | ||
| 40 | * When converting the wakeup granularity to virtual time, do it such | ||
| 41 | * that heavier tasks preempting a lighter task have an edge. | ||
| 42 | */ | ||
| 43 | SCHED_FEAT(ASYM_GRAN, 1) | ||
| 44 | |||
| 45 | /* | ||
| 46 | * Always wakeup-preempt SYNC wakeups, see SYNC_WAKEUPS. | ||
| 47 | */ | ||
| 48 | SCHED_FEAT(WAKEUP_SYNC, 0) | ||
| 49 | |||
| 50 | /* | ||
| 51 | * Wakeup preempt based on task behaviour. Tasks that do not overlap | ||
| 52 | * don't get preempted. | ||
| 53 | */ | ||
| 54 | SCHED_FEAT(WAKEUP_OVERLAP, 0) | ||
| 55 | |||
| 56 | /* | ||
| 57 | * Wakeup preemption towards tasks that run short | ||
| 58 | */ | ||
| 59 | SCHED_FEAT(WAKEUP_RUNNING, 0) | ||
| 60 | |||
| 61 | /* | ||
| 62 | * Use the SYNC wakeup hint, pipes and the likes use this to indicate | ||
| 63 | * the remote end is likely to consume the data we just wrote, and | ||
| 64 | * therefore has cache benefit from being placed on the same cpu, see | ||
| 65 | * also AFFINE_WAKEUPS. | ||
| 66 | */ | ||
| 67 | SCHED_FEAT(SYNC_WAKEUPS, 1) | ||
| 68 | |||
| 69 | /* | ||
| 70 | * Based on load and program behaviour, see if it makes sense to place | ||
| 71 | * a newly woken task on the same cpu as the task that woke it -- | ||
| 72 | * improve cache locality. Typically used with SYNC wakeups as | ||
| 73 | * generated by pipes and the like, see also SYNC_WAKEUPS. | ||
| 74 | */ | ||
| 6 | SCHED_FEAT(AFFINE_WAKEUPS, 1) | 75 | SCHED_FEAT(AFFINE_WAKEUPS, 1) |
| 76 | |||
| 77 | /* | ||
| 78 | * Weaken SYNC hint based on overlap | ||
| 79 | */ | ||
| 80 | SCHED_FEAT(SYNC_LESS, 1) | ||
| 81 | |||
| 82 | /* | ||
| 83 | * Add SYNC hint based on overlap | ||
| 84 | */ | ||
| 85 | SCHED_FEAT(SYNC_MORE, 0) | ||
| 86 | |||
| 87 | /* | ||
| 88 | * Prefer to schedule the task we woke last (assuming it failed | ||
| 89 | * wakeup-preemption), since its likely going to consume data we | ||
| 90 | * touched, increases cache locality. | ||
| 91 | */ | ||
| 92 | SCHED_FEAT(NEXT_BUDDY, 0) | ||
| 93 | |||
| 94 | /* | ||
| 95 | * Prefer to schedule the task that ran last (when we did | ||
| 96 | * wake-preempt) as that likely will touch the same data, increases | ||
| 97 | * cache locality. | ||
| 98 | */ | ||
| 99 | SCHED_FEAT(LAST_BUDDY, 1) | ||
| 100 | |||
| 101 | /* | ||
| 102 | * Consider buddies to be cache hot, decreases the likelyness of a | ||
| 103 | * cache buddy being migrated away, increases cache locality. | ||
| 104 | */ | ||
| 7 | SCHED_FEAT(CACHE_HOT_BUDDY, 1) | 105 | SCHED_FEAT(CACHE_HOT_BUDDY, 1) |
| 8 | SCHED_FEAT(SYNC_WAKEUPS, 1) | 106 | |
| 107 | /* | ||
| 108 | * Use arch dependent cpu power functions | ||
| 109 | */ | ||
| 110 | SCHED_FEAT(ARCH_POWER, 0) | ||
| 111 | |||
| 9 | SCHED_FEAT(HRTICK, 0) | 112 | SCHED_FEAT(HRTICK, 0) |
| 10 | SCHED_FEAT(DOUBLE_TICK, 0) | 113 | SCHED_FEAT(DOUBLE_TICK, 0) |
| 11 | SCHED_FEAT(ASYM_GRAN, 1) | ||
| 12 | SCHED_FEAT(LB_BIAS, 1) | 114 | SCHED_FEAT(LB_BIAS, 1) |
| 13 | SCHED_FEAT(LB_WAKEUP_UPDATE, 1) | 115 | SCHED_FEAT(LB_SHARES_UPDATE, 1) |
| 14 | SCHED_FEAT(ASYM_EFF_LOAD, 1) | 116 | SCHED_FEAT(ASYM_EFF_LOAD, 1) |
| 15 | SCHED_FEAT(WAKEUP_OVERLAP, 0) | 117 | |
| 16 | SCHED_FEAT(LAST_BUDDY, 1) | 118 | /* |
| 119 | * Spin-wait on mutex acquisition when the mutex owner is running on | ||
| 120 | * another cpu -- assumes that when the owner is running, it will soon | ||
| 121 | * release the lock. Decreases scheduling overhead. | ||
| 122 | */ | ||
| 17 | SCHED_FEAT(OWNER_SPIN, 1) | 123 | SCHED_FEAT(OWNER_SPIN, 1) |
diff --git a/kernel/sched_idletask.c b/kernel/sched_idletask.c index 499672c10cbd..b133a28fcde3 100644 --- a/kernel/sched_idletask.c +++ b/kernel/sched_idletask.c | |||
| @@ -6,7 +6,7 @@ | |||
| 6 | */ | 6 | */ |
| 7 | 7 | ||
| 8 | #ifdef CONFIG_SMP | 8 | #ifdef CONFIG_SMP |
| 9 | static int select_task_rq_idle(struct task_struct *p, int sync) | 9 | static int select_task_rq_idle(struct task_struct *p, int sd_flag, int flags) |
| 10 | { | 10 | { |
| 11 | return task_cpu(p); /* IDLE tasks as never migrated */ | 11 | return task_cpu(p); /* IDLE tasks as never migrated */ |
| 12 | } | 12 | } |
| @@ -14,7 +14,7 @@ static int select_task_rq_idle(struct task_struct *p, int sync) | |||
| 14 | /* | 14 | /* |
| 15 | * Idle tasks are unconditionally rescheduled: | 15 | * Idle tasks are unconditionally rescheduled: |
| 16 | */ | 16 | */ |
| 17 | static void check_preempt_curr_idle(struct rq *rq, struct task_struct *p, int sync) | 17 | static void check_preempt_curr_idle(struct rq *rq, struct task_struct *p, int flags) |
| 18 | { | 18 | { |
| 19 | resched_task(rq->idle); | 19 | resched_task(rq->idle); |
| 20 | } | 20 | } |
| @@ -97,6 +97,11 @@ static void prio_changed_idle(struct rq *rq, struct task_struct *p, | |||
| 97 | check_preempt_curr(rq, p, 0); | 97 | check_preempt_curr(rq, p, 0); |
| 98 | } | 98 | } |
| 99 | 99 | ||
| 100 | unsigned int get_rr_interval_idle(struct task_struct *task) | ||
| 101 | { | ||
| 102 | return 0; | ||
| 103 | } | ||
| 104 | |||
| 100 | /* | 105 | /* |
| 101 | * Simple, special scheduling class for the per-CPU idle tasks: | 106 | * Simple, special scheduling class for the per-CPU idle tasks: |
| 102 | */ | 107 | */ |
| @@ -122,6 +127,8 @@ static const struct sched_class idle_sched_class = { | |||
| 122 | .set_curr_task = set_curr_task_idle, | 127 | .set_curr_task = set_curr_task_idle, |
| 123 | .task_tick = task_tick_idle, | 128 | .task_tick = task_tick_idle, |
| 124 | 129 | ||
| 130 | .get_rr_interval = get_rr_interval_idle, | ||
| 131 | |||
| 125 | .prio_changed = prio_changed_idle, | 132 | .prio_changed = prio_changed_idle, |
| 126 | .switched_to = switched_to_idle, | 133 | .switched_to = switched_to_idle, |
| 127 | 134 | ||
diff --git a/kernel/sched_rt.c b/kernel/sched_rt.c index 9bf0d2a73045..a4d790cddb19 100644 --- a/kernel/sched_rt.c +++ b/kernel/sched_rt.c | |||
| @@ -3,13 +3,18 @@ | |||
| 3 | * policies) | 3 | * policies) |
| 4 | */ | 4 | */ |
| 5 | 5 | ||
| 6 | #ifdef CONFIG_RT_GROUP_SCHED | ||
| 7 | |||
| 8 | #define rt_entity_is_task(rt_se) (!(rt_se)->my_q) | ||
| 9 | |||
| 6 | static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) | 10 | static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) |
| 7 | { | 11 | { |
| 12 | #ifdef CONFIG_SCHED_DEBUG | ||
| 13 | WARN_ON_ONCE(!rt_entity_is_task(rt_se)); | ||
| 14 | #endif | ||
| 8 | return container_of(rt_se, struct task_struct, rt); | 15 | return container_of(rt_se, struct task_struct, rt); |
| 9 | } | 16 | } |
| 10 | 17 | ||
| 11 | #ifdef CONFIG_RT_GROUP_SCHED | ||
| 12 | |||
| 13 | static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) | 18 | static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) |
| 14 | { | 19 | { |
| 15 | return rt_rq->rq; | 20 | return rt_rq->rq; |
| @@ -22,6 +27,13 @@ static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) | |||
| 22 | 27 | ||
| 23 | #else /* CONFIG_RT_GROUP_SCHED */ | 28 | #else /* CONFIG_RT_GROUP_SCHED */ |
| 24 | 29 | ||
| 30 | #define rt_entity_is_task(rt_se) (1) | ||
| 31 | |||
| 32 | static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) | ||
| 33 | { | ||
| 34 | return container_of(rt_se, struct task_struct, rt); | ||
| 35 | } | ||
| 36 | |||
| 25 | static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) | 37 | static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) |
| 26 | { | 38 | { |
| 27 | return container_of(rt_rq, struct rq, rt); | 39 | return container_of(rt_rq, struct rq, rt); |
| @@ -73,7 +85,7 @@ static inline void rt_clear_overload(struct rq *rq) | |||
| 73 | 85 | ||
| 74 | static void update_rt_migration(struct rt_rq *rt_rq) | 86 | static void update_rt_migration(struct rt_rq *rt_rq) |
| 75 | { | 87 | { |
| 76 | if (rt_rq->rt_nr_migratory && (rt_rq->rt_nr_running > 1)) { | 88 | if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) { |
| 77 | if (!rt_rq->overloaded) { | 89 | if (!rt_rq->overloaded) { |
| 78 | rt_set_overload(rq_of_rt_rq(rt_rq)); | 90 | rt_set_overload(rq_of_rt_rq(rt_rq)); |
| 79 | rt_rq->overloaded = 1; | 91 | rt_rq->overloaded = 1; |
| @@ -86,6 +98,12 @@ static void update_rt_migration(struct rt_rq *rt_rq) | |||
| 86 | 98 | ||
| 87 | static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | 99 | static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) |
| 88 | { | 100 | { |
| 101 | if (!rt_entity_is_task(rt_se)) | ||
| 102 | return; | ||
| 103 | |||
| 104 | rt_rq = &rq_of_rt_rq(rt_rq)->rt; | ||
| 105 | |||
| 106 | rt_rq->rt_nr_total++; | ||
| 89 | if (rt_se->nr_cpus_allowed > 1) | 107 | if (rt_se->nr_cpus_allowed > 1) |
| 90 | rt_rq->rt_nr_migratory++; | 108 | rt_rq->rt_nr_migratory++; |
| 91 | 109 | ||
| @@ -94,6 +112,12 @@ static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | |||
| 94 | 112 | ||
| 95 | static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | 113 | static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) |
| 96 | { | 114 | { |
| 115 | if (!rt_entity_is_task(rt_se)) | ||
| 116 | return; | ||
| 117 | |||
| 118 | rt_rq = &rq_of_rt_rq(rt_rq)->rt; | ||
| 119 | |||
| 120 | rt_rq->rt_nr_total--; | ||
| 97 | if (rt_se->nr_cpus_allowed > 1) | 121 | if (rt_se->nr_cpus_allowed > 1) |
| 98 | rt_rq->rt_nr_migratory--; | 122 | rt_rq->rt_nr_migratory--; |
| 99 | 123 | ||
| @@ -112,6 +136,11 @@ static void dequeue_pushable_task(struct rq *rq, struct task_struct *p) | |||
| 112 | plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); | 136 | plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); |
| 113 | } | 137 | } |
| 114 | 138 | ||
| 139 | static inline int has_pushable_tasks(struct rq *rq) | ||
| 140 | { | ||
| 141 | return !plist_head_empty(&rq->rt.pushable_tasks); | ||
| 142 | } | ||
| 143 | |||
| 115 | #else | 144 | #else |
| 116 | 145 | ||
| 117 | static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p) | 146 | static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p) |
| @@ -586,6 +615,8 @@ static void update_curr_rt(struct rq *rq) | |||
| 586 | curr->se.exec_start = rq->clock; | 615 | curr->se.exec_start = rq->clock; |
| 587 | cpuacct_charge(curr, delta_exec); | 616 | cpuacct_charge(curr, delta_exec); |
| 588 | 617 | ||
| 618 | sched_rt_avg_update(rq, delta_exec); | ||
| 619 | |||
| 589 | if (!rt_bandwidth_enabled()) | 620 | if (!rt_bandwidth_enabled()) |
| 590 | return; | 621 | return; |
| 591 | 622 | ||
| @@ -858,8 +889,6 @@ static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup) | |||
| 858 | 889 | ||
| 859 | if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1) | 890 | if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1) |
| 860 | enqueue_pushable_task(rq, p); | 891 | enqueue_pushable_task(rq, p); |
| 861 | |||
| 862 | inc_cpu_load(rq, p->se.load.weight); | ||
| 863 | } | 892 | } |
| 864 | 893 | ||
| 865 | static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep) | 894 | static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep) |
| @@ -870,8 +899,6 @@ static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep) | |||
| 870 | dequeue_rt_entity(rt_se); | 899 | dequeue_rt_entity(rt_se); |
| 871 | 900 | ||
| 872 | dequeue_pushable_task(rq, p); | 901 | dequeue_pushable_task(rq, p); |
| 873 | |||
| 874 | dec_cpu_load(rq, p->se.load.weight); | ||
| 875 | } | 902 | } |
| 876 | 903 | ||
| 877 | /* | 904 | /* |
| @@ -911,10 +938,13 @@ static void yield_task_rt(struct rq *rq) | |||
| 911 | #ifdef CONFIG_SMP | 938 | #ifdef CONFIG_SMP |
| 912 | static int find_lowest_rq(struct task_struct *task); | 939 | static int find_lowest_rq(struct task_struct *task); |
| 913 | 940 | ||
| 914 | static int select_task_rq_rt(struct task_struct *p, int sync) | 941 | static int select_task_rq_rt(struct task_struct *p, int sd_flag, int flags) |
| 915 | { | 942 | { |
| 916 | struct rq *rq = task_rq(p); | 943 | struct rq *rq = task_rq(p); |
| 917 | 944 | ||
| 945 | if (sd_flag != SD_BALANCE_WAKE) | ||
| 946 | return smp_processor_id(); | ||
| 947 | |||
| 918 | /* | 948 | /* |
| 919 | * If the current task is an RT task, then | 949 | * If the current task is an RT task, then |
| 920 | * try to see if we can wake this RT task up on another | 950 | * try to see if we can wake this RT task up on another |
| @@ -972,7 +1002,7 @@ static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p) | |||
| 972 | /* | 1002 | /* |
| 973 | * Preempt the current task with a newly woken task if needed: | 1003 | * Preempt the current task with a newly woken task if needed: |
| 974 | */ | 1004 | */ |
| 975 | static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int sync) | 1005 | static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags) |
| 976 | { | 1006 | { |
| 977 | if (p->prio < rq->curr->prio) { | 1007 | if (p->prio < rq->curr->prio) { |
| 978 | resched_task(rq->curr); | 1008 | resched_task(rq->curr); |
| @@ -1048,6 +1078,14 @@ static struct task_struct *pick_next_task_rt(struct rq *rq) | |||
| 1048 | if (p) | 1078 | if (p) |
| 1049 | dequeue_pushable_task(rq, p); | 1079 | dequeue_pushable_task(rq, p); |
| 1050 | 1080 | ||
| 1081 | #ifdef CONFIG_SMP | ||
| 1082 | /* | ||
| 1083 | * We detect this state here so that we can avoid taking the RQ | ||
| 1084 | * lock again later if there is no need to push | ||
| 1085 | */ | ||
| 1086 | rq->post_schedule = has_pushable_tasks(rq); | ||
| 1087 | #endif | ||
| 1088 | |||
| 1051 | return p; | 1089 | return p; |
| 1052 | } | 1090 | } |
| 1053 | 1091 | ||
| @@ -1146,13 +1184,6 @@ static int find_lowest_rq(struct task_struct *task) | |||
| 1146 | return -1; /* No targets found */ | 1184 | return -1; /* No targets found */ |
| 1147 | 1185 | ||
| 1148 | /* | 1186 | /* |
| 1149 | * Only consider CPUs that are usable for migration. | ||
| 1150 | * I guess we might want to change cpupri_find() to ignore those | ||
| 1151 | * in the first place. | ||
| 1152 | */ | ||
| 1153 | cpumask_and(lowest_mask, lowest_mask, cpu_active_mask); | ||
| 1154 | |||
| 1155 | /* | ||
| 1156 | * At this point we have built a mask of cpus representing the | 1187 | * At this point we have built a mask of cpus representing the |
| 1157 | * lowest priority tasks in the system. Now we want to elect | 1188 | * lowest priority tasks in the system. Now we want to elect |
| 1158 | * the best one based on our affinity and topology. | 1189 | * the best one based on our affinity and topology. |
| @@ -1246,11 +1277,6 @@ static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq) | |||
| 1246 | return lowest_rq; | 1277 | return lowest_rq; |
| 1247 | } | 1278 | } |
| 1248 | 1279 | ||
| 1249 | static inline int has_pushable_tasks(struct rq *rq) | ||
| 1250 | { | ||
| 1251 | return !plist_head_empty(&rq->rt.pushable_tasks); | ||
| 1252 | } | ||
| 1253 | |||
| 1254 | static struct task_struct *pick_next_pushable_task(struct rq *rq) | 1280 | static struct task_struct *pick_next_pushable_task(struct rq *rq) |
| 1255 | { | 1281 | { |
| 1256 | struct task_struct *p; | 1282 | struct task_struct *p; |
| @@ -1450,23 +1476,9 @@ static void pre_schedule_rt(struct rq *rq, struct task_struct *prev) | |||
| 1450 | pull_rt_task(rq); | 1476 | pull_rt_task(rq); |
| 1451 | } | 1477 | } |
| 1452 | 1478 | ||
| 1453 | /* | ||
| 1454 | * assumes rq->lock is held | ||
| 1455 | */ | ||
| 1456 | static int needs_post_schedule_rt(struct rq *rq) | ||
| 1457 | { | ||
| 1458 | return has_pushable_tasks(rq); | ||
| 1459 | } | ||
| 1460 | |||
| 1461 | static void post_schedule_rt(struct rq *rq) | 1479 | static void post_schedule_rt(struct rq *rq) |
| 1462 | { | 1480 | { |
| 1463 | /* | ||
| 1464 | * This is only called if needs_post_schedule_rt() indicates that | ||
| 1465 | * we need to push tasks away | ||
| 1466 | */ | ||
| 1467 | spin_lock_irq(&rq->lock); | ||
| 1468 | push_rt_tasks(rq); | 1481 | push_rt_tasks(rq); |
| 1469 | spin_unlock_irq(&rq->lock); | ||
| 1470 | } | 1482 | } |
| 1471 | 1483 | ||
| 1472 | /* | 1484 | /* |
| @@ -1722,6 +1734,17 @@ static void set_curr_task_rt(struct rq *rq) | |||
| 1722 | dequeue_pushable_task(rq, p); | 1734 | dequeue_pushable_task(rq, p); |
| 1723 | } | 1735 | } |
| 1724 | 1736 | ||
| 1737 | unsigned int get_rr_interval_rt(struct task_struct *task) | ||
| 1738 | { | ||
| 1739 | /* | ||
| 1740 | * Time slice is 0 for SCHED_FIFO tasks | ||
| 1741 | */ | ||
| 1742 | if (task->policy == SCHED_RR) | ||
| 1743 | return DEF_TIMESLICE; | ||
| 1744 | else | ||
| 1745 | return 0; | ||
| 1746 | } | ||
| 1747 | |||
| 1725 | static const struct sched_class rt_sched_class = { | 1748 | static const struct sched_class rt_sched_class = { |
| 1726 | .next = &fair_sched_class, | 1749 | .next = &fair_sched_class, |
| 1727 | .enqueue_task = enqueue_task_rt, | 1750 | .enqueue_task = enqueue_task_rt, |
| @@ -1742,7 +1765,6 @@ static const struct sched_class rt_sched_class = { | |||
| 1742 | .rq_online = rq_online_rt, | 1765 | .rq_online = rq_online_rt, |
| 1743 | .rq_offline = rq_offline_rt, | 1766 | .rq_offline = rq_offline_rt, |
| 1744 | .pre_schedule = pre_schedule_rt, | 1767 | .pre_schedule = pre_schedule_rt, |
| 1745 | .needs_post_schedule = needs_post_schedule_rt, | ||
| 1746 | .post_schedule = post_schedule_rt, | 1768 | .post_schedule = post_schedule_rt, |
| 1747 | .task_wake_up = task_wake_up_rt, | 1769 | .task_wake_up = task_wake_up_rt, |
| 1748 | .switched_from = switched_from_rt, | 1770 | .switched_from = switched_from_rt, |
| @@ -1751,6 +1773,8 @@ static const struct sched_class rt_sched_class = { | |||
| 1751 | .set_curr_task = set_curr_task_rt, | 1773 | .set_curr_task = set_curr_task_rt, |
| 1752 | .task_tick = task_tick_rt, | 1774 | .task_tick = task_tick_rt, |
| 1753 | 1775 | ||
| 1776 | .get_rr_interval = get_rr_interval_rt, | ||
| 1777 | |||
| 1754 | .prio_changed = prio_changed_rt, | 1778 | .prio_changed = prio_changed_rt, |
| 1755 | .switched_to = switched_to_rt, | 1779 | .switched_to = switched_to_rt, |
| 1756 | }; | 1780 | }; |
diff --git a/kernel/signal.c b/kernel/signal.c index ccf1ceedaebe..64c5deeaca5d 100644 --- a/kernel/signal.c +++ b/kernel/signal.c | |||
| @@ -2454,11 +2454,9 @@ do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long s | |||
| 2454 | stack_t oss; | 2454 | stack_t oss; |
| 2455 | int error; | 2455 | int error; |
| 2456 | 2456 | ||
| 2457 | if (uoss) { | 2457 | oss.ss_sp = (void __user *) current->sas_ss_sp; |
| 2458 | oss.ss_sp = (void __user *) current->sas_ss_sp; | 2458 | oss.ss_size = current->sas_ss_size; |
| 2459 | oss.ss_size = current->sas_ss_size; | 2459 | oss.ss_flags = sas_ss_flags(sp); |
| 2460 | oss.ss_flags = sas_ss_flags(sp); | ||
| 2461 | } | ||
| 2462 | 2460 | ||
| 2463 | if (uss) { | 2461 | if (uss) { |
| 2464 | void __user *ss_sp; | 2462 | void __user *ss_sp; |
| @@ -2466,10 +2464,12 @@ do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long s | |||
| 2466 | int ss_flags; | 2464 | int ss_flags; |
| 2467 | 2465 | ||
| 2468 | error = -EFAULT; | 2466 | error = -EFAULT; |
| 2469 | if (!access_ok(VERIFY_READ, uss, sizeof(*uss)) | 2467 | if (!access_ok(VERIFY_READ, uss, sizeof(*uss))) |
| 2470 | || __get_user(ss_sp, &uss->ss_sp) | 2468 | goto out; |
| 2471 | || __get_user(ss_flags, &uss->ss_flags) | 2469 | error = __get_user(ss_sp, &uss->ss_sp) | |
| 2472 | || __get_user(ss_size, &uss->ss_size)) | 2470 | __get_user(ss_flags, &uss->ss_flags) | |
| 2471 | __get_user(ss_size, &uss->ss_size); | ||
| 2472 | if (error) | ||
| 2473 | goto out; | 2473 | goto out; |
| 2474 | 2474 | ||
| 2475 | error = -EPERM; | 2475 | error = -EPERM; |
| @@ -2501,13 +2501,16 @@ do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long s | |||
| 2501 | current->sas_ss_size = ss_size; | 2501 | current->sas_ss_size = ss_size; |
| 2502 | } | 2502 | } |
| 2503 | 2503 | ||
| 2504 | error = 0; | ||
| 2504 | if (uoss) { | 2505 | if (uoss) { |
| 2505 | error = -EFAULT; | 2506 | error = -EFAULT; |
| 2506 | if (copy_to_user(uoss, &oss, sizeof(oss))) | 2507 | if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss))) |
| 2507 | goto out; | 2508 | goto out; |
| 2509 | error = __put_user(oss.ss_sp, &uoss->ss_sp) | | ||
| 2510 | __put_user(oss.ss_size, &uoss->ss_size) | | ||
| 2511 | __put_user(oss.ss_flags, &uoss->ss_flags); | ||
| 2508 | } | 2512 | } |
| 2509 | 2513 | ||
| 2510 | error = 0; | ||
| 2511 | out: | 2514 | out: |
| 2512 | return error; | 2515 | return error; |
| 2513 | } | 2516 | } |
diff --git a/kernel/smp.c b/kernel/smp.c index ad63d8501207..8e218500ab14 100644 --- a/kernel/smp.c +++ b/kernel/smp.c | |||
| @@ -57,7 +57,7 @@ hotplug_cfd(struct notifier_block *nfb, unsigned long action, void *hcpu) | |||
| 57 | return NOTIFY_BAD; | 57 | return NOTIFY_BAD; |
| 58 | break; | 58 | break; |
| 59 | 59 | ||
| 60 | #ifdef CONFIG_CPU_HOTPLUG | 60 | #ifdef CONFIG_HOTPLUG_CPU |
| 61 | case CPU_UP_CANCELED: | 61 | case CPU_UP_CANCELED: |
| 62 | case CPU_UP_CANCELED_FROZEN: | 62 | case CPU_UP_CANCELED_FROZEN: |
| 63 | 63 | ||
| @@ -177,6 +177,11 @@ void generic_smp_call_function_interrupt(void) | |||
| 177 | int cpu = get_cpu(); | 177 | int cpu = get_cpu(); |
| 178 | 178 | ||
| 179 | /* | 179 | /* |
| 180 | * Shouldn't receive this interrupt on a cpu that is not yet online. | ||
| 181 | */ | ||
| 182 | WARN_ON_ONCE(!cpu_online(cpu)); | ||
| 183 | |||
| 184 | /* | ||
| 180 | * Ensure entry is visible on call_function_queue after we have | 185 | * Ensure entry is visible on call_function_queue after we have |
| 181 | * entered the IPI. See comment in smp_call_function_many. | 186 | * entered the IPI. See comment in smp_call_function_many. |
| 182 | * If we don't have this, then we may miss an entry on the list | 187 | * If we don't have this, then we may miss an entry on the list |
| @@ -230,6 +235,11 @@ void generic_smp_call_function_single_interrupt(void) | |||
| 230 | unsigned int data_flags; | 235 | unsigned int data_flags; |
| 231 | LIST_HEAD(list); | 236 | LIST_HEAD(list); |
| 232 | 237 | ||
| 238 | /* | ||
| 239 | * Shouldn't receive this interrupt on a cpu that is not yet online. | ||
| 240 | */ | ||
| 241 | WARN_ON_ONCE(!cpu_online(smp_processor_id())); | ||
| 242 | |||
| 233 | spin_lock(&q->lock); | 243 | spin_lock(&q->lock); |
| 234 | list_replace_init(&q->list, &list); | 244 | list_replace_init(&q->list, &list); |
| 235 | spin_unlock(&q->lock); | 245 | spin_unlock(&q->lock); |
| @@ -285,8 +295,14 @@ int smp_call_function_single(int cpu, void (*func) (void *info), void *info, | |||
| 285 | */ | 295 | */ |
| 286 | this_cpu = get_cpu(); | 296 | this_cpu = get_cpu(); |
| 287 | 297 | ||
| 288 | /* Can deadlock when called with interrupts disabled */ | 298 | /* |
| 289 | WARN_ON_ONCE(irqs_disabled() && !oops_in_progress); | 299 | * Can deadlock when called with interrupts disabled. |
| 300 | * We allow cpu's that are not yet online though, as no one else can | ||
| 301 | * send smp call function interrupt to this cpu and as such deadlocks | ||
| 302 | * can't happen. | ||
| 303 | */ | ||
| 304 | WARN_ON_ONCE(cpu_online(this_cpu) && irqs_disabled() | ||
| 305 | && !oops_in_progress); | ||
| 290 | 306 | ||
| 291 | if (cpu == this_cpu) { | 307 | if (cpu == this_cpu) { |
| 292 | local_irq_save(flags); | 308 | local_irq_save(flags); |
| @@ -329,8 +345,14 @@ void __smp_call_function_single(int cpu, struct call_single_data *data, | |||
| 329 | { | 345 | { |
| 330 | csd_lock(data); | 346 | csd_lock(data); |
| 331 | 347 | ||
| 332 | /* Can deadlock when called with interrupts disabled */ | 348 | /* |
| 333 | WARN_ON_ONCE(wait && irqs_disabled() && !oops_in_progress); | 349 | * Can deadlock when called with interrupts disabled. |
| 350 | * We allow cpu's that are not yet online though, as no one else can | ||
| 351 | * send smp call function interrupt to this cpu and as such deadlocks | ||
| 352 | * can't happen. | ||
| 353 | */ | ||
| 354 | WARN_ON_ONCE(cpu_online(smp_processor_id()) && wait && irqs_disabled() | ||
| 355 | && !oops_in_progress); | ||
| 334 | 356 | ||
| 335 | generic_exec_single(cpu, data, wait); | 357 | generic_exec_single(cpu, data, wait); |
| 336 | } | 358 | } |
| @@ -365,8 +387,14 @@ void smp_call_function_many(const struct cpumask *mask, | |||
| 365 | unsigned long flags; | 387 | unsigned long flags; |
| 366 | int cpu, next_cpu, this_cpu = smp_processor_id(); | 388 | int cpu, next_cpu, this_cpu = smp_processor_id(); |
| 367 | 389 | ||
| 368 | /* Can deadlock when called with interrupts disabled */ | 390 | /* |
| 369 | WARN_ON_ONCE(irqs_disabled() && !oops_in_progress); | 391 | * Can deadlock when called with interrupts disabled. |
| 392 | * We allow cpu's that are not yet online though, as no one else can | ||
| 393 | * send smp call function interrupt to this cpu and as such deadlocks | ||
| 394 | * can't happen. | ||
| 395 | */ | ||
| 396 | WARN_ON_ONCE(cpu_online(this_cpu) && irqs_disabled() | ||
| 397 | && !oops_in_progress); | ||
| 370 | 398 | ||
| 371 | /* So, what's a CPU they want? Ignoring this one. */ | 399 | /* So, what's a CPU they want? Ignoring this one. */ |
| 372 | cpu = cpumask_first_and(mask, cpu_online_mask); | 400 | cpu = cpumask_first_and(mask, cpu_online_mask); |
diff --git a/kernel/softirq.c b/kernel/softirq.c index 3a94905fa5d2..f8749e5216e0 100644 --- a/kernel/softirq.c +++ b/kernel/softirq.c | |||
| @@ -57,7 +57,7 @@ static struct softirq_action softirq_vec[NR_SOFTIRQS] __cacheline_aligned_in_smp | |||
| 57 | static DEFINE_PER_CPU(struct task_struct *, ksoftirqd); | 57 | static DEFINE_PER_CPU(struct task_struct *, ksoftirqd); |
| 58 | 58 | ||
| 59 | char *softirq_to_name[NR_SOFTIRQS] = { | 59 | char *softirq_to_name[NR_SOFTIRQS] = { |
| 60 | "HI", "TIMER", "NET_TX", "NET_RX", "BLOCK", | 60 | "HI", "TIMER", "NET_TX", "NET_RX", "BLOCK", "BLOCK_IOPOLL", |
| 61 | "TASKLET", "SCHED", "HRTIMER", "RCU" | 61 | "TASKLET", "SCHED", "HRTIMER", "RCU" |
| 62 | }; | 62 | }; |
| 63 | 63 | ||
| @@ -227,7 +227,7 @@ restart: | |||
| 227 | preempt_count() = prev_count; | 227 | preempt_count() = prev_count; |
| 228 | } | 228 | } |
| 229 | 229 | ||
| 230 | rcu_bh_qsctr_inc(cpu); | 230 | rcu_bh_qs(cpu); |
| 231 | } | 231 | } |
| 232 | h++; | 232 | h++; |
| 233 | pending >>= 1; | 233 | pending >>= 1; |
| @@ -345,7 +345,9 @@ void open_softirq(int nr, void (*action)(struct softirq_action *)) | |||
| 345 | softirq_vec[nr].action = action; | 345 | softirq_vec[nr].action = action; |
| 346 | } | 346 | } |
| 347 | 347 | ||
| 348 | /* Tasklets */ | 348 | /* |
| 349 | * Tasklets | ||
| 350 | */ | ||
| 349 | struct tasklet_head | 351 | struct tasklet_head |
| 350 | { | 352 | { |
| 351 | struct tasklet_struct *head; | 353 | struct tasklet_struct *head; |
| @@ -493,6 +495,66 @@ void tasklet_kill(struct tasklet_struct *t) | |||
| 493 | 495 | ||
| 494 | EXPORT_SYMBOL(tasklet_kill); | 496 | EXPORT_SYMBOL(tasklet_kill); |
| 495 | 497 | ||
| 498 | /* | ||
| 499 | * tasklet_hrtimer | ||
| 500 | */ | ||
| 501 | |||
| 502 | /* | ||
| 503 | * The trampoline is called when the hrtimer expires. If this is | ||
| 504 | * called from the hrtimer interrupt then we schedule the tasklet as | ||
| 505 | * the timer callback function expects to run in softirq context. If | ||
| 506 | * it's called in softirq context anyway (i.e. high resolution timers | ||
| 507 | * disabled) then the hrtimer callback is called right away. | ||
| 508 | */ | ||
| 509 | static enum hrtimer_restart __hrtimer_tasklet_trampoline(struct hrtimer *timer) | ||
| 510 | { | ||
| 511 | struct tasklet_hrtimer *ttimer = | ||
| 512 | container_of(timer, struct tasklet_hrtimer, timer); | ||
| 513 | |||
| 514 | if (hrtimer_is_hres_active(timer)) { | ||
| 515 | tasklet_hi_schedule(&ttimer->tasklet); | ||
| 516 | return HRTIMER_NORESTART; | ||
| 517 | } | ||
| 518 | return ttimer->function(timer); | ||
| 519 | } | ||
| 520 | |||
| 521 | /* | ||
| 522 | * Helper function which calls the hrtimer callback from | ||
| 523 | * tasklet/softirq context | ||
| 524 | */ | ||
| 525 | static void __tasklet_hrtimer_trampoline(unsigned long data) | ||
| 526 | { | ||
| 527 | struct tasklet_hrtimer *ttimer = (void *)data; | ||
| 528 | enum hrtimer_restart restart; | ||
| 529 | |||
| 530 | restart = ttimer->function(&ttimer->timer); | ||
| 531 | if (restart != HRTIMER_NORESTART) | ||
| 532 | hrtimer_restart(&ttimer->timer); | ||
| 533 | } | ||
| 534 | |||
| 535 | /** | ||
| 536 | * tasklet_hrtimer_init - Init a tasklet/hrtimer combo for softirq callbacks | ||
| 537 | * @ttimer: tasklet_hrtimer which is initialized | ||
| 538 | * @function: hrtimer callback funtion which gets called from softirq context | ||
| 539 | * @which_clock: clock id (CLOCK_MONOTONIC/CLOCK_REALTIME) | ||
| 540 | * @mode: hrtimer mode (HRTIMER_MODE_ABS/HRTIMER_MODE_REL) | ||
| 541 | */ | ||
| 542 | void tasklet_hrtimer_init(struct tasklet_hrtimer *ttimer, | ||
| 543 | enum hrtimer_restart (*function)(struct hrtimer *), | ||
| 544 | clockid_t which_clock, enum hrtimer_mode mode) | ||
| 545 | { | ||
| 546 | hrtimer_init(&ttimer->timer, which_clock, mode); | ||
| 547 | ttimer->timer.function = __hrtimer_tasklet_trampoline; | ||
| 548 | tasklet_init(&ttimer->tasklet, __tasklet_hrtimer_trampoline, | ||
| 549 | (unsigned long)ttimer); | ||
| 550 | ttimer->function = function; | ||
| 551 | } | ||
| 552 | EXPORT_SYMBOL_GPL(tasklet_hrtimer_init); | ||
| 553 | |||
| 554 | /* | ||
| 555 | * Remote softirq bits | ||
| 556 | */ | ||
| 557 | |||
| 496 | DEFINE_PER_CPU(struct list_head [NR_SOFTIRQS], softirq_work_list); | 558 | DEFINE_PER_CPU(struct list_head [NR_SOFTIRQS], softirq_work_list); |
| 497 | EXPORT_PER_CPU_SYMBOL(softirq_work_list); | 559 | EXPORT_PER_CPU_SYMBOL(softirq_work_list); |
| 498 | 560 | ||
| @@ -659,7 +721,7 @@ static int ksoftirqd(void * __bind_cpu) | |||
| 659 | preempt_enable_no_resched(); | 721 | preempt_enable_no_resched(); |
| 660 | cond_resched(); | 722 | cond_resched(); |
| 661 | preempt_disable(); | 723 | preempt_disable(); |
| 662 | rcu_qsctr_inc((long)__bind_cpu); | 724 | rcu_sched_qs((long)__bind_cpu); |
| 663 | } | 725 | } |
| 664 | preempt_enable(); | 726 | preempt_enable(); |
| 665 | set_current_state(TASK_INTERRUPTIBLE); | 727 | set_current_state(TASK_INTERRUPTIBLE); |
diff --git a/kernel/spinlock.c b/kernel/spinlock.c index 7932653c4ebd..5ddab730cb2f 100644 --- a/kernel/spinlock.c +++ b/kernel/spinlock.c | |||
| @@ -21,44 +21,29 @@ | |||
| 21 | #include <linux/debug_locks.h> | 21 | #include <linux/debug_locks.h> |
| 22 | #include <linux/module.h> | 22 | #include <linux/module.h> |
| 23 | 23 | ||
| 24 | #ifndef _spin_trylock | ||
| 24 | int __lockfunc _spin_trylock(spinlock_t *lock) | 25 | int __lockfunc _spin_trylock(spinlock_t *lock) |
| 25 | { | 26 | { |
| 26 | preempt_disable(); | 27 | return __spin_trylock(lock); |
| 27 | if (_raw_spin_trylock(lock)) { | ||
| 28 | spin_acquire(&lock->dep_map, 0, 1, _RET_IP_); | ||
| 29 | return 1; | ||
| 30 | } | ||
| 31 | |||
| 32 | preempt_enable(); | ||
| 33 | return 0; | ||
| 34 | } | 28 | } |
| 35 | EXPORT_SYMBOL(_spin_trylock); | 29 | EXPORT_SYMBOL(_spin_trylock); |
| 30 | #endif | ||
| 36 | 31 | ||
| 32 | #ifndef _read_trylock | ||
| 37 | int __lockfunc _read_trylock(rwlock_t *lock) | 33 | int __lockfunc _read_trylock(rwlock_t *lock) |
| 38 | { | 34 | { |
| 39 | preempt_disable(); | 35 | return __read_trylock(lock); |
| 40 | if (_raw_read_trylock(lock)) { | ||
| 41 | rwlock_acquire_read(&lock->dep_map, 0, 1, _RET_IP_); | ||
| 42 | return 1; | ||
| 43 | } | ||
| 44 | |||
| 45 | preempt_enable(); | ||
| 46 | return 0; | ||
| 47 | } | 36 | } |
| 48 | EXPORT_SYMBOL(_read_trylock); | 37 | EXPORT_SYMBOL(_read_trylock); |
| 38 | #endif | ||
| 49 | 39 | ||
| 40 | #ifndef _write_trylock | ||
| 50 | int __lockfunc _write_trylock(rwlock_t *lock) | 41 | int __lockfunc _write_trylock(rwlock_t *lock) |
| 51 | { | 42 | { |
| 52 | preempt_disable(); | 43 | return __write_trylock(lock); |
| 53 | if (_raw_write_trylock(lock)) { | ||
| 54 | rwlock_acquire(&lock->dep_map, 0, 1, _RET_IP_); | ||
| 55 | return 1; | ||
| 56 | } | ||
| 57 | |||
| 58 | preempt_enable(); | ||
| 59 | return 0; | ||
| 60 | } | 44 | } |
| 61 | EXPORT_SYMBOL(_write_trylock); | 45 | EXPORT_SYMBOL(_write_trylock); |
| 46 | #endif | ||
| 62 | 47 | ||
| 63 | /* | 48 | /* |
| 64 | * If lockdep is enabled then we use the non-preemption spin-ops | 49 | * If lockdep is enabled then we use the non-preemption spin-ops |
| @@ -67,132 +52,101 @@ EXPORT_SYMBOL(_write_trylock); | |||
| 67 | */ | 52 | */ |
| 68 | #if !defined(CONFIG_GENERIC_LOCKBREAK) || defined(CONFIG_DEBUG_LOCK_ALLOC) | 53 | #if !defined(CONFIG_GENERIC_LOCKBREAK) || defined(CONFIG_DEBUG_LOCK_ALLOC) |
| 69 | 54 | ||
| 55 | #ifndef _read_lock | ||
| 70 | void __lockfunc _read_lock(rwlock_t *lock) | 56 | void __lockfunc _read_lock(rwlock_t *lock) |
| 71 | { | 57 | { |
| 72 | preempt_disable(); | 58 | __read_lock(lock); |
| 73 | rwlock_acquire_read(&lock->dep_map, 0, 0, _RET_IP_); | ||
| 74 | LOCK_CONTENDED(lock, _raw_read_trylock, _raw_read_lock); | ||
| 75 | } | 59 | } |
| 76 | EXPORT_SYMBOL(_read_lock); | 60 | EXPORT_SYMBOL(_read_lock); |
| 61 | #endif | ||
| 77 | 62 | ||
| 63 | #ifndef _spin_lock_irqsave | ||
| 78 | unsigned long __lockfunc _spin_lock_irqsave(spinlock_t *lock) | 64 | unsigned long __lockfunc _spin_lock_irqsave(spinlock_t *lock) |
| 79 | { | 65 | { |
| 80 | unsigned long flags; | 66 | return __spin_lock_irqsave(lock); |
| 81 | |||
| 82 | local_irq_save(flags); | ||
| 83 | preempt_disable(); | ||
| 84 | spin_acquire(&lock->dep_map, 0, 0, _RET_IP_); | ||
| 85 | /* | ||
| 86 | * On lockdep we dont want the hand-coded irq-enable of | ||
| 87 | * _raw_spin_lock_flags() code, because lockdep assumes | ||
| 88 | * that interrupts are not re-enabled during lock-acquire: | ||
| 89 | */ | ||
| 90 | #ifdef CONFIG_LOCKDEP | ||
| 91 | LOCK_CONTENDED(lock, _raw_spin_trylock, _raw_spin_lock); | ||
| 92 | #else | ||
| 93 | _raw_spin_lock_flags(lock, &flags); | ||
| 94 | #endif | ||
| 95 | return flags; | ||
| 96 | } | 67 | } |
| 97 | EXPORT_SYMBOL(_spin_lock_irqsave); | 68 | EXPORT_SYMBOL(_spin_lock_irqsave); |
| 69 | #endif | ||
| 98 | 70 | ||
| 71 | #ifndef _spin_lock_irq | ||
| 99 | void __lockfunc _spin_lock_irq(spinlock_t *lock) | 72 | void __lockfunc _spin_lock_irq(spinlock_t *lock) |
| 100 | { | 73 | { |
| 101 | local_irq_disable(); | 74 | __spin_lock_irq(lock); |
| 102 | preempt_disable(); | ||
| 103 | spin_acquire(&lock->dep_map, 0, 0, _RET_IP_); | ||
| 104 | LOCK_CONTENDED(lock, _raw_spin_trylock, _raw_spin_lock); | ||
| 105 | } | 75 | } |
| 106 | EXPORT_SYMBOL(_spin_lock_irq); | 76 | EXPORT_SYMBOL(_spin_lock_irq); |
| 77 | #endif | ||
| 107 | 78 | ||
| 79 | #ifndef _spin_lock_bh | ||
| 108 | void __lockfunc _spin_lock_bh(spinlock_t *lock) | 80 | void __lockfunc _spin_lock_bh(spinlock_t *lock) |
| 109 | { | 81 | { |
| 110 | local_bh_disable(); | 82 | __spin_lock_bh(lock); |
| 111 | preempt_disable(); | ||
| 112 | spin_acquire(&lock->dep_map, 0, 0, _RET_IP_); | ||
| 113 | LOCK_CONTENDED(lock, _raw_spin_trylock, _raw_spin_lock); | ||
| 114 | } | 83 | } |
| 115 | EXPORT_SYMBOL(_spin_lock_bh); | 84 | EXPORT_SYMBOL(_spin_lock_bh); |
| 85 | #endif | ||
| 116 | 86 | ||
| 87 | #ifndef _read_lock_irqsave | ||
| 117 | unsigned long __lockfunc _read_lock_irqsave(rwlock_t *lock) | 88 | unsigned long __lockfunc _read_lock_irqsave(rwlock_t *lock) |
| 118 | { | 89 | { |
| 119 | unsigned long flags; | 90 | return __read_lock_irqsave(lock); |
| 120 | |||
| 121 | local_irq_save(flags); | ||
| 122 | preempt_disable(); | ||
| 123 | rwlock_acquire_read(&lock->dep_map, 0, 0, _RET_IP_); | ||
| 124 | LOCK_CONTENDED_FLAGS(lock, _raw_read_trylock, _raw_read_lock, | ||
| 125 | _raw_read_lock_flags, &flags); | ||
| 126 | return flags; | ||
| 127 | } | 91 | } |
| 128 | EXPORT_SYMBOL(_read_lock_irqsave); | 92 | EXPORT_SYMBOL(_read_lock_irqsave); |
| 93 | #endif | ||
| 129 | 94 | ||
| 95 | #ifndef _read_lock_irq | ||
| 130 | void __lockfunc _read_lock_irq(rwlock_t *lock) | 96 | void __lockfunc _read_lock_irq(rwlock_t *lock) |
| 131 | { | 97 | { |
| 132 | local_irq_disable(); | 98 | __read_lock_irq(lock); |
| 133 | preempt_disable(); | ||
| 134 | rwlock_acquire_read(&lock->dep_map, 0, 0, _RET_IP_); | ||
| 135 | LOCK_CONTENDED(lock, _raw_read_trylock, _raw_read_lock); | ||
| 136 | } | 99 | } |
| 137 | EXPORT_SYMBOL(_read_lock_irq); | 100 | EXPORT_SYMBOL(_read_lock_irq); |
| 101 | #endif | ||
| 138 | 102 | ||
| 103 | #ifndef _read_lock_bh | ||
| 139 | void __lockfunc _read_lock_bh(rwlock_t *lock) | 104 | void __lockfunc _read_lock_bh(rwlock_t *lock) |
| 140 | { | 105 | { |
| 141 | local_bh_disable(); | 106 | __read_lock_bh(lock); |
| 142 | preempt_disable(); | ||
| 143 | rwlock_acquire_read(&lock->dep_map, 0, 0, _RET_IP_); | ||
| 144 | LOCK_CONTENDED(lock, _raw_read_trylock, _raw_read_lock); | ||
| 145 | } | 107 | } |
| 146 | EXPORT_SYMBOL(_read_lock_bh); | 108 | EXPORT_SYMBOL(_read_lock_bh); |
| 109 | #endif | ||
| 147 | 110 | ||
| 111 | #ifndef _write_lock_irqsave | ||
| 148 | unsigned long __lockfunc _write_lock_irqsave(rwlock_t *lock) | 112 | unsigned long __lockfunc _write_lock_irqsave(rwlock_t *lock) |
| 149 | { | 113 | { |
| 150 | unsigned long flags; | 114 | return __write_lock_irqsave(lock); |
| 151 | |||
| 152 | local_irq_save(flags); | ||
| 153 | preempt_disable(); | ||
| 154 | rwlock_acquire(&lock->dep_map, 0, 0, _RET_IP_); | ||
| 155 | LOCK_CONTENDED_FLAGS(lock, _raw_write_trylock, _raw_write_lock, | ||
| 156 | _raw_write_lock_flags, &flags); | ||
| 157 | return flags; | ||
| 158 | } | 115 | } |
| 159 | EXPORT_SYMBOL(_write_lock_irqsave); | 116 | EXPORT_SYMBOL(_write_lock_irqsave); |
| 117 | #endif | ||
| 160 | 118 | ||
| 119 | #ifndef _write_lock_irq | ||
| 161 | void __lockfunc _write_lock_irq(rwlock_t *lock) | 120 | void __lockfunc _write_lock_irq(rwlock_t *lock) |
| 162 | { | 121 | { |
| 163 | local_irq_disable(); | 122 | __write_lock_irq(lock); |
| 164 | preempt_disable(); | ||
| 165 | rwlock_acquire(&lock->dep_map, 0, 0, _RET_IP_); | ||
| 166 | LOCK_CONTENDED(lock, _raw_write_trylock, _raw_write_lock); | ||
| 167 | } | 123 | } |
| 168 | EXPORT_SYMBOL(_write_lock_irq); | 124 | EXPORT_SYMBOL(_write_lock_irq); |
| 125 | #endif | ||
| 169 | 126 | ||
| 127 | #ifndef _write_lock_bh | ||
| 170 | void __lockfunc _write_lock_bh(rwlock_t *lock) | 128 | void __lockfunc _write_lock_bh(rwlock_t *lock) |
| 171 | { | 129 | { |
| 172 | local_bh_disable(); | 130 | __write_lock_bh(lock); |
| 173 | preempt_disable(); | ||
| 174 | rwlock_acquire(&lock->dep_map, 0, 0, _RET_IP_); | ||
| 175 | LOCK_CONTENDED(lock, _raw_write_trylock, _raw_write_lock); | ||
| 176 | } | 131 | } |
| 177 | EXPORT_SYMBOL(_write_lock_bh); | 132 | EXPORT_SYMBOL(_write_lock_bh); |
| 133 | #endif | ||
| 178 | 134 | ||
| 135 | #ifndef _spin_lock | ||
| 179 | void __lockfunc _spin_lock(spinlock_t *lock) | 136 | void __lockfunc _spin_lock(spinlock_t *lock) |
| 180 | { | 137 | { |
| 181 | preempt_disable(); | 138 | __spin_lock(lock); |
| 182 | spin_acquire(&lock->dep_map, 0, 0, _RET_IP_); | ||
| 183 | LOCK_CONTENDED(lock, _raw_spin_trylock, _raw_spin_lock); | ||
| 184 | } | 139 | } |
| 185 | |||
| 186 | EXPORT_SYMBOL(_spin_lock); | 140 | EXPORT_SYMBOL(_spin_lock); |
| 141 | #endif | ||
| 187 | 142 | ||
| 143 | #ifndef _write_lock | ||
| 188 | void __lockfunc _write_lock(rwlock_t *lock) | 144 | void __lockfunc _write_lock(rwlock_t *lock) |
| 189 | { | 145 | { |
| 190 | preempt_disable(); | 146 | __write_lock(lock); |
| 191 | rwlock_acquire(&lock->dep_map, 0, 0, _RET_IP_); | ||
| 192 | LOCK_CONTENDED(lock, _raw_write_trylock, _raw_write_lock); | ||
| 193 | } | 147 | } |
| 194 | |||
| 195 | EXPORT_SYMBOL(_write_lock); | 148 | EXPORT_SYMBOL(_write_lock); |
| 149 | #endif | ||
| 196 | 150 | ||
| 197 | #else /* CONFIG_PREEMPT: */ | 151 | #else /* CONFIG_PREEMPT: */ |
| 198 | 152 | ||
| @@ -318,125 +272,109 @@ EXPORT_SYMBOL(_spin_lock_nest_lock); | |||
| 318 | 272 | ||
| 319 | #endif | 273 | #endif |
| 320 | 274 | ||
| 275 | #ifndef _spin_unlock | ||
| 321 | void __lockfunc _spin_unlock(spinlock_t *lock) | 276 | void __lockfunc _spin_unlock(spinlock_t *lock) |
| 322 | { | 277 | { |
| 323 | spin_release(&lock->dep_map, 1, _RET_IP_); | 278 | __spin_unlock(lock); |
| 324 | _raw_spin_unlock(lock); | ||
| 325 | preempt_enable(); | ||
| 326 | } | 279 | } |
| 327 | EXPORT_SYMBOL(_spin_unlock); | 280 | EXPORT_SYMBOL(_spin_unlock); |
| 281 | #endif | ||
| 328 | 282 | ||
| 283 | #ifndef _write_unlock | ||
| 329 | void __lockfunc _write_unlock(rwlock_t *lock) | 284 | void __lockfunc _write_unlock(rwlock_t *lock) |
| 330 | { | 285 | { |
| 331 | rwlock_release(&lock->dep_map, 1, _RET_IP_); | 286 | __write_unlock(lock); |
| 332 | _raw_write_unlock(lock); | ||
| 333 | preempt_enable(); | ||
| 334 | } | 287 | } |
| 335 | EXPORT_SYMBOL(_write_unlock); | 288 | EXPORT_SYMBOL(_write_unlock); |
| 289 | #endif | ||
| 336 | 290 | ||
| 291 | #ifndef _read_unlock | ||
| 337 | void __lockfunc _read_unlock(rwlock_t *lock) | 292 | void __lockfunc _read_unlock(rwlock_t *lock) |
| 338 | { | 293 | { |
| 339 | rwlock_release(&lock->dep_map, 1, _RET_IP_); | 294 | __read_unlock(lock); |
| 340 | _raw_read_unlock(lock); | ||
| 341 | preempt_enable(); | ||
| 342 | } | 295 | } |
| 343 | EXPORT_SYMBOL(_read_unlock); | 296 | EXPORT_SYMBOL(_read_unlock); |
| 297 | #endif | ||
| 344 | 298 | ||
| 299 | #ifndef _spin_unlock_irqrestore | ||
| 345 | void __lockfunc _spin_unlock_irqrestore(spinlock_t *lock, unsigned long flags) | 300 | void __lockfunc _spin_unlock_irqrestore(spinlock_t *lock, unsigned long flags) |
| 346 | { | 301 | { |
| 347 | spin_release(&lock->dep_map, 1, _RET_IP_); | 302 | __spin_unlock_irqrestore(lock, flags); |
| 348 | _raw_spin_unlock(lock); | ||
| 349 | local_irq_restore(flags); | ||
| 350 | preempt_enable(); | ||
| 351 | } | 303 | } |
| 352 | EXPORT_SYMBOL(_spin_unlock_irqrestore); | 304 | EXPORT_SYMBOL(_spin_unlock_irqrestore); |
| 305 | #endif | ||
| 353 | 306 | ||
| 307 | #ifndef _spin_unlock_irq | ||
| 354 | void __lockfunc _spin_unlock_irq(spinlock_t *lock) | 308 | void __lockfunc _spin_unlock_irq(spinlock_t *lock) |
| 355 | { | 309 | { |
| 356 | spin_release(&lock->dep_map, 1, _RET_IP_); | 310 | __spin_unlock_irq(lock); |
| 357 | _raw_spin_unlock(lock); | ||
| 358 | local_irq_enable(); | ||
| 359 | preempt_enable(); | ||
| 360 | } | 311 | } |
| 361 | EXPORT_SYMBOL(_spin_unlock_irq); | 312 | EXPORT_SYMBOL(_spin_unlock_irq); |
| 313 | #endif | ||
| 362 | 314 | ||
| 315 | #ifndef _spin_unlock_bh | ||
| 363 | void __lockfunc _spin_unlock_bh(spinlock_t *lock) | 316 | void __lockfunc _spin_unlock_bh(spinlock_t *lock) |
| 364 | { | 317 | { |
| 365 | spin_release(&lock->dep_map, 1, _RET_IP_); | 318 | __spin_unlock_bh(lock); |
| 366 | _raw_spin_unlock(lock); | ||
| 367 | preempt_enable_no_resched(); | ||
| 368 | local_bh_enable_ip((unsigned long)__builtin_return_address(0)); | ||
| 369 | } | 319 | } |
| 370 | EXPORT_SYMBOL(_spin_unlock_bh); | 320 | EXPORT_SYMBOL(_spin_unlock_bh); |
| 321 | #endif | ||
| 371 | 322 | ||
| 323 | #ifndef _read_unlock_irqrestore | ||
| 372 | void __lockfunc _read_unlock_irqrestore(rwlock_t *lock, unsigned long flags) | 324 | void __lockfunc _read_unlock_irqrestore(rwlock_t *lock, unsigned long flags) |
| 373 | { | 325 | { |
| 374 | rwlock_release(&lock->dep_map, 1, _RET_IP_); | 326 | __read_unlock_irqrestore(lock, flags); |
| 375 | _raw_read_unlock(lock); | ||
| 376 | local_irq_restore(flags); | ||
| 377 | preempt_enable(); | ||
| 378 | } | 327 | } |
| 379 | EXPORT_SYMBOL(_read_unlock_irqrestore); | 328 | EXPORT_SYMBOL(_read_unlock_irqrestore); |
| 329 | #endif | ||
| 380 | 330 | ||
| 331 | #ifndef _read_unlock_irq | ||
| 381 | void __lockfunc _read_unlock_irq(rwlock_t *lock) | 332 | void __lockfunc _read_unlock_irq(rwlock_t *lock) |
| 382 | { | 333 | { |
| 383 | rwlock_release(&lock->dep_map, 1, _RET_IP_); | 334 | __read_unlock_irq(lock); |
| 384 | _raw_read_unlock(lock); | ||
| 385 | local_irq_enable(); | ||
| 386 | preempt_enable(); | ||
| 387 | } | 335 | } |
| 388 | EXPORT_SYMBOL(_read_unlock_irq); | 336 | EXPORT_SYMBOL(_read_unlock_irq); |
| 337 | #endif | ||
| 389 | 338 | ||
| 339 | #ifndef _read_unlock_bh | ||
| 390 | void __lockfunc _read_unlock_bh(rwlock_t *lock) | 340 | void __lockfunc _read_unlock_bh(rwlock_t *lock) |
| 391 | { | 341 | { |
| 392 | rwlock_release(&lock->dep_map, 1, _RET_IP_); | 342 | __read_unlock_bh(lock); |
| 393 | _raw_read_unlock(lock); | ||
| 394 | preempt_enable_no_resched(); | ||
| 395 | local_bh_enable_ip((unsigned long)__builtin_return_address(0)); | ||
| 396 | } | 343 | } |
| 397 | EXPORT_SYMBOL(_read_unlock_bh); | 344 | EXPORT_SYMBOL(_read_unlock_bh); |
| 345 | #endif | ||
| 398 | 346 | ||
| 347 | #ifndef _write_unlock_irqrestore | ||
| 399 | void __lockfunc _write_unlock_irqrestore(rwlock_t *lock, unsigned long flags) | 348 | void __lockfunc _write_unlock_irqrestore(rwlock_t *lock, unsigned long flags) |
| 400 | { | 349 | { |
| 401 | rwlock_release(&lock->dep_map, 1, _RET_IP_); | 350 | __write_unlock_irqrestore(lock, flags); |
| 402 | _raw_write_unlock(lock); | ||
| 403 | local_irq_restore(flags); | ||
| 404 | preempt_enable(); | ||
| 405 | } | 351 | } |
| 406 | EXPORT_SYMBOL(_write_unlock_irqrestore); | 352 | EXPORT_SYMBOL(_write_unlock_irqrestore); |
| 353 | #endif | ||
| 407 | 354 | ||
| 355 | #ifndef _write_unlock_irq | ||
| 408 | void __lockfunc _write_unlock_irq(rwlock_t *lock) | 356 | void __lockfunc _write_unlock_irq(rwlock_t *lock) |
| 409 | { | 357 | { |
| 410 | rwlock_release(&lock->dep_map, 1, _RET_IP_); | 358 | __write_unlock_irq(lock); |
| 411 | _raw_write_unlock(lock); | ||
| 412 | local_irq_enable(); | ||
| 413 | preempt_enable(); | ||
| 414 | } | 359 | } |
| 415 | EXPORT_SYMBOL(_write_unlock_irq); | 360 | EXPORT_SYMBOL(_write_unlock_irq); |
| 361 | #endif | ||
| 416 | 362 | ||
| 363 | #ifndef _write_unlock_bh | ||
| 417 | void __lockfunc _write_unlock_bh(rwlock_t *lock) | 364 | void __lockfunc _write_unlock_bh(rwlock_t *lock) |
| 418 | { | 365 | { |
| 419 | rwlock_release(&lock->dep_map, 1, _RET_IP_); | 366 | __write_unlock_bh(lock); |
| 420 | _raw_write_unlock(lock); | ||
| 421 | preempt_enable_no_resched(); | ||
| 422 | local_bh_enable_ip((unsigned long)__builtin_return_address(0)); | ||
| 423 | } | 367 | } |
| 424 | EXPORT_SYMBOL(_write_unlock_bh); | 368 | EXPORT_SYMBOL(_write_unlock_bh); |
| 369 | #endif | ||
| 425 | 370 | ||
| 371 | #ifndef _spin_trylock_bh | ||
| 426 | int __lockfunc _spin_trylock_bh(spinlock_t *lock) | 372 | int __lockfunc _spin_trylock_bh(spinlock_t *lock) |
| 427 | { | 373 | { |
| 428 | local_bh_disable(); | 374 | return __spin_trylock_bh(lock); |
| 429 | preempt_disable(); | ||
| 430 | if (_raw_spin_trylock(lock)) { | ||
| 431 | spin_acquire(&lock->dep_map, 0, 1, _RET_IP_); | ||
| 432 | return 1; | ||
| 433 | } | ||
| 434 | |||
| 435 | preempt_enable_no_resched(); | ||
| 436 | local_bh_enable_ip((unsigned long)__builtin_return_address(0)); | ||
| 437 | return 0; | ||
| 438 | } | 375 | } |
| 439 | EXPORT_SYMBOL(_spin_trylock_bh); | 376 | EXPORT_SYMBOL(_spin_trylock_bh); |
| 377 | #endif | ||
| 440 | 378 | ||
| 441 | notrace int in_lock_functions(unsigned long addr) | 379 | notrace int in_lock_functions(unsigned long addr) |
| 442 | { | 380 | { |
diff --git a/kernel/sys.c b/kernel/sys.c index b3f1097c76fa..ea5c3bcac881 100644 --- a/kernel/sys.c +++ b/kernel/sys.c | |||
| @@ -14,7 +14,7 @@ | |||
| 14 | #include <linux/prctl.h> | 14 | #include <linux/prctl.h> |
| 15 | #include <linux/highuid.h> | 15 | #include <linux/highuid.h> |
| 16 | #include <linux/fs.h> | 16 | #include <linux/fs.h> |
| 17 | #include <linux/perf_counter.h> | 17 | #include <linux/perf_event.h> |
| 18 | #include <linux/resource.h> | 18 | #include <linux/resource.h> |
| 19 | #include <linux/kernel.h> | 19 | #include <linux/kernel.h> |
| 20 | #include <linux/kexec.h> | 20 | #include <linux/kexec.h> |
| @@ -1511,11 +1511,11 @@ SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3, | |||
| 1511 | case PR_SET_TSC: | 1511 | case PR_SET_TSC: |
| 1512 | error = SET_TSC_CTL(arg2); | 1512 | error = SET_TSC_CTL(arg2); |
| 1513 | break; | 1513 | break; |
| 1514 | case PR_TASK_PERF_COUNTERS_DISABLE: | 1514 | case PR_TASK_PERF_EVENTS_DISABLE: |
| 1515 | error = perf_counter_task_disable(); | 1515 | error = perf_event_task_disable(); |
| 1516 | break; | 1516 | break; |
| 1517 | case PR_TASK_PERF_COUNTERS_ENABLE: | 1517 | case PR_TASK_PERF_EVENTS_ENABLE: |
| 1518 | error = perf_counter_task_enable(); | 1518 | error = perf_event_task_enable(); |
| 1519 | break; | 1519 | break; |
| 1520 | case PR_GET_TIMERSLACK: | 1520 | case PR_GET_TIMERSLACK: |
| 1521 | error = current->timer_slack_ns; | 1521 | error = current->timer_slack_ns; |
diff --git a/kernel/sys_ni.c b/kernel/sys_ni.c index 68320f6b07b5..515bc230ac2a 100644 --- a/kernel/sys_ni.c +++ b/kernel/sys_ni.c | |||
| @@ -177,4 +177,4 @@ cond_syscall(sys_eventfd); | |||
| 177 | cond_syscall(sys_eventfd2); | 177 | cond_syscall(sys_eventfd2); |
| 178 | 178 | ||
| 179 | /* performance counters: */ | 179 | /* performance counters: */ |
| 180 | cond_syscall(sys_perf_counter_open); | 180 | cond_syscall(sys_perf_event_open); |
diff --git a/kernel/sysctl.c b/kernel/sysctl.c index 98e02328c67d..6ba49c7cb128 100644 --- a/kernel/sysctl.c +++ b/kernel/sysctl.c | |||
| @@ -50,7 +50,7 @@ | |||
| 50 | #include <linux/reboot.h> | 50 | #include <linux/reboot.h> |
| 51 | #include <linux/ftrace.h> | 51 | #include <linux/ftrace.h> |
| 52 | #include <linux/slow-work.h> | 52 | #include <linux/slow-work.h> |
| 53 | #include <linux/perf_counter.h> | 53 | #include <linux/perf_event.h> |
| 54 | 54 | ||
| 55 | #include <asm/uaccess.h> | 55 | #include <asm/uaccess.h> |
| 56 | #include <asm/processor.h> | 56 | #include <asm/processor.h> |
| @@ -91,6 +91,9 @@ extern int sysctl_nr_trim_pages; | |||
| 91 | #ifdef CONFIG_RCU_TORTURE_TEST | 91 | #ifdef CONFIG_RCU_TORTURE_TEST |
| 92 | extern int rcutorture_runnable; | 92 | extern int rcutorture_runnable; |
| 93 | #endif /* #ifdef CONFIG_RCU_TORTURE_TEST */ | 93 | #endif /* #ifdef CONFIG_RCU_TORTURE_TEST */ |
| 94 | #ifdef CONFIG_BLOCK | ||
| 95 | extern int blk_iopoll_enabled; | ||
| 96 | #endif | ||
| 94 | 97 | ||
| 95 | /* Constants used for minimum and maximum */ | 98 | /* Constants used for minimum and maximum */ |
| 96 | #ifdef CONFIG_DETECT_SOFTLOCKUP | 99 | #ifdef CONFIG_DETECT_SOFTLOCKUP |
| @@ -245,6 +248,14 @@ static int max_wakeup_granularity_ns = NSEC_PER_SEC; /* 1 second */ | |||
| 245 | #endif | 248 | #endif |
| 246 | 249 | ||
| 247 | static struct ctl_table kern_table[] = { | 250 | static struct ctl_table kern_table[] = { |
| 251 | { | ||
| 252 | .ctl_name = CTL_UNNUMBERED, | ||
| 253 | .procname = "sched_child_runs_first", | ||
| 254 | .data = &sysctl_sched_child_runs_first, | ||
| 255 | .maxlen = sizeof(unsigned int), | ||
| 256 | .mode = 0644, | ||
| 257 | .proc_handler = &proc_dointvec, | ||
| 258 | }, | ||
| 248 | #ifdef CONFIG_SCHED_DEBUG | 259 | #ifdef CONFIG_SCHED_DEBUG |
| 249 | { | 260 | { |
| 250 | .ctl_name = CTL_UNNUMBERED, | 261 | .ctl_name = CTL_UNNUMBERED, |
| @@ -299,14 +310,6 @@ static struct ctl_table kern_table[] = { | |||
| 299 | }, | 310 | }, |
| 300 | { | 311 | { |
| 301 | .ctl_name = CTL_UNNUMBERED, | 312 | .ctl_name = CTL_UNNUMBERED, |
| 302 | .procname = "sched_child_runs_first", | ||
| 303 | .data = &sysctl_sched_child_runs_first, | ||
| 304 | .maxlen = sizeof(unsigned int), | ||
| 305 | .mode = 0644, | ||
| 306 | .proc_handler = &proc_dointvec, | ||
| 307 | }, | ||
| 308 | { | ||
| 309 | .ctl_name = CTL_UNNUMBERED, | ||
| 310 | .procname = "sched_features", | 313 | .procname = "sched_features", |
| 311 | .data = &sysctl_sched_features, | 314 | .data = &sysctl_sched_features, |
| 312 | .maxlen = sizeof(unsigned int), | 315 | .maxlen = sizeof(unsigned int), |
| @@ -331,6 +334,14 @@ static struct ctl_table kern_table[] = { | |||
| 331 | }, | 334 | }, |
| 332 | { | 335 | { |
| 333 | .ctl_name = CTL_UNNUMBERED, | 336 | .ctl_name = CTL_UNNUMBERED, |
| 337 | .procname = "sched_time_avg", | ||
| 338 | .data = &sysctl_sched_time_avg, | ||
| 339 | .maxlen = sizeof(unsigned int), | ||
| 340 | .mode = 0644, | ||
| 341 | .proc_handler = &proc_dointvec, | ||
| 342 | }, | ||
| 343 | { | ||
| 344 | .ctl_name = CTL_UNNUMBERED, | ||
| 334 | .procname = "timer_migration", | 345 | .procname = "timer_migration", |
| 335 | .data = &sysctl_timer_migration, | 346 | .data = &sysctl_timer_migration, |
| 336 | .maxlen = sizeof(unsigned int), | 347 | .maxlen = sizeof(unsigned int), |
| @@ -953,28 +964,28 @@ static struct ctl_table kern_table[] = { | |||
| 953 | .child = slow_work_sysctls, | 964 | .child = slow_work_sysctls, |
| 954 | }, | 965 | }, |
| 955 | #endif | 966 | #endif |
| 956 | #ifdef CONFIG_PERF_COUNTERS | 967 | #ifdef CONFIG_PERF_EVENTS |
| 957 | { | 968 | { |
| 958 | .ctl_name = CTL_UNNUMBERED, | 969 | .ctl_name = CTL_UNNUMBERED, |
| 959 | .procname = "perf_counter_paranoid", | 970 | .procname = "perf_event_paranoid", |
| 960 | .data = &sysctl_perf_counter_paranoid, | 971 | .data = &sysctl_perf_event_paranoid, |
| 961 | .maxlen = sizeof(sysctl_perf_counter_paranoid), | 972 | .maxlen = sizeof(sysctl_perf_event_paranoid), |
| 962 | .mode = 0644, | 973 | .mode = 0644, |
| 963 | .proc_handler = &proc_dointvec, | 974 | .proc_handler = &proc_dointvec, |
| 964 | }, | 975 | }, |
| 965 | { | 976 | { |
| 966 | .ctl_name = CTL_UNNUMBERED, | 977 | .ctl_name = CTL_UNNUMBERED, |
| 967 | .procname = "perf_counter_mlock_kb", | 978 | .procname = "perf_event_mlock_kb", |
| 968 | .data = &sysctl_perf_counter_mlock, | 979 | .data = &sysctl_perf_event_mlock, |
| 969 | .maxlen = sizeof(sysctl_perf_counter_mlock), | 980 | .maxlen = sizeof(sysctl_perf_event_mlock), |
| 970 | .mode = 0644, | 981 | .mode = 0644, |
| 971 | .proc_handler = &proc_dointvec, | 982 | .proc_handler = &proc_dointvec, |
| 972 | }, | 983 | }, |
| 973 | { | 984 | { |
| 974 | .ctl_name = CTL_UNNUMBERED, | 985 | .ctl_name = CTL_UNNUMBERED, |
| 975 | .procname = "perf_counter_max_sample_rate", | 986 | .procname = "perf_event_max_sample_rate", |
| 976 | .data = &sysctl_perf_counter_sample_rate, | 987 | .data = &sysctl_perf_event_sample_rate, |
| 977 | .maxlen = sizeof(sysctl_perf_counter_sample_rate), | 988 | .maxlen = sizeof(sysctl_perf_event_sample_rate), |
| 978 | .mode = 0644, | 989 | .mode = 0644, |
| 979 | .proc_handler = &proc_dointvec, | 990 | .proc_handler = &proc_dointvec, |
| 980 | }, | 991 | }, |
| @@ -989,7 +1000,16 @@ static struct ctl_table kern_table[] = { | |||
| 989 | .proc_handler = &proc_dointvec, | 1000 | .proc_handler = &proc_dointvec, |
| 990 | }, | 1001 | }, |
| 991 | #endif | 1002 | #endif |
| 992 | 1003 | #ifdef CONFIG_BLOCK | |
| 1004 | { | ||
| 1005 | .ctl_name = CTL_UNNUMBERED, | ||
| 1006 | .procname = "blk_iopoll", | ||
| 1007 | .data = &blk_iopoll_enabled, | ||
| 1008 | .maxlen = sizeof(int), | ||
| 1009 | .mode = 0644, | ||
| 1010 | .proc_handler = &proc_dointvec, | ||
| 1011 | }, | ||
| 1012 | #endif | ||
| 993 | /* | 1013 | /* |
| 994 | * NOTE: do not add new entries to this table unless you have read | 1014 | * NOTE: do not add new entries to this table unless you have read |
| 995 | * Documentation/sysctl/ctl_unnumbered.txt | 1015 | * Documentation/sysctl/ctl_unnumbered.txt |
| @@ -1306,10 +1326,10 @@ static struct ctl_table vm_table[] = { | |||
| 1306 | { | 1326 | { |
| 1307 | .ctl_name = CTL_UNNUMBERED, | 1327 | .ctl_name = CTL_UNNUMBERED, |
| 1308 | .procname = "mmap_min_addr", | 1328 | .procname = "mmap_min_addr", |
| 1309 | .data = &mmap_min_addr, | 1329 | .data = &dac_mmap_min_addr, |
| 1310 | .maxlen = sizeof(unsigned long), | 1330 | .maxlen = sizeof(unsigned long), |
| 1311 | .mode = 0644, | 1331 | .mode = 0644, |
| 1312 | .proc_handler = &proc_doulongvec_minmax, | 1332 | .proc_handler = &mmap_min_addr_handler, |
| 1313 | }, | 1333 | }, |
| 1314 | #ifdef CONFIG_NUMA | 1334 | #ifdef CONFIG_NUMA |
| 1315 | { | 1335 | { |
diff --git a/kernel/taskstats.c b/kernel/taskstats.c index 888adbcca30c..ea8384d3caa7 100644 --- a/kernel/taskstats.c +++ b/kernel/taskstats.c | |||
| @@ -108,7 +108,7 @@ static int prepare_reply(struct genl_info *info, u8 cmd, struct sk_buff **skbp, | |||
| 108 | /* | 108 | /* |
| 109 | * Send taskstats data in @skb to listener with nl_pid @pid | 109 | * Send taskstats data in @skb to listener with nl_pid @pid |
| 110 | */ | 110 | */ |
| 111 | static int send_reply(struct sk_buff *skb, pid_t pid) | 111 | static int send_reply(struct sk_buff *skb, struct genl_info *info) |
| 112 | { | 112 | { |
| 113 | struct genlmsghdr *genlhdr = nlmsg_data(nlmsg_hdr(skb)); | 113 | struct genlmsghdr *genlhdr = nlmsg_data(nlmsg_hdr(skb)); |
| 114 | void *reply = genlmsg_data(genlhdr); | 114 | void *reply = genlmsg_data(genlhdr); |
| @@ -120,7 +120,7 @@ static int send_reply(struct sk_buff *skb, pid_t pid) | |||
| 120 | return rc; | 120 | return rc; |
| 121 | } | 121 | } |
| 122 | 122 | ||
| 123 | return genlmsg_unicast(skb, pid); | 123 | return genlmsg_reply(skb, info); |
| 124 | } | 124 | } |
| 125 | 125 | ||
| 126 | /* | 126 | /* |
| @@ -150,7 +150,7 @@ static void send_cpu_listeners(struct sk_buff *skb, | |||
| 150 | if (!skb_next) | 150 | if (!skb_next) |
| 151 | break; | 151 | break; |
| 152 | } | 152 | } |
| 153 | rc = genlmsg_unicast(skb_cur, s->pid); | 153 | rc = genlmsg_unicast(&init_net, skb_cur, s->pid); |
| 154 | if (rc == -ECONNREFUSED) { | 154 | if (rc == -ECONNREFUSED) { |
| 155 | s->valid = 0; | 155 | s->valid = 0; |
| 156 | delcount++; | 156 | delcount++; |
| @@ -418,7 +418,7 @@ static int cgroupstats_user_cmd(struct sk_buff *skb, struct genl_info *info) | |||
| 418 | goto err; | 418 | goto err; |
| 419 | } | 419 | } |
| 420 | 420 | ||
| 421 | rc = send_reply(rep_skb, info->snd_pid); | 421 | rc = send_reply(rep_skb, info); |
| 422 | 422 | ||
| 423 | err: | 423 | err: |
| 424 | fput_light(file, fput_needed); | 424 | fput_light(file, fput_needed); |
| @@ -487,7 +487,7 @@ free_return_rc: | |||
| 487 | } else | 487 | } else |
| 488 | goto err; | 488 | goto err; |
| 489 | 489 | ||
| 490 | return send_reply(rep_skb, info->snd_pid); | 490 | return send_reply(rep_skb, info); |
| 491 | err: | 491 | err: |
| 492 | nlmsg_free(rep_skb); | 492 | nlmsg_free(rep_skb); |
| 493 | return rc; | 493 | return rc; |
diff --git a/kernel/time.c b/kernel/time.c index 29511943871a..2e2e469a7fec 100644 --- a/kernel/time.c +++ b/kernel/time.c | |||
| @@ -370,13 +370,20 @@ EXPORT_SYMBOL(mktime); | |||
| 370 | * 0 <= tv_nsec < NSEC_PER_SEC | 370 | * 0 <= tv_nsec < NSEC_PER_SEC |
| 371 | * For negative values only the tv_sec field is negative ! | 371 | * For negative values only the tv_sec field is negative ! |
| 372 | */ | 372 | */ |
| 373 | void set_normalized_timespec(struct timespec *ts, time_t sec, long nsec) | 373 | void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec) |
| 374 | { | 374 | { |
| 375 | while (nsec >= NSEC_PER_SEC) { | 375 | while (nsec >= NSEC_PER_SEC) { |
| 376 | /* | ||
| 377 | * The following asm() prevents the compiler from | ||
| 378 | * optimising this loop into a modulo operation. See | ||
| 379 | * also __iter_div_u64_rem() in include/linux/time.h | ||
| 380 | */ | ||
| 381 | asm("" : "+rm"(nsec)); | ||
| 376 | nsec -= NSEC_PER_SEC; | 382 | nsec -= NSEC_PER_SEC; |
| 377 | ++sec; | 383 | ++sec; |
| 378 | } | 384 | } |
| 379 | while (nsec < 0) { | 385 | while (nsec < 0) { |
| 386 | asm("" : "+rm"(nsec)); | ||
| 380 | nsec += NSEC_PER_SEC; | 387 | nsec += NSEC_PER_SEC; |
| 381 | --sec; | 388 | --sec; |
| 382 | } | 389 | } |
diff --git a/kernel/time/clockevents.c b/kernel/time/clockevents.c index 1ad6dd461119..620b58abdc32 100644 --- a/kernel/time/clockevents.c +++ b/kernel/time/clockevents.c | |||
| @@ -137,11 +137,12 @@ int clockevents_program_event(struct clock_event_device *dev, ktime_t expires, | |||
| 137 | */ | 137 | */ |
| 138 | int clockevents_register_notifier(struct notifier_block *nb) | 138 | int clockevents_register_notifier(struct notifier_block *nb) |
| 139 | { | 139 | { |
| 140 | unsigned long flags; | ||
| 140 | int ret; | 141 | int ret; |
| 141 | 142 | ||
| 142 | spin_lock(&clockevents_lock); | 143 | spin_lock_irqsave(&clockevents_lock, flags); |
| 143 | ret = raw_notifier_chain_register(&clockevents_chain, nb); | 144 | ret = raw_notifier_chain_register(&clockevents_chain, nb); |
| 144 | spin_unlock(&clockevents_lock); | 145 | spin_unlock_irqrestore(&clockevents_lock, flags); |
| 145 | 146 | ||
| 146 | return ret; | 147 | return ret; |
| 147 | } | 148 | } |
| @@ -178,16 +179,18 @@ static void clockevents_notify_released(void) | |||
| 178 | */ | 179 | */ |
| 179 | void clockevents_register_device(struct clock_event_device *dev) | 180 | void clockevents_register_device(struct clock_event_device *dev) |
| 180 | { | 181 | { |
| 182 | unsigned long flags; | ||
| 183 | |||
| 181 | BUG_ON(dev->mode != CLOCK_EVT_MODE_UNUSED); | 184 | BUG_ON(dev->mode != CLOCK_EVT_MODE_UNUSED); |
| 182 | BUG_ON(!dev->cpumask); | 185 | BUG_ON(!dev->cpumask); |
| 183 | 186 | ||
| 184 | spin_lock(&clockevents_lock); | 187 | spin_lock_irqsave(&clockevents_lock, flags); |
| 185 | 188 | ||
| 186 | list_add(&dev->list, &clockevent_devices); | 189 | list_add(&dev->list, &clockevent_devices); |
| 187 | clockevents_do_notify(CLOCK_EVT_NOTIFY_ADD, dev); | 190 | clockevents_do_notify(CLOCK_EVT_NOTIFY_ADD, dev); |
| 188 | clockevents_notify_released(); | 191 | clockevents_notify_released(); |
| 189 | 192 | ||
| 190 | spin_unlock(&clockevents_lock); | 193 | spin_unlock_irqrestore(&clockevents_lock, flags); |
| 191 | } | 194 | } |
| 192 | EXPORT_SYMBOL_GPL(clockevents_register_device); | 195 | EXPORT_SYMBOL_GPL(clockevents_register_device); |
| 193 | 196 | ||
| @@ -235,8 +238,9 @@ void clockevents_exchange_device(struct clock_event_device *old, | |||
| 235 | void clockevents_notify(unsigned long reason, void *arg) | 238 | void clockevents_notify(unsigned long reason, void *arg) |
| 236 | { | 239 | { |
| 237 | struct list_head *node, *tmp; | 240 | struct list_head *node, *tmp; |
| 241 | unsigned long flags; | ||
| 238 | 242 | ||
| 239 | spin_lock(&clockevents_lock); | 243 | spin_lock_irqsave(&clockevents_lock, flags); |
| 240 | clockevents_do_notify(reason, arg); | 244 | clockevents_do_notify(reason, arg); |
| 241 | 245 | ||
| 242 | switch (reason) { | 246 | switch (reason) { |
| @@ -251,18 +255,7 @@ void clockevents_notify(unsigned long reason, void *arg) | |||
| 251 | default: | 255 | default: |
| 252 | break; | 256 | break; |
| 253 | } | 257 | } |
| 254 | spin_unlock(&clockevents_lock); | 258 | spin_unlock_irqrestore(&clockevents_lock, flags); |
| 255 | } | 259 | } |
| 256 | EXPORT_SYMBOL_GPL(clockevents_notify); | 260 | EXPORT_SYMBOL_GPL(clockevents_notify); |
| 257 | |||
| 258 | ktime_t clockevents_get_next_event(int cpu) | ||
| 259 | { | ||
| 260 | struct tick_device *td; | ||
| 261 | struct clock_event_device *dev; | ||
| 262 | |||
| 263 | td = &per_cpu(tick_cpu_device, cpu); | ||
| 264 | dev = td->evtdev; | ||
| 265 | |||
| 266 | return dev->next_event; | ||
| 267 | } | ||
| 268 | #endif | 261 | #endif |
diff --git a/kernel/time/clocksource.c b/kernel/time/clocksource.c index 592bf584d1d2..09113347d328 100644 --- a/kernel/time/clocksource.c +++ b/kernel/time/clocksource.c | |||
| @@ -21,7 +21,6 @@ | |||
| 21 | * | 21 | * |
| 22 | * TODO WishList: | 22 | * TODO WishList: |
| 23 | * o Allow clocksource drivers to be unregistered | 23 | * o Allow clocksource drivers to be unregistered |
| 24 | * o get rid of clocksource_jiffies extern | ||
| 25 | */ | 24 | */ |
| 26 | 25 | ||
| 27 | #include <linux/clocksource.h> | 26 | #include <linux/clocksource.h> |
| @@ -30,6 +29,7 @@ | |||
| 30 | #include <linux/module.h> | 29 | #include <linux/module.h> |
| 31 | #include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */ | 30 | #include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */ |
| 32 | #include <linux/tick.h> | 31 | #include <linux/tick.h> |
| 32 | #include <linux/kthread.h> | ||
| 33 | 33 | ||
| 34 | void timecounter_init(struct timecounter *tc, | 34 | void timecounter_init(struct timecounter *tc, |
| 35 | const struct cyclecounter *cc, | 35 | const struct cyclecounter *cc, |
| @@ -107,50 +107,35 @@ u64 timecounter_cyc2time(struct timecounter *tc, | |||
| 107 | } | 107 | } |
| 108 | EXPORT_SYMBOL(timecounter_cyc2time); | 108 | EXPORT_SYMBOL(timecounter_cyc2time); |
| 109 | 109 | ||
| 110 | /* XXX - Would like a better way for initializing curr_clocksource */ | ||
| 111 | extern struct clocksource clocksource_jiffies; | ||
| 112 | |||
| 113 | /*[Clocksource internal variables]--------- | 110 | /*[Clocksource internal variables]--------- |
| 114 | * curr_clocksource: | 111 | * curr_clocksource: |
| 115 | * currently selected clocksource. Initialized to clocksource_jiffies. | 112 | * currently selected clocksource. |
| 116 | * next_clocksource: | ||
| 117 | * pending next selected clocksource. | ||
| 118 | * clocksource_list: | 113 | * clocksource_list: |
| 119 | * linked list with the registered clocksources | 114 | * linked list with the registered clocksources |
| 120 | * clocksource_lock: | 115 | * clocksource_mutex: |
| 121 | * protects manipulations to curr_clocksource and next_clocksource | 116 | * protects manipulations to curr_clocksource and the clocksource_list |
| 122 | * and the clocksource_list | ||
| 123 | * override_name: | 117 | * override_name: |
| 124 | * Name of the user-specified clocksource. | 118 | * Name of the user-specified clocksource. |
| 125 | */ | 119 | */ |
| 126 | static struct clocksource *curr_clocksource = &clocksource_jiffies; | 120 | static struct clocksource *curr_clocksource; |
| 127 | static struct clocksource *next_clocksource; | ||
| 128 | static struct clocksource *clocksource_override; | ||
| 129 | static LIST_HEAD(clocksource_list); | 121 | static LIST_HEAD(clocksource_list); |
| 130 | static DEFINE_SPINLOCK(clocksource_lock); | 122 | static DEFINE_MUTEX(clocksource_mutex); |
| 131 | static char override_name[32]; | 123 | static char override_name[32]; |
| 132 | static int finished_booting; | 124 | static int finished_booting; |
| 133 | 125 | ||
| 134 | /* clocksource_done_booting - Called near the end of core bootup | ||
| 135 | * | ||
| 136 | * Hack to avoid lots of clocksource churn at boot time. | ||
| 137 | * We use fs_initcall because we want this to start before | ||
| 138 | * device_initcall but after subsys_initcall. | ||
| 139 | */ | ||
| 140 | static int __init clocksource_done_booting(void) | ||
| 141 | { | ||
| 142 | finished_booting = 1; | ||
| 143 | return 0; | ||
| 144 | } | ||
| 145 | fs_initcall(clocksource_done_booting); | ||
| 146 | |||
| 147 | #ifdef CONFIG_CLOCKSOURCE_WATCHDOG | 126 | #ifdef CONFIG_CLOCKSOURCE_WATCHDOG |
| 127 | static void clocksource_watchdog_work(struct work_struct *work); | ||
| 128 | |||
| 148 | static LIST_HEAD(watchdog_list); | 129 | static LIST_HEAD(watchdog_list); |
| 149 | static struct clocksource *watchdog; | 130 | static struct clocksource *watchdog; |
| 150 | static struct timer_list watchdog_timer; | 131 | static struct timer_list watchdog_timer; |
| 132 | static DECLARE_WORK(watchdog_work, clocksource_watchdog_work); | ||
| 151 | static DEFINE_SPINLOCK(watchdog_lock); | 133 | static DEFINE_SPINLOCK(watchdog_lock); |
| 152 | static cycle_t watchdog_last; | 134 | static cycle_t watchdog_last; |
| 153 | static unsigned long watchdog_resumed; | 135 | static int watchdog_running; |
| 136 | |||
| 137 | static int clocksource_watchdog_kthread(void *data); | ||
| 138 | static void __clocksource_change_rating(struct clocksource *cs, int rating); | ||
| 154 | 139 | ||
| 155 | /* | 140 | /* |
| 156 | * Interval: 0.5sec Threshold: 0.0625s | 141 | * Interval: 0.5sec Threshold: 0.0625s |
| @@ -158,135 +143,249 @@ static unsigned long watchdog_resumed; | |||
| 158 | #define WATCHDOG_INTERVAL (HZ >> 1) | 143 | #define WATCHDOG_INTERVAL (HZ >> 1) |
| 159 | #define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 4) | 144 | #define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 4) |
| 160 | 145 | ||
| 161 | static void clocksource_ratewd(struct clocksource *cs, int64_t delta) | 146 | static void clocksource_watchdog_work(struct work_struct *work) |
| 162 | { | 147 | { |
| 163 | if (delta > -WATCHDOG_THRESHOLD && delta < WATCHDOG_THRESHOLD) | 148 | /* |
| 164 | return; | 149 | * If kthread_run fails the next watchdog scan over the |
| 150 | * watchdog_list will find the unstable clock again. | ||
| 151 | */ | ||
| 152 | kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog"); | ||
| 153 | } | ||
| 165 | 154 | ||
| 155 | static void __clocksource_unstable(struct clocksource *cs) | ||
| 156 | { | ||
| 157 | cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG); | ||
| 158 | cs->flags |= CLOCK_SOURCE_UNSTABLE; | ||
| 159 | if (finished_booting) | ||
| 160 | schedule_work(&watchdog_work); | ||
| 161 | } | ||
| 162 | |||
| 163 | static void clocksource_unstable(struct clocksource *cs, int64_t delta) | ||
| 164 | { | ||
| 166 | printk(KERN_WARNING "Clocksource %s unstable (delta = %Ld ns)\n", | 165 | printk(KERN_WARNING "Clocksource %s unstable (delta = %Ld ns)\n", |
| 167 | cs->name, delta); | 166 | cs->name, delta); |
| 168 | cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG); | 167 | __clocksource_unstable(cs); |
| 169 | clocksource_change_rating(cs, 0); | 168 | } |
| 170 | list_del(&cs->wd_list); | 169 | |
| 170 | /** | ||
| 171 | * clocksource_mark_unstable - mark clocksource unstable via watchdog | ||
| 172 | * @cs: clocksource to be marked unstable | ||
| 173 | * | ||
| 174 | * This function is called instead of clocksource_change_rating from | ||
| 175 | * cpu hotplug code to avoid a deadlock between the clocksource mutex | ||
| 176 | * and the cpu hotplug mutex. It defers the update of the clocksource | ||
| 177 | * to the watchdog thread. | ||
| 178 | */ | ||
| 179 | void clocksource_mark_unstable(struct clocksource *cs) | ||
| 180 | { | ||
| 181 | unsigned long flags; | ||
| 182 | |||
| 183 | spin_lock_irqsave(&watchdog_lock, flags); | ||
| 184 | if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) { | ||
| 185 | if (list_empty(&cs->wd_list)) | ||
| 186 | list_add(&cs->wd_list, &watchdog_list); | ||
| 187 | __clocksource_unstable(cs); | ||
| 188 | } | ||
| 189 | spin_unlock_irqrestore(&watchdog_lock, flags); | ||
| 171 | } | 190 | } |
| 172 | 191 | ||
| 173 | static void clocksource_watchdog(unsigned long data) | 192 | static void clocksource_watchdog(unsigned long data) |
| 174 | { | 193 | { |
| 175 | struct clocksource *cs, *tmp; | 194 | struct clocksource *cs; |
| 176 | cycle_t csnow, wdnow; | 195 | cycle_t csnow, wdnow; |
| 177 | int64_t wd_nsec, cs_nsec; | 196 | int64_t wd_nsec, cs_nsec; |
| 178 | int resumed; | 197 | int next_cpu; |
| 179 | 198 | ||
| 180 | spin_lock(&watchdog_lock); | 199 | spin_lock(&watchdog_lock); |
| 181 | 200 | if (!watchdog_running) | |
| 182 | resumed = test_and_clear_bit(0, &watchdog_resumed); | 201 | goto out; |
| 183 | 202 | ||
| 184 | wdnow = watchdog->read(watchdog); | 203 | wdnow = watchdog->read(watchdog); |
| 185 | wd_nsec = cyc2ns(watchdog, (wdnow - watchdog_last) & watchdog->mask); | 204 | wd_nsec = clocksource_cyc2ns((wdnow - watchdog_last) & watchdog->mask, |
| 205 | watchdog->mult, watchdog->shift); | ||
| 186 | watchdog_last = wdnow; | 206 | watchdog_last = wdnow; |
| 187 | 207 | ||
| 188 | list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list) { | 208 | list_for_each_entry(cs, &watchdog_list, wd_list) { |
| 189 | csnow = cs->read(cs); | ||
| 190 | 209 | ||
| 191 | if (unlikely(resumed)) { | 210 | /* Clocksource already marked unstable? */ |
| 192 | cs->wd_last = csnow; | 211 | if (cs->flags & CLOCK_SOURCE_UNSTABLE) { |
| 212 | if (finished_booting) | ||
| 213 | schedule_work(&watchdog_work); | ||
| 193 | continue; | 214 | continue; |
| 194 | } | 215 | } |
| 195 | 216 | ||
| 196 | /* Initialized ? */ | 217 | csnow = cs->read(cs); |
| 218 | |||
| 219 | /* Clocksource initialized ? */ | ||
| 197 | if (!(cs->flags & CLOCK_SOURCE_WATCHDOG)) { | 220 | if (!(cs->flags & CLOCK_SOURCE_WATCHDOG)) { |
| 198 | if ((cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) && | ||
| 199 | (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) { | ||
| 200 | cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES; | ||
| 201 | /* | ||
| 202 | * We just marked the clocksource as | ||
| 203 | * highres-capable, notify the rest of the | ||
| 204 | * system as well so that we transition | ||
| 205 | * into high-res mode: | ||
| 206 | */ | ||
| 207 | tick_clock_notify(); | ||
| 208 | } | ||
| 209 | cs->flags |= CLOCK_SOURCE_WATCHDOG; | 221 | cs->flags |= CLOCK_SOURCE_WATCHDOG; |
| 210 | cs->wd_last = csnow; | 222 | cs->wd_last = csnow; |
| 211 | } else { | 223 | continue; |
| 212 | cs_nsec = cyc2ns(cs, (csnow - cs->wd_last) & cs->mask); | ||
| 213 | cs->wd_last = csnow; | ||
| 214 | /* Check the delta. Might remove from the list ! */ | ||
| 215 | clocksource_ratewd(cs, cs_nsec - wd_nsec); | ||
| 216 | } | 224 | } |
| 217 | } | ||
| 218 | 225 | ||
| 219 | if (!list_empty(&watchdog_list)) { | 226 | /* Check the deviation from the watchdog clocksource. */ |
| 220 | /* | 227 | cs_nsec = clocksource_cyc2ns((csnow - cs->wd_last) & |
