diff options
Diffstat (limited to 'kernel/workqueue.c')
-rw-r--r-- | kernel/workqueue.c | 2964 |
1 files changed, 2083 insertions, 881 deletions
diff --git a/kernel/workqueue.c b/kernel/workqueue.c index 55fac5b991b7..ee8e29a2320c 100644 --- a/kernel/workqueue.c +++ b/kernel/workqueue.c | |||
@@ -41,7 +41,12 @@ | |||
41 | #include <linux/debug_locks.h> | 41 | #include <linux/debug_locks.h> |
42 | #include <linux/lockdep.h> | 42 | #include <linux/lockdep.h> |
43 | #include <linux/idr.h> | 43 | #include <linux/idr.h> |
44 | #include <linux/jhash.h> | ||
44 | #include <linux/hashtable.h> | 45 | #include <linux/hashtable.h> |
46 | #include <linux/rculist.h> | ||
47 | #include <linux/nodemask.h> | ||
48 | #include <linux/moduleparam.h> | ||
49 | #include <linux/uaccess.h> | ||
45 | 50 | ||
46 | #include "workqueue_internal.h" | 51 | #include "workqueue_internal.h" |
47 | 52 | ||
@@ -58,12 +63,11 @@ enum { | |||
58 | * %WORKER_UNBOUND set and concurrency management disabled, and may | 63 | * %WORKER_UNBOUND set and concurrency management disabled, and may |
59 | * be executing on any CPU. The pool behaves as an unbound one. | 64 | * be executing on any CPU. The pool behaves as an unbound one. |
60 | * | 65 | * |
61 | * Note that DISASSOCIATED can be flipped only while holding | 66 | * Note that DISASSOCIATED should be flipped only while holding |
62 | * assoc_mutex to avoid changing binding state while | 67 | * manager_mutex to avoid changing binding state while |
63 | * create_worker() is in progress. | 68 | * create_worker() is in progress. |
64 | */ | 69 | */ |
65 | POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */ | 70 | POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */ |
66 | POOL_MANAGING_WORKERS = 1 << 1, /* managing workers */ | ||
67 | POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ | 71 | POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ |
68 | POOL_FREEZING = 1 << 3, /* freeze in progress */ | 72 | POOL_FREEZING = 1 << 3, /* freeze in progress */ |
69 | 73 | ||
@@ -74,12 +78,14 @@ enum { | |||
74 | WORKER_PREP = 1 << 3, /* preparing to run works */ | 78 | WORKER_PREP = 1 << 3, /* preparing to run works */ |
75 | WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ | 79 | WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ |
76 | WORKER_UNBOUND = 1 << 7, /* worker is unbound */ | 80 | WORKER_UNBOUND = 1 << 7, /* worker is unbound */ |
81 | WORKER_REBOUND = 1 << 8, /* worker was rebound */ | ||
77 | 82 | ||
78 | WORKER_NOT_RUNNING = WORKER_PREP | WORKER_UNBOUND | | 83 | WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE | |
79 | WORKER_CPU_INTENSIVE, | 84 | WORKER_UNBOUND | WORKER_REBOUND, |
80 | 85 | ||
81 | NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */ | 86 | NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */ |
82 | 87 | ||
88 | UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */ | ||
83 | BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ | 89 | BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ |
84 | 90 | ||
85 | MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ | 91 | MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ |
@@ -97,6 +103,8 @@ enum { | |||
97 | */ | 103 | */ |
98 | RESCUER_NICE_LEVEL = -20, | 104 | RESCUER_NICE_LEVEL = -20, |
99 | HIGHPRI_NICE_LEVEL = -20, | 105 | HIGHPRI_NICE_LEVEL = -20, |
106 | |||
107 | WQ_NAME_LEN = 24, | ||
100 | }; | 108 | }; |
101 | 109 | ||
102 | /* | 110 | /* |
@@ -115,16 +123,26 @@ enum { | |||
115 | * cpu or grabbing pool->lock is enough for read access. If | 123 | * cpu or grabbing pool->lock is enough for read access. If |
116 | * POOL_DISASSOCIATED is set, it's identical to L. | 124 | * POOL_DISASSOCIATED is set, it's identical to L. |
117 | * | 125 | * |