| 221 | * Cycle through CPUs to check if the CPUs stay | 228 | cs->mask, cs->mult, cs->shift); |
| 222 | * synchronized to each other. | 229 | cs->wd_last = csnow; |
| 223 | */ | 230 | if (abs(cs_nsec - wd_nsec) > WATCHDOG_THRESHOLD) { |
| 224 | int next_cpu = cpumask_next(raw_smp_processor_id(), | 231 | clocksource_unstable(cs, cs_nsec - wd_nsec); |
| 225 | cpu_online_mask); | 232 | continue; |
| 233 | } | ||
| 226 | 234 | ||
| 227 | if (next_cpu >= nr_cpu_ids) | 235 | if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && |
| 228 | next_cpu = cpumask_first(cpu_online_mask); | 236 | (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) && |
| 229 | watchdog_timer.expires += WATCHDOG_INTERVAL; | 237 | (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) { |
| 230 | add_timer_on(&watchdog_timer, next_cpu); | 238 | cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES; |
| 239 | /* | ||
| 240 | * We just marked the clocksource as highres-capable, | ||
| 241 | * notify the rest of the system as well so that we | ||
| 242 | * transition into high-res mode: | ||
| 243 | */ | ||
| 244 | tick_clock_notify(); | ||
| 245 | } | ||
| 231 | } | 246 | } |
| 247 | |||
| 248 | /* | ||
| 249 | * Cycle through CPUs to check if the CPUs stay synchronized | ||
| 250 | * to each other. | ||
| 251 | */ | ||
| 252 | next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask); | ||
| 253 | if (next_cpu >= nr_cpu_ids) | ||
| 254 | next_cpu = cpumask_first(cpu_online_mask); | ||
| 255 | watchdog_timer.expires += WATCHDOG_INTERVAL; | ||
| 256 | add_timer_on(&watchdog_timer, next_cpu); | ||
| 257 | out: | ||
| 232 | spin_unlock(&watchdog_lock); | 258 | spin_unlock(&watchdog_lock); |
| 233 | } | 259 | } |
| 260 | |||
| 261 | static inline void clocksource_start_watchdog(void) | ||
| 262 | { | ||
| 263 | if (watchdog_running || !watchdog || list_empty(&watchdog_list)) | ||
| 264 | return; | ||
| 265 | init_timer(&watchdog_timer); | ||
| 266 | watchdog_timer.function = clocksource_watchdog; | ||
| 267 | watchdog_last = watchdog->read(watchdog); | ||
| 268 | watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL; | ||
| 269 | add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask)); | ||
| 270 | watchdog_running = 1; | ||
| 271 | } | ||
| 272 | |||
| 273 | static inline void clocksource_stop_watchdog(void) | ||
| 274 | { | ||
| 275 | if (!watchdog_running || (watchdog && !list_empty(&watchdog_list))) | ||
| 276 | return; | ||
| 277 | del_timer(&watchdog_timer); | ||
| 278 | watchdog_running = 0; | ||
| 279 | } | ||
| 280 | |||
| 281 | static inline void clocksource_reset_watchdog(void) | ||
| 282 | { | ||
| 283 | struct clocksource *cs; | ||
| 284 | |||
| 285 | list_for_each_entry(cs, &watchdog_list, wd_list) | ||
| 286 | cs->flags &= ~CLOCK_SOURCE_WATCHDOG; | ||
| 287 | } | ||
| 288 | |||
| 234 | static void clocksource_resume_watchdog(void) | 289 | static void clocksource_resume_watchdog(void) |
| 235 | { | 290 | { |
| 236 | set_bit(0, &watchdog_resumed); | 291 | unsigned long flags; |
| 292 | |||
| 293 | spin_lock_irqsave(&watchdog_lock, flags); | ||
| 294 | clocksource_reset_watchdog(); | ||
| 295 | spin_unlock_irqrestore(&watchdog_lock, flags); | ||
| 237 | } | 296 | } |
| 238 | 297 | ||
| 239 | static void clocksource_check_watchdog(struct clocksource *cs) | 298 | static void clocksource_enqueue_watchdog(struct clocksource *cs) |
| 240 | { | 299 | { |
| 241 | struct clocksource *cse; | ||
| 242 | unsigned long flags; | 300 | unsigned long flags; |
| 243 | 301 | ||
| 244 | spin_lock_irqsave(&watchdog_lock, flags); | 302 | spin_lock_irqsave(&watchdog_lock, flags); |
| 245 | if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) { | 303 | if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) { |
| 246 | int started = !list_empty(&watchdog_list); | 304 | /* cs is a clocksource to be watched. */ |
| 247 | |||
| 248 | list_add(&cs->wd_list, &watchdog_list); | 305 | list_add(&cs->wd_list, &watchdog_list); |
| 249 | if (!started && watchdog) { | 306 | cs->flags &= ~CLOCK_SOURCE_WATCHDOG; |
| 250 | watchdog_last = watchdog->read(watchdog); | ||
| 251 | watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL; | ||
| 252 | add_timer_on(&watchdog_timer, | ||
| 253 | cpumask_first(cpu_online_mask)); | ||
| 254 | } | ||
| 255 | } else { | 307 | } else { |
| 308 | /* cs is a watchdog. */ | ||
| 256 | if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) | 309 | if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) |
| 257 | cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES; | 310 | cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES; |
| 258 | 311 | /* Pick the best watchdog. */ | |
| 259 | if (!watchdog || cs->rating > watchdog->rating) { | 312 | if (!watchdog || cs->rating > watchdog->rating) { |
| 260 | if (watchdog) | ||
| 261 | del_timer(&watchdog_timer); | ||
| 262 | watchdog = cs; | 313 | watchdog = cs; |
| 263 | init_timer(&watchdog_timer); | ||
| 264 | watchdog_timer.function = clocksource_watchdog; | ||
| 265 | |||
| 266 | /* Reset watchdog cycles */ | 314 | /* Reset watchdog cycles */ |
| 267 | list_for_each_entry(cse, &watchdog_list, wd_list) | 315 | clocksource_reset_watchdog(); |
| 268 | cse->flags &= ~CLOCK_SOURCE_WATCHDOG; | 316 | } |
| 269 | /* Start if list is not empty */ | 317 | } |
| 270 | if (!list_empty(&watchdog_list)) { | 318 | /* Check if the watchdog timer needs to be started. */ |
| 271 | watchdog_last = watchdog->read(watchdog); | 319 | clocksource_start_watchdog(); |
| 272 | watchdog_timer.expires = | 320 | spin_unlock_irqrestore(&watchdog_lock, flags); |
| 273 | jiffies + WATCHDOG_INTERVAL; | 321 | } |
| 274 | add_timer_on(&watchdog_timer, | 322 | |
| 275 | cpumask_first(cpu_online_mask)); | 323 | static void clocksource_dequeue_watchdog(struct clocksource *cs) |
| 276 | } | 324 | { |
| 325 | struct clocksource *tmp; | ||
| 326 | unsigned long flags; | ||
| 327 | |||
| 328 | spin_lock_irqsave(&watchdog_lock, flags); | ||
| 329 | if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) { | ||
| 330 | /* cs is a watched clocksource. */ | ||
| 331 | list_del_init(&cs->wd_list); | ||
| 332 | } else if (cs == watchdog) { | ||
| 333 | /* Reset watchdog cycles */ | ||
| 334 | clocksource_reset_watchdog(); | ||
| 335 | /* Current watchdog is removed. Find an alternative. */ | ||
| 336 | watchdog = NULL; | ||
| 337 | list_for_each_entry(tmp, &clocksource_list, list) { | ||
| 338 | if (tmp == cs || tmp->flags & CLOCK_SOURCE_MUST_VERIFY) | ||
| 339 | continue; | ||
| 340 | if (!watchdog || tmp->rating > watchdog->rating) | ||
| 341 | watchdog = tmp; | ||
| 277 | } | 342 | } |
| 278 | } | 343 | } |
| 344 | cs->flags &= ~CLOCK_SOURCE_WATCHDOG; | ||
| 345 | /* Check if the watchdog timer needs to be stopped. */ | ||
| 346 | clocksource_stop_watchdog(); | ||
| 279 | spin_unlock_irqrestore(&watchdog_lock, flags); | 347 | spin_unlock_irqrestore(&watchdog_lock, flags); |
| 280 | } | 348 | } |
| 281 | #else | 349 | |
| 282 | static void clocksource_check_watchdog(struct clocksource *cs) | 350 | static int clocksource_watchdog_kthread(void *data) |
| 351 | { | ||
| 352 | struct clocksource *cs, *tmp; | ||
| 353 | unsigned long flags; | ||
| 354 | LIST_HEAD(unstable); | ||
| 355 | |||
| 356 | mutex_lock(&clocksource_mutex); | ||
| 357 | spin_lock_irqsave(&watchdog_lock, flags); | ||
| 358 | list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list) | ||
| 359 | if (cs->flags & CLOCK_SOURCE_UNSTABLE) { | ||
| 360 | list_del_init(&cs->wd_list); | ||
| 361 | list_add(&cs->wd_list, &unstable); | ||
| 362 | } | ||
| 363 | /* Check if the watchdog timer needs to be stopped. */ | ||
| 364 | clocksource_stop_watchdog(); | ||
| 365 | spin_unlock_irqrestore(&watchdog_lock, flags); | ||
| 366 | |||
| 367 | /* Needs to be done outside of watchdog lock */ | ||
| 368 | list_for_each_entry_safe(cs, tmp, &unstable, wd_list) { | ||
| 369 | list_del_init(&cs->wd_list); | ||
| 370 | __clocksource_change_rating(cs, 0); | ||
| 371 | } | ||
| 372 | mutex_unlock(&clocksource_mutex); | ||
| 373 | return 0; | ||
| 374 | } | ||
| 375 | |||
| 376 | #else /* CONFIG_CLOCKSOURCE_WATCHDOG */ | ||
| 377 | |||
| 378 | static void clocksource_enqueue_watchdog(struct clocksource *cs) | ||
| 283 | { | 379 | { |
| 284 | if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) | 380 | if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) |
| 285 | cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES; | 381 | cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES; |
| 286 | } | 382 | } |
| 287 | 383 | ||
| 384 | static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { } | ||
| 288 | static inline void clocksource_resume_watchdog(void) { } | 385 | static inline void clocksource_resume_watchdog(void) { } |
| 289 | #endif | 386 | static inline int clocksource_watchdog_kthread(void *data) { return 0; } |
| 387 | |||
| 388 | #endif /* CONFIG_CLOCKSOURCE_WATCHDOG */ | ||
| 290 | 389 | ||
| 291 | /** | 390 | /** |
| 292 | * clocksource_resume - resume the clocksource(s) | 391 | * clocksource_resume - resume the clocksource(s) |
| @@ -294,18 +393,16 @@ static inline void clocksource_resume_watchdog(void) { } | |||
| 294 | void clocksource_resume(void) | 393 | void clocksource_resume(void) |
| 295 | { | 394 | { |
| 296 | struct clocksource *cs; | 395 | struct clocksource *cs; |
| 297 | unsigned long flags; | ||
| 298 | 396 | ||
| 299 | spin_lock_irqsave(&clocksource_lock, flags); | 397 | mutex_lock(&clocksource_mutex); |
| 300 | 398 | ||
| 301 | list_for_each_entry(cs, &clocksource_list, list) { | 399 | list_for_each_entry(cs, &clocksource_list, list) |
| 302 | if (cs->resume) | 400 | if (cs->resume) |
| 303 | cs->resume(); | 401 | cs->resume(); |
| 304 | } | ||
| 305 | 402 | ||
| 306 | clocksource_resume_watchdog(); | 403 | clocksource_resume_watchdog(); |
| 307 | 404 | ||
| 308 | spin_unlock_irqrestore(&clocksource_lock, flags); | 405 | mutex_unlock(&clocksource_mutex); |
| 309 | } | 406 | } |
| 310 | 407 | ||
| 311 | /** | 408 | /** |
| @@ -320,75 +417,94 @@ void clocksource_touch_watchdog(void) | |||
| 320 | clocksource_resume_watchdog(); | 417 | clocksource_resume_watchdog(); |
| 321 | } | 418 | } |
| 322 | 419 | ||
| 420 | #ifdef CONFIG_GENERIC_TIME | ||
| 421 | |||
| 323 | /** | 422 | /** |
| 324 | * clocksource_get_next - Returns the selected clocksource | 423 | * clocksource_select - Select the best clocksource available |
| 424 | * | ||
| 425 | * Private function. Must hold clocksource_mutex when called. | ||
| 325 | * | 426 | * |
| 427 | * Select the clocksource with the best rating, or the clocksource, | ||
| 428 | * which is selected by userspace override. | ||
| 326 | */ | 429 | */ |
| 327 | struct clocksource *clocksource_get_next(void) | 430 | static void clocksource_select(void) |
| 328 | { | 431 | { |
| 329 | unsigned long flags; | 432 | struct clocksource *best, *cs; |
| 330 | 433 | ||
| 331 | spin_lock_irqsave(&clocksource_lock, flags); | 434 | if (!finished_booting || list_empty(&clocksource_list)) |
| 332 | if (next_clocksource && finished_booting) { | 435 | return; |
| 333 | curr_clocksource = next_clocksource; | 436 | /* First clocksource on the list has the best rating. */ |
| 334 | next_clocksource = NULL; | 437 | best = list_first_entry(&clocksource_list, struct clocksource, list); |
| 438 | /* Check for the override clocksource. */ | ||
| 439 | list_for_each_entry(cs, &clocksource_list, list) { | ||
| 440 | if (strcmp(cs->name, override_name) != 0) | ||
| 441 | continue; | ||
| 442 | /* | ||
| 443 | * Check to make sure we don't switch to a non-highres | ||
| 444 | * capable clocksource if the tick code is in oneshot | ||
| 445 | * mode (highres or nohz) | ||
| 446 | */ | ||
| 447 | if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && | ||
| 448 | tick_oneshot_mode_active()) { | ||
| 449 | /* Override clocksource cannot be used. */ | ||
| 450 | printk(KERN_WARNING "Override clocksource %s is not " | ||
| 451 | "HRT compatible. Cannot switch while in " | ||
| 452 | "HRT/NOHZ mode\n", cs->name); | ||
| 453 | override_name[0] = 0; | ||
| 454 | } else | ||
| 455 | /* Override clocksource can be used. */ | ||
| 456 | best = cs; | ||
| 457 | break; | ||
| 458 | } | ||
| 459 | if (curr_clocksource != best) { | ||
| 460 | printk(KERN_INFO "Switching to clocksource %s\n", best->name); | ||
| 461 | curr_clocksource = best; | ||
| 462 | timekeeping_notify(curr_clocksource); | ||
| 335 | } | 463 | } |
| 336 | spin_unlock_irqrestore(&clocksource_lock, flags); | ||
| 337 | |||
| 338 | return curr_clocksource; | ||
| 339 | } | 464 | } |
| 340 | 465 | ||
| 341 | /** | 466 | #else /* CONFIG_GENERIC_TIME */ |
| 342 | * select_clocksource - Selects the best registered clocksource. | 467 | |
| 343 | * | 468 | static inline void clocksource_select(void) { } |
| 344 | * Private function. Must hold clocksource_lock when called. | 469 | |
| 470 | #endif | ||
| 471 | |||
| 472 | /* | ||
| 473 | * clocksource_done_booting - Called near the end of core bootup | ||
| 345 | * | 474 | * |
| 346 | * Select the clocksource with the best rating, or the clocksource, | 475 | * Hack to avoid lots of clocksource churn at boot time. |
| 347 | * which is selected by userspace override. | 476 | * We use fs_initcall because we want this to start before |
| 477 | * device_initcall but after subsys_initcall. | ||
| 348 | */ | 478 | */ |
| 349 | static struct clocksource *select_clocksource(void) | 479 | static int __init clocksource_done_booting(void) |
| 350 | { | 480 | { |
| 351 | struct clocksource *next; | 481 | finished_booting = 1; |
| 352 | |||
| 353 | if (list_empty(&clocksource_list)) | ||
| 354 | return NULL; | ||
| 355 | |||
| 356 | if (clocksource_override) | ||
| 357 | next = clocksource_override; | ||
| 358 | else | ||
| 359 | next = list_entry(clocksource_list.next, struct clocksource, | ||
| 360 | list); | ||
| 361 | 482 | ||
| 362 | if (next == curr_clocksource) | 483 | /* |
| 363 | return NULL; | 484 | * Run the watchdog first to eliminate unstable clock sources |
| 485 | */ | ||
| 486 | clocksource_watchdog_kthread(NULL); | ||
| 364 | 487 | ||
| 365 | return next; | 488 | mutex_lock(&clocksource_mutex); |
| 489 | clocksource_select(); | ||
| 490 | mutex_unlock(&clocksource_mutex); | ||
| 491 | return 0; | ||
| 366 | } | 492 | } |
| 493 | fs_initcall(clocksource_done_booting); | ||
| 367 | 494 | ||
| 368 | /* | 495 | /* |
| 369 | * Enqueue the clocksource sorted by rating | 496 | * Enqueue the clocksource sorted by rating |
| 370 | */ | 497 | */ |
| 371 | static int clocksource_enqueue(struct clocksource *c) | 498 | static void clocksource_enqueue(struct clocksource *cs) |
| 372 | { | 499 | { |
| 373 | struct list_head *tmp, *entry = &clocksource_list; | 500 | struct list_head *entry = &clocksource_list; |
| 501 | struct clocksource *tmp; | ||
| 374 | 502 | ||
| 375 | list_for_each(tmp, &clocksource_list) { | 503 | list_for_each_entry(tmp, &clocksource_list, list) |
| 376 | struct clocksource *cs; | ||
| 377 | |||
| 378 | cs = list_entry(tmp, struct clocksource, list); | ||
| 379 | if (cs == c) | ||
| 380 | return -EBUSY; | ||
| 381 | /* Keep track of the place, where to insert */ | 504 | /* Keep track of the place, where to insert */ |
| 382 | if (cs->rating >= c->rating) | 505 | if (tmp->rating >= cs->rating) |
| 383 | entry = tmp; | 506 | entry = &tmp->list; |
| 384 | } | 507 | list_add(&cs->list, entry); |
| 385 | list_add(&c->list, entry); | ||
| 386 | |||
| 387 | if (strlen(c->name) == strlen(override_name) && | ||
| 388 | !strcmp(c->name, override_name)) | ||
| 389 | clocksource_override = c; | ||
| 390 | |||
| 391 | return 0; | ||
| 392 | } | 508 | } |
| 393 | 509 | ||
| 394 | /** | 510 | /** |
| @@ -397,52 +513,48 @@ static int clocksource_enqueue(struct clocksource *c) | |||
| 397 | * | 513 | * |
| 398 | * Returns -EBUSY if registration fails, zero otherwise. | 514 | * Returns -EBUSY if registration fails, zero otherwise. |
| 399 | */ | 515 | */ |
| 400 | int clocksource_register(struct clocksource *c) | 516 | int clocksource_register(struct clocksource *cs) |
| 401 | { | 517 | { |
| 402 | unsigned long flags; | 518 | mutex_lock(&clocksource_mutex); |
| 403 | int ret; | 519 | clocksource_enqueue(cs); |
| 404 | 520 | clocksource_select(); | |
| 405 | spin_lock_irqsave(&clocksource_lock, flags); | 521 | clocksource_enqueue_watchdog(cs); |
| 406 | ret = clocksource_enqueue(c); | 522 | mutex_unlock(&clocksource_mutex); |
| 407 | if (!ret) | 523 | return 0; |
| 408 | next_clocksource = select_clocksource(); | ||
| 409 | spin_unlock_irqrestore(&clocksource_lock, flags); | ||
| 410 | if (!ret) | ||
| 411 | clocksource_check_watchdog(c); | ||
| 412 | return ret; | ||
| 413 | } | 524 | } |
| 414 | EXPORT_SYMBOL(clocksource_register); | 525 | EXPORT_SYMBOL(clocksource_register); |
| 415 | 526 | ||
| 527 | static void __clocksource_change_rating(struct clocksource *cs, int rating) | ||
| 528 | { | ||
| 529 | list_del(&cs->list); | ||
| 530 | cs->rating = rating; | ||
| 531 | clocksource_enqueue(cs); | ||
| 532 | clocksource_select(); | ||
| 533 | } | ||
| 534 | |||
| 416 | /** | 535 | /** |
| 417 | * clocksource_change_rating - Change the rating of a registered clocksource | 536 | * clocksource_change_rating - Change the rating of a registered clocksource |
| 418 | * | ||
| 419 | */ | 537 | */ |
| 420 | void clocksource_change_rating(struct clocksource *cs, int rating) | 538 | void clocksource_change_rating(struct clocksource *cs, int rating) |
| 421 | { | 539 | { |
| 422 | unsigned long flags; | 540 | mutex_lock(&clocksource_mutex); |
| 423 | 541 | __clocksource_change_rating(cs, rating); | |
| 424 | spin_lock_irqsave(&clocksource_lock, flags); | 542 | mutex_unlock(&clocksource_mutex); |
| 425 | list_del(&cs->list); | ||
| 426 | cs->rating = rating; | ||
| 427 | clocksource_enqueue(cs); | ||
| 428 | next_clocksource = select_clocksource(); | ||
| 429 | spin_unlock_irqrestore(&clocksource_lock, flags); | ||
| 430 | } | 543 | } |
| 544 | EXPORT_SYMBOL(clocksource_change_rating); | ||
| 431 | 545 | ||
| 432 | /** | 546 | /** |
| 433 | * clocksource_unregister - remove a registered clocksource | 547 | * clocksource_unregister - remove a registered clocksource |
| 434 | */ | 548 | */ |
| 435 | void clocksource_unregister(struct clocksource *cs) | 549 | void clocksource_unregister(struct clocksource *cs) |
| 436 | { | 550 | { |
| 437 | unsigned long flags; | 551 | mutex_lock(&clocksource_mutex); |
| 438 | 552 | clocksource_dequeue_watchdog(cs); | |
| 439 | spin_lock_irqsave(&clocksource_lock, flags); | ||
| 440 | list_del(&cs->list); | 553 | list_del(&cs->list); |
| 441 | if (clocksource_override == cs) | 554 | clocksource_select(); |
| 442 | clocksource_override = NULL; | 555 | mutex_unlock(&clocksource_mutex); |
| 443 | next_clocksource = select_clocksource(); | ||
| 444 | spin_unlock_irqrestore(&clocksource_lock, flags); | ||
| 445 | } | 556 | } |
| 557 | EXPORT_SYMBOL(clocksource_unregister); | ||
| 446 | 558 | ||
| 447 | #ifdef CONFIG_SYSFS | 559 | #ifdef CONFIG_SYSFS |
| 448 | /** | 560 | /** |
| @@ -458,9 +570,9 @@ sysfs_show_current_clocksources(struct sys_device *dev, | |||
| 458 | { | 570 | { |
| 459 | ssize_t count = 0; | 571 | ssize_t count = 0; |
| 460 | 572 | ||
| 461 | spin_lock_irq(&clocksource_lock); | 573 | mutex_lock(&clocksource_mutex); |
| 462 | count = snprintf(buf, PAGE_SIZE, "%s\n", curr_clocksource->name); | 574 | count = snprintf(buf, PAGE_SIZE, "%s\n", curr_clocksource->name); |
| 463 | spin_unlock_irq(&clocksource_lock); | 575 | mutex_unlock(&clocksource_mutex); |
| 464 | 576 | ||
| 465 | return count; | 577 | return count; |
| 466 | } | 578 | } |
| @@ -478,9 +590,7 @@ static ssize_t sysfs_override_clocksource(struct sys_device *dev, | |||
| 478 | struct sysdev_attribute *attr, | 590 | struct sysdev_attribute *attr, |
| 479 | const char *buf, size_t count) | 591 | const char *buf, size_t count) |
| 480 | { | 592 | { |
| 481 | struct clocksource *ovr = NULL; | ||
| 482 | size_t ret = count; | 593 | size_t ret = count; |
| 483 | int len; | ||
| 484 | 594 | ||
| 485 | /* strings from sysfs write are not 0 terminated! */ | 595 | /* strings from sysfs write are not 0 terminated! */ |
| 486 | if (count >= sizeof(override_name)) | 596 | if (count >= sizeof(override_name)) |
| @@ -490,44 +600,14 @@ static ssize_t sysfs_override_clocksource(struct sys_device *dev, | |||
| 490 | if (buf[count-1] == '\n') | 600 | if (buf[count-1] == '\n') |
| 491 | count--; | 601 | count--; |
| 492 | 602 | ||
| 493 | spin_lock_irq(&clocksource_lock); | 603 | mutex_lock(&clocksource_mutex); |
| 494 | 604 | ||
| 495 | if (count > 0) | 605 | if (count > 0) |
| 496 | memcpy(override_name, buf, count); | 606 | memcpy(override_name, buf, count); |
| 497 | override_name[count] = 0; | 607 | override_name[count] = 0; |
| 608 | clocksource_select(); | ||
| 498 | 609 | ||
| 499 | len = strlen(override_name); | 610 | mutex_unlock(&clocksource_mutex); |
| 500 | if (len) { | ||
| 501 | struct clocksource *cs; | ||
| 502 | |||
| 503 | ovr = clocksource_override; | ||
| 504 | /* try to select it: */ | ||
| 505 | list_for_each_entry(cs, &clocksource_list, list) { | ||
| 506 | if (strlen(cs->name) == len && | ||
| 507 | !strcmp(cs->name, override_name)) | ||
| 508 | ovr = cs; | ||
| 509 | } | ||
| 510 | } | ||
| 511 | |||
| 512 | /* | ||
| 513 | * Check to make sure we don't switch to a non-highres capable | ||
| 514 | * clocksource if the tick code is in oneshot mode (highres or nohz) | ||
| 515 | */ | ||
| 516 | if (tick_oneshot_mode_active() && | ||
| 517 | !(ovr->flags & CLOCK_SOURCE_VALID_FOR_HRES)) { | ||
| 518 | printk(KERN_WARNING "%s clocksource is not HRT compatible. " | ||
| 519 | "Cannot switch while in HRT/NOHZ mode\n", ovr->name); | ||
| 520 | ovr = NULL; | ||
| 521 | override_name[0] = 0; | ||
| 522 | } | ||
| 523 | |||
| 524 | /* Reselect, when the override name has changed */ | ||
| 525 | if (ovr != clocksource_override) { | ||
| 526 | clocksource_override = ovr; | ||
| 527 | next_clocksource = select_clocksource(); | ||
| 528 | } | ||
| 529 | |||
| 530 | spin_unlock_irq(&clocksource_lock); | ||
| 531 | 611 | ||
| 532 | return ret; | 612 | return ret; |
| 533 | } | 613 | } |
| @@ -547,7 +627,7 @@ sysfs_show_available_clocksources(struct sys_device *dev, | |||
| 547 | struct clocksource *src; | 627 | struct clocksource *src; |
| 548 | ssize_t count = 0; | 628 | ssize_t count = 0; |
| 549 | 629 | ||
| 550 | spin_lock_irq(&clocksource_lock); | 630 | mutex_lock(&clocksource_mutex); |
| 551 | list_for_each_entry(src, &clocksource_list, list) { | 631 | list_for_each_entry(src, &clocksource_list, list) { |
| 552 | /* | 632 | /* |
| 553 | * Don't show non-HRES clocksource if the tick code is | 633 | * Don't show non-HRES clocksource if the tick code is |
| @@ -559,7 +639,7 @@ sysfs_show_available_clocksources(struct sys_device *dev, | |||
| 559 | max((ssize_t)PAGE_SIZE - count, (ssize_t)0), | 639 | max((ssize_t)PAGE_SIZE - count, (ssize_t)0), |
| 560 | "%s ", src->name); | 640 | "%s ", src->name); |
| 561 | } | 641 | } |
| 562 | spin_unlock_irq(&clocksource_lock); | 642 | mutex_unlock(&clocksource_mutex); |
| 563 | 643 | ||
| 564 | count += snprintf(buf + count, | 644 | count += snprintf(buf + count, |
| 565 | max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n"); | 645 | max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n"); |
| @@ -614,11 +694,10 @@ device_initcall(init_clocksource_sysfs); | |||
| 614 | */ | 694 | */ |
| 615 | static int __init boot_override_clocksource(char* str) | 695 | static int __init boot_override_clocksource(char* str) |
| 616 | { | 696 | { |
| 617 | unsigned long flags; | 697 | mutex_lock(&clocksource_mutex); |
| 618 | spin_lock_irqsave(&clocksource_lock, flags); | ||
| 619 | if (str) | 698 | if (str) |
| 620 | strlcpy(override_name, str, sizeof(override_name)); | 699 | strlcpy(override_name, str, sizeof(override_name)); |
| 621 | spin_unlock_irqrestore(&clocksource_lock, flags); | 700 | mutex_unlock(&clocksource_mutex); |
| 622 | return 1; | 701 | return 1; |
| 623 | } | 702 | } |
| 624 | 703 | ||
diff --git a/kernel/time/jiffies.c b/kernel/time/jiffies.c index c3f6c30816e3..5404a8456909 100644 --- a/kernel/time/jiffies.c +++ b/kernel/time/jiffies.c | |||
| @@ -61,7 +61,6 @@ struct clocksource clocksource_jiffies = { | |||
| 61 | .read = jiffies_read, | 61 | .read = jiffies_read, |
| 62 | .mask = 0xffffffff, /*32bits*/ | 62 | .mask = 0xffffffff, /*32bits*/ |
| 63 | .mult = NSEC_PER_JIFFY << JIFFIES_SHIFT, /* details above */ | 63 | .mult = NSEC_PER_JIFFY << JIFFIES_SHIFT, /* details above */ |
| 64 | .mult_orig = NSEC_PER_JIFFY << JIFFIES_SHIFT, | ||
| 65 | .shift = JIFFIES_SHIFT, | 64 | .shift = JIFFIES_SHIFT, |
| 66 | }; | 65 | }; |
| 67 | 66 | ||
| @@ -71,3 +70,8 @@ static int __init init_jiffies_clocksource(void) | |||
| 71 | } | 70 | } |
| 72 | 71 | ||
| 73 | core_initcall(init_jiffies_clocksource); | 72 | core_initcall(init_jiffies_clocksource); |
| 73 | |||
| 74 | struct clocksource * __init __weak clocksource_default_clock(void) | ||
| 75 | { | ||
| 76 | return &clocksource_jiffies; | ||
| 77 | } | ||
diff --git a/kernel/time/ntp.c b/kernel/time/ntp.c index 7fc64375ff43..4800f933910e 100644 --- a/kernel/time/ntp.c +++ b/kernel/time/ntp.c | |||
| @@ -194,8 +194,7 @@ static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer) | |||
| 194 | case TIME_OK: | 194 | case TIME_OK: |
| 195 | break; | 195 | break; |
| 196 | case TIME_INS: | 196 | case TIME_INS: |
| 197 | xtime.tv_sec--; | 197 | timekeeping_leap_insert(-1); |
| 198 | wall_to_monotonic.tv_sec++; | ||
| 199 | time_state = TIME_OOP; | 198 | time_state = TIME_OOP; |
| 200 | printk(KERN_NOTICE | 199 | printk(KERN_NOTICE |
| 201 | "Clock: inserting leap second 23:59:60 UTC\n"); | 200 | "Clock: inserting leap second 23:59:60 UTC\n"); |
| @@ -203,9 +202,8 @@ static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer) | |||
| 203 | res = HRTIMER_RESTART; | 202 | res = HRTIMER_RESTART; |
| 204 | break; | 203 | break; |
| 205 | case TIME_DEL: | 204 | case TIME_DEL: |
| 206 | xtime.tv_sec++; | 205 | timekeeping_leap_insert(1); |
| 207 | time_tai--; | 206 | time_tai--; |
| 208 | wall_to_monotonic.tv_sec--; | ||
| 209 | time_state = TIME_WAIT; | 207 | time_state = TIME_WAIT; |
| 210 | printk(KERN_NOTICE | 208 | printk(KERN_NOTICE |
| 211 | "Clock: deleting leap second 23:59:59 UTC\n"); | 209 | "Clock: deleting leap second 23:59:59 UTC\n"); |
| @@ -219,7 +217,6 @@ static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer) | |||
| 219 | time_state = TIME_OK; | 217 | time_state = TIME_OK; |
| 220 | break; | 218 | break; |
| 221 | } | 219 | } |
| 222 | update_vsyscall(&xtime, clock); | ||
| 223 | 220 | ||
| 224 | write_sequnlock(&xtime_lock); | 221 | write_sequnlock(&xtime_lock); |
| 225 | 222 | ||
diff --git a/kernel/time/tick-broadcast.c b/kernel/time/tick-broadcast.c index 877dbedc3118..c2ec25087a35 100644 --- a/kernel/time/tick-broadcast.c +++ b/kernel/time/tick-broadcast.c | |||
| @@ -205,11 +205,11 @@ static void tick_handle_periodic_broadcast(struct clock_event_device *dev) | |||
| 205 | * Powerstate information: The system enters/leaves a state, where | 205 | * Powerstate information: The system enters/leaves a state, where |
| 206 | * affected devices might stop | 206 | * affected devices might stop |
| 207 | */ | 207 | */ |
| 208 | static void tick_do_broadcast_on_off(void *why) | 208 | static void tick_do_broadcast_on_off(unsigned long *reason) |
| 209 | { | 209 | { |
| 210 | struct clock_event_device *bc, *dev; | 210 | struct clock_event_device *bc, *dev; |
| 211 | struct tick_device *td; | 211 | struct tick_device *td; |
| 212 | unsigned long flags, *reason = why; | 212 | unsigned long flags; |
| 213 | int cpu, bc_stopped; | 213 | int cpu, bc_stopped; |
| 214 | 214 | ||
| 215 | spin_lock_irqsave(&tick_broadcast_lock, flags); | 215 | spin_lock_irqsave(&tick_broadcast_lock, flags); |
| @@ -276,8 +276,7 @@ void tick_broadcast_on_off(unsigned long reason, int *oncpu) | |||
| 276 | printk(KERN_ERR "tick-broadcast: ignoring broadcast for " | 276 | printk(KERN_ERR "tick-broadcast: ignoring broadcast for " |
| 277 | "offline CPU #%d\n", *oncpu); | 277 | "offline CPU #%d\n", *oncpu); |
| 278 | else | 278 | else |
| 279 | smp_call_function_single(*oncpu, tick_do_broadcast_on_off, | 279 | tick_do_broadcast_on_off(&reason); |
| 280 | &reason, 1); | ||
| 281 | } | 280 | } |
| 282 | 281 | ||
| 283 | /* | 282 | /* |
diff --git a/kernel/time/timekeeping.c b/kernel/time/timekeeping.c index e8c77d9c633a..fb0f46fa1ecd 100644 --- a/kernel/time/timekeeping.c +++ b/kernel/time/timekeeping.c | |||
| @@ -18,7 +18,117 @@ | |||
| 18 | #include <linux/jiffies.h> | 18 | #include <linux/jiffies.h> |
| 19 | #include <linux/time.h> | 19 | #include <linux/time.h> |
| 20 | #include <linux/tick.h> | 20 | #include <linux/tick.h> |
| 21 | #include <linux/stop_machine.h> | ||
| 22 | |||
| 23 | /* Structure holding internal timekeeping values. */ | ||
| 24 | struct timekeeper { | ||
| 25 | /* Current clocksource used for timekeeping. */ | ||
| 26 | struct clocksource *clock; | ||
| 27 | /* The shift value of the current clocksource. */ | ||
| 28 | int shift; | ||
| 29 | |||
| 30 | /* Number of clock cycles in one NTP interval. */ | ||
| 31 | cycle_t cycle_interval; | ||
| 32 | /* Number of clock shifted nano seconds in one NTP interval. */ | ||
| 33 | u64 xtime_interval; | ||
| 34 | /* Raw nano seconds accumulated per NTP interval. */ | ||
| 35 | u32 raw_interval; | ||
| 36 | |||
| 37 | /* Clock shifted nano seconds remainder not stored in xtime.tv_nsec. */ | ||
| 38 | u64 xtime_nsec; | ||
| 39 | /* Difference between accumulated time and NTP time in ntp | ||
| 40 | * shifted nano seconds. */ | ||
| 41 | s64 ntp_error; | ||
| 42 | /* Shift conversion between clock shifted nano seconds and | ||
| 43 | * ntp shifted nano seconds. */ | ||
| 44 | int ntp_error_shift; | ||
| 45 | /* NTP adjusted clock multiplier */ | ||
| 46 | u32 mult; | ||
| 47 | }; | ||
| 48 | |||
| 49 | struct timekeeper timekeeper; | ||
| 50 | |||
| 51 | /** | ||
| 52 | * timekeeper_setup_internals - Set up internals to use clocksource clock. | ||
| 53 | * | ||
| 54 | * @clock: Pointer to clocksource. | ||
| 55 | * | ||
| 56 | * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment | ||
| 57 | * pair and interval request. | ||
| 58 | * | ||
| 59 | * Unless you're the timekeeping code, you should not be using this! | ||
| 60 | */ | ||
| 61 | static void timekeeper_setup_internals(struct clocksource *clock) | ||
| 62 | { | ||
| 63 | cycle_t interval; | ||
| 64 | u64 tmp; | ||
| 65 | |||
| 66 | timekeeper.clock = clock; | ||
| 67 | clock->cycle_last = clock->read(clock); | ||
| 21 | 68 | ||
| 69 | /* Do the ns -> cycle conversion first, using original mult */ | ||
| 70 | tmp = NTP_INTERVAL_LENGTH; | ||
| 71 | tmp <<= clock->shift; | ||
| 72 | tmp += clock->mult/2; | ||
| 73 | do_div(tmp, clock->mult); | ||
| 74 | if (tmp == 0) | ||
| 75 | tmp = 1; | ||
| 76 | |||
| 77 | interval = (cycle_t) tmp; | ||
| 78 | timekeeper.cycle_interval = interval; | ||
| 79 | |||
| 80 | /* Go back from cycles -> shifted ns */ | ||
| 81 | timekeeper.xtime_interval = (u64) interval * clock->mult; | ||
| 82 | timekeeper.raw_interval = | ||
| 83 | ((u64) interval * clock->mult) >> clock->shift; | ||
| 84 | |||
| 85 | timekeeper.xtime_nsec = 0; | ||
| 86 | timekeeper.shift = clock->shift; | ||
| 87 | |||
| 88 | timekeeper.ntp_error = 0; | ||
| 89 | timekeeper.ntp_error_shift = NTP_SCALE_SHIFT - clock->shift; | ||
| 90 | |||
| 91 | /* | ||
| 92 | * The timekeeper keeps its own mult values for the currently | ||
| 93 | * active clocksource. These value will be adjusted via NTP | ||
| 94 | * to counteract clock drifting. | ||
| 95 | */ | ||
| 96 | timekeeper.mult = clock->mult; | ||
| 97 | } | ||
| 98 | |||
| 99 | /* Timekeeper helper functions. */ | ||
| 100 | static inline s64 timekeeping_get_ns(void) | ||
| 101 | { | ||
| 102 | cycle_t cycle_now, cycle_delta; | ||
| 103 | struct clocksource *clock; | ||
| 104 | |||
| 105 | /* read clocksource: */ | ||
| 106 | clock = timekeeper.clock; | ||
| 107 | cycle_now = clock->read(clock); | ||
| 108 | |||
| 109 | /* calculate the delta since the last update_wall_time: */ | ||
| 110 | cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; | ||
| 111 | |||
| 112 | /* return delta convert to nanoseconds using ntp adjusted mult. */ | ||
| 113 | return clocksource_cyc2ns(cycle_delta, timekeeper.mult, | ||
| 114 | timekeeper.shift); | ||
| 115 | } | ||
| 116 | |||
| 117 | static inline s64 timekeeping_get_ns_raw(void) | ||
| 118 | { | ||
| 119 | cycle_t cycle_now, cycle_delta; | ||
| 120 | struct clocksource *clock; | ||
| 121 | |||
| 122 | /* read clocksource: */ | ||
| 123 | clock = timekeeper.clock; | ||
| 124 | cycle_now = clock->read(clock); | ||
| 125 | |||
| 126 | /* calculate the delta since the last update_wall_time: */ | ||
| 127 | cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; | ||
| 128 | |||
| 129 | /* return delta convert to nanoseconds using ntp adjusted mult. */ | ||
| 130 | return clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift); | ||
| 131 | } | ||
| 22 | 132 | ||
| 23 | /* | 133 | /* |
| 24 | * This read-write spinlock protects us from races in SMP while | 134 | * This read-write spinlock protects us from races in SMP while |
| @@ -44,7 +154,12 @@ __cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock); | |||
| 44 | */ | 154 | */ |
| 45 | struct timespec xtime __attribute__ ((aligned (16))); | 155 | struct timespec xtime __attribute__ ((aligned (16))); |
| 46 | struct timespec wall_to_monotonic __attribute__ ((aligned (16))); | 156 | struct timespec wall_to_monotonic __attribute__ ((aligned (16))); |
| 47 | static unsigned long total_sleep_time; /* seconds */ | 157 | static struct timespec total_sleep_time; |
| 158 | |||
| 159 | /* | ||
| 160 | * The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock. | ||
| 161 | */ | ||
| 162 | struct timespec raw_time; | ||
| 48 | 163 | ||
| 49 | /* flag for if timekeeping is suspended */ | 164 | /* flag for if timekeeping is suspended */ |
| 50 | int __read_mostly timekeeping_suspended; | 165 | int __read_mostly timekeeping_suspended; |
| @@ -56,35 +171,44 @@ void update_xtime_cache(u64 nsec) | |||
| 56 | timespec_add_ns(&xtime_cache, nsec); | 171 | timespec_add_ns(&xtime_cache, nsec); |
| 57 | } | 172 | } |
| 58 | 173 | ||
| 59 | struct clocksource *clock; | 174 | /* must hold xtime_lock */ |
| 60 | 175 | void timekeeping_leap_insert(int leapsecond) | |
| 176 | { | ||
| 177 | xtime.tv_sec += leapsecond; | ||
| 178 | wall_to_monotonic.tv_sec -= leapsecond; | ||
| 179 | update_vsyscall(&xtime, timekeeper.clock); | ||
| 180 | } | ||
| 61 | 181 | ||
| 62 | #ifdef CONFIG_GENERIC_TIME | 182 | #ifdef CONFIG_GENERIC_TIME |
| 183 | |||
| 63 | /** | 184 | /** |
| 64 | * clocksource_forward_now - update clock to the current time | 185 | * timekeeping_forward_now - update clock to the current time |
| 65 | * | 186 | * |
| 66 | * Forward the current clock to update its state since the last call to | 187 | * Forward the current clock to update its state since the last call to |
| 67 | * update_wall_time(). This is useful before significant clock changes, | 188 | * update_wall_time(). This is useful before significant clock changes, |
| 68 | * as it avoids having to deal with this time offset explicitly. | 189 | * as it avoids having to deal with this time offset explicitly. |
| 69 | */ | 190 | */ |
| 70 | static void clocksource_forward_now(void) | 191 | static void timekeeping_forward_now(void) |
| 71 | { | 192 | { |
| 72 | cycle_t cycle_now, cycle_delta; | 193 | cycle_t cycle_now, cycle_delta; |
| 194 | struct clocksource *clock; | ||
| 73 | s64 nsec; | 195 | s64 nsec; |
| 74 | 196 | ||
| 75 | cycle_now = clocksource_read(clock); | 197 | clock = timekeeper.clock; |
| 198 | cycle_now = clock->read(clock); | ||
| 76 | cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; | 199 | cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; |
| 77 | clock->cycle_last = cycle_now; | 200 | clock->cycle_last = cycle_now; |
| 78 | 201 | ||
| 79 | nsec = cyc2ns(clock, cycle_delta); | 202 | nsec = clocksource_cyc2ns(cycle_delta, timekeeper.mult, |
| 203 | timekeeper.shift); | ||
| 80 | 204 | ||
| 81 | /* If arch requires, add in gettimeoffset() */ | 205 | /* If arch requires, add in gettimeoffset() */ |
| 82 | nsec += arch_gettimeoffset(); | 206 | nsec += arch_gettimeoffset(); |
| 83 | 207 | ||
| 84 | timespec_add_ns(&xtime, nsec); | 208 | timespec_add_ns(&xtime, nsec); |
| 85 | 209 | ||
| 86 | nsec = ((s64)cycle_delta * clock->mult_orig) >> clock->shift; | 210 | nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift); |
| 87 | clock->raw_time.tv_nsec += nsec; | 211 | timespec_add_ns(&raw_time, nsec); |
| 88 | } | 212 | } |
| 89 | 213 | ||
| 90 | /** | 214 | /** |
| @@ -95,7 +219,6 @@ static void clocksource_forward_now(void) | |||
| 95 | */ | 219 | */ |
| 96 | void getnstimeofday(struct timespec *ts) | 220 | void getnstimeofday(struct timespec *ts) |
| 97 | { | 221 | { |
| 98 | cycle_t cycle_now, cycle_delta; | ||
| 99 | unsigned long seq; | 222 | unsigned long seq; |
| 100 | s64 nsecs; | 223 | s64 nsecs; |
| 101 | 224 | ||
| @@ -105,15 +228,7 @@ void getnstimeofday(struct timespec *ts) | |||
| 105 | seq = read_seqbegin(&xtime_lock); | 228 | seq = read_seqbegin(&xtime_lock); |
| 106 | 229 | ||
| 107 | *ts = xtime; | 230 | *ts = xtime; |
| 108 | 231 | nsecs = timekeeping_get_ns(); | |
| 109 | /* read clocksource: */ | ||
| 110 | cycle_now = clocksource_read(clock); | ||
| 111 | |||
| 112 | /* calculate the delta since the last update_wall_time: */ | ||
| 113 | cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; | ||
| 114 | |||
| 115 | /* convert to nanoseconds: */ | ||
| 116 | nsecs = cyc2ns(clock, cycle_delta); | ||
| 117 | 232 | ||
| 118 | /* If arch requires, add in gettimeoffset() */ | 233 | /* If arch requires, add in gettimeoffset() */ |
| 119 | nsecs += arch_gettimeoffset(); | 234 | nsecs += arch_gettimeoffset(); |
| @@ -125,6 +240,57 @@ void getnstimeofday(struct timespec *ts) | |||
| 125 | 240 | ||
| 126 | EXPORT_SYMBOL(getnstimeofday); | 241 | EXPORT_SYMBOL(getnstimeofday); |
| 127 | 242 | ||
| 243 | ktime_t ktime_get(void) | ||
| 244 | { | ||
| 245 | unsigned int seq; | ||
| 246 | s64 secs, nsecs; | ||
| 247 | |||
| 248 | WARN_ON(timekeeping_suspended); | ||
| 249 | |||
| 250 | do { | ||
| 251 | seq = read_seqbegin(&xtime_lock); | ||
| 252 | secs = xtime.tv_sec + wall_to_monotonic.tv_sec; | ||
| 253 | nsecs = xtime.tv_nsec + wall_to_monotonic.tv_nsec; | ||
| 254 | nsecs += timekeeping_get_ns(); | ||
| 255 | |||
| 256 | } while (read_seqretry(&xtime_lock, seq)); | ||
| 257 | /* | ||
| 258 | * Use ktime_set/ktime_add_ns to create a proper ktime on | ||
| 259 | * 32-bit architectures without CONFIG_KTIME_SCALAR. | ||
| 260 | */ | ||
| 261 | return ktime_add_ns(ktime_set(secs, 0), nsecs); | ||
| 262 | } | ||
| 263 | EXPORT_SYMBOL_GPL(ktime_get); | ||
| 264 | |||
| 265 | /** | ||
| 266 | * ktime_get_ts - get the monotonic clock in timespec format | ||
| 267 | * @ts: pointer to timespec variable | ||
| 268 | * | ||
| 269 | * The function calculates the monotonic clock from the realtime | ||
| 270 | * clock and the wall_to_monotonic offset and stores the result | ||
| 271 | * in normalized timespec format in the variable pointed to by @ts. | ||
| 272 | */ | ||
| 273 | void ktime_get_ts(struct timespec *ts) | ||
| 274 | { | ||
| 275 | struct timespec tomono; | ||
| 276 | unsigned int seq; | ||
| 277 | s64 nsecs; | ||
| 278 | |||
| 279 | WARN_ON(timekeeping_suspended); | ||
| 280 | |||
| 281 | do { | ||
| 282 | seq = read_seqbegin(&xtime_lock); | ||
| 283 | *ts = xtime; | ||
| 284 | tomono = wall_to_monotonic; | ||
| 285 | nsecs = timekeeping_get_ns(); | ||
| 286 | |||
| 287 | } while (read_seqretry(&xtime_lock, seq)); | ||
| 288 | |||
| 289 | set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec, | ||
| 290 | ts->tv_nsec + tomono.tv_nsec + nsecs); | ||
| 291 | } | ||
| 292 | EXPORT_SYMBOL_GPL(ktime_get_ts); | ||
| 293 | |||
| 128 | /** | 294 | /** |
| 129 | * do_gettimeofday - Returns the time of day in a timeval | 295 | * do_gettimeofday - Returns the time of day in a timeval |
| 130 | * @tv: pointer to the timeval to be set | 296 | * @tv: pointer to the timeval to be set |
| @@ -157,7 +323,7 @@ int do_settimeofday(struct timespec *tv) | |||
| 157 | 323 | ||
| 158 | write_seqlock_irqsave(&xtime_lock, flags); | 324 | write_seqlock_irqsave(&xtime_lock, flags); |
| 159 | 325 | ||
| 160 | clocksource_forward_now(); | 326 | timekeeping_forward_now(); |
| 161 | 327 | ||
| 162 | ts_delta.tv_sec = tv->tv_sec - xtime.tv_sec; | 328 | ts_delta.tv_sec = tv->tv_sec - xtime.tv_sec; |
| 163 | ts_delta.tv_nsec = tv->tv_nsec - xtime.tv_nsec; | 329 | ts_delta.tv_nsec = tv->tv_nsec - xtime.tv_nsec; |
| @@ -167,10 +333,10 @@ int do_settimeofday(struct timespec *tv) | |||
| 167 | 333 | ||
| 168 | update_xtime_cache(0); | 334 | update_xtime_cache(0); |
| 169 | 335 | ||
| 170 | clock->error = 0; | 336 | timekeeper.ntp_error = 0; |
| 171 | ntp_clear(); | 337 | ntp_clear(); |
| 172 | 338 | ||
| 173 | update_vsyscall(&xtime, clock); | 339 | update_vsyscall(&xtime, timekeeper.clock); |
| 174 | 340 | ||
| 175 | write_sequnlock_irqrestore(&xtime_lock, flags); | 341 | write_sequnlock_irqrestore(&xtime_lock, flags); |
| 176 | 342 | ||
| @@ -187,44 +353,97 @@ EXPORT_SYMBOL(do_settimeofday); | |||
| 187 | * | 353 | * |
| 188 | * Accumulates current time interval and initializes new clocksource | 354 | * Accumulates current time interval and initializes new clocksource |
| 189 | */ | 355 | */ |
| 190 | static void change_clocksource(void) | 356 | static int change_clocksource(void *data) |
| 191 | { | 357 | { |
| 192 | struct clocksource *new, *old; | 358 | struct clocksource *new, *old; |
| 193 | 359 | ||
| 194 | new = clocksource_get_next(); | 360 | new = (struct clocksource *) data; |
| 361 | |||
| 362 | timekeeping_forward_now(); | ||
| 363 | if (!new->enable || new->enable(new) == 0) { | ||
| 364 | old = timekeeper.clock; | ||
| 365 | timekeeper_setup_internals(new); | ||
| 366 | if (old->disable) | ||
| 367 | old->disable(old); | ||
| 368 | } | ||
| 369 | return 0; | ||
| 370 | } | ||
| 195 | 371 | ||
| 196 | if (clock == new) | 372 | /** |
| 373 | * timekeeping_notify - Install a new clock source | ||
| 374 | * @clock: pointer to the clock source | ||
| 375 | * | ||
| 376 | * This function is called from clocksource.c after a new, better clock | ||
| 377 | * source has been registered. The caller holds the clocksource_mutex. | ||
| 378 | */ | ||
| 379 | void timekeeping_notify(struct clocksource *clock) | ||
| 380 | { | ||
| 381 | if (timekeeper.clock == clock) | ||
| 197 | return; | 382 | return; |
| 383 | stop_machine(change_clocksource, clock, NULL); | ||
| 384 | tick_clock_notify(); | ||
| 385 | } | ||
| 198 | 386 | ||
| 199 | clocksource_forward_now(); | 387 | #else /* GENERIC_TIME */ |
| 200 | 388 | ||
| 201 | if (clocksource_enable(new)) | 389 | static inline void timekeeping_forward_now(void) { } |
| 202 | return; | ||
| 203 | 390 | ||
| 204 | new->raw_time = clock->raw_time; | 391 | /** |
| 205 | old = clock; | 392 | * ktime_get - get the monotonic time in ktime_t format |
| 206 | clock = new; | 393 | * |
| 207 | clocksource_disable(old); | 394 | * returns the time in ktime_t format |
| 395 | */ | ||
| 396 | ktime_t ktime_get(void) | ||
| 397 | { | ||
| 398 | struct timespec now; | ||
| 208 | 399 | ||
| 209 | clock->cycle_last = 0; | 400 | ktime_get_ts(&now); |
| 210 | clock->cycle_last = clocksource_read(clock); | ||
| 211 | clock->error = 0; | ||
| 212 | clock->xtime_nsec = 0; | ||
| 213 | clocksource_calculate_interval(clock, NTP_INTERVAL_LENGTH); | ||
| 214 | 401 | ||
| 215 | tick_clock_notify(); | 402 | return timespec_to_ktime(now); |
| 403 | } | ||
| 404 | EXPORT_SYMBOL_GPL(ktime_get); | ||
| 216 | 405 | ||
| 217 | /* | 406 | /** |
| 218 | * We're holding xtime lock and waking up klogd would deadlock | 407 | * ktime_get_ts - get the monotonic clock in timespec format |
| 219 | * us on enqueue. So no printing! | 408 | * @ts: pointer to timespec variable |
| 220 | printk(KERN_INFO "Time: %s clocksource has been installed.\n", | 409 | * |
| 221 | clock->name); | 410 | * The function calculates the monotonic clock from the realtime |
| 222 | */ | 411 | * clock and the wall_to_monotonic offset and stores the result |
| 412 | * in normalized timespec format in the variable pointed to by @ts. | ||
| 413 | */ | ||
| 414 | void ktime_get_ts(struct timespec *ts) | ||
| 415 | { | ||
| 416 | struct timespec tomono; | ||
| 417 | unsigned long seq; | ||
| 418 | |||
| 419 | do { | ||
| 420 | seq = read_seqbegin(&xtime_lock); | ||
| 421 | getnstimeofday(ts); | ||
| 422 | tomono = wall_to_monotonic; | ||
| 423 | |||
| 424 | } while (read_seqretry(&xtime_lock, seq)); | ||
| 425 | |||
| 426 | set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec, | ||
| 427 | ts->tv_nsec + tomono.tv_nsec); | ||
| 223 | } | 428 | } |
| 224 | #else | 429 | EXPORT_SYMBOL_GPL(ktime_get_ts); |
| 225 | static inline void clocksource_forward_now(void) { } | 430 | |
| 226 | static inline void change_clocksource(void) { } | 431 | #endif /* !GENERIC_TIME */ |
| 227 | #endif | 432 | |
| 433 | /** | ||
| 434 | * ktime_get_real - get the real (wall-) time in ktime_t format | ||
| 435 | * | ||
| 436 | * returns the time in ktime_t format | ||
| 437 | */ | ||
| 438 | ktime_t ktime_get_real(void) | ||
| 439 | { | ||
| 440 | struct timespec now; | ||
| 441 | |||
| 442 | getnstimeofday(&now); | ||
| 443 | |||
| 444 | return timespec_to_ktime(now); | ||
| 445 | } | ||
| 446 | EXPORT_SYMBOL_GPL(ktime_get_real); | ||
| 228 | 447 | ||
| 229 | /** | 448 | /** |
| 230 | * getrawmonotonic - Returns the raw monotonic time in a timespec | 449 | * getrawmonotonic - Returns the raw monotonic time in a timespec |
| @@ -236,21 +455,11 @@ void getrawmonotonic(struct timespec *ts) | |||
| 236 | { | 455 | { |
| 237 | unsigned long seq; | 456 | unsigned long seq; |
| 238 | s64 nsecs; | 457 | s64 nsecs; |
| 239 | cycle_t cycle_now, cycle_delta; | ||
| 240 | 458 | ||
| 241 | do { | 459 | do { |
| 242 | seq = read_seqbegin(&xtime_lock); | 460 | seq = read_seqbegin(&xtime_lock); |
| 243 | 461 | nsecs = timekeeping_get_ns_raw(); | |
| 244 | /* read clocksource: */ | 462 | *ts = raw_time; |
| 245 | cycle_now = clocksource_read(clock); | ||
| 246 | |||
| 247 | /* calculate the delta since the last update_wall_time: */ | ||
| 248 | cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; | ||
| 249 | |||
| 250 | /* convert to nanoseconds: */ | ||
| 251 | nsecs = ((s64)cycle_delta * clock->mult_orig) >> clock->shift; | ||
| 252 | |||
| 253 | *ts = clock->raw_time; | ||
| 254 | 463 | ||
| 255 | } while (read_seqretry(&xtime_lock, seq)); | 464 | } while (read_seqretry(&xtime_lock, seq)); |
| 256 | 465 | ||
| @@ -270,7 +479,7 @@ int timekeeping_valid_for_hres(void) | |||
| 270 | do { | 479 | do { |
| 271 | seq = read_seqbegin(&xtime_lock); | 480 | seq = read_seqbegin(&xtime_lock); |
| 272 | 481 | ||
| 273 | ret = clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; | 482 | ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; |
| 274 | 483 | ||
| 275 | } while (read_seqretry(&xtime_lock, seq)); | 484 | } while (read_seqretry(&xtime_lock, seq)); |
| 276 | 485 | ||
| @@ -278,17 +487,33 @@ int timekeeping_valid_for_hres(void) | |||
| 278 | } | 487 | } |
| 279 | 488 | ||
| 280 | /** | 489 | /** |
| 281 | * read_persistent_clock - Return time in seconds from the persistent clock. | 490 | * read_persistent_clock - Return time from the persistent clock. |
| 282 | * | 491 | * |
| 283 | * Weak dummy function for arches that do not yet support it. | 492 | * Weak dummy function for arches that do not yet support it. |
| 284 | * Returns seconds from epoch using the battery backed persistent clock. | 493 | * Reads the time from the battery backed persistent clock. |
| 285 | * Returns zero if unsupported. | 494 | * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. |
| 286 | * | 495 | * |
| 287 | * XXX - Do be sure to remove it once all arches implement it. | 496 | * XXX - Do be sure to remove it once all arches implement it. |
| 288 | */ | 497 | */ |
| 289 | unsigned long __attribute__((weak)) read_persistent_clock(void) | 498 | void __attribute__((weak)) read_persistent_clock(struct timespec *ts) |
| 290 | { | 499 | { |
| 291 | return 0; | 500 | ts->tv_sec = 0; |
| 501 | ts->tv_nsec = 0; | ||
| 502 | } | ||
| 503 | |||
| 504 | /** | ||
| 505 | * read_boot_clock - Return time of the system start. | ||
| 506 | * | ||
| 507 | * Weak dummy function for arches that do not yet support it. | ||
| 508 | * Function to read the exact time the system has been started. | ||
| 509 | * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. | ||
| 510 | * | ||
| 511 | * XXX - Do be sure to remove it once all arches implement it. | ||
| 512 | */ | ||
| 513 | void __attribute__((weak)) read_boot_clock(struct timespec *ts) | ||
| 514 | { | ||
| 515 | ts->tv_sec = 0; | ||
| 516 | ts->tv_nsec = 0; | ||
| 292 | } | 517 | } |
| 293 | 518 | ||
| 294 | /* | 519 | /* |
| @@ -296,29 +521,40 @@ unsigned long __attribute__((weak)) read_persistent_clock(void) | |||
| 296 | */ | 521 | */ |
| 297 | void __init timekeeping_init(void) | 522 | void __init timekeeping_init(void) |
| 298 | { | 523 | { |
| 524 | struct clocksource *clock; | ||
| 299 | unsigned long flags; | 525 | unsigned long flags; |
| 300 | unsigned long sec = read_persistent_clock(); | 526 | struct timespec now, boot; |
| 527 | |||
| 528 | read_persistent_clock(&now); | ||
| 529 | read_boot_clock(&boot); | ||
| 301 | 530 | ||
| 302 | write_seqlock_irqsave(&xtime_lock, flags); | 531 | write_seqlock_irqsave(&xtime_lock, flags); |
| 303 | 532 | ||
| 304 | ntp_init(); | 533 | ntp_init(); |
| 305 | 534 | ||
| 306 | clock = clocksource_get_next(); | 535 | clock = clocksource_default_clock(); |
| 307 | clocksource_enable(clock); | 536 | if (clock->enable) |
| 308 | clocksource_calculate_interval(clock, NTP_INTERVAL_LENGTH); | 537 | clock->enable(clock); |
| 309 | clock->cycle_last = clocksource_read(clock); | 538 | timekeeper_setup_internals(clock); |
| 310 | 539 | ||
| 311 | xtime.tv_sec = sec; | 540 | xtime.tv_sec = now.tv_sec; |
| 312 | xtime.tv_nsec = 0; | 541 | xtime.tv_nsec = now.tv_nsec; |
| 542 | raw_time.tv_sec = 0; | ||
| 543 | raw_time.tv_nsec = 0; | ||
| 544 | if (boot.tv_sec == 0 && boot.tv_nsec == 0) { | ||
| 545 | boot.tv_sec = xtime.tv_sec; | ||
| 546 | boot.tv_nsec = xtime.tv_nsec; | ||
| 547 | } | ||
| 313 | set_normalized_timespec(&wall_to_monotonic, | 548 | set_normalized_timespec(&wall_to_monotonic, |
| 314 | -xtime.tv_sec, -xtime.tv_nsec); | 549 | -boot.tv_sec, -boot.tv_nsec); |
| 315 | update_xtime_cache(0); | 550 | update_xtime_cache(0); |
| 316 | total_sleep_time = 0; | 551 | total_sleep_time.tv_sec = 0; |
| 552 | total_sleep_time.tv_nsec = 0; | ||
| 317 | write_sequnlock_irqrestore(&xtime_lock, flags); | 553 | write_sequnlock_irqrestore(&xtime_lock, flags); |
| 318 | } | 554 | } |
| 319 | 555 | ||
| 320 | /* time in seconds when suspend began */ | 556 | /* time in seconds when suspend began */ |
| 321 | static unsigned long timekeeping_suspend_time; | 557 | static struct timespec timekeeping_suspend_time; |
| 322 | 558 | ||
| 323 | /** | 559 | /** |
| 324 | * timekeeping_resume - Resumes the generic timekeeping subsystem. | 560 | * timekeeping_resume - Resumes the generic timekeeping subsystem. |
| @@ -331,24 +567,24 @@ static unsigned long timekeeping_suspend_time; | |||
| 331 | static int timekeeping_resume(struct sys_device *dev) | 567 | static int timekeeping_resume(struct sys_device *dev) |
| 332 | { | 568 | { |
| 333 | unsigned long flags; | 569 | unsigned long flags; |
| 334 | unsigned long now = read_persistent_clock(); | 570 | struct timespec ts; |
| 571 | |||
| 572 | read_persistent_clock(&ts); | ||
| 335 | 573 | ||
| 336 | clocksource_resume(); | 574 | clocksource_resume(); |
| 337 | 575 | ||
| 338 | write_seqlock_irqsave(&xtime_lock, flags); | 576 | write_seqlock_irqsave(&xtime_lock, flags); |
| 339 | 577 | ||
| 340 | if (now && (now > timekeeping_suspend_time)) { | 578 | if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) { |
| 341 | unsigned long sleep_length = now - timekeeping_suspend_time; | 579 | ts = timespec_sub(ts, timekeeping_suspend_time); |
| 342 | 580 | xtime = timespec_add_safe(xtime, ts); | |
| 343 | xtime.tv_sec += sleep_length; | 581 | wall_to_monotonic = timespec_sub(wall_to_monotonic, ts); |
| 344 | wall_to_monotonic.tv_sec -= sleep_length; | 582 | total_sleep_time = timespec_add_safe(total_sleep_time, ts); |
| 345 | total_sleep_time += sleep_length; | ||
| 346 | } | 583 | } |
| 347 | update_xtime_cache(0); | 584 | update_xtime_cache(0); |
| 348 | /* re-base the last cycle value */ | 585 | /* re-base the last cycle value */ |
| 349 | clock->cycle_last = 0; | 586 | timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock); |
| 350 | clock->cycle_last = clocksource_read(clock); | 587 | timekeeper.ntp_error = 0; |
| 351 | clock->error = 0; | ||
| 352 | timekeeping_suspended = 0; | 588 | timekeeping_suspended = 0; |
| 353 | write_sequnlock_irqrestore(&xtime_lock, flags); | 589 | write_sequnlock_irqrestore(&xtime_lock, flags); |
| 354 | 590 | ||
| @@ -366,10 +602,10 @@ static int timekeeping_suspend(struct sys_device *dev, pm_message_t state) | |||
| 366 | { | 602 | { |
| 367 | unsigned long flags; | 603 | unsigned long flags; |
| 368 | 604 | ||
| 369 | timekeeping_suspend_time = read_persistent_clock(); | 605 | read_persistent_clock(&timekeeping_suspend_time); |
| 370 | 606 | ||
| 371 | write_seqlock_irqsave(&xtime_lock, flags); | 607 | write_seqlock_irqsave(&xtime_lock, flags); |
| 372 | clocksource_forward_now(); | 608 | timekeeping_forward_now(); |
| 373 | timekeeping_suspended = 1; | 609 | timekeeping_suspended = 1; |
| 374 | write_sequnlock_irqrestore(&xtime_lock, flags); | 610 | write_sequnlock_irqrestore(&xtime_lock, flags); |
| 375 | 611 | ||
| @@ -404,7 +640,7 @@ device_initcall(timekeeping_init_device); | |||
| 404 | * If the error is already larger, we look ahead even further | 640 | * If the error is already larger, we look ahead even further |
| 405 | * to compensate for late or lost adjustments. | 641 | * to compensate for late or lost adjustments. |
| 406 | */ | 642 | */ |
| 407 | static __always_inline int clocksource_bigadjust(s64 error, s64 *interval, | 643 | static __always_inline int timekeeping_bigadjust(s64 error, s64 *interval, |
| 408 | s64 *offset) | 644 | s64 *offset) |
| 409 | { | 645 | { |
| 410 | s64 tick_error, i; | 646 | s64 tick_error, i; |
| @@ -420,7 +656,7 @@ static __always_inline int clocksource_bigadjust(s64 error, s64 *interval, | |||
| 420 | * here. This is tuned so that an error of about 1 msec is adjusted | 656 | * here. This is tuned so that an error of about 1 msec is adjusted |
| 421 | * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks). | 657 | * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks). |
| 422 | */ | 658 | */ |
| 423 | error2 = clock->error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ); | 659 | error2 = timekeeper.ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ); |
| 424 | error2 = abs(error2); | 660 | error2 = abs(error2); |
| 425 | for (look_ahead = 0; error2 > 0; look_ahead++) | 661 | for (look_ahead = 0; error2 > 0; look_ahead++) |
| 426 | error2 >>= 2; | 662 | error2 >>= 2; |
| @@ -429,8 +665,8 @@ static __always_inline int clocksource_bigadjust(s64 error, s64 *interval, | |||
| 429 | * Now calculate the error in (1 << look_ahead) ticks, but first | 665 | * Now calculate the error in (1 << look_ahead) ticks, but first |
| 430 | * remove the single look ahead already included in the error. | 666 | * remove the single look ahead already included in the error. |
| 431 | */ | 667 | */ |
| 432 | tick_error = tick_length >> (NTP_SCALE_SHIFT - clock->shift + 1); | 668 | tick_error = tick_length >> (timekeeper.ntp_error_shift + 1); |
| 433 | tick_error -= clock->xtime_interval >> 1; | 669 | tick_error -= timekeeper.xtime_interval >> 1; |
| 434 | error = ((error - tick_error) >> look_ahead) + tick_error; | 670 | error = ((error - tick_error) >> look_ahead) + tick_error; |
| 435 | 671 | ||
| 436 | /* Finally calculate the adjustment shift value. */ | 672 | /* Finally calculate the adjustment shift value. */ |
| @@ -455,18 +691,18 @@ static __always_inline int clocksource_bigadjust(s64 error, s64 *interval, | |||
| 455 | * this is optimized for the most common adjustments of -1,0,1, | 691 | * this is optimized for the most common adjustments of -1,0,1, |
| 456 | * for other values we can do a bit more work. | 692 | * for other values we can do a bit more work. |
| 457 | */ | 693 | */ |
| 458 | static void clocksource_adjust(s64 offset) | 694 | static void timekeeping_adjust(s64 offset) |
| 459 | { | 695 | { |
| 460 | s64 error, interval = clock->cycle_interval; | 696 | s64 error, interval = timekeeper.cycle_interval; |
| 461 | int adj; | 697 | int adj; |
| 462 | 698 | ||
| 463 | error = clock->error >> (NTP_SCALE_SHIFT - clock->shift - 1); | 699 | error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1); |
| 464 | if (error > interval) { | 700 | if (error > interval) { |
| 465 | error >>= 2; | 701 | error >>= 2; |
| 466 | if (likely(error <= interval)) | 702 | if (likely(error <= interval)) |
| 467 | adj = 1; | 703 | adj = 1; |
| 468 | else | 704 | else |
| 469 | adj = clocksource_bigadjust(error, &interval, &offset); | 705 | adj = timekeeping_bigadjust(error, &interval, &offset); |
| 470 | } else if (error < -interval) { | 706 | } else if (error < -interval) { |
| 471 | error >>= 2; | 707 | error >>= 2; |
| 472 | if (likely(error >= -interval)) { | 708 | if (likely(error >= -interval)) { |
| @@ -474,15 +710,15 @@ static void clocksource_adjust(s64 offset) | |||
| 474 | interval = -interval; | 710 | interval = -interval; |
| 475 | offset = -offset; | 711 | offset = -offset; |
| 476 | } else | 712 | } else |
| 477 | adj = clocksource_bigadjust(error, &interval, &offset); | 713 | adj = timekeeping_bigadjust(error, &interval, &offset); |
| 478 | } else | 714 | } else |
| 479 | return; | 715 | return; |
| 480 | 716 | ||
| 481 | clock->mult += adj; | 717 | timekeeper.mult += adj; |
| 482 | clock->xtime_interval += interval; | 718 | timekeeper.xtime_interval += interval; |
| 483 | clock->xtime_nsec -= offset; | 719 | timekeeper.xtime_nsec -= offset; |
| 484 | clock->error -= (interval - offset) << | 720 | timekeeper.ntp_error -= (interval - offset) << |
| 485 | (NTP_SCALE_SHIFT - clock->shift); | 721 | timekeeper.ntp_error_shift; |
| 486 | } | 722 | } |
| 487 | 723 | ||
| 488 | /** | 724 | /** |
| @@ -492,53 +728,59 @@ static void clocksource_adjust(s64 offset) | |||
| 492 | */ | 728 | */ |
| 493 | void update_wall_time(void) | 729 | void update_wall_time(void) |
| 494 | { | 730 | { |
| 731 | struct clocksource *clock; | ||
| 495 | cycle_t offset; | 732 | cycle_t offset; |
| 733 | u64 nsecs; | ||
| 496 | 734 | ||
| 497 | /* Make sure we're fully resumed: */ | 735 | /* Make sure we're fully resumed: */ |
| 498 | if (unlikely(timekeeping_suspended)) | 736 | if (unlikely(timekeeping_suspended)) |
| 499 | return; | 737 | return; |
| 500 | 738 | ||
| 739 | clock = timekeeper.clock; | ||
| 501 | #ifdef CONFIG_GENERIC_TIME | 740 | #ifdef CONFIG_GENERIC_TIME |
| 502 | offset = (clocksource_read(clock) - clock->cycle_last) & clock->mask; | 741 | offset = (clock->read(clock) - clock->cycle_last) & clock->mask; |
| 503 | #else | 742 | #else |
| 504 | offset = clock->cycle_interval; | 743 | offset = timekeeper.cycle_interval; |
| 505 | #endif | 744 | #endif |
| 506 | clock->xtime_nsec = (s64)xtime.tv_nsec << clock->shift; | 745 | timekeeper.xtime_nsec = (s64)xtime.tv_nsec << timekeeper.shift; |
| 507 | 746 | ||
| 508 | /* normally this loop will run just once, however in the | 747 | /* normally this loop will run just once, however in the |
| 509 | * case of lost or late ticks, it will accumulate correctly. | 748 | * case of lost or late ticks, it will accumulate correctly. |
| 510 | */ | 749 | */ |
| 511 | while (offset >= clock->cycle_interval) { | 750 | while (offset >= timekeeper.cycle_interval) { |
| 751 | u64 nsecps = (u64)NSEC_PER_SEC << timekeeper.shift; | ||
| 752 | |||
| 512 | /* accumulate one interval */ | 753 | /* accumulate one interval */ |
| 513 | offset -= clock->cycle_interval; | 754 | offset -= timekeeper.cycle_interval; |
| 514 | clock->cycle_last += clock->cycle_interval; | 755 | clock->cycle_last += timekeeper.cycle_interval; |
| 515 | 756 | ||
| 516 | clock->xtime_nsec += clock->xtime_interval; | 757 | timekeeper.xtime_nsec += timekeeper.xtime_interval; |
| 517 | if (clock->xtime_nsec >= (u64)NSEC_PER_SEC << clock->shift) { | 758 | if (timekeeper.xtime_nsec >= nsecps) { |
| 518 | clock->xtime_nsec -= (u64)NSEC_PER_SEC << clock->shift; | 759 | timekeeper.xtime_nsec -= nsecps; |
| 519 | xtime.tv_sec++; | 760 | xtime.tv_sec++; |
| 520 | second_overflow(); | 761 | second_overflow(); |
| 521 | } | 762 | } |
| 522 | 763 | ||
| 523 | clock->raw_time.tv_nsec += clock->raw_interval; | 764 | raw_time.tv_nsec += timekeeper.raw_interval; |
| 524 | if (clock->raw_time.tv_nsec >= NSEC_PER_SEC) { | 765 | if (raw_time.tv_nsec >= NSEC_PER_SEC) { |
| 525 | clock->raw_time.tv_nsec -= NSEC_PER_SEC; | 766 | raw_time.tv_nsec -= NSEC_PER_SEC; |
| 526 | clock->raw_time.tv_sec++; | 767 | raw_time.tv_sec++; |
| 527 | } | 768 | } |
| 528 | 769 | ||
| 529 | /* accumulate error between NTP and clock interval */ | 770 | /* accumulate error between NTP and clock interval */ |
| 530 | clock->error += tick_length; | 771 | timekeeper.ntp_error += tick_length; |
| 531 | clock->error -= clock->xtime_interval << (NTP_SCALE_SHIFT - clock->shift); | 772 | timekeeper.ntp_error -= timekeeper.xtime_interval << |
| 773 | timekeeper.ntp_error_shift; | ||
| 532 | } | 774 | } |
| 533 | 775 | ||
| 534 | /* correct the clock when NTP error is too big */ | 776 | /* correct the clock when NTP error is too big */ |
| 535 | clocksource_adjust(offset); | 777 | timekeeping_adjust(offset); |
| 536 | 778 | ||
| 537 | /* | 779 | /* |
| 538 | * Since in the loop above, we accumulate any amount of time | 780 | * Since in the loop above, we accumulate any amount of time |
| 539 | * in xtime_nsec over a second into xtime.tv_sec, its possible for | 781 | * in xtime_nsec over a second into xtime.tv_sec, its possible for |
| 540 | * xtime_nsec to be fairly small after the loop. Further, if we're | 782 | * xtime_nsec to be fairly small after the loop. Further, if we're |
| 541 | * slightly speeding the clocksource up in clocksource_adjust(), | 783 | * slightly speeding the clocksource up in timekeeping_adjust(), |
| 542 | * its possible the required corrective factor to xtime_nsec could | 784 | * its possible the required corrective factor to xtime_nsec could |
| 543 | * cause it to underflow. | 785 | * cause it to underflow. |
| 544 | * | 786 | * |
| @@ -550,24 +792,25 @@ void update_wall_time(void) | |||
| 550 | * We'll correct this error next time through this function, when | 792 | * We'll correct this error next time through this function, when |
| 551 | * xtime_nsec is not as small. | 793 | * xtime_nsec is not as small. |
| 552 | */ | 794 | */ |
| 553 | if (unlikely((s64)clock->xtime_nsec < 0)) { | 795 | if (unlikely((s64)timekeeper.xtime_nsec < 0)) { |
| 554 | s64 neg = -(s64)clock->xtime_nsec; | 796 | s64 neg = -(s64)timekeeper.xtime_nsec; |
| 555 | clock->xtime_nsec = 0; | 797 | timekeeper.xtime_nsec = 0; |
| 556 | clock->error += neg << (NTP_SCALE_SHIFT - clock->shift); | 798 | timekeeper.ntp_error += neg << timekeeper.ntp_error_shift; |
| 557 | } | 799 | } |
| 558 | 800 | ||
| 559 | /* store full nanoseconds into xtime after rounding it up and | 801 | /* store full nanoseconds into xtime after rounding it up and |
| 560 | * add the remainder to the error difference. | 802 | * add the remainder to the error difference. |
| 561 | */ | 803 | */ |
| 562 | xtime.tv_nsec = ((s64)clock->xtime_nsec >> clock->shift) + 1; | 804 | xtime.tv_nsec = ((s64) timekeeper.xtime_nsec >> timekeeper.shift) + 1; |
| 563 | clock->xtime_nsec -= (s64)xtime.tv_nsec << clock->shift; | 805 | timekeeper.xtime_nsec -= (s64) xtime.tv_nsec << timekeeper.shift; |
| 564 | clock->error += clock->xtime_nsec << (NTP_SCALE_SHIFT - clock->shift); | 806 | timekeeper.ntp_error += timekeeper.xtime_nsec << |
| 807 | timekeeper.ntp_error_shift; | ||
| 565 | 808 | ||
| 566 | update_xtime_cache(cyc2ns(clock, offset)); | 809 | nsecs = clocksource_cyc2ns(offset, timekeeper.mult, timekeeper.shift); |
| 810 | update_xtime_cache(nsecs); | ||
| 567 | 811 | ||
| 568 | /* check to see if there is a new clocksource to use */ | 812 | /* check to see if there is a new clocksource to use */ |
| 569 | change_clocksource(); | 813 | update_vsyscall(&xtime, timekeeper.clock); |
| 570 | update_vsyscall(&xtime, clock); | ||
| 571 | } | 814 | } |
| 572 | 815 | ||
| 573 | /** | 816 | /** |
| @@ -583,9 +826,12 @@ void update_wall_time(void) | |||
| 583 | */ | 826 | */ |
| 584 | void getboottime(struct timespec *ts) | 827 | void getboottime(struct timespec *ts) |
| 585 | { | 828 | { |
| 586 | set_normalized_timespec(ts, | 829 | struct timespec boottime = { |
| 587 | - (wall_to_monotonic.tv_sec + total_sleep_time), | 830 | .tv_sec = wall_to_monotonic.tv_sec + total_sleep_time.tv_sec, |
| 588 | - wall_to_monotonic.tv_nsec); | 831 | .tv_nsec = wall_to_monotonic.tv_nsec + total_sleep_time.tv_nsec |
| 832 | }; | ||
| 833 | |||
| 834 | set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec); | ||
| 589 | } | 835 | } |
| 590 | 836 | ||
| 591 | /** | 837 | /** |
| @@ -594,7 +840,7 @@ void getboottime(struct timespec *ts) | |||
| 594 | */ | 840 | */ |
| 595 | void monotonic_to_bootbased(struct timespec *ts) | 841 | void monotonic_to_bootbased(struct timespec *ts) |
| 596 | { | 842 | { |
| 597 | ts->tv_sec += total_sleep_time; | 843 | *ts = timespec_add_safe(*ts, total_sleep_time); |
| 598 | } | 844 | } |
| 599 | 845 | ||
| 600 | unsigned long get_seconds(void) | 846 | unsigned long get_seconds(void) |
| @@ -603,6 +849,10 @@ unsigned long get_seconds(void) | |||
| 603 | } | 849 | } |
| 604 | EXPORT_SYMBOL(get_seconds); | 850 | EXPORT_SYMBOL(get_seconds); |
| 605 | 851 | ||
| 852 | struct timespec __current_kernel_time(void) | ||
| 853 | { | ||
| 854 | return xtime_cache; | ||
| 855 | } | ||
| 606 | 856 | ||
| 607 | struct timespec current_kernel_time(void) | 857 | struct timespec current_kernel_time(void) |
| 608 | { | 858 | { |
| @@ -618,3 +868,20 @@ struct timespec current_kernel_time(void) | |||
| 618 | return now; | 868 | return now; |
| 619 | } | 869 | } |
| 620 | EXPORT_SYMBOL(current_kernel_time); | 870 | EXPORT_SYMBOL(current_kernel_time); |
| 871 | |||
| 872 | struct timespec get_monotonic_coarse(void) | ||
| 873 | { | ||
| 874 | struct timespec now, mono; | ||
| 875 | unsigned long seq; | ||
| 876 | |||
| 877 | do { | ||
| 878 | seq = read_seqbegin(&xtime_lock); | ||
| 879 | |||
| 880 | now = xtime_cache; | ||
| 881 | mono = wall_to_monotonic; | ||
| 882 | } while (read_seqretry(&xtime_lock, seq)); | ||
| 883 | |||
| 884 | set_normalized_timespec(&now, now.tv_sec + mono.tv_sec, | ||
| 885 | now.tv_nsec + mono.tv_nsec); | ||
| 886 | return now; | ||
| 887 | } | ||
diff --git a/kernel/time/timer_list.c b/kernel/time/timer_list.c index a999b92a1277..fddd69d16e03 100644 --- a/kernel/time/timer_list.c +++ b/kernel/time/timer_list.c | |||
| @@ -286,7 +286,7 @@ static int __init init_timer_list_procfs(void) | |||
| 286 | { | 286 | { |
| 287 | struct proc_dir_entry *pe; | 287 | struct proc_dir_entry *pe; |
| 288 | 288 | ||
| 289 | pe = proc_create("timer_list", 0644, NULL, &timer_list_fops); | 289 | pe = proc_create("timer_list", 0444, NULL, &timer_list_fops); |
| 290 | if (!pe) | 290 | if (!pe) |
| 291 | return -ENOMEM; | 291 | return -ENOMEM; |
| 292 | return 0; | 292 | return 0; |
diff --git a/kernel/timer.c b/kernel/timer.c index 0b36b9e5cc8b..811e5c391456 100644 --- a/kernel/timer.c +++ b/kernel/timer.c | |||
| @@ -37,7 +37,7 @@ | |||
| 37 | #include <linux/delay.h> | 37 | #include <linux/delay.h> |
| 38 | #include <linux/tick.h> | 38 | #include <linux/tick.h> |
| 39 | #include <linux/kallsyms.h> | 39 | #include <linux/kallsyms.h> |
| 40 | #include <linux/perf_counter.h> | 40 | #include <linux/perf_event.h> |
| 41 | #include <linux/sched.h> | 41 | #include <linux/sched.h> |
| 42 | 42 | ||
| 43 | #include <asm/uaccess.h> | 43 | #include <asm/uaccess.h> |
| @@ -72,6 +72,7 @@ struct tvec_base { | |||
| 72 | spinlock_t lock; | 72 | spinlock_t lock; |
| 73 | struct timer_list *running_timer; | 73 | struct timer_list *running_timer; |
| 74 | unsigned long timer_jiffies; | 74 | unsigned long timer_jiffies; |
| 75 | unsigned long next_timer; | ||
| 75 | struct tvec_root tv1; | 76 | struct tvec_root tv1; |
| 76 | struct tvec tv2; | 77 | struct tvec tv2; |
| 77 | struct tvec tv3; | 78 | struct tvec tv3; |
| @@ -622,6 +623,9 @@ __mod_timer(struct timer_list *timer, unsigned long expires, | |||
| 622 | 623 | ||
| 623 | if (timer_pending(timer)) { | 624 | if (timer_pending(timer)) { |
| 624 | detach_timer(timer, 0); | 625 | detach_timer(timer, 0); |
| 626 | if (timer->expires == base->next_timer && | ||
| 627 | !tbase_get_deferrable(timer->base)) | ||
| 628 | base->next_timer = base->timer_jiffies; | ||
| 625 | ret = 1; | 629 | ret = 1; |
| 626 | } else { | 630 | } else { |
| 627 | if (pending_only) | 631 | if (pending_only) |
| @@ -663,6 +667,9 @@ __mod_timer(struct timer_list *timer, unsigned long expires, | |||
| 663 | } | 667 | } |
| 664 | 668 | ||
| 665 | timer->expires = expires; | 669 | timer->expires = expires; |
| 670 | if (time_before(timer->expires, base->next_timer) && | ||
| 671 | !tbase_get_deferrable(timer->base)) | ||
| 672 | base->next_timer = timer->expires; | ||
| 666 | internal_add_timer(base, timer); | 673 | internal_add_timer(base, timer); |
| 667 | 674 | ||
| 668 | out_unlock: | 675 | out_unlock: |
| @@ -714,7 +721,7 @@ int mod_timer(struct timer_list *timer, unsigned long expires) | |||
| 714 | * networking code - if the timer is re-modified | 721 | * networking code - if the timer is re-modified |
| 715 | * to be the same thing then just return: | 722 | * to be the same thing then just return: |
| 716 | */ | 723 | */ |
| 717 | if (timer->expires == expires && timer_pending(timer)) | 724 | if (timer_pending(timer) && timer->expires == expires) |
| 718 | return 1; | 725 | return 1; |
| 719 | 726 | ||
| 720 | return __mod_timer(timer, expires, false, TIMER_NOT_PINNED); | 727 | return __mod_timer(timer, expires, false, TIMER_NOT_PINNED); |
| @@ -781,6 +788,9 @@ void add_timer_on(struct timer_list *timer, int cpu) | |||
| 781 | spin_lock_irqsave(&base->lock, flags); | 788 | spin_lock_irqsave(&base->lock, flags); |
| 782 | timer_set_base(timer, base); | 789 | timer_set_base(timer, base); |
| 783 | debug_timer_activate(timer); | 790 | debug_timer_activate(timer); |
| 791 | if (time_before(timer->expires, base->next_timer) && | ||
| 792 | !tbase_get_deferrable(timer->base)) | ||
| 793 | base->next_timer = timer->expires; | ||
| 784 | internal_add_timer(base, timer); | 794 | internal_add_timer(base, timer); |
| 785 | /* | 795 | /* |
| 786 | * Check whether the other CPU is idle and needs to be | 796 | * Check whether the other CPU is idle and needs to be |
| @@ -817,6 +827,9 @@ int del_timer(struct timer_list *timer) | |||
| 817 | base = lock_timer_base(timer, &flags); | 827 | base = lock_timer_base(timer, &flags); |
| 818 | if (timer_pending(timer)) { | 828 | if (timer_pending(timer)) { |
| 819 | detach_timer(timer, 1); | 829 | detach_timer(timer, 1); |
| 830 | if (timer->expires == base->next_timer && | ||
| 831 | !tbase_get_deferrable(timer->base)) | ||
| 832 | base->next_timer = base->timer_jiffies; | ||
| 820 | ret = 1; | 833 | ret = 1; |
| 821 | } | 834 | } |
| 822 | spin_unlock_irqrestore(&base->lock, flags); | 835 | spin_unlock_irqrestore(&base->lock, flags); |
| @@ -850,6 +863,9 @@ int try_to_del_timer_sync(struct timer_list *timer) | |||
| 850 | ret = 0; | 863 | ret = 0; |
| 851 | if (timer_pending(timer)) { | 864 | if (timer_pending(timer)) { |
| 852 | detach_timer(timer, 1); | 865 | detach_timer(timer, 1); |
| 866 | if (timer->expires == base->next_timer && | ||
| 867 | !tbase_get_deferrable(timer->base)) | ||
| 868 | base->next_timer = base->timer_jiffies; | ||
| 853 | ret = 1; | 869 | ret = 1; |
| 854 | } | 870 | } |
| 855 | out: | 871 | out: |
| @@ -1007,8 +1023,8 @@ static inline void __run_timers(struct tvec_base *base) | |||
| 1007 | #ifdef CONFIG_NO_HZ | 1023 | #ifdef CONFIG_NO_HZ |
| 1008 | /* | 1024 | /* |
| 1009 | * Find out when the next timer event is due to happen. This | 1025 | * Find out when the next timer event is due to happen. This |
| 1010 | * is used on S/390 to stop all activity when a cpus is idle. | 1026 | * is used on S/390 to stop all activity when a CPU is idle. |
| 1011 | * This functions needs to be called disabled. | 1027 | * This function needs to be called with interrupts disabled. |
| 1012 | */ | 1028 | */ |
| 1013 | static unsigned long __next_timer_interrupt(struct tvec_base *base) | 1029 | static unsigned long __next_timer_interrupt(struct tvec_base *base) |
| 1014 | { | 1030 | { |
| @@ -1134,7 +1150,9 @@ unsigned long get_next_timer_interrupt(unsigned long now) | |||
| 1134 | unsigned long expires; | 1150 | unsigned long expires; |
| 1135 | 1151 | ||
| 1136 | spin_lock(&base->lock); | 1152 | spin_lock(&base->lock); |
| 1137 | expires = __next_timer_interrupt(base); | 1153 | if (time_before_eq(base->next_timer, base->timer_jiffies)) |
| 1154 | base->next_timer = __next_timer_interrupt(base); | ||
| 1155 | expires = base->next_timer; | ||
| 1138 | spin_unlock(&base->lock); | 1156 | spin_unlock(&base->lock); |
| 1139 | 1157 | ||
| 1140 | if (time_before_eq(expires, now)) | 1158 | if (time_before_eq(expires, now)) |
| @@ -1156,8 +1174,7 @@ void update_process_times(int user_tick) | |||
| 1156 | /* Note: this timer irq context must be accounted for as well. */ | 1174 | /* Note: this timer irq context must be accounted for as well. */ |
| 1157 | account_process_tick(p, user_tick); | 1175 | account_process_tick(p, user_tick); |
| 1158 | run_local_timers(); | 1176 | run_local_timers(); |
| 1159 | if (rcu_pending(cpu)) | 1177 | rcu_check_callbacks(cpu, user_tick); |
| 1160 | rcu_check_callbacks(cpu, user_tick); | ||
| 1161 | printk_tick(); | 1178 | printk_tick(); |
| 1162 | scheduler_tick(); | 1179 | scheduler_tick(); |
| 1163 | run_posix_cpu_timers(p); | 1180 | run_posix_cpu_timers(p); |
| @@ -1170,7 +1187,7 @@ static void run_timer_softirq(struct softirq_action *h) | |||
| 1170 | { | 1187 | { |
| 1171 | struct tvec_base *base = __get_cpu_var(tvec_bases); | 1188 | struct tvec_base *base = __get_cpu_var(tvec_bases); |
| 1172 | 1189 | ||
| 1173 | perf_counter_do_pending(); | 1190 | perf_event_do_pending(); |
| 1174 | 1191 | ||
| 1175 | hrtimer_run_pending(); | 1192 | hrtimer_run_pending(); |
| 1176 | 1193 | ||
| @@ -1523,6 +1540,7 @@ static int __cpuinit init_timers_cpu(int cpu) | |||
| 1523 | INIT_LIST_HEAD(base->tv1.vec + j); | 1540 | INIT_LIST_HEAD(base->tv1.vec + j); |
| 1524 | 1541 | ||
| 1525 | base->timer_jiffies = jiffies; | 1542 | base->timer_jiffies = jiffies; |
| 1543 | base->next_timer = base->timer_jiffies; | ||
| 1526 | return 0; | 1544 | return 0; |
| 1527 | } | 1545 | } |
| 1528 | 1546 | ||
| @@ -1535,6 +1553,9 @@ static void migrate_timer_list(struct tvec_base *new_base, struct list_head *hea | |||
| 1535 | timer = list_first_entry(head, struct timer_list, entry); | 1553 | timer = list_first_entry(head, struct timer_list, entry); |
| 1536 | detach_timer(timer, 0); | 1554 | detach_timer(timer, 0); |
| 1537 | timer_set_base(timer, new_base); | 1555 | timer_set_base(timer, new_base); |
| 1556 | if (time_before(timer->expires, new_base->next_timer) && | ||
| 1557 | !tbase_get_deferrable(timer->base)) | ||
| 1558 | new_base->next_timer = timer->expires; | ||
| 1538 | internal_add_timer(new_base, timer); | 1559 | internal_add_timer(new_base, timer); |
| 1539 | } | 1560 | } |
| 1540 | } | 1561 | } |
diff --git a/kernel/trace/Kconfig b/kernel/trace/Kconfig index 1551f47e7669..b416512ad17f 100644 --- a/kernel/trace/Kconfig +++ b/kernel/trace/Kconfig | |||
| @@ -11,12 +11,18 @@ config NOP_TRACER | |||
| 11 | 11 | ||
| 12 | config HAVE_FTRACE_NMI_ENTER | 12 | config HAVE_FTRACE_NMI_ENTER |
| 13 | bool | 13 | bool |
| 14 | help | ||
| 15 | See Documentation/trace/ftrace-implementation.txt | ||
| 14 | 16 | ||
| 15 | config HAVE_FUNCTION_TRACER | 17 | config HAVE_FUNCTION_TRACER |
| 16 | bool | 18 | bool |
| 19 | help | ||
| 20 | See Documentation/trace/ftrace-implementation.txt | ||
| 17 | 21 | ||
| 18 | config HAVE_FUNCTION_GRAPH_TRACER | 22 | config HAVE_FUNCTION_GRAPH_TRACER |
| 19 | bool | 23 | bool |
| 24 | help | ||
| 25 | See Documentation/trace/ftrace-implementation.txt | ||
| 20 | 26 | ||
| 21 | config HAVE_FUNCTION_GRAPH_FP_TEST | 27 | config HAVE_FUNCTION_GRAPH_FP_TEST |
| 22 | bool | 28 | bool |
| @@ -28,21 +34,25 @@ config HAVE_FUNCTION_GRAPH_FP_TEST | |||
| 28 | config HAVE_FUNCTION_TRACE_MCOUNT_TEST | 34 | config HAVE_FUNCTION_TRACE_MCOUNT_TEST |
| 29 | bool | 35 | bool |
| 30 | help | 36 | help |
| 31 | This gets selected when the arch tests the function_trace_stop | 37 | See Documentation/trace/ftrace-implementation.txt |
| 32 | variable at the mcount call site. Otherwise, this variable | ||
| 33 | is tested by the called function. | ||
| 34 | 38 | ||
| 35 | config HAVE_DYNAMIC_FTRACE | 39 | config HAVE_DYNAMIC_FTRACE |
| 36 | bool | 40 | bool |
| 41 | help | ||
| 42 | See Documentation/trace/ftrace-implementation.txt | ||
| 37 | 43 | ||
| 38 | config HAVE_FTRACE_MCOUNT_RECORD | 44 | config HAVE_FTRACE_MCOUNT_RECORD |
| 39 | bool | 45 | bool |
| 46 | help | ||
| 47 | See Documentation/trace/ftrace-implementation.txt | ||
| 40 | 48 | ||
| 41 | config HAVE_HW_BRANCH_TRACER | 49 | config HAVE_HW_BRANCH_TRACER |
| 42 | bool | 50 | bool |
| 43 | 51 | ||
| 44 | config HAVE_FTRACE_SYSCALLS | 52 | config HAVE_SYSCALL_TRACEPOINTS |
| 45 | bool | 53 | bool |
| 54 | help | ||
| 55 | See Documentation/trace/ftrace-implementation.txt | ||
| 46 | 56 | ||
| 47 | config TRACER_MAX_TRACE | 57 | config TRACER_MAX_TRACE |
| 48 | bool | 58 | bool |
| @@ -60,15 +70,20 @@ config EVENT_TRACING | |||
| 60 | bool | 70 | bool |
| 61 | 71 | ||
| 62 | config CONTEXT_SWITCH_TRACER | 72 | config CONTEXT_SWITCH_TRACER |
| 63 | select MARKERS | ||
| 64 | bool | 73 | bool |
| 65 | 74 | ||
| 75 | config RING_BUFFER_ALLOW_SWAP | ||
| 76 | bool | ||
| 77 | help | ||
| 78 | Allow the use of ring_buffer_swap_cpu. | ||
| 79 | Adds a very slight overhead to tracing when enabled. | ||
| 80 | |||
| 66 | # All tracer options should select GENERIC_TRACER. For those options that are | 81 | # All tracer options should select GENERIC_TRACER. For those options that are |
| 67 | # enabled by all tracers (context switch and event tracer) they select TRACING. | 82 | # enabled by all tracers (context switch and event tracer) they select TRACING. |
| 68 | # This allows those options to appear when no other tracer is selected. But the | 83 | # This allows those options to appear when no other tracer is selected. But the |
| 69 | # options do not appear when something else selects it. We need the two options | 84 | # options do not appear when something else selects it. We need the two options |
| 70 | # GENERIC_TRACER and TRACING to avoid circular dependencies to accomplish the | 85 | # GENERIC_TRACER and TRACING to avoid circular dependencies to accomplish the |
| 71 | # hidding of the automatic options options. | 86 | # hidding of the automatic options. |
| 72 | 87 | ||
| 73 | config TRACING | 88 | config TRACING |
| 74 | bool | 89 | bool |
| @@ -147,6 +162,7 @@ config IRQSOFF_TRACER | |||
| 147 | select TRACE_IRQFLAGS | 162 | select TRACE_IRQFLAGS |
| 148 | select GENERIC_TRACER | 163 | select GENERIC_TRACER |
| 149 | select TRACER_MAX_TRACE | 164 | select TRACER_MAX_TRACE |
| 165 | select RING_BUFFER_ALLOW_SWAP | ||
| 150 | help | 166 | help |
| 151 | This option measures the time spent in irqs-off critical | 167 | This option measures the time spent in irqs-off critical |
| 152 | sections, with microsecond accuracy. | 168 | sections, with microsecond accuracy. |
| @@ -168,6 +184,7 @@ config PREEMPT_TRACER | |||
| 168 | depends on PREEMPT | 184 | depends on PREEMPT |
| 169 | select GENERIC_TRACER | 185 | select GENERIC_TRACER |
| 170 | select TRACER_MAX_TRACE | 186 | select TRACER_MAX_TRACE |
| 187 | select RING_BUFFER_ALLOW_SWAP | ||
| 171 | help | 188 | help |
| 172 | This option measures the time spent in preemption off critical | 189 | This option measures the time spent in preemption off critical |
| 173 | sections, with microsecond accuracy. | 190 | sections, with microsecond accuracy. |
| @@ -211,7 +228,7 @@ config ENABLE_DEFAULT_TRACERS | |||
| 211 | 228 | ||
| 212 | config FTRACE_SYSCALLS | 229 | config FTRACE_SYSCALLS |
| 213 | bool "Trace syscalls" | 230 | bool "Trace syscalls" |
| 214 | depends on HAVE_FTRACE_SYSCALLS | 231 | depends on HAVE_SYSCALL_TRACEPOINTS |
| 215 | select GENERIC_TRACER | 232 | select GENERIC_TRACER |
| 216 | select KALLSYMS | 233 | select KALLSYMS |
| 217 | help | 234 | help |
| @@ -226,13 +243,13 @@ config BOOT_TRACER | |||
| 226 | the timings of the initcalls and traces key events and the identity | 243 | the timings of the initcalls and traces key events and the identity |
| 227 | of tasks that can cause boot delays, such as context-switches. | 244 | of tasks that can cause boot delays, such as context-switches. |
| 228 | 245 | ||
| 229 | Its aim is to be parsed by the /scripts/bootgraph.pl tool to | 246 | Its aim is to be parsed by the scripts/bootgraph.pl tool to |
| 230 | produce pretty graphics about boot inefficiencies, giving a visual | 247 | produce pretty graphics about boot inefficiencies, giving a visual |
| 231 | representation of the delays during initcalls - but the raw | 248 | representation of the delays during initcalls - but the raw |
| 232 | /debug/tracing/trace text output is readable too. | 249 | /debug/tracing/trace text output is readable too. |
| 233 | 250 | ||
| 234 | You must pass in ftrace=initcall to the kernel command line | 251 | You must pass in initcall_debug and ftrace=initcall to the kernel |
| 235 | to enable this on bootup. | 252 | command line to enable this on bootup. |
| 236 | 253 | ||
| 237 | config TRACE_BRANCH_PROFILING | 254 | config TRACE_BRANCH_PROFILING |
| 238 | bool | 255 | bool |
| @@ -462,6 +479,18 @@ config FTRACE_STARTUP_TEST | |||
| 462 | functioning properly. It will do tests on all the configured | 479 | functioning properly. It will do tests on all the configured |
| 463 | tracers of ftrace. | 480 | tracers of ftrace. |
| 464 | 481 | ||
| 482 | config EVENT_TRACE_TEST_SYSCALLS | ||
| 483 | bool "Run selftest on syscall events" | ||
| 484 | depends on FTRACE_STARTUP_TEST | ||
| 485 | help | ||
| 486 | This option will also enable testing every syscall event. | ||
| 487 | It only enables the event and disables it and runs various loads | ||
| 488 | with the event enabled. This adds a bit more time for kernel boot | ||
| 489 | up since it runs this on every system call defined. | ||
| 490 | |||
| 491 | TBD - enable a way to actually call the syscalls as we test their | ||
| 492 | events | ||
| 493 | |||
| 465 | config MMIOTRACE | 494 | config MMIOTRACE |
| 466 | bool "Memory mapped IO tracing" | 495 | bool "Memory mapped IO tracing" |
| 467 | depends on HAVE_MMIOTRACE_SUPPORT && PCI | 496 | depends on HAVE_MMIOTRACE_SUPPORT && PCI |
diff --git a/kernel/trace/Makefile b/kernel/trace/Makefile index 844164dca90a..26f03ac07c2b 100644 --- a/kernel/trace/Makefile +++ b/kernel/trace/Makefile | |||
| @@ -42,7 +42,6 @@ obj-$(CONFIG_BOOT_TRACER) += trace_boot.o | |||
| 42 | obj-$(CONFIG_FUNCTION_GRAPH_TRACER) += trace_functions_graph.o | 42 | obj-$(CONFIG_FUNCTION_GRAPH_TRACER) += trace_functions_graph.o |
| 43 | obj-$(CONFIG_TRACE_BRANCH_PROFILING) += trace_branch.o | 43 | obj-$(CONFIG_TRACE_BRANCH_PROFILING) += trace_branch.o |
| 44 | obj-$(CONFIG_HW_BRANCH_TRACER) += trace_hw_branches.o | 44 | obj-$(CONFIG_HW_BRANCH_TRACER) += trace_hw_branches.o |
| 45 | obj-$(CONFIG_POWER_TRACER) += trace_power.o | ||
| 46 | obj-$(CONFIG_KMEMTRACE) += kmemtrace.o | 45 | obj-$(CONFIG_KMEMTRACE) += kmemtrace.o |
| 47 | obj-$(CONFIG_WORKQUEUE_TRACER) += trace_workqueue.o | 46 | obj-$(CONFIG_WORKQUEUE_TRACER) += trace_workqueue.o |
| 48 | obj-$(CONFIG_BLK_DEV_IO_TRACE) += blktrace.o | 47 | obj-$(CONFIG_BLK_DEV_IO_TRACE) += blktrace.o |
| @@ -54,5 +53,6 @@ obj-$(CONFIG_EVENT_TRACING) += trace_export.o | |||
| 54 | obj-$(CONFIG_FTRACE_SYSCALLS) += trace_syscalls.o | 53 | obj-$(CONFIG_FTRACE_SYSCALLS) += trace_syscalls.o |
| 55 | obj-$(CONFIG_EVENT_PROFILE) += trace_event_profile.o | 54 | obj-$(CONFIG_EVENT_PROFILE) += trace_event_profile.o |
| 56 | obj-$(CONFIG_EVENT_TRACING) += trace_events_filter.o | 55 | obj-$(CONFIG_EVENT_TRACING) += trace_events_filter.o |
| 56 | obj-$(CONFIG_EVENT_TRACING) += power-traces.o | ||
| 57 | 57 | ||
| 58 | libftrace-y := ftrace.o | 58 | libftrace-y := ftrace.o |
diff --git a/kernel/trace/blktrace.c b/kernel/trace/blktrace.c index 39af8af6fc30..3eb159c277c8 100644 --- a/kernel/trace/blktrace.c +++ b/kernel/trace/blktrace.c | |||
| @@ -22,6 +22,7 @@ | |||
| 22 | #include <linux/init.h> | 22 | #include <linux/init.h> |
| 23 | #include <linux/mutex.h> | 23 | #include <linux/mutex.h> |
| 24 | #include <linux/debugfs.h> | 24 | #include <linux/debugfs.h> |
| 25 | #include <linux/smp_lock.h> | ||
| 25 | #include <linux/time.h> | 26 | #include <linux/time.h> |
| 26 | #include <linux/uaccess.h> | 27 | #include <linux/uaccess.h> |
| 27 | 28 | ||
| @@ -64,13 +65,15 @@ static void trace_note(struct blk_trace *bt, pid_t pid, int action, | |||
| 64 | { | 65 | { |
| 65 | struct blk_io_trace *t; | 66 | struct blk_io_trace *t; |
| 66 | struct ring_buffer_event *event = NULL; | 67 | struct ring_buffer_event *event = NULL; |
| 68 | struct ring_buffer *buffer = NULL; | ||
| 67 | int pc = 0; | 69 | int pc = 0; |
| 68 | int cpu = smp_processor_id(); | 70 | int cpu = smp_processor_id(); |
| 69 | bool blk_tracer = blk_tracer_enabled; | 71 | bool blk_tracer = blk_tracer_enabled; |
| 70 | 72 | ||
| 71 | if (blk_tracer) { | 73 | if (blk_tracer) { |
| 74 | buffer = blk_tr->buffer; | ||
| 72 | pc = preempt_count(); | 75 | pc = preempt_count(); |
| 73 | event = trace_buffer_lock_reserve(blk_tr, TRACE_BLK, | 76 | event = trace_buffer_lock_reserve(buffer, TRACE_BLK, |
| 74 | sizeof(*t) + len, | 77 | sizeof(*t) + len, |
| 75 | 0, pc); | 78 | 0, pc); |
| 76 | if (!event) | 79 | if (!event) |
| @@ -95,7 +98,7 @@ record_it: | |||
| 95 | memcpy((void *) t + sizeof(*t), data, len); | 98 | memcpy((void *) t + sizeof(*t), data, len); |
| 96 | 99 | ||
| 97 | if (blk_tracer) | 100 | if (blk_tracer) |
| 98 | trace_buffer_unlock_commit(blk_tr, event, 0, pc); | 101 | trace_buffer_unlock_commit(buffer, event, 0, pc); |
| 99 | } | 102 | } |
| 100 | } | 103 | } |
| 101 | 104 | ||
| @@ -178,6 +181,7 @@ static void __blk_add_trace(struct blk_trace *bt, sector_t sector, int bytes, | |||
| 178 | { | 181 | { |
| 179 | struct task_struct *tsk = current; | 182 | struct task_struct *tsk = current; |
| 180 | struct ring_buffer_event *event = NULL; | 183 | struct ring_buffer_event *event = NULL; |
| 184 | struct ring_buffer *buffer = NULL; | ||
| 181 | struct blk_io_trace *t; | 185 | struct blk_io_trace *t; |
| 182 | unsigned long flags = 0; | 186 | unsigned long flags = 0; |
| 183 | unsigned long *sequence; | 187 | unsigned long *sequence; |
| @@ -203,8 +207,9 @@ static void __blk_add_trace(struct blk_trace *bt, sector_t sector, int bytes, | |||
| 203 | if (blk_tracer) { | 207 | if (blk_tracer) { |
| 204 | tracing_record_cmdline(current); | 208 | tracing_record_cmdline(current); |
| 205 | 209 | ||
| 210 | buffer = blk_tr->buffer; | ||
| 206 | pc = preempt_count(); | 211 | pc = preempt_count(); |
| 207 | event = trace_buffer_lock_reserve(blk_tr, TRACE_BLK, | 212 | event = trace_buffer_lock_reserve(buffer, TRACE_BLK, |
| 208 | sizeof(*t) + pdu_len, | 213 | sizeof(*t) + pdu_len, |
| 209 | 0, pc); | 214 | 0, pc); |
| 210 | if (!event) | 215 | if (!event) |
| @@ -251,7 +256,7 @@ record_it: | |||
| 251 | memcpy((void *) t + sizeof(*t), pdu_data, pdu_len); | 256 | memcpy((void *) t + sizeof(*t), pdu_data, pdu_len); |
| 252 | 257 | ||
| 253 | if (blk_tracer) { | 258 | if (blk_tracer) { |
| 254 | trace_buffer_unlock_commit(blk_tr, event, 0, pc); | 259 | trace_buffer_unlock_commit(buffer, event, 0, pc); |
| 255 | return; | 260 | return; |
| 256 | } | 261 | } |
| 257 | } | 262 | } |
| @@ -266,8 +271,8 @@ static void blk_trace_free(struct blk_trace *bt) | |||
| 266 | { | 271 | { |
| 267 | debugfs_remove(bt->msg_file); | 272 | debugfs_remove(bt->msg_file); |
| 268 | debugfs_remove(bt->dropped_file); | 273 | debugfs_remove(bt->dropped_file); |
| 269 | debugfs_remove(bt->dir); | ||
| 270 | relay_close(bt->rchan); | 274 | relay_close(bt->rchan); |
| 275 | debugfs_remove(bt->dir); | ||
| 271 | free_percpu(bt->sequence); | 276 | free_percpu(bt->sequence); |
| 272 | free_percpu(bt->msg_data); | 277 | free_percpu(bt->msg_data); |
| 273 | kfree(bt); | 278 | kfree(bt); |
| @@ -377,18 +382,8 @@ static int blk_subbuf_start_callback(struct rchan_buf *buf, void *subbuf, | |||
| 377 | 382 | ||
| 378 | static int blk_remove_buf_file_callback(struct dentry *dentry) | 383 | static int blk_remove_buf_file_callback(struct dentry *dentry) |
| 379 | { | 384 | { |
| 380 | struct dentry *parent = dentry->d_parent; | ||
| 381 | debugfs_remove(dentry); | 385 | debugfs_remove(dentry); |
| 382 | 386 | ||
| 383 | /* | ||
| 384 | * this will fail for all but the last file, but that is ok. what we | ||
| 385 | * care about is the top level buts->name directory going away, when | ||
| 386 | * the last trace file is gone. Then we don't have to rmdir() that | ||
| 387 | * manually on trace stop, so it nicely solves the issue with | ||
| 388 | * force killing of running traces. | ||
| 389 | */ | ||
| 390 | |||
| 391 | debugfs_remove(parent); | ||
| 392 | return 0; | 387 | return 0; |
| 393 | } | 388 | } |
| 394 | 389 | ||
diff --git a/kernel/trace/ftrace.c b/kernel/trace/ftrace.c index f3716bf04df6..c71e91bf7372 100644 --- a/kernel/trace/ftrace.c +++ b/kernel/trace/ftrace.c | |||
| @@ -768,7 +768,7 @@ static struct tracer_stat function_stats __initdata = { | |||
| 768 | .stat_show = function_stat_show | 768 | .stat_show = function_stat_show |
| 769 | }; | 769 | }; |
| 770 | 770 | ||
| 771 | static void ftrace_profile_debugfs(struct dentry *d_tracer) | 771 | static __init void ftrace_profile_debugfs(struct dentry *d_tracer) |
| 772 | { | 772 | { |
| 773 | struct ftrace_profile_stat *stat; | 773 | struct ftrace_profile_stat *stat; |
| 774 | struct dentry *entry; | 774 | struct dentry *entry; |
| @@ -786,7 +786,6 @@ static void ftrace_profile_debugfs(struct dentry *d_tracer) | |||
| 786 | * The files created are permanent, if something happens | 786 | * The files created are permanent, if something happens |
| 787 | * we still do not free memory. | 787 | * we still do not free memory. |
| 788 | */ | 788 | */ |
| 789 | kfree(stat); | ||
| 790 | WARN(1, | 789 | WARN(1, |
| 791 | "Could not allocate stat file for cpu %d\n", | 790 | "Could not allocate stat file for cpu %d\n", |
| 792 | cpu); | 791 | cpu); |
| @@ -813,7 +812,7 @@ static void ftrace_profile_debugfs(struct dentry *d_tracer) | |||
| 813 | } | 812 | } |
| 814 | 813 | ||
| 815 | #else /* CONFIG_FUNCTION_PROFILER */ | 814 | #else /* CONFIG_FUNCTION_PROFILER */ |
| 816 | static void ftrace_profile_debugfs(struct dentry *d_tracer) | 815 | static __init void ftrace_profile_debugfs(struct dentry *d_tracer) |
| 817 | { | 816 | { |
| 818 | } | 817 | } |
| 819 | #endif /* CONFIG_FUNCTION_PROFILER */ | 818 | #endif /* CONFIG_FUNCTION_PROFILER */ |
| @@ -1017,71 +1016,35 @@ static int | |||
| 1017 | __ftrace_replace_code(struct dyn_ftrace *rec, int enable) | 1016 | __ftrace_replace_code(struct dyn_ftrace *rec, int enable) |
| 1018 | { | 1017 | { |
| 1019 | unsigned long ftrace_addr; | 1018 | unsigned long ftrace_addr; |
| 1020 | unsigned long ip, fl; | 1019 | unsigned long flag = 0UL; |
| 1021 | 1020 | ||
| 1022 | ftrace_addr = (unsigned long)FTRACE_ADDR; | 1021 | ftrace_addr = (unsigned long)FTRACE_ADDR; |
| 1023 | 1022 | ||
| 1024 | ip = rec->ip; | ||
| 1025 | |||
| 1026 | /* | 1023 | /* |
| 1027 | * If this record is not to be traced and | 1024 | * If this record is not to be traced or we want to disable it, |
| 1028 | * it is not enabled then do nothing. | 1025 | * then disable it. |
| 1029 | * | 1026 | * |
| 1030 | * If this record is not to be traced and | 1027 | * If we want to enable it and filtering is off, then enable it. |
| 1031 | * it is enabled then disable it. | ||
| 1032 | * | 1028 | * |
| 1029 | * If we want to enable it and filtering is on, enable it only if | ||
| 1030 | * it's filtered | ||
| 1033 | */ | 1031 | */ |
| 1034 | if (rec->flags & FTRACE_FL_NOTRACE) { | 1032 | if (enable && !(rec->flags & FTRACE_FL_NOTRACE)) { |
| 1035 | if (rec->flags & FTRACE_FL_ENABLED) | 1033 | if (!ftrace_filtered || (rec->flags & FTRACE_FL_FILTER)) |
| 1036 | rec->flags &= ~FTRACE_FL_ENABLED; | 1034 | flag = FTRACE_FL_ENABLED; |
| 1037 | else | 1035 | } |
| 1038 | return 0; | ||
| 1039 | |||
| 1040 | } else if (ftrace_filtered && enable) { | ||
| 1041 | /* | ||
| 1042 | * Filtering is on: | ||
| 1043 | */ | ||
| 1044 | |||
| 1045 | fl = rec->flags & (FTRACE_FL_FILTER | FTRACE_FL_ENABLED); | ||
| 1046 | |||
| 1047 | /* Record is filtered and enabled, do nothing */ | ||
| 1048 | if (fl == (FTRACE_FL_FILTER | FTRACE_FL_ENABLED)) | ||
| 1049 | return 0; | ||
| 1050 | |||
| 1051 | /* Record is not filtered or enabled, do nothing */ | ||
| 1052 | if (!fl) | ||
| 1053 | return 0; | ||
| 1054 | |||
| 1055 | /* Record is not filtered but enabled, disable it */ | ||
| 1056 | if (fl == FTRACE_FL_ENABLED) | ||
| 1057 | rec->flags &= ~FTRACE_FL_ENABLED; | ||
| 1058 | else | ||
| 1059 | /* Otherwise record is filtered but not enabled, enable it */ | ||
| 1060 | rec->flags |= FTRACE_FL_ENABLED; | ||
| 1061 | } else { | ||
| 1062 | /* Disable or not filtered */ | ||
| 1063 | |||
| 1064 | if (enable) { | ||
| 1065 | /* if record is enabled, do nothing */ | ||
| 1066 | if (rec->flags & FTRACE_FL_ENABLED) | ||
| 1067 | return 0; | ||
| 1068 | |||
| 1069 | rec->flags |= FTRACE_FL_ENABLED; | ||
| 1070 | |||
| 1071 | } else { | ||
| 1072 | 1036 | ||
| 1073 | /* if record is not enabled, do nothing */ | 1037 | /* If the state of this record hasn't changed, then do nothing */ |
| 1074 | if (!(rec->flags & FTRACE_FL_ENABLED)) | 1038 | if ((rec->flags & FTRACE_FL_ENABLED) == flag) |
| 1075 | return 0; | 1039 | return 0; |
| 1076 | 1040 | ||
| 1077 | rec->flags &= ~FTRACE_FL_ENABLED; | 1041 | if (flag) { |
| 1078 | } | 1042 | rec->flags |= FTRACE_FL_ENABLED; |
| 1043 | return ftrace_make_call(rec, ftrace_addr); | ||
| 1079 | } | 1044 | } |
| 1080 | 1045 | ||
| 1081 | if (rec->flags & FTRACE_FL_ENABLED) | 1046 | rec->flags &= ~FTRACE_FL_ENABLED; |
| 1082 | return ftrace_make_call(rec, ftrace_addr); | 1047 | return ftrace_make_nop(NULL, rec, ftrace_addr); |
| 1083 | else | ||
| 1084 | return ftrace_make_nop(NULL, rec, ftrace_addr); | ||
| 1085 | } | 1048 | } |
| 1086 | 1049 | ||
| 1087 | static void ftrace_replace_code(int enable) | 1050 | static void ftrace_replace_code(int enable) |
| @@ -1360,11 +1323,10 @@ static int __init ftrace_dyn_table_alloc(unsigned long num_to_init) | |||
| 1360 | 1323 | ||
| 1361 | enum { | 1324 | enum { |
| 1362 | FTRACE_ITER_FILTER = (1 << 0), | 1325 | FTRACE_ITER_FILTER = (1 << 0), |
| 1363 | FTRACE_ITER_CONT = (1 << 1), | 1326 | FTRACE_ITER_NOTRACE = (1 << 1), |
| 1364 | FTRACE_ITER_NOTRACE = (1 << 2), | 1327 | FTRACE_ITER_FAILURES = (1 << 2), |
| 1365 | FTRACE_ITER_FAILURES = (1 << 3), | 1328 | FTRACE_ITER_PRINTALL = (1 << 3), |
| 1366 | FTRACE_ITER_PRINTALL = (1 << 4), | 1329 | FTRACE_ITER_HASH = (1 << 4), |
| 1367 | FTRACE_ITER_HASH = (1 << 5), | ||
| 1368 | }; | 1330 | }; |
| 1369 | 1331 | ||
| 1370 | #define FTRACE_BUFF_MAX (KSYM_SYMBOL_LEN+4) /* room for wildcards */ | 1332 | #define FTRACE_BUFF_MAX (KSYM_SYMBOL_LEN+4) /* room for wildcards */ |
| @@ -1374,9 +1336,7 @@ struct ftrace_iterator { | |||
| 1374 | int hidx; | 1336 | int hidx; |
| 1375 | int idx; | 1337 | int idx; |
| 1376 | unsigned flags; | 1338 | unsigned flags; |
| 1377 | unsigned char buffer[FTRACE_BUFF_MAX+1]; | 1339 | struct trace_parser parser; |
| 1378 | unsigned buffer_idx; | ||
| 1379 | unsigned filtered; | ||
| 1380 | }; | 1340 | }; |
| 1381 | 1341 | ||
| 1382 | static void * | 1342 | static void * |
| @@ -1439,18 +1399,13 @@ static int t_hash_show(struct seq_file *m, void *v) | |||
| 1439 | { | 1399 | { |
| 1440 | struct ftrace_func_probe *rec; | 1400 | struct ftrace_func_probe *rec; |
| 1441 | struct hlist_node *hnd = v; | 1401 | struct hlist_node *hnd = v; |
| 1442 | char str[KSYM_SYMBOL_LEN]; | ||
| 1443 | 1402 | ||
| 1444 | rec = hlist_entry(hnd, struct ftrace_func_probe, node); | 1403 | rec = hlist_entry(hnd, struct ftrace_func_probe, node); |
| 1445 | 1404 | ||
| 1446 | if (rec->ops->print) | 1405 | if (rec->ops->print) |
| 1447 | return rec->ops->print(m, rec->ip, rec->ops, rec->data); | 1406 | return rec->ops->print(m, rec->ip, rec->ops, rec->data); |
| 1448 | 1407 | ||
| 1449 | kallsyms_lookup(rec->ip, NULL, NULL, NULL, str); | 1408 | seq_printf(m, "%ps:%ps", (void *)rec->ip, (void *)rec->ops->func); |
| 1450 | seq_printf(m, "%s:", str); | ||
| 1451 | |||
| 1452 | kallsyms_lookup((unsigned long)rec->ops->func, NULL, NULL, NULL, str); | ||
| 1453 | seq_printf(m, "%s", str); | ||
| 1454 | 1409 | ||
| 1455 | if (rec->data) | 1410 | if (rec->data) |
| 1456 | seq_printf(m, ":%p", rec->data); | 1411 | seq_printf(m, ":%p", rec->data); |
| @@ -1548,7 +1503,6 @@ static int t_show(struct seq_file *m, void *v) | |||
| 1548 | { | 1503 | { |
| 1549 | struct ftrace_iterator *iter = m->private; | 1504 | struct ftrace_iterator *iter = m->private; |
| 1550 | struct dyn_ftrace *rec = v; | 1505 | struct dyn_ftrace *rec = v; |
| 1551 | char str[KSYM_SYMBOL_LEN]; | ||
| 1552 | 1506 | ||
| 1553 | if (iter->flags & FTRACE_ITER_HASH) | 1507 | if (iter->flags & FTRACE_ITER_HASH) |
| 1554 | return t_hash_show(m, v); | 1508 | return t_hash_show(m, v); |
| @@ -1561,9 +1515,7 @@ static int t_show(struct seq_file *m, void *v) | |||
| 1561 | if (!rec) | 1515 | if (!rec) |
| 1562 | return 0; | 1516 | return 0; |
| 1563 | 1517 | ||
| 1564 | kallsyms_lookup(rec->ip, NULL, NULL, NULL, str); | 1518 | seq_printf(m, "%ps\n", (void *)rec->ip); |
| 1565 | |||
| 1566 | seq_printf(m, "%s\n", str); | ||
| 1567 | 1519 | ||
| 1568 | return 0; | 1520 | return 0; |
| 1569 | } | 1521 | } |
| @@ -1602,17 +1554,6 @@ ftrace_avail_open(struct inode *inode, struct file *file) | |||
| 1602 | return ret; | 1554 | return ret; |
| 1603 | } | 1555 | } |
| 1604 | 1556 | ||
| 1605 | int ftrace_avail_release(struct inode *inode, struct file *file) | ||
| 1606 | { | ||
| 1607 | struct seq_file *m = (struct seq_file *)file->private_data; | ||
| 1608 | struct ftrace_iterator *iter = m->private; | ||
| 1609 | |||
| 1610 | seq_release(inode, file); | ||
| 1611 | kfree(iter); | ||
| 1612 | |||
| 1613 | return 0; | ||
| 1614 | } | ||
| 1615 | |||
| 1616 | static int | 1557 | static int |
| 1617 | ftrace_failures_open(struct inode *inode, struct file *file) | 1558 | ftrace_failures_open(struct inode *inode, struct file *file) |
| 1618 | { | 1559 | { |
| @@ -1661,9 +1602,14 @@ ftrace_regex_open(struct inode *inode, struct file *file, int enable) | |||
| 1661 | if (!iter) | 1602 | if (!iter) |
| 1662 | return -ENOMEM; | 1603 | return -ENOMEM; |
| 1663 | 1604 | ||
| 1605 | if (trace_parser_get_init(&iter->parser, FTRACE_BUFF_MAX)) { | ||
| 1606 | kfree(iter); | ||
| 1607 | return -ENOMEM; | ||
| 1608 | } | ||
| 1609 | |||
| 1664 | mutex_lock(&ftrace_regex_lock); | 1610 | mutex_lock(&ftrace_regex_lock); |
| 1665 | if ((file->f_mode & FMODE_WRITE) && | 1611 | if ((file->f_mode & FMODE_WRITE) && |
| 1666 | !(file->f_flags & O_APPEND)) | 1612 | (file->f_flags & O_TRUNC)) |
| 1667 | ftrace_filter_reset(enable); | 1613 | ftrace_filter_reset(enable); |
| 1668 | 1614 | ||
| 1669 | if (file->f_mode & FMODE_READ) { | 1615 | if (file->f_mode & FMODE_READ) { |
| @@ -2116,9 +2062,9 @@ __unregister_ftrace_function_probe(char *glob, struct ftrace_probe_ops *ops, | |||
| 2116 | int i, len = 0; | 2062 | int i, len = 0; |
| 2117 | char *search; | 2063 | char *search; |
| 2118 | 2064 | ||
| 2119 | if (glob && (strcmp(glob, "*") || !strlen(glob))) | 2065 | if (glob && (strcmp(glob, "*") == 0 || !strlen(glob))) |
| 2120 | glob = NULL; | 2066 | glob = NULL; |
| 2121 | else { | 2067 | else if (glob) { |
| 2122 | int not; | 2068 | int not; |
| 2123 | 2069 | ||
| 2124 | type = ftrace_setup_glob(glob, strlen(glob), &search, ¬); | 2070 | type = ftrace_setup_glob(glob, strlen(glob), &search, ¬); |
| @@ -2253,9 +2199,8 @@ ftrace_regex_write(struct file *file, const char __user *ubuf, | |||
| 2253 | size_t cnt, loff_t *ppos, int enable) | 2199 | size_t cnt, loff_t *ppos, int enable) |
| 2254 | { | 2200 | { |
| 2255 | struct ftrace_iterator *iter; | 2201 | struct ftrace_iterator *iter; |
| 2256 | char ch; | 2202 | struct trace_parser *parser; |
| 2257 | size_t read = 0; | 2203 | ssize_t ret, read; |
| 2258 | ssize_t ret; | ||
| 2259 | 2204 | ||
| 2260 | if (!cnt || cnt < 0) | 2205 | if (!cnt || cnt < 0) |
| 2261 | return 0; | 2206 | return 0; |
| @@ -2268,68 +2213,23 @@ ftrace_regex_write(struct file *file, const char __user *ubuf, | |||
| 2268 | } else | 2213 | } else |
| 2269 | iter = file->private_data; | 2214 | iter = file->private_data; |
| 2270 | 2215 | ||
| 2271 | if (!*ppos) { | 2216 | parser = &iter->parser; |
| 2272 | iter->flags &= ~FTRACE_ITER_CONT; | 2217 | read = trace_get_user(parser, ubuf, cnt, ppos); |
| 2273 | iter->buffer_idx = 0; | ||
| 2274 | } | ||
| 2275 | |||
| 2276 | ret = get_user(ch, ubuf++); | ||
| 2277 | if (ret) | ||
| 2278 | goto out; | ||
| 2279 | read++; | ||
| 2280 | cnt--; | ||
| 2281 | |||
| 2282 | if (!(iter->flags & ~FTRACE_ITER_CONT)) { | ||
| 2283 | /* skip white space */ | ||
| 2284 | while (cnt && isspace(ch)) { | ||
| 2285 | ret = get_user(ch, ubuf++); | ||
| 2286 | if (ret) | ||
| 2287 | goto out; | ||
| 2288 | read++; | ||
| 2289 | cnt--; | ||
| 2290 | } | ||
| 2291 | |||
| 2292 | if (isspace(ch)) { | ||
| 2293 | file->f_pos += read; | ||
| 2294 | ret = read; | ||
| 2295 | goto out; | ||
| 2296 | } | ||
| 2297 | 2218 | ||
| 2298 | iter->buffer_idx = 0; | 2219 | if (trace_parser_loaded(parser) && |
| 2299 | } | 2220 | !trace_parser_cont(parser)) { |
| 2300 | 2221 | ret = ftrace_process_regex(parser->buffer, | |
| 2301 | while (cnt && !isspace(ch)) { | 2222 | parser->idx, enable); |
| 2302 | if (iter->buffer_idx < FTRACE_BUFF_MAX) | ||
| 2303 | iter->buffer[iter->buffer_idx++] = ch; | ||
| 2304 | else { | ||
| 2305 | ret = -EINVAL; | ||
| 2306 | goto out; | ||
| 2307 | } | ||
| 2308 | ret = get_user(ch, ubuf++); | ||
| 2309 | if (ret) | 2223 | if (ret) |
| 2310 | goto out; | 2224 | goto out; |
| 2311 | read++; | ||
| 2312 | cnt--; | ||
| 2313 | } | ||
| 2314 | 2225 | ||
| 2315 | if (isspace(ch)) { | 2226 | trace_parser_clear(parser); |
| 2316 | iter->filtered++; | 2227 | } |
| 2317 | iter->buffer[iter->buffer_idx] = 0; | ||
| 2318 | ret = ftrace_process_regex(iter->buffer, | ||
| 2319 | iter->buffer_idx, enable); | ||
| 2320 | if (ret) | ||
| 2321 | goto out; | ||
| 2322 | iter->buffer_idx = 0; | ||
| 2323 | } else | ||
| 2324 | iter->flags |= FTRACE_ITER_CONT; | ||
| 2325 | |||
| 2326 | |||
| 2327 | file->f_pos += read; | ||
| 2328 | 2228 | ||
| 2329 | ret = read; | 2229 | ret = read; |
| 2330 | out: | ||
| 2331 | mutex_unlock(&ftrace_regex_lock); | ||
| 2332 | 2230 | ||
| 2231 | mutex_unlock(&ftrace_regex_lock); | ||
| 2232 | out: | ||
| 2333 | return ret; | 2233 | return ret; |
| 2334 | } | 2234 | } |
| 2335 | 2235 | ||
| @@ -2434,6 +2334,7 @@ ftrace_regex_release(struct inode *inode, struct file *file, int enable) | |||
| 2434 | { | 2334 | { |
| 2435 | struct seq_file *m = (struct seq_file *)file->private_data; | 2335 | struct seq_file *m = (struct seq_file *)file->private_data; |
| 2436 | struct ftrace_iterator *iter; | 2336 | struct ftrace_iterator *iter; |
| 2337 | struct trace_parser *parser; | ||
| 2437 | 2338 | ||
| 2438 | mutex_lock(&ftrace_regex_lock); | 2339 | mutex_lock(&ftrace_regex_lock); |
| 2439 | if (file->f_mode & FMODE_READ) { | 2340 | if (file->f_mode & FMODE_READ) { |
| @@ -2443,10 +2344,10 @@ ftrace_regex_release(struct inode *inode, struct file *file, int enable) | |||
| 2443 | } else | 2344 | } else |
| 2444 | iter = file->private_data; | 2345 | iter = file->private_data; |
| 2445 | 2346 | ||
| 2446 | if (iter->buffer_idx) { | 2347 | parser = &iter->parser; |
| 2447 | iter->filtered++; | 2348 | if (trace_parser_loaded(parser)) { |
| 2448 | iter->buffer[iter->buffer_idx] = 0; | 2349 | parser->buffer[parser->idx] = 0; |
| 2449 | ftrace_match_records(iter->buffer, iter->buffer_idx, enable); | 2350 | ftrace_match_records(parser->buffer, parser->idx, enable); |
| 2450 | } | 2351 | } |
| 2451 | 2352 | ||
| 2452 | mutex_lock(&ftrace_lock); | 2353 | mutex_lock(&ftrace_lock); |
| @@ -2454,7 +2355,9 @@ ftrace_regex_release(struct inode *inode, struct file *file, int enable) | |||
| 2454 | ftrace_run_update_code(FTRACE_ENABLE_CALLS); | 2355 | ftrace_run_update_code(FTRACE_ENABLE_CALLS); |
| 2455 | mutex_unlock(&ftrace_lock); | 2356 | mutex_unlock(&ftrace_lock); |
| 2456 | 2357 | ||
| 2358 | trace_parser_put(parser); | ||
| 2457 | kfree(iter); | 2359 | kfree(iter); |
| 2360 | |||
| 2458 | mutex_unlock(&ftrace_regex_lock); | 2361 | mutex_unlock(&ftrace_regex_lock); |
| 2459 | return 0; | 2362 | return 0; |
| 2460 | } | 2363 | } |
| @@ -2475,14 +2378,14 @@ static const struct file_operations ftrace_avail_fops = { | |||
| 2475 | .open = ftrace_avail_open, | 2378 | .open = ftrace_avail_open, |
| 2476 | .read = seq_read, | 2379 | .read = seq_read, |
| 2477 | .llseek = seq_lseek, | 2380 | .llseek = seq_lseek, |
| 2478 | .release = ftrace_avail_release, | 2381 | .release = seq_release_private, |
| 2479 | }; | 2382 | }; |
| 2480 | 2383 | ||
| 2481 | static const struct file_operations ftrace_failures_fops = { | 2384 | static const struct file_operations ftrace_failures_fops = { |
| 2482 | .open = ftrace_failures_open, | 2385 | .open = ftrace_failures_open, |
| 2483 | .read = seq_read, | 2386 | .read = seq_read, |
| 2484 | .llseek = seq_lseek, | 2387 | .llseek = seq_lseek, |
| 2485 | .release = ftrace_avail_release, | 2388 | .release = seq_release_private, |
| 2486 | }; | 2389 | }; |
| 2487 | 2390 | ||
| 2488 | static const struct file_operations ftrace_filter_fops = { | 2391 | static const struct file_operations ftrace_filter_fops = { |
| @@ -2511,11 +2414,9 @@ unsigned long ftrace_graph_funcs[FTRACE_GRAPH_MAX_FUNCS] __read_mostly; | |||
| 2511 | static void * | 2414 | static void * |
| 2512 | __g_next(struct seq_file *m, loff_t *pos) | 2415 | __g_next(struct seq_file *m, loff_t *pos) |
| 2513 | { | 2416 | { |
| 2514 | unsigned long *array = m->private; | ||
| 2515 | |||
| 2516 | if (*pos >= ftrace_graph_count) | 2417 | if (*pos >= ftrace_graph_count) |
| 2517 | return NULL; | 2418 | return NULL; |
| 2518 | return &array[*pos]; | 2419 | return &ftrace_graph_funcs[*pos]; |
| 2519 | } | 2420 | } |
| 2520 | 2421 | ||
| 2521 | static void * | 2422 | static void * |
| @@ -2544,7 +2445,6 @@ static void g_stop(struct seq_file *m, void *p) | |||
| 2544 | static int g_show(struct seq_file *m, void *v) | 2445 | static int g_show(struct seq_file *m, void *v) |
| 2545 | { | 2446 | { |
| 2546 | unsigned long *ptr = v; | 2447 | unsigned long *ptr = v; |
| 2547 | char str[KSYM_SYMBOL_LEN]; | ||
| 2548 | 2448 | ||
| 2549 | if (!ptr) | 2449 | if (!ptr) |
| 2550 | return 0; | 2450 | return 0; |
| @@ -2554,9 +2454,7 @@ static int g_show(struct seq_file *m, void *v) | |||
| 2554 | return 0; | 2454 | return 0; |
| 2555 | } | 2455 | } |
| 2556 | 2456 | ||
| 2557 | kallsyms_lookup(*ptr, NULL, NULL, NULL, str); | 2457 | seq_printf(m, "%ps\n", (void *)*ptr); |
| 2558 | |||
| 2559 | seq_printf(m, "%s\n", str); | ||
| 2560 | 2458 | ||
| 2561 | return 0; | 2459 | return 0; |
| 2562 | } | 2460 | } |
| @@ -2578,25 +2476,27 @@ ftrace_graph_open(struct inode *inode, struct file *file) | |||
| 2578 | 2476 | ||
| 2579 | mutex_lock(&graph_lock); | 2477 | mutex_lock(&graph_lock); |
| 2580 | if ((file->f_mode & FMODE_WRITE) && | 2478 | if ((file->f_mode & FMODE_WRITE) && |
| 2581 | !(file->f_flags & O_APPEND)) { | 2479 | (file->f_flags & O_TRUNC)) { |
| 2582 | ftrace_graph_count = 0; | 2480 | ftrace_graph_count = 0; |
| 2583 | memset(ftrace_graph_funcs, 0, sizeof(ftrace_graph_funcs)); | 2481 | memset(ftrace_graph_funcs, 0, sizeof(ftrace_graph_funcs)); |
| 2584 | } | 2482 | } |
| 2483 | mutex_unlock(&graph_lock); | ||
| 2585 | 2484 | ||
| 2586 | if (file->f_mode & FMODE_READ) { | 2485 | if (file->f_mode & FMODE_READ) |
| 2587 | ret = seq_open(file, &ftrace_graph_seq_ops); | 2486 | ret = seq_open(file, &ftrace_graph_seq_ops); |
| 2588 | if (!ret) { | ||
| 2589 | struct seq_file *m = file->private_data; | ||
| 2590 | m->private = ftrace_graph_funcs; | ||
| 2591 | } | ||
| 2592 | } else | ||
| 2593 | file->private_data = ftrace_graph_funcs; | ||
| 2594 | mutex_unlock(&graph_lock); | ||
| 2595 | 2487 | ||
| 2596 | return ret; | 2488 | return ret; |
| 2597 | } | 2489 | } |
| 2598 | 2490 | ||
| 2599 | static int | 2491 | static int |
| 2492 | ftrace_graph_release(struct inode *inode, struct file *file) | ||
| 2493 | { | ||
| 2494 | if (file->f_mode & FMODE_READ) | ||
| 2495 | seq_release(inode, file); | ||
| 2496 | return 0; | ||
| 2497 | } | ||
| 2498 | |||
| 2499 | static int | ||
| 2600 | ftrace_set_func(unsigned long *array, int *idx, char *buffer) | 2500 | ftrace_set_func(unsigned long *array, int *idx, char *buffer) |
| 2601 | { | 2501 | { |
| 2602 | struct dyn_ftrace *rec; | 2502 | struct dyn_ftrace *rec; |
| @@ -2651,12 +2551,9 @@ static ssize_t | |||
| 2651 | ftrace_graph_write(struct file *file, const char __user *ubuf, | 2551 | ftrace_graph_write(struct file *file, const char __user *ubuf, |
| 2652 | size_t cnt, loff_t *ppos) | 2552 | size_t cnt, loff_t *ppos) |
| 2653 | { | 2553 | { |
| 2654 | unsigned char buffer[FTRACE_BUFF_MAX+1]; | 2554 | struct trace_parser parser; |
| 2655 | unsigned long *array; | ||
| 2656 | size_t read = 0; | 2555 | size_t read = 0; |
| 2657 | ssize_t ret; | 2556 | ssize_t ret; |
| 2658 | int index = 0; | ||
| 2659 | char ch; | ||
| 2660 | 2557 | ||
| 2661 | if (!cnt || cnt < 0) | 2558 | if (!cnt || cnt < 0) |
| 2662 | return 0; | 2559 | return 0; |
| @@ -2668,66 +2565,36 @@ ftrace_graph_write(struct file *file, const char __user *ubuf, | |||
| 2668 | goto out; | 2565 | goto out; |
| 2669 | } | 2566 | } |
| 2670 | 2567 | ||
| 2671 | if (file->f_mode & FMODE_READ) { | 2568 | if (trace_parser_get_init(&parser, FTRACE_BUFF_MAX)) { |
| 2672 | struct seq_file *m = file->private_data; | 2569 | ret = -ENOMEM; |
| 2673 | array = m->private; | ||
| 2674 | } else | ||
| 2675 | array = file->private_data; | ||
| 2676 | |||
| 2677 | ret = get_user(ch, ubuf++); | ||
| 2678 | if (ret) | ||
| 2679 | goto out; | 2570 | goto out; |
| 2680 | read++; | ||
| 2681 | cnt--; | ||
| 2682 | |||
| 2683 | /* skip white space */ | ||
| 2684 | while (cnt && isspace(ch)) { | ||
| 2685 | ret = get_user(ch, ubuf++); | ||
| 2686 | if (ret) | ||
| 2687 | goto out; | ||
| 2688 | read++; | ||
| 2689 | cnt--; | ||
| 2690 | } | 2571 | } |
| 2691 | 2572 | ||
| 2692 | if (isspace(ch)) { | 2573 | read = trace_get_user(&parser, ubuf, cnt, ppos); |
| 2693 | *ppos += read; | ||
| 2694 | ret = read; | ||
| 2695 | goto out; | ||
| 2696 | } | ||
| 2697 | 2574 | ||
| 2698 | while (cnt && !isspace(ch)) { | 2575 | if (trace_parser_loaded((&parser))) { |
| 2699 | if (index < FTRACE_BUFF_MAX) | 2576 | parser.buffer[parser.idx] = 0; |
| 2700 | buffer[index++] = ch; | 2577 | |
| 2701 | else { | 2578 | /* we allow only one expression at a time */ |
| 2702 | ret = -EINVAL; | 2579 | ret = ftrace_set_func(ftrace_graph_funcs, &ftrace_graph_count, |
| 2703 | goto out; | 2580 | parser.buffer); |
| 2704 | } | ||
| 2705 | ret = get_user(ch, ubuf++); | ||
| 2706 | if (ret) | 2581 | if (ret) |
| 2707 | goto out; | 2582 | goto out; |
| 2708 | read++; | ||
| 2709 | cnt--; | ||
| 2710 | } | 2583 | } |
| 2711 | buffer[index] = 0; | ||
| 2712 | |||
| 2713 | /* we allow only one expression at a time */ | ||
| 2714 | ret = ftrace_set_func(array, &ftrace_graph_count, buffer); | ||
| 2715 | if (ret) | ||
| 2716 | goto out; | ||
| 2717 | |||
| 2718 | file->f_pos += read; | ||
| 2719 | 2584 | ||
| 2720 | ret = read; | 2585 | ret = read; |
| 2721 | out: | 2586 | out: |
| 2587 | trace_parser_put(&parser); | ||
| 2722 | mutex_unlock(&graph_lock); | 2588 | mutex_unlock(&graph_lock); |
| 2723 | 2589 | ||
| 2724 | return ret; | 2590 | return ret; |
| 2725 | } | 2591 | } |
| 2726 | 2592 | ||
| 2727 | static const struct file_operations ftrace_graph_fops = { | 2593 | static const struct file_operations ftrace_graph_fops = { |
| 2728 | .open = ftrace_graph_open, | 2594 | .open = ftrace_graph_open, |
| 2729 | .read = seq_read, | 2595 | .read = seq_read, |
| 2730 | .write = ftrace_graph_write, | 2596 | .write = ftrace_graph_write, |
| 2597 | .release = ftrace_graph_release, | ||
| 2731 | }; | 2598 | }; |
| 2732 | #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ | 2599 | #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ |
| 2733 | 2600 | ||
| @@ -3160,10 +3027,10 @@ ftrace_enable_sysctl(struct ctl_table *table, int write, | |||
| 3160 | 3027 | ||
| 3161 | ret = proc_dointvec(table, write, file, buffer, lenp, ppos); | 3028 | ret = proc_dointvec(table, write, file, buffer, lenp, ppos); |
| 3162 | 3029 | ||
| 3163 | if (ret || !write || (last_ftrace_enabled == ftrace_enabled)) | 3030 | if (ret || !write || (last_ftrace_enabled == !!ftrace_enabled)) |
| 3164 | goto out; | 3031 | goto out; |
| 3165 | 3032 | ||
| 3166 | last_ftrace_enabled = ftrace_enabled; | 3033 | last_ftrace_enabled = !!ftrace_enabled; |
| 3167 | 3034 | ||
| 3168 | if (ftrace_enabled) { | 3035 | if (ftrace_enabled) { |
| 3169 | 3036 | ||
diff --git a/kernel/trace/kmemtrace.c b/kernel/trace/kmemtrace.c index 1edaa9516e81..81b1645c8549 100644 --- a/kernel/trace/kmemtrace.c +++ b/kernel/trace/kmemtrace.c | |||
| @@ -183,11 +183,9 @@ static void kmemtrace_stop_probes(void) | |||
| 183 | 183 | ||
| 184 | static int kmem_trace_init(struct trace_array *tr) | 184 | static int kmem_trace_init(struct trace_array *tr) |
| 185 | { | 185 | { |
| 186 | int cpu; | ||
| 187 | kmemtrace_array = tr; | 186 | kmemtrace_array = tr; |
| 188 | 187 | ||
| 189 | for_each_cpu(cpu, cpu_possible_mask) | 188 | tracing_reset_online_cpus(tr); |
| 190 | tracing_reset(tr, cpu); | ||
| 191 | 189 | ||
| 192 | kmemtrace_start_probes(); | 190 | kmemtrace_start_probes(); |
| 193 | 191 | ||
| @@ -239,12 +237,52 @@ struct kmemtrace_user_event_alloc { | |||
| 239 | }; | 237 | }; |
| 240 | 238 | ||
| 241 | static enum print_line_t | 239 | static enum print_line_t |
| 242 | kmemtrace_print_alloc_user(struct trace_iterator *iter, | 240 | kmemtrace_print_alloc(struct trace_iterator *iter, int flags) |
| 243 | struct kmemtrace_alloc_entry *entry) | ||
| 244 | { | 241 | { |
| 245 | struct kmemtrace_user_event_alloc *ev_alloc; | ||
| 246 | struct trace_seq *s = &iter->seq; | 242 | struct trace_seq *s = &iter->seq; |
| 243 | struct kmemtrace_alloc_entry *entry; | ||
| 244 | int ret; | ||
| 245 | |||
| 246 | trace_assign_type(entry, iter->ent); | ||
| 247 | |||
| 248 | ret = trace_seq_printf(s, "type_id %d call_site %pF ptr %lu " | ||
| 249 | "bytes_req %lu bytes_alloc %lu gfp_flags %lu node %d\n", | ||
| 250 | entry->type_id, (void *)entry->call_site, (unsigned long)entry->ptr, | ||
| 251 | (unsigned long)entry->bytes_req, (unsigned long)entry->bytes_alloc, | ||
| 252 | (unsigned long)entry->gfp_flags, entry->node); | ||
| 253 | |||
| 254 | if (!ret) | ||
| 255 | return TRACE_TYPE_PARTIAL_LINE; | ||
| 256 | return TRACE_TYPE_HANDLED; | ||
| 257 | } | ||
| 258 | |||
| 259 | static enum print_line_t | ||
| 260 | kmemtrace_print_free(struct trace_iterator *iter, int flags) | ||
| 261 | { | ||
| 262 | struct trace_seq *s = &iter->seq; | ||
| 263 | struct kmemtrace_free_entry *entry; | ||
| 264 | int ret; | ||
| 265 | |||
| 266 | trace_assign_type(entry, iter->ent); | ||
| 267 | |||
| 268 | ret = trace_seq_printf(s, "type_id %d call_site %pF ptr %lu\n", | ||
| 269 | entry->type_id, (void *)entry->call_site, | ||
| 270 | (unsigned long)entry->ptr); | ||
| 271 | |||
| 272 | if (!ret) | ||
| 273 | return TRACE_TYPE_PARTIAL_LINE; | ||
| 274 | return TRACE_TYPE_HANDLED; | ||
| 275 | } | ||
| 276 | |||
| 277 | static enum print_line_t | ||
| 278 | kmemtrace_print_alloc_user(struct trace_iterator *iter, int flags) | ||
| 279 | { | ||
| 280 | struct trace_seq *s = &iter->seq; | ||
| 281 | struct kmemtrace_alloc_entry *entry; | ||
| 247 | struct kmemtrace_user_event *ev; | 282 | struct kmemtrace_user_event *ev; |
| 283 | struct kmemtrace_user_event_alloc *ev_alloc; | ||
| 284 | |||
| 285 | trace_assign_type(entry, iter->ent); | ||
| 248 | 286 | ||
| 249 | ev = trace_seq_reserve(s, sizeof(*ev)); | 287 | ev = trace_seq_reserve(s, sizeof(*ev)); |
| 250 | if (!ev) | 288 | if (!ev) |
| @@ -271,12 +309,14 @@ kmemtrace_print_alloc_user(struct trace_iterator *iter, | |||
| 271 | } | 309 | } |
| 272 | 310 | ||
| 273 | static enum print_line_t | 311 | static enum print_line_t |
| 274 | kmemtrace_print_free_user(struct trace_iterator *iter, | 312 | kmemtrace_print_free_user(struct trace_iterator *iter, int flags) |
| 275 | struct kmemtrace_free_entry *entry) | ||
| 276 | { | 313 | { |
| 277 | struct trace_seq *s = &iter->seq; | 314 | struct trace_seq *s = &iter->seq; |
| 315 | struct kmemtrace_free_entry *entry; | ||
| 278 | struct kmemtrace_user_event *ev; | 316 | struct kmemtrace_user_event *ev; |
| 279 | 317 | ||
| 318 | trace_assign_type(entry, iter->ent); | ||
| 319 | |||
| 280 | ev = trace_seq_reserve(s, sizeof(*ev)); | 320 | ev = trace_seq_reserve(s, sizeof(*ev)); |
| 281 | if (!ev) | 321 | if (!ev) |
| 282 | return TRACE_TYPE_PARTIAL_LINE; | 322 | return TRACE_TYPE_PARTIAL_LINE; |
| @@ -294,12 +334,14 @@ kmemtrace_print_free_user(struct trace_iterator *iter, | |||
| 294 | 334 | ||
| 295 | /* The two other following provide a more minimalistic output */ | 335 | /* The two other following provide a more minimalistic output */ |
| 296 | static enum print_line_t | 336 | static enum print_line_t |
| 297 | kmemtrace_print_alloc_compress(struct trace_iterator *iter, | 337 | kmemtrace_print_alloc_compress(struct trace_iterator *iter) |
| 298 | struct kmemtrace_alloc_entry *entry) | ||
| 299 | { | 338 | { |
| 339 | struct kmemtrace_alloc_entry *entry; | ||
| 300 | struct trace_seq *s = &iter->seq; | 340 | struct trace_seq *s = &iter->seq; |
| 301 | int ret; | 341 | int ret; |
| 302 | 342 | ||
| 343 | trace_assign_type(entry, iter->ent); | ||
| 344 | |||
| 303 | /* Alloc entry */ | 345 | /* Alloc entry */ |
| 304 | ret = trace_seq_printf(s, " + "); | 346 | ret = trace_seq_printf(s, " + "); |
| 305 | if (!ret) | 347 | if (!ret) |
| @@ -345,29 +387,24 @@ kmemtrace_print_alloc_compress(struct trace_iterator *iter, | |||
| 345 | if (!ret) | 387 | if (!ret) |
| 346 | return TRACE_TYPE_PARTIAL_LINE; | 388 | return TRACE_TYPE_PARTIAL_LINE; |
| 347 | 389 | ||
| 348 | /* Node */ | 390 | /* Node and call site*/ |
| 349 | ret = trace_seq_printf(s, "%4d ", entry->node); | 391 | ret = trace_seq_printf(s, "%4d %pf\n", entry->node, |
| 350 | if (!ret) | 392 | (void *)entry->call_site); |
| 351 | return TRACE_TYPE_PARTIAL_LINE; | ||
| 352 | |||
| 353 | /* Call site */ | ||
| 354 | ret = seq_print_ip_sym(s, entry->call_site, 0); | ||
| 355 | if (!ret) | 393 | if (!ret) |
| 356 | return TRACE_TYPE_PARTIAL_LINE; | 394 | return TRACE_TYPE_PARTIAL_LINE; |
| 357 | 395 | ||
| 358 | if (!trace_seq_printf(s, "\n")) | ||
| 359 | return TRACE_TYPE_PARTIAL_LINE; | ||
| 360 | |||
| 361 | return TRACE_TYPE_HANDLED; | 396 | return TRACE_TYPE_HANDLED; |
| 362 | } | 397 | } |
| 363 | 398 | ||
| 364 | static enum print_line_t | 399 | static enum print_line_t |
| 365 | kmemtrace_print_free_compress(struct trace_iterator *iter, | 400 | kmemtrace_print_free_compress(struct trace_iterator *iter) |
| 366 | struct kmemtrace_free_entry *entry) | ||
| 367 | { | 401 | { |
| 402 | struct kmemtrace_free_entry *entry; | ||
| 368 | struct trace_seq *s = &iter->seq; | 403 | struct trace_seq *s = &iter->seq; |
| 369 | int ret; | 404 | int ret; |
| 370 | 405 | ||
| 406 | trace_assign_type(entry, iter->ent); | ||
| 407 | |||
| 371 | /* Free entry */ | 408 | /* Free entry */ |
| 372 | ret = trace_seq_printf(s, " - "); | 409 | ret = trace_seq_printf(s, " - "); |
| 373 | if (!ret) | 410 | if (!ret) |
| @@ -401,19 +438,11 @@ kmemtrace_print_free_compress(struct trace_iterator *iter, | |||
| 401 | if (!ret) | 438 | if (!ret) |
| 402 | return TRACE_TYPE_PARTIAL_LINE; | 439 | return TRACE_TYPE_PARTIAL_LINE; |
| 403 | 440 | ||
| 404 | /* Skip node */ | 441 | /* Skip node and print call site*/ |
| 405 | ret = trace_seq_printf(s, " "); | 442 | ret = trace_seq_printf(s, " %pf\n", (void *)entry->call_site); |
| 406 | if (!ret) | 443 | if (!ret) |
| 407 | return TRACE_TYPE_PARTIAL_LINE; | 444 | return TRACE_TYPE_PARTIAL_LINE; |
| 408 | 445 | ||
| 409 | /* Call site */ | ||
| 410 | ret = seq_print_ip_sym(s, entry->call_site, 0); | ||
| 411 | if (!ret) | ||
| 412 | return TRACE_TYPE_PARTIAL_LINE; | ||
| 413 | |||
| 414 | if (!trace_seq_printf(s, "\n")) | ||
| 415 | return TRACE_TYPE_PARTIAL_LINE; | ||
| 416 | |||
| 417 | return TRACE_TYPE_HANDLED; | 446 | return TRACE_TYPE_HANDLED; |
| 418 | } | 447 | } |
| 419 | 448 | ||
| @@ -421,32 +450,31 @@ static enum print_line_t kmemtrace_print_line(struct trace_iterator *iter) | |||
| 421 | { | 450 | { |
| 422 | struct trace_entry *entry = iter->ent; | 451 | struct trace_entry *entry = iter->ent; |
| 423 | 452 | ||
| 424 | switch (entry->type) { | 453 | if (!(kmem_tracer_flags.val & TRACE_KMEM_OPT_MINIMAL)) |
| 425 | case TRACE_KMEM_ALLOC: { | 454 | return TRACE_TYPE_UNHANDLED; |
| 426 | struct kmemtrace_alloc_entry *field; | ||
| 427 | |||
| 428 | trace_assign_type(field, entry); | ||
| 429 | if (kmem_tracer_flags.val & TRACE_KMEM_OPT_MINIMAL) | ||
| 430 | return kmemtrace_print_alloc_compress(iter, field); | ||
| 431 | else | ||
| 432 | return kmemtrace_print_alloc_user(iter, field); | ||
| 433 | } | ||
| 434 | |||
| 435 | case TRACE_KMEM_FREE: { | ||
| 436 | struct kmemtrace_free_entry *field; | ||
| 437 | |||
| 438 | trace_assign_type(field, entry); | ||
| 439 | if (kmem_tracer_flags.val & TRACE_KMEM_OPT_MINIMAL) | ||
| 440 | return kmemtrace_print_free_compress(iter, field); | ||
| 441 | else | ||
| 442 | return kmemtrace_print_free_user(iter, field); | ||
| 443 | } | ||
| 444 | 455 | ||
| 456 | switch (entry->type) { | ||
| 457 | case TRACE_KMEM_ALLOC: | ||
| 458 | return kmemtrace_print_alloc_compress(iter); | ||
| 459 | case TRACE_KMEM_FREE: | ||
| 460 | return kmemtrace_print_free_compress(iter); | ||
| 445 | default: | 461 | default: |
| 446 | return TRACE_TYPE_UNHANDLED; | 462 | return TRACE_TYPE_UNHANDLED; |
| 447 | } | 463 | } |
| 448 | } | 464 | } |
| 449 | 465 | ||
| 466 | static struct trace_event kmem_trace_alloc = { | ||
| 467 | .type = TRACE_KMEM_ALLOC, | ||
| 468 | .trace = kmemtrace_print_alloc, | ||
| 469 | .binary = kmemtrace_print_alloc_user, | ||
| 470 | }; | ||
| 471 | |||
| 472 | static struct trace_event kmem_trace_free = { | ||
| 473 | .type = TRACE_KMEM_FREE, | ||
| 474 | .trace = kmemtrace_print_free, | ||
| 475 | .binary = kmemtrace_print_free_user, | ||
| 476 | }; | ||
| 477 | |||
| 450 | static struct tracer kmem_tracer __read_mostly = { | 478 | static struct tracer kmem_tracer __read_mostly = { |
| 451 | .name = "kmemtrace", | 479 | .name = "kmemtrace", |
| 452 | .init = kmem_trace_init, | 480 | .init = kmem_trace_init, |
| @@ -463,6 +491,21 @@ void kmemtrace_init(void) | |||
| 463 | 491 | ||
| 464 | static int __init init_kmem_tracer(void) | 492 | static int __init init_kmem_tracer(void) |
| 465 | { | 493 | { |
| 466 | return register_tracer(&kmem_tracer); | 494 | if (!register_ftrace_event(&kmem_trace_alloc)) { |
| 495 | pr_warning("Warning: could not register kmem events\n"); | ||
| 496 | return 1; | ||
| 497 | } | ||
| 498 | |||
| 499 | if (!register_ftrace_event(&kmem_trace_free)) { | ||
| 500 | pr_warning("Warning: could not register kmem events\n"); | ||
| 501 | return 1; | ||
| 502 | } | ||
| 503 | |||
| 504 | if (!register_tracer(&kmem_tracer)) { | ||
| 505 | pr_warning("Warning: could not register the kmem tracer\n"); | ||
| 506 | return 1; | ||
| 507 | } | ||
| 508 | |||
| 509 | return 0; | ||
| 467 | } | 510 | } |
| 468 | device_initcall(init_kmem_tracer); | 511 | device_initcall(init_kmem_tracer); |
diff --git a/kernel/trace/power-traces.c b/kernel/trace/power-traces.c new file mode 100644 index 000000000000..e06c6e3d56a3 --- /dev/null +++ b/kernel/trace/power-traces.c | |||
| @@ -0,0 +1,20 @@ | |||
| 1 | /* | ||
| 2 | * Power trace points | ||
| 3 | * | ||
| 4 | * Copyright (C) 2009 Arjan van de Ven <arjan@linux.intel.com> | ||
| 5 | */ | ||
| 6 | |||
| 7 | #include <linux/string.h> | ||
| 8 | #include <linux/types.h> | ||
| 9 | #include <linux/workqueue.h> | ||
| 10 | #include <linux/sched.h> | ||
| 11 | #include <linux/module.h> | ||
| 12 | #include <linux/slab.h> | ||
| 13 | |||
| 14 | #define CREATE_TRACE_POINTS | ||
| 15 | #include <trace/events/power.h> | ||
| 16 | |||
| 17 | EXPORT_TRACEPOINT_SYMBOL_GPL(power_start); | ||
| 18 | EXPORT_TRACEPOINT_SYMBOL_GPL(power_end); | ||
| 19 | EXPORT_TRACEPOINT_SYMBOL_GPL(power_frequency); | ||
| 20 | |||
diff --git a/kernel/trace/ring_buffer.c b/kernel/trace/ring_buffer.c index bf27bb7a63e2..d4ff01970547 100644 --- a/kernel/trace/ring_buffer.c +++ b/kernel/trace/ring_buffer.c | |||
| @@ -201,8 +201,6 @@ int tracing_is_on(void) | |||
| 201 | } | 201 | } |
| 202 | EXPORT_SYMBOL_GPL(tracing_is_on); | 202 | EXPORT_SYMBOL_GPL(tracing_is_on); |
| 203 | 203 | ||
| 204 | #include "trace.h" | ||
| 205 | |||
| 206 | #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array)) | 204 | #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array)) |
| 207 | #define RB_ALIGNMENT 4U | 205 | #define RB_ALIGNMENT 4U |
| 208 | #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX) | 206 | #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX) |
| @@ -218,17 +216,12 @@ enum { | |||
| 218 | 216 | ||
| 219 | static inline int rb_null_event(struct ring_buffer_event *event) | 217 | static inline int rb_null_event(struct ring_buffer_event *event) |
| 220 | { | 218 | { |
| 221 | return event->type_len == RINGBUF_TYPE_PADDING | 219 | return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta; |
| 222 | && event->time_delta == 0; | ||
| 223 | } | ||
| 224 | |||
| 225 | static inline int rb_discarded_event(struct ring_buffer_event *event) | ||
| 226 | { | ||
| 227 | return event->type_len == RINGBUF_TYPE_PADDING && event->time_delta; | ||
| 228 | } | 220 | } |
| 229 | 221 | ||
| 230 | static void rb_event_set_padding(struct ring_buffer_event *event) | 222 | static void rb_event_set_padding(struct ring_buffer_event *event) |
| 231 | { | 223 | { |
| 224 | /* padding has a NULL time_delta */ | ||
| 232 | event->type_len = RINGBUF_TYPE_PADDING; | 225 | event->type_len = RINGBUF_TYPE_PADDING; |
| 233 | event->time_delta = 0; | 226 | event->time_delta = 0; |
| 234 | } | 227 | } |
| @@ -322,6 +315,14 @@ struct buffer_data_page { | |||
| 322 | unsigned char data[]; /* data of buffer page */ | 315 | unsigned char data[]; /* data of buffer page */ |
| 323 | }; | 316 | }; |
| 324 | 317 | ||
| 318 | /* | ||
| 319 | * Note, the buffer_page list must be first. The buffer pages | ||
| 320 | * are allocated in cache lines, which means that each buffer | ||
| 321 | * page will be at the beginning of a cache line, and thus | ||
| 322 | * the least significant bits will be zero. We use this to | ||
| 323 | * add flags in the list struct pointers, to make the ring buffer | ||
| 324 | * lockless. | ||
| 325 | */ | ||
| 325 | struct buffer_page { | 326 | struct buffer_page { |
| 326 | struct list_head list; /* list of buffer pages */ | 327 | struct list_head list; /* list of buffer pages */ |
| 327 | local_t write; /* index for next write */ | 328 | local_t write; /* index for next write */ |
| @@ -330,6 +331,21 @@ struct buffer_page { | |||
| 330 | struct buffer_data_page *page; /* Actual data page */ | 331 | struct buffer_data_page *page; /* Actual data page */ |
| 331 | }; | 332 | }; |
| 332 | 333 | ||
| 334 | /* | ||
| 335 | * The buffer page counters, write and entries, must be reset | ||
| 336 | * atomically when crossing page boundaries. To synchronize this | ||
| 337 | * update, two counters are inserted into the number. One is | ||
| 338 | * the actual counter for the write position or count on the page. | ||
| 339 | * | ||
| 340 | * The other is a counter of updaters. Before an update happens | ||
| 341 | * the update partition of the counter is incremented. This will | ||
| 342 | * allow the updater to update the counter atomically. | ||
| 343 | * | ||
| 344 | * The counter is 20 bits, and the state data is 12. | ||
| 345 | */ | ||
| 346 | #define RB_WRITE_MASK 0xfffff | ||
| 347 | #define RB_WRITE_INTCNT (1 << 20) | ||
| 348 | |||
| 333 | static void rb_init_page(struct buffer_data_page *bpage) | 349 | static void rb_init_page(struct buffer_data_page *bpage) |
| 334 | { | 350 | { |
| 335 | local_set(&bpage->commit, 0); | 351 | local_set(&bpage->commit, 0); |
| @@ -403,21 +419,20 @@ int ring_buffer_print_page_header(struct trace_seq *s) | |||
| 403 | struct ring_buffer_per_cpu { | 419 | struct ring_buffer_per_cpu { |
| 404 | int cpu; | 420 | int cpu; |
| 405 | struct ring_buffer *buffer; | 421 | struct ring_buffer *buffer; |
| 406 | spinlock_t reader_lock; /* serialize readers */ | 422 | spinlock_t reader_lock; /* serialize readers */ |
| 407 | raw_spinlock_t lock; | 423 | raw_spinlock_t lock; |
| 408 | struct lock_class_key lock_key; | 424 | struct lock_class_key lock_key; |
| 409 | struct list_head pages; | 425 | struct list_head *pages; |
| 410 | struct buffer_page *head_page; /* read from head */ | 426 | struct buffer_page *head_page; /* read from head */ |
| 411 | struct buffer_page *tail_page; /* write to tail */ | 427 | struct buffer_page *tail_page; /* write to tail */ |
| 412 | struct buffer_page *commit_page; /* committed pages */ | 428 | struct buffer_page *commit_page; /* committed pages */ |
| 413 | struct buffer_page *reader_page; | 429 | struct buffer_page *reader_page; |
| 414 | unsigned long nmi_dropped; | 430 | local_t commit_overrun; |
| 415 | unsigned long commit_overrun; | 431 | local_t overrun; |
| 416 | unsigned long overrun; | ||
| 417 | unsigned long read; | ||
| 418 | local_t entries; | 432 | local_t entries; |
| 419 | local_t committing; | 433 | local_t committing; |
| 420 | local_t commits; | 434 | local_t commits; |
| 435 | unsigned long read; | ||
| 421 | u64 write_stamp; | 436 | u64 write_stamp; |
| 422 | u64 read_stamp; | 437 | u64 read_stamp; |
| 423 | atomic_t record_disabled; | 438 | atomic_t record_disabled; |
| @@ -450,14 +465,19 @@ struct ring_buffer_iter { | |||
| 450 | }; | 465 | }; |
| 451 | 466 | ||
| 452 | /* buffer may be either ring_buffer or ring_buffer_per_cpu */ | 467 | /* buffer may be either ring_buffer or ring_buffer_per_cpu */ |
| 453 | #define RB_WARN_ON(buffer, cond) \ | 468 | #define RB_WARN_ON(b, cond) \ |
| 454 | ({ \ | 469 | ({ \ |
| 455 | int _____ret = unlikely(cond); \ | 470 | int _____ret = unlikely(cond); \ |
| 456 | if (_____ret) { \ | 471 | if (_____ret) { \ |
| 457 | atomic_inc(&buffer->record_disabled); \ | 472 | if (__same_type(*(b), struct ring_buffer_per_cpu)) { \ |
| 458 | WARN_ON(1); \ | 473 | struct ring_buffer_per_cpu *__b = \ |
| 459 | } \ | 474 | (void *)b; \ |
| 460 | _____ret; \ | 475 | atomic_inc(&__b->buffer->record_disabled); \ |
| 476 | } else \ | ||
| 477 | atomic_inc(&b->record_disabled); \ | ||
| 478 | WARN_ON(1); \ | ||
| 479 | } \ | ||
| 480 | _____ret; \ | ||
| 461 | }) | 481 | }) |
| 462 | 482 | ||
| 463 | /* Up this if you want to test the TIME_EXTENTS and normalization */ | 483 | /* Up this if you want to test the TIME_EXTENTS and normalization */ |
| @@ -489,6 +509,390 @@ void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer, | |||
| 489 | } | 509 | } |
| 490 | EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp); | 510 | EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp); |
| 491 | 511 | ||
| 512 | /* | ||
| 513 | * Making the ring buffer lockless makes things tricky. | ||
| 514 | * Although writes only happen on the CPU that they are on, | ||
| 515 | * and they only need to worry about interrupts. Reads can | ||
| 516 | * happen on any CPU. | ||
| 517 | * | ||
| 518 | * The reader page is always off the ring buffer, but when the | ||
| 519 | * reader finishes with a page, it needs to swap its page with | ||
| 520 | * a new one from the buffer. The reader needs to take from | ||
| 521 | * the head (writes go to the tail). But if a writer is in overwrite | ||
| 522 | * mode and wraps, it must push the head page forward. | ||
| 523 | * | ||
| 524 | * Here lies the problem. | ||
| 525 | * | ||
| 526 | * The reader must be careful to replace only the head page, and | ||
| 527 | * not another one. As described at the top of the file in the | ||
| 528 | * ASCII art, the reader sets its old page to point to the next | ||
| 529 | * page after head. It then sets the page after head to point to | ||
| 530 | * the old reader page. But if the writer moves the head page | ||
| 531 | * during this operation, the reader could end up with the tail. | ||
| 532 | * | ||
| 533 | * We use cmpxchg to help prevent this race. We also do something | ||
| 534 | * special with the page before head. We set the LSB to 1. | ||
| 535 | * | ||
| 536 | * When the writer must push the page forward, it will clear the | ||
| 537 | * bit that points to the head page, move the head, and then set | ||
| 538 | * the bit that points to the new head page. | ||
| 539 | * | ||
| 540 | * We also don't want an interrupt coming in and moving the head | ||
| 541 | * page on another writer. Thus we use the second LSB to catch | ||
| 542 | * that too. Thus: | ||
| 543 | * | ||
| 544 | * head->list->prev->next bit 1 bit 0 | ||
| 545 | * ------- ------- | ||
| 546 | * Normal page 0 0 | ||
| 547 | * Points to head page 0 1 | ||
| 548 | * New head page 1 0 | ||
| 549 | * | ||
| 550 | * Note we can not trust the prev pointer of the head page, because: | ||
| 551 | * | ||
| 552 | * +----+ +-----+ +-----+ | ||
| 553 | * | |------>| T |---X--->| N | | ||
| 554 | * | |<------| | | | | ||
| 555 | * +----+ +-----+ +-----+ | ||
| 556 | * ^ ^ | | ||
| 557 | * | +-----+ | | | ||
| 558 | * +----------| R |----------+ | | ||
| 559 | * | |<-----------+ | ||
| 560 | * +-----+ | ||
| 561 | * | ||
| 562 | * Key: ---X--> HEAD flag set in pointer | ||
| 563 | * T Tail page | ||
| 564 | * R Reader page | ||
| 565 | * N Next page | ||
| 566 | * | ||
| 567 | * (see __rb_reserve_next() to see where this happens) | ||
| 568 | * | ||
| 569 | * What the above shows is that the reader just swapped out | ||
| 570 | * the reader page with a page in the buffer, but before it | ||
| 571 | * could make the new header point back to the new page added | ||
| 572 | * it was preempted by a writer. The writer moved forward onto | ||
| 573 | * the new page added by the reader and is about to move forward | ||
| 574 | * again. | ||
| 575 | * | ||
| 576 | * You can see, it is legitimate for the previous pointer of | ||
| 577 | * the head (or any page) not to point back to itself. But only | ||
| 578 | * temporarially. | ||
| 579 | */ | ||
| 580 | |||
| 581 | #define RB_PAGE_NORMAL 0UL | ||
| 582 | #define RB_PAGE_HEAD 1UL | ||
| 583 | #define RB_PAGE_UPDATE 2UL | ||
| 584 | |||
| 585 | |||
| 586 | #define RB_FLAG_MASK 3UL | ||
| 587 | |||
| 588 | /* PAGE_MOVED is not part of the mask */ | ||
| 589 | #define RB_PAGE_MOVED 4UL | ||
| 590 | |||
| 591 | /* | ||
| 592 | * rb_list_head - remove any bit | ||
| 593 | */ | ||
| 594 | static struct list_head *rb_list_head(struct list_head *list) | ||
| 595 | { | ||
| 596 | unsigned long val = (unsigned long)list; | ||
| 597 | |||
| 598 | return (struct list_head *)(val & ~RB_FLAG_MASK); | ||
| 599 | } | ||
| 600 | |||
| 601 | /* | ||
| 602 | * rb_is_head_page - test if the give page is the head page | ||
| 603 | * | ||
| 604 | * Because the reader may move the head_page pointer, we can | ||
| 605 | * not trust what the head page is (it may be pointing to | ||
| 606 | * the reader page). But if the next page is a header page, | ||
| 607 | * its flags will be non zero. | ||
| 608 | */ | ||
| 609 | static int inline | ||
| 610 | rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer, | ||
| 611 | struct buffer_page *page, struct list_head *list) | ||
| 612 | { | ||
| 613 | unsigned long val; | ||
| 614 | |||
| 615 | val = (unsigned long)list->next; | ||
| 616 | |||
| 617 | if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list) | ||
| 618 | return RB_PAGE_MOVED; | ||
| 619 | |||
| 620 | return val & RB_FLAG_MASK; | ||
| 621 | } | ||
| 622 | |||
| 623 | /* | ||
| 624 | * rb_is_reader_page | ||
| 625 | * | ||
| 626 | * The unique thing about the reader page, is that, if the | ||
| 627 | * writer is ever on it, the previous pointer never points | ||
| 628 | * back to the reader page. | ||
| 629 | */ | ||
| 630 | static int rb_is_reader_page(struct buffer_page *page) | ||
| 631 | { | ||
| 632 | struct list_head *list = page->list.prev; | ||
| 633 | |||
| 634 | return rb_list_head(list->next) != &page->list; | ||
| 635 | } | ||
| 636 | |||
| 637 | /* | ||
| 638 | * rb_set_list_to_head - set a list_head to be pointing to head. | ||
| 639 | */ | ||
| 640 | static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer, | ||
| 641 | struct list_head *list) | ||
| 642 | { | ||
| 643 | unsigned long *ptr; | ||
| 644 | |||
| 645 | ptr = (unsigned long *)&list->next; | ||
| 646 | *ptr |= RB_PAGE_HEAD; | ||
| 647 | *ptr &= ~RB_PAGE_UPDATE; | ||
| 648 | } | ||
| 649 | |||
| 650 | /* | ||
| 651 | * rb_head_page_activate - sets up head page | ||
| 652 | */ | ||
| 653 | static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer) | ||
| 654 | { | ||
| 655 | struct buffer_page *head; | ||
| 656 | |||
| 657 | head = cpu_buffer->head_page; | ||
| 658 | if (!head) | ||
| 659 | return; | ||
| 660 | |||
| 661 | /* | ||
| 662 | * Set the previous list pointer to have the HEAD flag. | ||
| 663 | */ | ||
| 664 | rb_set_list_to_head(cpu_buffer, head->list.prev); | ||
| 665 | } | ||
| 666 | |||
| 667 | static void rb_list_head_clear(struct list_head *list) | ||
| 668 | { | ||
| 669 | unsigned long *ptr = (unsigned long *)&list->next; | ||
| 670 | |||
| 671 | *ptr &= ~RB_FLAG_MASK; | ||
| 672 | } | ||
| 673 | |||
| 674 | /* | ||
| 675 | * rb_head_page_dactivate - clears head page ptr (for free list) | ||
| 676 | */ | ||
| 677 | static void | ||
| 678 | rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer) | ||
| 679 | { | ||
| 680 | struct list_head *hd; | ||
| 681 | |||
| 682 | /* Go through the whole list and clear any pointers found. */ | ||
| 683 | rb_list_head_clear(cpu_buffer->pages); | ||
| 684 | |||
| 685 | list_for_each(hd, cpu_buffer->pages) | ||
| 686 | rb_list_head_clear(hd); | ||
| 687 | } | ||
| 688 | |||
| 689 | static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer, | ||
| 690 | struct buffer_page *head, | ||
| 691 | struct buffer_page *prev, | ||
| 692 | int old_flag, int new_flag) | ||
| 693 | { | ||
| 694 | struct list_head *list; | ||
| 695 | unsigned long val = (unsigned long)&head->list; | ||
| 696 | unsigned long ret; | ||
| 697 | |||
| 698 | list = &prev->list; | ||
| 699 | |||
| 700 | val &= ~RB_FLAG_MASK; | ||
| 701 | |||
| 702 | ret = cmpxchg((unsigned long *)&list->next, | ||
| 703 | val | old_flag, val | new_flag); | ||
| 704 | |||
| 705 | /* check if the reader took the page */ | ||
| 706 | if ((ret & ~RB_FLAG_MASK) != val) | ||
| 707 | return RB_PAGE_MOVED; | ||
| 708 | |||
| 709 | return ret & RB_FLAG_MASK; | ||
| 710 | } | ||
| 711 | |||
| 712 | static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer, | ||
| 713 | struct buffer_page *head, | ||
| 714 | struct buffer_page *prev, | ||
| 715 | int old_flag) | ||
| 716 | { | ||
| 717 | return rb_head_page_set(cpu_buffer, head, prev, | ||
| 718 | old_flag, RB_PAGE_UPDATE); | ||
| 719 | } | ||
| 720 | |||
| 721 | static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer, | ||
| 722 | struct buffer_page *head, | ||
| 723 | struct buffer_page *prev, | ||
| 724 | int old_flag) | ||
| 725 | { | ||
| 726 | return rb_head_page_set(cpu_buffer, head, prev, | ||
| 727 | old_flag, RB_PAGE_HEAD); | ||
| 728 | } | ||
| 729 | |||
| 730 | static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer, | ||
| 731 | struct buffer_page *head, | ||
| 732 | struct buffer_page *prev, | ||
| 733 | int old_flag) | ||
| 734 | { | ||
| 735 | return rb_head_page_set(cpu_buffer, head, prev, | ||
| 736 | old_flag, RB_PAGE_NORMAL); | ||
| 737 | } | ||
| 738 | |||
| 739 | static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer, | ||
| 740 | struct buffer_page **bpage) | ||
| 741 | { | ||
| 742 | struct list_head *p = rb_list_head((*bpage)->list.next); | ||
| 743 | |||
| 744 | *bpage = list_entry(p, struct buffer_page, list); | ||
| 745 | } | ||
| 746 | |||
| 747 | static struct buffer_page * | ||
| 748 | rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer) | ||
| 749 | { | ||
| 750 | struct buffer_page *head; | ||
| 751 | struct buffer_page *page; | ||
| 752 | struct list_head *list; | ||
| 753 | int i; | ||
| 754 | |||
| 755 | if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page)) | ||
| 756 | return NULL; | ||
| 757 | |||
| 758 | /* sanity check */ | ||
| 759 | list = cpu_buffer->pages; | ||
| 760 | if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list)) | ||
| 761 | return NULL; | ||
| 762 | |||
| 763 | page = head = cpu_buffer->head_page; | ||
| 764 | /* | ||
| 765 | * It is possible that the writer moves the header behind | ||
| 766 | * where we started, and we miss in one loop. | ||
| 767 | * A second loop should grab the header, but we'll do | ||
| 768 | * three loops just because I'm paranoid. | ||
| 769 | */ | ||
| 770 | for (i = 0; i < 3; i++) { | ||
| 771 | do { | ||
| 772 | if (rb_is_head_page(cpu_buffer, page, page->list.prev)) { | ||
| 773 | cpu_buffer->head_page = page; | ||
| 774 | return page; | ||
| 775 | } | ||
| 776 | rb_inc_page(cpu_buffer, &page); | ||
| 777 | } while (page != head); | ||
| 778 | } | ||
| 779 | |||
| 780 | RB_WARN_ON(cpu_buffer, 1); | ||
| 781 | |||
| 782 | return NULL; | ||
| 783 | } | ||
| 784 | |||
| 785 | static int rb_head_page_replace(struct buffer_page *old, | ||
| 786 | struct buffer_page *new) | ||
| 787 | { | ||
| 788 | unsigned long *ptr = (unsigned long *)&old->list.prev->next; | ||
| 789 | unsigned long val; | ||
| 790 | unsigned long ret; | ||
| 791 | |||
| 792 | val = *ptr & ~RB_FLAG_MASK; | ||
| 793 | val |= RB_PAGE_HEAD; | ||
| 794 | |||
| 795 | ret = cmpxchg(ptr, val, (unsigned long)&new->list); | ||
| 796 | |||
| 797 | return ret == val; | ||
| 798 | } | ||
| 799 | |||
| 800 | /* | ||
| 801 | * rb_tail_page_update - move the tail page forward | ||
| 802 | * | ||
| 803 | * Returns 1 if moved tail page, 0 if someone else did. | ||
| 804 | */ | ||
| 805 | static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer, | ||
| 806 | struct buffer_page *tail_page, | ||
| 807 | struct buffer_page *next_page) | ||
| 808 | { | ||
| 809 | struct buffer_page *old_tail; | ||
| 810 | unsigned long old_entries; | ||
| 811 | unsigned long old_write; | ||
| 812 | int ret = 0; | ||
| 813 | |||
| 814 | /* | ||
| 815 | * The tail page now needs to be moved forward. | ||
| 816 | * | ||
| 817 | * We need to reset the tail page, but without messing | ||
| 818 | * with possible erasing of data brought in by interrupts | ||
| 819 | * that have moved the tail page and are currently on it. | ||
| 820 | * | ||
| 821 | * We add a counter to the write field to denote this. | ||
| 822 | */ | ||
| 823 | old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write); | ||
| 824 | old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries); | ||
| 825 | |||
| 826 | /* | ||
| 827 | * Just make sure we have seen our old_write and synchronize | ||
| 828 | * with any interrupts that come in. | ||
| 829 | */ | ||
| 830 | barrier(); | ||
| 831 | |||
| 832 | /* | ||
| 833 | * If the tail page is still the same as what we think | ||
| 834 | * it is, then it is up to us to update the tail | ||
| 835 | * pointer. | ||
| 836 | */ | ||
| 837 | if (tail_page == cpu_buffer->tail_page) { | ||
| 838 | /* Zero the write counter */ | ||
| 839 | unsigned long val = old_write & ~RB_WRITE_MASK; | ||
| 840 | unsigned long eval = old_entries & ~RB_WRITE_MASK; | ||
| 841 | |||
| 842 | /* | ||
| 843 | * This will only succeed if an interrupt did | ||
| 844 | * not come in and change it. In which case, we | ||
| 845 | * do not want to modify it. | ||