118 | * F: wq->flush_mutex protected. | 126 | * MG: pool->manager_mutex and pool->lock protected. Writes require both |
127 | * locks. Reads can happen under either lock. | ||
128 | * | ||
129 | * PL: wq_pool_mutex protected. | ||
130 | * | ||
131 | * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads. | ||
132 | * | ||
133 | * WQ: wq->mutex protected. | ||
119 | * | 134 | * |
120 | * W: workqueue_lock protected. | 135 | * WR: wq->mutex protected for writes. Sched-RCU protected for reads. |
136 | * | ||
137 | * MD: wq_mayday_lock protected. | ||
121 | */ | 138 | */ |
122 | 139 | ||
123 | /* struct worker is defined in workqueue_internal.h */ | 140 | /* struct worker is defined in workqueue_internal.h */ |
124 | 141 | ||
125 | struct worker_pool { | 142 | struct worker_pool { |
126 | spinlock_t lock; /* the pool lock */ | 143 | spinlock_t lock; /* the pool lock */ |
127 | unsigned int cpu; /* I: the associated cpu */ | 144 | int cpu; /* I: the associated cpu */ |
145 | int node; /* I: the associated node ID */ | ||
128 | int id; /* I: pool ID */ | 146 | int id; /* I: pool ID */ |
129 | unsigned int flags; /* X: flags */ | 147 | unsigned int flags; /* X: flags */ |
130 | 148 | ||
@@ -138,12 +156,18 @@ struct worker_pool { | |||
138 | struct timer_list idle_timer; /* L: worker idle timeout */ | 156 | struct timer_list idle_timer; /* L: worker idle timeout */ |
139 | struct timer_list mayday_timer; /* L: SOS timer for workers */ | 157 | struct timer_list mayday_timer; /* L: SOS timer for workers */ |
140 | 158 | ||
141 | /* workers are chained either in busy_hash or idle_list */ | 159 | /* a workers is either on busy_hash or idle_list, or the manager */ |
142 | DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER); | 160 | DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER); |
143 | /* L: hash of busy workers */ | 161 | /* L: hash of busy workers */ |
144 | 162 | ||
145 | struct mutex assoc_mutex; /* protect POOL_DISASSOCIATED */ | 163 | /* see manage_workers() for details on the two manager mutexes */ |
146 | struct ida worker_ida; /* L: for worker IDs */ | 164 | struct mutex manager_arb; /* manager arbitration */ |
165 | struct mutex manager_mutex; /* manager exclusion */ | ||
166 | struct idr worker_idr; /* MG: worker IDs and iteration */ | ||
167 | |||
168 | struct workqueue_attrs *attrs; /* I: worker attributes */ | ||
169 | struct hlist_node hash_node; /* PL: unbound_pool_hash node */ | ||
170 | int refcnt; /* PL: refcnt for unbound pools */ | ||
147 | 171 | ||
148 | /* | 172 | /* |
149 | * The current concurrency level. As it's likely to be accessed | 173 | * The current concurrency level. As it's likely to be accessed |
@@ -151,6 +175,12 @@ struct worker_pool { | |||
151 | * cacheline. | 175 | * cacheline. |
152 | */ | 176 | */ |
153 | atomic_t nr_running ____cacheline_aligned_in_smp; | 177 | atomic_t nr_running ____cacheline_aligned_in_smp; |
178 | |||
179 | /* | ||
180 | * Destruction of pool is sched-RCU protected to allow dereferences | ||
181 | * from get_work_pool(). | ||
182 | */ | ||
183 | struct rcu_head rcu; | ||
154 | } ____cacheline_aligned_in_smp; | 184 | } ____cacheline_aligned_in_smp; |
155 | 185 | ||
156 | /* | 186 | /* |
@@ -164,77 +194,109 @@ struct pool_workqueue { | |||
164 | struct workqueue_struct *wq; /* I: the owning workqueue */ | 194 | struct workqueue_struct *wq; /* I: the owning workqueue */ |
165 | int work_color; /* L: current color */ | 195 | int work_color; /* L: current color */ |
166 | int flush_color; /* L: flushing color */ | 196 | int flush_color; /* L: flushing color */ |
197 | int refcnt; /* L: reference count */ | ||
167 | int nr_in_flight[WORK_NR_COLORS]; | 198 | int nr_in_flight[WORK_NR_COLORS]; |