| 846 | * | ||
| 847 | * We add (void) to let the compiler know that we do not care | ||
| 848 | * about the return value of these functions. We use the | ||
| 849 | * cmpxchg to only update if an interrupt did not already | ||
| 850 | * do it for us. If the cmpxchg fails, we don't care. | ||
| 851 | */ | ||
| 852 | (void)local_cmpxchg(&next_page->write, old_write, val); | ||
| 853 | (void)local_cmpxchg(&next_page->entries, old_entries, eval); | ||
| 854 | |||
| 855 | /* | ||
| 856 | * No need to worry about races with clearing out the commit. | ||
| 857 | * it only can increment when a commit takes place. But that | ||
| 858 | * only happens in the outer most nested commit. | ||
| 859 | */ | ||
| 860 | local_set(&next_page->page->commit, 0); | ||
| 861 | |||
| 862 | old_tail = cmpxchg(&cpu_buffer->tail_page, | ||
| 863 | tail_page, next_page); | ||
| 864 | |||
| 865 | if (old_tail == tail_page) | ||
| 866 | ret = 1; | ||
| 867 | } | ||
| 868 | |||
| 869 | return ret; | ||
| 870 | } | ||
| 871 | |||
| 872 | static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer, | ||
| 873 | struct buffer_page *bpage) | ||
| 874 | { | ||
| 875 | unsigned long val = (unsigned long)bpage; | ||
| 876 | |||
| 877 | if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK)) | ||
| 878 | return 1; | ||
| 879 | |||
| 880 | return 0; | ||
| 881 | } | ||
| 882 | |||
| 883 | /** | ||
| 884 | * rb_check_list - make sure a pointer to a list has the last bits zero | ||
| 885 | */ | ||
| 886 | static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer, | ||
| 887 | struct list_head *list) | ||
| 888 | { | ||
| 889 | if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev)) | ||
| 890 | return 1; | ||
| 891 | if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next)) | ||
| 892 | return 1; | ||
| 893 | return 0; | ||
| 894 | } | ||
| 895 | |||
| 492 | /** | 896 | /** |
| 493 | * check_pages - integrity check of buffer pages | 897 | * check_pages - integrity check of buffer pages |
| 494 | * @cpu_buffer: CPU buffer with pages to test | 898 | * @cpu_buffer: CPU buffer with pages to test |
| @@ -498,14 +902,19 @@ EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp); | |||
| 498 | */ | 902 | */ |
| 499 | static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer) | 903 | static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer) |
| 500 | { | 904 | { |
| 501 | struct list_head *head = &cpu_buffer->pages; | 905 | struct list_head *head = cpu_buffer->pages; |
| 502 | struct buffer_page *bpage, *tmp; | 906 | struct buffer_page *bpage, *tmp; |
| 503 | 907 | ||
| 908 | rb_head_page_deactivate(cpu_buffer); | ||
| 909 | |||
| 504 | if (RB_WARN_ON(cpu_buffer, head->next->prev != head)) | 910 | if (RB_WARN_ON(cpu_buffer, head->next->prev != head)) |
| 505 | return -1; | 911 | return -1; |
| 506 | if (RB_WARN_ON(cpu_buffer, head->prev->next != head)) | 912 | if (RB_WARN_ON(cpu_buffer, head->prev->next != head)) |
| 507 | return -1; | 913 | return -1; |
| 508 | 914 | ||
| 915 | if (rb_check_list(cpu_buffer, head)) | ||
| 916 | return -1; | ||
| 917 | |||
| 509 | list_for_each_entry_safe(bpage, tmp, head, list) { | 918 | list_for_each_entry_safe(bpage, tmp, head, list) { |
| 510 | if (RB_WARN_ON(cpu_buffer, | 919 | if (RB_WARN_ON(cpu_buffer, |
| 511 | bpage->list.next->prev != &bpage->list)) | 920 | bpage->list.next->prev != &bpage->list)) |
| @@ -513,25 +922,33 @@ static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer) | |||
| 513 | if (RB_WARN_ON(cpu_buffer, | 922 | if (RB_WARN_ON(cpu_buffer, |
| 514 | bpage->list.prev->next != &bpage->list)) | 923 | bpage->list.prev->next != &bpage->list)) |
| 515 | return -1; | 924 | return -1; |
| 925 | if (rb_check_list(cpu_buffer, &bpage->list)) | ||
| 926 | return -1; | ||
| 516 | } | 927 | } |
| 517 | 928 | ||
| 929 | rb_head_page_activate(cpu_buffer); | ||
| 930 | |||
| 518 | return 0; | 931 | return 0; |
| 519 | } | 932 | } |
| 520 | 933 | ||
| 521 | static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, | 934 | static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, |
| 522 | unsigned nr_pages) | 935 | unsigned nr_pages) |
| 523 | { | 936 | { |
| 524 | struct list_head *head = &cpu_buffer->pages; | ||
| 525 | struct buffer_page *bpage, *tmp; | 937 | struct buffer_page *bpage, *tmp; |
| 526 | unsigned long addr; | 938 | unsigned long addr; |
| 527 | LIST_HEAD(pages); | 939 | LIST_HEAD(pages); |
| 528 | unsigned i; | 940 | unsigned i; |
| 529 | 941 | ||
| 942 | WARN_ON(!nr_pages); | ||
| 943 | |||
| 530 | for (i = 0; i < nr_pages; i++) { | 944 | for (i = 0; i < nr_pages; i++) { |
| 531 | bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), | 945 | bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), |
| 532 | GFP_KERNEL, cpu_to_node(cpu_buffer->cpu)); | 946 | GFP_KERNEL, cpu_to_node(cpu_buffer->cpu)); |
| 533 | if (!bpage) | 947 | if (!bpage) |
| 534 | goto free_pages; | 948 | goto free_pages; |
| 949 | |||
| 950 | rb_check_bpage(cpu_buffer, bpage); | ||
| 951 | |||
| 535 | list_add(&bpage->list, &pages); | 952 | list_add(&bpage->list, &pages); |
| 536 | 953 | ||
| 537 | addr = __get_free_page(GFP_KERNEL); | 954 | addr = __get_free_page(GFP_KERNEL); |
| @@ -541,7 +958,13 @@ static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, | |||
| 541 | rb_init_page(bpage->page); | 958 | rb_init_page(bpage->page); |
| 542 | } | 959 | } |
| 543 | 960 | ||
| 544 | list_splice(&pages, head); | 961 | /* |
| 962 | * The ring buffer page list is a circular list that does not | ||
| 963 | * start and end with a list head. All page list items point to | ||
| 964 | * other pages. | ||
| 965 | */ | ||
| 966 | cpu_buffer->pages = pages.next; | ||
| 967 | list_del(&pages); | ||
| 545 | 968 | ||
| 546 | rb_check_pages(cpu_buffer); | 969 | rb_check_pages(cpu_buffer); |
| 547 | 970 | ||
| @@ -573,13 +996,14 @@ rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu) | |||
| 573 | spin_lock_init(&cpu_buffer->reader_lock); | 996 | spin_lock_init(&cpu_buffer->reader_lock); |
| 574 | lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key); | 997 | lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key); |
| 575 | cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED; | 998 | cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED; |
| 576 | INIT_LIST_HEAD(&cpu_buffer->pages); | ||
| 577 | 999 | ||
| 578 | bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), | 1000 | bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), |
| 579 | GFP_KERNEL, cpu_to_node(cpu)); | 1001 | GFP_KERNEL, cpu_to_node(cpu)); |
| 580 | if (!bpage) | 1002 | if (!bpage) |
| 581 | goto fail_free_buffer; | 1003 | goto fail_free_buffer; |
| 582 | 1004 | ||
| 1005 | rb_check_bpage(cpu_buffer, bpage); | ||
| 1006 | |||
| 583 | cpu_buffer->reader_page = bpage; | 1007 | cpu_buffer->reader_page = bpage; |
| 584 | addr = __get_free_page(GFP_KERNEL); | 1008 | addr = __get_free_page(GFP_KERNEL); |
| 585 | if (!addr) | 1009 | if (!addr) |
| @@ -594,9 +1018,11 @@ rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu) | |||
| 594 | goto fail_free_reader; | 1018 | goto fail_free_reader; |
| 595 | 1019 | ||
| 596 | cpu_buffer->head_page | 1020 | cpu_buffer->head_page |
| 597 | = list_entry(cpu_buffer->pages.next, struct buffer_page, list); | 1021 | = list_entry(cpu_buffer->pages, struct buffer_page, list); |
| 598 | cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; | 1022 | cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; |
| 599 | 1023 | ||
| 1024 | rb_head_page_activate(cpu_buffer); | ||
| 1025 | |||
| 600 | return cpu_buffer; | 1026 | return cpu_buffer; |
| 601 | 1027 | ||
| 602 | fail_free_reader: | 1028 | fail_free_reader: |
| @@ -609,15 +1035,22 @@ rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu) | |||
| 609 | 1035 | ||
| 610 | static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) | 1036 | static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) |
| 611 | { | 1037 | { |
| 612 | struct list_head *head = &cpu_buffer->pages; | 1038 | struct list_head *head = cpu_buffer->pages; |
| 613 | struct buffer_page *bpage, *tmp; | 1039 | struct buffer_page *bpage, *tmp; |
| 614 | 1040 | ||
| 615 | free_buffer_page(cpu_buffer->reader_page); | 1041 | free_buffer_page(cpu_buffer->reader_page); |
| 616 | 1042 | ||
| 617 | list_for_each_entry_safe(bpage, tmp, head, list) { | 1043 | rb_head_page_deactivate(cpu_buffer); |
| 618 | list_del_init(&bpage->list); | 1044 | |
| 1045 | if (head) { | ||
| 1046 | list_for_each_entry_safe(bpage, tmp, head, list) { | ||
| 1047 | list_del_init(&bpage->list); | ||
| 1048 | free_buffer_page(bpage); | ||
| 1049 | } | ||
| 1050 | bpage = list_entry(head, struct buffer_page, list); | ||
| 619 | free_buffer_page(bpage); | 1051 | free_buffer_page(bpage); |
| 620 | } | 1052 | } |
| 1053 | |||
| 621 | kfree(cpu_buffer); | 1054 | kfree(cpu_buffer); |
| 622 | } | 1055 | } |
| 623 | 1056 | ||
| @@ -735,6 +1168,7 @@ ring_buffer_free(struct ring_buffer *buffer) | |||
| 735 | 1168 | ||
| 736 | put_online_cpus(); | 1169 | put_online_cpus(); |
| 737 | 1170 | ||
| 1171 | kfree(buffer->buffers); | ||
| 738 | free_cpumask_var(buffer->cpumask); | 1172 | free_cpumask_var(buffer->cpumask); |
| 739 | 1173 | ||
| 740 | kfree(buffer); | 1174 | kfree(buffer); |
| @@ -759,15 +1193,17 @@ rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages) | |||
| 759 | atomic_inc(&cpu_buffer->record_disabled); | 1193 | atomic_inc(&cpu_buffer->record_disabled); |
| 760 | synchronize_sched(); | 1194 | synchronize_sched(); |
| 761 | 1195 | ||
| 1196 | rb_head_page_deactivate(cpu_buffer); | ||
| 1197 | |||
| 762 | for (i = 0; i < nr_pages; i++) { | 1198 | for (i = 0; i < nr_pages; i++) { |
| 763 | if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages))) | 1199 | if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages))) |
| 764 | return; | 1200 | return; |
| 765 | p = cpu_buffer->pages.next; | 1201 | p = cpu_buffer->pages->next; |
| 766 | bpage = list_entry(p, struct buffer_page, list); | 1202 | bpage = list_entry(p, struct buffer_page, list); |
| 767 | list_del_init(&bpage->list); | 1203 | list_del_init(&bpage->list); |
| 768 | free_buffer_page(bpage); | 1204 | free_buffer_page(bpage); |
| 769 | } | 1205 | } |
| 770 | if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages))) | 1206 | if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages))) |
| 771 | return; | 1207 | return; |
| 772 | 1208 | ||
| 773 | rb_reset_cpu(cpu_buffer); | 1209 | rb_reset_cpu(cpu_buffer); |
| @@ -789,15 +1225,19 @@ rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer, | |||
| 789 | atomic_inc(&cpu_buffer->record_disabled); | 1225 | atomic_inc(&cpu_buffer->record_disabled); |
| 790 | synchronize_sched(); | 1226 | synchronize_sched(); |
| 791 | 1227 | ||
| 1228 | spin_lock_irq(&cpu_buffer->reader_lock); | ||
| 1229 | rb_head_page_deactivate(cpu_buffer); | ||
| 1230 | |||
| 792 | for (i = 0; i < nr_pages; i++) { | 1231 | for (i = 0; i < nr_pages; i++) { |
| 793 | if (RB_WARN_ON(cpu_buffer, list_empty(pages))) | 1232 | if (RB_WARN_ON(cpu_buffer, list_empty(pages))) |
| 794 | return; | 1233 | return; |
| 795 | p = pages->next; | 1234 | p = pages->next; |
| 796 | bpage = list_entry(p, struct buffer_page, list); | 1235 | bpage = list_entry(p, struct buffer_page, list); |
| 797 | list_del_init(&bpage->list); | 1236 | list_del_init(&bpage->list); |
| 798 | list_add_tail(&bpage->list, &cpu_buffer->pages); | 1237 | list_add_tail(&bpage->list, cpu_buffer->pages); |
| 799 | } | 1238 | } |
| 800 | rb_reset_cpu(cpu_buffer); | 1239 | rb_reset_cpu(cpu_buffer); |
| 1240 | spin_unlock_irq(&cpu_buffer->reader_lock); | ||
| 801 | 1241 | ||
| 802 | rb_check_pages(cpu_buffer); | 1242 | rb_check_pages(cpu_buffer); |
| 803 | 1243 | ||
| @@ -948,21 +1388,14 @@ rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer) | |||
| 948 | } | 1388 | } |
| 949 | 1389 | ||
| 950 | static inline struct ring_buffer_event * | 1390 | static inline struct ring_buffer_event * |
| 951 | rb_head_event(struct ring_buffer_per_cpu *cpu_buffer) | ||
| 952 | { | ||
| 953 | return __rb_page_index(cpu_buffer->head_page, | ||
| 954 | cpu_buffer->head_page->read); | ||
| 955 | } | ||
| 956 | |||
| 957 | static inline struct ring_buffer_event * | ||
| 958 | rb_iter_head_event(struct ring_buffer_iter *iter) | 1391 | rb_iter_head_event(struct ring_buffer_iter *iter) |
| 959 | { | 1392 | { |
| 960 | return __rb_page_index(iter->head_page, iter->head); | 1393 | return __rb_page_index(iter->head_page, iter->head); |
| 961 | } | 1394 | } |
| 962 | 1395 | ||
| 963 | static inline unsigned rb_page_write(struct buffer_page *bpage) | 1396 | static inline unsigned long rb_page_write(struct buffer_page *bpage) |
| 964 | { | 1397 | { |
| 965 | return local_read(&bpage->write); | 1398 | return local_read(&bpage->write) & RB_WRITE_MASK; |
| 966 | } | 1399 | } |
| 967 | 1400 | ||
| 968 | static inline unsigned rb_page_commit(struct buffer_page *bpage) | 1401 | static inline unsigned rb_page_commit(struct buffer_page *bpage) |
| @@ -970,6 +1403,11 @@ static inline unsigned rb_page_commit(struct buffer_page *bpage) | |||
| 970 | return local_read(&bpage->page->commit); | 1403 | return local_read(&bpage->page->commit); |
| 971 | } | 1404 | } |
| 972 | 1405 | ||
| 1406 | static inline unsigned long rb_page_entries(struct buffer_page *bpage) | ||
| 1407 | { | ||
| 1408 | return local_read(&bpage->entries) & RB_WRITE_MASK; | ||
| 1409 | } | ||
| 1410 | |||
| 973 | /* Size is determined by what has been commited */ | 1411 | /* Size is determined by what has been commited */ |
| 974 | static inline unsigned rb_page_size(struct buffer_page *bpage) | 1412 | static inline unsigned rb_page_size(struct buffer_page *bpage) |
| 975 | { | 1413 | { |
| @@ -982,22 +1420,6 @@ rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer) | |||
| 982 | return rb_page_commit(cpu_buffer->commit_page); | 1420 | return rb_page_commit(cpu_buffer->commit_page); |
| 983 | } | 1421 | } |
| 984 | 1422 | ||
| 985 | static inline unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer) | ||
| 986 | { | ||
| 987 | return rb_page_commit(cpu_buffer->head_page); | ||
| 988 | } | ||
| 989 | |||
| 990 | static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer, | ||
| 991 | struct buffer_page **bpage) | ||
| 992 | { | ||
| 993 | struct list_head *p = (*bpage)->list.next; | ||
| 994 | |||
| 995 | if (p == &cpu_buffer->pages) | ||
| 996 | p = p->next; | ||
| 997 | |||
| 998 | *bpage = list_entry(p, struct buffer_page, list); | ||
| 999 | } | ||
| 1000 | |||
| 1001 | static inline unsigned | 1423 | static inline unsigned |
| 1002 | rb_event_index(struct ring_buffer_event *event) | 1424 | rb_event_index(struct ring_buffer_event *event) |
| 1003 | { | 1425 | { |
| @@ -1023,6 +1445,8 @@ rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer, | |||
| 1023 | static void | 1445 | static void |
| 1024 | rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer) | 1446 | rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer) |
| 1025 | { | 1447 | { |
| 1448 | unsigned long max_count; | ||
| 1449 | |||
| 1026 | /* | 1450 | /* |
| 1027 | * We only race with interrupts and NMIs on this CPU. | 1451 | * We only race with interrupts and NMIs on this CPU. |
| 1028 | * If we own the commit event, then we can commit | 1452 | * If we own the commit event, then we can commit |
| @@ -1032,9 +1456,16 @@ rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer) | |||
| 1032 | * assign the commit to the tail. | 1456 | * assign the commit to the tail. |
| 1033 | */ | 1457 | */ |
| 1034 | again: | 1458 | again: |
| 1459 | max_count = cpu_buffer->buffer->pages * 100; | ||
| 1460 | |||
| 1035 | while (cpu_buffer->commit_page != cpu_buffer->tail_page) { | 1461 | while (cpu_buffer->commit_page != cpu_buffer->tail_page) { |
| 1036 | cpu_buffer->commit_page->page->commit = | 1462 | if (RB_WARN_ON(cpu_buffer, !(--max_count))) |
| 1037 | cpu_buffer->commit_page->write; | 1463 | return; |
| 1464 | if (RB_WARN_ON(cpu_buffer, | ||
| 1465 | rb_is_reader_page(cpu_buffer->tail_page))) | ||
| 1466 | return; | ||
| 1467 | local_set(&cpu_buffer->commit_page->page->commit, | ||
| 1468 | rb_page_write(cpu_buffer->commit_page)); | ||
| 1038 | rb_inc_page(cpu_buffer, &cpu_buffer->commit_page); | 1469 | rb_inc_page(cpu_buffer, &cpu_buffer->commit_page); |
| 1039 | cpu_buffer->write_stamp = | 1470 | cpu_buffer->write_stamp = |
| 1040 | cpu_buffer->commit_page->page->time_stamp; | 1471 | cpu_buffer->commit_page->page->time_stamp; |
| @@ -1043,8 +1474,12 @@ rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer) | |||
| 1043 | } | 1474 | } |
| 1044 | while (rb_commit_index(cpu_buffer) != | 1475 | while (rb_commit_index(cpu_buffer) != |
| 1045 | rb_page_write(cpu_buffer->commit_page)) { | 1476 | rb_page_write(cpu_buffer->commit_page)) { |
| 1046 | cpu_buffer->commit_page->page->commit = | 1477 | |
| 1047 | cpu_buffer->commit_page->write; | 1478 | local_set(&cpu_buffer->commit_page->page->commit, |
| 1479 | rb_page_write(cpu_buffer->commit_page)); | ||
| 1480 | RB_WARN_ON(cpu_buffer, | ||
| 1481 | local_read(&cpu_buffer->commit_page->page->commit) & | ||
| 1482 | ~RB_WRITE_MASK); | ||
| 1048 | barrier(); | 1483 | barrier(); |
| 1049 | } | 1484 | } |
| 1050 | 1485 | ||
| @@ -1077,7 +1512,7 @@ static void rb_inc_iter(struct ring_buffer_iter *iter) | |||
| 1077 | * to the head page instead of next. | 1512 | * to the head page instead of next. |
| 1078 | */ | 1513 | */ |
| 1079 | if (iter->head_page == cpu_buffer->reader_page) | 1514 | if (iter->head_page == cpu_buffer->reader_page) |
| 1080 | iter->head_page = cpu_buffer->head_page; | 1515 | iter->head_page = rb_set_head_page(cpu_buffer); |
| 1081 | else | 1516 | else |
| 1082 | rb_inc_page(cpu_buffer, &iter->head_page); | 1517 | rb_inc_page(cpu_buffer, &iter->head_page); |
| 1083 | 1518 | ||
| @@ -1121,6 +1556,163 @@ rb_update_event(struct ring_buffer_event *event, | |||
| 1121 | } | 1556 | } |
| 1122 | } | 1557 | } |
| 1123 | 1558 | ||
| 1559 | /* | ||
| 1560 | * rb_handle_head_page - writer hit the head page | ||
| 1561 | * | ||
| 1562 | * Returns: +1 to retry page | ||
| 1563 | * 0 to continue | ||
| 1564 | * -1 on error | ||
| 1565 | */ | ||
| 1566 | static int | ||
| 1567 | rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer, | ||
| 1568 | struct buffer_page *tail_page, | ||
| 1569 | struct buffer_page *next_page) | ||
| 1570 | { | ||
| 1571 | struct buffer_page *new_head; | ||
| 1572 | int entries; | ||
| 1573 | int type; | ||
| 1574 | int ret; | ||
| 1575 | |||
| 1576 | entries = rb_page_entries(next_page); | ||
| 1577 | |||
| 1578 | /* | ||
| 1579 | * The hard part is here. We need to move the head | ||
| 1580 | * forward, and protect against both readers on | ||
| 1581 | * other CPUs and writers coming in via interrupts. | ||
| 1582 | */ | ||
| 1583 | type = rb_head_page_set_update(cpu_buffer, next_page, tail_page, | ||
| 1584 | RB_PAGE_HEAD); | ||
| 1585 | |||
| 1586 | /* | ||
| 1587 | * type can be one of four: | ||
| 1588 | * NORMAL - an interrupt already moved it for us | ||
| 1589 | * HEAD - we are the first to get here. | ||
| 1590 | * UPDATE - we are the interrupt interrupting | ||
| 1591 | * a current move. | ||
| 1592 | * MOVED - a reader on another CPU moved the next | ||
| 1593 | * pointer to its reader page. Give up | ||
| 1594 | * and try again. | ||
| 1595 | */ | ||
| 1596 | |||
| 1597 | switch (type) { | ||
| 1598 | case RB_PAGE_HEAD: | ||
| 1599 | /* | ||
| 1600 | * We changed the head to UPDATE, thus | ||
| 1601 | * it is our responsibility to update | ||
| 1602 | * the counters. | ||
| 1603 | */ | ||
| 1604 | local_add(entries, &cpu_buffer->overrun); | ||
| 1605 | |||
| 1606 | /* | ||
| 1607 | * The entries will be zeroed out when we move the | ||
| 1608 | * tail page. | ||
| 1609 | */ | ||
| 1610 | |||
| 1611 | /* still more to do */ | ||
| 1612 | break; | ||
| 1613 | |||
| 1614 | case RB_PAGE_UPDATE: | ||
| 1615 | /* | ||
| 1616 | * This is an interrupt that interrupt the | ||
| 1617 | * previous update. Still more to do. | ||
| 1618 | */ | ||
| 1619 | break; | ||
| 1620 | case RB_PAGE_NORMAL: | ||
| 1621 | /* | ||
| 1622 | * An interrupt came in before the update | ||
| 1623 | * and processed this for us. | ||
| 1624 | * Nothing left to do. | ||
| 1625 | */ | ||
| 1626 | return 1; | ||
| 1627 | case RB_PAGE_MOVED: | ||
| 1628 | /* | ||
| 1629 | * The reader is on another CPU and just did | ||
| 1630 | * a swap with our next_page. | ||
| 1631 | * Try again. | ||
| 1632 | */ | ||
| 1633 | return 1; | ||
| 1634 | default: | ||
| 1635 | RB_WARN_ON(cpu_buffer, 1); /* WTF??? */ | ||
| 1636 | return -1; | ||
| 1637 | } | ||
| 1638 | |||
| 1639 | /* | ||
| 1640 | * Now that we are here, the old head pointer is | ||
| 1641 | * set to UPDATE. This will keep the reader from | ||
| 1642 | * swapping the head page with the reader page. | ||
| 1643 | * The reader (on another CPU) will spin till | ||
| 1644 | * we are finished. | ||
| 1645 | * | ||
| 1646 | * We just need to protect against interrupts | ||
| 1647 | * doing the job. We will set the next pointer | ||
| 1648 | * to HEAD. After that, we set the old pointer | ||
| 1649 | * to NORMAL, but only if it was HEAD before. | ||
| 1650 | * otherwise we are an interrupt, and only | ||
| 1651 | * want the outer most commit to reset it. | ||
| 1652 | */ | ||
| 1653 | new_head = next_page; | ||
| 1654 | rb_inc_page(cpu_buffer, &new_head); | ||
| 1655 | |||
| 1656 | ret = rb_head_page_set_head(cpu_buffer, new_head, next_page, | ||
| 1657 | RB_PAGE_NORMAL); | ||
| 1658 | |||
| 1659 | /* | ||
| 1660 | * Valid returns are: | ||
| 1661 | * HEAD - an interrupt came in and already set it. | ||
| 1662 | * NORMAL - One of two things: | ||
| 1663 | * 1) We really set it. | ||
| 1664 | * 2) A bunch of interrupts came in and moved | ||
| 1665 | * the page forward again. | ||
| 1666 | */ | ||
| 1667 | switch (ret) { | ||
| 1668 | case RB_PAGE_HEAD: | ||
| 1669 | case RB_PAGE_NORMAL: | ||
| 1670 | /* OK */ | ||
| 1671 | break; | ||
| 1672 | default: | ||
| 1673 | RB_WARN_ON(cpu_buffer, 1); | ||
| 1674 | return -1; | ||
| 1675 | } | ||
| 1676 | |||
| 1677 | /* | ||
| 1678 | * It is possible that an interrupt came in, | ||
| 1679 | * set the head up, then more interrupts came in | ||
| 1680 | * and moved it again. When we get back here, | ||
| 1681 | * the page would have been set to NORMAL but we | ||
| 1682 | * just set it back to HEAD. | ||
| 1683 | * | ||
| 1684 | * How do you detect this? Well, if that happened | ||
| 1685 | * the tail page would have moved. | ||
| 1686 | */ | ||
| 1687 | if (ret == RB_PAGE_NORMAL) { | ||
| 1688 | /* | ||
| 1689 | * If the tail had moved passed next, then we need | ||
| 1690 | * to reset the pointer. | ||
| 1691 | */ | ||
| 1692 | if (cpu_buffer->tail_page != tail_page && | ||
| 1693 | cpu_buffer->tail_page != next_page) | ||
| 1694 | rb_head_page_set_normal(cpu_buffer, new_head, | ||
| 1695 | next_page, | ||
| 1696 | RB_PAGE_HEAD); | ||
| 1697 | } | ||
| 1698 | |||
| 1699 | /* | ||
| 1700 | * If this was the outer most commit (the one that | ||
| 1701 | * changed the original pointer from HEAD to UPDATE), | ||
| 1702 | * then it is up to us to reset it to NORMAL. | ||
| 1703 | */ | ||
| 1704 | if (type == RB_PAGE_HEAD) { | ||
| 1705 | ret = rb_head_page_set_normal(cpu_buffer, next_page, | ||
| 1706 | tail_page, | ||
| 1707 | RB_PAGE_UPDATE); | ||
| 1708 | if (RB_WARN_ON(cpu_buffer, | ||
| 1709 | ret != RB_PAGE_UPDATE)) | ||
| 1710 | return -1; | ||
| 1711 | } | ||
| 1712 | |||
| 1713 | return 0; | ||
| 1714 | } | ||
| 1715 | |||
| 1124 | static unsigned rb_calculate_event_length(unsigned length) | 1716 | static unsigned rb_calculate_event_length(unsigned length) |
| 1125 | { | 1717 | { |
| 1126 | struct ring_buffer_event event; /* Used only for sizeof array */ | 1718 | struct ring_buffer_event event; /* Used only for sizeof array */ |
| @@ -1184,9 +1776,6 @@ rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer, | |||
| 1184 | event->type_len = RINGBUF_TYPE_PADDING; | 1776 | event->type_len = RINGBUF_TYPE_PADDING; |
| 1185 | /* time delta must be non zero */ | 1777 | /* time delta must be non zero */ |
| 1186 | event->time_delta = 1; | 1778 | event->time_delta = 1; |
| 1187 | /* Account for this as an entry */ | ||
| 1188 | local_inc(&tail_page->entries); | ||
| 1189 | local_inc(&cpu_buffer->entries); | ||
| 1190 | 1779 | ||
| 1191 | /* Set write to end of buffer */ | 1780 | /* Set write to end of buffer */ |
| 1192 | length = (tail + length) - BUF_PAGE_SIZE; | 1781 | length = (tail + length) - BUF_PAGE_SIZE; |
| @@ -1199,96 +1788,93 @@ rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer, | |||
| 1199 | struct buffer_page *commit_page, | 1788 | struct buffer_page *commit_page, |
| 1200 | struct buffer_page *tail_page, u64 *ts) | 1789 | struct buffer_page *tail_page, u64 *ts) |
| 1201 | { | 1790 | { |
| 1202 | struct buffer_page *next_page, *head_page, *reader_page; | ||
| 1203 | struct ring_buffer *buffer = cpu_buffer->buffer; | 1791 | struct ring_buffer *buffer = cpu_buffer->buffer; |
| 1204 | bool lock_taken = false; | 1792 | struct buffer_page *next_page; |
| 1205 | unsigned long flags; | 1793 | int ret; |
| 1206 | 1794 | ||
| 1207 | next_page = tail_page; | 1795 | next_page = tail_page; |
| 1208 | 1796 | ||
| 1209 | local_irq_save(flags); | ||
| 1210 | /* | ||
| 1211 | * Since the write to the buffer is still not | ||
| 1212 | * fully lockless, we must be careful with NMIs. | ||
| 1213 | * The locks in the writers are taken when a write | ||
| 1214 | * crosses to a new page. The locks protect against | ||
| 1215 | * races with the readers (this will soon be fixed | ||
| 1216 | * with a lockless solution). | ||
| 1217 | * | ||
| 1218 | * Because we can not protect against NMIs, and we | ||
| 1219 | * want to keep traces reentrant, we need to manage | ||
| 1220 | * what happens when we are in an NMI. | ||
| 1221 | * | ||
| 1222 | * NMIs can happen after we take the lock. | ||
| 1223 | * If we are in an NMI, only take the lock | ||
| 1224 | * if it is not already taken. Otherwise | ||
| 1225 | * simply fail. | ||
| 1226 | */ | ||
| 1227 | if (unlikely(in_nmi())) { | ||
| 1228 | if (!__raw_spin_trylock(&cpu_buffer->lock)) { | ||
| 1229 | cpu_buffer->nmi_dropped++; | ||
| 1230 | goto out_reset; | ||
| 1231 | } | ||
| 1232 | } else | ||
| 1233 | __raw_spin_lock(&cpu_buffer->lock); | ||
| 1234 | |||
| 1235 | lock_taken = true; | ||
| 1236 | |||
| 1237 | rb_inc_page(cpu_buffer, &next_page); | 1797 | rb_inc_page(cpu_buffer, &next_page); |
| 1238 | 1798 | ||
| 1239 | head_page = cpu_buffer->head_page; | ||
| 1240 | reader_page = cpu_buffer->reader_page; | ||
| 1241 | |||
| 1242 | /* we grabbed the lock before incrementing */ | ||
| 1243 | if (RB_WARN_ON(cpu_buffer, next_page == reader_page)) | ||
| 1244 | goto out_reset; | ||
| 1245 | |||
| 1246 | /* | 1799 | /* |
| 1247 | * If for some reason, we had an interrupt storm that made | 1800 | * If for some reason, we had an interrupt storm that made |
| 1248 | * it all the way around the buffer, bail, and warn | 1801 | * it all the way around the buffer, bail, and warn |
| 1249 | * about it. | 1802 | * about it. |
| 1250 | */ | 1803 | */ |
| 1251 | if (unlikely(next_page == commit_page)) { | 1804 | if (unlikely(next_page == commit_page)) { |
| 1252 | cpu_buffer->commit_overrun++; | 1805 | local_inc(&cpu_buffer->commit_overrun); |
| 1253 | goto out_reset; | 1806 | goto out_reset; |
| 1254 | } | 1807 | } |
| 1255 | 1808 | ||
| 1256 | if (next_page == head_page) { | 1809 | /* |
| 1257 | if (!(buffer->flags & RB_FL_OVERWRITE)) | 1810 | * This is where the fun begins! |
| 1258 | goto out_reset; | 1811 | * |
| 1259 | 1812 | * We are fighting against races between a reader that | |
| 1260 | /* tail_page has not moved yet? */ | 1813 | * could be on another CPU trying to swap its reader |
| 1261 | if (tail_page == cpu_buffer->tail_page) { | 1814 | * page with the buffer head. |
| 1262 | /* count overflows */ | 1815 | * |
| 1263 | cpu_buffer->overrun += | 1816 | * We are also fighting against interrupts coming in and |
| 1264 | local_read(&head_page->entries); | 1817 | * moving the head or tail on us as well. |
| 1818 | * | ||
| 1819 | * If the next page is the head page then we have filled | ||
| 1820 | * the buffer, unless the commit page is still on the | ||
| 1821 | * reader page. | ||
| 1822 | */ | ||
| 1823 | if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) { | ||
| 1265 | 1824 | ||
| 1266 | rb_inc_page(cpu_buffer, &head_page); | 1825 | /* |
| 1267 | cpu_buffer->head_page = head_page; | 1826 | * If the commit is not on the reader page, then |
| 1268 | cpu_buffer->head_page->read = 0; | 1827 | * move the header page. |
| 1828 | */ | ||
| 1829 | if (!rb_is_reader_page(cpu_buffer->commit_page)) { | ||
| 1830 | /* | ||
| 1831 | * If we are not in overwrite mode, | ||
| 1832 | * this is easy, just stop here. | ||
| 1833 | */ | ||
| 1834 | if (!(buffer->flags & RB_FL_OVERWRITE)) | ||
| 1835 | goto out_reset; | ||
| 1836 | |||
| 1837 | ret = rb_handle_head_page(cpu_buffer, | ||
| 1838 | tail_page, | ||
| 1839 | next_page); | ||
| 1840 | if (ret < 0) | ||
| 1841 | goto out_reset; | ||
| 1842 | if (ret) | ||
| 1843 | goto out_again; | ||
| 1844 | } else { | ||
| 1845 | /* | ||
| 1846 | * We need to be careful here too. The | ||
| 1847 | * commit page could still be on the reader | ||
| 1848 | * page. We could have a small buffer, and | ||
| 1849 | * have filled up the buffer with events | ||
| 1850 | * from interrupts and such, and wrapped. | ||
| 1851 | * | ||
| 1852 | * Note, if the tail page is also the on the | ||
| 1853 | * reader_page, we let it move out. | ||
| 1854 | */ | ||
| 1855 | if (unlikely((cpu_buffer->commit_page != | ||
| 1856 | cpu_buffer->tail_page) && | ||
| 1857 | (cpu_buffer->commit_page == | ||
| 1858 | cpu_buffer->reader_page))) { | ||
| 1859 | local_inc(&cpu_buffer->commit_overrun); | ||
| 1860 | goto out_reset; | ||
| 1861 | } | ||
| 1269 | } | 1862 | } |
| 1270 | } | 1863 | } |
| 1271 | 1864 | ||
| 1272 | /* | 1865 | ret = rb_tail_page_update(cpu_buffer, tail_page, next_page); |
| 1273 | * If the tail page is still the same as what we think | 1866 | if (ret) { |
| 1274 | * it is, then it is up to us to update the tail | 1867 | /* |
| 1275 | * pointer. | 1868 | * Nested commits always have zero deltas, so |
| 1276 | */ | 1869 | * just reread the time stamp |
| 1277 | if (tail_page == cpu_buffer->tail_page) { | 1870 | */ |
| 1278 | local_set(&next_page->write, 0); | ||
| 1279 | local_set(&next_page->entries, 0); | ||
| 1280 | local_set(&next_page->page->commit, 0); | ||
| 1281 | cpu_buffer->tail_page = next_page; | ||
| 1282 | |||
| 1283 | /* reread the time stamp */ | ||
| 1284 | *ts = rb_time_stamp(buffer, cpu_buffer->cpu); | 1871 | *ts = rb_time_stamp(buffer, cpu_buffer->cpu); |
| 1285 | cpu_buffer->tail_page->page->time_stamp = *ts; | 1872 | next_page->page->time_stamp = *ts; |
| 1286 | } | 1873 | } |
| 1287 | 1874 | ||
| 1288 | rb_reset_tail(cpu_buffer, tail_page, tail, length); | 1875 | out_again: |
| 1289 | 1876 | ||
| 1290 | __raw_spin_unlock(&cpu_buffer->lock); | 1877 | rb_reset_tail(cpu_buffer, tail_page, tail, length); |
| 1291 | local_irq_restore(flags); | ||
| 1292 | 1878 | ||
| 1293 | /* fail and let the caller try again */ | 1879 | /* fail and let the caller try again */ |
| 1294 | return ERR_PTR(-EAGAIN); | 1880 | return ERR_PTR(-EAGAIN); |
| @@ -1297,9 +1883,6 @@ rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer, | |||
| 1297 | /* reset write */ | 1883 | /* reset write */ |
| 1298 | rb_reset_tail(cpu_buffer, tail_page, tail, length); | 1884 | rb_reset_tail(cpu_buffer, tail_page, tail, length); |
| 1299 | 1885 | ||
| 1300 | if (likely(lock_taken)) | ||
| 1301 | __raw_spin_unlock(&cpu_buffer->lock); | ||
| 1302 | local_irq_restore(flags); | ||
| 1303 | return NULL; | 1886 | return NULL; |
| 1304 | } | 1887 | } |
| 1305 | 1888 | ||
| @@ -1316,6 +1899,9 @@ __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer, | |||
| 1316 | barrier(); | 1899 | barrier(); |
| 1317 | tail_page = cpu_buffer->tail_page; | 1900 | tail_page = cpu_buffer->tail_page; |
| 1318 | write = local_add_return(length, &tail_page->write); | 1901 | write = local_add_return(length, &tail_page->write); |
| 1902 | |||
| 1903 | /* set write to only the index of the write */ | ||
| 1904 | write &= RB_WRITE_MASK; | ||
| 1319 | tail = write - length; | 1905 | tail = write - length; |
| 1320 | 1906 | ||
| 1321 | /* See if we shot pass the end of this buffer page */ | 1907 | /* See if we shot pass the end of this buffer page */ |
| @@ -1360,12 +1946,16 @@ rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer, | |||
| 1360 | bpage = cpu_buffer->tail_page; | 1946 | bpage = cpu_buffer->tail_page; |
| 1361 | 1947 | ||
| 1362 | if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) { | 1948 | if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) { |
| 1949 | unsigned long write_mask = | ||
| 1950 | local_read(&bpage->write) & ~RB_WRITE_MASK; | ||
| 1363 | /* | 1951 | /* |
| 1364 | * This is on the tail page. It is possible that | 1952 | * This is on the tail page. It is possible that |
| 1365 | * a write could come in and move the tail page | 1953 | * a write could come in and move the tail page |
| 1366 | * and write to the next page. That is fine | 1954 | * and write to the next page. That is fine |
| 1367 | * because we just shorten what is on this page. | 1955 | * because we just shorten what is on this page. |
| 1368 | */ | 1956 | */ |
| 1957 | old_index += write_mask; | ||
| 1958 | new_index += write_mask; | ||
| 1369 | index = local_cmpxchg(&bpage->write, old_index, new_index); | 1959 | index = local_cmpxchg(&bpage->write, old_index, new_index); |
| 1370 | if (index == old_index) | 1960 | if (index == old_index) |
| 1371 | return 1; | 1961 | return 1; |
| @@ -1481,7 +2071,8 @@ static void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer) | |||
| 1481 | } | 2071 | } |
| 1482 | 2072 | ||
| 1483 | static struct ring_buffer_event * | 2073 | static struct ring_buffer_event * |
| 1484 | rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer, | 2074 | rb_reserve_next_event(struct ring_buffer *buffer, |
| 2075 | struct ring_buffer_per_cpu *cpu_buffer, | ||
| 1485 | unsigned long length) | 2076 | unsigned long length) |
| 1486 | { | 2077 | { |
| 1487 | struct ring_buffer_event *event; | 2078 | struct ring_buffer_event *event; |
| @@ -1491,6 +2082,21 @@ rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer, | |||
| 1491 | 2082 | ||
| 1492 | rb_start_commit(cpu_buffer); | 2083 | rb_start_commit(cpu_buffer); |
| 1493 | 2084 | ||
| 2085 | #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP | ||
| 2086 | /* | ||
| 2087 | * Due to the ability to swap a cpu buffer from a buffer | ||
| 2088 | * it is possible it was swapped before we committed. | ||
| 2089 | * (committing stops a swap). We check for it here and | ||
| 2090 | * if it happened, we have to fail the write. | ||
| 2091 | */ | ||
| 2092 | barrier(); | ||
| 2093 | if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) { | ||
| 2094 | local_dec(&cpu_buffer->committing); | ||
| 2095 | local_dec(&cpu_buffer->commits); | ||
| 2096 | return NULL; | ||
| 2097 | } | ||
| 2098 | #endif | ||
| 2099 | |||
| 1494 | length = rb_calculate_event_length(length); | 2100 | length = rb_calculate_event_length(length); |
| 1495 | again: | 2101 | again: |
| 1496 | /* | 2102 | /* |
| @@ -1651,7 +2257,7 @@ ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length) | |||
| 1651 | if (length > BUF_MAX_DATA_SIZE) | 2257 | if (length > BUF_MAX_DATA_SIZE) |
| 1652 | goto out; | 2258 | goto out; |
| 1653 | 2259 | ||
| 1654 | event = rb_reserve_next_event(cpu_buffer, length); | 2260 | event = rb_reserve_next_event(buffer, cpu_buffer, length); |
| 1655 | if (!event) | 2261 | if (!event) |
| 1656 | goto out; | 2262 | goto out; |
| 1657 | 2263 | ||
| @@ -1674,18 +2280,23 @@ ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length) | |||
| 1674 | } | 2280 | } |
| 1675 | EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve); | 2281 | EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve); |
| 1676 | 2282 | ||
| 1677 | static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer, | 2283 | static void |
| 2284 | rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer, | ||
| 1678 | struct ring_buffer_event *event) | 2285 | struct ring_buffer_event *event) |
| 1679 | { | 2286 | { |
| 1680 | local_inc(&cpu_buffer->entries); | ||
| 1681 | |||
| 1682 | /* | 2287 | /* |
| 1683 | * The event first in the commit queue updates the | 2288 | * The event first in the commit queue updates the |
| 1684 | * time stamp. | 2289 | * time stamp. |
| 1685 | */ | 2290 | */ |
| 1686 | if (rb_event_is_commit(cpu_buffer, event)) | 2291 | if (rb_event_is_commit(cpu_buffer, event)) |
| 1687 | cpu_buffer->write_stamp += event->time_delta; | 2292 | cpu_buffer->write_stamp += event->time_delta; |
| 2293 | } | ||
| 1688 | 2294 | ||
| 2295 | static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer, | ||
| 2296 | struct ring_buffer_event *event) | ||
| 2297 | { | ||
| 2298 | local_inc(&cpu_buffer->entries); | ||
| 2299 | rb_update_write_stamp(cpu_buffer, event); | ||
| 1689 | rb_end_commit(cpu_buffer); | 2300 | rb_end_commit(cpu_buffer); |
| 1690 | } | 2301 | } |
| 1691 | 2302 | ||
| @@ -1732,32 +2343,57 @@ static inline void rb_event_discard(struct ring_buffer_event *event) | |||
| 1732 | event->time_delta = 1; | 2343 | event->time_delta = 1; |
| 1733 | } | 2344 | } |
| 1734 | 2345 | ||
| 1735 | /** | 2346 | /* |
| 1736 | * ring_buffer_event_discard - discard any event in the ring buffer | 2347 | * Decrement the entries to the page that an event is on. |
| 1737 | * @event: the event to discard | 2348 | * The event does not even need to exist, only the pointer |
| 1738 | * | 2349 | * to the page it is on. This may only be called before the commit |
| 1739 | * Sometimes a event that is in the ring buffer needs to be ignored. | 2350 | * takes place. |
| 1740 | * This function lets the user discard an event in the ring buffer | ||
| 1741 | * and then that event will not be read later. | ||
| 1742 | * | ||
| 1743 | * Note, it is up to the user to be careful with this, and protect | ||
| 1744 | * against races. If the user discards an event that has been consumed | ||
| 1745 | * it is possible that it could corrupt the ring buffer. | ||
| 1746 | */ | 2351 | */ |
| 1747 | void ring_buffer_event_discard(struct ring_buffer_event *event) | 2352 | static inline void |
| 2353 | rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer, | ||
| 2354 | struct ring_buffer_event *event) | ||
| 1748 | { | 2355 | { |
| 1749 | rb_event_discard(event); | 2356 | unsigned long addr = (unsigned long)event; |
| 2357 | struct buffer_page *bpage = cpu_buffer->commit_page; | ||
| 2358 | struct buffer_page *start; | ||
| 2359 | |||
| 2360 | addr &= PAGE_MASK; | ||
| 2361 | |||
| 2362 | /* Do the likely case first */ | ||
| 2363 | if (likely(bpage->page == (void *)addr)) { | ||
| 2364 | local_dec(&bpage->entries); | ||
| 2365 | return; | ||
| 2366 | } | ||
| 2367 | |||
| 2368 | /* | ||
| 2369 | * Because the commit page may be on the reader page we | ||
| 2370 | * start with the next page and check the end loop there. | ||
| 2371 | */ | ||
| 2372 | rb_inc_page(cpu_buffer, &bpage); | ||
| 2373 | start = bpage; | ||
| 2374 | do { | ||
| 2375 | if (bpage->page == (void *)addr) { | ||
| 2376 | local_dec(&bpage->entries); | ||
| 2377 | return; | ||
| 2378 | } | ||
| 2379 | rb_inc_page(cpu_buffer, &bpage); | ||
| 2380 | } while (bpage != start); | ||
| 2381 | |||
| 2382 | /* commit not part of this buffer?? */ | ||
| 2383 | RB_WARN_ON(cpu_buffer, 1); | ||
| 1750 | } | 2384 | } |
| 1751 | EXPORT_SYMBOL_GPL(ring_buffer_event_discard); | ||
| 1752 | 2385 | ||
| 1753 | /** | 2386 | /** |
| 1754 | * ring_buffer_commit_discard - discard an event that has not been committed | 2387 | * ring_buffer_commit_discard - discard an event that has not been committed |
| 1755 | * @buffer: the ring buffer | 2388 | * @buffer: the ring buffer |
| 1756 | * @event: non committed event to discard | 2389 | * @event: non committed event to discard |
| 1757 | * | 2390 | * |
| 1758 | * This is similar to ring_buffer_event_discard but must only be | 2391 | * Sometimes an event that is in the ring buffer needs to be ignored. |
| 1759 | * performed on an event that has not been committed yet. The difference | 2392 | * This function lets the user discard an event in the ring buffer |
| 1760 | * is that this will also try to free the event from the ring buffer | 2393 | * and then that event will not be read later. |
| 2394 | * | ||
| 2395 | * This function only works if it is called before the the item has been | ||
| 2396 | * committed. It will try to free the event from the ring buffer | ||
| 1761 | * if another event has not been added behind it. | 2397 | * if another event has not been added behind it. |
| 1762 | * | 2398 | * |
| 1763 | * If another event has been added behind it, it will set the event | 2399 | * If another event has been added behind it, it will set the event |
| @@ -1785,14 +2421,15 @@ void ring_buffer_discard_commit(struct ring_buffer *buffer, | |||
| 1785 | */ | 2421 | */ |
| 1786 | RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing)); | 2422 | RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing)); |
| 1787 | 2423 | ||
| 1788 | if (!rb_try_to_discard(cpu_buffer, event)) | 2424 | rb_decrement_entry(cpu_buffer, event); |
| 2425 | if (rb_try_to_discard(cpu_buffer, event)) | ||
| 1789 | goto out; | 2426 | goto out; |
| 1790 | 2427 | ||
| 1791 | /* | 2428 | /* |
| 1792 | * The commit is still visible by the reader, so we | 2429 | * The commit is still visible by the reader, so we |
| 1793 | * must increment entries. | 2430 | * must still update the timestamp. |
| 1794 | */ | 2431 | */ |
| 1795 | local_inc(&cpu_buffer->entries); | 2432 | rb_update_write_stamp(cpu_buffer, event); |
| 1796 | out: | 2433 | out: |
| 1797 | rb_end_commit(cpu_buffer); | 2434 | rb_end_commit(cpu_buffer); |
| 1798 | 2435 | ||
| @@ -1853,7 +2490,7 @@ int ring_buffer_write(struct ring_buffer *buffer, | |||
| 1853 | if (length > BUF_MAX_DATA_SIZE) | 2490 | if (length > BUF_MAX_DATA_SIZE) |
| 1854 | goto out; | 2491 | goto out; |
| 1855 | 2492 | ||
| 1856 | event = rb_reserve_next_event(cpu_buffer, length); | 2493 | event = rb_reserve_next_event(buffer, cpu_buffer, length); |
| 1857 | if (!event) | 2494 | if (!event) |
| 1858 | goto out; | 2495 | goto out; |
| 1859 | 2496 | ||
| @@ -1874,9 +2511,13 @@ EXPORT_SYMBOL_GPL(ring_buffer_write); | |||
| 1874 | static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer) | 2511 | static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer) |
| 1875 | { | 2512 | { |
| 1876 | struct buffer_page *reader = cpu_buffer->reader_page; | 2513 | struct buffer_page *reader = cpu_buffer->reader_page; |
| 1877 | struct buffer_page *head = cpu_buffer->head_page; | 2514 | struct buffer_page *head = rb_set_head_page(cpu_buffer); |
| 1878 | struct buffer_page *commit = cpu_buffer->commit_page; | 2515 | struct buffer_page *commit = cpu_buffer->commit_page; |
| 1879 | 2516 | ||
| 2517 | /* In case of error, head will be NULL */ | ||
| 2518 | if (unlikely(!head)) | ||
| 2519 | return 1; | ||
| 2520 | |||
| 1880 | return reader->read == rb_page_commit(reader) && | 2521 | return reader->read == rb_page_commit(reader) && |
| 1881 | (commit == reader || | 2522 | (commit == reader || |
| 1882 | (commit == head && | 2523 | (commit == head && |
| @@ -1967,7 +2608,7 @@ unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu) | |||
| 1967 | return 0; | 2608 | return 0; |
| 1968 | 2609 | ||
| 1969 | cpu_buffer = buffer->buffers[cpu]; | 2610 | cpu_buffer = buffer->buffers[cpu]; |
| 1970 | ret = (local_read(&cpu_buffer->entries) - cpu_buffer->overrun) | 2611 | ret = (local_read(&cpu_buffer->entries) - local_read(&cpu_buffer->overrun)) |
| 1971 | - cpu_buffer->read; | 2612 | - cpu_buffer->read; |
| 1972 | 2613 | ||
| 1973 | return ret; | 2614 | return ret; |
| @@ -1988,33 +2629,13 @@ unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu) | |||
| 1988 | return 0; | 2629 | return 0; |
| 1989 | 2630 | ||
| 1990 | cpu_buffer = buffer->buffers[cpu]; | 2631 | cpu_buffer = buffer->buffers[cpu]; |
| 1991 | ret = cpu_buffer->overrun; | 2632 | ret = local_read(&cpu_buffer->overrun); |
| 1992 | 2633 | ||
| 1993 | return ret; | 2634 | return ret; |
| 1994 | } | 2635 | } |
| 1995 | EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu); | 2636 | EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu); |
| 1996 | 2637 | ||
| 1997 | /** | 2638 | /** |
| 1998 | * ring_buffer_nmi_dropped_cpu - get the number of nmis that were dropped | ||
| 1999 | * @buffer: The ring buffer | ||
| 2000 | * @cpu: The per CPU buffer to get the number of overruns from | ||
| 2001 | */ | ||
| 2002 | unsigned long ring_buffer_nmi_dropped_cpu(struct ring_buffer *buffer, int cpu) | ||
| 2003 | { | ||
| 2004 | struct ring_buffer_per_cpu *cpu_buffer; | ||
| 2005 | unsigned long ret; | ||
| 2006 | |||
| 2007 | if (!cpumask_test_cpu(cpu, buffer->cpumask)) | ||
| 2008 | return 0; | ||
| 2009 | |||
| 2010 | cpu_buffer = buffer->buffers[cpu]; | ||
| 2011 | ret = cpu_buffer->nmi_dropped; | ||
| 2012 | |||
| 2013 | return ret; | ||
| 2014 | } | ||
| 2015 | EXPORT_SYMBOL_GPL(ring_buffer_nmi_dropped_cpu); | ||
| 2016 | |||
| 2017 | /** | ||
| 2018 | * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits | 2639 | * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits |
| 2019 | * @buffer: The ring buffer | 2640 | * @buffer: The ring buffer |
| 2020 | * @cpu: The per CPU buffer to get the number of overruns from | 2641 | * @cpu: The per CPU buffer to get the number of overruns from |
| @@ -2029,7 +2650,7 @@ ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu) | |||
| 2029 | return 0; | 2650 | return 0; |
| 2030 | 2651 | ||
| 2031 | cpu_buffer = buffer->buffers[cpu]; | 2652 | cpu_buffer = buffer->buffers[cpu]; |
| 2032 | ret = cpu_buffer->commit_overrun; | 2653 | ret = local_read(&cpu_buffer->commit_overrun); |
| 2033 | 2654 | ||
| 2034 | return ret; | 2655 | return ret; |
| 2035 | } | 2656 | } |
| @@ -2052,7 +2673,7 @@ unsigned long ring_buffer_entries(struct ring_buffer *buffer) | |||
| 2052 | for_each_buffer_cpu(buffer, cpu) { | 2673 | for_each_buffer_cpu(buffer, cpu) { |
| 2053 | cpu_buffer = buffer->buffers[cpu]; | 2674 | cpu_buffer = buffer->buffers[cpu]; |
| 2054 | entries += (local_read(&cpu_buffer->entries) - | 2675 | entries += (local_read(&cpu_buffer->entries) - |
| 2055 | cpu_buffer->overrun) - cpu_buffer->read; | 2676 | local_read(&cpu_buffer->overrun)) - cpu_buffer->read; |
| 2056 | } | 2677 | } |
| 2057 | 2678 | ||
| 2058 | return entries; | 2679 | return entries; |
| @@ -2075,7 +2696,7 @@ unsigned long ring_buffer_overruns(struct ring_buffer *buffer) | |||
| 2075 | /* if you care about this being correct, lock the buffer */ | 2696 | /* if you care about this being correct, lock the buffer */ |
| 2076 | for_each_buffer_cpu(buffer, cpu) { | 2697 | for_each_buffer_cpu(buffer, cpu) { |
| 2077 | cpu_buffer = buffer->buffers[cpu]; | 2698 | cpu_buffer = buffer->buffers[cpu]; |
| 2078 | overruns += cpu_buffer->overrun; | 2699 | overruns += local_read(&cpu_buffer->overrun); |
| 2079 | } | 2700 | } |
| 2080 | 2701 | ||
| 2081 | return overruns; | 2702 | return overruns; |
| @@ -2088,8 +2709,10 @@ static void rb_iter_reset(struct ring_buffer_iter *iter) | |||
| 2088 | 2709 | ||
| 2089 | /* Iterator usage is expected to have record disabled */ | 2710 | /* Iterator usage is expected to have record disabled */ |
| 2090 | if (list_empty(&cpu_buffer->reader_page->list)) { | 2711 | if (list_empty(&cpu_buffer->reader_page->list)) { |
| 2091 | iter->head_page = cpu_buffer->head_page; | 2712 | iter->head_page = rb_set_head_page(cpu_buffer); |
| 2092 | iter->head = cpu_buffer->head_page->read; | 2713 | if (unlikely(!iter->head_page)) |
| 2714 | return; | ||
| 2715 | iter->head = iter->head_page->read; | ||
| 2093 | } else { | 2716 | } else { |
| 2094 | iter->head_page = cpu_buffer->reader_page; | 2717 | iter->head_page = cpu_buffer->reader_page; |
| 2095 | iter->head = cpu_buffer->reader_page->read; | 2718 | iter->head = cpu_buffer->reader_page->read; |
| @@ -2206,6 +2829,7 @@ rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer) | |||
| 2206 | struct buffer_page *reader = NULL; | 2829 | struct buffer_page *reader = NULL; |
| 2207 | unsigned long flags; | 2830 | unsigned long flags; |
| 2208 | int nr_loops = 0; | 2831 | int nr_loops = 0; |
| 2832 | int ret; | ||
| 2209 | 2833 | ||
| 2210 | local_irq_save(flags); | 2834 | local_irq_save(flags); |
| 2211 | __raw_spin_lock(&cpu_buffer->lock); | 2835 | __raw_spin_lock(&cpu_buffer->lock); |
| @@ -2239,30 +2863,56 @@ rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer) | |||
| 2239 | goto out; | 2863 | goto out; |
| 2240 | 2864 | ||
| 2241 | /* | 2865 | /* |
| 2242 | * Splice the empty reader page into the list around the head. | ||
| 2243 | * Reset the reader page to size zero. | 2866 | * Reset the reader page to size zero. |
| 2244 | */ | 2867 | */ |
| 2868 | local_set(&cpu_buffer->reader_page->write, 0); | ||
| 2869 | local_set(&cpu_buffer->reader_page->entries, 0); | ||
| 2870 | local_set(&cpu_buffer->reader_page->page->commit, 0); | ||
| 2245 | 2871 | ||
| 2246 | reader = cpu_buffer->head_page; | 2872 | spin: |
| 2873 | /* | ||
| 2874 | * Splice the empty reader page into the list around the head. | ||
| 2875 | */ | ||
| 2876 | reader = rb_set_head_page(cpu_buffer); | ||
| 2247 | cpu_buffer->reader_page->list.next = reader->list.next; | 2877 | cpu_buffer->reader_page->list.next = reader->list.next; |
| 2248 | cpu_buffer->reader_page->list.prev = reader->list.prev; | 2878 | cpu_buffer->reader_page->list.prev = reader->list.prev; |
| 2249 | 2879 | ||
| 2250 | local_set(&cpu_buffer->reader_page->write, 0); | 2880 | /* |
| 2251 | local_set(&cpu_buffer->reader_page->entries, 0); | 2881 | * cpu_buffer->pages just needs to point to the buffer, it |
| 2252 | local_set(&cpu_buffer->reader_page->page->commit, 0); | 2882 | * has no specific buffer page to point to. Lets move it out |
| 2883 | * of our way so we don't accidently swap it. | ||
| 2884 | */ | ||
| 2885 | cpu_buffer->pages = reader->list.prev; | ||
| 2253 | 2886 | ||
| 2254 | /* Make the reader page now replace the head */ | 2887 | /* The reader page will be pointing to the new head */ |
| 2255 | reader->list.prev->next = &cpu_buffer->reader_page->list; | 2888 | rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list); |
| 2256 | reader->list.next->prev = &cpu_buffer->reader_page->list; | ||
| 2257 | 2889 | ||
| 2258 | /* | 2890 | /* |
| 2259 | * If the tail is on the reader, then we must set the head | 2891 | * Here's the tricky part. |
| 2260 | * to the inserted page, otherwise we set it one before. | 2892 | * |
| 2893 | * We need to move the pointer past the header page. | ||
| 2894 | * But we can only do that if a writer is not currently | ||
| 2895 | * moving it. The page before the header page has the | ||
| 2896 | * flag bit '1' set if it is pointing to the page we want. | ||
| 2897 | * but if the writer is in the process of moving it | ||
| 2898 | * than it will be '2' or already moved '0'. | ||
| 2261 | */ | 2899 | */ |
| 2262 | cpu_buffer->head_page = cpu_buffer->reader_page; | ||
| 2263 | 2900 | ||
| 2264 | if (cpu_buffer->commit_page != reader) | 2901 | ret = rb_head_page_replace(reader, cpu_buffer->reader_page); |
| 2265 | rb_inc_page(cpu_buffer, &cpu_buffer->head_page); | 2902 | |
| 2903 | /* | ||
| 2904 | * If we did not convert it, then we must try again. | ||
| 2905 | */ | ||
| 2906 | if (!ret) | ||
| 2907 | goto spin; | ||
| 2908 | |||
| 2909 | /* | ||
| 2910 | * Yeah! We succeeded in replacing the page. | ||
| 2911 | * | ||
| 2912 | * Now make the new head point back to the reader page. | ||
| 2913 | */ | ||
| 2914 | reader->list.next->prev = &cpu_buffer->reader_page->list; | ||
| 2915 | rb_inc_page(cpu_buffer, &cpu_buffer->head_page); | ||
| 2266 | 2916 | ||
| 2267 | /* Finally update the reader page to the new head */ | 2917 | /* Finally update the reader page to the new head */ |
| 2268 | cpu_buffer->reader_page = reader; | 2918 | cpu_buffer->reader_page = reader; |
| @@ -2291,8 +2941,7 @@ static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer) | |||
| 2291 | 2941 | ||
| 2292 | event = rb_reader_event(cpu_buffer); | 2942 | event = rb_reader_event(cpu_buffer); |
| 2293 | 2943 | ||
| 2294 | if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX | 2944 | if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX) |
| 2295 | || rb_discarded_event(event)) | ||
| 2296 | cpu_buffer->read++; | 2945 | cpu_buffer->read++; |
| 2297 | 2946 | ||
| 2298 | rb_update_read_stamp(cpu_buffer, event); | 2947 | rb_update_read_stamp(cpu_buffer, event); |
| @@ -2346,15 +2995,12 @@ static void rb_advance_iter(struct ring_buffer_iter *iter) | |||
| 2346 | } | 2995 | } |
| 2347 | 2996 | ||
| 2348 | static struct ring_buffer_event * | 2997 | static struct ring_buffer_event * |
| 2349 | rb_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts) | 2998 | rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts) |
| 2350 | { | 2999 | { |
| 2351 | struct ring_buffer_per_cpu *cpu_buffer; | ||
| 2352 | struct ring_buffer_event *event; | 3000 | struct ring_buffer_event *event; |
| 2353 | struct buffer_page *reader; | 3001 | struct buffer_page *reader; |
| 2354 | int nr_loops = 0; | 3002 | int nr_loops = 0; |
| 2355 | 3003 | ||
| 2356 | cpu_buffer = buffer->buffers[cpu]; | ||
| 2357 | |||
| 2358 | again: | 3004 | again: |
| 2359 | /* | 3005 | /* |
| 2360 | * We repeat when a timestamp is encountered. It is possible | 3006 | * We repeat when a timestamp is encountered. It is possible |
| @@ -2383,7 +3029,6 @@ rb_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts) | |||
| 2383 | * the box. Return the padding, and we will release | 3029 | * the box. Return the padding, and we will release |
| 2384 | * the current locks, and try again. | 3030 | * the current locks, and try again. |
| 2385 | */ | 3031 | */ |
| 2386 | rb_advance_reader(cpu_buffer); | ||
| 2387 | return event; | 3032 | return event; |
| 2388 | 3033 | ||
| 2389 | case RINGBUF_TYPE_TIME_EXTEND: | 3034 | case RINGBUF_TYPE_TIME_EXTEND: |
| @@ -2399,7 +3044,7 @@ rb_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts) | |||
| 2399 | case RINGBUF_TYPE_DATA: | 3044 | case RINGBUF_TYPE_DATA: |
| 2400 | if (ts) { | 3045 | if (ts) { |
| 2401 | *ts = cpu_buffer->read_stamp + event->time_delta; | 3046 | *ts = cpu_buffer->read_stamp + event->time_delta; |
| 2402 | ring_buffer_normalize_time_stamp(buffer, | 3047 | ring_buffer_normalize_time_stamp(cpu_buffer->buffer, |
| 2403 | cpu_buffer->cpu, ts); | 3048 | cpu_buffer->cpu, ts); |
| 2404 | } | 3049 | } |
| 2405 | return event; | 3050 | return event; |
| @@ -2486,7 +3131,7 @@ static inline int rb_ok_to_lock(void) | |||
| 2486 | * buffer too. A one time deal is all you get from reading | 3131 | * buffer too. A one time deal is all you get from reading |
| 2487 | * the ring buffer from an NMI. | 3132 | * the ring buffer from an NMI. |
| 2488 | */ | 3133 | */ |
| 2489 | if (likely(!in_nmi() && !oops_in_progress)) | 3134 | if (likely(!in_nmi())) |
| 2490 | return 1; | 3135 | return 1; |
| 2491 | 3136 | ||
| 2492 | tracing_off_permanent(); | 3137 | tracing_off_permanent(); |
| @@ -2518,15 +3163,15 @@ ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts) | |||
| 2518 | local_irq_save(flags); | 3163 | local_irq_save(flags); |
| 2519 | if (dolock) | 3164 | if (dolock) |
| 2520 | spin_lock(&cpu_buffer->reader_lock); | 3165 | spin_lock(&cpu_buffer->reader_lock); |
| 2521 | event = rb_buffer_peek(buffer, cpu, ts); | 3166 | event = rb_buffer_peek(cpu_buffer, ts); |
| 3167 | if (event && event->type_len == RINGBUF_TYPE_PADDING) | ||
| 3168 | rb_advance_reader(cpu_buffer); | ||
| 2522 | if (dolock) | 3169 | if (dolock) |
| 2523 | spin_unlock(&cpu_buffer->reader_lock); | 3170 | spin_unlock(&cpu_buffer->reader_lock); |
| 2524 | local_irq_restore(flags); | 3171 | local_irq_restore(flags); |
| 2525 | 3172 | ||
| 2526 | if (event && event->type_len == RINGBUF_TYPE_PADDING) { | 3173 | if (event && event->type_len == RINGBUF_TYPE_PADDING) |
| 2527 | cpu_relax(); | ||
| 2528 | goto again; | 3174 | goto again; |
| 2529 | } | ||
| 2530 | 3175 | ||
| 2531 | return event; | 3176 | return event; |
| 2532 | } | 3177 | } |
| @@ -2551,10 +3196,8 @@ ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts) | |||
| 2551 | event = rb_iter_peek(iter, ts); | 3196 | event = rb_iter_peek(iter, ts); |
| 2552 | spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); | 3197 | spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); |
| 2553 | 3198 | ||
| 2554 | if (event && event->type_len == RINGBUF_TYPE_PADDING) { | 3199 | if (event && event->type_len == RINGBUF_TYPE_PADDING) |
| 2555 | cpu_relax(); | ||
| 2556 | goto again; | 3200 | goto again; |
| 2557 | } | ||
| 2558 | 3201 | ||
| 2559 | return event; | 3202 | return event; |
| 2560 | } | 3203 | } |
| @@ -2589,13 +3232,10 @@ ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts) | |||
| 2589 | if (dolock) | 3232 | if (dolock) |
| 2590 | spin_lock(&cpu_buffer->reader_lock); | 3233 | spin_lock(&cpu_buffer->reader_lock); |
| 2591 | 3234 | ||
| 2592 | event = rb_buffer_peek(buffer, cpu, ts); | 3235 | event = rb_buffer_peek(cpu_buffer, ts); |
| 2593 | if (!event) | 3236 | if (event) |
| 2594 | goto out_unlock; | 3237 | rb_advance_reader(cpu_buffer); |
| 2595 | |||
| 2596 | rb_advance_reader(cpu_buffer); | ||
| 2597 | 3238 | ||
| 2598 | out_unlock: | ||
| 2599 | if (dolock) | 3239 | if (dolock) |
| 2600 | spin_unlock(&cpu_buffer->reader_lock); | 3240 | spin_unlock(&cpu_buffer->reader_lock); |
| 2601 | local_irq_restore(flags); | 3241 | local_irq_restore(flags); |
| @@ -2603,10 +3243,8 @@ ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts) | |||
| 2603 | out: | 3243 | out: |
| 2604 | preempt_enable(); | 3244 | preempt_enable(); |
| 2605 | 3245 | ||
| 2606 | if (event && event->type_len == RINGBUF_TYPE_PADDING) { | 3246 | if (event && event->type_len == RINGBUF_TYPE_PADDING) |
| 2607 | cpu_relax(); | ||
| 2608 | goto again; | 3247 | goto again; |
| 2609 | } | ||
| 2610 | 3248 | ||
| 2611 | return event; | 3249 | return event; |
| 2612 | } | 3250 | } |
| @@ -2686,21 +3324,19 @@ ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts) | |||
| 2686 | struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; | 3324 | struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; |
| 2687 | unsigned long flags; | 3325 | unsigned long flags; |
| 2688 | 3326 | ||
| 2689 | again: | ||
| 2690 | spin_lock_irqsave(&cpu_buffer->reader_lock, flags); | 3327 | spin_lock_irqsave(&cpu_buffer->reader_lock, flags); |
| 3328 | again: | ||
| 2691 | event = rb_iter_peek(iter, ts); | 3329 | event = rb_iter_peek(iter, ts); |
| 2692 | if (!event) | 3330 | if (!event) |
| 2693 | goto out; | 3331 | goto out; |
| 2694 | 3332 | ||
| 3333 | if (event->type_len == RINGBUF_TYPE_PADDING) | ||
| 3334 | goto again; | ||
| 3335 | |||
| 2695 | rb_advance_iter(iter); | 3336 | rb_advance_iter(iter); |
| 2696 | out: | 3337 | out: |
| 2697 | spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); | 3338 | spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); |
| 2698 | 3339 | ||
| 2699 | if (event && event->type_len == RINGBUF_TYPE_PADDING) { | ||
| 2700 | cpu_relax(); | ||
| 2701 | goto again; | ||
| 2702 | } | ||
| 2703 | |||
| 2704 | return event; | 3340 | return event; |
| 2705 | } | 3341 | } |
| 2706 | EXPORT_SYMBOL_GPL(ring_buffer_read); | 3342 | EXPORT_SYMBOL_GPL(ring_buffer_read); |
| @@ -2718,8 +3354,10 @@ EXPORT_SYMBOL_GPL(ring_buffer_size); | |||
| 2718 | static void | 3354 | static void |
| 2719 | rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer) | 3355 | rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer) |
| 2720 | { | 3356 | { |
| 3357 | rb_head_page_deactivate(cpu_buffer); | ||
| 3358 | |||
| 2721 | cpu_buffer->head_page | 3359 | cpu_buffer->head_page |
| 2722 | = list_entry(cpu_buffer->pages.next, struct buffer_page, list); | 3360 | = list_entry(cpu_buffer->pages, struct buffer_page, list); |
| 2723 | local_set(&cpu_buffer->head_page->write, 0); | 3361 | local_set(&cpu_buffer->head_page->write, 0); |
| 2724 | local_set(&cpu_buffer->head_page->entries, 0); | 3362 | local_set(&cpu_buffer->head_page->entries, 0); |
| 2725 | local_set(&cpu_buffer->head_page->page->commit, 0); | 3363 | local_set(&cpu_buffer->head_page->page->commit, 0); |
| @@ -2735,16 +3373,17 @@ rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer) | |||
| 2735 | local_set(&cpu_buffer->reader_page->page->commit, 0); | 3373 | local_set(&cpu_buffer->reader_page->page->commit, 0); |
| 2736 | cpu_buffer->reader_page->read = 0; | 3374 | cpu_buffer->reader_page->read = 0; |
| 2737 | 3375 | ||
| 2738 | cpu_buffer->nmi_dropped = 0; | 3376 | local_set(&cpu_buffer->commit_overrun, 0); |
| 2739 | cpu_buffer->commit_overrun = 0; | 3377 | local_set(&cpu_buffer->overrun, 0); |
| 2740 | cpu_buffer->overrun = 0; | ||
| 2741 | cpu_buffer->read = 0; | ||
| 2742 | local_set(&cpu_buffer->entries, 0); | 3378 | local_set(&cpu_buffer->entries, 0); |
| 2743 | local_set(&cpu_buffer->committing, 0); | 3379 | local_set(&cpu_buffer->committing, 0); |
| 2744 | local_set(&cpu_buffer->commits, 0); | 3380 | local_set(&cpu_buffer->commits, 0); |
| 3381 | cpu_buffer->read = 0; | ||
| 2745 | 3382 | ||
| 2746 | cpu_buffer->write_stamp = 0; | 3383 | cpu_buffer->write_stamp = 0; |
| 2747 | cpu_buffer->read_stamp = 0; | 3384 | cpu_buffer->read_stamp = 0; |
| 3385 | |||
| 3386 | rb_head_page_activate(cpu_buffer); | ||
| 2748 | } | 3387 | } |
| 2749 | 3388 | ||
| 2750 | /** | 3389 | /** |
| @@ -2764,12 +3403,16 @@ void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu) | |||
| 2764 | 3403 | ||
| 2765 | spin_lock_irqsave(&cpu_buffer->reader_lock, flags); | 3404 | spin_lock_irqsave(&cpu_buffer->reader_lock, flags); |
| 2766 | 3405 | ||
| 3406 | if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing))) | ||
| 3407 | goto out; | ||
| 3408 | |||
| 2767 | __raw_spin_lock(&cpu_buffer->lock); | 3409 | __raw_spin_lock(&cpu_buffer->lock); |
| 2768 | 3410 | ||
| 2769 | rb_reset_cpu(cpu_buffer); | 3411 | rb_reset_cpu(cpu_buffer); |
| 2770 | 3412 | ||
| 2771 | __raw_spin_unlock(&cpu_buffer->lock); | 3413 | __raw_spin_unlock(&cpu_buffer->lock); |
| 2772 | 3414 | ||
| 3415 | out: | ||
| 2773 | spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); | 3416 | spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); |
| 2774 | 3417 | ||
| 2775 | atomic_dec(&cpu_buffer->record_disabled); | 3418 | atomic_dec(&cpu_buffer->record_disabled); |
| @@ -2852,6 +3495,7 @@ int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu) | |||
| 2852 | } | 3495 | } |
| 2853 | EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu); | 3496 | EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu); |
| 2854 | 3497 | ||
| 3498 | #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP | ||
| 2855 | /** | 3499 | /** |
| 2856 | * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers | 3500 | * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers |
| 2857 | * @buffer_a: One buffer to swap with | 3501 | * @buffer_a: One buffer to swap with |
| @@ -2906,20 +3550,28 @@ int ring_buffer_swap_cpu(struct ring_buffer *buffer_a, | |||
| 2906 | atomic_inc(&cpu_buffer_a->record_disabled); | 3550 | atomic_inc(&cpu_buffer_a->record_disabled); |
| 2907 | atomic_inc(&cpu_buffer_b->record_disabled); | 3551 | atomic_inc(&cpu_buffer_b->record_disabled); |
| 2908 | 3552 | ||
| 3553 | ret = -EBUSY; | ||
| 3554 | if (local_read(&cpu_buffer_a->committing)) | ||
| 3555 | goto out_dec; | ||
| 3556 | if (local_read(&cpu_buffer_b->committing)) | ||
| 3557 | goto out_dec; | ||
| 3558 | |||
| 2909 | buffer_a->buffers[cpu] = cpu_buffer_b; | 3559 | buffer_a->buffers[cpu] = cpu_buffer_b; |
| 2910 | buffer_b->buffers[cpu] = cpu_buffer_a; | 3560 | buffer_b->buffers[cpu] = cpu_buffer_a; |
| 2911 | 3561 | ||
| 2912 | cpu_buffer_b->buffer = buffer_a; | 3562 | cpu_buffer_b->buffer = buffer_a; |
| 2913 | cpu_buffer_a->buffer = buffer_b; | 3563 | cpu_buffer_a->buffer = buffer_b; |
| 2914 | 3564 | ||
| 3565 | ret = 0; | ||
| 3566 | |||
| 3567 | out_dec: | ||
| 2915 | atomic_dec(&cpu_buffer_a->record_disabled); | 3568 | atomic_dec(&cpu_buffer_a->record_disabled); |
| 2916 | atomic_dec(&cpu_buffer_b->record_disabled); | 3569 | atomic_dec(&cpu_buffer_b->record_disabled); |
| 2917 | |||
| 2918 | ret = 0; | ||
| 2919 | out: | 3570 | out: |
| 2920 | return ret; | 3571 | return ret; |
| 2921 | } | 3572 | } |
| 2922 | EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu); | 3573 | EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu); |
| 3574 | #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */ | ||
| 2923 | 3575 | ||
| 2924 | /** | 3576 | /** |
| 2925 | * ring_buffer_alloc_read_page - allocate a page to read from buffer | 3577 | * ring_buffer_alloc_read_page - allocate a page to read from buffer |
| @@ -3092,7 +3744,7 @@ int ring_buffer_read_page(struct ring_buffer *buffer, | |||
| 3092 | read = 0; | 3744 | read = 0; |
| 3093 | } else { | 3745 | } else { |
| 3094 | /* update the entry counter */ | 3746 | /* update the entry counter */ |
| 3095 | cpu_buffer->read += local_read(&reader->entries); | 3747 | cpu_buffer->read += rb_page_entries(reader); |
| 3096 | 3748 | ||
| 3097 | /* swap the pages */ | 3749 | /* swap the pages */ |
| 3098 | rb_init_page(bpage); | 3750 | rb_init_page(bpage); |
diff --git a/kernel/trace/trace.c b/kernel/trace/trace.c index 3aa0a0dfdfa8..a35925d222ba 100644 --- a/kernel/trace/trace.c +++ b/kernel/trace/trace.c | |||
| @@ -17,6 +17,7 @@ | |||
| 17 | #include <linux/writeback.h> | 17 | #include <linux/writeback.h> |
| 18 | #include <linux/kallsyms.h> | 18 | #include <linux/kallsyms.h> |
| 19 | #include <linux/seq_file.h> | 19 | #include <linux/seq_file.h> |
| 20 | #include <linux/smp_lock.h> | ||
| 20 | #include <linux/notifier.h> | 21 | #include <linux/notifier.h> |
| 21 | #include <linux/irqflags.h> | 22 | #include <linux/irqflags.h> |
| 22 | #include <linux/debugfs.h> | 23 | #include <linux/debugfs.h> |
| @@ -42,14 +43,11 @@ | |||
| 42 | 43 | ||
| 43 | #define TRACE_BUFFER_FLAGS (RB_FL_OVERWRITE) | 44 | #define TRACE_BUFFER_FLAGS (RB_FL_OVERWRITE) |
| 44 | 45 | ||
| 45 | unsigned long __read_mostly tracing_max_latency; | ||
| 46 | unsigned long __read_mostly tracing_thresh; | ||
| 47 | |||
| 48 | /* | 46 | /* |
| 49 | * On boot up, the ring buffer is set to the minimum size, so that | 47 | * On boot up, the ring buffer is set to the minimum size, so that |
| 50 | * we do not waste memory on systems that are not using tracing. | 48 | * we do not waste memory on systems that are not using tracing. |
| 51 | */ | 49 | */ |
| 52 | static int ring_buffer_expanded; | 50 | int ring_buffer_expanded; |
| 53 | 51 | ||
| 54 | /* | 52 | /* |
| 55 | * We need to change this state when a selftest is running. | 53 | * We need to change this state when a selftest is running. |
| @@ -63,7 +61,7 @@ static bool __read_mostly tracing_selftest_running; | |||
| 63 | /* | 61 | /* |
| 64 | * If a tracer is running, we do not want to run SELFTEST. | 62 | * If a tracer is running, we do not want to run SELFTEST. |
| 65 | */ | 63 | */ |
| 66 | static bool __read_mostly tracing_selftest_disabled; | 64 | bool __read_mostly tracing_selftest_disabled; |
| 67 | 65 | ||
| 68 | /* For tracers that don't implement custom flags */ | 66 | /* For tracers that don't implement custom flags */ |
| 69 | static struct tracer_opt dummy_tracer_opt[] = { | 67 | static struct tracer_opt dummy_tracer_opt[] = { |
| @@ -88,7 +86,7 @@ static int dummy_set_flag(u32 old_flags, u32 bit, int set) | |||
| 88 | */ | 86 | */ |
| 89 | static int tracing_disabled = 1; | 87 | static int tracing_disabled = 1; |
| 90 | 88 | ||
| 91 | static DEFINE_PER_CPU(local_t, ftrace_cpu_disabled); | 89 | DEFINE_PER_CPU(local_t, ftrace_cpu_disabled); |
| 92 | 90 | ||
| 93 | static inline void ftrace_disable_cpu(void) | 91 | static inline void ftrace_disable_cpu(void) |
| 94 | { | 92 | { |
| @@ -127,13 +125,13 @@ int ftrace_dump_on_oops; | |||
| 127 | 125 | ||
| 128 | static int tracing_set_tracer(const char *buf); | 126 | static int tracing_set_tracer(const char *buf); |
| 129 | 127 | ||
| 130 | #define BOOTUP_TRACER_SIZE 100 | 128 | #define MAX_TRACER_SIZE 100 |
| 131 | static char bootup_tracer_buf[BOOTUP_TRACER_SIZE] __initdata; | 129 | static char bootup_tracer_buf[MAX_TRACER_SIZE] __initdata; |
| 132 | static char *default_bootup_tracer; | 130 | static char *default_bootup_tracer; |
| 133 | 131 | ||
| 134 | static int __init set_ftrace(char *str) | 132 | static int __init set_ftrace(char *str) |
| 135 | { | 133 | { |
| 136 | strncpy(bootup_tracer_buf, str, BOOTUP_TRACER_SIZE); | 134 | strncpy(bootup_tracer_buf, str, MAX_TRACER_SIZE); |
| 137 | default_bootup_tracer = bootup_tracer_buf; | 135 | default_bootup_tracer = bootup_tracer_buf; |
| 138 | /* We are using ftrace early, expand it */ | 136 | /* We are using ftrace early, expand it */ |
| 139 | ring_buffer_expanded = 1; | 137 | ring_buffer_expanded = 1; |
| @@ -171,10 +169,11 @@ static struct trace_array global_trace; | |||
| 171 | 169 | ||
| 172 | static DEFINE_PER_CPU(struct trace_array_cpu, global_trace_cpu); | 170 | static DEFINE_PER_CPU(struct trace_array_cpu, global_trace_cpu); |
| 173 | 171 | ||
| 174 | int filter_current_check_discard(struct ftrace_event_call *call, void *rec, | 172 | int filter_current_check_discard(struct ring_buffer *buffer, |
| 173 | struct ftrace_event_call *call, void *rec, | ||
| 175 | struct ring_buffer_event *event) | 174 | struct ring_buffer_event *event) |
| 176 | { | 175 | { |
| 177 | return filter_check_discard(call, rec, global_trace.buffer, event); | 176 | return filter_check_discard(call, rec, buffer, event); |
| 178 | } | 177 | } |
| 179 | EXPORT_SYMBOL_GPL(filter_current_check_discard); | 178 | EXPORT_SYMBOL_GPL(filter_current_check_discard); |
| 180 | 179 | ||
| @@ -243,13 +242,6 @@ static struct tracer *trace_types __read_mostly; | |||
| 243 | static struct tracer *current_trace __read_mostly; | 242 | static struct tracer *current_trace __read_mostly; |
| 244 | 243 | ||
| 245 | /* | 244 | /* |
| 246 | * max_tracer_type_len is used to simplify the allocating of | ||
| 247 | * buffers to read userspace tracer names. We keep track of | ||
| 248 | * the longest tracer name registered. | ||
| 249 | */ | ||
| 250 | static int max_tracer_type_len; | ||
| 251 | |||
| 252 | /* | ||
| 253 | * trace_types_lock is used to protect the trace_types list. | 245 | * trace_types_lock is used to protect the trace_types list. |
| 254 | * This lock is also used to keep user access serialized. | 246 | * This lock is also used to keep user access serialized. |
| 255 | * Accesses from userspace will grab this lock while userspace | 247 | * Accesses from userspace will grab this lock while userspace |
| @@ -265,6 +257,9 @@ unsigned long trace_flags = TRACE_ITER_PRINT_PARENT | TRACE_ITER_PRINTK | | |||
| 265 | TRACE_ITER_ANNOTATE | TRACE_ITER_CONTEXT_INFO | TRACE_ITER_SLEEP_TIME | | 257 | TRACE_ITER_ANNOTATE | TRACE_ITER_CONTEXT_INFO | TRACE_ITER_SLEEP_TIME | |
| 266 | TRACE_ITER_GRAPH_TIME; | 258 | TRACE_ITER_GRAPH_TIME; |
| 267 | 259 | ||
| 260 | static int trace_stop_count; | ||
| 261 | static DEFINE_SPINLOCK(tracing_start_lock); | ||
| 262 | |||
| 268 | /** | 263 | /** |
| 269 | * trace_wake_up - wake up tasks waiting for trace input | 264 | * trace_wake_up - wake up tasks waiting for trace input |
| 270 | * | 265 | * |
| @@ -273,12 +268,18 @@ unsigned long trace_flags = TRACE_ITER_PRINT_PARENT | TRACE_ITER_PRINTK | | |||
| 273 | */ | 268 | */ |
| 274 | void trace_wake_up(void) | 269 | void trace_wake_up(void) |
| 275 | { | 270 | { |
| 271 | int cpu; | ||
| 272 | |||
| 273 | if (trace_flags & TRACE_ITER_BLOCK) | ||
| 274 | return; | ||
| 276 | /* | 275 | /* |
| 277 | * The runqueue_is_locked() can fail, but this is the best we | 276 | * The runqueue_is_locked() can fail, but this is the best we |
| 278 | * have for now: | 277 | * have for now: |
| 279 | */ | 278 | */ |
| 280 | if (!(trace_flags & TRACE_ITER_BLOCK) && !runqueue_is_locked()) | 279 | cpu = get_cpu(); |
| 280 | if (!runqueue_is_locked(cpu)) | ||
| 281 | wake_up(&trace_wait); | 281 | wake_up(&trace_wait); |
| 282 | put_cpu(); | ||
| 282 | } | 283 | } |
| 283 | 284 | ||
| 284 | static int __init set_buf_size(char *str) | 285 | static int __init set_buf_size(char *str) |
| @@ -322,49 +323,125 @@ static const char *trace_options[] = { | |||
| 322 | "printk-msg-only", | 323 | "printk-msg-only", |