168 | /* L: nr of in_flight works */ | 199 | /* L: nr of in_flight works */ |
169 | int nr_active; /* L: nr of active works */ | 200 | int nr_active; /* L: nr of active works */ |
170 | int max_active; /* L: max active works */ | 201 | int max_active; /* L: max active works */ |
171 | struct list_head delayed_works; /* L: delayed works */ | 202 | struct list_head delayed_works; /* L: delayed works */ |
172 | }; | 203 | struct list_head pwqs_node; /* WR: node on wq->pwqs */ |
204 | struct list_head mayday_node; /* MD: node on wq->maydays */ | ||
205 | |||
206 | /* | ||
207 | * Release of unbound pwq is punted to system_wq. See put_pwq() | ||
208 | * and pwq_unbound_release_workfn() for details. pool_workqueue | ||
209 | * itself is also sched-RCU protected so that the first pwq can be | ||
210 | * determined without grabbing wq->mutex. | ||
211 | */ | ||
212 | struct work_struct unbound_release_work; | ||
213 | struct rcu_head rcu; | ||
214 | } __aligned(1 << WORK_STRUCT_FLAG_BITS); | ||
173 | 215 | ||
174 | /* | 216 | /* |
175 | * Structure used to wait for workqueue flush. | 217 | * Structure used to wait for workqueue flush. |
176 | */ | 218 | */ |
177 | struct wq_flusher { | 219 | struct wq_flusher { |
178 | struct list_head list; /* F: list of flushers */ | 220 | struct list_head list; /* WQ: list of flushers */ |
179 | int flush_color; /* F: flush color waiting for */ | 221 | int flush_color; /* WQ: flush color waiting for */ |
180 | struct completion done; /* flush completion */ | 222 | struct completion done; /* flush completion */ |
181 | }; | 223 | }; |
182 | 224 | ||
183 | /* | 225 | struct wq_device; |
184 | * All cpumasks are assumed to be always set on UP and thus can't be | ||
185 | * used to determine whether there's something to be done. | ||
186 | */ | ||
187 | #ifdef CONFIG_SMP | ||
188 | typedef cpumask_var_t mayday_mask_t; | ||
189 | #define mayday_test_and_set_cpu(cpu, mask) \ | ||
190 | cpumask_test_and_set_cpu((cpu), (mask)) | ||
191 | #define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask)) | ||
192 | #define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask)) | ||
193 | #define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp)) | ||
194 | #define free_mayday_mask(mask) free_cpumask_var((mask)) | ||
195 | #else | ||
196 | typedef unsigned long mayday_mask_t; | ||
197 | #define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask)) | ||
198 | #define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask)) | ||
199 | #define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask)) | ||
200 | #define alloc_mayday_mask(maskp, gfp) true | ||
201 | #define free_mayday_mask(mask) do { } while (0) | ||
202 | #endif | ||
203 | 226 | ||
204 | /* | 227 | /* |
205 | * The externally visible workqueue abstraction is an array of | 228 | * The externally visible workqueue. It relays the issued work items to |
206 | * per-CPU workqueues: | 229 | * the appropriate worker_pool through its pool_workqueues. |
207 | */ | 230 | */ |
208 | struct workqueue_struct { | 231 | struct workqueue_struct { |
209 | unsigned int flags; /* W: WQ_* flags */ | 232 | struct list_head pwqs; /* WR: all pwqs of this wq */ |
210 | union { | 233 | struct list_head list; /* PL: list of all workqueues */ |
211 | struct pool_workqueue __percpu *pcpu; | 234 | |
212 | struct pool_workqueue *single; | 235 | struct mutex mutex; /* protects this wq */ |
213 | unsigned long v; | 236 | int work_color; /* WQ: current work color */ |
214 | } pool_wq; /* I: pwq's */ | 237 | int flush_color; /* WQ: current flush color */ |
215 | struct list_head list; /* W: list of all workqueues */ | ||
216 | |||
217 | struct mutex flush_mutex; /* protects wq flushing */ | ||
218 | int work_color; /* F: current work color */ | ||
219 | int flush_color; /* F: current flush color */ | ||
220 | atomic_t nr_pwqs_to_flush; /* flush in progress */ | 238 | atomic_t nr_pwqs_to_flush; /* flush in progress */ |
221 | struct wq_flusher *first_flusher; /* F: first flusher */ | 239 | struct wq_flusher *first_flusher; /* WQ: first flusher */ |
222 | struct list_head flusher_queue; /* F: flush waiters */ | 240 | struct list_head flusher_queue; /* WQ: flush waiters */ |
223 | struct list_head flusher_overflow; /* F: flush overflow list */ | 241 | struct list_head flusher_overflow; /* WQ: flush overflow list */ |
224 | 242 | ||
225 | mayday_mask_t mayday_mask; /* cpus requesting rescue */ | 243 | struct list_head maydays; /* MD: pwqs requesting rescue */ |
226 | struct worker *rescuer; /* I: rescue worker */ | 244 | struct worker *rescuer; /* I: rescue worker */ |
227 | 245 | ||
228 | int nr_drainers; /* W: drain in progress */ | 246 | int nr_drainers; /* WQ: drain in progress */ |
229 | int saved_max_active; /* W: saved pwq max_active */ | 247 | int saved_max_active; /* WQ: saved pwq max_active */ |
248 | |||
249 | struct workqueue_attrs *unbound_attrs; /* WQ: only for unbound wqs */ | ||
250 | struct pool_workqueue *dfl_pwq; /* WQ: only for unbound wqs */ | ||
251 | |||
252 | #ifdef CONFIG_SYSFS | ||
253 | struct wq_device *wq_dev; /* I: for sysfs interface */ | ||
254 | #endif | ||
230 | #ifdef CONFIG_LOCKDEP | 255 | #ifdef CONFIG_LOCKDEP |
231 | struct lockdep_map lockdep_map; | 256 | struct lockdep_map lockdep_map; |
232 | #endif | 257 | #endif |
233 | char name[]; /* I: workqueue name */ | 258 | char name[WQ_NAME_LEN]; /* I: workqueue name */ |
259 | |||
260 | /* hot fields used during command issue, aligned to cacheline */ | ||
261 | unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */ | ||
262 | struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */ | ||
263 | struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */ | ||
234 | }; | 264 | }; |
235 | 265 | ||
266 | static struct kmem_cache *pwq_cache; | ||
267 | |||
268 | static int wq_numa_tbl_len; /* highest possible NUMA node id + 1 */ | ||
269 | static cpumask_var_t *wq_numa_possible_cpumask; | ||
270 | /* possible CPUs of each node */ | ||
271 | |||
272 | static bool wq_disable_numa; | ||
273 | module_param_named(disable_numa, wq_disable_numa, bool, 0444); | ||
274 | |||
275 | static bool wq_numa_enabled; /* unbound NUMA affinity enabled */ | ||
276 | |||
277 | /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */ | ||
278 | static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf; | ||
279 | |||
280 | static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */ | ||
281 | static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */ | ||
282 | |||
283 | static LIST_HEAD(workqueues); /* PL: list of all workqueues */ | ||
284 | static bool workqueue_freezing; /* PL: have wqs started freezing? */ | ||
285 | |||
286 | /* the per-cpu worker pools */ | ||
287 | static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], | ||
288 | cpu_worker_pools); | ||
289 | |||
290 | static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */ | ||
291 | |||
292 | /* PL: hash of all unbound pools keyed by pool->attrs */ | ||
293 | static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER); | ||
294 | |||
295 | /* I: attributes used when instantiating standard unbound pools on demand */ | ||
296 | static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS]; | ||
297 | |||
236 | struct workqueue_struct *system_wq __read_mostly; | 298 | struct workqueue_struct *system_wq __read_mostly; |
237 | EXPORT_SYMBOL_GPL(system_wq); | 299 | EXPORT_SYMBOL(system_wq); |
238 | struct workqueue_struct *system_highpri_wq __read_mostly; | 300 | struct workqueue_struct *system_highpri_wq __read_mostly; |