| 323 | "context-info", | 324 | "context-info", |
| 324 | "latency-format", | 325 | "latency-format", |
| 325 | "global-clock", | ||
| 326 | "sleep-time", | 326 | "sleep-time", |
| 327 | "graph-time", | 327 | "graph-time", |
| 328 | NULL | 328 | NULL |
| 329 | }; | 329 | }; |
| 330 | 330 | ||
| 331 | static struct { | ||
| 332 | u64 (*func)(void); | ||
| 333 | const char *name; | ||
| 334 | } trace_clocks[] = { | ||
| 335 | { trace_clock_local, "local" }, | ||
| 336 | { trace_clock_global, "global" }, | ||
| 337 | }; | ||
| 338 | |||
| 339 | int trace_clock_id; | ||
| 340 | |||
| 331 | /* | 341 | /* |
| 332 | * ftrace_max_lock is used to protect the swapping of buffers | 342 | * trace_parser_get_init - gets the buffer for trace parser |
| 333 | * when taking a max snapshot. The buffers themselves are | ||
| 334 | * protected by per_cpu spinlocks. But the action of the swap | ||
| 335 | * needs its own lock. | ||
| 336 | * | ||
| 337 | * This is defined as a raw_spinlock_t in order to help | ||
| 338 | * with performance when lockdep debugging is enabled. | ||
| 339 | */ | 343 | */ |
| 340 | static raw_spinlock_t ftrace_max_lock = | 344 | int trace_parser_get_init(struct trace_parser *parser, int size) |
| 341 | (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED; | 345 | { |
| 346 | memset(parser, 0, sizeof(*parser)); | ||
| 347 | |||
| 348 | parser->buffer = kmalloc(size, GFP_KERNEL); | ||
| 349 | if (!parser->buffer) | ||
| 350 | return 1; | ||
| 351 | |||
| 352 | parser->size = size; | ||
| 353 | return 0; | ||
| 354 | } | ||
| 342 | 355 | ||
| 343 | /* | 356 | /* |
| 344 | * Copy the new maximum trace into the separate maximum-trace | 357 | * trace_parser_put - frees the buffer for trace parser |
| 345 | * structure. (this way the maximum trace is permanently saved, | ||
| 346 | * for later retrieval via /sys/kernel/debug/tracing/latency_trace) | ||
| 347 | */ | 358 | */ |
| 348 | static void | 359 | void trace_parser_put(struct trace_parser *parser) |
| 349 | __update_max_tr(struct trace_array *tr, struct task_struct *tsk, int cpu) | ||
| 350 | { | 360 | { |
| 351 | struct trace_array_cpu *data = tr->data[cpu]; | 361 | kfree(parser->buffer); |
| 362 | } | ||
| 352 | 363 | ||
| 353 | max_tr.cpu = cpu; | 364 | /* |
| 354 | max_tr.time_start = data->preempt_timestamp; | 365 | * trace_get_user - reads the user input string separated by space |
| 366 | * (matched by isspace(ch)) | ||
| 367 | * | ||
| 368 | * For each string found the 'struct trace_parser' is updated, | ||
| 369 | * and the function returns. | ||
| 370 | * | ||
| 371 | * Returns number of bytes read. | ||
| 372 | * | ||
| 373 | * See kernel/trace/trace.h for 'struct trace_parser' details. | ||
| 374 | */ | ||
| 375 | int trace_get_user(struct trace_parser *parser, const char __user *ubuf, | ||
| 376 | size_t cnt, loff_t *ppos) | ||
| 377 | { | ||
| 378 | char ch; | ||
| 379 | size_t read = 0; | ||
| 380 | ssize_t ret; | ||
| 355 | 381 | ||
| 356 | data = max_tr.data[cpu]; | 382 | if (!*ppos) |
| 357 | data->saved_latency = tracing_max_latency; | 383 | trace_parser_clear(parser); |
| 358 | 384 | ||
| 359 | memcpy(data->comm, tsk->comm, TASK_COMM_LEN); | 385 | ret = get_user(ch, ubuf++); |
| 360 | data->pid = tsk->pid; | 386 | if (ret) |
| 361 | data->uid = task_uid(tsk); | 387 | goto out; |
| 362 | data->nice = tsk->static_prio - 20 - MAX_RT_PRIO; | ||
| 363 | data->policy = tsk->policy; | ||
| 364 | data->rt_priority = tsk->rt_priority; | ||
| 365 | 388 | ||
| 366 | /* record this tasks comm */ | 389 | read++; |
| 367 | tracing_record_cmdline(tsk); | 390 | cnt--; |
| 391 | |||
| 392 | /* | ||
| 393 | * The parser is not finished with the last write, | ||
| 394 | * continue reading the user input without skipping spaces. | ||
| 395 | */ | ||
| 396 | if (!parser->cont) { | ||
| 397 | /* skip white space */ | ||
| 398 | while (cnt && isspace(ch)) { | ||
| 399 | ret = get_user(ch, ubuf++); | ||
| 400 | if (ret) | ||
| 401 | goto out; | ||
| 402 | read++; | ||
| 403 | cnt--; | ||
| 404 | } | ||
| 405 | |||
| 406 | /* only spaces were written */ | ||
| 407 | if (isspace(ch)) { | ||
| 408 | *ppos += read; | ||
| 409 | ret = read; | ||
| 410 | goto out; | ||
| 411 | } | ||
| 412 | |||
| 413 | parser->idx = 0; | ||
| 414 | } | ||
| 415 | |||
| 416 | /* read the non-space input */ | ||
| 417 | while (cnt && !isspace(ch)) { | ||
| 418 | if (parser->idx < parser->size) | ||
| 419 | parser->buffer[parser->idx++] = ch; | ||
| 420 | else { | ||
| 421 | ret = -EINVAL; | ||
| 422 | goto out; | ||
| 423 | } | ||
| 424 | ret = get_user(ch, ubuf++); | ||
| 425 | if (ret) | ||
| 426 | goto out; | ||
| 427 | read++; | ||
| 428 | cnt--; | ||
| 429 | } | ||
| 430 | |||
| 431 | /* We either got finished input or we have to wait for another call. */ | ||
| 432 | if (isspace(ch)) { | ||
| 433 | parser->buffer[parser->idx] = 0; | ||
| 434 | parser->cont = false; | ||
| 435 | } else { | ||
| 436 | parser->cont = true; | ||
| 437 | parser->buffer[parser->idx++] = ch; | ||
| 438 | } | ||
| 439 | |||
| 440 | *ppos += read; | ||
| 441 | ret = read; | ||
| 442 | |||
| 443 | out: | ||
| 444 | return ret; | ||
| 368 | } | 445 | } |
| 369 | 446 | ||
| 370 | ssize_t trace_seq_to_user(struct trace_seq *s, char __user *ubuf, size_t cnt) | 447 | ssize_t trace_seq_to_user(struct trace_seq *s, char __user *ubuf, size_t cnt) |
| @@ -410,6 +487,56 @@ static ssize_t trace_seq_to_buffer(struct trace_seq *s, void *buf, size_t cnt) | |||
| 410 | return cnt; | 487 | return cnt; |
| 411 | } | 488 | } |
| 412 | 489 | ||
| 490 | /* | ||
| 491 | * ftrace_max_lock is used to protect the swapping of buffers | ||
| 492 | * when taking a max snapshot. The buffers themselves are | ||
| 493 | * protected by per_cpu spinlocks. But the action of the swap | ||
| 494 | * needs its own lock. | ||
| 495 | * | ||
| 496 | * This is defined as a raw_spinlock_t in order to help | ||
| 497 | * with performance when lockdep debugging is enabled. | ||
| 498 | * | ||
| 499 | * It is also used in other places outside the update_max_tr | ||
| 500 | * so it needs to be defined outside of the | ||
| 501 | * CONFIG_TRACER_MAX_TRACE. | ||
| 502 | */ | ||
| 503 | static raw_spinlock_t ftrace_max_lock = | ||
| 504 | (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED; | ||
| 505 | |||
| 506 | #ifdef CONFIG_TRACER_MAX_TRACE | ||
| 507 | unsigned long __read_mostly tracing_max_latency; | ||
| 508 | unsigned long __read_mostly tracing_thresh; | ||
| 509 | |||
| 510 | /* | ||
| 511 | * Copy the new maximum trace into the separate maximum-trace | ||
| 512 | * structure. (this way the maximum trace is permanently saved, | ||
| 513 | * for later retrieval via /sys/kernel/debug/tracing/latency_trace) | ||
| 514 | */ | ||
| 515 | static void | ||
| 516 | __update_max_tr(struct trace_array *tr, struct task_struct *tsk, int cpu) | ||
| 517 | { | ||
| 518 | struct trace_array_cpu *data = tr->data[cpu]; | ||
| 519 | struct trace_array_cpu *max_data = tr->data[cpu]; | ||
| 520 | |||
| 521 | max_tr.cpu = cpu; | ||
| 522 | max_tr.time_start = data->preempt_timestamp; | ||
| 523 | |||
| 524 | max_data = max_tr.data[cpu]; | ||
| 525 | max_data->saved_latency = tracing_max_latency; | ||
| 526 | max_data->critical_start = data->critical_start; | ||
| 527 | max_data->critical_end = data->critical_end; | ||
| 528 | |||
| 529 | memcpy(data->comm, tsk->comm, TASK_COMM_LEN); | ||
| 530 | max_data->pid = tsk->pid; | ||
| 531 | max_data->uid = task_uid(tsk); | ||
| 532 | max_data->nice = tsk->static_prio - 20 - MAX_RT_PRIO; | ||
| 533 | max_data->policy = tsk->policy; | ||
| 534 | max_data->rt_priority = tsk->rt_priority; | ||
| 535 | |||
| 536 | /* record this tasks comm */ | ||
| 537 | tracing_record_cmdline(tsk); | ||
| 538 | } | ||
| 539 | |||
| 413 | /** | 540 | /** |
| 414 | * update_max_tr - snapshot all trace buffers from global_trace to max_tr | 541 | * update_max_tr - snapshot all trace buffers from global_trace to max_tr |
| 415 | * @tr: tracer | 542 | * @tr: tracer |
| @@ -424,16 +551,15 @@ update_max_tr(struct trace_array *tr, struct task_struct *tsk, int cpu) | |||
| 424 | { | 551 | { |
| 425 | struct ring_buffer *buf = tr->buffer; | 552 | struct ring_buffer *buf = tr->buffer; |
| 426 | 553 | ||
| 554 | if (trace_stop_count) | ||
| 555 | return; | ||
| 556 | |||
| 427 | WARN_ON_ONCE(!irqs_disabled()); | 557 | WARN_ON_ONCE(!irqs_disabled()); |
| 428 | __raw_spin_lock(&ftrace_max_lock); | 558 | __raw_spin_lock(&ftrace_max_lock); |
| 429 | 559 | ||
| 430 | tr->buffer = max_tr.buffer; | 560 | tr->buffer = max_tr.buffer; |
| 431 | max_tr.buffer = buf; | 561 | max_tr.buffer = buf; |
| 432 | 562 | ||
| 433 | ftrace_disable_cpu(); | ||
| 434 | ring_buffer_reset(tr->buffer); | ||
| 435 | ftrace_enable_cpu(); | ||
| 436 | |||
| 437 | __update_max_tr(tr, tsk, cpu); | 563 | __update_max_tr(tr, tsk, cpu); |
| 438 | __raw_spin_unlock(&ftrace_max_lock); | 564 | __raw_spin_unlock(&ftrace_max_lock); |
| 439 | } | 565 | } |
| @@ -451,21 +577,35 @@ update_max_tr_single(struct trace_array *tr, struct task_struct *tsk, int cpu) | |||
| 451 | { | 577 | { |
| 452 | int ret; | 578 | int ret; |
| 453 | 579 | ||
| 580 | if (trace_stop_count) | ||
| 581 | return; | ||
| 582 | |||
| 454 | WARN_ON_ONCE(!irqs_disabled()); | 583 | WARN_ON_ONCE(!irqs_disabled()); |
| 455 | __raw_spin_lock(&ftrace_max_lock); | 584 | __raw_spin_lock(&ftrace_max_lock); |
| 456 | 585 | ||
| 457 | ftrace_disable_cpu(); | 586 | ftrace_disable_cpu(); |
| 458 | 587 | ||
| 459 | ring_buffer_reset(max_tr.buffer); | ||
| 460 | ret = ring_buffer_swap_cpu(max_tr.buffer, tr->buffer, cpu); | 588 | ret = ring_buffer_swap_cpu(max_tr.buffer, tr->buffer, cpu); |
| 461 | 589 | ||
| 590 | if (ret == -EBUSY) { | ||
| 591 | /* | ||
| 592 | * We failed to swap the buffer due to a commit taking | ||
| 593 | * place on this CPU. We fail to record, but we reset | ||
| 594 | * the max trace buffer (no one writes directly to it) | ||
| 595 | * and flag that it failed. | ||
| 596 | */ | ||
| 597 | trace_array_printk(&max_tr, _THIS_IP_, | ||
| 598 | "Failed to swap buffers due to commit in progress\n"); | ||
| 599 | } | ||
| 600 | |||
| 462 | ftrace_enable_cpu(); | 601 | ftrace_enable_cpu(); |
| 463 | 602 | ||
| 464 | WARN_ON_ONCE(ret && ret != -EAGAIN); | 603 | WARN_ON_ONCE(ret && ret != -EAGAIN && ret != -EBUSY); |
| 465 | 604 | ||
| 466 | __update_max_tr(tr, tsk, cpu); | 605 | __update_max_tr(tr, tsk, cpu); |
| 467 | __raw_spin_unlock(&ftrace_max_lock); | 606 | __raw_spin_unlock(&ftrace_max_lock); |
| 468 | } | 607 | } |
| 608 | #endif /* CONFIG_TRACER_MAX_TRACE */ | ||
| 469 | 609 | ||
| 470 | /** | 610 | /** |
| 471 | * register_tracer - register a tracer with the ftrace system. | 611 | * register_tracer - register a tracer with the ftrace system. |
| @@ -478,7 +618,6 @@ __releases(kernel_lock) | |||
| 478 | __acquires(kernel_lock) | 618 | __acquires(kernel_lock) |
| 479 | { | 619 | { |
| 480 | struct tracer *t; | 620 | struct tracer *t; |
| 481 | int len; | ||
| 482 | int ret = 0; | 621 | int ret = 0; |
| 483 | 622 | ||
| 484 | if (!type->name) { | 623 | if (!type->name) { |
| @@ -486,6 +625,11 @@ __acquires(kernel_lock) | |||
| 486 | return -1; | 625 | return -1; |
| 487 | } | 626 | } |
| 488 | 627 | ||
| 628 | if (strlen(type->name) > MAX_TRACER_SIZE) { | ||
| 629 | pr_info("Tracer has a name longer than %d\n", MAX_TRACER_SIZE); | ||
| 630 | return -1; | ||
| 631 | } | ||
| 632 | |||
| 489 | /* | 633 | /* |
| 490 | * When this gets called we hold the BKL which means that | 634 | * When this gets called we hold the BKL which means that |
| 491 | * preemption is disabled. Various trace selftests however | 635 | * preemption is disabled. Various trace selftests however |
| @@ -500,7 +644,7 @@ __acquires(kernel_lock) | |||
| 500 | for (t = trace_types; t; t = t->next) { | 644 | for (t = trace_types; t; t = t->next) { |
| 501 | if (strcmp(type->name, t->name) == 0) { | 645 | if (strcmp(type->name, t->name) == 0) { |
| 502 | /* already found */ | 646 | /* already found */ |
| 503 | pr_info("Trace %s already registered\n", | 647 | pr_info("Tracer %s already registered\n", |
| 504 | type->name); | 648 | type->name); |
| 505 | ret = -1; | 649 | ret = -1; |
| 506 | goto out; | 650 | goto out; |
| @@ -522,7 +666,6 @@ __acquires(kernel_lock) | |||
| 522 | if (type->selftest && !tracing_selftest_disabled) { | 666 | if (type->selftest && !tracing_selftest_disabled) { |
| 523 | struct tracer *saved_tracer = current_trace; | 667 | struct tracer *saved_tracer = current_trace; |
| 524 | struct trace_array *tr = &global_trace; | 668 | struct trace_array *tr = &global_trace; |
| 525 | int i; | ||
| 526 | 669 | ||
| 527 | /* | 670 | /* |
| 528 | * Run a selftest on this tracer. | 671 | * Run a selftest on this tracer. |
| @@ -531,8 +674,7 @@ __acquires(kernel_lock) | |||
| 531 | * internal tracing to verify that everything is in order. | 674 | * internal tracing to verify that everything is in order. |
| 532 | * If we fail, we do not register this tracer. | 675 | * If we fail, we do not register this tracer. |
| 533 | */ | 676 | */ |
| 534 | for_each_tracing_cpu(i) | 677 | tracing_reset_online_cpus(tr); |
| 535 | tracing_reset(tr, i); | ||
| 536 | 678 | ||
| 537 | current_trace = type; | 679 | current_trace = type; |
| 538 | /* the test is responsible for initializing and enabling */ | 680 | /* the test is responsible for initializing and enabling */ |
| @@ -545,8 +687,7 @@ __acquires(kernel_lock) | |||
| 545 | goto out; | 687 | goto out; |
| 546 | } | 688 | } |
| 547 | /* Only reset on passing, to avoid touching corrupted buffers */ | 689 | /* Only reset on passing, to avoid touching corrupted buffers */ |
| 548 | for_each_tracing_cpu(i) | 690 | tracing_reset_online_cpus(tr); |
| 549 | tracing_reset(tr, i); | ||
| 550 | 691 | ||
| 551 | printk(KERN_CONT "PASSED\n"); | 692 | printk(KERN_CONT "PASSED\n"); |
| 552 | } | 693 | } |
| @@ -554,9 +695,6 @@ __acquires(kernel_lock) | |||
| 554 | 695 | ||
| 555 | type->next = trace_types; | 696 | type->next = trace_types; |
| 556 | trace_types = type; | 697 | trace_types = type; |
| 557 | len = strlen(type->name); | ||
| 558 | if (len > max_tracer_type_len) | ||
| 559 | max_tracer_type_len = len; | ||
| 560 | 698 | ||
| 561 | out: | 699 | out: |
| 562 | tracing_selftest_running = false; | 700 | tracing_selftest_running = false; |
| @@ -565,7 +703,7 @@ __acquires(kernel_lock) | |||
| 565 | if (ret || !default_bootup_tracer) | 703 | if (ret || !default_bootup_tracer) |
| 566 | goto out_unlock; | 704 | goto out_unlock; |
| 567 | 705 | ||
| 568 | if (strncmp(default_bootup_tracer, type->name, BOOTUP_TRACER_SIZE)) | 706 | if (strncmp(default_bootup_tracer, type->name, MAX_TRACER_SIZE)) |
| 569 | goto out_unlock; | 707 | goto out_unlock; |
| 570 | 708 | ||
| 571 | printk(KERN_INFO "Starting tracer '%s'\n", type->name); | 709 | printk(KERN_INFO "Starting tracer '%s'\n", type->name); |
| @@ -587,14 +725,13 @@ __acquires(kernel_lock) | |||
| 587 | void unregister_tracer(struct tracer *type) | 725 | void unregister_tracer(struct tracer *type) |
| 588 | { | 726 | { |
| 589 | struct tracer **t; | 727 | struct tracer **t; |
| 590 | int len; | ||
| 591 | 728 | ||
| 592 | mutex_lock(&trace_types_lock); | 729 | mutex_lock(&trace_types_lock); |
| 593 | for (t = &trace_types; *t; t = &(*t)->next) { | 730 | for (t = &trace_types; *t; t = &(*t)->next) { |
| 594 | if (*t == type) | 731 | if (*t == type) |
| 595 | goto found; | 732 | goto found; |
| 596 | } | 733 | } |
| 597 | pr_info("Trace %s not registered\n", type->name); | 734 | pr_info("Tracer %s not registered\n", type->name); |
| 598 | goto out; | 735 | goto out; |
| 599 | 736 | ||
| 600 | found: | 737 | found: |
| @@ -607,35 +744,46 @@ void unregister_tracer(struct tracer *type) | |||
| 607 | current_trace->stop(&global_trace); | 744 | current_trace->stop(&global_trace); |
| 608 | current_trace = &nop_trace; | 745 | current_trace = &nop_trace; |
| 609 | } | 746 | } |
| 610 | 747 | out: | |
| 611 | if (strlen(type->name) != max_tracer_type_len) | ||
| 612 | goto out; | ||
| 613 | |||
| 614 | max_tracer_type_len = 0; | ||
| 615 | for (t = &trace_types; *t; t = &(*t)->next) { | ||
| 616 | len = strlen((*t)->name); | ||
| 617 | if (len > max_tracer_type_len) | ||
| 618 | max_tracer_type_len = len; | ||
| 619 | } | ||
| 620 | out: | ||
| 621 | mutex_unlock(&trace_types_lock); | 748 | mutex_unlock(&trace_types_lock); |
| 622 | } | 749 | } |
| 623 | 750 | ||
| 624 | void tracing_reset(struct trace_array *tr, int cpu) | 751 | static void __tracing_reset(struct trace_array *tr, int cpu) |
| 625 | { | 752 | { |
| 626 | ftrace_disable_cpu(); | 753 | ftrace_disable_cpu(); |
| 627 | ring_buffer_reset_cpu(tr->buffer, cpu); | 754 | ring_buffer_reset_cpu(tr->buffer, cpu); |
| 628 | ftrace_enable_cpu(); | 755 | ftrace_enable_cpu(); |
| 629 | } | 756 | } |
| 630 | 757 | ||
| 758 | void tracing_reset(struct trace_array *tr, int cpu) | ||
| 759 | { | ||
| 760 | struct ring_buffer *buffer = tr->buffer; | ||
| 761 | |||
| 762 | ring_buffer_record_disable(buffer); | ||
| 763 | |||
| 764 | /* Make sure all commits have finished */ | ||
| 765 | synchronize_sched(); | ||
| 766 | __tracing_reset(tr, cpu); | ||
| 767 | |||
| 768 | ring_buffer_record_enable(buffer); | ||
| 769 | } | ||
| 770 | |||
| 631 | void tracing_reset_online_cpus(struct trace_array *tr) | 771 | void tracing_reset_online_cpus(struct trace_array *tr) |
| 632 | { | 772 | { |
| 773 | struct ring_buffer *buffer = tr->buffer; | ||
| 633 | int cpu; | 774 | int cpu; |
| 634 | 775 | ||
| 776 | ring_buffer_record_disable(buffer); | ||
| 777 | |||
| 778 | /* Make sure all commits have finished */ | ||
| 779 | synchronize_sched(); | ||
| 780 | |||
| 635 | tr->time_start = ftrace_now(tr->cpu); | 781 | tr->time_start = ftrace_now(tr->cpu); |
| 636 | 782 | ||
| 637 | for_each_online_cpu(cpu) | 783 | for_each_online_cpu(cpu) |
| 638 | tracing_reset(tr, cpu); | 784 | __tracing_reset(tr, cpu); |
| 785 | |||
| 786 | ring_buffer_record_enable(buffer); | ||
| 639 | } | 787 | } |
| 640 | 788 | ||
| 641 | void tracing_reset_current(int cpu) | 789 | void tracing_reset_current(int cpu) |
| @@ -666,8 +814,10 @@ static void trace_init_cmdlines(void) | |||
| 666 | cmdline_idx = 0; | 814 | cmdline_idx = 0; |
| 667 | } | 815 | } |
| 668 | 816 | ||
| 669 | static int trace_stop_count; | 817 | int is_tracing_stopped(void) |
| 670 | static DEFINE_SPINLOCK(tracing_start_lock); | 818 | { |
| 819 | return trace_stop_count; | ||
| 820 | } | ||
| 671 | 821 | ||
| 672 | /** | 822 | /** |
| 673 | * ftrace_off_permanent - disable all ftrace code permanently | 823 | * ftrace_off_permanent - disable all ftrace code permanently |
| @@ -836,7 +986,7 @@ tracing_generic_entry_update(struct trace_entry *entry, unsigned long flags, | |||
| 836 | 986 | ||
| 837 | entry->preempt_count = pc & 0xff; | 987 | entry->preempt_count = pc & 0xff; |
| 838 | entry->pid = (tsk) ? tsk->pid : 0; | 988 | entry->pid = (tsk) ? tsk->pid : 0; |
| 839 | entry->tgid = (tsk) ? tsk->tgid : 0; | 989 | entry->lock_depth = (tsk) ? tsk->lock_depth : 0; |
| 840 | entry->flags = | 990 | entry->flags = |
| 841 | #ifdef CONFIG_TRACE_IRQFLAGS_SUPPORT | 991 | #ifdef CONFIG_TRACE_IRQFLAGS_SUPPORT |
| 842 | (irqs_disabled_flags(flags) ? TRACE_FLAG_IRQS_OFF : 0) | | 992 | (irqs_disabled_flags(flags) ? TRACE_FLAG_IRQS_OFF : 0) | |
| @@ -847,15 +997,17 @@ tracing_generic_entry_update(struct trace_entry *entry, unsigned long flags, | |||
| 847 | ((pc & SOFTIRQ_MASK) ? TRACE_FLAG_SOFTIRQ : 0) | | 997 | ((pc & SOFTIRQ_MASK) ? TRACE_FLAG_SOFTIRQ : 0) | |
| 848 | (need_resched() ? TRACE_FLAG_NEED_RESCHED : 0); | 998 | (need_resched() ? TRACE_FLAG_NEED_RESCHED : 0); |
| 849 | } | 999 | } |
| 1000 | EXPORT_SYMBOL_GPL(tracing_generic_entry_update); | ||
| 850 | 1001 | ||
| 851 | struct ring_buffer_event *trace_buffer_lock_reserve(struct trace_array *tr, | 1002 | struct ring_buffer_event * |
| 852 | int type, | 1003 | trace_buffer_lock_reserve(struct ring_buffer *buffer, |
| 853 | unsigned long len, | 1004 | int type, |
| 854 | unsigned long flags, int pc) | 1005 | unsigned long len, |
| 1006 | unsigned long flags, int pc) | ||
| 855 | { | 1007 | { |
| 856 | struct ring_buffer_event *event; | 1008 | struct ring_buffer_event *event; |
| 857 | 1009 | ||
| 858 | event = ring_buffer_lock_reserve(tr->buffer, len); | 1010 | event = ring_buffer_lock_reserve(buffer, len); |
| 859 | if (event != NULL) { | 1011 | if (event != NULL) { |
| 860 | struct trace_entry *ent = ring_buffer_event_data(event); | 1012 | struct trace_entry *ent = ring_buffer_event_data(event); |
| 861 | 1013 | ||
| @@ -865,58 +1017,60 @@ struct ring_buffer_event *trace_buffer_lock_reserve(struct trace_array *tr, | |||
| 865 | 1017 | ||
| 866 | return event; | 1018 | return event; |
| 867 | } | 1019 | } |
| 868 | static void ftrace_trace_stack(struct trace_array *tr, | ||
| 869 | unsigned long flags, int skip, int pc); | ||
| 870 | static void ftrace_trace_userstack(struct trace_array *tr, | ||
| 871 | unsigned long flags, int pc); | ||
| 872 | 1020 | ||
| 873 | static inline void __trace_buffer_unlock_commit(struct trace_array *tr, | 1021 | static inline void |
| 874 | struct ring_buffer_event *event, | 1022 | __trace_buffer_unlock_commit(struct ring_buffer *buffer, |
| 875 | unsigned long flags, int pc, | 1023 | struct ring_buffer_event *event, |
| 876 | int wake) | 1024 | unsigned long flags, int pc, |
| 1025 | int wake) | ||
| 877 | { | 1026 | { |
| 878 | ring_buffer_unlock_commit(tr->buffer, event); | 1027 | ring_buffer_unlock_commit(buffer, event); |
| 879 | 1028 | ||
| 880 | ftrace_trace_stack(tr, flags, 6, pc); | 1029 | ftrace_trace_stack(buffer, flags, 6, pc); |
| 881 | ftrace_trace_userstack(tr, flags, pc); | 1030 | ftrace_trace_userstack(buffer, flags, pc); |
| 882 | 1031 | ||
| 883 | if (wake) | 1032 | if (wake) |
| 884 | trace_wake_up(); | 1033 | trace_wake_up(); |
| 885 | } | 1034 | } |
| 886 | 1035 | ||
| 887 | void trace_buffer_unlock_commit(struct trace_array *tr, | 1036 | void trace_buffer_unlock_commit(struct ring_buffer *buffer, |
| 888 | struct ring_buffer_event *event, | 1037 | struct ring_buffer_event *event, |
| 889 | unsigned long flags, int pc) | 1038 | unsigned long flags, int pc) |
| 890 | { | 1039 | { |
| 891 | __trace_buffer_unlock_commit(tr, event, flags, pc, 1); | 1040 | __trace_buffer_unlock_commit(buffer, event, flags, pc, 1); |
| 892 | } | 1041 | } |
| 893 | 1042 | ||
| 894 | struct ring_buffer_event * | 1043 | struct ring_buffer_event * |
| 895 | trace_current_buffer_lock_reserve(int type, unsigned long len, | 1044 | trace_current_buffer_lock_reserve(struct ring_buffer **current_rb, |
| 1045 | int type, unsigned long len, | ||
| 896 | unsigned long flags, int pc) | 1046 | unsigned long flags, int pc) |
| 897 | { | 1047 | { |
| 898 | return trace_buffer_lock_reserve(&global_trace, | 1048 | *current_rb = global_trace.buffer; |
| 1049 | return trace_buffer_lock_reserve(*current_rb, | ||
| 899 | type, len, flags, pc); | 1050 | type, len, flags, pc); |
| 900 | } | 1051 | } |
| 901 | EXPORT_SYMBOL_GPL(trace_current_buffer_lock_reserve); | 1052 | EXPORT_SYMBOL_GPL(trace_current_buffer_lock_reserve); |
| 902 | 1053 | ||
| 903 | void trace_current_buffer_unlock_commit(struct ring_buffer_event *event, | 1054 | void trace_current_buffer_unlock_commit(struct ring_buffer *buffer, |
| 1055 | struct ring_buffer_event *event, | ||
| 904 | unsigned long flags, int pc) | 1056 | unsigned long flags, int pc) |
| 905 | { | 1057 | { |
| 906 | __trace_buffer_unlock_commit(&global_trace, event, flags, pc, 1); | 1058 | __trace_buffer_unlock_commit(buffer, event, flags, pc, 1); |
| 907 | } | 1059 | } |
| 908 | EXPORT_SYMBOL_GPL(trace_current_buffer_unlock_commit); | 1060 | EXPORT_SYMBOL_GPL(trace_current_buffer_unlock_commit); |
| 909 | 1061 | ||
| 910 | void trace_nowake_buffer_unlock_commit(struct ring_buffer_event *event, | 1062 | void trace_nowake_buffer_unlock_commit(struct ring_buffer *buffer, |
| 911 | unsigned long flags, int pc) | 1063 | struct ring_buffer_event *event, |
| 1064 | unsigned long flags, int pc) | ||
| 912 | { | 1065 | { |
| 913 | __trace_buffer_unlock_commit(&global_trace, event, flags, pc, 0); | 1066 | __trace_buffer_unlock_commit(buffer, event, flags, pc, 0); |
| 914 | } | 1067 | } |
| 915 | EXPORT_SYMBOL_GPL(trace_nowake_buffer_unlock_commit); | 1068 | EXPORT_SYMBOL_GPL(trace_nowake_buffer_unlock_commit); |
| 916 | 1069 | ||
| 917 | void trace_current_buffer_discard_commit(struct ring_buffer_event *event) | 1070 | void trace_current_buffer_discard_commit(struct ring_buffer *buffer, |
| 1071 | struct ring_buffer_event *event) | ||
| 918 | { | 1072 | { |
| 919 | ring_buffer_discard_commit(global_trace.buffer, event); | 1073 | ring_buffer_discard_commit(buffer, event); |
| 920 | } | 1074 | } |
| 921 | EXPORT_SYMBOL_GPL(trace_current_buffer_discard_commit); | 1075 | EXPORT_SYMBOL_GPL(trace_current_buffer_discard_commit); |
| 922 | 1076 | ||
| @@ -926,6 +1080,7 @@ trace_function(struct trace_array *tr, | |||
| 926 | int pc) | 1080 | int pc) |
| 927 | { | 1081 | { |
| 928 | struct ftrace_event_call *call = &event_function; | 1082 | struct ftrace_event_call *call = &event_function; |
| 1083 | struct ring_buffer *buffer = tr->buffer; | ||
| 929 | struct ring_buffer_event *event; | 1084 | struct ring_buffer_event *event; |
| 930 | struct ftrace_entry *entry; | 1085 | struct ftrace_entry *entry; |
| 931 | 1086 | ||
| @@ -933,7 +1088,7 @@ trace_function(struct trace_array *tr, | |||
| 933 | if (unlikely(local_read(&__get_cpu_var(ftrace_cpu_disabled)))) | 1088 | if (unlikely(local_read(&__get_cpu_var(ftrace_cpu_disabled)))) |
| 934 | return; | 1089 | return; |
| 935 | 1090 | ||
| 936 | event = trace_buffer_lock_reserve(tr, TRACE_FN, sizeof(*entry), | 1091 | event = trace_buffer_lock_reserve(buffer, TRACE_FN, sizeof(*entry), |
| 937 | flags, pc); | 1092 | flags, pc); |
| 938 | if (!event) | 1093 | if (!event) |
| 939 | return; | 1094 | return; |
| @@ -941,58 +1096,10 @@ trace_function(struct trace_array *tr, | |||
| 941 | entry->ip = ip; | 1096 | entry->ip = ip; |
| 942 | entry->parent_ip = parent_ip; | 1097 | entry->parent_ip = parent_ip; |
| 943 | 1098 | ||
| 944 | if (!filter_check_discard(call, entry, tr->buffer, event)) | 1099 | if (!filter_check_discard(call, entry, buffer, event)) |
| 945 | ring_buffer_unlock_commit(tr->buffer, event); | 1100 | ring_buffer_unlock_commit(buffer, event); |
| 946 | } | 1101 | } |
| 947 | 1102 | ||
| 948 | #ifdef CONFIG_FUNCTION_GRAPH_TRACER | ||
| 949 | static int __trace_graph_entry(struct trace_array *tr, | ||
| 950 | struct ftrace_graph_ent *trace, | ||
| 951 | unsigned long flags, | ||
| 952 | int pc) | ||
| 953 | { | ||
| 954 | struct ftrace_event_call *call = &event_funcgraph_entry; | ||
| 955 | struct ring_buffer_event *event; | ||
| 956 | struct ftrace_graph_ent_entry *entry; | ||
| 957 | |||
| 958 | if (unlikely(local_read(&__get_cpu_var(ftrace_cpu_disabled)))) | ||
| 959 | return 0; | ||
| 960 | |||
| 961 | event = trace_buffer_lock_reserve(&global_trace, TRACE_GRAPH_ENT, | ||
| 962 | sizeof(*entry), flags, pc); | ||
| 963 | if (!event) | ||
| 964 | return 0; | ||
| 965 | entry = ring_buffer_event_data(event); | ||
| 966 | entry->graph_ent = *trace; | ||
| 967 | if (!filter_current_check_discard(call, entry, event)) | ||
| 968 | ring_buffer_unlock_commit(global_trace.buffer, event); | ||
| 969 | |||
| 970 | return 1; | ||
| 971 | } | ||
| 972 | |||
| 973 | static void __trace_graph_return(struct trace_array *tr, | ||
| 974 | struct ftrace_graph_ret *trace, | ||
| 975 | unsigned long flags, | ||
| 976 | int pc) | ||
| 977 | { | ||
| 978 | struct ftrace_event_call *call = &event_funcgraph_exit; | ||
| 979 | struct ring_buffer_event *event; | ||
| 980 | struct ftrace_graph_ret_entry *entry; | ||
| 981 | |||
| 982 | if (unlikely(local_read(&__get_cpu_var(ftrace_cpu_disabled)))) | ||
| 983 | return; | ||
| 984 | |||
| 985 | event = trace_buffer_lock_reserve(&global_trace, TRACE_GRAPH_RET, | ||
| 986 | sizeof(*entry), flags, pc); | ||
| 987 | if (!event) | ||
| 988 | return; | ||
| 989 | entry = ring_buffer_event_data(event); | ||
| 990 | entry->ret = *trace; | ||
| 991 | if (!filter_current_check_discard(call, entry, event)) | ||
| 992 | ring_buffer_unlock_commit(global_trace.buffer, event); | ||
| 993 | } | ||
| 994 | #endif | ||
| 995 | |||
| 996 | void | 1103 | void |
| 997 | ftrace(struct trace_array *tr, struct trace_array_cpu *data, | 1104 | ftrace(struct trace_array *tr, struct trace_array_cpu *data, |
| 998 | unsigned long ip, unsigned long parent_ip, unsigned long flags, | 1105 | unsigned long ip, unsigned long parent_ip, unsigned long flags, |
| @@ -1002,17 +1109,17 @@ ftrace(struct trace_array *tr, struct trace_array_cpu *data, | |||
| 1002 | trace_function(tr, ip, parent_ip, flags, pc); | 1109 | trace_function(tr, ip, parent_ip, flags, pc); |
| 1003 | } | 1110 | } |
| 1004 | 1111 | ||
| 1005 | static void __ftrace_trace_stack(struct trace_array *tr, | 1112 | #ifdef CONFIG_STACKTRACE |
| 1113 | static void __ftrace_trace_stack(struct ring_buffer *buffer, | ||
| 1006 | unsigned long flags, | 1114 | unsigned long flags, |
| 1007 | int skip, int pc) | 1115 | int skip, int pc) |
| 1008 | { | 1116 | { |
| 1009 | #ifdef CONFIG_STACKTRACE | ||
| 1010 | struct ftrace_event_call *call = &event_kernel_stack; | 1117 | struct ftrace_event_call *call = &event_kernel_stack; |
| 1011 | struct ring_buffer_event *event; | 1118 | struct ring_buffer_event *event; |
| 1012 | struct stack_entry *entry; | 1119 | struct stack_entry *entry; |
| 1013 | struct stack_trace trace; | 1120 | struct stack_trace trace; |
| 1014 | 1121 | ||
| 1015 | event = trace_buffer_lock_reserve(tr, TRACE_STACK, | 1122 | event = trace_buffer_lock_reserve(buffer, TRACE_STACK, |
| 1016 | sizeof(*entry), flags, pc); | 1123 | sizeof(*entry), flags, pc); |
| 1017 | if (!event) | 1124 | if (!event) |
| 1018 | return; | 1125 | return; |
| @@ -1025,32 +1132,28 @@ static void __ftrace_trace_stack(struct trace_array *tr, | |||
| 1025 | trace.entries = entry->caller; | 1132 | trace.entries = entry->caller; |
| 1026 | 1133 | ||
| 1027 | save_stack_trace(&trace); | 1134 | save_stack_trace(&trace); |
| 1028 | if (!filter_check_discard(call, entry, tr->buffer, event)) | 1135 | if (!filter_check_discard(call, entry, buffer, event)) |
| 1029 | ring_buffer_unlock_commit(tr->buffer, event); | 1136 | ring_buffer_unlock_commit(buffer, event); |
| 1030 | #endif | ||
| 1031 | } | 1137 | } |
| 1032 | 1138 | ||
| 1033 | static void ftrace_trace_stack(struct trace_array *tr, | 1139 | void ftrace_trace_stack(struct ring_buffer *buffer, unsigned long flags, |
| 1034 | unsigned long flags, | 1140 | int skip, int pc) |
| 1035 | int skip, int pc) | ||
| 1036 | { | 1141 | { |
| 1037 | if (!(trace_flags & TRACE_ITER_STACKTRACE)) | 1142 | if (!(trace_flags & TRACE_ITER_STACKTRACE)) |
| 1038 | return; | 1143 | return; |
| 1039 | 1144 | ||
| 1040 | __ftrace_trace_stack(tr, flags, skip, pc); | 1145 | __ftrace_trace_stack(buffer, flags, skip, pc); |
| 1041 | } | 1146 | } |
| 1042 | 1147 | ||
| 1043 | void __trace_stack(struct trace_array *tr, | 1148 | void __trace_stack(struct trace_array *tr, unsigned long flags, int skip, |
| 1044 | unsigned long flags, | 1149 | int pc) |
| 1045 | int skip, int pc) | ||
| 1046 | { | 1150 | { |
| 1047 | __ftrace_trace_stack(tr, flags, skip, pc); | 1151 | __ftrace_trace_stack(tr->buffer, flags, skip, pc); |
| 1048 | } | 1152 | } |
| 1049 | 1153 | ||
| 1050 | static void ftrace_trace_userstack(struct trace_array *tr, | 1154 | void |
| 1051 | unsigned long flags, int pc) | 1155 | ftrace_trace_userstack(struct ring_buffer *buffer, unsigned long flags, int pc) |
| 1052 | { | 1156 | { |
| 1053 | #ifdef CONFIG_STACKTRACE | ||
| 1054 | struct ftrace_event_call *call = &event_user_stack; | 1157 | struct ftrace_event_call *call = &event_user_stack; |
| 1055 | struct ring_buffer_event *event; | 1158 | struct ring_buffer_event *event; |
| 1056 | struct userstack_entry *entry; | 1159 | struct userstack_entry *entry; |
| @@ -1059,12 +1162,13 @@ static void ftrace_trace_userstack(struct trace_array *tr, | |||
| 1059 | if (!(trace_flags & TRACE_ITER_USERSTACKTRACE)) | 1162 | if (!(trace_flags & TRACE_ITER_USERSTACKTRACE)) |
| 1060 | return; | 1163 | return; |
| 1061 | 1164 | ||
| 1062 | event = trace_buffer_lock_reserve(tr, TRACE_USER_STACK, | 1165 | event = trace_buffer_lock_reserve(buffer, TRACE_USER_STACK, |
| 1063 | sizeof(*entry), flags, pc); | 1166 | sizeof(*entry), flags, pc); |
| 1064 | if (!event) | 1167 | if (!event) |
| 1065 | return; | 1168 | return; |
| 1066 | entry = ring_buffer_event_data(event); | 1169 | entry = ring_buffer_event_data(event); |
| 1067 | 1170 | ||
| 1171 | entry->tgid = current->tgid; | ||
| 1068 | memset(&entry->caller, 0, sizeof(entry->caller)); | 1172 | memset(&entry->caller, 0, sizeof(entry->caller)); |
| 1069 | 1173 | ||
| 1070 | trace.nr_entries = 0; | 1174 | trace.nr_entries = 0; |
| @@ -1073,9 +1177,8 @@ static void ftrace_trace_userstack(struct trace_array *tr, | |||
| 1073 | trace.entries = entry->caller; | 1177 | trace.entries = entry->caller; |
| 1074 | 1178 | ||
| 1075 | save_stack_trace_user(&trace); | 1179 | save_stack_trace_user(&trace); |
| 1076 | if (!filter_check_discard(call, entry, tr->buffer, event)) | 1180 | if (!filter_check_discard(call, entry, buffer, event)) |
| 1077 | ring_buffer_unlock_commit(tr->buffer, event); | 1181 | ring_buffer_unlock_commit(buffer, event); |
| 1078 | #endif | ||
| 1079 | } | 1182 | } |
| 1080 | 1183 | ||
| 1081 | #ifdef UNUSED | 1184 | #ifdef UNUSED |
| @@ -1085,16 +1188,20 @@ static void __trace_userstack(struct trace_array *tr, unsigned long flags) | |||
| 1085 | } | 1188 | } |
| 1086 | #endif /* UNUSED */ | 1189 | #endif /* UNUSED */ |
| 1087 | 1190 | ||
| 1191 | #endif /* CONFIG_STACKTRACE */ | ||
| 1192 | |||
| 1088 | static void | 1193 | static void |
| 1089 | ftrace_trace_special(void *__tr, | 1194 | ftrace_trace_special(void *__tr, |
| 1090 | unsigned long arg1, unsigned long arg2, unsigned long arg3, | 1195 | unsigned long arg1, unsigned long arg2, unsigned long arg3, |
| 1091 | int pc) | 1196 | int pc) |
| 1092 | { | 1197 | { |
| 1198 | struct ftrace_event_call *call = &event_special; | ||
| 1093 | struct ring_buffer_event *event; | 1199 | struct ring_buffer_event *event; |
| 1094 | struct trace_array *tr = __tr; | 1200 | struct trace_array *tr = __tr; |
| 1201 | struct ring_buffer *buffer = tr->buffer; | ||
| 1095 | struct special_entry *entry; | 1202 | struct special_entry *entry; |
| 1096 | 1203 | ||
| 1097 | event = trace_buffer_lock_reserve(tr, TRACE_SPECIAL, | 1204 | event = trace_buffer_lock_reserve(buffer, TRACE_SPECIAL, |
| 1098 | sizeof(*entry), 0, pc); | 1205 | sizeof(*entry), 0, pc); |
| 1099 | if (!event) | 1206 | if (!event) |
| 1100 | return; | 1207 | return; |
| @@ -1102,7 +1209,9 @@ ftrace_trace_special(void *__tr, | |||
| 1102 | entry->arg1 = arg1; | 1209 | entry->arg1 = arg1; |
| 1103 | entry->arg2 = arg2; | 1210 | entry->arg2 = arg2; |
| 1104 | entry->arg3 = arg3; | 1211 | entry->arg3 = arg3; |
| 1105 | trace_buffer_unlock_commit(tr, event, 0, pc); | 1212 | |
| 1213 | if (!filter_check_discard(call, entry, buffer, event)) | ||
| 1214 | trace_buffer_unlock_commit(buffer, event, 0, pc); | ||
| 1106 | } | 1215 | } |
| 1107 | 1216 | ||
| 1108 | void | 1217 | void |
| @@ -1113,62 +1222,6 @@ __trace_special(void *__tr, void *__data, | |||
| 1113 | } | 1222 | } |
| 1114 | 1223 | ||
| 1115 | void | 1224 | void |
| 1116 | tracing_sched_switch_trace(struct trace_array *tr, | ||
| 1117 | struct task_struct *prev, | ||
| 1118 | struct task_struct *next, | ||
| 1119 | unsigned long flags, int pc) | ||
| 1120 | { | ||
| 1121 | struct ftrace_event_call *call = &event_context_switch; | ||
| 1122 | struct ring_buffer_event *event; | ||
| 1123 | struct ctx_switch_entry *entry; | ||
| 1124 | |||
| 1125 | event = trace_buffer_lock_reserve(tr, TRACE_CTX, | ||
| 1126 | sizeof(*entry), flags, pc); | ||
| 1127 | if (!event) | ||
| 1128 | return; | ||
| 1129 | entry = ring_buffer_event_data(event); | ||
| 1130 | entry->prev_pid = prev->pid; | ||
| 1131 | entry->prev_prio = prev->prio; | ||
| 1132 | entry->prev_state = prev->state; | ||
| 1133 | entry->next_pid = next->pid; | ||
| 1134 | entry->next_prio = next->prio; | ||
| 1135 | entry->next_state = next->state; | ||
| 1136 | entry->next_cpu = task_cpu(next); | ||
| 1137 | |||
| 1138 | if (!filter_check_discard(call, entry, tr->buffer, event)) | ||
| 1139 | trace_buffer_unlock_commit(tr, event, flags, pc); | ||
| 1140 | } | ||
| 1141 | |||
| 1142 | void | ||
| 1143 | tracing_sched_wakeup_trace(struct trace_array *tr, | ||
| 1144 | struct task_struct *wakee, | ||
| 1145 | struct task_struct *curr, | ||
| 1146 | unsigned long flags, int pc) | ||
| 1147 | { | ||
| 1148 | struct ftrace_event_call *call = &event_wakeup; | ||
| 1149 | struct ring_buffer_event *event; | ||
| 1150 | struct ctx_switch_entry *entry; | ||
| 1151 | |||
| 1152 | event = trace_buffer_lock_reserve(tr, TRACE_WAKE, | ||
| 1153 | sizeof(*entry), flags, pc); | ||
| 1154 | if (!event) | ||
| 1155 | return; | ||
| 1156 | entry = ring_buffer_event_data(event); | ||
| 1157 | entry->prev_pid = curr->pid; | ||
| 1158 | entry->prev_prio = curr->prio; | ||
| 1159 | entry->prev_state = curr->state; | ||
| 1160 | entry->next_pid = wakee->pid; | ||
| 1161 | entry->next_prio = wakee->prio; | ||
| 1162 | entry->next_state = wakee->state; | ||
| 1163 | entry->next_cpu = task_cpu(wakee); | ||
| 1164 | |||
| 1165 | if (!filter_check_discard(call, entry, tr->buffer, event)) | ||
| 1166 | ring_buffer_unlock_commit(tr->buffer, event); | ||
| 1167 | ftrace_trace_stack(tr, flags, 6, pc); | ||
| 1168 | ftrace_trace_userstack(tr, flags, pc); | ||
| 1169 | } | ||
| 1170 | |||
| 1171 | void | ||
| 1172 | ftrace_special(unsigned long arg1, unsigned long arg2, unsigned long arg3) | 1225 | ftrace_special(unsigned long arg1, unsigned long arg2, unsigned long arg3) |
| 1173 | { | 1226 | { |
| 1174 | struct trace_array *tr = &global_trace; | 1227 | struct trace_array *tr = &global_trace; |
| @@ -1192,68 +1245,6 @@ ftrace_special(unsigned long arg1, unsigned long arg2, unsigned long arg3) | |||
| 1192 | local_irq_restore(flags); | 1245 | local_irq_restore(flags); |
| 1193 | } | 1246 | } |
| 1194 | 1247 | ||
| 1195 | #ifdef CONFIG_FUNCTION_GRAPH_TRACER | ||
| 1196 | int trace_graph_entry(struct ftrace_graph_ent *trace) | ||
| 1197 | { | ||
| 1198 | struct trace_array *tr = &global_trace; | ||
| 1199 | struct trace_array_cpu *data; | ||
| 1200 | unsigned long flags; | ||
| 1201 | long disabled; | ||
| 1202 | int ret; | ||
| 1203 | int cpu; | ||
| 1204 | int pc; | ||
| 1205 | |||
| 1206 | if (!ftrace_trace_task(current)) | ||
| 1207 | return 0; | ||
| 1208 | |||
| 1209 | if (!ftrace_graph_addr(trace->func)) | ||
| 1210 | return 0; | ||
| 1211 | |||
| 1212 | local_irq_save(flags); | ||
| 1213 | cpu = raw_smp_processor_id(); | ||
| 1214 | data = tr->data[cpu]; | ||
| 1215 | disabled = atomic_inc_return(&data->disabled); | ||
| 1216 | if (likely(disabled == 1)) { | ||
| 1217 | pc = preempt_count(); | ||
| 1218 | ret = __trace_graph_entry(tr, trace, flags, pc); | ||
| 1219 | } else { | ||
| 1220 | ret = 0; | ||
| 1221 | } | ||
| 1222 | /* Only do the atomic if it is not already set */ | ||
| 1223 | if (!test_tsk_trace_graph(current)) | ||
| 1224 | set_tsk_trace_graph(current); | ||
| 1225 | |||
| 1226 | atomic_dec(&data->disabled); | ||
| 1227 | local_irq_restore(flags); | ||
| 1228 | |||
| 1229 | return ret; | ||
| 1230 | } | ||
| 1231 | |||
| 1232 | void trace_graph_return(struct ftrace_graph_ret *trace) | ||
| 1233 | { | ||
| 1234 | struct trace_array *tr = &global_trace; | ||
| 1235 | struct trace_array_cpu *data; | ||
| 1236 | unsigned long flags; | ||
| 1237 | long disabled; | ||
| 1238 | int cpu; | ||
| 1239 | int pc; | ||
| 1240 | |||
| 1241 | local_irq_save(flags); | ||
| 1242 | cpu = raw_smp_processor_id(); | ||
| 1243 | data = tr->data[cpu]; | ||
| 1244 | disabled = atomic_inc_return(&data->disabled); | ||
| 1245 | if (likely(disabled == 1)) { | ||
| 1246 | pc = preempt_count(); | ||
| 1247 | __trace_graph_return(tr, trace, flags, pc); | ||
| 1248 | } | ||
| 1249 | if (!trace->depth) | ||
| 1250 | clear_tsk_trace_graph(current); | ||
| 1251 | atomic_dec(&data->disabled); | ||
| 1252 | local_irq_restore(flags); | ||
| 1253 | } | ||
| 1254 | #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ | ||
| 1255 | |||
| 1256 | |||
| 1257 | /** | 1248 | /** |
| 1258 | * trace_vbprintk - write binary msg to tracing buffer | 1249 | * trace_vbprintk - write binary msg to tracing buffer |
| 1259 | * | 1250 | * |
| @@ -1266,6 +1257,7 @@ int trace_vbprintk(unsigned long ip, const char *fmt, va_list args) | |||
| 1266 | 1257 | ||
| 1267 | struct ftrace_event_call *call = &event_bprint; | 1258 | struct ftrace_event_call *call = &event_bprint; |
| 1268 | struct ring_buffer_event *event; | 1259 | struct ring_buffer_event *event; |
| 1260 | struct ring_buffer *buffer; | ||
| 1269 | struct trace_array *tr = &global_trace; | 1261 | struct trace_array *tr = &global_trace; |
| 1270 | struct trace_array_cpu *data; | 1262 | struct trace_array_cpu *data; |
| 1271 | struct bprint_entry *entry; | 1263 | struct bprint_entry *entry; |
| @@ -1298,7 +1290,9 @@ int trace_vbprintk(unsigned long ip, const char *fmt, va_list args) | |||
| 1298 | goto out_unlock; | 1290 | goto out_unlock; |
| 1299 | 1291 | ||
| 1300 | size = sizeof(*entry) + sizeof(u32) * len; | 1292 | size = sizeof(*entry) + sizeof(u32) * len; |
| 1301 | event = trace_buffer_lock_reserve(tr, TRACE_BPRINT, size, flags, pc); | 1293 | buffer = tr->buffer; |
| 1294 | event = trace_buffer_lock_reserve(buffer, TRACE_BPRINT, size, | ||
| 1295 | flags, pc); | ||
| 1302 | if (!event) | 1296 | if (!event) |
| 1303 | goto out_unlock; | 1297 | goto out_unlock; |
| 1304 | entry = ring_buffer_event_data(event); | 1298 | entry = ring_buffer_event_data(event); |
| @@ -1306,8 +1300,8 @@ int trace_vbprintk(unsigned long ip, const char *fmt, va_list args) | |||
| 1306 | entry->fmt = fmt; | 1300 | entry->fmt = fmt; |
| 1307 | 1301 | ||
| 1308 | memcpy(entry->buf, trace_buf, sizeof(u32) * len); | 1302 | memcpy(entry->buf, trace_buf, sizeof(u32) * len); |
| 1309 | if (!filter_check_discard(call, entry, tr->buffer, event)) | 1303 | if (!filter_check_discard(call, entry, buffer, event)) |
| 1310 | ring_buffer_unlock_commit(tr->buffer, event); | 1304 | ring_buffer_unlock_commit(buffer, event); |
| 1311 | 1305 | ||
| 1312 | out_unlock: | 1306 | out_unlock: |
| 1313 | __raw_spin_unlock(&trace_buf_lock); | 1307 | __raw_spin_unlock(&trace_buf_lock); |
| @@ -1322,14 +1316,30 @@ out: | |||
| 1322 | } | 1316 | } |
| 1323 | EXPORT_SYMBOL_GPL(trace_vbprintk); | 1317 | EXPORT_SYMBOL_GPL(trace_vbprintk); |
| 1324 | 1318 | ||
| 1325 | int trace_vprintk(unsigned long ip, const char *fmt, va_list args) | 1319 | int trace_array_printk(struct trace_array *tr, |
| 1320 | unsigned long ip, const char *fmt, ...) | ||
| 1321 | { | ||
| 1322 | int ret; | ||
| 1323 | va_list ap; | ||
| 1324 | |||
| 1325 | if (!(trace_flags & TRACE_ITER_PRINTK)) | ||
| 1326 | return 0; | ||
| 1327 | |||
| 1328 | va_start(ap, fmt); | ||
| 1329 | ret = trace_array_vprintk(tr, ip, fmt, ap); | ||
| 1330 | va_end(ap); | ||
| 1331 | return ret; | ||
| 1332 | } | ||
| 1333 | |||
| 1334 | int trace_array_vprintk(struct trace_array *tr, | ||
| 1335 | unsigned long ip, const char *fmt, va_list args) | ||
| 1326 | { | 1336 | { |
| 1327 | static raw_spinlock_t trace_buf_lock = __RAW_SPIN_LOCK_UNLOCKED; | 1337 | static raw_spinlock_t trace_buf_lock = __RAW_SPIN_LOCK_UNLOCKED; |
| 1328 | static char trace_buf[TRACE_BUF_SIZE]; | 1338 | static char trace_buf[TRACE_BUF_SIZE]; |
| 1329 | 1339 | ||
| 1330 | struct ftrace_event_call *call = &event_print; | 1340 | struct ftrace_event_call *call = &event_print; |
| 1331 | struct ring_buffer_event *event; | 1341 | struct ring_buffer_event *event; |
| 1332 | struct trace_array *tr = &global_trace; | 1342 | struct ring_buffer *buffer; |
| 1333 | struct trace_array_cpu *data; | 1343 | struct trace_array_cpu *data; |
| 1334 | int cpu, len = 0, size, pc; | 1344 | int cpu, len = 0, size, pc; |
| 1335 | struct print_entry *entry; | 1345 | struct print_entry *entry; |
| @@ -1357,7 +1367,9 @@ int trace_vprintk(unsigned long ip, const char *fmt, va_list args) | |||
| 1357 | trace_buf[len] = 0; | 1367 | trace_buf[len] = 0; |
| 1358 | 1368 | ||
| 1359 | size = sizeof(*entry) + len + 1; | 1369 | size = sizeof(*entry) + len + 1; |
| 1360 | event = trace_buffer_lock_reserve(tr, TRACE_PRINT, size, irq_flags, pc); | 1370 | buffer = tr->buffer; |
| 1371 | event = trace_buffer_lock_reserve(buffer, TRACE_PRINT, size, | ||
| 1372 | irq_flags, pc); | ||
| 1361 | if (!event) | 1373 | if (!event) |
| 1362 | goto out_unlock; | 1374 | goto out_unlock; |
| 1363 | entry = ring_buffer_event_data(event); | 1375 | entry = ring_buffer_event_data(event); |
| @@ -1365,8 +1377,8 @@ int trace_vprintk(unsigned long ip, const char *fmt, va_list args) | |||
| 1365 | 1377 | ||
| 1366 | memcpy(&entry->buf, trace_buf, len); | 1378 | memcpy(&entry->buf, trace_buf, len); |
| 1367 | entry->buf[len] = 0; | 1379 | entry->buf[len] = 0; |
| 1368 | if (!filter_check_discard(call, entry, tr->buffer, event)) | 1380 | if (!filter_check_discard(call, entry, buffer, event)) |
| 1369 | ring_buffer_unlock_commit(tr->buffer, event); | 1381 | ring_buffer_unlock_commit(buffer, event); |
| 1370 | 1382 | ||
| 1371 | out_unlock: | 1383 | out_unlock: |
| 1372 | __raw_spin_unlock(&trace_buf_lock); | 1384 | __raw_spin_unlock(&trace_buf_lock); |
| @@ -1378,6 +1390,11 @@ int trace_vprintk(unsigned long ip, const char *fmt, va_list args) | |||
| 1378 | 1390 | ||
| 1379 | return len; | 1391 | return len; |
| 1380 | } | 1392 | } |
| 1393 | |||
| 1394 | int trace_vprintk(unsigned long ip, const char *fmt, va_list args) | ||
| 1395 | { | ||
| 1396 | return trace_array_printk(&global_trace, ip, fmt, args); | ||
| 1397 | } | ||
| 1381 | EXPORT_SYMBOL_GPL(trace_vprintk); | 1398 | EXPORT_SYMBOL_GPL(trace_vprintk); |
| 1382 | 1399 | ||
| 1383 | enum trace_file_type { | 1400 | enum trace_file_type { |
| @@ -1517,6 +1534,37 @@ static void *s_next(struct seq_file *m, void *v, loff_t *pos) | |||
| 1517 | return ent; | 1534 | return ent; |
| 1518 | } | 1535 | } |
| 1519 | 1536 | ||
| 1537 | static void tracing_iter_reset(struct trace_iterator *iter, int cpu) | ||
| 1538 | { | ||
| 1539 | struct trace_array *tr = iter->tr; | ||
| 1540 | struct ring_buffer_event *event; | ||
| 1541 | struct ring_buffer_iter *buf_iter; | ||
| 1542 | unsigned long entries = 0; | ||
| 1543 | u64 ts; | ||
| 1544 | |||
| 1545 | tr->data[cpu]->skipped_entries = 0; | ||
| 1546 | |||
| 1547 | if (!iter->buffer_iter[cpu]) | ||
| 1548 | return; | ||
| 1549 | |||
| 1550 | buf_iter = iter->buffer_iter[cpu]; | ||
| 1551 | ring_buffer_iter_reset(buf_iter); | ||
| 1552 | |||
| 1553 | /* | ||
| 1554 | * We could have the case with the max latency tracers | ||
| 1555 | * that a reset never took place on a cpu. This is evident | ||
| 1556 | * by the timestamp being before the start of the buffer. | ||
| 1557 | */ | ||
| 1558 | while ((event = ring_buffer_iter_peek(buf_iter, &ts))) { | ||
| 1559 | if (ts >= iter->tr->time_start) | ||
| 1560 | break; | ||
| 1561 | entries++; | ||
| 1562 | ring_buffer_read(buf_iter, NULL); | ||
| 1563 | } | ||
| 1564 | |||
| 1565 | tr->data[cpu]->skipped_entries = entries; | ||
| 1566 | } | ||
| 1567 | |||
| 1520 | /* | 1568 | /* |
| 1521 | * No necessary locking here. The worst thing which can | 1569 | * No necessary locking here. The worst thing which can |
| 1522 | * happen is loosing events consumed at the same time | 1570 | * happen is loosing events consumed at the same time |
| @@ -1555,10 +1603,9 @@ static void *s_start(struct seq_file *m, loff_t *pos) | |||
| 1555 | 1603 | ||
| 1556 | if (cpu_file == TRACE_PIPE_ALL_CPU) { | 1604 | if (cpu_file == TRACE_PIPE_ALL_CPU) { |
| 1557 | for_each_tracing_cpu(cpu) | 1605 | for_each_tracing_cpu(cpu) |
| 1558 | ring_buffer_iter_reset(iter->buffer_iter[cpu]); | 1606 | tracing_iter_reset(iter, cpu); |
| 1559 | } else | 1607 | } else |
| 1560 | ring_buffer_iter_reset(iter->buffer_iter[cpu_file]); | 1608 | tracing_iter_reset(iter, cpu_file); |
| 1561 | |||
| 1562 | 1609 | ||
| 1563 | ftrace_enable_cpu(); | 1610 | ftrace_enable_cpu(); |
| 1564 | 1611 | ||
| @@ -1587,10 +1634,10 @@ static void print_lat_help_header(struct seq_file *m) | |||
| 1587 | seq_puts(m, "# | / _----=> need-resched \n"); | 1634 | seq_puts(m, "# | / _----=> need-resched \n"); |
| 1588 | seq_puts(m, "# || / _---=> hardirq/softirq \n"); | 1635 | seq_puts(m, "# || / _---=> hardirq/softirq \n"); |
| 1589 | seq_puts(m, "# ||| / _--=> preempt-depth \n"); | 1636 | seq_puts(m, "# ||| / _--=> preempt-depth \n"); |
| 1590 | seq_puts(m, "# |||| / \n"); | 1637 | seq_puts(m, "# |||| /_--=> lock-depth \n"); |
| 1591 | seq_puts(m, "# ||||| delay \n"); | 1638 | seq_puts(m, "# |||||/ delay \n"); |
| 1592 | seq_puts(m, "# cmd pid ||||| time | caller \n"); | 1639 | seq_puts(m, "# cmd pid |||||| time | caller \n"); |
| 1593 | seq_puts(m, "# \\ / ||||| \\ | / \n"); | 1640 | seq_puts(m, "# \\ / |||||| \\ | / \n"); |
| 1594 | } | 1641 | } |
| 1595 | 1642 | ||
| 1596 | static void print_func_help_header(struct seq_file *m) | 1643 | static void print_func_help_header(struct seq_file *m) |
| @@ -1607,16 +1654,32 @@ print_trace_header(struct seq_file *m, struct trace_iterator *iter) | |||
| 1607 | struct trace_array *tr = iter->tr; | 1654 | struct trace_array *tr = iter->tr; |
| 1608 | struct trace_array_cpu *data = tr->data[tr->cpu]; | 1655 | struct trace_array_cpu *data = tr->data[tr->cpu]; |
| 1609 | struct tracer *type = current_trace; | 1656 | struct tracer *type = current_trace; |
| 1610 | unsigned long total; | 1657 | unsigned long entries = 0; |
| 1611 | unsigned long entries; | 1658 | unsigned long total = 0; |
| 1659 | unsigned long count; | ||
| 1612 | const char *name = "preemption"; | 1660 | const char *name = "preemption"; |
| 1661 | int cpu; | ||
| 1613 | 1662 | ||
| 1614 | if (type) | 1663 | if (type) |
| 1615 | name = type->name; | 1664 | name = type->name; |
| 1616 | 1665 | ||
| 1617 | entries = ring_buffer_entries(iter->tr->buffer); | 1666 | |
| 1618 | total = entries + | 1667 | for_each_tracing_cpu(cpu) { |
| 1619 | ring_buffer_overruns(iter->tr->buffer); | 1668 | count = ring_buffer_entries_cpu(tr->buffer, cpu); |
| 1669 | /* | ||
| 1670 | * If this buffer has skipped entries, then we hold all | ||
| 1671 | * entries for the trace and we need to ignore the | ||
| 1672 | * ones before the time stamp. | ||
| 1673 | */ | ||
| 1674 | if (tr->data[cpu]->skipped_entries) { | ||
| 1675 | count -= tr->data[cpu]->skipped_entries; | ||
| 1676 | /* total is the same as the entries */ | ||
| 1677 | total += count; | ||
| 1678 | } else | ||
| 1679 | total += count + | ||
| 1680 | ring_buffer_overrun_cpu(tr->buffer, cpu); | ||
| 1681 | entries += count; | ||
| 1682 | } | ||
| 1620 | 1683 | ||
| 1621 | seq_printf(m, "# %s latency trace v1.1.5 on %s\n", | 1684 | seq_printf(m, "# %s latency trace v1.1.5 on %s\n", |
| 1622 | name, UTS_RELEASE); | 1685 | name, UTS_RELEASE); |
| @@ -1658,7 +1721,7 @@ print_trace_header(struct seq_file *m, struct trace_iterator *iter) | |||
| 1658 | seq_puts(m, "\n# => ended at: "); | 1721 | seq_puts(m, "\n# => ended at: "); |
| 1659 | seq_print_ip_sym(&iter->seq, data->critical_end, sym_flags); | 1722 | seq_print_ip_sym(&iter->seq, data->critical_end, sym_flags); |
| 1660 | trace_print_seq(m, &iter->seq); | 1723 | trace_print_seq(m, &iter->seq); |
| 1661 | seq_puts(m, "#\n"); | 1724 | seq_puts(m, "\n#\n"); |
| 1662 | } | 1725 | } |
| 1663 | 1726 | ||
| 1664 | seq_puts(m, "#\n"); | 1727 | seq_puts(m, "#\n"); |
| @@ -1677,6 +1740,9 @@ static void test_cpu_buff_start(struct trace_iterator *iter) | |||
| 1677 | if (cpumask_test_cpu(iter->cpu, iter->started)) | 1740 | if (cpumask_test_cpu(iter->cpu, iter->started)) |
| 1678 | return; | 1741 | return; |
| 1679 | 1742 | ||
| 1743 | if (iter->tr->data[iter->cpu]->skipped_entries) | ||
| 1744 | return; | ||
| 1745 | |||
| 1680 | cpumask_set_cpu(iter->cpu, iter->started); | 1746 | cpumask_set_cpu(iter->cpu, iter->started); |
| 1681 | 1747 | ||
| 1682 | /* Don't print started cpu buffer for the first entry of the trace */ | 1748 | /* Don't print started cpu buffer for the first entry of the trace */ |
| @@ -1939,19 +2005,23 @@ __tracing_open(struct inode *inode, struct file *file) | |||
| 1939 | if (ring_buffer_overruns(iter->tr->buffer)) | 2005 | if (ring_buffer_overruns(iter->tr->buffer)) |
| 1940 | iter->iter_flags |= TRACE_FILE_ANNOTATE; | 2006 | iter->iter_flags |= TRACE_FILE_ANNOTATE; |
| 1941 | 2007 | ||
| 2008 | /* stop the trace while dumping */ | ||
| 2009 | tracing_stop(); | ||
| 2010 | |||
| 1942 | if (iter->cpu_file == TRACE_PIPE_ALL_CPU) { | 2011 | if (iter->cpu_file == TRACE_PIPE_ALL_CPU) { |
| 1943 | for_each_tracing_cpu(cpu) { | 2012 | for_each_tracing_cpu(cpu) { |
| 1944 | 2013 | ||
| 1945 | iter->buffer_iter[cpu] = | 2014 | iter->buffer_iter[cpu] = |
| 1946 | ring_buffer_read_start(iter->tr->buffer, cpu); | 2015 | ring_buffer_read_start(iter->tr->buffer, cpu); |
| 2016 | tracing_iter_reset(iter, cpu); | ||
| 1947 | } | 2017 | } |
| 1948 | } else { | 2018 | } else { |
| 1949 | cpu = iter->cpu_file; | 2019 | cpu = iter->cpu_file; |
| 1950 | iter->buffer_iter[cpu] = | 2020 | iter->buffer_iter[cpu] = |
| 1951 | ring_buffer_read_start(iter->tr->buffer, cpu); | 2021 | ring_buffer_read_start(iter->tr->buffer, cpu); |
| 2022 | tracing_iter_reset(iter, cpu); | ||
| 1952 | } | 2023 | } |
| 1953 | 2024 | ||
| 1954 | /* TODO stop tracer */ | ||
| 1955 | ret = seq_open(file, &tracer_seq_ops); | 2025 | ret = seq_open(file, &tracer_seq_ops); |
| 1956 | if (ret < 0) { | 2026 | if (ret < 0) { |
| 1957 | fail_ret = ERR_PTR(ret); | 2027 | fail_ret = ERR_PTR(ret); |
| @@ -1961,9 +2031,6 @@ __tracing_open(struct inode *inode, struct file *file) | |||
| 1961 | m = file->private_data; | 2031 | m = file->private_data; |
| 1962 | m->private = iter; | 2032 | m->private = iter; |
| 1963 | 2033 | ||
| 1964 | /* stop the trace while dumping */ | ||
| 1965 | tracing_stop(); | ||
| 1966 | |||
| 1967 | mutex_unlock(&trace_types_lock); | 2034 | mutex_unlock(&trace_types_lock); |
| 1968 | 2035 | ||
| 1969 | return iter; | 2036 | return iter; |
| @@ -1974,6 +2041,7 @@ __tracing_open(struct inode *inode, struct file *file) | |||
| 1974 | ring_buffer_read_finish(iter->buffer_iter[cpu]); | 2041 | ring_buffer_read_finish(iter->buffer_iter[cpu]); |
| 1975 | } | 2042 | } |
| 1976 | free_cpumask_var(iter->started); | 2043 | free_cpumask_var(iter->started); |
| 2044 | tracing_start(); | ||
| 1977 | fail: | 2045 | fail: |
| 1978 | mutex_unlock(&trace_types_lock); | 2046 | mutex_unlock(&trace_types_lock); |
| 1979 | kfree(iter->trace); | 2047 | kfree(iter->trace); |
| @@ -2030,7 +2098,7 @@ static int tracing_open(struct inode *inode, struct file *file) | |||
| 2030 | 2098 | ||
| 2031 | /* If this file was open for write, then erase contents */ | 2099 | /* If this file was open for write, then erase contents */ |
| 2032 | if ((file->f_mode & FMODE_WRITE) && | 2100 | if ((file->f_mode & FMODE_WRITE) && |
| 2033 | !(file->f_flags & O_APPEND)) { | 2101 | (file->f_flags & O_TRUNC)) { |
| 2034 | long cpu = (long) inode->i_private; | 2102 | long cpu = (long) inode->i_private; |
| 2035 | 2103 | ||
| 2036 | if (cpu == TRACE_PIPE_ALL_CPU) | 2104 | if (cpu == TRACE_PIPE_ALL_CPU) |
| @@ -2255,8 +2323,8 @@ tracing_trace_options_read(struct file *filp, char __user *ubuf, | |||
| 2255 | len += 3; /* "no" and newline */ | 2323 | len += 3; /* "no" and newline */ |
| 2256 | } | 2324 | } |
| 2257 | 2325 | ||
| 2258 | /* +2 for \n and \0 */ | 2326 | /* +1 for \0 */ |
| 2259 | buf = kmalloc(len + 2, GFP_KERNEL); | 2327 | buf = kmalloc(len + 1, GFP_KERNEL); |
| 2260 | if (!buf) { | 2328 | if (!buf) { |
| 2261 | mutex_unlock(&trace_types_lock); | 2329 | mutex_unlock(&trace_types_lock); |
| 2262 | return -ENOMEM; | 2330 | return -ENOMEM; |
| @@ -2279,7 +2347,7 @@ tracing_trace_options_read(struct file *filp, char __user *ubuf, | |||
| 2279 | } | 2347 | } |
| 2280 | mutex_unlock(&trace_types_lock); | 2348 | mutex_unlock(&trace_types_lock); |
| 2281 | 2349 | ||
| 2282 | WARN_ON(r >= len + 2); | 2350 | WARN_ON(r >= len + 1); |
| 2283 | 2351 | ||
| 2284 | r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r); | 2352 | r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r); |
| 2285 | 2353 | ||
| @@ -2290,23 +2358,23 @@ tracing_trace_options_read(struct file *filp, char __user *ubuf, | |||
| 2290 | /* Try to assign a tracer specific option */ | 2358 | /* Try to assign a tracer specific option */ |
| 2291 | static int set_tracer_option(struct tracer *trace, char *cmp, int neg) | 2359 | static int set_tracer_option(struct tracer *trace, char *cmp, int neg) |
| 2292 | { | 2360 | { |
| 2293 | struct tracer_flags *trace_flags = trace->flags; | 2361 | struct tracer_flags *tracer_flags = trace->flags; |
| 2294 | struct tracer_opt *opts = NULL; | 2362 | struct tracer_opt *opts = NULL; |
| 2295 | int ret = 0, i = 0; | 2363 | int ret = 0, i = 0; |
| 2296 | int len; | 2364 | int len; |
| 2297 | 2365 | ||
| 2298 | for (i = 0; trace_flags->opts[i].name; i++) { | 2366 | for (i = 0; tracer_flags->opts[i].name; i++) { |
| 2299 | opts = &trace_flags->opts[i]; | 2367 | opts = &tracer_flags->opts[i]; |
| 2300 | len = strlen(opts->name); | 2368 | len = strlen(opts->name); |
| 2301 | 2369 | ||
| 2302 | if (strncmp(cmp, opts->name, len) == 0) { | 2370 | if (strncmp(cmp, opts->name, len) == 0) { |
| 2303 | ret = trace->set_flag(trace_flags->val, | 2371 | ret = trace->set_flag(tracer_flags->val, |
| 2304 | opts->bit, !neg); | 2372 | opts->bit, !neg); |
| 2305 | break; | 2373 | break; |
| 2306 | } | 2374 | } |
| 2307 | } | 2375 | } |
| 2308 | /* Not found */ | 2376 | /* Not found */ |
| 2309 | if (!trace_flags->opts[i].name) | 2377 | if (!tracer_flags->opts[i].name) |
| 2310 | return -EINVAL; | 2378 | return -EINVAL; |
| 2311 | 2379 | ||
| 2312 | /* Refused to handle */ | 2380 | /* Refused to handle */ |
| @@ -2314,9 +2382,9 @@ static int set_tracer_option(struct tracer *trace, char *cmp, int neg) | |||
| 2314 | return ret; | 2382 | return ret; |
| 2315 | 2383 | ||
| 2316 | if (neg) | 2384 | if (neg) |
| 2317 | trace_flags->val &= ~opts->bit; | 2385 | tracer_flags->val &= ~opts->bit; |
| 2318 | else | 2386 | else |
| 2319 | trace_flags->val |= opts->bit; | 2387 | tracer_flags->val |= opts->bit; |
| 2320 | 2388 | ||
| 2321 | return 0; | 2389 | return 0; |
| 2322 | } | 2390 | } |
| @@ -2331,22 +2399,6 @@ static void set_tracer_flags(unsigned int mask, int enabled) | |||
| 2331 | trace_flags |= mask; | 2399 | trace_flags |= mask; |
| 2332 | else | 2400 | else |
| 2333 | trace_flags &= ~mask; | 2401 | trace_flags &= ~mask; |
| 2334 | |||
| 2335 | if (mask == TRACE_ITER_GLOBAL_CLK) { | ||
| 2336 | u64 (*func)(void); | ||
| 2337 | |||
| 2338 | if (enabled) | ||
| 2339 | func = trace_clock_global; | ||
| 2340 | else | ||
| 2341 | func = trace_clock_local; | ||
| 2342 | |||
| 2343 | mutex_lock(&trace_types_lock); | ||
| 2344 | ring_buffer_set_clock(global_trace.buffer, func); | ||
| 2345 | |||
| 2346 | if (max_tr.buffer) | ||
| 2347 | ring_buffer_set_clock(max_tr.buffer, func); | ||
| 2348 | mutex_unlock(&trace_types_lock); | ||
| 2349 | } | ||
| 2350 | } | 2402 | } |
| 2351 | 2403 | ||
| 2352 | static ssize_t | 2404 | static ssize_t |
| @@ -2541,7 +2593,7 @@ static ssize_t | |||
| 2541 | tracing_set_trace_read(struct file *filp, char __user *ubuf, | 2593 | tracing_set_trace_read(struct file *filp, char __user *ubuf, |
| 2542 | size_t cnt, loff_t *ppos) | 2594 | size_t cnt, loff_t *ppos) |
| 2543 | { | 2595 | { |
| 2544 | char buf[max_tracer_type_len+2]; | 2596 | char buf[MAX_TRACER_SIZE+2]; |
| 2545 | int r; | 2597 | int r; |
| 2546 | 2598 | ||
| 2547 | mutex_lock(&trace_types_lock); | 2599 | mutex_lock(&trace_types_lock); |
| @@ -2691,15 +2743,15 @@ static ssize_t | |||
| 2691 | tracing_set_trace_write(struct file *filp, const char __user *ubuf, | 2743 | tracing_set_trace_write(struct file *filp, const char __user *ubuf, |
| 2692 | size_t cnt, loff_t *ppos) | 2744 | size_t cnt, loff_t *ppos) |
| 2693 | { | 2745 | { |
| 2694 | char buf[max_tracer_type_len+1]; | 2746 | char buf[MAX_TRACER_SIZE+1]; |
| 2695 | int i; | 2747 | int i; |
| 2696 | size_t ret; | 2748 | size_t ret; |
| 2697 | int err; | 2749 | int err; |
| 2698 | 2750 | ||
| 2699 | ret = cnt; | 2751 | ret = cnt; |
| 2700 | 2752 | ||
| 2701 | if (cnt > max_tracer_type_len) | 2753 | if (cnt > MAX_TRACER_SIZE) |
| 2702 | cnt = max_tracer_type_len; | 2754 | cnt = MAX_TRACER_SIZE; |
| 2703 | 2755 | ||
| 2704 | if (copy_from_user(&buf, ubuf, cnt)) | 2756 | if (copy_from_user(&buf, ubuf, cnt)) |
| 2705 | return -EFAULT; | 2757 | return -EFAULT; |
| @@ -3084,7 +3136,8 @@ tracing_fill_pipe_page(size_t rem, struct trace_iterator *iter) | |||
| 3084 | break; | 3136 | break; |
| 3085 | } | 3137 | } |
| 3086 | 3138 | ||
| 3087 | trace_consume(iter); | 3139 | if (ret != TRACE_TYPE_NO_CONSUME) |
| 3140 | trace_consume(iter); | ||
| 3088 | rem -= count; | 3141 | rem -= count; |
| 3089 | if (!find_next_entry_inc(iter)) { | 3142 | if (!find_next_entry_inc(iter)) { |
| 3090 | rem = 0; | 3143 | rem = 0; |
| @@ -3313,6 +3366,62 @@ tracing_mark_write(struct file *filp, const char __user *ubuf, | |||
| 3313 | return cnt; | 3366 | return cnt; |
| 3314 | } | 3367 | } |
| 3315 | 3368 | ||
| 3369 | static ssize_t tracing_clock_read(struct file *filp, char __user *ubuf, | ||
| 3370 | size_t cnt, loff_t *ppos) | ||
| 3371 | { | ||
| 3372 | char buf[64]; | ||
| 3373 | int bufiter = 0; | ||
| 3374 | int i; | ||
| 3375 | |||
| 3376 | for (i = 0; i < ARRAY_SIZE(trace_clocks); i++) | ||
| 3377 | bufiter += snprintf(buf + bufiter, sizeof(buf) - bufiter, | ||
| 3378 | "%s%s%s%s", i ? " " : "", | ||
| 3379 | i == trace_clock_id ? "[" : "", trace_clocks[i].name, | ||
| 3380 | i == trace_clock_id ? "]" : ""); | ||
| 3381 | bufiter += snprintf(buf + bufiter, sizeof(buf) - bufiter, "\n"); | ||
| 3382 | |||
| 3383 | return simple_read_from_buffer(ubuf, cnt, ppos, buf, bufiter); | ||
| 3384 | } | ||
| 3385 | |||
| 3386 | static ssize_t tracing_clock_write(struct file *filp, const char __user *ubuf, | ||
| 3387 | size_t cnt, loff_t *fpos) | ||
| 3388 | { | ||
| 3389 | char buf[64]; | ||
| 3390 | const char *clockstr; | ||
| 3391 | int i; | ||
| 3392 | |||
| 3393 | if (cnt >= sizeof(buf)) | ||
| 3394 | return -EINVAL; | ||
| 3395 | |||
| 3396 | if (copy_from_user(&buf, ubuf, cnt)) | ||
| 3397 | return -EFAULT; | ||
| 3398 | |||
| 3399 | buf[cnt] = 0; | ||
| 3400 | |||
| 3401 | clockstr = strstrip(buf); | ||
| 3402 | |||
| 3403 | for (i = 0; i < ARRAY_SIZE(trace_clocks); i++) { | ||
| 3404 | if (strcmp(trace_clocks[i].name, clockstr) == 0) | ||
| 3405 | break; | ||
| 3406 | } | ||
| 3407 | if (i == ARRAY_SIZE(trace_clocks)) | ||
| 3408 | return -EINVAL; | ||
| 3409 | |||
| 3410 | trace_clock_id = i; | ||
| 3411 | |||
| 3412 | mutex_lock(&trace_types_lock); | ||
| 3413 | |||
| 3414 | ring_buffer_set_clock(global_trace.buffer, trace_clocks[i].func); | ||
| 3415 | if (max_tr.buffer) | ||
| 3416 | ring_buffer_set_clock(max_tr.buffer, trace_clocks[i].func); | ||
| 3417 | |||
| 3418 | mutex_unlock(&trace_types_lock); | ||
| 3419 | |||
| 3420 | *fpos += cnt; | ||
| 3421 | |||
| 3422 | return cnt; | ||
| 3423 | } | ||
| 3424 | |||
| 3316 | static const struct file_operations tracing_max_lat_fops = { | 3425 | static const struct file_operations tracing_max_lat_fops = { |
| 3317 | .open = tracing_open_generic, | 3426 | .open = tracing_open_generic, |
| 3318 | .read = tracing_max_lat_read, | 3427 | .read = tracing_max_lat_read, |
| @@ -3350,6 +3459,12 @@ static const struct file_operations tracing_mark_fops = { | |||
| 3350 | .write = tracing_mark_write, | 3459 | .write = tracing_mark_write, |
| 3351 | }; | 3460 | }; |
| 3352 | 3461 | ||
| 3462 | static const struct file_operations trace_clock_fops = { | ||
| 3463 | .open = tracing_open_generic, | ||
| 3464 | .read = tracing_clock_read, | ||
| 3465 | .write = tracing_clock_write, | ||
| 3466 | }; | ||
| 3467 | |||
| 3353 | struct ftrace_buffer_info { | 3468 | struct ftrace_buffer_info { |
| 3354 | struct trace_array *tr; | 3469 | struct trace_array *tr; |
| 3355 | void *spare; | 3470 | void *spare; |
| @@ -3630,9 +3745,6 @@ tracing_stats_read(struct file *filp, char __user *ubuf, | |||
| 3630 | cnt = ring_buffer_commit_overrun_cpu(tr->buffer, cpu); | 3745 | cnt = ring_buffer_commit_overrun_cpu(tr->buffer, cpu); |
| 3631 | trace_seq_printf(s, "commit overrun: %ld\n", cnt); | 3746 | trace_seq_printf(s, "commit overrun: %ld\n", cnt); |
| 3632 | 3747 | ||
| 3633 | cnt = ring_buffer_nmi_dropped_cpu(tr->buffer, cpu); | ||
| 3634 | trace_seq_printf(s, "nmi dropped: %ld\n", cnt); | ||
| 3635 | |||
| 3636 | count = simple_read_from_buffer(ubuf, count, ppos, s->buffer, s->len); | 3748 | count = simple_read_from_buffer(ubuf, count, ppos, s->buffer, s->len); |
| 3637 | 3749 | ||
| 3638 | kfree(s); | 3750 | kfree(s); |
| @@ -3893,17 +4005,9 @@ trace_options_core_write(struct file *filp, const char __user *ubuf, size_t cnt, | |||
| 3893 | if (ret < 0) | 4005 | if (ret < 0) |
| 3894 | return ret; | 4006 | return ret; |
| 3895 | 4007 | ||
| 3896 | switch (val) { | 4008 | if (val != 0 && val != 1) |
| 3897 | case 0: | ||
| 3898 | trace_flags &= ~(1 << index); | ||
| 3899 | break; | ||
| 3900 | case 1: | ||
| 3901 | trace_flags |= 1 << index; | ||
| 3902 | break; | ||
| 3903 | |||
| 3904 | default: | ||
| 3905 | return -EINVAL; | 4009 | return -EINVAL; |
| 3906 | } | 4010 | set_tracer_flags(1 << index, val); |
| 3907 | 4011 | ||
| 3908 | *ppos += cnt; | 4012 | *ppos += cnt; |
| 3909 | 4013 | ||
| @@ -4071,11 +4175,13 @@ static __init int tracer_init_debugfs(void) | |||
| 4071 | trace_create_file("current_tracer", 0644, d_tracer, | 4175 | trace_create_file("current_tracer", 0644, d_tracer, |
| 4072 | &global_trace, &set_tracer_fops); | 4176 | &global_trace, &set_tracer_fops); |
| 4073 | 4177 | ||
| 4178 | #ifdef CONFIG_TRACER_MAX_TRACE | ||
| 4074 | trace_create_file("tracing_max_latency", 0644, d_tracer, | 4179 | trace_create_file("tracing_max_latency", 0644, d_tracer, |
| 4075 | &tracing_max_latency, &tracing_max_lat_fops); | 4180 | &tracing_max_latency, &tracing_max_lat_fops); |
| 4076 | 4181 | ||
| 4077 | trace_create_file("tracing_thresh", 0644, d_tracer, | 4182 | trace_create_file("tracing_thresh", 0644, d_tracer, |
| 4078 | &tracing_thresh, &tracing_max_lat_fops); | 4183 | &tracing_thresh, &tracing_max_lat_fops); |
| 4184 | #endif | ||
| 4079 | 4185 | ||
| 4080 | trace_create_file("README", 0444, d_tracer, | 4186 | trace_create_file("README", 0444, d_tracer, |
| 4081 | NULL, &tracing_readme_fops); | 4187 | NULL, &tracing_readme_fops); |
| @@ -4092,6 +4198,9 @@ static __init int tracer_init_debugfs(void) | |||
| 4092 | trace_create_file("saved_cmdlines", 0444, d_tracer, | 4198 | trace_create_file("saved_cmdlines", 0444, d_tracer, |
| 4093 | NULL, &tracing_saved_cmdlines_fops); | 4199 | NULL, &tracing_saved_cmdlines_fops); |
| 4094 | 4200 | ||
| 4201 | trace_create_file("trace_clock", 0644, d_tracer, NULL, | ||
| 4202 | &trace_clock_fops); | ||
| 4203 | |||
| 4095 | #ifdef CONFIG_DYNAMIC_FTRACE | 4204 | #ifdef CONFIG_DYNAMIC_FTRACE |
| 4096 | trace_create_file("dyn_ftrace_total_info", 0444, d_tracer, | 4205 | trace_create_file("dyn_ftrace_total_info", 0444, d_tracer, |
| 4097 | &ftrace_update_tot_cnt, &tracing_dyn_info_fops); | 4206 | &ftrace_update_tot_cnt, &tracing_dyn_info_fops); |
| @@ -4232,8 +4341,11 @@ static void __ftrace_dump(bool disable_tracing) | |||
| 4232 | iter.pos = -1; | 4341 | iter.pos = -1; |
| 4233 | 4342 | ||
| 4234 | if (find_next_entry_inc(&iter) != NULL) { | 4343 | if (find_next_entry_inc(&iter) != NULL) { |
| 4235 | print_trace_line(&iter); | 4344 | int ret; |
| 4236 | trace_consume(&iter); | 4345 | |
| 4346 | ret = print_trace_line(&iter); | ||
| 4347 | if (ret != TRACE_TYPE_NO_CONSUME) | ||
| 4348 | trace_consume(&iter); | ||
| 4237 | } | 4349 | } |
| 4238 | 4350 | ||
| 4239 | trace_printk_seq(&iter.seq); | 4351 | trace_printk_seq(&iter.seq); |
| @@ -4267,7 +4379,6 @@ void ftrace_dump(void) | |||
| 4267 | 4379 | ||
| 4268 | __init static int tracer_alloc_buffers(void) | 4380 | __init static int tracer_alloc_buffers(void) |
| 4269 | { | 4381 | { |
| 4270 | struct trace_array_cpu *data; | ||
| 4271 | int ring_buf_size; | 4382 | int ring_buf_size; |
| 4272 | int i; | 4383 | int i; |
| 4273 | int ret = -ENOMEM; | 4384 | int ret = -ENOMEM; |
| @@ -4317,7 +4428,7 @@ __init static int tracer_alloc_buffers(void) | |||
| 4317 | 4428 | ||
| 4318 | /* Allocate the first page for all buffers */ | 4429 | /* Allocate the first page for all buffers */ |
| 4319 | for_each_tracing_cpu(i) { | 4430 | for_each_tracing_cpu(i) { |
| 4320 | data = global_trace.data[i] = &per_cpu(global_trace_cpu, i); | 4431 | global_trace.data[i] = &per_cpu(global_trace_cpu, i); |
| 4321 | max_tr.data[i] = &per_cpu(max_data, i); | 4432 | max_tr.data[i] = &per_cpu(max_data, i); |
| 4322 | } | 4433 | } |
| 4323 | 4434 | ||
diff --git a/kernel/trace/trace.h b/kernel/trace/trace.h index 3548ae5cc780..405cb850b75d 100644 --- a/kernel/trace/trace.h +++ b/kernel/trace/trace.h | |||
| @@ -7,10 +7,10 @@ | |||
| 7 | #include <linux/clocksource.h> | 7 | #include <linux/clocksource.h> |
| 8 | #include <linux/ring_buffer.h> | 8 | #include <linux/ring_buffer.h> |
| 9 | #include <linux/mmiotrace.h> | 9 | #include <linux/mmiotrace.h> |
| 10 | #include <linux/tracepoint.h> | ||
| 10 | #include <linux/ftrace.h> | 11 | #include <linux/ftrace.h> |
| 11 | #include <trace/boot.h> | 12 | #include <trace/boot.h> |
| 12 | #include <linux/kmemtrace.h> | 13 | #include <linux/kmemtrace.h> |
| 13 | #include <trace/power.h> | ||
| 14 | 14 | ||
| 15 | #include <linux/trace_seq.h> | 15 | #include <linux/trace_seq.h> |
| 16 | #include <linux/ftrace_event.h> | 16 | #include <linux/ftrace_event.h> |
| @@ -34,167 +34,61 @@ enum trace_type { | |||
| 34 | TRACE_GRAPH_ENT, | 34 | TRACE_GRAPH_ENT, |
| 35 | TRACE_USER_STACK, | 35 | TRACE_USER_STACK, |
| 36 | TRACE_HW_BRANCHES, | 36 | TRACE_HW_BRANCHES, |
| 37 | TRACE_SYSCALL_ENTER, | ||
| 38 | TRACE_SYSCALL_EXIT, | ||
| 39 | TRACE_KMEM_ALLOC, | 37 | TRACE_KMEM_ALLOC, |
| 40 | TRACE_KMEM_FREE, | 38 | TRACE_KMEM_FREE, |
| 41 | TRACE_POWER, | ||
| 42 | TRACE_BLK, | 39 | TRACE_BLK, |
| 43 | 40 | ||
| 44 | __TRACE_LAST_TYPE, | 41 | __TRACE_LAST_TYPE, |
| 45 | }; | 42 | }; |
| 46 | 43 | ||
| 47 | /* | 44 | enum kmemtrace_type_id { |
| 48 | * Function trace entry - function address and parent function addres: | 45 | KMEMTRACE_TYPE_KMALLOC = 0, /* kmalloc() or kfree(). */ |
| 49 | */ | 46 | KMEMTRACE_TYPE_CACHE, /* kmem_cache_*(). */ |
| 50 | struct ftrace_entry { | 47 | KMEMTRACE_TYPE_PAGES, /* __get_free_pages() and friends. */ |
| 51 | struct trace_entry ent; | ||
| 52 | unsigned long ip; | ||
| 53 | unsigned long parent_ip; | ||
| 54 | }; | ||
| 55 | |||
| 56 | /* Function call entry */ | ||
| 57 | struct ftrace_graph_ent_entry { | ||
| 58 | struct trace_entry ent; | ||
| 59 | struct ftrace_graph_ent graph_ent; | ||
| 60 | }; | 48 | }; |
| 61 | 49 | ||
| 62 | /* Function return entry */ | ||
| 63 | struct ftrace_graph_ret_entry { | ||
| 64 | struct trace_entry ent; | ||
| 65 | struct ftrace_graph_ret ret; | ||
| 66 | }; | ||
| 67 | extern struct tracer boot_tracer; | 50 | extern struct tracer boot_tracer; |
| 68 | 51 | ||
| 69 | /* | 52 | #undef __field |
| 70 | * Context switch trace entry - which task (and prio) we switched from/to: | 53 | #define __field(type, item) type item; |
| 71 | */ | ||
| 72 | struct ctx_switch_entry { | ||
| 73 | struct trace_entry ent; | ||
| 74 | unsigned int prev_pid; | ||
| 75 | unsigned char prev_prio; | ||
| 76 | unsigned char prev_state; | ||
| 77 | unsigned int next_pid; | ||
| 78 | unsigned char next_prio; | ||
| 79 | unsigned char next_state; | ||
| 80 | unsigned int next_cpu; | ||
| 81 | }; | ||
| 82 | 54 | ||
| 83 | /* | 55 | #undef __field_struct |
| 84 | * Special (free-form) trace entry: | 56 | #define __field_struct(type, item) __field(type, item) |
| 85 | */ | ||
| 86 | struct special_entry { | ||
| 87 | struct trace_entry ent; | ||
| 88 | unsigned long arg1; | ||
| 89 | unsigned long arg2; | ||
| 90 | unsigned long arg3; | ||
| 91 | }; | ||
| 92 | 57 | ||
| 93 | /* | 58 | #undef __field_desc |
| 94 | * Stack-trace entry: | 59 | #define __field_desc(type, container, item) |
| 95 | */ | ||
| 96 | 60 | ||
| 97 | #define FTRACE_STACK_ENTRIES 8 | 61 | #undef __array |
| 62 | #define __array(type, item, size) type item[size]; | ||
| 98 | 63 | ||
| 99 | struct stack_entry { | 64 | #undef __array_desc |
| 100 | struct trace_entry ent; | 65 | #define __array_desc(type, container, item, size) |
| 101 | unsigned long caller[FTRACE_STACK_ENTRIES]; | ||
| 102 | }; | ||
| 103 | 66 | ||
| 104 | struct userstack_entry { | 67 | #undef __dynamic_array |
| 105 | struct trace_entry ent; | 68 | #define __dynamic_array(type, item) type item[]; |
| 106 | unsigned long caller[FTRACE_STACK_ENTRIES]; | ||
| 107 | }; | ||
| 108 | 69 | ||
| 109 | /* | 70 | #undef F_STRUCT |
| 110 | * trace_printk entry: | 71 | #define F_STRUCT(args...) args |
| 111 | */ | ||
| 112 | struct bprint_entry { | ||
| 113 | struct trace_entry ent; | ||
| 114 | unsigned long ip; | ||
| 115 | const char *fmt; | ||
| 116 | u32 buf[]; | ||
| 117 | }; | ||
| 118 | |||
| 119 | struct print_entry { | ||
| 120 | struct trace_entry ent; | ||
| 121 | unsigned long ip; | ||
| 122 | char buf[]; | ||
| 123 | }; | ||
| 124 | |||
| 125 | #define TRACE_OLD_SIZE 88 | ||
| 126 | |||
| 127 | struct trace_field_cont { | ||
| 128 | unsigned char type; | ||
| 129 | /* Temporary till we get rid of this completely */ | ||
| 130 | char buf[TRACE_OLD_SIZE - 1]; | ||
| 131 | }; | ||
| 132 | |||
| 133 | struct trace_mmiotrace_rw { | ||
| 134 | struct trace_entry ent; | ||
| 135 | struct mmiotrace_rw rw; | ||
| 136 | }; | ||
| 137 | |||
| 138 | struct trace_mmiotrace_map { | ||
| 139 | struct trace_entry ent; | ||
| 140 | struct mmiotrace_map map; | ||
| 141 | }; | ||
| 142 | |||
| 143 | struct trace_boot_call { | ||
| 144 | struct trace_entry ent; | ||
| 145 | struct boot_trace_call boot_call; | ||
| 146 | }; | ||
| 147 | |||
| 148 | struct trace_boot_ret { | ||
| 149 | struct trace_entry ent; | ||
| 150 | struct boot_trace_ret boot_ret; | ||
| 151 | }; | ||
| 152 | |||
| 153 | #define TRACE_FUNC_SIZE 30 | ||
| 154 | #define TRACE_FILE_SIZE 20 | ||
| 155 | struct trace_branch { | ||
| 156 | struct trace_entry ent; | ||
| 157 | unsigned line; | ||
| 158 | char func[TRACE_FUNC_SIZE+1]; | ||
| 159 | char file[TRACE_FILE_SIZE+1]; | ||
| 160 | char correct; | ||
| 161 | }; | ||
| 162 | |||
| 163 | struct hw_branch_entry { | ||
| 164 | struct trace_entry ent; | ||
| 165 | u64 from; | ||
| 166 | u64 to; | ||
| 167 | }; | ||
| 168 | 72 | ||
| 169 | struct trace_power { | 73 | #undef FTRACE_ENTRY |
| 170 | struct trace_entry ent; | 74 | #define FTRACE_ENTRY(name, struct_name, id, tstruct, print) \ |
| 171 | struct power_trace state_data; | 75 | struct struct_name { \ |
| 172 | }; | 76 | struct trace_entry ent; \ |
| 77 | tstruct \ | ||
| 78 | } | ||
| 173 | 79 | ||
| 174 | enum kmemtrace_type_id { | 80 | #undef TP_ARGS |
| 175 | KMEMTRACE_TYPE_KMALLOC = 0, /* kmalloc() or kfree(). */ | 81 | #define TP_ARGS(args...) args |
| 176 | KMEMTRACE_TYPE_CACHE, /* kmem_cache_*(). */ | ||
| 177 | KMEMTRACE_TYPE_PAGES, /* __get_free_pages() and friends. */ | ||
| 178 | }; | ||
| 179 | 82 | ||
| 180 | struct kmemtrace_alloc_entry { | 83 | #undef FTRACE_ENTRY_DUP |
| 181 | struct trace_entry ent; | 84 | #define FTRACE_ENTRY_DUP(name, name_struct, id, tstruct, printk) |
| 182 | enum kmemtrace_type_id type_id; | ||
| 183 | unsigned long call_site; | ||
| 184 | const void *ptr; | ||
| 185 | size_t bytes_req; | ||
| 186 | size_t bytes_alloc; | ||
| 187 | gfp_t gfp_flags; | ||
| 188 | int node; | ||
| 189 | }; | ||
| 190 | 85 | ||
| 191 | struct kmemtrace_free_entry { | 86 | #include "trace_entries.h" |
| 192 | struct trace_entry ent; | ||
| 193 | enum kmemtrace_type_id type_id; | ||
| 194 | unsigned long call_site; | ||
| 195 | const void *ptr; | ||
| 196 | }; | ||
| 197 | 87 | ||
| 88 | /* | ||
| 89 | * syscalls are special, and need special handling, this is why | ||
| 90 | * they are not included in trace_entries.h | ||
| 91 | */ | ||
| 198 | struct syscall_trace_enter { | 92 | struct syscall_trace_enter { |
| 199 | struct trace_entry ent; | 93 | struct trace_entry ent; |
| 200 | int nr; | 94 | int nr; |
| @@ -207,13 +101,12 @@ struct syscall_trace_exit { | |||
| 207 | unsigned long ret; | 101 | unsigned long ret; |
| 208 | }; | 102 | }; |
| 209 | 103 | ||
| 210 | |||
| 211 | /* | 104 | /* |
| 212 | * trace_flag_type is an enumeration that holds different | 105 | * trace_flag_type is an enumeration that holds different |
| 213 | * states when a trace occurs. These are: | 106 | * states when a trace occurs. These are: |
| 214 | * IRQS_OFF - interrupts were disabled | 107 | * IRQS_OFF - interrupts were disabled |
| 215 | * IRQS_NOSUPPORT - arch does not support irqs_disabled_flags | 108 | * IRQS_NOSUPPORT - arch does not support irqs_disabled_flags |
| 216 | * NEED_RESCED - reschedule is requested | 109 | * NEED_RESCHED - reschedule is requested |
| 217 | * HARDIRQ - inside an interrupt handler | 110 | * HARDIRQ - inside an interrupt handler |
| 218 | * SOFTIRQ - inside a softirq handler | 111 | * SOFTIRQ - inside a softirq handler |
| 219 | */ | 112 | */ |
| @@ -236,9 +129,6 @@ struct trace_array_cpu { | |||
| 236 | atomic_t disabled; | 129 | atomic_t disabled; |
| 237 | void *buffer_page; /* ring buffer spare */ | 130 | void *buffer_page; /* ring buffer spare */ |
| 238 | 131 | ||
| 239 | /* these fields get copied into max-trace: */ | ||
| 240 | unsigned long trace_idx; | ||
| 241 | unsigned long overrun; | ||
| 242 | unsigned long saved_latency; | 132 | unsigned long saved_latency; |
| 243 | unsigned long critical_start; | 133 | unsigned long critical_start; |
| 244 | unsigned long critical_end; | 134 | unsigned long critical_end; |
| @@ -246,6 +136,7 @@ struct trace_array_cpu { | |||
| 246 | unsigned long nice; | 136 | unsigned long nice; |
| 247 | unsigned long policy; | 137 | unsigned long policy; |
| 248 | unsigned long rt_priority; | 138 | unsigned long rt_priority; |
| 139 | unsigned long skipped_entries; | ||
| 249 | cycle_t preempt_timestamp; | 140 | cycle_t preempt_timestamp; |
| 250 | pid_t pid; | 141 | pid_t pid; |
| 251 | uid_t uid; | 142 | uid_t uid; |
| @@ -314,15 +205,10 @@ extern void __ftrace_bad_type(void); | |||
| 314 | IF_ASSIGN(var, ent, struct ftrace_graph_ret_entry, \ | 205 | IF_ASSIGN(var, ent, struct ftrace_graph_ret_entry, \ |
| 315 | TRACE_GRAPH_RET); \ | 206 | TRACE_GRAPH_RET); \ |
| 316 | IF_ASSIGN(var, ent, struct hw_branch_entry, TRACE_HW_BRANCHES);\ | 207 | IF_ASSIGN(var, ent, struct hw_branch_entry, TRACE_HW_BRANCHES);\ |
| 317 | IF_ASSIGN(var, ent, struct trace_power, TRACE_POWER); \ | ||
| 318 | IF_ASSIGN(var, ent, struct kmemtrace_alloc_entry, \ | 208 | IF_ASSIGN(var, ent, struct kmemtrace_alloc_entry, \ |
| 319 | TRACE_KMEM_ALLOC); \ | 209 | TRACE_KMEM_ALLOC); \ |
| 320 | IF_ASSIGN(var, ent, struct kmemtrace_free_entry, \ | 210 | IF_ASSIGN(var, ent, struct kmemtrace_free_entry, \ |
| 321 | TRACE_KMEM_FREE); \ | 211 | TRACE_KMEM_FREE); \ |
| 322 | IF_ASSIGN(var, ent, struct syscall_trace_enter, \ | ||
| 323 | TRACE_SYSCALL_ENTER); \ | ||
| 324 | IF_ASSIGN(var, ent, struct syscall_trace_exit, \ | ||
| 325 | TRACE_SYSCALL_EXIT); \ | ||
| 326 | __ftrace_bad_type(); \ | 212 | __ftrace_bad_type(); \ |
| 327 | } while (0) | 213 | } while (0) |
| 328 | 214 | ||
| @@ -398,7 +284,6 @@ struct tracer { | |||
| 398 | struct tracer *next; | 284 | struct tracer *next; |
| 399 | int print_max; | 285 | int print_max; |
| 400 | struct tracer_flags *flags; | 286 | struct tracer_flags *flags; |
| 401 | struct tracer_stat *stats; | ||
| 402 | }; | 287 | }; |
| 403 | 288 | ||
| 404 | 289 | ||
| @@ -423,12 +308,13 @@ void init_tracer_sysprof_debugfs(struct dentry *d_tracer); | |||
| 423 | 308 | ||
| 424 | struct ring_buffer_event; | 309 | struct ring_buffer_event; |
| 425 | 310 | ||
| 426 | struct ring_buffer_event *trace_buffer_lock_reserve(struct trace_array *tr, | 311 | struct ring_buffer_event * |
| 427 | int type, | 312 | trace_buffer_lock_reserve(struct ring_buffer *buffer, |
| 428 | unsigned long len, | 313 | int type, |
| 429 | unsigned long flags, | 314 | unsigned long len, |
| 430 | int pc); | 315 | unsigned long flags, |
| 431 | void trace_buffer_unlock_commit(struct trace_array *tr, | 316 | int pc); |
| 317 | void trace_buffer_unlock_commit(struct ring_buffer *buffer, | ||
| 432 | struct ring_buffer_event *event, | 318 | struct ring_buffer_event *event, |
| 433 | unsigned long flags, int pc); | 319 | unsigned long flags, int pc); |
| 434 | 320 | ||
| @@ -438,10 +324,6 @@ struct trace_entry *tracing_get_trace_entry(struct trace_array *tr, | |||
| 438 | struct trace_entry *trace_find_next_entry(struct trace_iterator *iter, | 324 | struct trace_entry *trace_find_next_entry(struct trace_iterator *iter, |
| 439 | int *ent_cpu, u64 *ent_ts); | 325 | int *ent_cpu, u64 *ent_ts); |
| 440 | 326 | ||
| 441 | void tracing_generic_entry_update(struct trace_entry *entry, | ||
| 442 | unsigned long flags, | ||
| 443 | int pc); | ||
| 444 | |||
| 445 | void default_wait_pipe(struct trace_iterator *iter); | 327 | void default_wait_pipe(struct trace_iterator *iter); |
| 446 | void poll_wait_pipe(struct trace_iterator *iter); | 328 | void poll_wait_pipe(struct trace_iterator *iter); |
| 447 | 329 | ||
| @@ -471,6 +353,7 @@ void trace_function(struct trace_array *tr, | |||
| 471 | 353 | ||
| 472 | void trace_graph_return(struct ftrace_graph_ret *trace); | 354 | void trace_graph_return(struct ftrace_graph_ret *trace); |
| 473 | int trace_graph_entry(struct ftrace_graph_ent *trace); | 355 | int trace_graph_entry(struct ftrace_graph_ent *trace); |
| 356 | void set_graph_array(struct trace_array *tr); | ||
| 474 | 357 | ||
| 475 | void tracing_start_cmdline_record(void); | 358 | void tracing_start_cmdline_record(void); |
| 476 | void tracing_stop_cmdline_record(void); | 359 | void tracing_stop_cmdline_record(void); |
| @@ -479,35 +362,46 @@ void tracing_stop_sched_switch_record(void); | |||
| 479 | void tracing_start_sched_switch_record(void); | 362 | void tracing_start_sched_switch_record(void); |
| 480 | int register_tracer(struct tracer *type); | 363 | int register_tracer(struct tracer *type); |
| 481 | void unregister_tracer(struct tracer *type); | 364 | void unregister_tracer(struct tracer *type); |
| 365 | int is_tracing_stopped(void); | ||
| 482 | 366 | ||
| 483 | extern unsigned long nsecs_to_usecs(unsigned long nsecs); | 367 | extern unsigned long nsecs_to_usecs(unsigned long nsecs); |
| 484 | 368 | ||
| 369 | #ifdef CONFIG_TRACER_MAX_TRACE | ||
| 485 | extern unsigned long tracing_max_latency; | 370 | extern unsigned long tracing_max_latency; |
| 486 | extern unsigned long tracing_thresh; | 371 | extern unsigned long tracing_thresh; |
| 487 | 372 | ||
| 488 | void update_max_tr(struct trace_array *tr, struct task_struct *tsk, int cpu); | 373 | void update_max_tr(struct trace_array *tr, struct task_struct *tsk, int cpu); |
| 489 | void update_max_tr_single(struct trace_array *tr, | 374 | void update_max_tr_single(struct trace_array *tr, |
| 490 | struct task_struct *tsk, int cpu); | 375 | struct task_struct *tsk, int cpu); |
| 376 | #endif /* CONFIG_TRACER_MAX_TRACE */ | ||
| 491 | 377 | ||
| 492 | void __trace_stack(struct trace_array *tr, | 378 | #ifdef CONFIG_STACKTRACE |
| 493 | unsigned long flags, | 379 | void ftrace_trace_stack(struct ring_buffer *buffer, unsigned long flags, |
| 494 | int skip, int pc); | 380 | int skip, int pc); |
| 495 | 381 | ||
| 496 | extern cycle_t ftrace_now(int cpu); | 382 | void ftrace_trace_userstack(struct ring_buffer *buffer, unsigned long flags, |
| 383 | int pc); | ||
| 497 | 384 | ||
| 498 | #ifdef CONFIG_CONTEXT_SWITCH_TRACER | 385 | void __trace_stack(struct trace_array *tr, unsigned long flags, int skip, |
| 499 | typedef void | 386 | int pc); |
| 500 | (*tracer_switch_func_t)(void *private, | 387 | #else |
| 501 | void *__rq, | 388 | static inline void ftrace_trace_stack(struct trace_array *tr, |
| 502 | struct task_struct *prev, | 389 | unsigned long flags, int skip, int pc) |
| 503 | struct task_struct *next); | 390 | { |
| 504 | 391 | } | |
| 505 | struct tracer_switch_ops { | 392 | |
| 506 | tracer_switch_func_t func; | 393 | static inline void ftrace_trace_userstack(struct trace_array *tr, |
| 507 | void *private; | 394 | unsigned long flags, int pc) |
| 508 | struct tracer_switch_ops *next; | 395 | { |
| 509 | }; | 396 | } |
| 510 | #endif /* CONFIG_CONTEXT_SWITCH_TRACER */ | 397 | |
| 398 | static inline void __trace_stack(struct trace_array *tr, unsigned long flags, | ||
| 399 | int skip, int pc) | ||
| 400 | { | ||
| 401 | } | ||
| 402 | #endif /* CONFIG_STACKTRACE */ | ||
| 403 | |||
| 404 | extern cycle_t ftrace_now(int cpu); | ||
| 511 | 405 | ||
| 512 | extern void trace_find_cmdline(int pid, char comm[]); | 406 | extern void trace_find_cmdline(int pid, char comm[]); |
| 513 | 407 | ||
| @@ -517,6 +411,10 @@ extern unsigned long ftrace_update_tot_cnt; | |||
| 517 | extern int DYN_FTRACE_TEST_NAME(void); | 411 | extern int DYN_FTRACE_TEST_NAME(void); |
| 518 | #endif | 412 | #endif |
| 519 | 413 | ||
| 414 | extern int ring_buffer_expanded; | ||
| 415 | extern bool tracing_selftest_disabled; | ||
| 416 | DECLARE_PER_CPU(local_t, ftrace_cpu_disabled); | ||
| 417 | |||
| 520 | #ifdef CONFIG_FTRACE_STARTUP_TEST | 418 | #ifdef CONFIG_FTRACE_STARTUP_TEST |
| 521 | extern int trace_selftest_startup_function(struct tracer *trace, | 419 | extern int trace_selftest_startup_function(struct tracer *trace, |
| 522 | struct trace_array *tr); | 420 | struct trace_array *tr); |
| @@ -548,9 +446,16 @@ extern int | |||
| 548 | trace_vbprintk(unsigned long ip, const char *fmt, va_list args); | 446 | trace_vbprintk(unsigned long ip, const char *fmt, va_list args); |
| 549 | extern int | 447 | extern int |
| 550 | trace_vprintk(unsigned long ip, const char *fmt, va_list args); | 448 | trace_vprintk(unsigned long ip, const char *fmt, va_list args); |
| 449 | extern int | ||
| 450 | trace_array_vprintk(struct trace_array *tr, | ||
| 451 | unsigned long ip, const char *fmt, va_list args); | ||
| 452 | int trace_array_printk(struct trace_array *tr, | ||
| 453 | unsigned long ip, const char *fmt, ...); | ||
| 551 | 454 | ||
| 552 | extern unsigned long trace_flags; | 455 | extern unsigned long trace_flags; |
| 553 | 456 | ||
| 457 | extern int trace_clock_id; | ||
| 458 | |||
| 554 | /* Standard output formatting function used for function return traces */ | 459 | /* Standard output formatting function used for function return traces */ |
| 555 | #ifdef CONFIG_FUNCTION_GRAPH_TRACER | 460 | #ifdef CONFIG_FUNCTION_GRAPH_TRACER |
| 556 | extern enum print_line_t print_graph_function(struct trace_iterator *iter); | 461 | extern enum print_line_t print_graph_function(struct trace_iterator *iter); |
| @@ -613,6 +518,41 @@ static inline int ftrace_trace_task(struct task_struct *task) | |||
| 613 | #endif | 518 | #endif |
| 614 | 519 | ||
| 615 | /* | 520 | /* |
| 521 | * struct trace_parser - servers for reading the user input separated by spaces | ||
| 522 | * @cont: set if the input is not complete - no final space char was found | ||
| 523 | * @buffer: holds the parsed user input | ||
| 524 | * @idx: user input lenght | ||
| 525 | * @size: buffer size | ||
| 526 | */ | ||
| 527 | struct trace_parser { | ||
| 528 | bool cont; | ||
| 529 | char *buffer; | ||
| 530 | unsigned idx; | ||
| 531 | unsigned size; | ||
| 532 | }; | ||
| 533 | |||
| 534 | static inline bool trace_parser_loaded(struct trace_parser *parser) | ||
| 535 | { | ||
| 536 | return (parser->idx != 0); | ||
| 537 | } | ||
| 538 | |||
| 539 | static inline bool trace_parser_cont(struct trace_parser *parser) | ||
| 540 | { | ||
| 541 | return parser->cont; | ||
| 542 | } | ||
| 543 | |||
| 544 | static inline void trace_parser_clear(struct trace_parser *parser) | ||
| 545 | { | ||
| 546 | parser->cont = false; | ||
| 547 | parser->idx = 0; | ||
| 548 | } | ||
| 549 | |||
| 550 | extern int trace_parser_get_init(struct trace_parser *parser, int size); | ||
| 551 | extern void trace_parser_put(struct trace_parser *parser); | ||
| 552 | extern int trace_get_user(struct trace_parser *parser, const char __user *ubuf, | ||
| 553 | size_t cnt, loff_t *ppos); | ||
| 554 | |||
| 555 | /* | ||
| 616 | * trace_iterator_flags is an enumeration that defines bit | 556 | * trace_iterator_flags is an enumeration that defines bit |
| 617 | * positions into trace_flags that controls the output. | 557 | * positions into trace_flags that controls the output. |
| 618 | * | 558 | * |
| @@ -639,9 +579,8 @@ enum trace_iterator_flags { | |||
| 639 | TRACE_ITER_PRINTK_MSGONLY = 0x10000, | 579 | TRACE_ITER_PRINTK_MSGONLY = 0x10000, |
| 640 | TRACE_ITER_CONTEXT_INFO = 0x20000, /* Print pid/cpu/time */ | 580 | TRACE_ITER_CONTEXT_INFO = 0x20000, /* Print pid/cpu/time */ |
| 641 | TRACE_ITER_LATENCY_FMT = 0x40000, | 581 | TRACE_ITER_LATENCY_FMT = 0x40000, |
| 642 | TRACE_ITER_GLOBAL_CLK = 0x80000, | 582 | TRACE_ITER_SLEEP_TIME = 0x80000, |
| 643 | TRACE_ITER_SLEEP_TIME = 0x100000, | 583 | TRACE_ITER_GRAPH_TIME = 0x100000, |
| 644 | TRACE_ITER_GRAPH_TIME = 0x200000, | ||
| 645 | }; | 584 | }; |
| 646 | 585 | ||
| 647 | /* | 586 | /* |
| @@ -738,6 +677,7 @@ struct ftrace_event_field { | |||
| 738 | struct list_head link; | 677 | struct list_head link; |
| 739 | char *name; | 678 | char *name; |
| 740 | char *type; | 679 | char *type; |
| 680 | int filter_type; | ||
| 741 | int offset; | 681 | int offset; |
| 742 | int size; | 682 | int size; |
| 743 | int is_signed; | 683 | int is_signed; |
| @@ -747,13 +687,15 @@ struct event_filter { | |||
| 747 | int n_preds; | 687 | int n_preds; |
| 748 | struct filter_pred **preds; | 688 | struct filter_pred **preds; |
| 749 | char *filter_string; | 689 | char *filter_string; |
| 690 | bool no_reset; | ||
| 750 | }; | 691 | }; |
| 751 | 692 | ||
| 752 | struct event_subsystem { | 693 | struct event_subsystem { |
| 753 | struct list_head list; | 694 | struct list_head list; |
| 754 | const char *name; | 695 | const char *name; |
| 755 | struct dentry *entry; | 696 | struct dentry *entry; |
| 756 | void *filter; | 697 | struct event_filter *filter; |
| 698 | int nr_events; | ||
| 757 | }; | 699 | }; |
| 758 | 700 | ||
| 759 | struct filter_pred; | 701 | struct filter_pred; |
| @@ -781,6 +723,7 @@ extern int apply_subsystem_event_filter(struct event_subsystem *system, | |||
| 781 | char *filter_string); | 723 | char *filter_string); |
| 782 | extern void print_subsystem_event_filter(struct event_subsystem *system, | 724 | extern void print_subsystem_event_filter(struct event_subsystem *system, |
| 783 | struct trace_seq *s); | 725 | struct trace_seq *s); |
| 726 | extern int filter_assign_type(const char *type); | ||
| 784 | 727 | ||
| 785 | static inline int | 728 | static inline int |
| 786 | filter_check_discard(struct ftrace_event_call *call, void *rec, | 729 | filter_check_discard(struct ftrace_event_call *call, void *rec, |
| @@ -795,58 +738,18 @@ filter_check_discard(struct ftrace_event_call *call, void *rec, | |||
| 795 | return 0; | 738 | return 0; |
| 796 | } | 739 | } |
| 797 | 740 | ||
| 798 | #define DEFINE_COMPARISON_PRED(type) \ | ||
| 799 | static int filter_pred_##type(struct filter_pred *pred, void *event, \ | ||
| 800 | int val1, int val2) \ | ||
| 801 | { \ | ||
| 802 | type *addr = (type *)(event + pred->offset); \ | ||
| 803 | type val = (type)pred->val; \ | ||
| 804 | int match = 0; \ | ||
| 805 | \ | ||
| 806 | switch (pred->op) { \ | ||
| 807 | case OP_LT: \ | ||
| 808 | match = (*addr < val); \ | ||
| 809 | break; \ | ||
| 810 | case OP_LE: \ | ||
| 811 | match = (*addr <= val); \ | ||
| 812 | break; \ | ||
| 813 | case OP_GT: \ | ||
| 814 | match = (*addr > val); \ | ||
| 815 | break; \ | ||
| 816 | case OP_GE: \ | ||
| 817 | match = (*addr >= val); \ | ||
| 818 | break; \ | ||
| 819 | default: \ | ||
| 820 | break; \ | ||
| 821 | } \ | ||
| 822 | \ | ||
| 823 | return match; \ | ||
| 824 | } | ||
| 825 | |||
| 826 | #define DEFINE_EQUALITY_PRED(size) \ | ||
| 827 | static int filter_pred_##size(struct filter_pred *pred, void *event, \ | ||
| 828 | int val1, int val2) \ | ||
| 829 | { \ | ||
| 830 | u##size *addr = (u##size *)(event + pred->offset); \ | ||
| 831 | u##size val = (u##size)pred->val; \ | ||
| 832 | int match; \ | ||
| 833 | \ | ||
| 834 | match = (val == *addr) ^ pred->not; \ | ||
| 835 | \ | ||
| 836 | return match; \ | ||
| 837 | } | ||
| 838 | |||
| 839 | extern struct mutex event_mutex; | 741 | extern struct mutex event_mutex; |
| 840 | extern struct list_head ftrace_events; | 742 | extern struct list_head ftrace_events; |
| 841 | 743 | ||
| 842 | extern const char *__start___trace_bprintk_fmt[]; | 744 | extern const char *__start___trace_bprintk_fmt[]; |
| 843 | extern const char *__stop___trace_bprintk_fmt[]; | 745 | extern const char *__stop___trace_bprintk_fmt[]; |
| 844 | 746 | ||
| 845 | #undef TRACE_EVENT_FORMAT | 747 | #undef FTRACE_ENTRY |
| 846 | #define TRACE_EVENT_FORMAT(call, proto, args, fmt, tstruct, tpfmt) \ | 748 | #define FTRACE_ENTRY(call, struct_name, id, tstruct, print) \ |
| 847 | extern struct ftrace_event_call event_##call; | 749 | extern struct ftrace_event_call event_##call; |
| 848 | #undef TRACE_EVENT_FORMAT_NOFILTER | 750 | #undef FTRACE_ENTRY_DUP |
| 849 | #define TRACE_EVENT_FORMAT_NOFILTER(call, proto, args, fmt, tstruct, tpfmt) | 751 | #define FTRACE_ENTRY_DUP(call, struct_name, id, tstruct, print) \ |
| 850 | #include "trace_event_types.h" | 752 | FTRACE_ENTRY(call, struct_name, id, PARAMS(tstruct), PARAMS(print)) |
| 753 | #include "trace_entries.h" | ||
| 851 | 754 | ||
| 852 | #endif /* _LINUX_KERNEL_TRACE_H */ | 755 | #endif /* _LINUX_KERNEL_TRACE_H */ |
diff --git a/kernel/trace/trace_boot.c b/kernel/trace/trace_boot.c index a29ef23ffb47..c21d5f3956ad 100644 --- a/kernel/trace/trace_boot.c +++ b/kernel/trace/trace_boot.c | |||
| @@ -41,14 +41,12 @@ void disable_boot_trace(void) | |||
| 41 | 41 | ||
| 42 | static int boot_trace_init(struct trace_array *tr) | 42 | static int boot_trace_init(struct trace_array *tr) |
| 43 | { | 43 | { |
| 44 | int cpu; | ||
| 45 | boot_trace = tr; | 44 | boot_trace = tr; |
| 46 | 45 | ||
| 47 | if (!tr) | 46 | if (!tr) |
| 48 | return 0; | 47 | return 0; |
| 49 | 48 | ||
| 50 | for_each_cpu(cpu, cpu_possible_mask) | 49 | tracing_reset_online_cpus(tr); |
| 51 | tracing_reset(tr, cpu); | ||
| 52 | 50 | ||
| 53 | tracing_sched_switch_assign_trace(tr); | 51 | tracing_sched_switch_assign_trace(tr); |
| 54 | return 0; | 52 | return 0; |
| @@ -131,7 +129,9 @@ struct tracer boot_tracer __read_mostly = | |||
| 131 | 129 | ||
| 132 | void trace_boot_call(struct boot_trace_call *bt, initcall_t fn) | 130 | void trace_boot_call(struct boot_trace_call *bt, initcall_t fn) |
| 133 | { | 131 | { |
| 132 | struct ftrace_event_call *call = &event_boot_call; | ||
| 134 | struct ring_buffer_event *event; | 133 | struct ring_buffer_event *event; |
| 134 | struct ring_buffer *buffer; | ||
| 135 | struct trace_boot_call *entry; | 135 | struct trace_boot_call *entry; |
| 136 | struct trace_array *tr = boot_trace; | 136 | struct trace_array *tr = boot_trace; |
| 137 | 137 | ||
| @@ -144,20 +144,24 @@ void trace_boot_call(struct boot_trace_call *bt, initcall_t fn) | |||
| 144 | sprint_symbol(bt->func, (unsigned long)fn); | 144 | sprint_symbol(bt->func, (unsigned long)fn); |
| 145 | preempt_disable(); | 145 | preempt_disable(); |
| 146 | 146 | ||
| 147 | event = trace_buffer_lock_reserve(tr, TRACE_BOOT_CALL, | 147 | buffer = tr->buffer; |
| 148 | event = trace_buffer_lock_reserve(buffer, TRACE_BOOT_CALL, | ||
| 148 | sizeof(*entry), 0, 0); | 149 | sizeof(*entry), 0, 0); |
| 149 | if (!event) | 150 | if (!event) |
| 150 | goto out; | 151 | goto out; |
| 151 | entry = ring_buffer_event_data(event); | 152 | entry = ring_buffer_event_data(event); |
| 152 | entry->boot_call = *bt; | 153 | entry->boot_call = *bt; |
| 153 | trace_buffer_unlock_commit(tr, event, 0, 0); | 154 | if (!filter_check_discard(call, entry, buffer, event)) |
| 155 | trace_buffer_unlock_commit(buffer, event, 0, 0); | ||
| 154 | out: | 156 | out: |
| 155 | preempt_enable(); | 157 | preempt_enable(); |
| 156 | } | 158 | } |
| 157 | 159 | ||
| 158 | void trace_boot_ret(struct boot_trace_ret *bt, initcall_t fn) | 160 | void trace_boot_ret(struct boot_trace_ret *bt, initcall_t fn) |
| 159 | { | 161 | { |
| 162 | struct ftrace_event_call *call = &event_boot_ret; | ||
| 160 | struct ring_buffer_event *event; | 163 | struct ring_buffer_event *event; |
| 164 | struct ring_buffer *buffer; | ||
| 161 | struct trace_boot_ret *entry; | 165 | struct trace_boot_ret *entry; |
| 162 | struct trace_array *tr = boot_trace; | 166 | struct trace_array *tr = boot_trace; |
| 163 | 167 | ||
| @@ -167,13 +171,15 @@ void trace_boot_ret(struct boot_trace_ret *bt, initcall_t fn) | |||
| 167 | sprint_symbol(bt->func, (unsigned long)fn); | 171 | sprint_symbol(bt->func, (unsigned long)fn); |
| 168 | preempt_disable(); | 172 | preempt_disable(); |
| 169 | 173 | ||
| 170 | event = trace_buffer_lock_reserve(tr, TRACE_BOOT_RET, | 174 | buffer = tr->buffer; |
| 175 | event = trace_buffer_lock_reserve(buffer, TRACE_BOOT_RET, | ||
| 171 | sizeof(*entry), 0, 0); | 176 | sizeof(*entry), 0, 0); |
| 172 | if (!event) | 177 | if (!event) |
| 173 | goto out; | 178 | goto out; |
| 174 | entry = ring_buffer_event_data(event); | 179 | entry = ring_buffer_event_data(event); |
| 175 | entry->boot_ret = *bt; | 180 | entry->boot_ret = *bt; |
| 176 | trace_buffer_unlock_commit(tr, event, 0, 0); | 181 | if (!filter_check_discard(call, entry, buffer, event)) |
| 182 | trace_buffer_unlock_commit(buffer, event, 0, 0); | ||
| 177 | out: | 183 | out: |
| 178 | preempt_enable(); | 184 | preempt_enable(); |
| 179 | } | 185 | } |
diff --git a/kernel/trace/trace_clock.c b/kernel/trace/trace_clock.c index b588fd81f7f9..20c5f92e28a8 100644 --- a/kernel/trace/trace_clock.c +++ b/kernel/trace/trace_clock.c | |||
| @@ -66,10 +66,14 @@ u64 notrace trace_clock(void) | |||
| 66 | * Used by plugins that need globally coherent timestamps. | 66 | * Used by plugins that need globally coherent timestamps. |
| 67 | */ | 67 | */ |
| 68 | 68 | ||
| 69 | static u64 prev_trace_clock_time; | 69 | /* keep prev_time and lock in the same cacheline. */ |
| 70 | 70 | static struct { | |
| 71 | static raw_spinlock_t trace_clock_lock ____cacheline_aligned_in_smp = | 71 | u64 prev_time; |
| 72 | (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED; | 72 | raw_spinlock_t lock; |
| 73 | } trace_clock_struct ____cacheline_aligned_in_smp = | ||
| 74 | { | ||
| 75 | .lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED, | ||
| 76 | }; | ||
| 73 | 77 | ||
| 74 | u64 notrace trace_clock_global(void) | 78 | u64 notrace trace_clock_global(void) |
| 75 | { | 79 | { |
| @@ -88,19 +92,19 @@ u64 notrace trace_clock_global(void) | |||
| 88 | if (unlikely(in_nmi())) | 92 | if (unlikely(in_nmi())) |
| 89 | goto out; | 93 | goto out; |
| 90 | 94 | ||
| 91 | __raw_spin_lock(&trace_clock_lock); | 95 | __raw_spin_lock(&trace_clock_struct.lock); |
| 92 | 96 | ||
| 93 | /* | 97 | /* |
| 94 | * TODO: if this happens often then maybe we should reset | 98 | * TODO: if this happens often then maybe we should reset |
| 95 | * my_scd->clock to prev_trace_clock_time+1, to make sure | 99 | * my_scd->clock to prev_time+1, to make sure |
| 96 | * we start ticking with the local clock from now on? | 100 | * we start ticking with the local clock from now on? |
| 97 | */ | 101 | */ |
| 98 | if ((s64)(now - prev_trace_clock_time) < 0) | 102 | if ((s64)(now - trace_clock_struct.prev_time) < 0) |
| 99 | now = prev_trace_clock_time + 1; | 103 | now = trace_clock_struct.prev_time + 1; |
| 100 | 104 | ||
| 101 | prev_trace_clock_time = now; | 105 | trace_clock_struct.prev_time = now; |
| 102 | 106 | ||
| 103 | __raw_spin_unlock(&trace_clock_lock); | 107 | __raw_spin_unlock(&trace_clock_struct.lock); |
| 104 | 108 | ||
| 105 | out: | 109 | out: |
| 106 | raw_local_irq_restore(flags); | 110 | raw_local_irq_restore(flags); |
diff --git a/kernel/trace/trace_entries.h b/kernel/trace/trace_entries.h new file mode 100644 index 000000000000..ead3d724599d --- /dev/null +++ b/kernel/trace/trace_entries.h | |||
| @@ -0,0 +1,366 @@ | |||
| 1 | /* | ||
| 2 | * This file defines the trace event structures that go into the ring | ||
| 3 | * buffer directly. They are created via macros so that changes for them | ||
| 4 | * appear in the format file. Using macros will automate this process. | ||
| 5 | * | ||
| 6 | * The macro used to create a ftrace data structure is: | ||
| 7 | * | ||
| 8 | * FTRACE_ENTRY( name, struct_name, id, structure, print ) | ||
| 9 | * | ||
| 10 | * @name: the name used the event name, as well as the name of | ||
| 11 | * the directory that holds the format file. | ||
| 12 | * | ||
| 13 | * @struct_name: the name of the structure that is created. | ||
| 14 | * | ||
| 15 | * @id: The event identifier that is used to detect what event | ||
| 16 | * this is from the ring buffer. | ||
| 17 | * | ||
| 18 | * @structure: the structure layout | ||
| 19 | * | ||
| 20 | * - __field( type, item ) | ||
| 21 | * This is equivalent to declaring | ||
| 22 | * type item; | ||
| 23 | * in the structure. | ||
| 24 | * - __array( type, item, size ) | ||
| 25 | * This is equivalent to declaring | ||
| 26 | * type item[size]; | ||
| 27 | * in the structure. | ||
| 28 | * | ||
| 29 | * * for structures within structures, the format of the internal | ||
| 30 | * structure is layed out. This allows the internal structure | ||
| 31 | * to be deciphered for the format file. Although these macros | ||
| 32 | * may become out of sync with the internal structure, they | ||
| 33 | * will create a compile error if it happens. Since the | ||
| 34 | * internel structures are just tracing helpers, this is not | ||
| 35 | * an issue. | ||
| 36 | * | ||
| 37 | * When an internal structure is used, it should use: | ||
| 38 | * | ||
| 39 | * __field_struct( type, item ) | ||
| 40 | * | ||
| 41 | * instead of __field. This will prevent it from being shown in | ||
| 42 | * the output file. The fields in the structure should use. | ||
| 43 | * | ||
| 44 | * __field_desc( type, container, item ) | ||
| 45 | * __array_desc( type, container, item, len ) | ||
| 46 | * | ||
| 47 | * type, item and len are the same as __field and __array, but | ||
| 48 | * container is added. This is the name of the item in | ||
| 49 | * __field_struct that this is describing. | ||
| 50 | * | ||
| 51 | * | ||
| 52 | * @print: the print format shown to users in the format file. | ||
| 53 | */ | ||
| 54 | |||
| 55 | /* | ||
| 56 | * Function trace entry - function address and parent function addres: | ||
| 57 | */ | ||
| 58 | FTRACE_ENTRY(function, ftrace_entry, | ||
| 59 | |||
| 60 | TRACE_FN, | ||
| 61 | |||
| 62 | F_STRUCT( | ||
| 63 | __field( unsigned long, ip ) | ||
| 64 | __field( unsigned long, parent_ip ) | ||
| 65 | ), | ||
| 66 | |||
| 67 | F_printk(" %lx <-- %lx", __entry->ip, __entry->parent_ip) | ||
| 68 | ); | ||
| 69 | |||
| 70 | /* Function call entry */ | ||
| 71 | FTRACE_ENTRY(funcgraph_entry, ftrace_graph_ent_entry, | ||
| 72 | |||
| 73 | TRACE_GRAPH_ENT, | ||
| 74 | |||
| 75 | F_STRUCT( | ||
| 76 | __field_struct( struct ftrace_graph_ent, graph_ent ) | ||
| 77 | __field_desc( unsigned long, graph_ent, func ) | ||
| 78 | __field_desc( int, graph_ent, depth ) | ||
| 79 | ), | ||
| 80 | |||
| 81 | F_printk("--> %lx (%d)", __entry->func, __entry->depth) | ||
| 82 | ); | ||
| 83 | |||
| 84 | /* Function return entry */ | ||
| 85 | FTRACE_ENTRY(funcgraph_exit, ftrace_graph_ret_entry, | ||
| 86 | |||
| 87 | TRACE_GRAPH_RET, | ||
| 88 | |||
| 89 | F_STRUCT( | ||
| 90 | __field_struct( struct ftrace_graph_ret, ret ) | ||
| 91 | __field_desc( unsigned long, ret, func ) | ||
| 92 | __field_desc( unsigned long long, ret, calltime) | ||
| 93 | __field_desc( unsigned long long, ret, rettime ) | ||
| 94 | __field_desc( unsigned long, ret, overrun ) | ||
| 95 | __field_desc( int, ret, depth ) | ||
| 96 | ), | ||
| 97 | |||
| 98 | F_printk("<-- %lx (%d) (start: %llx end: %llx) over: %d", | ||
| 99 | __entry->func, __entry->depth, | ||
| 100 | __entry->calltime, __entry->rettime, | ||
| 101 | __entry->depth) | ||
| 102 | ); | ||
| 103 | |||
| 104 | /* | ||
| 105 | * Context switch trace entry - which task (and prio) we switched from/to: | ||
| 106 | * | ||
| 107 | * This is used for both wakeup and context switches. We only want | ||
| 108 | * to create one structure, but we need two outputs for it. | ||
| 109 | */ | ||
| 110 | #define FTRACE_CTX_FIELDS \ | ||
| 111 | __field( unsigned int, prev_pid ) \ | ||
| 112 | __field( unsigned char, prev_prio ) \ | ||
| 113 | __field( unsigned char, prev_state ) \ | ||
| 114 | __field( unsigned int, next_pid ) \ | ||
| 115 | __field( unsigned char, next_prio ) \ | ||
| 116 | __field( unsigned char, next_state ) \ | ||
| 117 | __field( unsigned int, next_cpu ) | ||
| 118 | |||
| 119 | FTRACE_ENTRY(context_switch, ctx_switch_entry, | ||
| 120 | |||
| 121 | TRACE_CTX, | ||
| 122 | |||
| 123 | F_STRUCT( | ||
| 124 | FTRACE_CTX_FIELDS | ||
| 125 | ), | ||
| 126 | |||
| 127 | F_printk("%u:%u:%u ==> %u:%u:%u [%03u]", | ||
| 128 | __entry->prev_pid, __entry->prev_prio, __entry->prev_state, | ||
| 129 | __entry->next_pid, __entry->next_prio, __entry->next_state, | ||
| 130 | __entry->next_cpu | ||
| 131 | ) | ||
| 132 | ); | ||
| 133 | |||
| 134 | /* | ||
| 135 | * FTRACE_ENTRY_DUP only creates the format file, it will not | ||
| 136 | * create another structure. | ||
| 137 | */ | ||
| 138 | FTRACE_ENTRY_DUP(wakeup, ctx_switch_entry, | ||
| 139 | |||
| 140 | TRACE_WAKE, | ||
| 141 | |||
| 142 | F_STRUCT( | ||
| 143 | FTRACE_CTX_FIELDS | ||
| 144 | ), | ||
| 145 | |||
| 146 | F_printk("%u:%u:%u ==+ %u:%u:%u [%03u]", | ||
| 147 | __entry->prev_pid, __entry->prev_prio, __entry->prev_state, | ||
| 148 | __entry->next_pid, __entry->next_prio, __entry->next_state, | ||
| 149 | __entry->next_cpu | ||
| 150 | ) | ||
| 151 | ); | ||
| 152 | |||
| 153 | /* | ||
| 154 | * Special (free-form) trace entry: | ||
| 155 | */ | ||
| 156 | FTRACE_ENTRY(special, special_entry, | ||
| 157 | |||
| 158 | TRACE_SPECIAL, | ||
| 159 | |||
| 160 | F_STRUCT( | ||
| 161 | __field( unsigned long, arg1 ) | ||
| 162 | __field( unsigned long, arg2 ) | ||
| 163 | __field( unsigned long, arg3 ) | ||
| 164 | ), | ||
| 165 | |||
| 166 | F_printk("(%08lx) (%08lx) (%08lx)", | ||
| 167 | __entry->arg1, __entry->arg2, __entry->arg3) | ||
| 168 | ); | ||
| 169 | |||
| 170 | /* | ||
| 171 | * Stack-trace entry: | ||
| 172 | */ | ||
| 173 | |||
| 174 | #define FTRACE_STACK_ENTRIES 8 | ||
| 175 | |||
| 176 | FTRACE_ENTRY(kernel_stack, stack_entry, | ||
| 177 | |||
| 178 | TRACE_STACK, | ||
| 179 | |||
| 180 | F_STRUCT( | ||
| 181 | __array( unsigned long, caller, FTRACE_STACK_ENTRIES ) | ||
| 182 | ), | ||
| 183 | |||
| 184 | F_printk("\t=> (%08lx)\n\t=> (%08lx)\n\t=> (%08lx)\n\t=> (%08lx)\n" | ||
| 185 | "\t=> (%08lx)\n\t=> (%08lx)\n\t=> (%08lx)\n\t=> (%08lx)\n", | ||
| 186 | __entry->caller[0], __entry->caller[1], __entry->caller[2], | ||
| 187 | __entry->caller[3], __entry->caller[4], __entry->caller[5], | ||
| 188 | __entry->caller[6], __entry->caller[7]) | ||
| 189 | ); | ||
| 190 | |||
| 191 | FTRACE_ENTRY(user_stack, userstack_entry, | ||
| 192 | |||
| 193 | TRACE_USER_STACK, | ||
| 194 | |||
| 195 | F_STRUCT( | ||
| 196 | __field( unsigned int, tgid ) | ||
| 197 | __array( unsigned long, caller, FTRACE_STACK_ENTRIES ) | ||
| 198 | ), | ||
| 199 | |||
| 200 | F_printk("\t=> (%08lx)\n\t=> (%08lx)\n\t=> (%08lx)\n\t=> (%08lx)\n" | ||
| 201 | "\t=> (%08lx)\n\t=> (%08lx)\n\t=> (%08lx)\n\t=> (%08lx)\n", | ||
| 202 | __entry->caller[0], __entry->caller[1], __entry->caller[2], | ||
| 203 | __entry->caller[3], __entry->caller[4], __entry->caller[5], | ||
| 204 | __entry->caller[6], __entry->caller[7]) | ||
| 205 | ); | ||
| 206 | |||
| 207 | /* | ||
| 208 | * trace_printk entry: | ||
| 209 | */ | ||
| 210 | FTRACE_ENTRY(bprint, bprint_entry, | ||
| 211 | |||
| 212 | TRACE_BPRINT, | ||
| 213 | |||
| 214 | F_STRUCT( | ||
| 215 | __field( unsigned long, ip ) | ||
| 216 | __field( const char *, fmt ) | ||
| 217 | __dynamic_array( u32, buf ) | ||
| 218 | ), | ||
| 219 | |||
| 220 | F_printk("%08lx fmt:%p", | ||
| 221 | __entry->ip, __entry->fmt) | ||
| 222 | ); | ||
| 223 | |||
| 224 | FTRACE_ENTRY(print, print_entry, | ||
| 225 | |||
| 226 | TRACE_PRINT, | ||
| 227 | |||
| 228 | F_STRUCT( | ||
| 229 | __field( unsigned long, ip ) | ||
| 230 | __dynamic_array( char, buf ) | ||
| 231 | ), | ||
| 232 | |||
| 233 | F_printk("%08lx %s", | ||
| 234 | __entry->ip, __entry->buf) | ||
| 235 | ); | ||
| 236 | |||
| 237 | FTRACE_ENTRY(mmiotrace_rw, trace_mmiotrace_rw, | ||
| 238 | |||
| 239 | TRACE_MMIO_RW, | ||
| 240 | |||
| 241 | F_STRUCT( | ||
| 242 | __field_struct( struct mmiotrace_rw, rw ) | ||
| 243 | __field_desc( resource_size_t, rw, phys ) | ||
| 244 | __field_desc( unsigned long, rw, value ) | ||
| 245 | __field_desc( unsigned long, rw, pc ) | ||
| 246 | __field_desc( int, rw, map_id ) | ||
| 247 | __field_desc( unsigned char, rw, opcode ) | ||
| 248 | __field_desc( unsigned char, rw, width ) | ||
| 249 | ), | ||
| 250 | |||
| 251 | F_printk("%lx %lx %lx %d %x %x", | ||
| 252 | (unsigned long)__entry->phys, __entry->value, __entry->pc, | ||
| 253 | __entry->map_id, __entry->opcode, __entry->width) | ||
| 254 | ); | ||
| 255 | |||
| 256 | FTRACE_ENTRY(mmiotrace_map, trace_mmiotrace_map, | ||
| 257 | |||
| 258 | TRACE_MMIO_MAP, | ||
| 259 | |||
| 260 | F_STRUCT( | ||
| 261 | __field_struct( struct mmiotrace_map, map ) | ||
| 262 | __field_desc( resource_size_t, map, phys ) | ||
| 263 | __field_desc( unsigned long, map, virt ) | ||
| 264 | __field_desc( unsigned long, map, len ) | ||
| 265 | __field_desc( int, map, map_id ) | ||
| 266 | __field_desc( unsigned char, map, opcode ) | ||
| 267 | ), | ||
| 268 | |||
| 269 | F_printk("%lx %lx %lx %d %x", | ||
| 270 | (unsigned long)__entry->phys, __entry->virt, __entry->len, | ||
| 271 | __entry->map_id, __entry->opcode) | ||
| 272 | ); | ||
| 273 | |||
| 274 | FTRACE_ENTRY(boot_call, trace_boot_call, | ||
| 275 | |||
| 276 | TRACE_BOOT_CALL, | ||
| 277 | |||
| 278 | F_STRUCT( | ||
| 279 | __field_struct( struct boot_trace_call, boot_call ) | ||
| 280 | __field_desc( pid_t, boot_call, caller ) | ||
| 281 | __array_desc( char, boot_call, func, KSYM_SYMBOL_LEN) | ||
| 282 | ), | ||
| 283 | |||
| 284 | F_printk("%d %s", __entry->caller, __entry->func) | ||
| 285 | ); | ||
| 286 | |||
| 287 | FTRACE_ENTRY(boot_ret, trace_boot_ret, | ||
| 288 | |||
| 289 | TRACE_BOOT_RET, | ||
| 290 | |||
| 291 | F_STRUCT( | ||
| 292 | __field_struct( struct boot_trace_ret, boot_ret ) | ||
| 293 | __array_desc( char, boot_ret, func, KSYM_SYMBOL_LEN) | ||
| 294 | __field_desc( int, boot_ret, result ) | ||
| 295 | __field_desc( unsigned long, boot_ret, duration ) | ||
| 296 | ), | ||
| 297 | |||
| 298 | F_printk("%s %d %lx", | ||
| 299 | __entry->func, __entry->result, __entry->duration) | ||
| 300 | ); | ||
| 301 | |||
| 302 | #define TRACE_FUNC_SIZE 30 | ||
| 303 | #define TRACE_FILE_SIZE 20 | ||
| 304 | |||
| 305 | FTRACE_ENTRY(branch, trace_branch, | ||
| 306 | |||
| 307 | TRACE_BRANCH, | ||
| 308 | |||
| 309 | F_STRUCT( | ||
| 310 | __field( unsigned int, line ) | ||
| 311 | __array( char, func, TRACE_FUNC_SIZE+1 ) | ||
| 312 | __array( char, file, TRACE_FILE_SIZE+1 ) | ||
| 313 | __field( char, correct ) | ||
| 314 | ), | ||
| 315 | |||
| 316 | F_printk("%u:%s:%s (%u)", | ||
| 317 | __entry->line, | ||
| 318 | __entry->func, __entry->file, __entry->correct) | ||
| 319 | ); | ||
| 320 | |||
| 321 | FTRACE_ENTRY(hw_branch, hw_branch_entry, | ||
| 322 | |||
| 323 | TRACE_HW_BRANCHES, | ||
| 324 | |||
| 325 | F_STRUCT( | ||
| 326 | __field( u64, from ) | ||
| 327 | __field( u64, to ) | ||
| 328 | ), | ||
| 329 | |||
| 330 | F_printk("from: %llx to: %llx", __entry->from, __entry->to) | ||
| 331 | ); | ||
| 332 | |||
| 333 | FTRACE_ENTRY(kmem_alloc, kmemtrace_alloc_entry, | ||
| 334 | |||
| 335 | TRACE_KMEM_ALLOC, | ||
| 336 | |||
| 337 | F_STRUCT( | ||
| 338 | __field( enum kmemtrace_type_id, type_id ) | ||
| 339 | __field( unsigned long, call_site ) | ||
| 340 | __field( const void *, ptr ) | ||
| 341 | __field( size_t, bytes_req ) | ||
| 342 | __field( size_t, bytes_alloc ) | ||
| 343 | __field( gfp_t, gfp_flags ) | ||
| 344 | __field( int, node ) | ||
| 345 | ), | ||
| 346 | |||
| 347 | F_printk("type:%u call_site:%lx ptr:%p req:%zi alloc:%zi" | ||
| 348 | " flags:%x node:%d", | ||
| 349 | __entry->type_id, __entry->call_site, __entry->ptr, | ||
| 350 | __entry->bytes_req, __entry->bytes_alloc, | ||
| 351 | __entry->gfp_flags, __entry->node) | ||
| 352 | ); | ||
| 353 | |||
| 354 | FTRACE_ENTRY(kmem_free, kmemtrace_free_entry, | ||
| 355 | |||
| 356 | TRACE_KMEM_FREE, | ||
| 357 | |||
| 358 | F_STRUCT( | ||
| 359 | __field( enum kmemtrace_type_id, type_id ) | ||
| 360 | __field( unsigned long, call_site ) | ||
| 361 | __field( const void *, ptr ) | ||
| 362 | ), | ||
| 363 | |||
| 364 | F_printk("type:%u call_site:%lx ptr:%p", | ||
| 365 | __entry->type_id, __entry->call_site, __entry->ptr) | ||
| 366 | ); | ||
diff --git a/kernel/trace/trace_event_profile.c b/kernel/trace/trace_event_profile.c index 5b5895afecfe..dd44b8768867 100644 --- a/kernel/trace/trace_event_profile.c +++ b/kernel/trace/trace_event_profile.c | |||
| @@ -5,8 +5,60 @@ | |||
| 5 | * | 5 | * |
| 6 | */ | 6 | */ |
| 7 | 7 | ||
| 8 | #include <linux/module.h> | ||
| 8 | #include "trace.h" | 9 | #include "trace.h" |
| 9 | 10 | ||
| 11 | /* | ||
| 12 | * We can't use a size but a type in alloc_percpu() | ||
| 13 | * So let's create a dummy type that matches the desired size | ||
| 14 | */ | ||
| 15 | typedef struct {char buf[FTRACE_MAX_PROFILE_SIZE];} profile_buf_t; | ||
| 16 | |||
| 17 | char *trace_profile_buf; | ||
| 18 | EXPORT_SYMBOL_GPL(trace_profile_buf); | ||
| 19 | |||
| 20 | char *trace_profile_buf_nmi; | ||
| 21 | EXPORT_SYMBOL_GPL(trace_profile_buf_nmi); | ||
| 22 | |||
| 23 | /* Count the events in use (per event id, not per instance) */ | ||
| 24 | static int total_profile_count; | ||
| 25 | |||
| 26 | static int ftrace_profile_enable_event(struct ftrace_event_call *event) | ||
| 27 | { | ||
| 28 | char *buf; | ||
| 29 | int ret = -ENOMEM; | ||
| 30 | |||
| 31 | if (atomic_inc_return(&event->profile_count)) | ||
| 32 | return 0; | ||
| 33 | |||
| 34 | if (!total_profile_count++) { | ||
| 35 | buf = (char *)alloc_percpu(profile_buf_t); | ||
| 36 | if (!buf) | ||
| 37 | goto fail_buf; | ||
| 38 | |||
| 39 | rcu_assign_pointer(trace_profile_buf, buf); | ||
| 40 | |||
| 41 | buf = (char *)alloc_percpu(profile_buf_t); | ||
| 42 | if (!buf) | ||
| 43 | goto fail_buf_nmi; | ||
| 44 | |||
| 45 | rcu_assign_pointer(trace_profile_buf_nmi, buf); | ||
| 46 | } | ||
| 47 | |||
| 48 | ret = event->profile_enable(); | ||
| 49 | if (!ret) | ||
| 50 | return 0; | ||
| 51 | |||
| 52 | kfree(trace_profile_buf_nmi); | ||
| 53 | fail_buf_nmi: | ||
| 54 | kfree(trace_profile_buf); | ||
| 55 | fail_buf: | ||
| 56 | total_profile_count--; | ||
| 57 | atomic_dec(&event->profile_count); | ||
| 58 | |||
| 59 | return ret; | ||
| 60 | } | ||
| 61 | |||
| 10 | int ftrace_profile_enable(int event_id) | 62 | int ftrace_profile_enable(int event_id) |
| 11 | { | 63 | { |
| 12 | struct ftrace_event_call *event; | 64 | struct ftrace_event_call *event; |
| @@ -14,8 +66,9 @@ int ftrace_profile_enable(int event_id) | |||
| 14 | 66 | ||
| 15 | mutex_lock(&event_mutex); | 67 | mutex_lock(&event_mutex); |
| 16 | list_for_each_entry(event, &ftrace_events, list) { | 68 | list_for_each_entry(event, &ftrace_events, list) { |
| 17 | if (event->id == event_id) { | 69 | if (event->id == event_id && event->profile_enable && |
| 18 | ret = event->profile_enable(event); | 70 | try_module_get(event->mod)) { |
| 71 | ret = ftrace_profile_enable_event(event); | ||
| 19 | break; | 72 | break; |
| 20 | } | 73 | } |
| 21 | } | 74 | } |
| @@ -24,6 +77,33 @@ int ftrace_profile_enable(int event_id) | |||
| 24 | return ret; | 77 | return ret; |
| 25 | } | 78 | } |
| 26 | 79 | ||
| 80 | static void ftrace_profile_disable_event(struct ftrace_event_call *event) | ||
| 81 | { | ||
| 82 | char *buf, *nmi_buf; | ||
| 83 | |||
| 84 | if (!atomic_add_negative(-1, &event->profile_count)) | ||
| 85 | return; | ||
| 86 | |||
| 87 | event->profile_disable(); | ||
| 88 | |||
| 89 | if (!--total_profile_count) { | ||
| 90 | buf = trace_profile_buf; | ||
| 91 | rcu_assign_pointer(trace_profile_buf, NULL); | ||
| 92 | |||
| 93 | nmi_buf = trace_profile_buf_nmi; | ||
| 94 | rcu_assign_pointer(trace_profile_buf_nmi, NULL); | ||
| 95 | |||
| 96 | /* | ||
| 97 | * Ensure every events in profiling have finished before | ||
| 98 | * releasing the buffers | ||
| 99 | */ | ||
| 100 | synchronize_sched(); | ||
| 101 | |||
| 102 | free_percpu(buf); | ||
| 103 | free_percpu(nmi_buf); | ||
| 104 | } | ||
| 105 | } | ||
| 106 | |||
| 27 | void ftrace_profile_disable(int event_id) | 107 | void ftrace_profile_disable(int event_id) |
| 28 | { | 108 | { |
| 29 | struct ftrace_event_call *event; | 109 | struct ftrace_event_call *event; |
| @@ -31,7 +111,8 @@ void ftrace_profile_disable(int event_id) | |||
| 31 | mutex_lock(&event_mutex); | 111 | mutex_lock(&event_mutex); |
| 32 | list_for_each_entry(event, &ftrace_events, list) { | 112 | list_for_each_entry(event, &ftrace_events, list) { |
| 33 | if (event->id == event_id) { | 113 | if (event->id == event_id) { |
| 34 | event->profile_disable(event); | 114 | ftrace_profile_disable_event(event); |
| 115 | module_put(event->mod); | ||
| 35 | break; | 116 | break; |
| 36 | } | 117 | } |
| 37 | } | 118 | } |
diff --git a/kernel/trace/trace_event_types.h b/kernel/trace/trace_event_types.h deleted file mode 100644 index 5e32e375134d..000000000000 --- a/kernel/trace/trace_event_types.h +++ /dev/null | |||
| @@ -1,175 +0,0 @@ | |||
| 1 | #undef TRACE_SYSTEM | ||
| 2 | #define TRACE_SYSTEM ftrace | ||
| 3 | |||
| 4 | /* | ||
| 5 | * We cheat and use the proto type field as the ID | ||
| 6 | * and args as the entry type (minus 'struct') | ||
| 7 | */ | ||
| 8 | TRACE_EVENT_FORMAT(function, TRACE_FN, ftrace_entry, ignore, | ||
| 9 | TRACE_STRUCT( | ||
| 10 | TRACE_FIELD(unsigned long, ip, ip) | ||
| 11 | TRACE_FIELD(unsigned long, parent_ip, parent_ip) | ||
| 12 | ), | ||
| 13 | TP_RAW_FMT(" %lx <-- %lx") | ||
| 14 | ); | ||
| 15 | |||
| 16 | TRACE_EVENT_FORMAT(funcgraph_entry, TRACE_GRAPH_ENT, | ||
| 17 | ftrace_graph_ent_entry, ignore, | ||
| 18 | TRACE_STRUCT( | ||
| 19 | TRACE_FIELD(unsigned long, graph_ent.func, func) | ||
| 20 | TRACE_FIELD(int, graph_ent.depth, depth) | ||
| 21 | ), | ||
| 22 | TP_RAW_FMT("--> %lx (%d)") | ||
| 23 | ); | ||
| 24 | |||
| 25 | TRACE_EVENT_FORMAT(funcgraph_exit, TRACE_GRAPH_RET, | ||
| 26 | ftrace_graph_ret_entry, ignore, | ||
| 27 | TRACE_STRUCT( | ||
| 28 | TRACE_FIELD(unsigned long, ret.func, func) | ||
| 29 | TRACE_FIELD(int, ret.depth, depth) | ||
| 30 | ), | ||
| 31 | TP_RAW_FMT("<-- %lx (%d)") | ||
| 32 | ); | ||
| 33 | |||
| 34 | TRACE_EVENT_FORMAT(wakeup, TRACE_WAKE, ctx_switch_entry, ignore, | ||
| 35 | TRACE_STRUCT( | ||
| 36 | TRACE_FIELD(unsigned int, prev_pid, prev_pid) | ||
| 37 | TRACE_FIELD(unsigned char, prev_prio, prev_prio) | ||
| 38 | TRACE_FIELD(unsigned char, prev_state, prev_state) | ||
| 39 | TRACE_FIELD(unsigned int, next_pid, next_pid) | ||
| 40 | TRACE_FIELD(unsigned char, next_prio, next_prio) | ||
| 41 | TRACE_FIELD(unsigned char, next_state, next_state) | ||
| 42 | TRACE_FIELD(unsigned int, next_cpu, next_cpu) | ||
| 43 | ), | ||
| 44 | TP_RAW_FMT("%u:%u:%u ==+ %u:%u:%u [%03u]") | ||
| 45 | ); | ||
| 46 | |||
| 47 | TRACE_EVENT_FORMAT(context_switch, TRACE_CTX, ctx_switch_entry, ignore, | ||
| 48 | TRACE_STRUCT( | ||
| 49 | TRACE_FIELD(unsigned int, prev_pid, prev_pid) | ||
| 50 | TRACE_FIELD(unsigned char, prev_prio, prev_prio) | ||
| 51 | TRACE_FIELD(unsigned char, prev_state, prev_state) | ||
| 52 | TRACE_FIELD(unsigned int, next_pid, next_pid) | ||
| 53 | TRACE_FIELD(unsigned char, next_prio, next_prio) | ||
| 54 | TRACE_FIELD(unsigned char, next_state, next_state) | ||
| 55 | TRACE_FIELD(unsigned int, next_cpu, next_cpu) | ||
| 56 | ), | ||
| 57 | TP_RAW_FMT("%u:%u:%u ==+ %u:%u:%u [%03u]") | ||
| 58 | ); | ||
| 59 | |||
| 60 | TRACE_EVENT_FORMAT_NOFILTER(special, TRACE_SPECIAL, special_entry, ignore, | ||
| 61 | TRACE_STRUCT( | ||
| 62 | TRACE_FIELD(unsigned long, arg1, arg1) | ||
| 63 | TRACE_FIELD(unsigned long, arg2, arg2) | ||
| 64 | TRACE_FIELD(unsigned long, arg3, arg3) | ||
| 65 | ), | ||
| 66 | TP_RAW_FMT("(%08lx) (%08lx) (%08lx)") | ||
| 67 | ); | ||
| 68 | |||
| 69 | /* | ||
| 70 | * Stack-trace entry: | ||
| 71 | */ | ||
| 72 | |||
| 73 | /* #define FTRACE_STACK_ENTRIES 8 */ | ||
| 74 | |||
| 75 | TRACE_EVENT_FORMAT(kernel_stack, TRACE_STACK, stack_entry, ignore, | ||
| 76 | TRACE_STRUCT( | ||
| 77 | TRACE_FIELD(unsigned long, caller[0], stack0) | ||
| 78 | TRACE_FIELD(unsigned long, caller[1], stack1) | ||
| 79 | TRACE_FIELD(unsigned long, caller[2], stack2) | ||
| 80 | TRACE_FIELD(unsigned long, caller[3], stack3) | ||
| 81 | TRACE_FIELD(unsigned long, caller[4], stack4) | ||
| 82 | TRACE_FIELD(unsigned long, caller[5], stack5) | ||
| 83 | TRACE_FIELD(unsigned long, caller[6], stack6) | ||
| 84 | TRACE_FIELD(unsigned long, caller[7], stack7) | ||
| 85 | ), | ||
| 86 | TP_RAW_FMT("\t=> (%08lx)\n\t=> (%08lx)\n\t=> (%08lx)\n\t=> (%08lx)\n" | ||
| 87 | "\t=> (%08lx)\n\t=> (%08lx)\n\t=> (%08lx)\n\t=> (%08lx)\n") | ||
| 88 | ); | ||
| 89 | |||
| 90 | TRACE_EVENT_FORMAT(user_stack, TRACE_USER_STACK, userstack_entry, ignore, | ||
| 91 | TRACE_STRUCT( | ||
| 92 | TRACE_FIELD(unsigned long, caller[0], stack0) | ||
| 93 | TRACE_FIELD(unsigned long, caller[1], stack1) | ||
| 94 | TRACE_FIELD(unsigned long, caller[2], stack2) | ||
| 95 | TRACE_FIELD(unsigned long, caller[3], stack3) | ||
| 96 | TRACE_FIELD(unsigned long, caller[4], stack4) | ||
| 97 | TRACE_FIELD(unsigned long, caller[5], stack5) | ||
| 98 | TRACE_FIELD(unsigned long, caller[6], stack6) | ||
| 99 | TRACE_FIELD(unsigned long, caller[7], stack7) | ||
| 100 | ), | ||
| 101 | TP_RAW_FMT("\t=> (%08lx)\n\t=> (%08lx)\n\t=> (%08lx)\n\t=> (%08lx)\n" | ||
| 102 | "\t=> (%08lx)\n\t=> (%08lx)\n\t=> (%08lx)\n\t=> (%08lx)\n") | ||
| 103 | ); | ||
| 104 | |||
| 105 | TRACE_EVENT_FORMAT(bprint, TRACE_BPRINT, bprint_entry, ignore, | ||
| 106 | TRACE_STRUCT( | ||
| 107 | TRACE_FIELD(unsigned long, ip, ip) | ||
| 108 | TRACE_FIELD(char *, fmt, fmt) | ||
| 109 | TRACE_FIELD_ZERO_CHAR(buf) | ||
| 110 | ), | ||
| 111 | TP_RAW_FMT("%08lx (%d) fmt:%p %s") | ||
| 112 | ); | ||
| 113 | |||
| 114 | TRACE_EVENT_FORMAT(print, TRACE_PRINT, print_entry, ignore, | ||
| 115 | TRACE_STRUCT( | ||
| 116 | TRACE_FIELD(unsigned long, ip, ip) | ||
| 117 | TRACE_FIELD_ZERO_CHAR(buf) | ||
| 118 | ), | ||
| 119 | TP_RAW_FMT("%08lx (%d) fmt:%p %s") | ||
| 120 | ); | ||
| 121 | |||
| 122 | TRACE_EVENT_FORMAT(branch, TRACE_BRANCH, trace_branch, ignore, | ||
| 123 | TRACE_STRUCT( | ||
| 124 | TRACE_FIELD(unsigned int, line, line) | ||
| 125 | TRACE_FIELD_SPECIAL(char func[TRACE_FUNC_SIZE+1], func, | ||
| 126 | TRACE_FUNC_SIZE+1, func) | ||
| 127 | TRACE_FIELD_SPECIAL(char file[TRACE_FUNC_SIZE+1], file, | ||
| 128 | TRACE_FUNC_SIZE+1, file) | ||
| 129 | TRACE_FIELD(char, correct, correct) | ||
| 130 | ), | ||
| 131 | TP_RAW_FMT("%u:%s:%s (%u)") | ||
| 132 | ); | ||
| 133 | |||
| 134 | TRACE_EVENT_FORMAT(hw_branch, TRACE_HW_BRANCHES, hw_branch_entry, ignore, | ||
| 135 | TRACE_STRUCT( | ||
| 136 | TRACE_FIELD(u64, from, from) | ||
| 137 | TRACE_FIELD(u64, to, to) | ||
| 138 | ), | ||
| 139 | TP_RAW_FMT("from: %llx to: %llx") | ||
| 140 | ); | ||
| 141 | |||
| 142 | TRACE_EVENT_FORMAT(power, TRACE_POWER, trace_power, ignore, | ||
| 143 | TRACE_STRUCT( | ||
| 144 | TRACE_FIELD_SIGN(ktime_t, state_data.stamp, stamp, 1) | ||
| 145 | TRACE_FIELD_SIGN(ktime_t, state_data.end, end, 1) | ||
| 146 | TRACE_FIELD(int, state_data.type, type) | ||
| 147 | TRACE_FIELD(int, state_data.state, state) | ||
| 148 | ), | ||
| 149 | TP_RAW_FMT("%llx->%llx type:%u state:%u") | ||
| 150 | ); | ||
| 151 | |||
| 152 | TRACE_EVENT_FORMAT(kmem_alloc, TRACE_KMEM_ALLOC, kmemtrace_alloc_entry, ignore, | ||
| 153 | TRACE_STRUCT( | ||
| 154 | TRACE_FIELD(enum kmemtrace_type_id, type_id, type_id) | ||
| 155 | TRACE_FIELD(unsigned long, call_site, call_site) | ||
| 156 | TRACE_FIELD(const void *, ptr, ptr) | ||
| 157 | TRACE_FIELD(size_t, bytes_req, bytes_req) | ||
| 158 | TRACE_FIELD(size_t, bytes_alloc, bytes_alloc) | ||
| 159 | TRACE_FIELD(gfp_t, gfp_flags, gfp_flags) | ||
| 160 | TRACE_FIELD(int, node, node) | ||
| 161 | ), | ||
| 162 | TP_RAW_FMT("type:%u call_site:%lx ptr:%p req:%lu alloc:%lu" | ||
| 163 | " flags:%x node:%d") | ||
| 164 | ); | ||
| 165 | |||
| 166 | TRACE_EVENT_FORMAT(kmem_free, TRACE_KMEM_FREE, kmemtrace_free_entry, ignore, | ||
| 167 | TRACE_STRUCT( | ||
| 168 | TRACE_FIELD(enum kmemtrace_type_id, type_id, type_id) | ||
| 169 | TRACE_FIELD(unsigned long, call_site, call_site) | ||
| 170 | TRACE_FIELD(const void *, ptr, ptr) | ||
| 171 | ), | ||
| 172 | TP_RAW_FMT("type:%u call_site:%lx ptr:%p") | ||
| 173 | ); | ||
| 174 | |||
| 175 | #undef TRACE_SYSTEM | ||
diff --git a/kernel/trace/trace_events.c b/kernel/trace/trace_events.c index 53c8fd376a88..6f03c8a1105e 100644 --- a/kernel/trace/trace_events.c +++ b/kernel/trace/trace_events.c | |||
| @@ -17,16 +17,20 @@ | |||
| 17 | #include <linux/ctype.h> | 17 | #include <linux/ctype.h> |
| 18 | #include <linux/delay.h> | 18 | #include <linux/delay.h> |
| 19 | 19 | ||
| 20 | #include <asm/setup.h> | ||
| 21 | |||
| 20 | #include "trace_output.h" | 22 | #include "trace_output.h" |
| 21 | 23 | ||
| 24 | #undef TRACE_SYSTEM | ||
| 22 | #define TRACE_SYSTEM "TRACE_SYSTEM" | 25 | #define TRACE_SYSTEM "TRACE_SYSTEM" |
| 23 | 26 | ||
| 24 | DEFINE_MUTEX(event_mutex); | 27 | DEFINE_MUTEX(event_mutex); |
| 25 | 28 | ||
| 26 | LIST_HEAD(ftrace_events); | 29 | LIST_HEAD(ftrace_events); |
| 27 | 30 | ||
| 28 | int trace_define_field(struct ftrace_event_call *call, char *type, | 31 | int trace_define_field(struct ftrace_event_call *call, const char *type, |
| 29 | char *name, int offset, int size, int is_signed) | 32 | const char *name, int offset, int size, int is_signed, |
| 33 | int filter_type) | ||
| 30 | { | 34 | { |
| 31 | struct ftrace_event_field *field; | 35 | struct ftrace_event_field *field; |
| 32 | 36 | ||
| @@ -42,9 +46,15 @@ int trace_define_field(struct ftrace_event_call *call, char *type, | |||
| 42 | if (!field->type) | 46 | if (!field->type) |
| 43 | goto err; | 47 | goto err; |
| 44 | 48 | ||
| 49 | if (filter_type == FILTER_OTHER) | ||
| 50 | field->filter_type = filter_assign_type(type); | ||
| 51 | else | ||
| 52 | field->filter_type = filter_type; | ||
| 53 | |||
| 45 | field->offset = offset; | 54 | field->offset = offset; |
| 46 | field->size = size; | 55 | field->size = size; |
| 47 | field->is_signed = is_signed; | 56 | field->is_signed = is_signed; |
| 57 | |||
| 48 | list_add(&field->link, &call->fields); | 58 | list_add(&field->link, &call->fields); |
| 49 | 59 | ||
| 50 | return 0; | 60 | return 0; |
| @@ -60,6 +70,29 @@ err: | |||
| 60 | } | 70 | } |
| 61 | EXPORT_SYMBOL_GPL(trace_define_field); | 71 | EXPORT_SYMBOL_GPL(trace_define_field); |
| 62 | 72 | ||
| 73 | #define __common_field(type, item) \ | ||
| 74 | ret = trace_define_field(call, #type, "common_" #item, \ | ||
| 75 | offsetof(typeof(ent), item), \ | ||
| 76 | sizeof(ent.item), \ | ||
| 77 | is_signed_type(type), FILTER_OTHER); \ | ||
| 78 | if (ret) \ | ||
| 79 | return ret; | ||
| 80 | |||
| 81 | int trace_define_common_fields(struct ftrace_event_call *call) | ||
| 82 | { | ||
| 83 | int ret; | ||
| 84 | struct trace_entry ent; | ||
| 85 | |||
| 86 | __common_field(unsigned short, type); | ||
| 87 | __common_field(unsigned char, flags); | ||
| 88 | __common_field(unsigned char, preempt_count); | ||
| 89 | __common_field(int, pid); | ||
| 90 | __common_field(int, lock_depth); | ||
| 91 | |||
| 92 | return ret; | ||
| 93 | } | ||
| 94 | EXPORT_SYMBOL_GPL(trace_define_common_fields); | ||
| 95 | |||
| 63 | #ifdef CONFIG_MODULES | 96 | #ifdef CONFIG_MODULES |
| 64 | 97 | ||
| 65 | static void trace_destroy_fields(struct ftrace_event_call *call) | 98 | static void trace_destroy_fields(struct ftrace_event_call *call) |
| @@ -84,14 +117,14 @@ static void ftrace_event_enable_disable(struct ftrace_event_call *call, | |||
| 84 | if (call->enabled) { | 117 | if (call->enabled) { |
| 85 | call->enabled = 0; | 118 | call->enabled = 0; |
| 86 | tracing_stop_cmdline_record(); | 119 | tracing_stop_cmdline_record(); |
| 87 | call->unregfunc(); | 120 | call->unregfunc(call->data); |
| 88 | } | 121 | } |
| 89 | break; | 122 | break; |
| 90 | case 1: | 123 | case 1: |
| 91 | if (!call->enabled) { | 124 | if (!call->enabled) { |
| 92 | call->enabled = 1; | 125 | call->enabled = 1; |
| 93 | tracing_start_cmdline_record(); | 126 | tracing_start_cmdline_record(); |
| 94 | call->regfunc(); | 127 | call->regfunc(call->data); |
| 95 | } | 128 | } |
| 96 | break; | 129 | break; |
| 97 | } | 130 | } |
| @@ -198,11 +231,9 @@ static ssize_t | |||
| 198 | ftrace_event_write(struct file *file, const char __user *ubuf, | 231 | ftrace_event_write(struct file *file, const char __user *ubuf, |
| 199 | size_t cnt, loff_t *ppos) | 232 | size_t cnt, loff_t *ppos) |
| 200 | { | 233 | { |
| 234 | struct trace_parser parser; | ||
| 201 | size_t read = 0; | 235 | size_t read = 0; |
| 202 | int i, set = 1; | ||
| 203 | ssize_t ret; | 236 | ssize_t ret; |
| 204 | char *buf; | ||
| 205 | char ch; | ||
| 206 | 237 | ||
| 207 | if (!cnt || cnt < 0) | 238 | if (!cnt || cnt < 0) |
| 208 | return 0; | 239 | return 0; |
| @@ -211,60 +242,28 @@ ftrace_event_write(struct file *file, const char __user *ubuf, | |||
| 211 | if (ret < 0) | 242 | if (ret < 0) |
| 212 | return ret; | 243 | return ret; |
| 213 | 244 | ||
| 214 | ret = get_user(ch, ubuf++); | 245 | if (trace_parser_get_init(&parser, EVENT_BUF_SIZE + 1)) |
| 215 | if (ret) | ||
| 216 | return ret; | ||
| 217 | read++; | ||
| 218 | cnt--; | ||
| 219 | |||
| 220 | /* skip white space */ | ||
| 221 | while (cnt && isspace(ch)) { | ||
| 222 | ret = get_user(ch, ubuf++); | ||
| 223 | if (ret) | ||
| 224 | return ret; | ||
| 225 | read++; | ||
| 226 | cnt--; | ||
| 227 | } | ||
| 228 | |||
| 229 | /* Only white space found? */ | ||
| 230 | if (isspace(ch)) { | ||
| 231 | file->f_pos += read; | ||
| 232 | ret = read; | ||
| 233 | return ret; | ||
| 234 | } | ||
| 235 | |||
| 236 | buf = kmalloc(EVENT_BUF_SIZE+1, GFP_KERNEL); | ||
| 237 | if (!buf) | ||
| 238 | return -ENOMEM; | 246 | return -ENOMEM; |
| 239 | 247 | ||
| 240 | if (cnt > EVENT_BUF_SIZE) | 248 | read = trace_get_user(&parser, ubuf, cnt, ppos); |
| 241 | cnt = EVENT_BUF_SIZE; | 249 | |
| 250 | if (trace_parser_loaded((&parser))) { | ||
| 251 | int set = 1; | ||
| 242 | 252 | ||
| 243 | i = 0; | 253 | if (*parser.buffer == '!') |
| 244 | while (cnt && !isspace(ch)) { | ||
| 245 | if (!i && ch == '!') | ||
| 246 | set = 0; | 254 | set = 0; |
| 247 | else | ||
| 248 | buf[i++] = ch; | ||
| 249 | 255 | ||
| 250 | ret = get_user(ch, ubuf++); | 256 | parser.buffer[parser.idx] = 0; |
| 257 | |||
| 258 | ret = ftrace_set_clr_event(parser.buffer + !set, set); | ||
| 251 | if (ret) | 259 | if (ret) |
| 252 | goto out_free; | 260 | goto out_put; |
| 253 | read++; | ||
| 254 | cnt--; | ||
| 255 | } | 261 | } |
| 256 | buf[i] = 0; | ||
| 257 | |||
| 258 | file->f_pos += read; | ||
| 259 | |||
| 260 | ret = ftrace_set_clr_event(buf, set); | ||
| 261 | if (ret) | ||
| 262 | goto out_free; | ||
| 263 | 262 | ||
| 264 | ret = read; | 263 | ret = read; |
| 265 | 264 | ||
| 266 | out_free: | 265 | out_put: |
| 267 | kfree(buf); | 266 | trace_parser_put(&parser); |
| 268 | 267 | ||
| 269 | return ret; | 268 | return ret; |
| 270 | } | 269 | } |
| @@ -272,42 +271,32 @@ ftrace_event_write(struct file *file, const char __user *ubuf, | |||
| 272 | static void * | 271 | static void * |
| 273 | t_next(struct seq_file *m, void *v, loff_t *pos) | 272 | t_next(struct seq_file *m, void *v, loff_t *pos) |
| 274 | { | 273 | { |
| 275 | struct list_head *list = m->private; | 274 | struct ftrace_event_call *call = v; |
| 276 | struct ftrace_event_call *call; | ||
| 277 | 275 | ||
| 278 | (*pos)++; | 276 | (*pos)++; |
| 279 | 277 | ||
| 280 | for (;;) { | 278 | list_for_each_entry_continue(call, &ftrace_events, list) { |
| 281 | if (list == &ftrace_events) | ||
| 282 | return NULL; | ||
| 283 | |||
| 284 | call = list_entry(list, struct ftrace_event_call, list); | ||
| 285 | |||
| 286 | /* | 279 | /* |
| 287 | * The ftrace subsystem is for showing formats only. | 280 | * The ftrace subsystem is for showing formats only. |
| 288 | * They can not be enabled or disabled via the event files. | 281 | * They can not be enabled or disabled via the event files. |
| 289 | */ | 282 | */ |
| 290 | if (call->regfunc) | 283 | if (call->regfunc) |
| 291 | break; | 284 | return call; |
| 292 | |||
| 293 | list = list->next; | ||
| 294 | } | 285 | } |
| 295 | 286 | ||
| 296 | m->private = list->next; | 287 | return NULL; |
| 297 | |||
| 298 | return call; | ||
| 299 | } | 288 | } |
| 300 | 289 | ||
| 301 | static void *t_start(struct seq_file *m, loff_t *pos) | 290 | static void *t_start(struct seq_file *m, loff_t *pos) |
| 302 | { | 291 | { |
| 303 | struct ftrace_event_call *call = NULL; | 292 | struct ftrace_event_call *call; |
| 304 | loff_t l; | 293 | loff_t l; |
| 305 | 294 | ||
| 306 | mutex_lock(&event_mutex); | 295 | mutex_lock(&event_mutex); |
| 307 | 296 | ||
| 308 | m->private = ftrace_events.next; | 297 | call = list_entry(&ftrace_events, struct ftrace_event_call, list); |
| 309 | for (l = 0; l <= *pos; ) { | 298 | for (l = 0; l <= *pos; ) { |
| 310 | call = t_next(m, NULL, &l); | 299 | call = t_next(m, call, &l); |
| 311 | if (!call) | 300 | if (!call) |
| 312 | break; | 301 | break; |
| 313 | } | 302 | } |
| @@ -317,37 +306,28 @@ static void *t_start(struct seq_file *m, loff_t *pos) | |||
| 317 | static void * | 306 | static void * |
| 318 | s_next(struct seq_file *m, void *v, loff_t *pos) | 307 | s_next(struct seq_file *m, void *v, loff_t *pos) |
| 319 | { | 308 | { |
| 320 | struct list_head *list = m->private; | 309 | struct ftrace_event_call *call = v; |
| 321 | struct ftrace_event_call *call; | ||
| 322 | 310 | ||
| 323 | (*pos)++; | 311 | (*pos)++; |
| 324 | 312 | ||
| 325 | retry: | 313 | list_for_each_entry_continue(call, &ftrace_events, list) { |
| 326 | if (list == &ftrace_events) | 314 | if (call->enabled) |
| 327 | return NULL; | 315 | return call; |
| 328 | |||
| 329 | call = list_entry(list, struct ftrace_event_call, list); | ||
| 330 | |||
| 331 | if (!call->enabled) { | ||
| 332 | list = list->next; | ||
| 333 | goto retry; | ||
| 334 | } | 316 | } |
| 335 | 317 | ||
| 336 | m->private = list->next; | 318 | return NULL; |
| 337 | |||
| 338 | return call; | ||
| 339 | } | 319 | } |
| 340 | 320 | ||
| 341 | static void *s_start(struct seq_file *m, loff_t *pos) | 321 | static void *s_start(struct seq_file *m, loff_t *pos) |
| 342 | { | 322 | { |
| 343 | struct ftrace_event_call *call = NULL; | 323 | struct ftrace_event_call *call; |
| 344 | loff_t l; | 324 | loff_t l; |
| 345 | 325 | ||
| 346 | mutex_lock(&event_mutex); | 326 | mutex_lock(&event_mutex); |
| 347 | 327 | ||
| 348 | m->private = ftrace_events.next; | 328 | call = list_entry(&ftrace_events, struct ftrace_event_call, list); |
| 349 | for (l = 0; l <= *pos; ) { | 329 | for (l = 0; l <= *pos; ) { |
| 350 | call = s_next(m, NULL, &l); | 330 | call = s_next(m, call, &l); |
| 351 | if (!call) | 331 | if (!call) |
| 352 | break; | 332 | break; |
| 353 | } | 333 | } |
| @@ -376,7 +356,7 @@ ftrace_event_seq_open(struct inode *inode, struct file *file) | |||
| 376 | const struct seq_operations *seq_ops; | 356 | const struct seq_operations *seq_ops; |
| 377 | 357 | ||
| 378 | if ((file->f_mode & FMODE_WRITE) && | 358 | if ((file->f_mode & FMODE_WRITE) && |
| 379 | !(file->f_flags & O_APPEND)) | 359 | (file->f_flags & O_TRUNC)) |
| 380 | ftrace_clear_events(); | 360 | ftrace_clear_events(); |
| 381 | 361 | ||
| 382 | seq_ops = inode->i_private; | 362 | seq_ops = inode->i_private; |
| @@ -546,7 +526,7 @@ static int trace_write_header(struct trace_seq *s) | |||
| 546 | FIELD(unsigned char, flags), | 526 | FIELD(unsigned char, flags), |
| 547 | FIELD(unsigned char, preempt_count), | 527 | FIELD(unsigned char, preempt_count), |
| 548 | FIELD(int, pid), | 528 | FIELD(int, pid), |
| 549 | FIELD(int, tgid)); | 529 | FIELD(int, lock_depth)); |
| 550 | } | 530 | } |
| 551 | 531 | ||
| 552 | static ssize_t | 532 | static ssize_t |
| @@ -574,7 +554,7 @@ event_format_read(struct file *filp, char __user *ubuf, size_t cnt, | |||
| 574 | trace_seq_printf(s, "format:\n"); | 554 | trace_seq_printf(s, "format:\n"); |
| 575 | trace_write_header(s); | 555 | trace_write_header(s); |
| 576 | 556 | ||
| 577 | r = call->show_format(s); | 557 | r = call->show_format(call, s); |
| 578 | if (!r) { | 558 | if (!r) { |
| 579 | /* | 559 | /* |
| 580 | * ug! The format output is bigger than a PAGE!! | 560 | * ug! The format output is bigger than a PAGE!! |
| @@ -849,8 +829,10 @@ event_subsystem_dir(const char *name, struct dentry *d_events) | |||
| 849 | 829 | ||
| 850 | /* First see if we did not already create this dir */ | 830 | /* First see if we did not already create this dir */ |
| 851 | list_for_each_entry(system, &event_subsystems, list) { | 831 | list_for_each_entry(system, &event_subsystems, list) { |
| 852 | if (strcmp(system->name, name) == 0) | 832 | if (strcmp(system->name, name) == 0) { |
| 833 | system->nr_events++; | ||
| 853 | return system->entry; | 834 | return system->entry; |
| 835 | } | ||
| 854 | } | 836 | } |
| 855 | 837 | ||
| 856 | /* need to create new entry */ | 838 | /* need to create new entry */ |
| @@ -869,6 +851,7 @@ event_subsystem_dir(const char *name, struct dentry *d_events) | |||
| 869 | return d_events; | 851 | return d_events; |
| 870 | } | 852 | } |
| 871 | 853 | ||
| 854 | system->nr_events = 1; | ||
| 872 | system->name = kstrdup(name, GFP_KERNEL); | 855 | system->name = kstrdup(name, GFP_KERNEL); |
| 873 | if (!system->name) { | 856 | if (!system->name) { |
| 874 | debugfs_remove(system->entry); | 857 | debugfs_remove(system->entry); |
| @@ -920,15 +903,6 @@ event_create_dir(struct ftrace_event_call *call, struct dentry *d_events, | |||
| 920 | if (strcmp(call->system, TRACE_SYSTEM) != 0) | 903 | if (strcmp(call->system, TRACE_SYSTEM) != 0) |
| 921 | d_events = event_subsystem_dir(call->system, d_events); | 904 | d_events = event_subsystem_dir(call->system, d_events); |
| 922 | 905 | ||
| 923 | if (call->raw_init) { | ||
| 924 | ret = call->raw_init(); | ||
| 925 | if (ret < 0) { | ||
| 926 | pr_warning("Could not initialize trace point" | ||
| 927 | " events/%s\n", call->name); | ||
| 928 | return ret; | ||
| 929 | } | ||
| 930 | } | ||
| 931 | |||
| 932 | call->dir = debugfs_create_dir(call->name, d_events); | 906 | call->dir = debugfs_create_dir(call->name, d_events); |
| 933 | if (!call->dir) { | 907 | if (!call->dir) { |
| 934 | pr_warning("Could not create debugfs " | 908 | pr_warning("Could not create debugfs " |
| @@ -940,12 +914,12 @@ event_create_dir(struct ftrace_event_call *call, struct dentry *d_events, | |||
| 940 | entry = trace_create_file("enable", 0644, call->dir, call, | 914 | entry = trace_create_file("enable", 0644, call->dir, call, |
| 941 | enable); | 915 | enable); |
| 942 | 916 | ||
| 943 | if (call->id) | 917 | if (call->id && call->profile_enable) |
| 944 | entry = trace_create_file("id", 0444, call->dir, call, | 918 | entry = trace_create_file("id", 0444, call->dir, call, |
| 945 | id); | 919 | id); |
| 946 | 920 | ||
| 947 | if (call->define_fields) { | 921 | if (call->define_fields) { |
| 948 | ret = call->define_fields(); | 922 | ret = call->define_fields(call); |
| 949 | if (ret < 0) { | 923 | if (ret < 0) { |
| 950 | pr_warning("Could not initialize trace point" | 924 | pr_warning("Could not initialize trace point" |
| 951 | " events/%s\n", call->name); | 925 | " events/%s\n", call->name); |
| @@ -987,6 +961,32 @@ struct ftrace_module_file_ops { | |||
| 987 | struct file_operations filter; | 961 | struct file_operations filter; |
| 988 | }; | 962 | }; |
| 989 | 963 | ||
| 964 | static void remove_subsystem_dir(const char *name) | ||
| 965 | { | ||
| 966 | struct event_subsystem *system; | ||
| 967 | |||
| 968 | if (strcmp(name, TRACE_SYSTEM) == 0) | ||
| 969 | return; | ||
| 970 | |||
| 971 | list_for_each_entry(system, &event_subsystems, list) { | ||
| 972 | if (strcmp(system->name, name) == 0) { | ||
| 973 | if (!--system->nr_events) { | ||
| 974 | struct event_filter *filter = system->filter; | ||
| 975 | |||
| 976 | debugfs_remove_recursive(system->entry); | ||
| 977 | list_del(&system->list); | ||
| 978 | if (filter) { | ||
| 979 | kfree(filter->filter_string); | ||
| 980 | kfree(filter); | ||
| 981 | } | ||
| 982 | kfree(system->name); | ||
| 983 | kfree(system); | ||
| 984 | } | ||
| 985 | break; | ||
| 986 | } | ||
| 987 | } | ||
| 988 | } | ||
| 989 | |||
| 990 | static struct ftrace_module_file_ops * | 990 | static struct ftrace_module_file_ops * |
| 991 | trace_create_file_ops(struct module *mod) | 991 | trace_create_file_ops(struct module *mod) |
| 992 | { | 992 | { |
| @@ -1027,6 +1027,7 @@ static void trace_module_add_events(struct module *mod) | |||
| 1027 | struct ftrace_module_file_ops *file_ops = NULL; | 1027 | struct ftrace_module_file_ops *file_ops = NULL; |
| 1028 | struct ftrace_event_call *call, *start, *end; | 1028 | struct ftrace_event_call *call, *start, *end; |
| 1029 | struct dentry *d_events; | 1029 | struct dentry *d_events; |
| 1030 | int ret; | ||
| 1030 | 1031 | ||
| 1031 | start = mod->trace_events; | 1032 | start = mod->trace_events; |
| 1032 | end = mod->trace_events + mod->num_trace_events; | 1033 | end = mod->trace_events + mod->num_trace_events; |
| @@ -1042,7 +1043,15 @@ static void trace_module_add_events(struct module *mod) | |||
| 1042 | /* The linker may leave blanks */ | 1043 | /* The linker may leave blanks */ |
| 1043 | if (!call->name) | 1044 | if (!call->name) |
| 1044 | continue; | 1045 | continue; |
| 1045 | 1046 | if (call->raw_init) { | |
| 1047 | ret = call->raw_init(); | ||
| 1048 | if (ret < 0) { | ||
| 1049 | if (ret != -ENOSYS) | ||
| 1050 | pr_warning("Could not initialize trace " | ||
| 1051 | "point events/%s\n", call->name); | ||
| 1052 | continue; | ||
| 1053 | } | ||
| 1054 | } | ||
| 1046 | /* | 1055 | /* |
| 1047 | * This module has events, create file ops for this module | 1056 | * This module has events, create file ops for this module |
| 1048 | * if not already done. | 1057 | * if not already done. |
| @@ -1077,6 +1086,7 @@ static void trace_module_remove_events(struct module *mod) | |||
| 1077 | list_del(&call->list); | 1086 | list_del(&call->list); |
| 1078 | trace_destroy_fields(call); | 1087 | trace_destroy_fields(call); |
| 1079 | destroy_preds(call); | 1088 | destroy_preds(call); |
| 1089 | remove_subsystem_dir(call->system); | ||
| 1080 | } | 1090 | } |
| 1081 | } | 1091 | } |
| 1082 | 1092 | ||
| @@ -1125,7 +1135,7 @@ static int trace_module_notify(struct notifier_block *self, | |||
| 1125 | } | 1135 | } |
| 1126 | #endif /* CONFIG_MODULES */ | 1136 | #endif /* CONFIG_MODULES */ |
| 1127 | 1137 | ||
| 1128 | struct notifier_block trace_module_nb = { | 1138 | static struct notifier_block trace_module_nb = { |
| 1129 | .notifier_call = trace_module_notify, | 1139 | .notifier_call = trace_module_notify, |
| 1130 | .priority = 0, | 1140 | .priority = 0, |
| 1131 | }; | 1141 | }; |
| @@ -1133,6 +1143,18 @@ struct notifier_block trace_module_nb = { | |||
| 1133 | extern struct ftrace_event_call __start_ftrace_events[]; | 1143 | extern struct ftrace_event_call __start_ftrace_events[]; |
| 1134 | extern struct ftrace_event_call __stop_ftrace_events[]; | 1144 | extern struct ftrace_event_call __stop_ftrace_events[]; |
| 1135 | 1145 | ||
| 1146 | static char bootup_event_buf[COMMAND_LINE_SIZE] __initdata; | ||
| 1147 | |||
| 1148 | static __init int setup_trace_event(char *str) | ||
| 1149 | { | ||
| 1150 | strlcpy(bootup_event_buf, str, COMMAND_LINE_SIZE); | ||
| 1151 | ring_buffer_expanded = 1; | ||
| 1152 | tracing_selftest_disabled = 1; | ||
| 1153 | |||
| 1154 | return 1; | ||
| 1155 | } | ||
| 1156 | __setup("trace_event=", setup_trace_event); | ||
| 1157 | |||
| 1136 | static __init int event_trace_init(void) | 1158 | static __init int event_trace_init(void) |
| 1137 | { | 1159 | { |
| 1138 | struct ftrace_event_call *call; | 1160 | struct ftrace_event_call *call; |
| @@ -1140,6 +1162,8 @@ static __init int event_trace_init(void) | |||
| 1140 | struct dentry *entry; | 1162 | struct dentry *entry; |
| 1141 | struct dentry *d_events; | 1163 | struct dentry *d_events; |