239 | EXPORT_SYMBOL_GPL(system_highpri_wq); | 301 | EXPORT_SYMBOL_GPL(system_highpri_wq); |
240 | struct workqueue_struct *system_long_wq __read_mostly; | 302 | struct workqueue_struct *system_long_wq __read_mostly; |
@@ -244,64 +306,87 @@ EXPORT_SYMBOL_GPL(system_unbound_wq); | |||
244 | struct workqueue_struct *system_freezable_wq __read_mostly; | 306 | struct workqueue_struct *system_freezable_wq __read_mostly; |
245 | EXPORT_SYMBOL_GPL(system_freezable_wq); | 307 | EXPORT_SYMBOL_GPL(system_freezable_wq); |
246 | 308 | ||
309 | static int worker_thread(void *__worker); | ||
310 | static void copy_workqueue_attrs(struct workqueue_attrs *to, | ||
311 | const struct workqueue_attrs *from); | ||
312 | |||
247 | #define CREATE_TRACE_POINTS | 313 | #define CREATE_TRACE_POINTS |
248 | #include <trace/events/workqueue.h> | 314 | #include <trace/events/workqueue.h> |
249 | 315 | ||
250 | #define for_each_std_worker_pool(pool, cpu) \ | 316 | #define assert_rcu_or_pool_mutex() \ |
251 | for ((pool) = &std_worker_pools(cpu)[0]; \ | 317 | rcu_lockdep_assert(rcu_read_lock_sched_held() || \ |
252 | (pool) < &std_worker_pools(cpu)[NR_STD_WORKER_POOLS]; (pool)++) | 318 | lockdep_is_held(&wq_pool_mutex), \ |
319 | "sched RCU or wq_pool_mutex should be held") | ||
253 | 320 | ||
254 | #define for_each_busy_worker(worker, i, pool) \ | 321 | #define assert_rcu_or_wq_mutex(wq) \ |
255 | hash_for_each(pool->busy_hash, i, worker, hentry) | 322 | rcu_lockdep_assert(rcu_read_lock_sched_held() || \ |
323 | lockdep_is_held(&wq->mutex), \ | ||
324 | "sched RCU or wq->mutex should be held") | ||
256 | 325 | ||
257 | static inline int __next_wq_cpu(int cpu, const struct cpumask *mask, | 326 | #ifdef CONFIG_LOCKDEP |
258 | unsigned int sw) | 327 | #define assert_manager_or_pool_lock(pool) \ |
259 | { | 328 | WARN_ONCE(debug_locks && \ |
260 | if (cpu < nr_cpu_ids) { | 329 | !lockdep_is_held(&(pool)->manager_mutex) && \ |
261 | if (sw & 1) { | 330 | !lockdep_is_held(&(pool)->lock), \ |
262 | cpu = cpumask_next(cpu, mask); | 331 | "pool->manager_mutex or ->lock should be held") |
263 | if (cpu < nr_cpu_ids) | 332 | #else |
264 | return cpu; | 333 | #define assert_manager_or_pool_lock(pool) do { } while (0) |
265 | } | 334 | #endif |
266 | if (sw & 2) | ||
267 | return WORK_CPU_UNBOUND; | ||
268 | } | ||
269 | return WORK_CPU_END; | ||
270 | } | ||
271 | 335 | ||
272 | static inline int __next_pwq_cpu(int cpu, const struct cpumask *mask, | 336 | #define for_each_cpu_worker_pool(pool, cpu) \ |
273 | struct workqueue_struct *wq) | 337 | for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \ |
274 | { | 338 | (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ |
275 | return __next_wq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2); | 339 | (pool)++) |
276 | } | ||
277 | 340 | ||
278 | /* | 341 | /** |
279 | * CPU iterators | 342 | * for_each_pool - iterate through all worker_pools in the system |
343 | * @pool: iteration cursor | ||
344 | * @pi: integer used for iteration | ||
280 | * | 345 | * |
281 | * An extra cpu number is defined using an invalid cpu number | 346 | * This must be called either with wq_pool_mutex held or sched RCU read |
282 | * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any | 347 | * locked. If the pool needs to be used beyond the locking in effect, the |
283 | * specific CPU. The following iterators are similar to for_each_*_cpu() | 348 | * caller is responsible for guaranteeing that the pool stays online. |
284 | * iterators but also considers the unbound CPU. | ||
285 | * | 349 | * |
286 | * for_each_wq_cpu() : possible CPUs + WORK_CPU_UNBOUND | 350 | * The if/else clause exists only for the lockdep assertion and can be |