| 1142 | int ret; | 1164 | int ret; |
| 1165 | char *buf = bootup_event_buf; | ||
| 1166 | char *token; | ||
| 1143 | 1167 | ||
| 1144 | d_tracer = tracing_init_dentry(); | 1168 | d_tracer = tracing_init_dentry(); |
| 1145 | if (!d_tracer) | 1169 | if (!d_tracer) |
| @@ -1179,12 +1203,34 @@ static __init int event_trace_init(void) | |||
| 1179 | /* The linker may leave blanks */ | 1203 | /* The linker may leave blanks */ |
| 1180 | if (!call->name) | 1204 | if (!call->name) |
| 1181 | continue; | 1205 | continue; |
| 1206 | if (call->raw_init) { | ||
| 1207 | ret = call->raw_init(); | ||
| 1208 | if (ret < 0) { | ||
| 1209 | if (ret != -ENOSYS) | ||
| 1210 | pr_warning("Could not initialize trace " | ||
| 1211 | "point events/%s\n", call->name); | ||
| 1212 | continue; | ||
| 1213 | } | ||
| 1214 | } | ||
| 1182 | list_add(&call->list, &ftrace_events); | 1215 | list_add(&call->list, &ftrace_events); |
| 1183 | event_create_dir(call, d_events, &ftrace_event_id_fops, | 1216 | event_create_dir(call, d_events, &ftrace_event_id_fops, |
| 1184 | &ftrace_enable_fops, &ftrace_event_filter_fops, | 1217 | &ftrace_enable_fops, &ftrace_event_filter_fops, |
| 1185 | &ftrace_event_format_fops); | 1218 | &ftrace_event_format_fops); |
| 1186 | } | 1219 | } |
| 1187 | 1220 | ||
| 1221 | while (true) { | ||
| 1222 | token = strsep(&buf, ","); | ||
| 1223 | |||
| 1224 | if (!token) | ||
| 1225 | break; | ||
| 1226 | if (!*token) | ||
| 1227 | continue; | ||
| 1228 | |||
| 1229 | ret = ftrace_set_clr_event(token, 1); | ||
| 1230 | if (ret) | ||
| 1231 | pr_warning("Failed to enable trace event: %s\n", token); | ||
| 1232 | } | ||
| 1233 | |||
| 1188 | ret = register_module_notifier(&trace_module_nb); | 1234 | ret = register_module_notifier(&trace_module_nb); |
| 1189 | if (ret) | 1235 | if (ret) |
| 1190 | pr_warning("Failed to register trace events module notifier\n"); | 1236 | pr_warning("Failed to register trace events module notifier\n"); |
| @@ -1261,6 +1307,18 @@ static __init void event_trace_self_tests(void) | |||
| 1261 | if (!call->regfunc) | 1307 | if (!call->regfunc) |
| 1262 | continue; | 1308 | continue; |
| 1263 | 1309 | ||
| 1310 | /* | ||
| 1311 | * Testing syscall events here is pretty useless, but | ||
| 1312 | * we still do it if configured. But this is time consuming. | ||
| 1313 | * What we really need is a user thread to perform the | ||
| 1314 | * syscalls as we test. | ||
| 1315 | */ | ||
| 1316 | #ifndef CONFIG_EVENT_TRACE_TEST_SYSCALLS | ||
| 1317 | if (call->system && | ||
| 1318 | strcmp(call->system, "syscalls") == 0) | ||
| 1319 | continue; | ||
| 1320 | #endif | ||
| 1321 | |||
| 1264 | pr_info("Testing event %s: ", call->name); | 1322 | pr_info("Testing event %s: ", call->name); |
| 1265 | 1323 | ||
| 1266 | /* | 1324 | /* |
| @@ -1334,12 +1392,13 @@ static __init void event_trace_self_tests(void) | |||
| 1334 | 1392 | ||
| 1335 | #ifdef CONFIG_FUNCTION_TRACER | 1393 | #ifdef CONFIG_FUNCTION_TRACER |
| 1336 | 1394 | ||
| 1337 | static DEFINE_PER_CPU(atomic_t, test_event_disable); | 1395 | static DEFINE_PER_CPU(atomic_t, ftrace_test_event_disable); |
| 1338 | 1396 | ||
| 1339 | static void | 1397 | static void |
| 1340 | function_test_events_call(unsigned long ip, unsigned long parent_ip) | 1398 | function_test_events_call(unsigned long ip, unsigned long parent_ip) |
| 1341 | { | 1399 | { |
| 1342 | struct ring_buffer_event *event; | 1400 | struct ring_buffer_event *event; |
| 1401 | struct ring_buffer *buffer; | ||
| 1343 | struct ftrace_entry *entry; | 1402 | struct ftrace_entry *entry; |
| 1344 | unsigned long flags; | 1403 | unsigned long flags; |
| 1345 | long disabled; | 1404 | long disabled; |
| @@ -1350,14 +1409,15 @@ function_test_events_call(unsigned long ip, unsigned long parent_ip) | |||
| 1350 | pc = preempt_count(); | 1409 | pc = preempt_count(); |
| 1351 | resched = ftrace_preempt_disable(); | 1410 | resched = ftrace_preempt_disable(); |
| 1352 | cpu = raw_smp_processor_id(); | 1411 | cpu = raw_smp_processor_id(); |
| 1353 | disabled = atomic_inc_return(&per_cpu(test_event_disable, cpu)); | 1412 | disabled = atomic_inc_return(&per_cpu(ftrace_test_event_disable, cpu)); |
| 1354 | 1413 | ||
| 1355 | if (disabled != 1) | 1414 | if (disabled != 1) |
| 1356 | goto out; | 1415 | goto out; |
| 1357 | 1416 | ||
| 1358 | local_save_flags(flags); | 1417 | local_save_flags(flags); |
| 1359 | 1418 | ||
| 1360 | event = trace_current_buffer_lock_reserve(TRACE_FN, sizeof(*entry), | 1419 | event = trace_current_buffer_lock_reserve(&buffer, |
| 1420 | TRACE_FN, sizeof(*entry), | ||
| 1361 | flags, pc); | 1421 | flags, pc); |
| 1362 | if (!event) | 1422 | if (!event) |
| 1363 | goto out; | 1423 | goto out; |
| @@ -1365,10 +1425,10 @@ function_test_events_call(unsigned long ip, unsigned long parent_ip) | |||
| 1365 | entry->ip = ip; | 1425 | entry->ip = ip; |
| 1366 | entry->parent_ip = parent_ip; | 1426 | entry->parent_ip = parent_ip; |
| 1367 | 1427 | ||
| 1368 | trace_nowake_buffer_unlock_commit(event, flags, pc); | 1428 | trace_nowake_buffer_unlock_commit(buffer, event, flags, pc); |
| 1369 | 1429 | ||
| 1370 | out: | 1430 | out: |
| 1371 | atomic_dec(&per_cpu(test_event_disable, cpu)); | 1431 | atomic_dec(&per_cpu(ftrace_test_event_disable, cpu)); |
| 1372 | ftrace_preempt_enable(resched); | 1432 | ftrace_preempt_enable(resched); |
| 1373 | } | 1433 | } |
| 1374 | 1434 | ||
| @@ -1392,10 +1452,10 @@ static __init void event_trace_self_test_with_function(void) | |||
| 1392 | 1452 | ||
| 1393 | static __init int event_trace_self_tests_init(void) | 1453 | static __init int event_trace_self_tests_init(void) |
| 1394 | { | 1454 | { |
| 1395 | 1455 | if (!tracing_selftest_disabled) { | |
| 1396 | event_trace_self_tests(); | 1456 | event_trace_self_tests(); |
| 1397 | 1457 | event_trace_self_test_with_function(); | |
| 1398 | event_trace_self_test_with_function(); | 1458 | } |
| 1399 | 1459 | ||
| 1400 | return 0; | 1460 | return 0; |
| 1401 | } | 1461 | } |
diff --git a/kernel/trace/trace_events_filter.c b/kernel/trace/trace_events_filter.c index 936c621bbf46..23245785927f 100644 --- a/kernel/trace/trace_events_filter.c +++ b/kernel/trace/trace_events_filter.c | |||
| @@ -121,6 +121,47 @@ struct filter_parse_state { | |||
| 121 | } operand; | 121 | } operand; |
| 122 | }; | 122 | }; |
| 123 | 123 | ||
| 124 | #define DEFINE_COMPARISON_PRED(type) \ | ||
| 125 | static int filter_pred_##type(struct filter_pred *pred, void *event, \ | ||
| 126 | int val1, int val2) \ | ||
| 127 | { \ | ||
| 128 | type *addr = (type *)(event + pred->offset); \ | ||
| 129 | type val = (type)pred->val; \ | ||
| 130 | int match = 0; \ | ||
| 131 | \ | ||
| 132 | switch (pred->op) { \ | ||
| 133 | case OP_LT: \ | ||
| 134 | match = (*addr < val); \ | ||
| 135 | break; \ | ||
| 136 | case OP_LE: \ | ||
| 137 | match = (*addr <= val); \ | ||
| 138 | break; \ | ||
| 139 | case OP_GT: \ | ||
| 140 | match = (*addr > val); \ | ||
| 141 | break; \ | ||
| 142 | case OP_GE: \ | ||
| 143 | match = (*addr >= val); \ | ||
| 144 | break; \ | ||
| 145 | default: \ | ||
| 146 | break; \ | ||
| 147 | } \ | ||
| 148 | \ | ||
| 149 | return match; \ | ||
| 150 | } | ||
| 151 | |||
| 152 | #define DEFINE_EQUALITY_PRED(size) \ | ||
| 153 | static int filter_pred_##size(struct filter_pred *pred, void *event, \ | ||
| 154 | int val1, int val2) \ | ||
| 155 | { \ | ||
| 156 | u##size *addr = (u##size *)(event + pred->offset); \ | ||
| 157 | u##size val = (u##size)pred->val; \ | ||
| 158 | int match; \ | ||
| 159 | \ | ||
| 160 | match = (val == *addr) ^ pred->not; \ | ||
| 161 | \ | ||
| 162 | return match; \ | ||
| 163 | } | ||
| 164 | |||
| 124 | DEFINE_COMPARISON_PRED(s64); | 165 | DEFINE_COMPARISON_PRED(s64); |
| 125 | DEFINE_COMPARISON_PRED(u64); | 166 | DEFINE_COMPARISON_PRED(u64); |
| 126 | DEFINE_COMPARISON_PRED(s32); | 167 | DEFINE_COMPARISON_PRED(s32); |
| @@ -163,6 +204,20 @@ static int filter_pred_string(struct filter_pred *pred, void *event, | |||
| 163 | return match; | 204 | return match; |
| 164 | } | 205 | } |
| 165 | 206 | ||
| 207 | /* Filter predicate for char * pointers */ | ||
| 208 | static int filter_pred_pchar(struct filter_pred *pred, void *event, | ||
| 209 | int val1, int val2) | ||
| 210 | { | ||
| 211 | char **addr = (char **)(event + pred->offset); | ||
| 212 | int cmp, match; | ||
| 213 | |||
| 214 | cmp = strncmp(*addr, pred->str_val, pred->str_len); | ||
| 215 | |||
| 216 | match = (!cmp) ^ pred->not; | ||
| 217 | |||
| 218 | return match; | ||
| 219 | } | ||
| 220 | |||
| 166 | /* | 221 | /* |
| 167 | * Filter predicate for dynamic sized arrays of characters. | 222 | * Filter predicate for dynamic sized arrays of characters. |
| 168 | * These are implemented through a list of strings at the end | 223 | * These are implemented through a list of strings at the end |
| @@ -176,11 +231,13 @@ static int filter_pred_string(struct filter_pred *pred, void *event, | |||
| 176 | static int filter_pred_strloc(struct filter_pred *pred, void *event, | 231 | static int filter_pred_strloc(struct filter_pred *pred, void *event, |
| 177 | int val1, int val2) | 232 | int val1, int val2) |
| 178 | { | 233 | { |
| 179 | unsigned short str_loc = *(unsigned short *)(event + pred->offset); | 234 | u32 str_item = *(u32 *)(event + pred->offset); |
| 235 | int str_loc = str_item & 0xffff; | ||
| 236 | int str_len = str_item >> 16; | ||
| 180 | char *addr = (char *)(event + str_loc); | 237 | char *addr = (char *)(event + str_loc); |
| 181 | int cmp, match; | 238 | int cmp, match; |
| 182 | 239 | ||
| 183 | cmp = strncmp(addr, pred->str_val, pred->str_len); | 240 | cmp = strncmp(addr, pred->str_val, str_len); |
| 184 | 241 | ||
| 185 | match = (!cmp) ^ pred->not; | 242 | match = (!cmp) ^ pred->not; |
| 186 | 243 | ||
| @@ -293,7 +350,7 @@ void print_event_filter(struct ftrace_event_call *call, struct trace_seq *s) | |||
| 293 | struct event_filter *filter = call->filter; | 350 | struct event_filter *filter = call->filter; |
| 294 | 351 | ||
| 295 | mutex_lock(&event_mutex); | 352 | mutex_lock(&event_mutex); |
| 296 | if (filter->filter_string) | 353 | if (filter && filter->filter_string) |
| 297 | trace_seq_printf(s, "%s\n", filter->filter_string); | 354 | trace_seq_printf(s, "%s\n", filter->filter_string); |
| 298 | else | 355 | else |
| 299 | trace_seq_printf(s, "none\n"); | 356 | trace_seq_printf(s, "none\n"); |
| @@ -306,7 +363,7 @@ void print_subsystem_event_filter(struct event_subsystem *system, | |||
| 306 | struct event_filter *filter = system->filter; | 363 | struct event_filter *filter = system->filter; |
| 307 | 364 | ||
| 308 | mutex_lock(&event_mutex); | 365 | mutex_lock(&event_mutex); |
| 309 | if (filter->filter_string) | 366 | if (filter && filter->filter_string) |
| 310 | trace_seq_printf(s, "%s\n", filter->filter_string); | 367 | trace_seq_printf(s, "%s\n", filter->filter_string); |
| 311 | else | 368 | else |
| 312 | trace_seq_printf(s, "none\n"); | 369 | trace_seq_printf(s, "none\n"); |
| @@ -374,6 +431,9 @@ void destroy_preds(struct ftrace_event_call *call) | |||
| 374 | struct event_filter *filter = call->filter; | 431 | struct event_filter *filter = call->filter; |
| 375 | int i; | 432 | int i; |
| 376 | 433 | ||
| 434 | if (!filter) | ||
| 435 | return; | ||
| 436 | |||
| 377 | for (i = 0; i < MAX_FILTER_PRED; i++) { | 437 | for (i = 0; i < MAX_FILTER_PRED; i++) { |
| 378 | if (filter->preds[i]) | 438 | if (filter->preds[i]) |
| 379 | filter_free_pred(filter->preds[i]); | 439 | filter_free_pred(filter->preds[i]); |
| @@ -384,17 +444,19 @@ void destroy_preds(struct ftrace_event_call *call) | |||
| 384 | call->filter = NULL; | 444 | call->filter = NULL; |
| 385 | } | 445 | } |
| 386 | 446 | ||
| 387 | int init_preds(struct ftrace_event_call *call) | 447 | static int init_preds(struct ftrace_event_call *call) |
| 388 | { | 448 | { |
| 389 | struct event_filter *filter; | 449 | struct event_filter *filter; |
| 390 | struct filter_pred *pred; | 450 | struct filter_pred *pred; |
| 391 | int i; | 451 | int i; |
| 392 | 452 | ||
| 453 | if (call->filter) | ||
| 454 | return 0; | ||
| 455 | |||
| 393 | filter = call->filter = kzalloc(sizeof(*filter), GFP_KERNEL); | 456 | filter = call->filter = kzalloc(sizeof(*filter), GFP_KERNEL); |
| 394 | if (!call->filter) | 457 | if (!call->filter) |
| 395 | return -ENOMEM; | 458 | return -ENOMEM; |
| 396 | 459 | ||
| 397 | call->filter_active = 0; | ||
| 398 | filter->n_preds = 0; | 460 | filter->n_preds = 0; |
| 399 | 461 | ||
| 400 | filter->preds = kzalloc(MAX_FILTER_PRED * sizeof(pred), GFP_KERNEL); | 462 | filter->preds = kzalloc(MAX_FILTER_PRED * sizeof(pred), GFP_KERNEL); |
| @@ -416,30 +478,55 @@ oom: | |||
| 416 | 478 | ||
| 417 | return -ENOMEM; | 479 | return -ENOMEM; |
| 418 | } | 480 | } |
| 419 | EXPORT_SYMBOL_GPL(init_preds); | ||
| 420 | 481 | ||
| 421 | static void filter_free_subsystem_preds(struct event_subsystem *system) | 482 | static int init_subsystem_preds(struct event_subsystem *system) |
| 422 | { | 483 | { |
| 423 | struct event_filter *filter = system->filter; | ||
| 424 | struct ftrace_event_call *call; | 484 | struct ftrace_event_call *call; |
| 425 | int i; | 485 | int err; |
| 426 | 486 | ||
| 427 | if (filter->n_preds) { | 487 | list_for_each_entry(call, &ftrace_events, list) { |
| 428 | for (i = 0; i < filter->n_preds; i++) | 488 | if (!call->define_fields) |
| 429 | filter_free_pred(filter->preds[i]); | 489 | continue; |
| 430 | kfree(filter->preds); | 490 | |
| 431 | filter->preds = NULL; | 491 | if (strcmp(call->system, system->name) != 0) |
| 432 | filter->n_preds = 0; | 492 | continue; |
| 493 | |||
| 494 | err = init_preds(call); | ||
| 495 | if (err) | ||
| 496 | return err; | ||
| 433 | } | 497 | } |
| 434 | 498 | ||
| 499 | return 0; | ||
| 500 | } | ||
| 501 | |||
| 502 | enum { | ||
| 503 | FILTER_DISABLE_ALL, | ||
| 504 | FILTER_INIT_NO_RESET, | ||
| 505 | FILTER_SKIP_NO_RESET, | ||
| 506 | }; | ||
| 507 | |||
| 508 | static void filter_free_subsystem_preds(struct event_subsystem *system, | ||
| 509 | int flag) | ||
| 510 | { | ||
| 511 | struct ftrace_event_call *call; | ||
| 512 | |||
| 435 | list_for_each_entry(call, &ftrace_events, list) { | 513 | list_for_each_entry(call, &ftrace_events, list) { |
| 436 | if (!call->define_fields) | 514 | if (!call->define_fields) |
| 437 | continue; | 515 | continue; |
| 438 | 516 | ||
| 439 | if (!strcmp(call->system, system->name)) { | 517 | if (strcmp(call->system, system->name) != 0) |
| 440 | filter_disable_preds(call); | 518 | continue; |
| 441 | remove_filter_string(call->filter); | 519 | |
| 520 | if (flag == FILTER_INIT_NO_RESET) { | ||
| 521 | call->filter->no_reset = false; | ||
| 522 | continue; | ||
| 442 | } | 523 | } |
| 524 | |||
| 525 | if (flag == FILTER_SKIP_NO_RESET && call->filter->no_reset) | ||
| 526 | continue; | ||
| 527 | |||
| 528 | filter_disable_preds(call); | ||
| 529 | remove_filter_string(call->filter); | ||
| 443 | } | 530 | } |
| 444 | } | 531 | } |
| 445 | 532 | ||
| @@ -468,12 +555,7 @@ static int filter_add_pred_fn(struct filter_parse_state *ps, | |||
| 468 | return 0; | 555 | return 0; |
| 469 | } | 556 | } |
| 470 | 557 | ||
| 471 | enum { | 558 | int filter_assign_type(const char *type) |
| 472 | FILTER_STATIC_STRING = 1, | ||
| 473 | FILTER_DYN_STRING | ||
| 474 | }; | ||
| 475 | |||
| 476 | static int is_string_field(const char *type) | ||
| 477 | { | 559 | { |
| 478 | if (strstr(type, "__data_loc") && strstr(type, "char")) | 560 | if (strstr(type, "__data_loc") && strstr(type, "char")) |
| 479 | return FILTER_DYN_STRING; | 561 | return FILTER_DYN_STRING; |
| @@ -481,12 +563,19 @@ static int is_string_field(const char *type) | |||
| 481 | if (strchr(type, '[') && strstr(type, "char")) | 563 | if (strchr(type, '[') && strstr(type, "char")) |
| 482 | return FILTER_STATIC_STRING; | 564 | return FILTER_STATIC_STRING; |
| 483 | 565 | ||
| 484 | return 0; | 566 | return FILTER_OTHER; |
| 567 | } | ||
| 568 | |||
| 569 | static bool is_string_field(struct ftrace_event_field *field) | ||
| 570 | { | ||
| 571 | return field->filter_type == FILTER_DYN_STRING || | ||
| 572 | field->filter_type == FILTER_STATIC_STRING || | ||
| 573 | field->filter_type == FILTER_PTR_STRING; | ||
| 485 | } | 574 | } |
| 486 | 575 | ||
| 487 | static int is_legal_op(struct ftrace_event_field *field, int op) | 576 | static int is_legal_op(struct ftrace_event_field *field, int op) |
| 488 | { | 577 | { |
| 489 | if (is_string_field(field->type) && (op != OP_EQ && op != OP_NE)) | 578 | if (is_string_field(field) && (op != OP_EQ && op != OP_NE)) |
| 490 | return 0; | 579 | return 0; |
| 491 | 580 | ||
| 492 | return 1; | 581 | return 1; |
| @@ -537,22 +626,24 @@ static filter_pred_fn_t select_comparison_fn(int op, int field_size, | |||
| 537 | 626 | ||
| 538 | static int filter_add_pred(struct filter_parse_state *ps, | 627 | static int filter_add_pred(struct filter_parse_state *ps, |
| 539 | struct ftrace_event_call *call, | 628 | struct ftrace_event_call *call, |
| 540 | struct filter_pred *pred) | 629 | struct filter_pred *pred, |
| 630 | bool dry_run) | ||
| 541 | { | 631 | { |
| 542 | struct ftrace_event_field *field; | 632 | struct ftrace_event_field *field; |
| 543 | filter_pred_fn_t fn; | 633 | filter_pred_fn_t fn; |
| 544 | unsigned long long val; | 634 | unsigned long long val; |
| 545 | int string_type; | ||
| 546 | int ret; | 635 | int ret; |
| 547 | 636 | ||
| 548 | pred->fn = filter_pred_none; | 637 | pred->fn = filter_pred_none; |
| 549 | 638 | ||
| 550 | if (pred->op == OP_AND) { | 639 | if (pred->op == OP_AND) { |
| 551 | pred->pop_n = 2; | 640 | pred->pop_n = 2; |
| 552 | return filter_add_pred_fn(ps, call, pred, filter_pred_and); | 641 | fn = filter_pred_and; |
| 642 | goto add_pred_fn; | ||
| 553 | } else if (pred->op == OP_OR) { | 643 | } else if (pred->op == OP_OR) { |
| 554 | pred->pop_n = 2; | 644 | pred->pop_n = 2; |
| 555 | return filter_add_pred_fn(ps, call, pred, filter_pred_or); | 645 | fn = filter_pred_or; |
| 646 | goto add_pred_fn; | ||
| 556 | } | 647 | } |
| 557 | 648 | ||
| 558 | field = find_event_field(call, pred->field_name); | 649 | field = find_event_field(call, pred->field_name); |
| @@ -568,16 +659,17 @@ static int filter_add_pred(struct filter_parse_state *ps, | |||
| 568 | return -EINVAL; | 659 | return -EINVAL; |
| 569 | } | 660 | } |
| 570 | 661 | ||
| 571 | string_type = is_string_field(field->type); | 662 | if (is_string_field(field)) { |
| 572 | if (string_type) { | 663 | pred->str_len = field->size; |
| 573 | if (string_type == FILTER_STATIC_STRING) | 664 | |
| 665 | if (field->filter_type == FILTER_STATIC_STRING) | ||
| 574 | fn = filter_pred_string; | 666 | fn = filter_pred_string; |
| 575 | else | 667 | else if (field->filter_type == FILTER_DYN_STRING) |
| 576 | fn = filter_pred_strloc; | 668 | fn = filter_pred_strloc; |
| 577 | pred->str_len = field->size; | 669 | else { |
| 578 | if (pred->op == OP_NE) | 670 | fn = filter_pred_pchar; |
| 579 | pred->not = 1; | 671 | pred->str_len = strlen(pred->str_val); |
| 580 | return filter_add_pred_fn(ps, call, pred, fn); | 672 | } |
| 581 | } else { | 673 | } else { |
| 582 | if (field->is_signed) | 674 | if (field->is_signed) |
| 583 | ret = strict_strtoll(pred->str_val, 0, &val); | 675 | ret = strict_strtoll(pred->str_val, 0, &val); |
| @@ -588,44 +680,33 @@ static int filter_add_pred(struct filter_parse_state *ps, | |||
| 588 | return -EINVAL; | 680 | return -EINVAL; |
| 589 | } | 681 | } |
| 590 | pred->val = val; | 682 | pred->val = val; |
| 591 | } | ||
| 592 | 683 | ||
| 593 | fn = select_comparison_fn(pred->op, field->size, field->is_signed); | 684 | fn = select_comparison_fn(pred->op, field->size, |
| 594 | if (!fn) { | 685 | field->is_signed); |
| 595 | parse_error(ps, FILT_ERR_INVALID_OP, 0); | 686 | if (!fn) { |
| 596 | return -EINVAL; | 687 | parse_error(ps, FILT_ERR_INVALID_OP, 0); |
| 688 | return -EINVAL; | ||
| 689 | } | ||
| 597 | } | 690 | } |
| 598 | 691 | ||
| 599 | if (pred->op == OP_NE) | 692 | if (pred->op == OP_NE) |
| 600 | pred->not = 1; | 693 | pred->not = 1; |
| 601 | 694 | ||
| 602 | return filter_add_pred_fn(ps, call, pred, fn); | 695 | add_pred_fn: |
| 696 | if (!dry_run) | ||
| 697 | return filter_add_pred_fn(ps, call, pred, fn); | ||
| 698 | return 0; | ||
| 603 | } | 699 | } |
| 604 | 700 | ||
| 605 | static int filter_add_subsystem_pred(struct filter_parse_state *ps, | 701 | static int filter_add_subsystem_pred(struct filter_parse_state *ps, |
| 606 | struct event_subsystem *system, | 702 | struct event_subsystem *system, |
| 607 | struct filter_pred *pred, | 703 | struct filter_pred *pred, |
| 608 | char *filter_string) | 704 | char *filter_string, |
| 705 | bool dry_run) | ||
| 609 | { | 706 | { |
| 610 | struct event_filter *filter = system->filter; | ||
| 611 | struct ftrace_event_call *call; | 707 | struct ftrace_event_call *call; |
| 612 | int err = 0; | 708 | int err = 0; |
| 613 | 709 | bool fail = true; | |
| 614 | if (!filter->preds) { | ||
| 615 | filter->preds = kzalloc(MAX_FILTER_PRED * sizeof(pred), | ||
| 616 | GFP_KERNEL); | ||
| 617 | |||
| 618 | if (!filter->preds) | ||
| 619 | return -ENOMEM; | ||
| 620 | } | ||
| 621 | |||
| 622 | if (filter->n_preds == MAX_FILTER_PRED) { | ||
| 623 | parse_error(ps, FILT_ERR_TOO_MANY_PREDS, 0); | ||
| 624 | return -ENOSPC; | ||
| 625 | } | ||
| 626 | |||
| 627 | filter->preds[filter->n_preds] = pred; | ||
| 628 | filter->n_preds++; | ||
| 629 | 710 | ||
| 630 | list_for_each_entry(call, &ftrace_events, list) { | 711 | list_for_each_entry(call, &ftrace_events, list) { |
| 631 | 712 | ||
| @@ -635,16 +716,24 @@ static int filter_add_subsystem_pred(struct filter_parse_state *ps, | |||
| 635 | if (strcmp(call->system, system->name)) | 716 | if (strcmp(call->system, system->name)) |
| 636 | continue; | 717 | continue; |
| 637 | 718 | ||
| 638 | err = filter_add_pred(ps, call, pred); | 719 | if (call->filter->no_reset) |
| 639 | if (err) { | 720 | continue; |
| 640 | filter_free_subsystem_preds(system); | 721 | |
| 641 | parse_error(ps, FILT_ERR_BAD_SUBSYS_FILTER, 0); | 722 | err = filter_add_pred(ps, call, pred, dry_run); |
| 642 | goto out; | 723 | if (err) |
| 643 | } | 724 | call->filter->no_reset = true; |
| 644 | replace_filter_string(call->filter, filter_string); | 725 | else |
| 726 | fail = false; | ||
| 727 | |||
| 728 | if (!dry_run) | ||
| 729 | replace_filter_string(call->filter, filter_string); | ||
| 645 | } | 730 | } |
| 646 | out: | 731 | |
| 647 | return err; | 732 | if (fail) { |
| 733 | parse_error(ps, FILT_ERR_BAD_SUBSYS_FILTER, 0); | ||
| 734 | return err; | ||
| 735 | } | ||
| 736 | return 0; | ||
| 648 | } | 737 | } |
| 649 | 738 | ||
| 650 | static void parse_init(struct filter_parse_state *ps, | 739 | static void parse_init(struct filter_parse_state *ps, |
| @@ -1003,12 +1092,14 @@ static int check_preds(struct filter_parse_state *ps) | |||
| 1003 | static int replace_preds(struct event_subsystem *system, | 1092 | static int replace_preds(struct event_subsystem *system, |
| 1004 | struct ftrace_event_call *call, | 1093 | struct ftrace_event_call *call, |
| 1005 | struct filter_parse_state *ps, | 1094 | struct filter_parse_state *ps, |
| 1006 | char *filter_string) | 1095 | char *filter_string, |
| 1096 | bool dry_run) | ||
| 1007 | { | 1097 | { |
| 1008 | char *operand1 = NULL, *operand2 = NULL; | 1098 | char *operand1 = NULL, *operand2 = NULL; |
| 1009 | struct filter_pred *pred; | 1099 | struct filter_pred *pred; |
| 1010 | struct postfix_elt *elt; | 1100 | struct postfix_elt *elt; |
| 1011 | int err; | 1101 | int err; |
| 1102 | int n_preds = 0; | ||
| 1012 | 1103 | ||
| 1013 | err = check_preds(ps); | 1104 | err = check_preds(ps); |
| 1014 | if (err) | 1105 | if (err) |
| @@ -1027,19 +1118,14 @@ static int replace_preds(struct event_subsystem *system, | |||
| 1027 | continue; | 1118 | continue; |
| 1028 | } | 1119 | } |
| 1029 | 1120 | ||
| 1121 | if (n_preds++ == MAX_FILTER_PRED) { | ||
| 1122 | parse_error(ps, FILT_ERR_TOO_MANY_PREDS, 0); | ||
| 1123 | return -ENOSPC; | ||
| 1124 | } | ||
| 1125 | |||
| 1030 | if (elt->op == OP_AND || elt->op == OP_OR) { | 1126 | if (elt->op == OP_AND || elt->op == OP_OR) { |
| 1031 | pred = create_logical_pred(elt->op); | 1127 | pred = create_logical_pred(elt->op); |
| 1032 | if (call) { | 1128 | goto add_pred; |
| 1033 | err = filter_add_pred(ps, call, pred); | ||
| 1034 | filter_free_pred(pred); | ||
| 1035 | } else | ||
| 1036 | err = filter_add_subsystem_pred(ps, system, | ||
| 1037 | pred, filter_string); | ||
| 1038 | if (err) | ||
| 1039 | return err; | ||
| 1040 | |||
| 1041 | operand1 = operand2 = NULL; | ||
| 1042 | continue; | ||
| 1043 | } | 1129 | } |
| 1044 | 1130 | ||
| 1045 | if (!operand1 || !operand2) { | 1131 | if (!operand1 || !operand2) { |
| @@ -1048,12 +1134,15 @@ static int replace_preds(struct event_subsystem *system, | |||
| 1048 | } | 1134 | } |
| 1049 | 1135 | ||
| 1050 | pred = create_pred(elt->op, operand1, operand2); | 1136 | pred = create_pred(elt->op, operand1, operand2); |
| 1051 | if (call) { | 1137 | add_pred: |
| 1052 | err = filter_add_pred(ps, call, pred); | 1138 | if (!pred) |
| 1053 | filter_free_pred(pred); | 1139 | return -ENOMEM; |
| 1054 | } else | 1140 | if (call) |
| 1141 | err = filter_add_pred(ps, call, pred, false); | ||
| 1142 | else | ||
| 1055 | err = filter_add_subsystem_pred(ps, system, pred, | 1143 | err = filter_add_subsystem_pred(ps, system, pred, |
| 1056 | filter_string); | 1144 | filter_string, dry_run); |
| 1145 | filter_free_pred(pred); | ||
| 1057 | if (err) | 1146 | if (err) |
| 1058 | return err; | 1147 | return err; |
| 1059 | 1148 | ||
| @@ -1071,6 +1160,10 @@ int apply_event_filter(struct ftrace_event_call *call, char *filter_string) | |||
| 1071 | 1160 | ||
| 1072 | mutex_lock(&event_mutex); | 1161 | mutex_lock(&event_mutex); |
| 1073 | 1162 | ||
| 1163 | err = init_preds(call); | ||
| 1164 | if (err) | ||
| 1165 | goto out_unlock; | ||
| 1166 | |||
| 1074 | if (!strcmp(strstrip(filter_string), "0")) { | 1167 | if (!strcmp(strstrip(filter_string), "0")) { |
| 1075 | filter_disable_preds(call); | 1168 | filter_disable_preds(call); |
| 1076 | remove_filter_string(call->filter); | 1169 | remove_filter_string(call->filter); |
| @@ -1093,7 +1186,7 @@ int apply_event_filter(struct ftrace_event_call *call, char *filter_string) | |||
| 1093 | goto out; | 1186 | goto out; |
| 1094 | } | 1187 | } |
| 1095 | 1188 | ||
| 1096 | err = replace_preds(NULL, call, ps, filter_string); | 1189 | err = replace_preds(NULL, call, ps, filter_string, false); |
| 1097 | if (err) | 1190 | if (err) |
| 1098 | append_filter_err(ps, call->filter); | 1191 | append_filter_err(ps, call->filter); |
| 1099 | 1192 | ||
| @@ -1116,8 +1209,12 @@ int apply_subsystem_event_filter(struct event_subsystem *system, | |||
| 1116 | 1209 | ||
| 1117 | mutex_lock(&event_mutex); | 1210 | mutex_lock(&event_mutex); |
| 1118 | 1211 | ||
| 1212 | err = init_subsystem_preds(system); | ||
| 1213 | if (err) | ||
| 1214 | goto out_unlock; | ||
| 1215 | |||
| 1119 | if (!strcmp(strstrip(filter_string), "0")) { | 1216 | if (!strcmp(strstrip(filter_string), "0")) { |
| 1120 | filter_free_subsystem_preds(system); | 1217 | filter_free_subsystem_preds(system, FILTER_DISABLE_ALL); |
| 1121 | remove_filter_string(system->filter); | 1218 | remove_filter_string(system->filter); |
| 1122 | mutex_unlock(&event_mutex); | 1219 | mutex_unlock(&event_mutex); |
| 1123 | return 0; | 1220 | return 0; |
| @@ -1128,7 +1225,6 @@ int apply_subsystem_event_filter(struct event_subsystem *system, | |||
| 1128 | if (!ps) | 1225 | if (!ps) |
| 1129 | goto out_unlock; | 1226 | goto out_unlock; |
| 1130 | 1227 | ||
| 1131 | filter_free_subsystem_preds(system); | ||
| 1132 | replace_filter_string(system->filter, filter_string); | 1228 | replace_filter_string(system->filter, filter_string); |
| 1133 | 1229 | ||
| 1134 | parse_init(ps, filter_ops, filter_string); | 1230 | parse_init(ps, filter_ops, filter_string); |
| @@ -1138,9 +1234,23 @@ int apply_subsystem_event_filter(struct event_subsystem *system, | |||
| 1138 | goto out; | 1234 | goto out; |
| 1139 | } | 1235 | } |
| 1140 | 1236 | ||
| 1141 | err = replace_preds(system, NULL, ps, filter_string); | 1237 | filter_free_subsystem_preds(system, FILTER_INIT_NO_RESET); |
| 1142 | if (err) | 1238 | |
| 1239 | /* try to see the filter can be applied to which events */ | ||
| 1240 | err = replace_preds(system, NULL, ps, filter_string, true); | ||
| 1241 | if (err) { | ||
| 1143 | append_filter_err(ps, system->filter); | 1242 | append_filter_err(ps, system->filter); |
| 1243 | goto out; | ||
| 1244 | } | ||
| 1245 | |||
| 1246 | filter_free_subsystem_preds(system, FILTER_SKIP_NO_RESET); | ||
| 1247 | |||
| 1248 | /* really apply the filter to the events */ | ||
| 1249 | err = replace_preds(system, NULL, ps, filter_string, false); | ||
| 1250 | if (err) { | ||
| 1251 | append_filter_err(ps, system->filter); | ||
| 1252 | filter_free_subsystem_preds(system, 2); | ||
| 1253 | } | ||
| 1144 | 1254 | ||
| 1145 | out: | 1255 | out: |
| 1146 | filter_opstack_clear(ps); | 1256 | filter_opstack_clear(ps); |
diff --git a/kernel/trace/trace_export.c b/kernel/trace/trace_export.c index d06cf898dc86..9753fcc61bc5 100644 --- a/kernel/trace/trace_export.c +++ b/kernel/trace/trace_export.c | |||
| @@ -15,116 +15,209 @@ | |||
| 15 | 15 | ||
| 16 | #include "trace_output.h" | 16 | #include "trace_output.h" |
| 17 | 17 | ||
| 18 | #undef TRACE_SYSTEM | ||
| 19 | #define TRACE_SYSTEM ftrace | ||
| 18 | 20 | ||
| 19 | #undef TRACE_STRUCT | 21 | /* not needed for this file */ |
| 20 | #define TRACE_STRUCT(args...) args | 22 | #undef __field_struct |
| 23 | #define __field_struct(type, item) | ||
| 21 | 24 | ||
| 22 | extern void __bad_type_size(void); | 25 | #undef __field |
| 26 | #define __field(type, item) type item; | ||
| 23 | 27 | ||
| 24 | #undef TRACE_FIELD | 28 | #undef __field_desc |
| 25 | #define TRACE_FIELD(type, item, assign) \ | 29 | #define __field_desc(type, container, item) type item; |
| 26 | if (sizeof(type) != sizeof(field.item)) \ | 30 | |
| 27 | __bad_type_size(); \ | 31 | #undef __array |
| 32 | #define __array(type, item, size) type item[size]; | ||
| 33 | |||
| 34 | #undef __array_desc | ||
| 35 | #define __array_desc(type, container, item, size) type item[size]; | ||
| 36 | |||
| 37 | #undef __dynamic_array | ||
| 38 | #define __dynamic_array(type, item) type item[]; | ||
| 39 | |||
| 40 | #undef F_STRUCT | ||
| 41 | #define F_STRUCT(args...) args | ||
| 42 | |||
| 43 | #undef F_printk | ||
| 44 | #define F_printk(fmt, args...) fmt, args | ||
| 45 | |||
| 46 | #undef FTRACE_ENTRY | ||
| 47 | #define FTRACE_ENTRY(name, struct_name, id, tstruct, print) \ | ||
| 48 | struct ____ftrace_##name { \ | ||
| 49 | tstruct \ | ||
| 50 | }; \ | ||
| 51 | static void __used ____ftrace_check_##name(void) \ | ||
| 52 | { \ | ||
| 53 | struct ____ftrace_##name *__entry = NULL; \ | ||
| 54 | \ | ||
| 55 | /* force cmpile-time check on F_printk() */ \ | ||
| 56 | printk(print); \ | ||
| 57 | } | ||
| 58 | |||
| 59 | #undef FTRACE_ENTRY_DUP | ||
| 60 | #define FTRACE_ENTRY_DUP(name, struct_name, id, tstruct, print) \ | ||
| 61 | FTRACE_ENTRY(name, struct_name, id, PARAMS(tstruct), PARAMS(print)) | ||
| 62 | |||
| 63 | #include "trace_entries.h" | ||
| 64 | |||
| 65 | |||
| 66 | #undef __field | ||
| 67 | #define __field(type, item) \ | ||
| 28 | ret = trace_seq_printf(s, "\tfield:" #type " " #item ";\t" \ | 68 | ret = trace_seq_printf(s, "\tfield:" #type " " #item ";\t" \ |
| 29 | "offset:%u;\tsize:%u;\n", \ | 69 | "offset:%zu;\tsize:%zu;\n", \ |
| 30 | (unsigned int)offsetof(typeof(field), item), \ | 70 | offsetof(typeof(field), item), \ |
| 31 | (unsigned int)sizeof(field.item)); \ | 71 | sizeof(field.item)); \ |
| 32 | if (!ret) \ | 72 | if (!ret) \ |
| 33 | return 0; | 73 | return 0; |
| 34 | 74 | ||
| 75 | #undef __field_desc | ||
| 76 | #define __field_desc(type, container, item) \ | ||
| 77 | ret = trace_seq_printf(s, "\tfield:" #type " " #item ";\t" \ | ||
| 78 | "offset:%zu;\tsize:%zu;\n", \ | ||
| 79 | offsetof(typeof(field), container.item), \ | ||
| 80 | sizeof(field.container.item)); \ | ||
| 81 | if (!ret) \ | ||
| 82 | return 0; | ||
| 83 | |||
| 84 | #undef __array | ||
| 85 | #define __array(type, item, len) \ | ||
| 86 | ret = trace_seq_printf(s, "\tfield:" #type " " #item "[" #len "];\t" \ | ||
| 87 | "offset:%zu;\tsize:%zu;\n", \ | ||
| 88 | offsetof(typeof(field), item), \ | ||
| 89 | sizeof(field.item)); \ | ||
| 90 | if (!ret) \ | ||
| 91 | return 0; | ||
| 35 | 92 | ||
| 36 | #undef TRACE_FIELD_SPECIAL | 93 | #undef __array_desc |
| 37 | #define TRACE_FIELD_SPECIAL(type_item, item, len, cmd) \ | 94 | #define __array_desc(type, container, item, len) \ |
| 38 | ret = trace_seq_printf(s, "\tfield special:" #type_item ";\t" \ | 95 | ret = trace_seq_printf(s, "\tfield:" #type " " #item "[" #len "];\t" \ |
| 39 | "offset:%u;\tsize:%u;\n", \ | 96 | "offset:%zu;\tsize:%zu;\n", \ |
| 40 | (unsigned int)offsetof(typeof(field), item), \ | 97 | offsetof(typeof(field), container.item), \ |
| 41 | (unsigned int)sizeof(field.item)); \ | 98 | sizeof(field.container.item)); \ |
| 42 | if (!ret) \ | 99 | if (!ret) \ |
| 43 | return 0; | 100 | return 0; |
| 44 | 101 | ||
| 45 | #undef TRACE_FIELD_ZERO_CHAR | 102 | #undef __dynamic_array |
| 46 | #define TRACE_FIELD_ZERO_CHAR(item) \ | 103 | #define __dynamic_array(type, item) \ |
| 47 | ret = trace_seq_printf(s, "\tfield:char " #item ";\t" \ | 104 | ret = trace_seq_printf(s, "\tfield:" #type " " #item ";\t" \ |
| 48 | "offset:%u;\tsize:0;\n", \ | 105 | "offset:%zu;\tsize:0;\n", \ |
| 49 | (unsigned int)offsetof(typeof(field), item)); \ | 106 | offsetof(typeof(field), item)); \ |
| 50 | if (!ret) \ | 107 | if (!ret) \ |
| 51 | return 0; | 108 | return 0; |
| 52 | 109 | ||
| 53 | #undef TRACE_FIELD_SIGN | 110 | #undef F_printk |
| 54 | #define TRACE_FIELD_SIGN(type, item, assign, is_signed) \ | 111 | #define F_printk(fmt, args...) "%s, %s\n", #fmt, __stringify(args) |
| 55 | TRACE_FIELD(type, item, assign) | ||
| 56 | 112 | ||
| 57 | #undef TP_RAW_FMT | 113 | #undef __entry |
| 58 | #define TP_RAW_FMT(args...) args | 114 | #define __entry REC |
| 59 | 115 | ||
| 60 | #undef TRACE_EVENT_FORMAT | 116 | #undef FTRACE_ENTRY |
| 61 | #define TRACE_EVENT_FORMAT(call, proto, args, fmt, tstruct, tpfmt) \ | 117 | #define FTRACE_ENTRY(name, struct_name, id, tstruct, print) \ |
| 62 | static int \ | 118 | static int \ |
| 63 | ftrace_format_##call(struct trace_seq *s) \ | 119 | ftrace_format_##name(struct ftrace_event_call *unused, \ |
| 120 | struct trace_seq *s) \ | ||
| 64 | { \ | 121 | { \ |
| 65 | struct args field; \ | 122 | struct struct_name field __attribute__((unused)); \ |
| 66 | int ret; \ | 123 | int ret = 0; \ |
| 67 | \ | 124 | \ |
| 68 | tstruct; \ | 125 | tstruct; \ |
| 69 | \ | 126 | \ |
| 70 | trace_seq_printf(s, "\nprint fmt: \"%s\"\n", tpfmt); \ | 127 | trace_seq_printf(s, "\nprint fmt: " print); \ |
| 71 | \ | 128 | \ |
| 72 | return ret; \ | 129 | return ret; \ |
| 73 | } | 130 | } |
| 74 | 131 | ||
| 75 | #undef TRACE_EVENT_FORMAT_NOFILTER | 132 | #include "trace_entries.h" |
| 76 | #define TRACE_EVENT_FORMAT_NOFILTER(call, proto, args, fmt, tstruct, \ | 133 | |
| 77 | tpfmt) \ | 134 | |
| 78 | static int \ | 135 | #undef __field |
| 79 | ftrace_format_##call(struct trace_seq *s) \ | 136 | #define __field(type, item) \ |
| 137 | ret = trace_define_field(event_call, #type, #item, \ | ||
| 138 | offsetof(typeof(field), item), \ | ||
| 139 | sizeof(field.item), \ | ||
| 140 | is_signed_type(type), FILTER_OTHER); \ | ||
| 141 | if (ret) \ | ||
| 142 | return ret; | ||
| 143 | |||
| 144 | #undef __field_desc | ||
| 145 | #define __field_desc(type, container, item) \ | ||
| 146 | ret = trace_define_field(event_call, #type, #item, \ | ||
| 147 | offsetof(typeof(field), \ | ||
| 148 | container.item), \ | ||
| 149 | sizeof(field.container.item), \ | ||
| 150 | is_signed_type(type), FILTER_OTHER); \ | ||
| 151 | if (ret) \ | ||
| 152 | return ret; | ||
| 153 | |||
| 154 | #undef __array | ||
| 155 | #define __array(type, item, len) \ | ||
| 156 | BUILD_BUG_ON(len > MAX_FILTER_STR_VAL); \ | ||
| 157 | ret = trace_define_field(event_call, #type "[" #len "]", #item, \ | ||
| 158 | offsetof(typeof(field), item), \ | ||
| 159 | sizeof(field.item), 0, FILTER_OTHER); \ | ||
| 160 | if (ret) \ | ||
| 161 | return ret; | ||
| 162 | |||
| 163 | #undef __array_desc | ||
| 164 | #define __array_desc(type, container, item, len) \ | ||
| 165 | BUILD_BUG_ON(len > MAX_FILTER_STR_VAL); \ | ||
| 166 | ret = trace_define_field(event_call, #type "[" #len "]", #item, \ | ||
| 167 | offsetof(typeof(field), \ | ||
| 168 | container.item), \ | ||
| 169 | sizeof(field.container.item), 0, \ | ||
| 170 | FILTER_OTHER); \ | ||
| 171 | if (ret) \ | ||
| 172 | return ret; | ||
| 173 | |||
| 174 | #undef __dynamic_array | ||
| 175 | #define __dynamic_array(type, item) | ||
| 176 | |||
| 177 | #undef FTRACE_ENTRY | ||
| 178 | #define FTRACE_ENTRY(name, struct_name, id, tstruct, print) \ | ||
| 179 | int \ | ||
| 180 | ftrace_define_fields_##name(struct ftrace_event_call *event_call) \ | ||
| 80 | { \ | 181 | { \ |
| 81 | struct args field; \ | 182 | struct struct_name field; \ |
| 82 | int ret; \ | 183 | int ret; \ |
| 83 | \ | 184 | \ |
| 84 | tstruct; \ | 185 | ret = trace_define_common_fields(event_call); \ |
| 186 | if (ret) \ | ||
| 187 | return ret; \ | ||
| 85 | \ | 188 | \ |
| 86 | trace_seq_printf(s, "\nprint fmt: \"%s\"\n", tpfmt); \ | 189 | tstruct; \ |
| 87 | \ | 190 | \ |
| 88 | return ret; \ | 191 | return ret; \ |
| 89 | } | 192 | } |
| 90 | 193 | ||
| 91 | #include "trace_event_types.h" | 194 | #include "trace_entries.h" |
| 92 | |||
| 93 | #undef TRACE_ZERO_CHAR | ||
| 94 | #define TRACE_ZERO_CHAR(arg) | ||
| 95 | 195 | ||
| 96 | #undef TRACE_FIELD | ||
| 97 | #define TRACE_FIELD(type, item, assign)\ | ||
| 98 | entry->item = assign; | ||
| 99 | 196 | ||
| 100 | #undef TRACE_FIELD | 197 | #undef __field |
| 101 | #define TRACE_FIELD(type, item, assign)\ | 198 | #define __field(type, item) |
| 102 | entry->item = assign; | ||
| 103 | 199 | ||
| 104 | #undef TRACE_FIELD_SIGN | 200 | #undef __field_desc |
| 105 | #define TRACE_FIELD_SIGN(type, item, assign, is_signed) \ | 201 | #define __field_desc(type, container, item) |
| 106 | TRACE_FIELD(type, item, assign) | ||
| 107 | 202 | ||
| 108 | #undef TP_CMD | 203 | #undef __array |
| 109 | #define TP_CMD(cmd...) cmd | 204 | #define __array(type, item, len) |
| 110 | 205 | ||
| 111 | #undef TRACE_ENTRY | 206 | #undef __array_desc |
| 112 | #define TRACE_ENTRY entry | 207 | #define __array_desc(type, container, item, len) |
| 113 | 208 | ||
| 114 | #undef TRACE_FIELD_SPECIAL | 209 | #undef __dynamic_array |
| 115 | #define TRACE_FIELD_SPECIAL(type_item, item, len, cmd) \ | 210 | #define __dynamic_array(type, item) |
| 116 | cmd; | ||
| 117 | 211 | ||
| 118 | #undef TRACE_EVENT_FORMAT | 212 | #undef FTRACE_ENTRY |
| 119 | #define TRACE_EVENT_FORMAT(call, proto, args, fmt, tstruct, tpfmt) \ | 213 | #define FTRACE_ENTRY(call, struct_name, type, tstruct, print) \ |
| 120 | int ftrace_define_fields_##call(void); \ | ||
| 121 | static int ftrace_raw_init_event_##call(void); \ | 214 | static int ftrace_raw_init_event_##call(void); \ |
| 122 | \ | 215 | \ |
| 123 | struct ftrace_event_call __used \ | 216 | struct ftrace_event_call __used \ |
| 124 | __attribute__((__aligned__(4))) \ | 217 | __attribute__((__aligned__(4))) \ |
| 125 | __attribute__((section("_ftrace_events"))) event_##call = { \ | 218 | __attribute__((section("_ftrace_events"))) event_##call = { \ |
| 126 | .name = #call, \ | 219 | .name = #call, \ |
| 127 | .id = proto, \ | 220 | .id = type, \ |
| 128 | .system = __stringify(TRACE_SYSTEM), \ | 221 | .system = __stringify(TRACE_SYSTEM), \ |
| 129 | .raw_init = ftrace_raw_init_event_##call, \ | 222 | .raw_init = ftrace_raw_init_event_##call, \ |
| 130 | .show_format = ftrace_format_##call, \ | 223 | .show_format = ftrace_format_##call, \ |
| @@ -133,74 +226,7 @@ __attribute__((section("_ftrace_events"))) event_##call = { \ | |||
| 133 | static int ftrace_raw_init_event_##call(void) \ | 226 | static int ftrace_raw_init_event_##call(void) \ |
| 134 | { \ | 227 | { \ |
| 135 | INIT_LIST_HEAD(&event_##call.fields); \ | 228 | INIT_LIST_HEAD(&event_##call.fields); \ |
| 136 | init_preds(&event_##call); \ | ||
| 137 | return 0; \ | 229 | return 0; \ |
| 138 | } \ | 230 | } \ |
| 139 | 231 | ||
| 140 | #undef TRACE_EVENT_FORMAT_NOFILTER | 232 | #include "trace_entries.h" |
| 141 | #define TRACE_EVENT_FORMAT_NOFILTER(call, proto, args, fmt, tstruct, \ | ||
| 142 | tpfmt) \ | ||
| 143 | \ | ||
| 144 | struct ftrace_event_call __used \ | ||
| 145 | __attribute__((__aligned__(4))) \ | ||
| 146 | __attribute__((section("_ftrace_events"))) event_##call = { \ | ||
| 147 | .name = #call, \ | ||
| 148 | .id = proto, \ | ||
| 149 | .system = __stringify(TRACE_SYSTEM), \ | ||
| 150 | .show_format = ftrace_format_##call, \ | ||
| 151 | }; | ||
| 152 | |||
| 153 | #include "trace_event_types.h" | ||
| 154 | |||
| 155 | #undef TRACE_FIELD | ||
| 156 | #define TRACE_FIELD(type, item, assign) \ | ||
| 157 | ret = trace_define_field(event_call, #type, #item, \ | ||
| 158 | offsetof(typeof(field), item), \ | ||
| 159 | sizeof(field.item), is_signed_type(type)); \ | ||
| 160 | if (ret) \ | ||
| 161 | return ret; | ||
| 162 | |||
| 163 | #undef TRACE_FIELD_SPECIAL | ||
| 164 | #define TRACE_FIELD_SPECIAL(type, item, len, cmd) \ | ||
| 165 | ret = trace_define_field(event_call, #type "[" #len "]", #item, \ | ||
| 166 | offsetof(typeof(field), item), \ | ||
| 167 | sizeof(field.item), 0); \ | ||
| 168 | if (ret) \ | ||
| 169 | return ret; | ||
| 170 | |||
| 171 | #undef TRACE_FIELD_SIGN | ||
| 172 | #define TRACE_FIELD_SIGN(type, item, assign, is_signed) \ | ||
| 173 | ret = trace_define_field(event_call, #type, #item, \ | ||
| 174 | offsetof(typeof(field), item), \ | ||
| 175 | sizeof(field.item), is_signed); \ | ||
| 176 | if (ret) \ | ||
| 177 | return ret; | ||
| 178 | |||
| 179 | #undef TRACE_FIELD_ZERO_CHAR | ||
| 180 | #define TRACE_FIELD_ZERO_CHAR(item) | ||
| 181 | |||
| 182 | #undef TRACE_EVENT_FORMAT | ||
| 183 | #define TRACE_EVENT_FORMAT(call, proto, args, fmt, tstruct, tpfmt) \ | ||
| 184 | int \ | ||
| 185 | ftrace_define_fields_##call(void) \ | ||
| 186 | { \ | ||
| 187 | struct ftrace_event_call *event_call = &event_##call; \ | ||
| 188 | struct args field; \ | ||
| 189 | int ret; \ | ||
| 190 | \ | ||
| 191 | __common_field(unsigned char, type, 0); \ | ||
| 192 | __common_field(unsigned char, flags, 0); \ | ||
| 193 | __common_field(unsigned char, preempt_count, 0); \ | ||
| 194 | __common_field(int, pid, 1); \ | ||
| 195 | __common_field(int, tgid, 1); \ | ||
| 196 | \ | ||
| 197 | tstruct; \ | ||
| 198 | \ | ||
| 199 | return ret; \ | ||
| 200 | } | ||
| 201 | |||
| 202 | #undef TRACE_EVENT_FORMAT_NOFILTER | ||
| 203 | #define TRACE_EVENT_FORMAT_NOFILTER(call, proto, args, fmt, tstruct, \ | ||
| 204 | tpfmt) | ||
| 205 | |||
| 206 | #include "trace_event_types.h" | ||
diff --git a/kernel/trace/trace_functions.c b/kernel/trace/trace_functions.c index 7402144bff21..b3f3776b0cd6 100644 --- a/kernel/trace/trace_functions.c +++ b/kernel/trace/trace_functions.c | |||
| @@ -288,11 +288,9 @@ static int | |||
| 288 | ftrace_trace_onoff_print(struct seq_file *m, unsigned long ip, | 288 | ftrace_trace_onoff_print(struct seq_file *m, unsigned long ip, |
| 289 | struct ftrace_probe_ops *ops, void *data) | 289 | struct ftrace_probe_ops *ops, void *data) |
| 290 | { | 290 | { |
| 291 | char str[KSYM_SYMBOL_LEN]; | ||
| 292 | long count = (long)data; | 291 | long count = (long)data; |
| 293 | 292 | ||
| 294 | kallsyms_lookup(ip, NULL, NULL, NULL, str); | 293 | seq_printf(m, "%ps:", (void *)ip); |
| 295 | seq_printf(m, "%s:", str); | ||
| 296 | 294 | ||
| 297 | if (ops == &traceon_probe_ops) | 295 | if (ops == &traceon_probe_ops) |
| 298 | seq_printf(m, "traceon"); | 296 | seq_printf(m, "traceon"); |
| @@ -363,7 +361,7 @@ ftrace_trace_onoff_callback(char *glob, char *cmd, char *param, int enable) | |||
| 363 | out_reg: | 361 | out_reg: |
| 364 | ret = register_ftrace_function_probe(glob, ops, count); | 362 | ret = register_ftrace_function_probe(glob, ops, count); |
| 365 | 363 | ||
| 366 | return ret; | 364 | return ret < 0 ? ret : 0; |
| 367 | } | 365 | } |
| 368 | 366 | ||
| 369 | static struct ftrace_func_command ftrace_traceon_cmd = { | 367 | static struct ftrace_func_command ftrace_traceon_cmd = { |
diff --git a/kernel/trace/trace_functions_graph.c b/kernel/trace/trace_functions_graph.c index d2249abafb53..45e6c01b2e4d 100644 --- a/kernel/trace/trace_functions_graph.c +++ b/kernel/trace/trace_functions_graph.c | |||
| @@ -52,7 +52,7 @@ static struct tracer_flags tracer_flags = { | |||
| 52 | .opts = trace_opts | 52 | .opts = trace_opts |
| 53 | }; | 53 | }; |
| 54 | 54 | ||
| 55 | /* pid on the last trace processed */ | 55 | static struct trace_array *graph_array; |
| 56 | 56 | ||
| 57 | 57 | ||
| 58 | /* Add a function return address to the trace stack on thread info.*/ | 58 | /* Add a function return address to the trace stack on thread info.*/ |
| @@ -124,7 +124,7 @@ ftrace_pop_return_trace(struct ftrace_graph_ret *trace, unsigned long *ret, | |||
| 124 | if (unlikely(current->ret_stack[index].fp != frame_pointer)) { | 124 | if (unlikely(current->ret_stack[index].fp != frame_pointer)) { |
| 125 | ftrace_graph_stop(); | 125 | ftrace_graph_stop(); |
| 126 | WARN(1, "Bad frame pointer: expected %lx, received %lx\n" | 126 | WARN(1, "Bad frame pointer: expected %lx, received %lx\n" |
| 127 | " from func %pF return to %lx\n", | 127 | " from func %ps return to %lx\n", |
| 128 | current->ret_stack[index].fp, | 128 | current->ret_stack[index].fp, |
| 129 | frame_pointer, | 129 | frame_pointer, |
| 130 | (void *)current->ret_stack[index].func, | 130 | (void *)current->ret_stack[index].func, |
| @@ -166,10 +166,123 @@ unsigned long ftrace_return_to_handler(unsigned long frame_pointer) | |||
| 166 | return ret; | 166 | return ret; |
| 167 | } | 167 | } |
| 168 | 168 | ||
| 169 | static int __trace_graph_entry(struct trace_array *tr, | ||
| 170 | struct ftrace_graph_ent *trace, | ||
| 171 | unsigned long flags, | ||
| 172 | int pc) | ||
| 173 | { | ||
| 174 | struct ftrace_event_call *call = &event_funcgraph_entry; | ||
| 175 | struct ring_buffer_event *event; | ||
| 176 | struct ring_buffer *buffer = tr->buffer; | ||
| 177 | struct ftrace_graph_ent_entry *entry; | ||
| 178 | |||
| 179 | if (unlikely(local_read(&__get_cpu_var(ftrace_cpu_disabled)))) | ||
| 180 | return 0; | ||
| 181 | |||
| 182 | event = trace_buffer_lock_reserve(buffer, TRACE_GRAPH_ENT, | ||
| 183 | sizeof(*entry), flags, pc); | ||
| 184 | if (!event) | ||
| 185 | return 0; | ||
| 186 | entry = ring_buffer_event_data(event); | ||
| 187 | entry->graph_ent = *trace; | ||
| 188 | if (!filter_current_check_discard(buffer, call, entry, event)) | ||
| 189 | ring_buffer_unlock_commit(buffer, event); | ||
| 190 | |||
| 191 | return 1; | ||
| 192 | } | ||
| 193 | |||
| 194 | int trace_graph_entry(struct ftrace_graph_ent *trace) | ||
| 195 | { | ||
| 196 | struct trace_array *tr = graph_array; | ||
| 197 | struct trace_array_cpu *data; | ||
| 198 | unsigned long flags; | ||
| 199 | long disabled; | ||
| 200 | int ret; | ||
| 201 | int cpu; | ||
| 202 | int pc; | ||
| 203 | |||
| 204 | if (unlikely(!tr)) | ||
| 205 | return 0; | ||
| 206 | |||
| 207 | if (!ftrace_trace_task(current)) | ||
| 208 | return 0; | ||
| 209 | |||
| 210 | if (!ftrace_graph_addr(trace->func)) | ||
| 211 | return 0; | ||
| 212 | |||
| 213 | local_irq_save(flags); | ||
| 214 | cpu = raw_smp_processor_id(); | ||
| 215 | data = tr->data[cpu]; | ||
| 216 | disabled = atomic_inc_return(&data->disabled); | ||
| 217 | if (likely(disabled == 1)) { | ||
| 218 | pc = preempt_count(); | ||
| 219 | ret = __trace_graph_entry(tr, trace, flags, pc); | ||
| 220 | } else { | ||
| 221 | ret = 0; | ||
| 222 | } | ||
| 223 | /* Only do the atomic if it is not already set */ | ||
| 224 | if (!test_tsk_trace_graph(current)) | ||
| 225 | set_tsk_trace_graph(current); | ||
| 226 | |||
| 227 | atomic_dec(&data->disabled); | ||
| 228 | local_irq_restore(flags); | ||
| 229 | |||
| 230 | return ret; | ||
| 231 | } | ||
| 232 | |||
| 233 | static void __trace_graph_return(struct trace_array *tr, | ||
| 234 | struct ftrace_graph_ret *trace, | ||
| 235 | unsigned long flags, | ||
| 236 | int pc) | ||
| 237 | { | ||
| 238 | struct ftrace_event_call *call = &event_funcgraph_exit; | ||
| 239 | struct ring_buffer_event *event; | ||
| 240 | struct ring_buffer *buffer = tr->buffer; | ||
| 241 | struct ftrace_graph_ret_entry *entry; | ||
| 242 | |||
| 243 | if (unlikely(local_read(&__get_cpu_var(ftrace_cpu_disabled)))) | ||
| 244 | return; | ||
| 245 | |||
| 246 | event = trace_buffer_lock_reserve(buffer, TRACE_GRAPH_RET, | ||
| 247 | sizeof(*entry), flags, pc); | ||
| 248 | if (!event) | ||
| 249 | return; | ||
| 250 | entry = ring_buffer_event_data(event); | ||
| 251 | entry->ret = *trace; | ||
| 252 | if (!filter_current_check_discard(buffer, call, entry, event)) | ||
| 253 | ring_buffer_unlock_commit(buffer, event); | ||
| 254 | } | ||
| 255 | |||
| 256 | void trace_graph_return(struct ftrace_graph_ret *trace) | ||
| 257 | { | ||
| 258 | struct trace_array *tr = graph_array; | ||
| 259 | struct trace_array_cpu *data; | ||
| 260 | unsigned long flags; | ||
| 261 | long disabled; | ||
| 262 | int cpu; | ||
| 263 | int pc; | ||
| 264 | |||
| 265 | local_irq_save(flags); | ||
| 266 | cpu = raw_smp_processor_id(); | ||
| 267 | data = tr->data[cpu]; | ||
| 268 | disabled = atomic_inc_return(&data->disabled); | ||
| 269 | if (likely(disabled == 1)) { | ||
| 270 | pc = preempt_count(); | ||
| 271 | __trace_graph_return(tr, trace, flags, pc); | ||
| 272 | } | ||
| 273 | if (!trace->depth) | ||
| 274 | clear_tsk_trace_graph(current); | ||
| 275 | atomic_dec(&data->disabled); | ||
| 276 | local_irq_restore(flags); | ||
| 277 | } | ||
| 278 | |||
| 169 | static int graph_trace_init(struct trace_array *tr) | 279 | static int graph_trace_init(struct trace_array *tr) |
| 170 | { | 280 | { |
| 171 | int ret = register_ftrace_graph(&trace_graph_return, | 281 | int ret; |
| 172 | &trace_graph_entry); | 282 | |
| 283 | graph_array = tr; | ||
| 284 | ret = register_ftrace_graph(&trace_graph_return, | ||
| 285 | &trace_graph_entry); | ||
| 173 | if (ret) | 286 | if (ret) |
| 174 | return ret; | 287 | return ret; |
| 175 | tracing_start_cmdline_record(); | 288 | tracing_start_cmdline_record(); |
| @@ -177,49 +290,30 @@ static int graph_trace_init(struct trace_array *tr) | |||
| 177 | return 0; | 290 | return 0; |
| 178 | } | 291 | } |
| 179 | 292 | ||
| 293 | void set_graph_array(struct trace_array *tr) | ||
| 294 | { | ||
| 295 | graph_array = tr; | ||
| 296 | } | ||
| 297 | |||
| 180 | static void graph_trace_reset(struct trace_array *tr) | 298 | static void graph_trace_reset(struct trace_array *tr) |
| 181 | { | 299 | { |
| 182 | tracing_stop_cmdline_record(); | 300 | tracing_stop_cmdline_record(); |
| 183 | unregister_ftrace_graph(); | 301 | unregister_ftrace_graph(); |
| 184 | } | 302 | } |
| 185 | 303 | ||
| 186 | static inline int log10_cpu(int nb) | 304 | static int max_bytes_for_cpu; |
| 187 | { | ||
| 188 | if (nb / 100) | ||
| 189 | return 3; | ||
| 190 | if (nb / 10) | ||
| 191 | return 2; | ||
| 192 | return 1; | ||
| 193 | } | ||
| 194 | 305 | ||
| 195 | static enum print_line_t | 306 | static enum print_line_t |
| 196 | print_graph_cpu(struct trace_seq *s, int cpu) | 307 | print_graph_cpu(struct trace_seq *s, int cpu) |
| 197 | { | 308 | { |
| 198 | int i; | ||
| 199 | int ret; | 309 | int ret; |
| 200 | int log10_this = log10_cpu(cpu); | ||
| 201 | int log10_all = log10_cpu(cpumask_weight(cpu_online_mask)); | ||
| 202 | |||
| 203 | 310 | ||
| 204 | /* | 311 | /* |
| 205 | * Start with a space character - to make it stand out | 312 | * Start with a space character - to make it stand out |
| 206 | * to the right a bit when trace output is pasted into | 313 | * to the right a bit when trace output is pasted into |
| 207 | * email: | 314 | * email: |
| 208 | */ | 315 | */ |
| 209 | ret = trace_seq_printf(s, " "); | 316 | ret = trace_seq_printf(s, " %*d) ", max_bytes_for_cpu, cpu); |
| 210 | |||
| 211 | /* | ||
| 212 | * Tricky - we space the CPU field according to the max | ||
| 213 | * number of online CPUs. On a 2-cpu system it would take | ||
| 214 | * a maximum of 1 digit - on a 128 cpu system it would | ||
| 215 | * take up to 3 digits: | ||
| 216 | */ | ||
| 217 | for (i = 0; i < log10_all - log10_this; i++) { | ||
| 218 | ret = trace_seq_printf(s, " "); | ||
| 219 | if (!ret) | ||
| 220 | return TRACE_TYPE_PARTIAL_LINE; | ||
| 221 | } | ||
| 222 | ret = trace_seq_printf(s, "%d) ", cpu); | ||
| 223 | if (!ret) | 317 | if (!ret) |
| 224 | return TRACE_TYPE_PARTIAL_LINE; | 318 | return TRACE_TYPE_PARTIAL_LINE; |
| 225 | 319 | ||
| @@ -270,6 +364,15 @@ print_graph_proc(struct trace_seq *s, pid_t pid) | |||
| 270 | } | 364 | } |
| 271 | 365 | ||
| 272 | 366 | ||
| 367 | static enum print_line_t | ||
| 368 | print_graph_lat_fmt(struct trace_seq *s, struct trace_entry *entry) | ||
| 369 | { | ||
| 370 | if (!trace_seq_putc(s, ' ')) | ||
| 371 | return 0; | ||
| 372 | |||
| 373 | return trace_print_lat_fmt(s, entry); | ||
| 374 | } | ||
| 375 | |||
| 273 | /* If the pid changed since the last trace, output this event */ | 376 | /* If the pid changed since the last trace, output this event */ |
| 274 | static enum print_line_t | 377 | static enum print_line_t |
| 275 | verif_pid(struct trace_seq *s, pid_t pid, int cpu, struct fgraph_data *data) | 378 | verif_pid(struct trace_seq *s, pid_t pid, int cpu, struct fgraph_data *data) |
| @@ -427,6 +530,7 @@ print_graph_irq(struct trace_iterator *iter, unsigned long addr, | |||
| 427 | if (ret == TRACE_TYPE_PARTIAL_LINE) | 530 | if (ret == TRACE_TYPE_PARTIAL_LINE) |
| 428 | return TRACE_TYPE_PARTIAL_LINE; | 531 | return TRACE_TYPE_PARTIAL_LINE; |
| 429 | } | 532 | } |
| 533 | |||
| 430 | /* Proc */ | 534 | /* Proc */ |
| 431 | if (tracer_flags.val & TRACE_GRAPH_PRINT_PROC) { | 535 | if (tracer_flags.val & TRACE_GRAPH_PRINT_PROC) { |
| 432 | ret = print_graph_proc(s, pid); | 536 | ret = print_graph_proc(s, pid); |
| @@ -565,11 +669,7 @@ print_graph_entry_leaf(struct trace_iterator *iter, | |||
| 565 | return TRACE_TYPE_PARTIAL_LINE; | 669 | return TRACE_TYPE_PARTIAL_LINE; |
| 566 | } | 670 | } |
| 567 | 671 | ||
| 568 | ret = seq_print_ip_sym(s, call->func, 0); | 672 | ret = trace_seq_printf(s, "%ps();\n", (void *)call->func); |
| 569 | if (!ret) | ||
| 570 | return TRACE_TYPE_PARTIAL_LINE; | ||
| 571 | |||
| 572 | ret = trace_seq_printf(s, "();\n"); | ||
| 573 | if (!ret) | 673 | if (!ret) |
| 574 | return TRACE_TYPE_PARTIAL_LINE; | 674 | return TRACE_TYPE_PARTIAL_LINE; |
| 575 | 675 | ||
| @@ -612,11 +712,7 @@ print_graph_entry_nested(struct trace_iterator *iter, | |||
| 612 | return TRACE_TYPE_PARTIAL_LINE; | 712 | return TRACE_TYPE_PARTIAL_LINE; |
| 613 | } | 713 | } |
| 614 | 714 | ||
| 615 | ret = seq_print_ip_sym(s, call->func, 0); | 715 | ret = trace_seq_printf(s, "%ps() {\n", (void *)call->func); |
| 616 | if (!ret) | ||
| 617 | return TRACE_TYPE_PARTIAL_LINE; | ||
| 618 | |||
| 619 | ret = trace_seq_printf(s, "() {\n"); | ||
| 620 | if (!ret) | 716 | if (!ret) |
| 621 | return TRACE_TYPE_PARTIAL_LINE; | 717 | return TRACE_TYPE_PARTIAL_LINE; |
| 622 | 718 | ||
| @@ -672,6 +768,13 @@ print_graph_prologue(struct trace_iterator *iter, struct trace_seq *s, | |||
| 672 | return TRACE_TYPE_PARTIAL_LINE; | 768 | return TRACE_TYPE_PARTIAL_LINE; |
| 673 | } | 769 | } |
| 674 | 770 | ||
| 771 | /* Latency format */ | ||
| 772 | if (trace_flags & TRACE_ITER_LATENCY_FMT) { | ||
| 773 | ret = print_graph_lat_fmt(s, ent); | ||
| 774 | if (ret == TRACE_TYPE_PARTIAL_LINE) | ||
| 775 | return TRACE_TYPE_PARTIAL_LINE; | ||
| 776 | } | ||
| 777 | |||
| 675 | return 0; | 778 | return 0; |
| 676 | } | 779 | } |
| 677 | 780 | ||
| @@ -843,9 +946,16 @@ print_graph_function(struct trace_iterator *iter) | |||
| 843 | 946 | ||
| 844 | switch (entry->type) { | 947 | switch (entry->type) { |
| 845 | case TRACE_GRAPH_ENT: { | 948 | case TRACE_GRAPH_ENT: { |
| 846 | struct ftrace_graph_ent_entry *field; | 949 | /* |
| 950 | * print_graph_entry() may consume the current event, | ||
| 951 | * thus @field may become invalid, so we need to save it. | ||
| 952 | * sizeof(struct ftrace_graph_ent_entry) is very small, | ||
| 953 | * it can be safely saved at the stack. | ||
| 954 | */ | ||
| 955 | struct ftrace_graph_ent_entry *field, saved; | ||
| 847 | trace_assign_type(field, entry); | 956 | trace_assign_type(field, entry); |
| 848 | return print_graph_entry(field, s, iter); | 957 | saved = *field; |
| 958 | return print_graph_entry(&saved, s, iter); | ||
| 849 | } | 959 | } |
| 850 | case TRACE_GRAPH_RET: { | 960 | case TRACE_GRAPH_RET: { |
| 851 | struct ftrace_graph_ret_entry *field; | 961 | struct ftrace_graph_ret_entry *field; |
| @@ -859,28 +969,59 @@ print_graph_function(struct trace_iterator *iter) | |||
| 859 | return TRACE_TYPE_HANDLED; | 969 | return TRACE_TYPE_HANDLED; |
| 860 | } | 970 | } |
| 861 | 971 | ||
| 972 | static void print_lat_header(struct seq_file *s) | ||
| 973 | { | ||
| 974 | static const char spaces[] = " " /* 16 spaces */ | ||
| 975 | " " /* 4 spaces */ | ||
| 976 | " "; /* 17 spaces */ | ||
| 977 | int size = 0; | ||
| 978 | |||
| 979 | if (tracer_flags.val & TRACE_GRAPH_PRINT_ABS_TIME) | ||
| 980 | size += 16; | ||
| 981 | if (tracer_flags.val & TRACE_GRAPH_PRINT_CPU) | ||
| 982 | size += 4; | ||
| 983 | if (tracer_flags.val & TRACE_GRAPH_PRINT_PROC) | ||
| 984 | size += 17; | ||
| 985 | |||
| 986 | seq_printf(s, "#%.*s _-----=> irqs-off \n", size, spaces); | ||
| 987 | seq_printf(s, "#%.*s / _----=> need-resched \n", size, spaces); | ||
| 988 | seq_printf(s, "#%.*s| / _---=> hardirq/softirq \n", size, spaces); | ||
| 989 | seq_printf(s, "#%.*s|| / _--=> preempt-depth \n", size, spaces); | ||
| 990 | seq_printf(s, "#%.*s||| / _-=> lock-depth \n", size, spaces); | ||
| 991 | seq_printf(s, "#%.*s|||| / \n", size, spaces); | ||
| 992 | } | ||
| 993 | |||
| 862 | static void print_graph_headers(struct seq_file *s) | 994 | static void print_graph_headers(struct seq_file *s) |
| 863 | { | 995 | { |
| 996 | int lat = trace_flags & TRACE_ITER_LATENCY_FMT; | ||
| 997 | |||
| 998 | if (lat) | ||
| 999 | print_lat_header(s); | ||
| 1000 | |||
| 864 | /* 1st line */ | 1001 | /* 1st line */ |
| 865 | seq_printf(s, "# "); | 1002 | seq_printf(s, "#"); |
| 866 | if (tracer_flags.val & TRACE_GRAPH_PRINT_ABS_TIME) | 1003 | if (tracer_flags.val & TRACE_GRAPH_PRINT_ABS_TIME) |
| 867 | seq_printf(s, " TIME "); | 1004 | seq_printf(s, " TIME "); |
| 868 | if (tracer_flags.val & TRACE_GRAPH_PRINT_CPU) | 1005 | if (tracer_flags.val & TRACE_GRAPH_PRINT_CPU) |
| 869 | seq_printf(s, "CPU"); | 1006 | seq_printf(s, " CPU"); |
| 870 | if (tracer_flags.val & TRACE_GRAPH_PRINT_PROC) | 1007 | if (tracer_flags.val & TRACE_GRAPH_PRINT_PROC) |
| 871 | seq_printf(s, " TASK/PID "); | 1008 | seq_printf(s, " TASK/PID "); |
| 1009 | if (lat) | ||
| 1010 | seq_printf(s, "|||||"); | ||
| 872 | if (tracer_flags.val & TRACE_GRAPH_PRINT_DURATION) | 1011 | if (tracer_flags.val & TRACE_GRAPH_PRINT_DURATION) |
| 873 | seq_printf(s, " DURATION "); | 1012 | seq_printf(s, " DURATION "); |
| 874 | seq_printf(s, " FUNCTION CALLS\n"); | 1013 | seq_printf(s, " FUNCTION CALLS\n"); |
| 875 | 1014 | ||
| 876 | /* 2nd line */ | 1015 | /* 2nd line */ |
| 877 | seq_printf(s, "# "); | 1016 | seq_printf(s, "#"); |
| 878 | if (tracer_flags.val & TRACE_GRAPH_PRINT_ABS_TIME) | 1017 | if (tracer_flags.val & TRACE_GRAPH_PRINT_ABS_TIME) |
| 879 | seq_printf(s, " | "); | 1018 | seq_printf(s, " | "); |
| 880 | if (tracer_flags.val & TRACE_GRAPH_PRINT_CPU) | 1019 | if (tracer_flags.val & TRACE_GRAPH_PRINT_CPU) |
| 881 | seq_printf(s, "| "); | 1020 | seq_printf(s, " | "); |
| 882 | if (tracer_flags.val & TRACE_GRAPH_PRINT_PROC) | 1021 | if (tracer_flags.val & TRACE_GRAPH_PRINT_PROC) |
| 883 | seq_printf(s, " | | "); | 1022 | seq_printf(s, " | | "); |
| 1023 | if (lat) | ||
| 1024 | seq_printf(s, "|||||"); | ||
| 884 | if (tracer_flags.val & TRACE_GRAPH_PRINT_DURATION) | 1025 | if (tracer_flags.val & TRACE_GRAPH_PRINT_DURATION) |
| 885 | seq_printf(s, " | | "); | 1026 | seq_printf(s, " | | "); |
| 886 | seq_printf(s, " | | | |\n"); | 1027 | seq_printf(s, " | | | |\n"); |
| @@ -927,6 +1068,8 @@ static struct tracer graph_trace __read_mostly = { | |||
| 927 | 1068 | ||
| 928 | static __init int init_graph_trace(void) | 1069 | static __init int init_graph_trace(void) |
| 929 | { | 1070 | { |
| 1071 | max_bytes_for_cpu = snprintf(NULL, 0, "%d", nr_cpu_ids - 1); | ||
| 1072 | |||
| 930 | return register_tracer(&graph_trace); | 1073 | return register_tracer(&graph_trace); |
| 931 | } | 1074 | } |
| 932 | 1075 | ||
diff --git a/kernel/trace/trace_hw_branches.c b/kernel/trace/trace_hw_branches.c index ca7d7c4d0c2a..23b63859130e 100644 --- a/kernel/trace/trace_hw_branches.c +++ b/kernel/trace/trace_hw_branches.c | |||
| @@ -155,7 +155,7 @@ static enum print_line_t bts_trace_print_line(struct trace_iterator *iter) | |||
| 155 | seq_print_ip_sym(seq, it->from, symflags) && | 155 | seq_print_ip_sym(seq, it->from, symflags) && |
| 156 | trace_seq_printf(seq, "\n")) | 156 | trace_seq_printf(seq, "\n")) |
| 157 | return TRACE_TYPE_HANDLED; | 157 | return TRACE_TYPE_HANDLED; |
| 158 | return TRACE_TYPE_PARTIAL_LINE;; | 158 | return TRACE_TYPE_PARTIAL_LINE; |
| 159 | } | 159 | } |
| 160 | return TRACE_TYPE_UNHANDLED; | 160 | return TRACE_TYPE_UNHANDLED; |
| 161 | } | 161 | } |
diff --git a/kernel/trace/trace_irqsoff.c b/kernel/trace/trace_irqsoff.c index b923d13e2fad..3aa7eaa2114c 100644 --- a/kernel/trace/trace_irqsoff.c +++ b/kernel/trace/trace_irqsoff.c | |||
| @@ -129,15 +129,10 @@ check_critical_timing(struct trace_array *tr, | |||
| 129 | unsigned long parent_ip, | 129 | unsigned long parent_ip, |
| 130 | int cpu) | 130 | int cpu) |
| 131 | { | 131 | { |
| 132 | unsigned long latency, t0, t1; | ||
| 133 | cycle_t T0, T1, delta; | 132 | cycle_t T0, T1, delta; |
| 134 | unsigned long flags; | 133 | unsigned long flags; |
| 135 | int pc; | 134 | int pc; |
| 136 | 135 | ||
| 137 | /* | ||
| 138 | * usecs conversion is slow so we try to delay the conversion | ||
| 139 | * as long as possible: | ||
| 140 | */ | ||
| 141 | T0 = data->preempt_timestamp; | 136 | T0 = data->preempt_timestamp; |
| 142 | T1 = ftrace_now(cpu); | 137 | T1 = ftrace_now(cpu); |
| 143 | delta = T1-T0; | 138 | delta = T1-T0; |
| @@ -157,18 +152,15 @@ check_critical_timing(struct trace_array *tr, | |||
| 157 | 152 | ||
| 158 | trace_function(tr, CALLER_ADDR0, parent_ip, flags, pc); | 153 | trace_function(tr, CALLER_ADDR0, parent_ip, flags, pc); |
| 159 | 154 | ||
| 160 | latency = nsecs_to_usecs(delta); | ||
| 161 | |||
| 162 | if (data->critical_sequence != max_sequence) | 155 | if (data->critical_sequence != max_sequence) |
| 163 | goto out_unlock; | 156 | goto out_unlock; |
| 164 | 157 | ||
| 165 | tracing_max_latency = delta; | ||
| 166 | t0 = nsecs_to_usecs(T0); | ||
| 167 | t1 = nsecs_to_usecs(T1); | ||
| 168 | |||
| 169 | data->critical_end = parent_ip; | 158 | data->critical_end = parent_ip; |
| 170 | 159 | ||
| 171 | update_max_tr_single(tr, current, cpu); | 160 | if (likely(!is_tracing_stopped())) { |
| 161 | tracing_max_latency = delta; | ||
| 162 | update_max_tr_single(tr, current, cpu); | ||
| 163 | } | ||
| 172 | 164 | ||
| 173 | max_sequence++; | 165 | max_sequence++; |
| 174 | 166 | ||
| @@ -178,7 +170,6 @@ out_unlock: | |||
| 178 | out: | 170 | out: |
| 179 | data->critical_sequence = max_sequence; | 171 | data->critical_sequence = max_sequence; |
| 180 | data->preempt_timestamp = ftrace_now(cpu); | 172 | data->preempt_timestamp = ftrace_now(cpu); |
| 181 | tracing_reset(tr, cpu); | ||
| 182 | trace_function(tr, CALLER_ADDR0, parent_ip, flags, pc); | 173 | trace_function(tr, CALLER_ADDR0, parent_ip, flags, pc); |
| 183 | } | 174 | } |
| 184 | 175 | ||
| @@ -208,7 +199,6 @@ start_critical_timing(unsigned long ip, unsigned long parent_ip) | |||
| 208 | data->critical_sequence = max_sequence; | 199 | data->critical_sequence = max_sequence; |
| 209 | data->preempt_timestamp = ftrace_now(cpu); | 200 | data->preempt_timestamp = ftrace_now(cpu); |
| 210 | data->critical_start = parent_ip ? : ip; | 201 | data->critical_start = parent_ip ? : ip; |
| 211 | tracing_reset(tr, cpu); | ||
| 212 | 202 | ||
| 213 | local_save_flags(flags); | 203 | local_save_flags(flags); |
| 214 | 204 | ||
| @@ -379,6 +369,7 @@ static void __irqsoff_tracer_init(struct trace_array *tr) | |||
| 379 | irqsoff_trace = tr; | 369 | irqsoff_trace = tr; |
| 380 | /* make sure that the tracer is visible */ | 370 | /* make sure that the tracer is visible */ |
| 381 | smp_wmb(); | 371 | smp_wmb(); |
| 372 | tracing_reset_online_cpus(tr); | ||
| 382 | start_irqsoff_tracer(tr); | 373 | start_irqsoff_tracer(tr); |
| 383 | } | 374 | } |
| 384 | 375 | ||
diff --git a/kernel/trace/trace_mmiotrace.c b/kernel/trace/trace_mmiotrace.c index d53b45ed0806..0acd834659ed 100644 --- a/kernel/trace/trace_mmiotrace.c +++ b/kernel/trace/trace_mmiotrace.c | |||
| @@ -307,11 +307,13 @@ static void __trace_mmiotrace_rw(struct trace_array *tr, | |||
| 307 | struct trace_array_cpu *data, | 307 | struct trace_array_cpu *data, |
| 308 | struct mmiotrace_rw *rw) | 308 | struct mmiotrace_rw *rw) |
| 309 | { | 309 | { |
| 310 | struct ftrace_event_call *call = &event_mmiotrace_rw; | ||
| 311 | struct ring_buffer *buffer = tr->buffer; | ||
| 310 | struct ring_buffer_event *event; | 312 | struct ring_buffer_event *event; |
| 311 | struct trace_mmiotrace_rw *entry; | 313 | struct trace_mmiotrace_rw *entry; |
| 312 | int pc = preempt_count(); | 314 | int pc = preempt_count(); |
| 313 | 315 | ||
| 314 | event = trace_buffer_lock_reserve(tr, TRACE_MMIO_RW, | 316 | event = trace_buffer_lock_reserve(buffer, TRACE_MMIO_RW, |
| 315 | sizeof(*entry), 0, pc); | 317 | sizeof(*entry), 0, pc); |
| 316 | if (!event) { | 318 | if (!event) { |
| 317 | atomic_inc(&dropped_count); | 319 | atomic_inc(&dropped_count); |
| @@ -319,7 +321,9 @@ static void __trace_mmiotrace_rw(struct trace_array *tr, | |||
| 319 | } | 321 | } |
| 320 | entry = ring_buffer_event_data(event); | 322 | entry = ring_buffer_event_data(event); |
| 321 | entry->rw = *rw; | 323 | entry->rw = *rw; |
| 322 | trace_buffer_unlock_commit(tr, event, 0, pc); | 324 | |
| 325 | if (!filter_check_discard(call, entry, buffer, event)) | ||
| 326 | trace_buffer_unlock_commit(buffer, event, 0, pc); | ||
| 323 | } | 327 | } |
| 324 | 328 | ||
| 325 | void mmio_trace_rw(struct mmiotrace_rw *rw) | 329 | void mmio_trace_rw(struct mmiotrace_rw *rw) |
| @@ -333,11 +337,13 @@ static void __trace_mmiotrace_map(struct trace_array *tr, | |||
| 333 | struct trace_array_cpu *data, | 337 | struct trace_array_cpu *data, |
| 334 | struct mmiotrace_map *map) | 338 | struct mmiotrace_map *map) |
| 335 | { | 339 | { |
| 340 | struct ftrace_event_call *call = &event_mmiotrace_map; | ||
| 341 | struct ring_buffer *buffer = tr->buffer; | ||
| 336 | struct ring_buffer_event *event; | 342 | struct ring_buffer_event *event; |
| 337 | struct trace_mmiotrace_map *entry; | 343 | struct trace_mmiotrace_map *entry; |
| 338 | int pc = preempt_count(); | 344 | int pc = preempt_count(); |
| 339 | 345 | ||
| 340 | event = trace_buffer_lock_reserve(tr, TRACE_MMIO_MAP, | 346 | event = trace_buffer_lock_reserve(buffer, TRACE_MMIO_MAP, |
| 341 | sizeof(*entry), 0, pc); | 347 | sizeof(*entry), 0, pc); |
| 342 | if (!event) { | 348 | if (!event) { |
| 343 | atomic_inc(&dropped_count); | 349 | atomic_inc(&dropped_count); |
| @@ -345,7 +351,9 @@ static void __trace_mmiotrace_map(struct trace_array *tr, | |||
| 345 | } | 351 | } |
| 346 | entry = ring_buffer_event_data(event); | 352 | entry = ring_buffer_event_data(event); |
| 347 | entry->map = *map; | 353 | entry->map = *map; |
| 348 | trace_buffer_unlock_commit(tr, event, 0, pc); | 354 | |
| 355 | if (!filter_check_discard(call, entry, buffer, event)) | ||
| 356 | trace_buffer_unlock_commit(buffer, event, 0, pc); | ||
| 349 | } | 357 | } |
| 350 | 358 | ||
| 351 | void mmio_trace_mapping(struct mmiotrace_map *map) | 359 | void mmio_trace_mapping(struct mmiotrace_map *map) |
diff --git a/kernel/trace/trace_output.c b/kernel/trace/trace_output.c index 7938f3ae93e3..f572f44c6e1e 100644 --- a/kernel/trace/trace_output.c +++ b/kernel/trace/trace_output.c | |||
| @@ -27,8 +27,7 @@ void trace_print_seq(struct seq_file *m, struct trace_seq *s) | |||
| 27 | { | 27 | { |
| 28 | int len = s->len >= PAGE_SIZE ? PAGE_SIZE - 1 : s->len; | 28 | int len = s->len >= PAGE_SIZE ? PAGE_SIZE - 1 : s->len; |
| 29 | 29 | ||
| 30 | s->buffer[len] = 0; | 30 | seq_write(m, s->buffer, len); |
| 31 | seq_puts(m, s->buffer); | ||
| 32 | 31 | ||
| 33 | trace_seq_init(s); | 32 | trace_seq_init(s); |
| 34 | } | 33 | } |
| @@ -408,7 +407,7 @@ seq_print_userip_objs(const struct userstack_entry *entry, struct trace_seq *s, | |||
| 408 | * since individual threads might have already quit! | 407 | * since individual threads might have already quit! |
| 409 | */ | 408 | */ |
| 410 | rcu_read_lock(); | 409 | rcu_read_lock(); |
| 411 | task = find_task_by_vpid(entry->ent.tgid); | 410 | task = find_task_by_vpid(entry->tgid); |
| 412 | if (task) | 411 | if (task) |
| 413 | mm = get_task_mm(task); | 412 | mm = get_task_mm(task); |
| 414 | rcu_read_unlock(); | 413 | rcu_read_unlock(); |
| @@ -461,18 +460,23 @@ seq_print_ip_sym(struct trace_seq *s, unsigned long ip, unsigned long sym_flags) | |||
| 461 | return ret; | 460 | return ret; |
| 462 | } | 461 | } |
| 463 | 462 | ||
| 464 | static int | 463 | /** |
| 465 | lat_print_generic(struct trace_seq *s, struct trace_entry *entry, int cpu) | 464 | * trace_print_lat_fmt - print the irq, preempt and lockdep fields |
| 465 | * @s: trace seq struct to write to | ||
| 466 | * @entry: The trace entry field from the ring buffer | ||
| 467 | * | ||
| 468 | * Prints the generic fields of irqs off, in hard or softirq, preempt | ||
| 469 | * count and lock depth. | ||
| 470 | */ | ||
| 471 | int trace_print_lat_fmt(struct trace_seq *s, struct trace_entry *entry) | ||
| 466 | { | 472 | { |
| 467 | int hardirq, softirq; | 473 | int hardirq, softirq; |
| 468 | char comm[TASK_COMM_LEN]; | 474 | int ret; |
| 469 | 475 | ||
| 470 | trace_find_cmdline(entry->pid, comm); | ||
| 471 | hardirq = entry->flags & TRACE_FLAG_HARDIRQ; | 476 | hardirq = entry->flags & TRACE_FLAG_HARDIRQ; |
| 472 | softirq = entry->flags & TRACE_FLAG_SOFTIRQ; | 477 | softirq = entry->flags & TRACE_FLAG_SOFTIRQ; |
| 473 | 478 | ||
| 474 | if (!trace_seq_printf(s, "%8.8s-%-5d %3d%c%c%c", | 479 | if (!trace_seq_printf(s, "%c%c%c", |
| 475 | comm, entry->pid, cpu, | ||
| 476 | (entry->flags & TRACE_FLAG_IRQS_OFF) ? 'd' : | 480 | (entry->flags & TRACE_FLAG_IRQS_OFF) ? 'd' : |
| 477 | (entry->flags & TRACE_FLAG_IRQS_NOSUPPORT) ? | 481 | (entry->flags & TRACE_FLAG_IRQS_NOSUPPORT) ? |
| 478 | 'X' : '.', | 482 | 'X' : '.', |
| @@ -482,9 +486,30 @@ lat_print_generic(struct trace_seq *s, struct trace_entry *entry, int cpu) | |||
| 482 | hardirq ? 'h' : softirq ? 's' : '.')) | 486 | hardirq ? 'h' : softirq ? 's' : '.')) |
| 483 | return 0; | 487 | return 0; |
| 484 | 488 | ||
| 489 | if (entry->lock_depth < 0) | ||
| 490 | ret = trace_seq_putc(s, '.'); | ||
| 491 | else | ||
| 492 | ret = trace_seq_printf(s, "%d", entry->lock_depth); | ||
| 493 | if (!ret) | ||
| 494 | return 0; | ||
| 495 | |||
| 485 | if (entry->preempt_count) | 496 | if (entry->preempt_count) |
| 486 | return trace_seq_printf(s, "%x", entry->preempt_count); | 497 | return trace_seq_printf(s, "%x", entry->preempt_count); |
| 487 | return trace_seq_puts(s, "."); | 498 | return trace_seq_putc(s, '.'); |
| 499 | } | ||
| 500 | |||
| 501 | static int | ||
| 502 | lat_print_generic(struct trace_seq *s, struct trace_entry *entry, int cpu) | ||
| 503 | { | ||
| 504 | char comm[TASK_COMM_LEN]; | ||
| 505 | |||
| 506 | trace_find_cmdline(entry->pid, comm); | ||
| 507 | |||
| 508 | if (!trace_seq_printf(s, "%8.8s-%-5d %3d", | ||
| 509 | comm, entry->pid, cpu)) | ||
| 510 | return 0; | ||
| 511 | |||
| 512 | return trace_print_lat_fmt(s, entry); | ||
| 488 | } | 513 | } |
| 489 | 514 | ||
| 490 | static unsigned long preempt_mark_thresh = 100; | 515 | static unsigned long preempt_mark_thresh = 100; |
diff --git a/kernel/trace/trace_output.h b/kernel/trace/trace_output.h index d38bec4a9c30..9d91c72ba38b 100644 --- a/kernel/trace/trace_output.h +++ b/kernel/trace/trace_output.h | |||
| @@ -26,6 +26,8 @@ extern struct trace_event *ftrace_find_event(int type); | |||
| 26 | 26 | ||
| 27 | extern enum print_line_t trace_nop_print(struct trace_iterator *iter, | 27 | extern enum print_line_t trace_nop_print(struct trace_iterator *iter, |
| 28 | int flags); | 28 | int flags); |
| 29 | extern int | ||
| 30 | trace_print_lat_fmt(struct trace_seq *s, struct trace_entry *entry); | ||
| 29 | 31 | ||
| 30 | /* used by module unregistering */ | 32 | /* used by module unregistering */ |
| 31 | extern int __unregister_ftrace_event(struct trace_event *event); | 33 | extern int __unregister_ftrace_event(struct trace_event *event); |
diff --git a/kernel/trace/trace_power.c b/kernel/trace/trace_power.c deleted file mode 100644 index 8a30d9874cd4..000000000000 --- a/kernel/trace/trace_power.c +++ /dev/null | |||
| @@ -1,214 +0,0 @@ | |||
| 1 | /* | ||
| 2 | * ring buffer based C-state tracer | ||
| 3 | * | ||
| 4 | * Arjan van de Ven <arjan@linux.intel.com> | ||
| 5 | * Copyright (C) 2008 Intel Corporation | ||
| 6 | * | ||
| 7 | * Much is borrowed from trace_boot.c which is | ||
| 8 | * Copyright (C) 2008 Frederic Weisbecker <fweisbec@gmail.com> | ||
| 9 | * | ||
| 10 | */ | ||
| 11 | |||
| 12 | #include <linux/init.h> | ||
| 13 | #include <linux/debugfs.h> | ||
| 14 | #include <trace/power.h> | ||
| 15 | #include <linux/kallsyms.h> | ||
| 16 | #include <linux/module.h> | ||
| 17 | |||
| 18 | #include "trace.h" | ||
| 19 | #include "trace_output.h" | ||
| 20 | |||
| 21 | static struct trace_array *power_trace; | ||
| 22 | static int __read_mostly trace_power_enabled; | ||
| 23 | |||
| 24 | static void probe_power_start(struct power_trace *it, unsigned int type, | ||
| 25 | unsigned int level) | ||
| 26 | { | ||
| 27 | if (!trace_power_enabled) | ||
| 28 | return; | ||
| 29 | |||
| 30 | memset(it, 0, sizeof(struct power_trace)); | ||
| 31 | it->state = level; | ||
| 32 | it->type = type; | ||
| 33 | it->stamp = ktime_get(); | ||
| 34 | } | ||
| 35 | |||
| 36 | |||
| 37 | static void probe_power_end(struct power_trace *it) | ||
| 38 | { | ||
| 39 | struct ftrace_event_call *call = &event_power; | ||
| 40 | struct ring_buffer_event *event; | ||
| 41 | struct trace_power *entry; | ||
| 42 | struct trace_array_cpu *data; | ||
| 43 | struct trace_array *tr = power_trace; | ||
| 44 | |||
| 45 | if (!trace_power_enabled) | ||
| 46 | return; | ||
| 47 | |||
| 48 | preempt_disable(); | ||
| 49 | it->end = ktime_get(); | ||
| 50 | data = tr->data[smp_processor_id()]; | ||
| 51 | |||
| 52 | event = trace_buffer_lock_reserve(tr, TRACE_POWER, | ||
| 53 | sizeof(*entry), 0, 0); | ||
| 54 | if (!event) | ||
| 55 | goto out; | ||
| 56 | entry = ring_buffer_event_data(event); | ||
| 57 | entry->state_data = *it; | ||
| 58 | if (!filter_check_discard(call, entry, tr->buffer, event)) | ||
| 59 | trace_buffer_unlock_commit(tr, event, 0, 0); | ||
| 60 | out: | ||
| 61 | preempt_enable(); | ||
| 62 | } | ||
| 63 | |||
| 64 | static void probe_power_mark(struct power_trace *it, unsigned int type, | ||
| 65 | unsigned int level) | ||
| 66 | { | ||
| 67 | struct ftrace_event_call *call = &event_power; | ||
| 68 | struct ring_buffer_event *event; | ||
| 69 | struct trace_power *entry; | ||
| 70 | struct trace_array_cpu *data; | ||
| 71 | struct trace_array *tr = power_trace; | ||
| 72 | |||
| 73 | if (!trace_power_enabled) | ||
| 74 | return; | ||
| 75 | |||
| 76 | memset(it, 0, sizeof(struct power_trace)); | ||
| 77 | it->state = level; | ||
| 78 | it->type = type; | ||
| 79 | it->stamp = ktime_get(); | ||
| 80 | preempt_disable(); | ||
| 81 | it->end = it->stamp; | ||
| 82 | data = tr->data[smp_processor_id()]; | ||
| 83 | |||
| 84 | event = trace_buffer_lock_reserve(tr, TRACE_POWER, | ||
| 85 | sizeof(*entry), 0, 0); | ||
| 86 | if (!event) | ||
| 87 | goto out; | ||
| 88 | entry = ring_buffer_event_data(event); | ||
| 89 | entry->state_data = *it; | ||
| 90 | if (!filter_check_discard(call, entry, tr->buffer, event)) | ||
| 91 | trace_buffer_unlock_commit(tr, event, 0, 0); | ||
| 92 | out: | ||
| 93 | preempt_enable(); | ||
| 94 | } | ||
| 95 | |||
| 96 | static int tracing_power_register(void) | ||
| 97 | { | ||
| 98 | int ret; | ||
| 99 | |||
| 100 | ret = register_trace_power_start(probe_power_start); | ||
| 101 | if (ret) { | ||
| 102 | pr_info("power trace: Couldn't activate tracepoint" | ||
| 103 | " probe to trace_power_start\n"); | ||
| 104 | return ret; | ||
| 105 | } | ||
| 106 | ret = register_trace_power_end(probe_power_end); | ||
| 107 | if (ret) { | ||
| 108 | pr_info("power trace: Couldn't activate tracepoint" | ||
| 109 | " probe to trace_power_end\n"); | ||
| 110 | goto fail_start; | ||
| 111 | } | ||
| 112 | ret = register_trace_power_mark(probe_power_mark); | ||
| 113 | if (ret) { | ||
| 114 | pr_info("power trace: Couldn't activate tracepoint" | ||
| 115 | " probe to trace_power_mark\n"); | ||
| 116 | goto fail_end; | ||
| 117 | } | ||
| 118 | return ret; | ||
| 119 | fail_end: | ||
| 120 | unregister_trace_power_end(probe_power_end); | ||
| 121 | fail_start: | ||
| 122 | unregister_trace_power_start(probe_power_start); | ||
| 123 | return ret; | ||
| 124 | } | ||
| 125 | |||
| 126 | static void start_power_trace(struct trace_array *tr) | ||
| 127 | { | ||
| 128 | trace_power_enabled = 1; | ||
| 129 | } | ||
| 130 | |||
| 131 | static void stop_power_trace(struct trace_array *tr) | ||
| 132 | { | ||
| 133 | trace_power_enabled = 0; | ||
| 134 | } | ||
| 135 | |||
| 136 | static void power_trace_reset(struct trace_array *tr) | ||
| 137 | { | ||
| 138 | trace_power_enabled = 0; | ||
| 139 | unregister_trace_power_start(probe_power_start); | ||
| 140 | unregister_trace_power_end(probe_power_end); | ||
| 141 | unregister_trace_power_mark(probe_power_mark); | ||
| 142 | } | ||
| 143 | |||
| 144 | |||
| 145 | static int power_trace_init(struct trace_array *tr) | ||
| 146 | { | ||
| 147 | int cpu; | ||
| 148 | power_trace = tr; | ||
| 149 | |||
| 150 | trace_power_enabled = 1; | ||
| 151 | tracing_power_register(); | ||
| 152 | |||
| 153 | for_each_cpu(cpu, cpu_possible_mask) | ||
| 154 | tracing_reset(tr, cpu); | ||
| 155 | return 0; | ||
| 156 | } | ||
| 157 | |||
| 158 | static enum print_line_t power_print_line(struct trace_iterator *iter) | ||
| 159 | { | ||
| 160 | int ret = 0; | ||
| 161 | struct trace_entry *entry = iter->ent; | ||
| 162 | struct trace_power *field ; | ||
| 163 | struct power_trace *it; | ||
| 164 | struct trace_seq *s = &iter->seq; | ||
| 165 | struct timespec stamp; | ||
| 166 | struct timespec duration; | ||
| 167 | |||
| 168 | trace_assign_type(field, entry); | ||
| 169 | it = &field->state_data; | ||
| 170 | stamp = ktime_to_timespec(it->stamp); | ||
| 171 | duration = ktime_to_timespec(ktime_sub(it->end, it->stamp)); | ||
| 172 | |||
| 173 | if (entry->type == TRACE_POWER) { | ||
| 174 | if (it->type == POWER_CSTATE) | ||
| 175 | ret = trace_seq_printf(s, "[%5ld.%09ld] CSTATE: Going to C%i on cpu %i for %ld.%09ld\n", | ||
| 176 | stamp.tv_sec, | ||
| 177 | stamp.tv_nsec, | ||
| 178 | it->state, iter->cpu, | ||
| 179 | duration.tv_sec, | ||
| 180 | duration.tv_nsec); | ||
| 181 | if (it->type == POWER_PSTATE) | ||
| 182 | ret = trace_seq_printf(s, "[%5ld.%09ld] PSTATE: Going to P%i on cpu %i\n", | ||
| 183 | stamp.tv_sec, | ||
| 184 | stamp.tv_nsec, | ||
| 185 | it->state, iter->cpu); | ||
| 186 | if (!ret) | ||
| 187 | return TRACE_TYPE_PARTIAL_LINE; | ||
| 188 | return TRACE_TYPE_HANDLED; | ||
| 189 | } | ||
| 190 | return TRACE_TYPE_UNHANDLED; | ||
| 191 | } | ||
| 192 | |||
| 193 | static void power_print_header(struct seq_file *s) | ||
| 194 | { | ||
| 195 | seq_puts(s, "# TIMESTAMP STATE EVENT\n"); | ||
| 196 | seq_puts(s, "# | | |\n"); | ||
| 197 | } | ||
| 198 | |||
| 199 | static struct tracer power_tracer __read_mostly = | ||
| 200 | { | ||
| 201 | .name = "power", | ||
| 202 | .init = power_trace_init, | ||
| 203 | .start = start_power_trace, | ||
| 204 | .stop = stop_power_trace, | ||
| 205 | .reset = power_trace_reset, | ||
| 206 | .print_line = power_print_line, | ||
| 207 | .print_header = power_print_header, | ||
| 208 | }; | ||
| 209 | |||
| 210 | static int init_power_trace(void) | ||
| 211 | { | ||
| 212 | return register_tracer(&power_tracer); | ||
| 213 | } | ||
| 214 | device_initcall(init_power_trace); | ||
diff --git a/kernel/trace/trace_printk.c b/kernel/trace/trace_printk.c index 7b6278110827..2547d8813cf0 100644 --- a/kernel/trace/trace_printk.c +++ b/kernel/trace/trace_printk.c | |||
| @@ -11,7 +11,6 @@ | |||
| 11 | #include <linux/ftrace.h> | 11 | #include <linux/ftrace.h> |
| 12 | #include <linux/string.h> | 12 | #include <linux/string.h> |
| 13 | #include <linux/module.h> | 13 | #include <linux/module.h> |
| 14 | #include <linux/marker.h> | ||
| 15 | #include <linux/mutex.h> | 14 | #include <linux/mutex.h> |
| 16 | #include <linux/ctype.h> | 15 | #include <linux/ctype.h> |
| 17 | #include <linux/list.h> | 16 | #include <linux/list.h> |
| @@ -176,7 +175,7 @@ static int t_show(struct seq_file *m, void *v) | |||
| 176 | const char *str = *fmt; | 175 | const char *str = *fmt; |
| 177 | int i; | 176 | int i; |
| 178 | 177 | ||
| 179 | seq_printf(m, "0x%lx : \"", (unsigned long)fmt); | 178 | seq_printf(m, "0x%lx : \"", *(unsigned long *)fmt); |
| 180 | 179 | ||
| 181 | /* | 180 | /* |
| 182 | * Tabs and new lines need to be converted. | 181 | * Tabs and new lines need to be converted. |
diff --git a/kernel/trace/trace_sched_switch.c b/kernel/trace/trace_sched_switch.c index a98106dd979c..5fca0f51fde4 100644 --- a/kernel/trace/trace_sched_switch.c +++ b/kernel/trace/trace_sched_switch.c | |||
| @@ -20,6 +20,35 @@ static int sched_ref; | |||
| 20 | static DEFINE_MUTEX(sched_register_mutex); | 20 | static DEFINE_MUTEX(sched_register_mutex); |
| 21 | static int sched_stopped; | 21 | static int sched_stopped; |
| 22 | 22 | ||
| 23 | |||
| 24 | void | ||
| 25 | tracing_sched_switch_trace(struct trace_array *tr, | ||
| 26 | struct task_struct *prev, | ||
| 27 | struct task_struct *next, | ||
| 28 | unsigned long flags, int pc) | ||
| 29 | { | ||
| 30 | struct ftrace_event_call *call = &event_context_switch; | ||
| 31 | struct ring_buffer *buffer = tr->buffer; | ||
| 32 | struct ring_buffer_event *event; | ||
| 33 | struct ctx_switch_entry *entry; | ||
| 34 | |||
| 35 | event = trace_buffer_lock_reserve(buffer, TRACE_CTX, | ||
| 36 | sizeof(*entry), flags, pc); | ||
| 37 | if (!event) | ||
| 38 | return; | ||
| 39 | entry = ring_buffer_event_data(event); | ||
| 40 | entry->prev_pid = prev->pid; | ||
| 41 | entry->prev_prio = prev->prio; | ||
| 42 | entry->prev_state = prev->state; | ||
| 43 | entry->next_pid = next->pid; | ||
| 44 | entry->next_prio = next->prio; | ||
| 45 | entry->next_state = next->state; | ||
| 46 | entry->next_cpu = task_cpu(next); | ||
| 47 | |||
| 48 | if (!filter_check_discard(call, entry, buffer, event)) | ||
| 49 | trace_buffer_unlock_commit(buffer, event, flags, pc); | ||
| 50 | } | ||
| 51 | |||
| 23 | static void | 52 | static void |
| 24 | probe_sched_switch(struct rq *__rq, struct task_struct *prev, | 53 | probe_sched_switch(struct rq *__rq, struct task_struct *prev, |
| 25 | struct task_struct *next) | 54 | struct task_struct *next) |
| @@ -49,6 +78,36 @@ probe_sched_switch(struct rq *__rq, struct task_struct *prev, | |||
| 49 | local_irq_restore(flags); | 78 | local_irq_restore(flags); |
| 50 | } | 79 | } |
| 51 | 80 | ||
| 81 | void | ||
| 82 | tracing_sched_wakeup_trace(struct trace_array *tr, | ||
| 83 | struct task_struct *wakee, | ||
| 84 | struct task_struct *curr, | ||
| 85 | unsigned long flags, int pc) | ||
| 86 | { | ||
| 87 | struct ftrace_event_call *call = &event_wakeup; | ||
| 88 | struct ring_buffer_event *event; | ||
| 89 | struct ctx_switch_entry *entry; | ||
| 90 | struct ring_buffer *buffer = tr->buffer; | ||
| 91 | |||
| 92 | event = trace_buffer_lock_reserve(buffer, TRACE_WAKE, | ||
| 93 | sizeof(*entry), flags, pc); | ||
| 94 | if (!event) | ||
| 95 | return; | ||
| 96 | entry = ring_buffer_event_data(event); | ||
| 97 | entry->prev_pid = curr->pid; | ||
| 98 | entry->prev_prio = curr->prio; | ||
| 99 | entry->prev_state = curr->state; | ||
| 100 | entry->next_pid = wakee->pid; | ||
| 101 | entry->next_prio = wakee->prio; | ||
| 102 | entry->next_state = wakee->state; | ||
| 103 | entry->next_cpu = task_cpu(wakee); | ||
| 104 | |||
| 105 | if (!filter_check_discard(call, entry, buffer, event)) | ||
| 106 | ring_buffer_unlock_commit(buffer, event); | ||
| 107 | ftrace_trace_stack(tr->buffer, flags, 6, pc); | ||
| 108 | ftrace_trace_userstack(tr->buffer, flags, pc); | ||
| 109 | } | ||
| 110 | |||
| 52 | static void | 111 | static void |
| 53 | probe_sched_wakeup(struct rq *__rq, struct task_struct *wakee, int success) | 112 | probe_sched_wakeup(struct rq *__rq, struct task_struct *wakee, int success) |
| 54 | { | 113 | { |
diff --git a/kernel/trace/trace_sched_wakeup.c b/kernel/trace/trace_sched_wakeup.c index eacb27225173..26185d727676 100644 --- a/kernel/trace/trace_sched_wakeup.c +++ b/kernel/trace/trace_sched_wakeup.c | |||
| @@ -24,6 +24,7 @@ static int __read_mostly tracer_enabled; | |||
| 24 | 24 | ||
| 25 | static struct task_struct *wakeup_task; | 25 | static struct task_struct *wakeup_task; |
| 26 | static int wakeup_cpu; | 26 | static int wakeup_cpu; |
| 27 | static int wakeup_current_cpu; | ||
| 27 | static unsigned wakeup_prio = -1; | 28 | static unsigned wakeup_prio = -1; |
| 28 | static int wakeup_rt; | 29 | static int wakeup_rt; |
| 29 | 30 | ||
| @@ -56,33 +57,23 @@ wakeup_tracer_call(unsigned long ip, unsigned long parent_ip) | |||
| 56 | resched = ftrace_preempt_disable(); | 57 | resched = ftrace_preempt_disable(); |
| 57 | 58 | ||
| 58 | cpu = raw_smp_processor_id(); | 59 | cpu = raw_smp_processor_id(); |
| 60 | if (cpu != wakeup_current_cpu) | ||
| 61 | goto out_enable; | ||
| 62 | |||
| 59 | data = tr->data[cpu]; | 63 | data = tr->data[cpu]; |
| 60 | disabled = atomic_inc_return(&data->disabled); | 64 | disabled = atomic_inc_return(&data->disabled); |
| 61 | if (unlikely(disabled != 1)) | 65 | if (unlikely(disabled != 1)) |
| 62 | goto out; | 66 | goto out; |
| 63 | 67 | ||
| 64 | local_irq_save(flags); | 68 | local_irq_save(flags); |
| 65 | __raw_spin_lock(&wakeup_lock); | ||
| 66 | |||
| 67 | if (unlikely(!wakeup_task)) | ||
| 68 | goto unlock; | ||
| 69 | |||
| 70 | /* | ||
| 71 | * The task can't disappear because it needs to | ||
| 72 | * wake up first, and we have the wakeup_lock. | ||
| 73 | */ | ||
| 74 | if (task_cpu(wakeup_task) != cpu) | ||
| 75 | goto unlock; | ||
| 76 | 69 | ||
| 77 | trace_function(tr, ip, parent_ip, flags, pc); | 70 | trace_function(tr, ip, parent_ip, flags, pc); |
| 78 | 71 | ||
| 79 | unlock: | ||
| 80 | __raw_spin_unlock(&wakeup_lock); | ||
| 81 | local_irq_restore(flags); | 72 | local_irq_restore(flags); |
| 82 | 73 | ||
| 83 | out: | 74 | out: |
| 84 | atomic_dec(&data->disabled); | 75 | atomic_dec(&data->disabled); |
| 85 | 76 | out_enable: | |
| 86 | ftrace_preempt_enable(resched); | 77 | ftrace_preempt_enable(resched); |
| 87 | } | 78 | } |
| 88 | 79 | ||
| @@ -107,11 +98,18 @@ static int report_latency(cycle_t delta) | |||
| 107 | return 1; | 98 | return 1; |
| 108 | } | 99 | } |
| 109 | 100 | ||
| 101 | static void probe_wakeup_migrate_task(struct task_struct *task, int cpu) | ||
| 102 | { | ||
| 103 | if (task != wakeup_task) | ||
| 104 | return; | ||
| 105 | |||
| 106 | wakeup_current_cpu = cpu; | ||
| 107 | } | ||
| 108 | |||
| 110 | static void notrace | 109 | static void notrace |
| 111 | probe_wakeup_sched_switch(struct rq *rq, struct task_struct *prev, | 110 | probe_wakeup_sched_switch(struct rq *rq, struct task_struct *prev, |
| 112 | struct task_struct *next) | 111 | struct task_struct *next) |
| 113 | { | 112 | { |
| 114 | unsigned long latency = 0, t0 = 0, t1 = 0; | ||
| 115 | struct trace_array_cpu *data; | 113 | struct trace_array_cpu *data; |
| 116 | cycle_t T0, T1, delta; | 114 | cycle_t T0, T1, delta; |
| 117 | unsigned long flags; | 115 | unsigned long flags; |
| @@ -157,10 +155,6 @@ probe_wakeup_sched_switch(struct rq *rq, struct task_struct *prev, | |||
| 157 | trace_function(wakeup_trace, CALLER_ADDR0, CALLER_ADDR1, flags, pc); | 155 | trace_function(wakeup_trace, CALLER_ADDR0, CALLER_ADDR1, flags, pc); |
| 158 | tracing_sched_switch_trace(wakeup_trace, prev, next, flags, pc); | 156 | tracing_sched_switch_trace(wakeup_trace, prev, next, flags, pc); |
| 159 | 157 | ||
| 160 | /* | ||
| 161 | * usecs conversion is slow so we try to delay the conversion | ||
| 162 | * as long as possible: | ||
| 163 | */ | ||
| 164 | T0 = data->preempt_timestamp; | 158 | T0 = data->preempt_timestamp; |
| 165 | T1 = ftrace_now(cpu); | 159 | T1 = ftrace_now(cpu); |
| 166 | delta = T1-T0; | 160 | delta = T1-T0; |
| @@ -168,13 +162,10 @@ probe_wakeup_sched_switch(struct rq *rq, struct task_struct *prev, | |||
| 168 | if (!report_latency(delta)) | 162 | if (!report_latency(delta)) |
| 169 | goto out_unlock; | 163 | goto out_unlock; |
| 170 | 164 | ||
| 171 | latency = nsecs_to_usecs(delta); | 165 | if (likely(!is_tracing_stopped())) { |
| 172 | 166 | tracing_max_latency = delta; | |
| 173 | tracing_max_latency = delta; | 167 | update_max_tr(wakeup_trace, wakeup_task, wakeup_cpu); |
| 174 | t0 = nsecs_to_usecs(T0); | 168 | } |
| 175 | t1 = nsecs_to_usecs(T1); | ||
| 176 | |||
| 177 | update_max_tr(wakeup_trace, wakeup_task, wakeup_cpu); | ||
| 178 | 169 | ||
| 179 | out_unlock: | 170 | out_unlock: |
| 180 | __wakeup_reset(wakeup_trace); | 171 | __wakeup_reset(wakeup_trace); |
| @@ -186,11 +177,6 @@ out: | |||
| 186 | 177 | ||
| 187 | static void __wakeup_reset(struct trace_array *tr) | 178 | static void __wakeup_reset(struct trace_array *tr) |
| 188 | { | 179 | { |
| 189 | int cpu; | ||
| 190 | |||
| 191 | for_each_possible_cpu(cpu) | ||
| 192 | tracing_reset(tr, cpu); | ||
| 193 | |||
| 194 | wakeup_cpu = -1; | 180 | wakeup_cpu = -1; |
| 195 | wakeup_prio = -1; | 181 | wakeup_prio = -1; |
| 196 | 182 | ||
| @@ -204,6 +190,8 @@ static void wakeup_reset(struct trace_array *tr) | |||
| 204 | { | 190 | { |
| 205 | unsigned long flags; | 191 | unsigned long flags; |
| 206 | 192 | ||
| 193 | tracing_reset_online_cpus(tr); | ||
| 194 | |||
| 207 | local_irq_save(flags); | 195 | local_irq_save(flags); |
| 208 | __raw_spin_lock(&wakeup_lock); | 196 | __raw_spin_lock(&wakeup_lock); |
| 209 | __wakeup_reset(tr); | 197 | __wakeup_reset(tr); |
| @@ -247,6 +235,7 @@ probe_wakeup(struct rq *rq, struct task_struct *p, int success) | |||
| 247 | __wakeup_reset(wakeup_trace); | 235 | __wakeup_reset(wakeup_trace); |
| 248 | 236 | ||
| 249 | wakeup_cpu = task_cpu(p); | 237 | wakeup_cpu = task_cpu(p); |
| 238 | wakeup_current_cpu = wakeup_cpu; | ||
| 250 | wakeup_prio = p->prio; | 239 | wakeup_prio = p->prio; |
| 251 | 240 | ||
| 252 | wakeup_task = p; | 241 | wakeup_task = p; |
| @@ -296,6 +285,13 @@ static void start_wakeup_tracer(struct trace_array *tr) | |||
| 296 | goto fail_deprobe_wake_new; | 285 | goto fail_deprobe_wake_new; |
| 297 | } | 286 | } |
| 298 | 287 | ||
| 288 | ret = register_trace_sched_migrate_task(probe_wakeup_migrate_task); | ||
| 289 | if (ret) { | ||
| 290 | pr_info("wakeup trace: Couldn't activate tracepoint" | ||
| 291 | " probe to kernel_sched_migrate_task\n"); | ||
| 292 | return; | ||
| 293 | } | ||
| 294 | |||
| 299 | wakeup_reset(tr); | 295 | wakeup_reset(tr); |
| 300 | 296 | ||
| 301 | /* | 297 | /* |
| @@ -328,6 +324,7 @@ static void stop_wakeup_tracer(struct trace_array *tr) | |||
| 328 | unregister_trace_sched_switch(probe_wakeup_sched_switch); | 324 | unregister_trace_sched_switch(probe_wakeup_sched_switch); |
| 329 | unregister_trace_sched_wakeup_new(probe_wakeup); | 325 | unregister_trace_sched_wakeup_new(probe_wakeup); |
| 330 | unregister_trace_sched_wakeup(probe_wakeup); | 326 | unregister_trace_sched_wakeup(probe_wakeup); |
| 327 | unregister_trace_sched_migrate_task(probe_wakeup_migrate_task); | ||
| 331 | } | 328 | } |
| 332 | 329 | ||
| 333 | static int __wakeup_tracer_init(struct trace_array *tr) | 330 | static int __wakeup_tracer_init(struct trace_array *tr) |
diff --git a/kernel/trace/trace_selftest.c b/kernel/trace/trace_selftest.c index 00dd6485bdd7..d2cdbabb4ead 100644 --- a/kernel/trace/trace_selftest.c +++ b/kernel/trace/trace_selftest.c | |||
| @@ -288,6 +288,7 @@ trace_selftest_startup_function_graph(struct tracer *trace, | |||
| 288 | * to detect and recover from possible hangs | 288 | * to detect and recover from possible hangs |
| 289 | */ | 289 | */ |
| 290 | tracing_reset_online_cpus(tr); | 290 | tracing_reset_online_cpus(tr); |
| 291 | set_graph_array(tr); | ||
| 291 | ret = register_ftrace_graph(&trace_graph_return, | 292 | ret = register_ftrace_graph(&trace_graph_return, |
| 292 | &trace_graph_entry_watchdog); | 293 | &trace_graph_entry_watchdog); |
| 293 | if (ret) { | 294 | if (ret) { |
diff --git a/kernel/trace/trace_stack.c b/kernel/trace/trace_stack.c index 2d7aebd71dbd..0f6facb050a1 100644 --- a/kernel/trace/trace_stack.c +++ b/kernel/trace/trace_stack.c | |||
| @@ -186,43 +186,33 @@ static const struct file_operations stack_max_size_fops = { | |||
| 186 | }; | 186 | }; |
| 187 | 187 | ||
| 188 | static void * | 188 | static void * |
| 189 | t_next(struct seq_file *m, void *v, loff_t *pos) | 189 | __next(struct seq_file *m, loff_t *pos) |
| 190 | { | 190 | { |
| 191 | long i; | 191 | long n = *pos - 1; |
| 192 | |||
| 193 | (*pos)++; | ||
| 194 | |||
| 195 | if (v == SEQ_START_TOKEN) | ||
| 196 | i = 0; | ||
| 197 | else { | ||
| 198 | i = *(long *)v; | ||
| 199 | i++; | ||
| 200 | } | ||
| 201 | 192 | ||
| 202 | if (i >= max_stack_trace.nr_entries || | 193 | if (n >= max_stack_trace.nr_entries || stack_dump_trace[n] == ULONG_MAX) |
| 203 | stack_dump_trace[i] == ULONG_MAX) | ||
| 204 | return NULL; | 194 | return NULL; |
| 205 | 195 | ||
| 206 | m->private = (void *)i; | 196 | m->private = (void *)n; |
| 207 | |||
| 208 | return &m->private; | 197 | return &m->private; |
| 209 | } | 198 | } |
| 210 | 199 | ||
| 211 | static void *t_start(struct seq_file *m, loff_t *pos) | 200 | static void * |
| 201 | t_next(struct seq_file *m, void *v, loff_t *pos) | ||
| 212 | { | 202 | { |
| 213 | void *t = SEQ_START_TOKEN; | 203 | (*pos)++; |
| 214 | loff_t l = 0; | 204 | return __next(m, pos); |
| 205 | } | ||
| 215 | 206 | ||
| 207 | static void *t_start(struct seq_file *m, loff_t *pos) | ||
| 208 | { | ||
| 216 | local_irq_disable(); | 209 | local_irq_disable(); |
| 217 | __raw_spin_lock(&max_stack_lock); | 210 | __raw_spin_lock(&max_stack_lock); |
| 218 | 211 | ||
| 219 | if (*pos == 0) | 212 | if (*pos == 0) |
| 220 | return SEQ_START_TOKEN; | 213 | return SEQ_START_TOKEN; |
| 221 | 214 | ||
| 222 | for (; t && l < *pos; t = t_next(m, t, &l)) | 215 | return __next(m, pos); |
| 223 | ; | ||
| 224 | |||
| 225 | return t; | ||
| 226 | } | 216 | } |
| 227 | 217 | ||
| 228 | static void t_stop(struct seq_file *m, void *p) | 218 | static void t_stop(struct seq_file *m, void *p) |
| @@ -234,15 +224,8 @@ static void t_stop(struct seq_file *m, void *p) | |||
| 234 | static int trace_lookup_stack(struct seq_file *m, long i) | 224 | static int trace_lookup_stack(struct seq_file *m, long i) |
| 235 | { | 225 | { |
| 236 | unsigned long addr = stack_dump_trace[i]; | 226 | unsigned long addr = stack_dump_trace[i]; |
| 237 | #ifdef CONFIG_KALLSYMS | ||
| 238 | char str[KSYM_SYMBOL_LEN]; | ||
| 239 | 227 | ||
| 240 | sprint_symbol(str, addr); | 228 | return seq_printf(m, "%pF\n", (void *)addr); |
| 241 | |||
| 242 | return seq_printf(m, "%s\n", str); | ||
| 243 | #else | ||
| 244 | return seq_printf(m, "%p\n", (void*)addr); | ||
| 245 | #endif | ||
| 246 | } | 229 | } |
| 247 | 230 | ||
| 248 | static void print_disabled(struct seq_file *m) | 231 | static void print_disabled(struct seq_file *m) |
| @@ -301,17 +284,14 @@ static const struct seq_operations stack_trace_seq_ops = { | |||
| 301 | 284 | ||
| 302 | static int stack_trace_open(struct inode *inode, struct file *file) | 285 | static int stack_trace_open(struct inode *inode, struct file *file) |
| 303 | { | 286 | { |
| 304 | int ret; | 287 | return seq_open(file, &stack_trace_seq_ops); |
| 305 | |||
| 306 | ret = seq_open(file, &stack_trace_seq_ops); | ||
| 307 | |||
| 308 | return ret; | ||
| 309 | } | 288 | } |
| 310 | 289 | ||
| 311 | static const struct file_operations stack_trace_fops = { | 290 | static const struct file_operations stack_trace_fops = { |
| 312 | .open = stack_trace_open, | 291 | .open = stack_trace_open, |
| 313 | .read = seq_read, | 292 | .read = seq_read, |
| 314 | .llseek = seq_lseek, | 293 | .llseek = seq_lseek, |
| 294 | .release = seq_release, | ||
| 315 | }; | 295 | }; |
| 316 | 296 | ||
| 317 | int | 297 | int |
| @@ -326,10 +306,10 @@ stack_trace_sysctl(struct ctl_table *table, int write, | |||
| 326 | ret = proc_dointvec(table, write, file, buffer, lenp, ppos); | 306 | ret = proc_dointvec(table, write, file, buffer, lenp, ppos); |
| 327 | 307 | ||
| 328 | if (ret || !write || | 308 | if (ret || !write || |
| 329 | (last_stack_tracer_enabled == stack_tracer_enabled)) | 309 | (last_stack_tracer_enabled == !!stack_tracer_enabled)) |
| 330 | goto out; | 310 | goto out; |
| 331 | 311 | ||
| 332 | last_stack_tracer_enabled = stack_tracer_enabled; | 312 | last_stack_tracer_enabled = !!stack_tracer_enabled; |
| 333 | 313 | ||
| 334 | if (stack_tracer_enabled) | 314 | if (stack_tracer_enabled) |
| 335 | register_ftrace_function(&trace_ops); | 315 | register_ftrace_function(&trace_ops); |
diff --git a/kernel/trace/trace_stat.c b/kernel/trace/trace_stat.c index e66f5e493342..a4bb239eb987 100644 --- a/kernel/trace/trace_stat.c +++ b/kernel/trace/trace_stat.c | |||
| @@ -49,7 +49,8 @@ static struct dentry *stat_dir; | |||
| 49 | * but it will at least advance closer to the next one | 49 | * but it will at least advance closer to the next one |
| 50 | * to be released. | 50 | * to be released. |
| 51 | */ | 51 | */ |
| 52 | static struct rb_node *release_next(struct rb_node *node) | 52 | static struct rb_node *release_next(struct tracer_stat *ts, |
| 53 | struct rb_node *node) | ||
| 53 | { | 54 | { |
| 54 | struct stat_node *snode; | 55 | struct stat_node *snode; |
| 55 | struct rb_node *parent = rb_parent(node); | 56 | struct rb_node *parent = rb_parent(node); |
| @@ -67,26 +68,35 @@ static struct rb_node *release_next(struct rb_node *node) | |||
| 67 | parent->rb_right = NULL; | 68 | parent->rb_right = NULL; |
| 68 | 69 | ||
| 69 | snode = container_of(node, struct stat_node, node); | 70 | snode = container_of(node, struct stat_node, node); |
| 71 | if (ts->stat_release) | ||
| 72 | ts->stat_release(snode->stat); | ||
| 70 | kfree(snode); | 73 | kfree(snode); |
| 71 | 74 | ||
| 72 | return parent; | 75 | return parent; |
| 73 | } | 76 | } |
| 74 | } | 77 | } |
| 75 | 78 | ||
| 76 | static void reset_stat_session(struct stat_session *session) | 79 | static void __reset_stat_session(struct stat_session *session) |
| 77 | { | 80 | { |
| 78 | struct rb_node *node = session->stat_root.rb_node; | 81 | struct rb_node *node = session->stat_root.rb_node; |
| 79 | 82 | ||
| 80 | while (node) | 83 | while (node) |
| 81 | node = release_next(node); | 84 | node = release_next(session->ts, node); |
| 82 | 85 | ||
| 83 | session->stat_root = RB_ROOT; | 86 | session->stat_root = RB_ROOT; |
| 84 | } | 87 | } |
| 85 | 88 | ||
| 89 | static void reset_stat_session(struct stat_session *session) | ||
| 90 | { | ||
| 91 | mutex_lock(&session->stat_mutex); | ||
| 92 | __reset_stat_session(session); | ||
| 93 | mutex_unlock(&session->stat_mutex); | ||
| 94 | } | ||
| 95 | |||
| 86 | static void destroy_session(struct stat_session *session) | 96 | static void destroy_session(struct stat_session *session) |
| 87 | { | 97 | { |
| 88 | debugfs_remove(session->file); | 98 | debugfs_remove(session->file); |
| 89 | reset_stat_session(session); | 99 | __reset_stat_session(session); |
| 90 | mutex_destroy(&session->stat_mutex); | 100 | mutex_destroy(&session->stat_mutex); |
| 91 | kfree(session); | 101 | kfree(session); |
| 92 | } | 102 | } |
| @@ -150,7 +160,7 @@ static int stat_seq_init(struct stat_session *session) | |||
| 150 | int i; | 160 | int i; |
| 151 | 161 | ||
| 152 | mutex_lock(&session->stat_mutex); | 162 | mutex_lock(&session->stat_mutex); |
| 153 | reset_stat_session(session); | 163 | __reset_stat_session(session); |
| 154 | 164 | ||
| 155 | if (!ts->stat_cmp) | 165 | if (!ts->stat_cmp) |
| 156 | ts->stat_cmp = dummy_cmp; | 166 | ts->stat_cmp = dummy_cmp; |
| @@ -183,7 +193,7 @@ exit: | |||
| 183 | return ret; | 193 | return ret; |
| 184 | 194 | ||
| 185 | exit_free_rbtree: | 195 | exit_free_rbtree: |
| 186 | reset_stat_session(session); | 196 | __reset_stat_session(session); |
| 187 | mutex_unlock(&session->stat_mutex); | 197 | mutex_unlock(&session->stat_mutex); |
| 188 | return ret; | 198 | return ret; |
| 189 | } | 199 | } |
| @@ -193,17 +203,21 @@ static void *stat_seq_start(struct seq_file *s, loff_t *pos) | |||
| 193 | { | 203 | { |
| 194 | struct stat_session *session = s->private; | 204 | struct stat_session *session = s->private; |
| 195 | struct rb_node *node; | 205 | struct rb_node *node; |
| 206 | int n = *pos; | ||
| 196 | int i; | 207 | int i; |
| 197 | 208 | ||
| 198 | /* Prevent from tracer switch or rbtree modification */ | 209 | /* Prevent from tracer switch or rbtree modification */ |
| 199 | mutex_lock(&session->stat_mutex); | 210 | mutex_lock(&session->stat_mutex); |
| 200 | 211 | ||
| 201 | /* If we are in the beginning of the file, print the headers */ | 212 | /* If we are in the beginning of the file, print the headers */ |
| 202 | if (!*pos && session->ts->stat_headers) | 213 | if (session->ts->stat_headers) { |
| 203 | return SEQ_START_TOKEN; | 214 | if (n == 0) |
| 215 | return SEQ_START_TOKEN; | ||
| 216 | n--; | ||
| 217 | } | ||
| 204 | 218 | ||
| 205 | node = rb_first(&session->stat_root); | 219 | node = rb_first(&session->stat_root); |
| 206 | for (i = 0; node && i < *pos; i++) | 220 | for (i = 0; node && i < n; i++) |
| 207 | node = rb_next(node); | 221 | node = rb_next(node); |
| 208 | 222 | ||
| 209 | return node; | 223 | return node; |
| @@ -250,16 +264,21 @@ static const struct seq_operations trace_stat_seq_ops = { | |||
| 250 | static int tracing_stat_open(struct inode *inode, struct file *file) | 264 | static int tracing_stat_open(struct inode *inode, struct file *file) |
| 251 | { | 265 | { |
| 252 | int ret; | 266 | int ret; |
| 253 | 267 | struct seq_file *m; | |
| 254 | struct stat_session *session = inode->i_private; | 268 | struct stat_session *session = inode->i_private; |
| 255 | 269 | ||
| 270 | ret = stat_seq_init(session); | ||
| 271 | if (ret) | ||
| 272 | return ret; | ||
| 273 | |||
| 256 | ret = seq_open(file, &trace_stat_seq_ops); | 274 | ret = seq_open(file, &trace_stat_seq_ops); |
| 257 | if (!ret) { | 275 | if (ret) { |
| 258 | struct seq_file *m = file->private_data; | 276 | reset_stat_session(session); |
| 259 | m->private = session; | 277 | return ret; |
| 260 | ret = stat_seq_init(session); | ||
| 261 | } | 278 | } |
| 262 | 279 | ||
| 280 | m = file->private_data; | ||
| 281 | m->private = session; | ||
| 263 | return ret; | 282 | return ret; |
| 264 | } | 283 | } |
| 265 | 284 | ||
| @@ -270,11 +289,9 @@ static int tracing_stat_release(struct inode *i, struct file *f) | |||
| 270 | { | 289 | { |
| 271 | struct stat_session *session = i->i_private; | 290 | struct stat_session *session = i->i_private; |
| 272 | 291 | ||
| 273 | mutex_lock(&session->stat_mutex); | ||
| 274 | reset_stat_session(session); | 292 | reset_stat_session(session); |
| 275 | mutex_unlock(&session->stat_mutex); | ||
| 276 | 293 | ||
| 277 | return 0; | 294 | return seq_release(i, f); |
| 278 | } | 295 | } |
| 279 | 296 | ||
| 280 | static const struct file_operations tracing_stat_fops = { | 297 | static const struct file_operations tracing_stat_fops = { |
diff --git a/kernel/trace/trace_stat.h b/kernel/trace/trace_stat.h index f3546a2cd826..8f03914b9a6a 100644 --- a/kernel/trace/trace_stat.h +++ b/kernel/trace/trace_stat.h | |||
| @@ -18,6 +18,8 @@ struct tracer_stat { | |||
| 18 | int (*stat_cmp)(void *p1, void *p2); | 18 | int (*stat_cmp)(void *p1, void *p2); |
| 19 | /* Print a stat entry */ | 19 | /* Print a stat entry */ |
| 20 | int (*stat_show)(struct seq_file *s, void *p); | 20 | int (*stat_show)(struct seq_file *s, void *p); |
| 21 | /* Release an entry */ | ||
| 22 | void (*stat_release)(void *stat); | ||
| 21 | /* Print the headers of your stat entries */ | 23 | /* Print the headers of your stat entries */ |
| 22 | int (*stat_headers)(struct seq_file *s); | 24 | int (*stat_headers)(struct seq_file *s); |
| 23 | }; | 25 | }; |
diff --git a/kernel/trace/trace_syscalls.c b/kernel/trace/trace_syscalls.c index 5e579645ac86..9fbce6c9d2e1 100644 --- a/kernel/trace/trace_syscalls.c +++ b/kernel/trace/trace_syscalls.c | |||
| @@ -1,30 +1,18 @@ | |||
| 1 | #include <trace/syscall.h> | 1 | #include <trace/syscall.h> |
| 2 | #include <trace/events/syscalls.h> | ||
| 2 | #include <linux/kernel.h> | 3 | #include <linux/kernel.h> |
| 4 | #include <linux/ftrace.h> | ||
| 5 | #include <linux/perf_event.h> | ||
| 3 | #include <asm/syscall.h> | 6 | #include <asm/syscall.h> |
| 4 | 7 | ||
| 5 | #include "trace_output.h" | 8 | #include "trace_output.h" |
| 6 | #include "trace.h" | 9 | #include "trace.h" |
| 7 | 10 | ||
| 8 | /* Keep a counter of the syscall tracing users */ | ||
| 9 | static int refcount; | ||
| 10 | |||
| 11 | /* Prevent from races on thread flags toggling */ | ||
| 12 | static DEFINE_MUTEX(syscall_trace_lock); | 11 | static DEFINE_MUTEX(syscall_trace_lock); |
| 13 | 12 | static int sys_refcount_enter; | |
| 14 | /* Option to display the parameters types */ | 13 | static int sys_refcount_exit; |
| 15 | enum { | 14 | static DECLARE_BITMAP(enabled_enter_syscalls, NR_syscalls); |
| 16 | TRACE_SYSCALLS_OPT_TYPES = 0x1, | 15 | static DECLARE_BITMAP(enabled_exit_syscalls, NR_syscalls); |
| 17 | }; | ||
| 18 | |||
| 19 | static struct tracer_opt syscalls_opts[] = { | ||
| 20 | { TRACER_OPT(syscall_arg_type, TRACE_SYSCALLS_OPT_TYPES) }, | ||
| 21 | { } | ||
| 22 | }; | ||
| 23 | |||
| 24 | static struct tracer_flags syscalls_flags = { | ||
| 25 | .val = 0, /* By default: no parameters types */ | ||
| 26 | .opts = syscalls_opts | ||
| 27 | }; | ||
| 28 | 16 | ||
| 29 | enum print_line_t | 17 | enum print_line_t |
| 30 | print_syscall_enter(struct trace_iterator *iter, int flags) | 18 | print_syscall_enter(struct trace_iterator *iter, int flags) |
| @@ -35,35 +23,46 @@ print_syscall_enter(struct trace_iterator *iter, int flags) | |||
| 35 | struct syscall_metadata *entry; | 23 | struct syscall_metadata *entry; |
| 36 | int i, ret, syscall; | 24 | int i, ret, syscall; |
| 37 | 25 | ||
| 38 | trace_assign_type(trace, ent); | 26 | trace = (typeof(trace))ent; |
| 39 | |||
| 40 | syscall = trace->nr; | 27 | syscall = trace->nr; |
| 41 | |||
| 42 | entry = syscall_nr_to_meta(syscall); | 28 | entry = syscall_nr_to_meta(syscall); |
| 29 | |||
| 43 | if (!entry) | 30 | if (!entry) |
| 44 | goto end; | 31 | goto end; |
| 45 | 32 | ||
| 33 | if (entry->enter_id != ent->type) { | ||
| 34 | WARN_ON_ONCE(1); | ||
| 35 | goto end; | ||
| 36 | } | ||
| 37 | |||
| 46 | ret = trace_seq_printf(s, "%s(", entry->name); | 38 | ret = trace_seq_printf(s, "%s(", entry->name); |
| 47 | if (!ret) | 39 | if (!ret) |
| 48 | return TRACE_TYPE_PARTIAL_LINE; | 40 | return TRACE_TYPE_PARTIAL_LINE; |
| 49 | 41 | ||
| 50 | for (i = 0; i < entry->nb_args; i++) { | 42 | for (i = 0; i < entry->nb_args; i++) { |
| 51 | /* parameter types */ | 43 | /* parameter types */ |
| 52 | if (syscalls_flags.val & TRACE_SYSCALLS_OPT_TYPES) { | 44 | if (trace_flags & TRACE_ITER_VERBOSE) { |
| 53 | ret = trace_seq_printf(s, "%s ", entry->types[i]); | 45 | ret = trace_seq_printf(s, "%s ", entry->types[i]); |
| 54 | if (!ret) | 46 | if (!ret) |
| 55 | return TRACE_TYPE_PARTIAL_LINE; | 47 | return TRACE_TYPE_PARTIAL_LINE; |
| 56 | } | 48 | } |
| 57 | /* parameter values */ | 49 | /* parameter values */ |
| 58 | ret = trace_seq_printf(s, "%s: %lx%s ", entry->args[i], | 50 | ret = trace_seq_printf(s, "%s: %lx%s", entry->args[i], |
| 59 | trace->args[i], | 51 | trace->args[i], |
| 60 | i == entry->nb_args - 1 ? ")" : ","); | 52 | i == entry->nb_args - 1 ? "" : ", "); |
| 61 | if (!ret) | 53 | if (!ret) |
| 62 | return TRACE_TYPE_PARTIAL_LINE; | 54 | return TRACE_TYPE_PARTIAL_LINE; |
| 63 | } | 55 | } |
| 64 | 56 | ||
| 57 | ret = trace_seq_putc(s, ')'); | ||
| 58 | if (!ret) | ||
| 59 | return TRACE_TYPE_PARTIAL_LINE; | ||
| 60 | |||
| 65 | end: | 61 | end: |
| 66 | trace_seq_printf(s, "\n"); | 62 | ret = trace_seq_putc(s, '\n'); |
| 63 | if (!ret) | ||
| 64 | return TRACE_TYPE_PARTIAL_LINE; | ||
| 65 | |||
| 67 | return TRACE_TYPE_HANDLED; | 66 | return TRACE_TYPE_HANDLED; |
| 68 | } | 67 | } |
| 69 | 68 | ||
| @@ -77,16 +76,20 @@ print_syscall_exit(struct trace_iterator *iter, int flags) | |||
| 77 | struct syscall_metadata *entry; | 76 | struct syscall_metadata *entry; |
| 78 | int ret; | 77 | int ret; |
| 79 | 78 | ||
| 80 | trace_assign_type(trace, ent); | 79 | trace = (typeof(trace))ent; |
| 81 | |||
| 82 | syscall = trace->nr; | 80 | syscall = trace->nr; |
| 83 | |||
| 84 | entry = syscall_nr_to_meta(syscall); | 81 | entry = syscall_nr_to_meta(syscall); |
| 82 | |||
| 85 | if (!entry) { | 83 | if (!entry) { |
| 86 | trace_seq_printf(s, "\n"); | 84 | trace_seq_printf(s, "\n"); |
| 87 | return TRACE_TYPE_HANDLED; | 85 | return TRACE_TYPE_HANDLED; |
| 88 | } | 86 | } |
| 89 | 87 | ||
| 88 | if (entry->exit_id != ent->type) { | ||
| 89 | WARN_ON_ONCE(1); | ||
| 90 | return TRACE_TYPE_UNHANDLED; | ||
| 91 | } | ||
| 92 | |||
| 90 | ret = trace_seq_printf(s, "%s -> 0x%lx\n", entry->name, | 93 | ret = trace_seq_printf(s, "%s -> 0x%lx\n", entry->name, |
| 91 | trace->ret); | 94 | trace->ret); |
| 92 | if (!ret) | 95 | if (!ret) |
| @@ -95,62 +98,140 @@ print_syscall_exit(struct trace_iterator *iter, int flags) | |||
| 95 | return TRACE_TYPE_HANDLED; | 98 | return TRACE_TYPE_HANDLED; |
| 96 | } | 99 | } |
| 97 | 100 | ||
| 98 | void start_ftrace_syscalls(void) | 101 | extern char *__bad_type_size(void); |
| 102 | |||
| 103 | #define SYSCALL_FIELD(type, name) \ | ||
| 104 | sizeof(type) != sizeof(trace.name) ? \ | ||
| 105 | __bad_type_size() : \ | ||
| 106 | #type, #name, offsetof(typeof(trace), name), sizeof(trace.name) | ||
| 107 | |||
| 108 | int syscall_enter_format(struct ftrace_event_call *call, struct trace_seq *s) | ||
| 99 | { | 109 | { |
| 100 | unsigned long flags; | 110 | int i; |
| 101 | struct task_struct *g, *t; | 111 | int nr; |
| 112 | int ret; | ||
| 113 | struct syscall_metadata *entry; | ||
| 114 | struct syscall_trace_enter trace; | ||
| 115 | int offset = offsetof(struct syscall_trace_enter, args); | ||
| 102 | 116 | ||
| 103 | mutex_lock(&syscall_trace_lock); | 117 | nr = syscall_name_to_nr(call->data); |
| 118 | entry = syscall_nr_to_meta(nr); | ||
| 104 | 119 | ||
| 105 | /* Don't enable the flag on the tasks twice */ | 120 | if (!entry) |
| 106 | if (++refcount != 1) | 121 | return 0; |
| 107 | goto unlock; | ||
| 108 | 122 | ||
| 109 | arch_init_ftrace_syscalls(); | 123 | ret = trace_seq_printf(s, "\tfield:%s %s;\toffset:%zu;\tsize:%zu;\n", |
| 110 | read_lock_irqsave(&tasklist_lock, flags); | 124 | SYSCALL_FIELD(int, nr)); |
| 125 | if (!ret) | ||
| 126 | return 0; | ||
| 111 | 127 | ||
| 112 | do_each_thread(g, t) { | 128 | for (i = 0; i < entry->nb_args; i++) { |
| 113 | set_tsk_thread_flag(t, TIF_SYSCALL_FTRACE); | 129 | ret = trace_seq_printf(s, "\tfield:%s %s;", entry->types[i], |
| 114 | } while_each_thread(g, t); | 130 | entry->args[i]); |
| 131 | if (!ret) | ||
| 132 | return 0; | ||
| 133 | ret = trace_seq_printf(s, "\toffset:%d;\tsize:%zu;\n", offset, | ||
| 134 | sizeof(unsigned long)); | ||
| 135 | if (!ret) | ||
| 136 | return 0; | ||
| 137 | offset += sizeof(unsigned long); | ||
| 138 | } | ||
| 115 | 139 | ||
| 116 | read_unlock_irqrestore(&tasklist_lock, flags); | 140 | trace_seq_puts(s, "\nprint fmt: \""); |
| 141 | for (i = 0; i < entry->nb_args; i++) { | ||
| 142 | ret = trace_seq_printf(s, "%s: 0x%%0%zulx%s", entry->args[i], | ||
| 143 | sizeof(unsigned long), | ||
| 144 | i == entry->nb_args - 1 ? "" : ", "); | ||
| 145 | if (!ret) | ||
| 146 | return 0; | ||
| 147 | } | ||
| 148 | trace_seq_putc(s, '"'); | ||
| 117 | 149 | ||
| 118 | unlock: | 150 | for (i = 0; i < entry->nb_args; i++) { |
| 119 | mutex_unlock(&syscall_trace_lock); | 151 | ret = trace_seq_printf(s, ", ((unsigned long)(REC->%s))", |
| 152 | entry->args[i]); | ||
| 153 | if (!ret) | ||
| 154 | return 0; | ||
| 155 | } | ||
| 156 | |||
| 157 | return trace_seq_putc(s, '\n'); | ||
| 120 | } | 158 | } |
| 121 | 159 | ||
| 122 | void stop_ftrace_syscalls(void) | 160 | int syscall_exit_format(struct ftrace_event_call *call, struct trace_seq *s) |
| 123 | { | 161 | { |
| 124 | unsigned long flags; | 162 | int ret; |
| 125 | struct task_struct *g, *t; | 163 | struct syscall_trace_exit trace; |
| 126 | 164 | ||
| 127 | mutex_lock(&syscall_trace_lock); | 165 | ret = trace_seq_printf(s, |
| 166 | "\tfield:%s %s;\toffset:%zu;\tsize:%zu;\n" | ||
| 167 | "\tfield:%s %s;\toffset:%zu;\tsize:%zu;\n", | ||
| 168 | SYSCALL_FIELD(int, nr), | ||
| 169 | SYSCALL_FIELD(unsigned long, ret)); | ||
| 170 | if (!ret) | ||
| 171 | return 0; | ||
| 128 | 172 | ||
| 129 | /* There are perhaps still some users */ | 173 | return trace_seq_printf(s, "\nprint fmt: \"0x%%lx\", REC->ret\n"); |
| 130 | if (--refcount) | 174 | } |
| 131 | goto unlock; | ||
| 132 | 175 | ||
| 133 | read_lock_irqsave(&tasklist_lock, flags); | 176 | int syscall_enter_define_fields(struct ftrace_event_call *call) |
| 177 | { | ||
| 178 | struct syscall_trace_enter trace; | ||
| 179 | struct syscall_metadata *meta; | ||
| 180 | int ret; | ||
| 181 | int nr; | ||
| 182 | int i; | ||
| 183 | int offset = offsetof(typeof(trace), args); | ||
| 184 | |||
| 185 | nr = syscall_name_to_nr(call->data); | ||
| 186 | meta = syscall_nr_to_meta(nr); | ||
| 187 | |||
| 188 | if (!meta) | ||
| 189 | return 0; | ||
| 190 | |||
| 191 | ret = trace_define_common_fields(call); | ||
| 192 | if (ret) | ||
| 193 | return ret; | ||
| 194 | |||
| 195 | for (i = 0; i < meta->nb_args; i++) { | ||
| 196 | ret = trace_define_field(call, meta->types[i], | ||
| 197 | meta->args[i], offset, | ||
| 198 | sizeof(unsigned long), 0, | ||
| 199 | FILTER_OTHER); | ||
| 200 | offset += sizeof(unsigned long); | ||
| 201 | } | ||
| 134 | 202 | ||
| 135 | do_each_thread(g, t) { | 203 | return ret; |
| 136 | clear_tsk_thread_flag(t, TIF_SYSCALL_FTRACE); | 204 | } |
| 137 | } while_each_thread(g, t); | ||
| 138 | 205 | ||
| 139 | read_unlock_irqrestore(&tasklist_lock, flags); | 206 | int syscall_exit_define_fields(struct ftrace_event_call *call) |
| 207 | { | ||
| 208 | struct syscall_trace_exit trace; | ||
| 209 | int ret; | ||
| 140 | 210 | ||
| 141 | unlock: | 211 | ret = trace_define_common_fields(call); |
| 142 | mutex_unlock(&syscall_trace_lock); | 212 | if (ret) |
| 213 | return ret; | ||
| 214 | |||
| 215 | ret = trace_define_field(call, SYSCALL_FIELD(unsigned long, ret), 0, | ||
| 216 | FILTER_OTHER); | ||
| 217 | |||
| 218 | return ret; | ||
| 143 | } | 219 | } |
| 144 | 220 | ||
| 145 | void ftrace_syscall_enter(struct pt_regs *regs) | 221 | void ftrace_syscall_enter(struct pt_regs *regs, long id) |
| 146 | { | 222 | { |
| 147 | struct syscall_trace_enter *entry; | 223 | struct syscall_trace_enter *entry; |
| 148 | struct syscall_metadata *sys_data; | 224 | struct syscall_metadata *sys_data; |
| 149 | struct ring_buffer_event *event; | 225 | struct ring_buffer_event *event; |
| 226 | struct ring_buffer *buffer; | ||
| 150 | int size; | 227 | int size; |
| 151 | int syscall_nr; | 228 | int syscall_nr; |
| 152 | 229 | ||
| 153 | syscall_nr = syscall_get_nr(current, regs); | 230 | syscall_nr = syscall_get_nr(current, regs); |
| 231 | if (syscall_nr < 0) | ||
| 232 | return; | ||
| 233 | if (!test_bit(syscall_nr, enabled_enter_syscalls)) | ||
| 234 | return; | ||
| 154 | 235 | ||
| 155 | sys_data = syscall_nr_to_meta(syscall_nr); | 236 | sys_data = syscall_nr_to_meta(syscall_nr); |
| 156 | if (!sys_data) | 237 | if (!sys_data) |
| @@ -158,8 +239,8 @@ void ftrace_syscall_enter(struct pt_regs *regs) | |||
| 158 | 239 | ||
| 159 | size = sizeof(*entry) + sizeof(unsigned long) * sys_data->nb_args; | 240 | size = sizeof(*entry) + sizeof(unsigned long) * sys_data->nb_args; |
| 160 | 241 | ||
| 161 | event = trace_current_buffer_lock_reserve(TRACE_SYSCALL_ENTER, size, | 242 | event = trace_current_buffer_lock_reserve(&buffer, sys_data->enter_id, |
| 162 | 0, 0); | 243 | size, 0, 0); |
| 163 | if (!event) | 244 | if (!event) |
| 164 | return; | 245 | return; |
| 165 | 246 | ||
| @@ -167,24 +248,30 @@ void ftrace_syscall_enter(struct pt_regs *regs) | |||
| 167 | entry->nr = syscall_nr; | 248 | entry->nr = syscall_nr; |
| 168 | syscall_get_arguments(current, regs, 0, sys_data->nb_args, entry->args); | 249 | syscall_get_arguments(current, regs, 0, sys_data->nb_args, entry->args); |
| 169 | 250 | ||
| 170 | trace_current_buffer_unlock_commit(event, 0, 0); | 251 | if (!filter_current_check_discard(buffer, sys_data->enter_event, |
| 171 | trace_wake_up(); | 252 | entry, event)) |
| 253 | trace_current_buffer_unlock_commit(buffer, event, 0, 0); | ||
| 172 | } | 254 | } |
| 173 | 255 | ||
| 174 | void ftrace_syscall_exit(struct pt_regs *regs) | 256 | void ftrace_syscall_exit(struct pt_regs *regs, long ret) |
| 175 | { | 257 | { |
| 176 | struct syscall_trace_exit *entry; | 258 | struct syscall_trace_exit *entry; |
| 177 | struct syscall_metadata *sys_data; | 259 | struct syscall_metadata *sys_data; |
| 178 | struct ring_buffer_event *event; | 260 | struct ring_buffer_event *event; |
| 261 | struct ring_buffer *buffer; | ||
| 179 | int syscall_nr; | 262 | int syscall_nr; |
| 180 | 263 | ||
| 181 | syscall_nr = syscall_get_nr(current, regs); | 264 | syscall_nr = syscall_get_nr(current, regs); |
| 265 | if (syscall_nr < 0) | ||
| 266 | return; | ||
| 267 | if (!test_bit(syscall_nr, enabled_exit_syscalls)) | ||
| 268 | return; | ||
| 182 | 269 | ||
| 183 | sys_data = syscall_nr_to_meta(syscall_nr); | 270 | sys_data = syscall_nr_to_meta(syscall_nr); |
| 184 | if (!sys_data) | 271 | if (!sys_data) |
| 185 | return; | 272 | return; |
| 186 | 273 | ||
| 187 | event = trace_current_buffer_lock_reserve(TRACE_SYSCALL_EXIT, | 274 | event = trace_current_buffer_lock_reserve(&buffer, sys_data->exit_id, |
| 188 | sizeof(*entry), 0, 0); | 275 | sizeof(*entry), 0, 0); |
| 189 | if (!event) | 276 | if (!event) |
| 190 | return; | 277 | return; |
| @@ -193,58 +280,303 @@ void ftrace_syscall_exit(struct pt_regs *regs) | |||
| 193 | entry->nr = syscall_nr; | 280 | entry->nr = syscall_nr; |
| 194 | entry->ret = syscall_get_return_value(current, regs); | 281 | entry->ret = syscall_get_return_value(current, regs); |
| 195 | 282 | ||
| 196 | trace_current_buffer_unlock_commit(event, 0, 0); | 283 | if (!filter_current_check_discard(buffer, sys_data->exit_event, |
| 197 | trace_wake_up(); | 284 | entry, event)) |
| 285 | trace_current_buffer_unlock_commit(buffer, event, 0, 0); | ||
| 198 | } | 286 | } |
| 199 | 287 | ||
| 200 | static int init_syscall_tracer(struct trace_array *tr) | 288 | int reg_event_syscall_enter(void *ptr) |
| 201 | { | 289 | { |
| 202 | start_ftrace_syscalls(); | 290 | int ret = 0; |
| 291 | int num; | ||
| 292 | char *name; | ||
| 293 | |||
| 294 | name = (char *)ptr; | ||
| 295 | num = syscall_name_to_nr(name); | ||
| 296 | if (num < 0 || num >= NR_syscalls) | ||
| 297 | return -ENOSYS; | ||
| 298 | mutex_lock(&syscall_trace_lock); | ||
| 299 | if (!sys_refcount_enter) | ||
| 300 | ret = register_trace_sys_enter(ftrace_syscall_enter); | ||
| 301 | if (ret) { | ||
| 302 | pr_info("event trace: Could not activate" | ||
| 303 | "syscall entry trace point"); | ||
| 304 | } else { | ||
| 305 | set_bit(num, enabled_enter_syscalls); | ||
| 306 | sys_refcount_enter++; | ||
| 307 | } | ||
| 308 | mutex_unlock(&syscall_trace_lock); | ||
| 309 | return ret; | ||
| 310 | } | ||
| 311 | |||
| 312 | void unreg_event_syscall_enter(void *ptr) | ||
| 313 | { | ||
| 314 | int num; | ||
| 315 | char *name; | ||
| 203 | 316 | ||
| 204 | return 0; | 317 | name = (char *)ptr; |
| 318 | num = syscall_name_to_nr(name); | ||
| 319 | if (num < 0 || num >= NR_syscalls) | ||
| 320 | return; | ||
| 321 | mutex_lock(&syscall_trace_lock); | ||
| 322 | sys_refcount_enter--; | ||
| 323 | clear_bit(num, enabled_enter_syscalls); | ||
| 324 | if (!sys_refcount_enter) | ||
| 325 | unregister_trace_sys_enter(ftrace_syscall_enter); | ||
| 326 | mutex_unlock(&syscall_trace_lock); | ||
| 205 | } | 327 | } |
| 206 | 328 | ||
| 207 | static void reset_syscall_tracer(struct trace_array *tr) | 329 | int reg_event_syscall_exit(void *ptr) |
| 208 | { | 330 | { |
| 209 | stop_ftrace_syscalls(); | 331 | int ret = 0; |
| 210 | tracing_reset_online_cpus(tr); | 332 | int num; |
| 333 | char *name; | ||
| 334 | |||
| 335 | name = (char *)ptr; | ||
| 336 | num = syscall_name_to_nr(name); | ||
| 337 | if (num < 0 || num >= NR_syscalls) | ||
| 338 | return -ENOSYS; | ||
| 339 | mutex_lock(&syscall_trace_lock); | ||
| 340 | if (!sys_refcount_exit) | ||
| 341 | ret = register_trace_sys_exit(ftrace_syscall_exit); | ||
| 342 | if (ret) { | ||
| 343 | pr_info("event trace: Could not activate" | ||
| 344 | "syscall exit trace point"); | ||
| 345 | } else { | ||
| 346 | set_bit(num, enabled_exit_syscalls); | ||
| 347 | sys_refcount_exit++; | ||
| 348 | } | ||
| 349 | mutex_unlock(&syscall_trace_lock); | ||
| 350 | return ret; | ||
| 211 | } | 351 | } |
| 212 | 352 | ||
| 213 | static struct trace_event syscall_enter_event = { | 353 | void unreg_event_syscall_exit(void *ptr) |
| 214 | .type = TRACE_SYSCALL_ENTER, | 354 | { |
| 215 | .trace = print_syscall_enter, | 355 | int num; |
| 216 | }; | 356 | char *name; |
| 357 | |||
| 358 | name = (char *)ptr; | ||
| 359 | num = syscall_name_to_nr(name); | ||
| 360 | if (num < 0 || num >= NR_syscalls) | ||
| 361 | return; | ||
| 362 | mutex_lock(&syscall_trace_lock); | ||
| 363 | sys_refcount_exit--; | ||
| 364 | clear_bit(num, enabled_exit_syscalls); | ||
| 365 | if (!sys_refcount_exit) | ||
| 366 | unregister_trace_sys_exit(ftrace_syscall_exit); | ||
| 367 | mutex_unlock(&syscall_trace_lock); | ||
| 368 | } | ||
| 217 | 369 | ||
| 218 | static struct trace_event syscall_exit_event = { | 370 | struct trace_event event_syscall_enter = { |
| 219 | .type = TRACE_SYSCALL_EXIT, | 371 | .trace = print_syscall_enter, |
| 220 | .trace = print_syscall_exit, | ||
| 221 | }; | 372 | }; |
| 222 | 373 | ||
| 223 | static struct tracer syscall_tracer __read_mostly = { | 374 | struct trace_event event_syscall_exit = { |
| 224 | .name = "syscall", | 375 | .trace = print_syscall_exit, |
| 225 | .init = init_syscall_tracer, | ||
| 226 | .reset = reset_syscall_tracer, | ||
| 227 | .flags = &syscalls_flags, | ||
| 228 | }; | 376 | }; |
| 229 | 377 | ||
| 230 | __init int register_ftrace_syscalls(void) | 378 | #ifdef CONFIG_EVENT_PROFILE |
| 379 | |||
| 380 | static DECLARE_BITMAP(enabled_prof_enter_syscalls, NR_syscalls); | ||
| 381 | static DECLARE_BITMAP(enabled_prof_exit_syscalls, NR_syscalls); | ||
| 382 | static int sys_prof_refcount_enter; | ||
| 383 | static int sys_prof_refcount_exit; | ||
| 384 | |||
| 385 | static void prof_syscall_enter(struct pt_regs *regs, long id) | ||
| 231 | { | 386 | { |
| 232 | int ret; | 387 | struct syscall_metadata *sys_data; |
| 388 | struct syscall_trace_enter *rec; | ||
| 389 | unsigned long flags; | ||
| 390 | char *raw_data; | ||
| 391 | int syscall_nr; | ||
| 392 | int size; | ||
| 393 | int cpu; | ||
| 233 | 394 | ||
| 234 | ret = register_ftrace_event(&syscall_enter_event); | 395 | syscall_nr = syscall_get_nr(current, regs); |
| 235 | if (!ret) { | 396 | if (!test_bit(syscall_nr, enabled_prof_enter_syscalls)) |
| 236 | printk(KERN_WARNING "event %d failed to register\n", | 397 | return; |
| 237 | syscall_enter_event.type); | 398 | |
| 238 | WARN_ON_ONCE(1); | 399 | sys_data = syscall_nr_to_meta(syscall_nr); |
| 400 | if (!sys_data) | ||
| 401 | return; | ||
| 402 | |||
| 403 | /* get the size after alignment with the u32 buffer size field */ | ||
| 404 | size = sizeof(unsigned long) * sys_data->nb_args + sizeof(*rec); | ||
| 405 | size = ALIGN(size + sizeof(u32), sizeof(u64)); | ||
| 406 | size -= sizeof(u32); | ||
| 407 | |||
| 408 | if (WARN_ONCE(size > FTRACE_MAX_PROFILE_SIZE, | ||
| 409 | "profile buffer not large enough")) | ||
| 410 | return; | ||
| 411 | |||
| 412 | /* Protect the per cpu buffer, begin the rcu read side */ | ||
| 413 | local_irq_save(flags); | ||
| 414 | |||
| 415 | cpu = smp_processor_id(); | ||
| 416 | |||
| 417 | if (in_nmi()) | ||
| 418 | raw_data = rcu_dereference(trace_profile_buf_nmi); | ||
| 419 | else | ||
| 420 | raw_data = rcu_dereference(trace_profile_buf); | ||
| 421 | |||
| 422 | if (!raw_data) | ||
| 423 | goto end; | ||
| 424 | |||
| 425 | raw_data = per_cpu_ptr(raw_data, cpu); | ||
| 426 | |||
| 427 | /* zero the dead bytes from align to not leak stack to user */ | ||
| 428 | *(u64 *)(&raw_data[size - sizeof(u64)]) = 0ULL; | ||
| 429 | |||
| 430 | rec = (struct syscall_trace_enter *) raw_data; | ||
| 431 | tracing_generic_entry_update(&rec->ent, 0, 0); | ||
| 432 | rec->ent.type = sys_data->enter_id; | ||
| 433 | rec->nr = syscall_nr; | ||
| 434 | syscall_get_arguments(current, regs, 0, sys_data->nb_args, | ||
| 435 | (unsigned long *)&rec->args); | ||
| 436 | perf_tp_event(sys_data->enter_id, 0, 1, rec, size); | ||
| 437 | |||
| 438 | end: | ||
| 439 | local_irq_restore(flags); | ||
| 440 | } | ||
| 441 | |||
| 442 | int reg_prof_syscall_enter(char *name) | ||
| 443 | { | ||
| 444 | int ret = 0; | ||
| 445 | int num; | ||
| 446 | |||
| 447 | num = syscall_name_to_nr(name); | ||
| 448 | if (num < 0 || num >= NR_syscalls) | ||
| 449 | return -ENOSYS; | ||
| 450 | |||
| 451 | mutex_lock(&syscall_trace_lock); | ||
| 452 | if (!sys_prof_refcount_enter) | ||
| 453 | ret = register_trace_sys_enter(prof_syscall_enter); | ||
| 454 | if (ret) { | ||
| 455 | pr_info("event trace: Could not activate" | ||
| 456 | "syscall entry trace point"); | ||
| 457 | } else { | ||
| 458 | set_bit(num, enabled_prof_enter_syscalls); | ||
| 459 | sys_prof_refcount_enter++; | ||
| 239 | } | 460 | } |
| 461 | mutex_unlock(&syscall_trace_lock); | ||
| 462 | return ret; | ||
| 463 | } | ||
| 240 | 464 | ||
| 241 | ret = register_ftrace_event(&syscall_exit_event); | 465 | void unreg_prof_syscall_enter(char *name) |
| 242 | if (!ret) { | 466 | { |
| 243 | printk(KERN_WARNING "event %d failed to register\n", | 467 | int num; |
| 244 | syscall_exit_event.type); | 468 | |
| 245 | WARN_ON_ONCE(1); | 469 | num = syscall_name_to_nr(name); |
| 470 | if (num < 0 || num >= NR_syscalls) | ||
| 471 | return; | ||
| 472 | |||
| 473 | mutex_lock(&syscall_trace_lock); | ||
| 474 | sys_prof_refcount_enter--; | ||
| 475 | clear_bit(num, enabled_prof_enter_syscalls); | ||
| 476 | if (!sys_prof_refcount_enter) | ||
| 477 | unregister_trace_sys_enter(prof_syscall_enter); | ||
| 478 | mutex_unlock(&syscall_trace_lock); | ||
| 479 | } | ||
| 480 | |||
| 481 | static void prof_syscall_exit(struct pt_regs *regs, long ret) | ||
| 482 | { | ||
| 483 | struct syscall_metadata *sys_data; | ||
| 484 | struct syscall_trace_exit *rec; | ||
| 485 | unsigned long flags; | ||
| 486 | int syscall_nr; | ||
| 487 | char *raw_data; | ||
| 488 | int size; | ||
| 489 | int cpu; | ||
| 490 | |||
| 491 | syscall_nr = syscall_get_nr(current, regs); | ||
| 492 | if (!test_bit(syscall_nr, enabled_prof_exit_syscalls)) | ||
| 493 | return; | ||
| 494 | |||
| 495 | sys_data = syscall_nr_to_meta(syscall_nr); | ||
| 496 | if (!sys_data) | ||
| 497 | return; | ||
| 498 | |||
| 499 | /* We can probably do that at build time */ | ||
| 500 | size = ALIGN(sizeof(*rec) + sizeof(u32), sizeof(u64)); | ||
| 501 | size -= sizeof(u32); | ||
| 502 | |||
| 503 | /* | ||
| 504 | * Impossible, but be paranoid with the future | ||
| 505 | * How to put this check outside runtime? | ||
| 506 | */ | ||
| 507 | if (WARN_ONCE(size > FTRACE_MAX_PROFILE_SIZE, | ||
| 508 | "exit event has grown above profile buffer size")) | ||
| 509 | return; | ||
| 510 | |||
| 511 | /* Protect the per cpu buffer, begin the rcu read side */ | ||
| 512 | local_irq_save(flags); | ||
| 513 | cpu = smp_processor_id(); | ||
| 514 | |||
| 515 | if (in_nmi()) | ||
| 516 | raw_data = rcu_dereference(trace_profile_buf_nmi); | ||
| 517 | else | ||
| 518 | raw_data = rcu_dereference(trace_profile_buf); | ||
| 519 | |||
| 520 | if (!raw_data) | ||
| 521 | goto end; | ||
| 522 | |||
| 523 | raw_data = per_cpu_ptr(raw_data, cpu); | ||
| 524 | |||
| 525 | /* zero the dead bytes from align to not leak stack to user */ | ||
| 526 | *(u64 *)(&raw_data[size - sizeof(u64)]) = 0ULL; | ||
| 527 | |||
| 528 | rec = (struct syscall_trace_exit *)raw_data; | ||
| 529 | |||
| 530 | tracing_generic_entry_update(&rec->ent, 0, 0); | ||
| 531 | rec->ent.type = sys_data->exit_id; | ||
| 532 | rec->nr = syscall_nr; | ||
| 533 | rec->ret = syscall_get_return_value(current, regs); | ||
| 534 | |||
| 535 | perf_tp_event(sys_data->exit_id, 0, 1, rec, size); | ||
| 536 | |||
| 537 | end: | ||
| 538 | local_irq_restore(flags); | ||
| 539 | } | ||
| 540 | |||
| 541 | int reg_prof_syscall_exit(char *name) | ||
| 542 | { | ||
| 543 | int ret = 0; | ||
| 544 | int num; | ||
| 545 | |||
| 546 | num = syscall_name_to_nr(name); | ||
| 547 | if (num < 0 || num >= NR_syscalls) | ||
| 548 | return -ENOSYS; | ||
| 549 | |||
| 550 | mutex_lock(&syscall_trace_lock); | ||
| 551 | if (!sys_prof_refcount_exit) | ||
| 552 | ret = register_trace_sys_exit(prof_syscall_exit); | ||
| 553 | if (ret) { | ||
| 554 | pr_info("event trace: Could not activate" | ||
| 555 | "syscall entry trace point"); | ||
| 556 | } else { | ||
| 557 | set_bit(num, enabled_prof_exit_syscalls); | ||
| 558 | sys_prof_refcount_exit++; | ||
| 246 | } | 559 | } |
| 560 | mutex_unlock(&syscall_trace_lock); | ||
| 561 | return ret; | ||
| 562 | } | ||
| 563 | |||
| 564 | void unreg_prof_syscall_exit(char *name) | ||
| 565 | { | ||
| 566 | int num; | ||
| 567 | |||
| 568 | num = syscall_name_to_nr(name); | ||
| 569 | if (num < 0 || num >= NR_syscalls) | ||
| 570 | return; | ||
| 247 | 571 | ||
| 248 | return register_tracer(&syscall_tracer); | 572 | mutex_lock(&syscall_trace_lock); |
| 573 | sys_prof_refcount_exit--; | ||
| 574 | clear_bit(num, enabled_prof_exit_syscalls); | ||
| 575 | if (!sys_prof_refcount_exit) | ||
| 576 | unregister_trace_sys_exit(prof_syscall_exit); | ||
| 577 | mutex_unlock(&syscall_trace_lock); | ||
| 249 | } | 578 | } |
| 250 | device_initcall(register_ftrace_syscalls); | 579 | |
| 580 | #endif | ||
| 581 | |||
| 582 | |||
diff --git a/kernel/trace/trace_workqueue.c b/kernel/trace/trace_workqueue.c index 97fcea4acce1..40cafb07dffd 100644 --- a/kernel/trace/trace_workqueue.c +++ b/kernel/trace/trace_workqueue.c | |||
| @@ -9,6 +9,7 @@ | |||
| 9 | #include <trace/events/workqueue.h> | 9 | #include <trace/events/workqueue.h> |
| 10 | #include <linux/list.h> | 10 | #include <linux/list.h> |
| 11 | #include <linux/percpu.h> | 11 | #include <linux/percpu.h> |
| 12 | #include <linux/kref.h> | ||
| 12 | #include "trace_stat.h" | 13 | #include "trace_stat.h" |
| 13 | #include "trace.h" | 14 | #include "trace.h" |
| 14 | 15 | ||
| @@ -16,6 +17,7 @@ | |||
| 16 | /* A cpu workqueue thread */ | 17 | /* A cpu workqueue thread */ |
| 17 | struct cpu_workqueue_stats { | 18 | struct cpu_workqueue_stats { |
| 18 | struct list_head list; | 19 | struct list_head list; |
| 20 | struct kref kref; | ||
| 19 | int cpu; | 21 | int cpu; |
| 20 | pid_t pid; | 22 | pid_t pid; |
| 21 | /* Can be inserted from interrupt or user context, need to be atomic */ | 23 | /* Can be inserted from interrupt or user context, need to be atomic */ |
| @@ -39,6 +41,11 @@ struct workqueue_global_stats { | |||
| 39 | static DEFINE_PER_CPU(struct workqueue_global_stats, all_workqueue_stat); | 41 | static DEFINE_PER_CPU(struct workqueue_global_stats, all_workqueue_stat); |
| 40 | #define workqueue_cpu_stat(cpu) (&per_cpu(all_workqueue_stat, cpu)) | 42 | #define workqueue_cpu_stat(cpu) (&per_cpu(all_workqueue_stat, cpu)) |
| 41 | 43 | ||
| 44 | static void cpu_workqueue_stat_free(struct kref *kref) | ||
| 45 | { | ||
| 46 | kfree(container_of(kref, struct cpu_workqueue_stats, kref)); | ||
| 47 | } | ||
| 48 | |||
| 42 | /* Insertion of a work */ | 49 | /* Insertion of a work */ |
| 43 | static void | 50 | static void |
| 44 | probe_workqueue_insertion(struct task_struct *wq_thread, | 51 | probe_workqueue_insertion(struct task_struct *wq_thread, |
| @@ -96,8 +103,8 @@ static void probe_workqueue_creation(struct task_struct *wq_thread, int cpu) | |||
| 96 | return; | 103 | return; |
| 97 | } | 104 | } |
| 98 | INIT_LIST_HEAD(&cws->list); | 105 | INIT_LIST_HEAD(&cws->list); |
| 106 | kref_init(&cws->kref); | ||
| 99 | cws->cpu = cpu; | 107 | cws->cpu = cpu; |
| 100 | |||
| 101 | cws->pid = wq_thread->pid; | 108 | cws->pid = wq_thread->pid; |
| 102 | 109 | ||
| 103 | spin_lock_irqsave(&workqueue_cpu_stat(cpu)->lock, flags); | 110 | spin_lock_irqsave(&workqueue_cpu_stat(cpu)->lock, flags); |
| @@ -118,7 +125,7 @@ static void probe_workqueue_destruction(struct task_struct *wq_thread) | |||
| 118 | list) { | 125 | list) { |
| 119 | if (node->pid == wq_thread->pid) { | 126 | if (node->pid == wq_thread->pid) { |
| 120 | list_del(&node->list); | 127 | list_del(&node->list); |
| 121 | kfree(node); | 128 | kref_put(&node->kref, cpu_workqueue_stat_free); |
| 122 | goto found; | 129 | goto found; |
| 123 | } | 130 | } |
| 124 | } | 131 | } |
| @@ -137,9 +144,11 @@ static struct cpu_workqueue_stats *workqueue_stat_start_cpu(int cpu) | |||
| 137 | 144 | ||
| 138 | spin_lock_irqsave(&workqueue_cpu_stat(cpu)->lock, flags); | 145 | spin_lock_irqsave(&workqueue_cpu_stat(cpu)->lock, flags); |
| 139 | 146 | ||
| 140 | if (!list_empty(&workqueue_cpu_stat(cpu)->list)) | 147 | if (!list_empty(&workqueue_cpu_stat(cpu)->list)) { |
| 141 | ret = list_entry(workqueue_cpu_stat(cpu)->list.next, | 148 | ret = list_entry(workqueue_cpu_stat(cpu)->list.next, |
| 142 | struct cpu_workqueue_stats, list); | 149 | struct cpu_workqueue_stats, list); |
| 150 | kref_get(&ret->kref); | ||
| 151 | } | ||
| 143 | 152 | ||
| 144 | spin_unlock_irqrestore(&workqueue_cpu_stat(cpu)->lock, flags); | 153 | spin_unlock_irqrestore(&workqueue_cpu_stat(cpu)->lock, flags); |
| 145 | 154 | ||
| @@ -162,9 +171,9 @@ static void *workqueue_stat_start(struct tracer_stat *trace) | |||
| 162 | static void *workqueue_stat_next(void *prev, int idx) | 171 | static void *workqueue_stat_next(void *prev, int idx) |
| 163 | { | 172 | { |
| 164 | struct cpu_workqueue_stats *prev_cws = prev; | 173 | struct cpu_workqueue_stats *prev_cws = prev; |
| 174 | struct cpu_workqueue_stats *ret; | ||
| 165 | int cpu = prev_cws->cpu; | 175 | int cpu = prev_cws->cpu; |
| 166 | unsigned long flags; | 176 | unsigned long flags; |
| 167 | void *ret = NULL; | ||
| 168 | 177 | ||
| 169 | spin_lock_irqsave(&workqueue_cpu_stat(cpu)->lock, flags); | 178 | spin_lock_irqsave(&workqueue_cpu_stat(cpu)->lock, flags); |
| 170 | if (list_is_last(&prev_cws->list, &workqueue_cpu_stat(cpu)->list)) { | 179 | if (list_is_last(&prev_cws->list, &workqueue_cpu_stat(cpu)->list)) { |
| @@ -175,11 +184,14 @@ static void *workqueue_stat_next(void *prev, int idx) | |||
| 175 | return NULL; | 184 | return NULL; |
| 176 | } while (!(ret = workqueue_stat_start_cpu(cpu))); | 185 | } while (!(ret = workqueue_stat_start_cpu(cpu))); |
| 177 | return ret; | 186 | return ret; |
| 187 | } else { | ||
| 188 | ret = list_entry(prev_cws->list.next, | ||
| 189 | struct cpu_workqueue_stats, list); | ||
| 190 | kref_get(&ret->kref); | ||
| 178 | } | 191 | } |
| 179 | spin_unlock_irqrestore(&workqueue_cpu_stat(cpu)->lock, flags); | 192 | spin_unlock_irqrestore(&workqueue_cpu_stat(cpu)->lock, flags); |
| 180 | 193 | ||
| 181 | return list_entry(prev_cws->list.next, struct cpu_workqueue_stats, | 194 | return ret; |
| 182 | list); | ||
| 183 | } | 195 | } |
| 184 | 196 | ||
| 185 | static int workqueue_stat_show(struct seq_file *s, void *p) | 197 | static int workqueue_stat_show(struct seq_file *s, void *p) |
| @@ -203,6 +215,13 @@ static int workqueue_stat_show(struct seq_file *s, void *p) | |||
| 203 | return 0; | 215 | return 0; |
| 204 | } | 216 | } |
| 205 | 217 | ||
| 218 | static void workqueue_stat_release(void *stat) | ||
| 219 | { | ||
| 220 | struct cpu_workqueue_stats *node = stat; | ||
| 221 | |||
| 222 | kref_put(&node->kref, cpu_workqueue_stat_free); | ||
| 223 | } | ||
| 224 | |||
| 206 | static int workqueue_stat_headers(struct seq_file *s) | 225 | static int workqueue_stat_headers(struct seq_file *s) |
| 207 | { | 226 | { |
| 208 | seq_printf(s, "# CPU INSERTED EXECUTED NAME\n"); | 227 | seq_printf(s, "# CPU INSERTED EXECUTED NAME\n"); |
| @@ -215,6 +234,7 @@ struct tracer_stat workqueue_stats __read_mostly = { | |||
| 215 | .stat_start = workqueue_stat_start, | 234 | .stat_start = workqueue_stat_start, |
| 216 | .stat_next = workqueue_stat_next, | 235 | .stat_next = workqueue_stat_next, |
| 217 | .stat_show = workqueue_stat_show, | 236 | .stat_show = workqueue_stat_show, |
| 237 | .stat_release = workqueue_stat_release, | ||
| 218 | .stat_headers = workqueue_stat_headers | 238 | .stat_headers = workqueue_stat_headers |
| 219 | }; | 239 | }; |
| 220 | 240 | ||
diff --git a/kernel/tracepoint.c b/kernel/tracepoint.c index 1ef5d3a601c7..cc89be5bc0f8 100644 --- a/kernel/tracepoint.c +++ b/kernel/tracepoint.c | |||
| @@ -24,6 +24,7 @@ | |||
| 24 | #include <linux/tracepoint.h> | 24 | #include <linux/tracepoint.h> |
| 25 | #include <linux/err.h> | 25 | #include <linux/err.h> |
| 26 | #include <linux/slab.h> | 26 | #include <linux/slab.h> |
| 27 | #include <linux/sched.h> | ||
| 27 | 28 | ||
| 28 | extern struct tracepoint __start___tracepoints[]; | 29 | extern struct tracepoint __start___tracepoints[]; |
| 29 | extern struct tracepoint __stop___tracepoints[]; | 30 | extern struct tracepoint __stop___tracepoints[]; |
| @@ -47,7 +48,7 @@ static struct hlist_head tracepoint_table[TRACEPOINT_TABLE_SIZE]; | |||
| 47 | 48 | ||
| 48 | /* | 49 | /* |
| 49 | * Note about RCU : | 50 | * Note about RCU : |
| 50 | * It is used to to delay the free of multiple probes array until a quiescent | 51 | * It is used to delay the free of multiple probes array until a quiescent |
| 51 | * state is reached. | 52 | * state is reached. |
| 52 | * Tracepoint entries modifications are protected by the tracepoints_mutex. | 53 | * Tracepoint entries modifications are protected by the tracepoints_mutex. |
| 53 | */ | 54 | */ |
| @@ -242,6 +243,11 @@ static void set_tracepoint(struct tracepoint_entry **entry, | |||
| 242 | { | 243 | { |
| 243 | WARN_ON(strcmp((*entry)->name, elem->name) != 0); | 244 | WARN_ON(strcmp((*entry)->name, elem->name) != 0); |
| 244 | 245 | ||
| 246 | if (elem->regfunc && !elem->state && active) | ||
| 247 | elem->regfunc(); | ||
| 248 | else if (elem->unregfunc && elem->state && !active) | ||
| 249 | elem->unregfunc(); | ||
| 250 | |||
| 245 | /* | 251 | /* |
| 246 | * rcu_assign_pointer has a smp_wmb() which makes sure that the new | 252 | * rcu_assign_pointer has a smp_wmb() which makes sure that the new |
| 247 | * probe callbacks array is consistent before setting a pointer to it. | 253 | * probe callbacks array is consistent before setting a pointer to it. |
| @@ -261,6 +267,9 @@ static void set_tracepoint(struct tracepoint_entry **entry, | |||
| 261 | */ | 267 | */ |
| 262 | static void disable_tracepoint(struct tracepoint *elem) | 268 | static void disable_tracepoint(struct tracepoint *elem) |
| 263 | { | 269 | { |
| 270 | if (elem->unregfunc && elem->state) | ||
| 271 | elem->unregfunc(); | ||
| 272 | |||
| 264 | elem->state = 0; | 273 | elem->state = 0; |
| 265 | rcu_assign_pointer(elem->funcs, NULL); | 274 | rcu_assign_pointer(elem->funcs, NULL); |
| 266 | } | 275 | } |
| @@ -554,9 +563,6 @@ int tracepoint_module_notify(struct notifier_block *self, | |||
| 554 | 563 | ||
| 555 | switch (val) { | 564 | switch (val) { |
| 556 | case MODULE_STATE_COMING: | 565 | case MODULE_STATE_COMING: |
| 557 | tracepoint_update_probe_range(mod->tracepoints, | ||
| 558 | mod->tracepoints + mod->num_tracepoints); | ||
| 559 | break; | ||
| 560 | case MODULE_STATE_GOING: | 566 | case MODULE_STATE_GOING: |
| 561 | tracepoint_update_probe_range(mod->tracepoints, | 567 | tracepoint_update_probe_range(mod->tracepoints, |
| 562 | mod->tracepoints + mod->num_tracepoints); | 568 | mod->tracepoints + mod->num_tracepoints); |
| @@ -577,3 +583,41 @@ static int init_tracepoints(void) | |||
| 577 | __initcall(init_tracepoints); | 583 | __initcall(init_tracepoints); |
| 578 | 584 | ||
| 579 | #endif /* CONFIG_MODULES */ | 585 | #endif /* CONFIG_MODULES */ |
| 586 | |||
| 587 | #ifdef CONFIG_HAVE_SYSCALL_TRACEPOINTS | ||
| 588 | |||
| 589 | /* NB: reg/unreg are called while guarded with the tracepoints_mutex */ | ||
| 590 | static int sys_tracepoint_refcount; | ||
| 591 | |||
| 592 | void syscall_regfunc(void) | ||
| 593 | { | ||
| 594 | unsigned long flags; | ||
| 595 | struct task_struct *g, *t; | ||
| 596 | |||
| 597 | if (!sys_tracepoint_refcount) { | ||
| 598 | read_lock_irqsave(&tasklist_lock, flags); | ||
| 599 | do_each_thread(g, t) { | ||
| 600 | /* Skip kernel threads. */ | ||
| 601 | if (t->mm) | ||
| 602 | set_tsk_thread_flag(t, TIF_SYSCALL_TRACEPOINT); | ||
| 603 | } while_each_thread(g, t); | ||
| 604 | read_unlock_irqrestore(&tasklist_lock, flags); | ||
| 605 | } | ||
| 606 | sys_tracepoint_refcount++; | ||
| 607 | } | ||
| 608 | |||
| 609 | void syscall_unregfunc(void) | ||
| 610 | { | ||
| 611 | unsigned long flags; | ||
| 612 | struct task_struct *g, *t; | ||
| 613 | |||
| 614 | sys_tracepoint_refcount--; | ||
| 615 | if (!sys_tracepoint_refcount) { | ||
| 616 | read_lock_irqsave(&tasklist_lock, flags); | ||
| 617 | do_each_thread(g, t) { | ||
| 618 | clear_tsk_thread_flag(t, TIF_SYSCALL_TRACEPOINT); | ||
| 619 | } while_each_thread(g, t); | ||
| 620 | read_unlock_irqrestore(&tasklist_lock, flags); | ||
| 621 | } | ||
| 622 | } | ||
| 623 | #endif | ||
diff --git a/kernel/wait.c b/kernel/wait.c index ea7c3b4275cf..c4bd3d825f35 100644 --- a/kernel/wait.c +++ b/kernel/wait.c | |||
| @@ -10,13 +10,14 @@ | |||
| 10 | #include <linux/wait.h> | 10 | #include <linux/wait.h> |
| 11 | #include <linux/hash.h> | 11 | #include <linux/hash.h> |
| 12 | 12 | ||
| 13 | void init_waitqueue_head(wait_queue_head_t *q) | 13 | void __init_waitqueue_head(wait_queue_head_t *q, struct lock_class_key *key) |
| 14 | { | 14 | { |
| 15 | spin_lock_init(&q->lock); | 15 | spin_lock_init(&q->lock); |
| 16 | lockdep_set_class(&q->lock, key); | ||
| 16 | INIT_LIST_HEAD(&q->task_list); | 17 | INIT_LIST_HEAD(&q->task_list); |
| 17 | } | 18 | } |
| 18 | 19 | ||
| 19 | EXPORT_SYMBOL(init_waitqueue_head); | 20 | EXPORT_SYMBOL(__init_waitqueue_head); |
| 20 | 21 | ||
| 21 | void add_wait_queue(wait_queue_head_t *q, wait_queue_t *wait) | 22 | void add_wait_queue(wait_queue_head_t *q, wait_queue_t *wait) |
| 22 | { | 23 | { |
diff --git a/kernel/workqueue.c b/kernel/workqueue.c index 0668795d8818..addfe2df93b1 100644 --- a/kernel/workqueue.c +++ b/kernel/workqueue.c | |||
| @@ -317,8 +317,6 @@ static int worker_thread(void *__cwq) | |||
| 317 | if (cwq->wq->freezeable) | 317 | if (cwq->wq->freezeable) |
| 318 | set_freezable(); | 318 | set_freezable(); |
| 319 | 319 | ||
| 320 | set_user_nice(current, -5); | ||
| 321 | |||
| 322 | for (;;) { | 320 | for (;;) { |
| 323 | prepare_to_wait(&cwq->more_work, &wait, TASK_INTERRUPTIBLE); | 321 | prepare_to_wait(&cwq->more_work, &wait, TASK_INTERRUPTIBLE); |
| 324 | if (!freezing(current) && | 322 | if (!freezing(current) && |
| @@ -600,7 +598,12 @@ static struct workqueue_struct *keventd_wq __read_mostly; | |||
| 600 | * schedule_work - put work task in global workqueue | 598 | * schedule_work - put work task in global workqueue |
| 601 | * @work: job to be done | 599 | * @work: job to be done |
| 602 | * | 600 | * |
| 603 | * This puts a job in the kernel-global workqueue. | 601 | * Returns zero if @work was already on the kernel-global workqueue and |
| 602 | * non-zero otherwise. | ||
| 603 | * | ||
| 604 | * This puts a job in the kernel-global workqueue if it was not already | ||
| 605 | * queued and leaves it in the same position on the kernel-global | ||
| 606 | * workqueue otherwise. | ||
| 604 | */ | 607 | */ |
| 605 | int schedule_work(struct work_struct *work) | 608 | int schedule_work(struct work_struct *work) |
| 606 | { | 609 | { |