287 | * for_each_online_wq_cpu() : online CPUs + WORK_CPU_UNBOUND | 351 | * ignored. |
288 | * for_each_pwq_cpu() : possible CPUs for bound workqueues, | ||
289 | * WORK_CPU_UNBOUND for unbound workqueues | ||
290 | */ | 352 | */ |
291 | #define for_each_wq_cpu(cpu) \ | 353 | #define for_each_pool(pool, pi) \ |
292 | for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, 3); \ | 354 | idr_for_each_entry(&worker_pool_idr, pool, pi) \ |
293 | (cpu) < WORK_CPU_END; \ | 355 | if (({ assert_rcu_or_pool_mutex(); false; })) { } \ |
294 | (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, 3)) | 356 | else |
295 | 357 | ||
296 | #define for_each_online_wq_cpu(cpu) \ | 358 | /** |
297 | for ((cpu) = __next_wq_cpu(-1, cpu_online_mask, 3); \ | 359 | * for_each_pool_worker - iterate through all workers of a worker_pool |
298 | (cpu) < WORK_CPU_END; \ | 360 | * @worker: iteration cursor |
299 | (cpu) = __next_wq_cpu((cpu), cpu_online_mask, 3)) | 361 | * @wi: integer used for iteration |
362 | * @pool: worker_pool to iterate workers of | ||
363 | * | ||
364 | * This must be called with either @pool->manager_mutex or ->lock held. | ||
365 | * | ||
366 | * The if/else clause exists only for the lockdep assertion and can be | ||
367 | * ignored. | ||
368 | */ | ||
369 | #define for_each_pool_worker(worker, wi, pool) \ | ||
370 | idr_for_each_entry(&(pool)->worker_idr, (worker), (wi)) \ | ||
371 | if (({ assert_manager_or_pool_lock((pool)); false; })) { } \ | ||
372 | else | ||
300 | 373 | ||
301 | #define for_each_pwq_cpu(cpu, wq) \ | 374 | /** |
302 | for ((cpu) = __next_pwq_cpu(-1, cpu_possible_mask, (wq)); \ | 375 | * for_each_pwq - iterate through all pool_workqueues of the specified workqueue |
303 | (cpu) < WORK_CPU_END; \ | 376 | * @pwq: iteration cursor |
304 | (cpu) = __next_pwq_cpu((cpu), cpu_possible_mask, (wq))) | 377 | * @wq: the target workqueue |
378 | * | ||
379 | * This must be called either with wq->mutex held or sched RCU read locked. | ||
380 | * If the pwq needs to be used beyond the locking in effect, the caller is | ||
381 | * responsible for guaranteeing that the pwq stays online. | ||
382 | * | ||
383 | * The if/else clause exists only for the lockdep assertion and can be | ||
384 | * ignored. | ||
385 | */ | ||
386 | #define for_each_pwq(pwq, wq) \ | ||
387 | list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \ | ||
388 | if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \ | ||
389 | else | ||
305 | 390 | ||
306 | #ifdef CONFIG_DEBUG_OBJECTS_WORK | 391 | #ifdef CONFIG_DEBUG_OBJECTS_WORK |
307 | 392 | ||
@@ -419,77 +504,35 @@ static inline void debug_work_activate(struct work_struct *work) { } | |||
419 | static inline void debug_work_deactivate(struct work_struct *work) { } | 504 | static inline void debug_work_deactivate(struct work_struct *work) { } |
420 | #endif | 505 | #endif |
421 | 506 | ||
422 | /* Serializes the accesses to the list of workqueues. */ | ||
423 | static DEFINE_SPINLOCK(workqueue_lock); | ||
424 | static LIST_HEAD(workqueues); | ||
425 | static bool workqueue_freezing; /* W: have wqs started freezing? */ | ||
426 | |||
427 | /* | ||
428 | * The CPU and unbound standard worker pools. The unbound ones have | ||
429 | * POOL_DISASSOCIATED set, and their workers have WORKER_UNBOUND set. | ||
430 | */ | ||
431 | static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], | ||
432 | cpu_std_worker_pools); | ||
433 | static struct worker_pool unbound_std_worker_pools[NR_STD_WORKER_POOLS]; | ||
434 | |||
435 | /* idr of all pools */ | ||
436 | static DEFINE_MUTEX(worker_pool_idr_mutex); | ||
437 | static DEFINE_IDR(worker_pool_idr); | ||
438 | |||
439 | static int worker_thread(void *__worker); | ||
440 | |||
441 | static struct worker_pool *std_worker_pools(int cpu) | ||
442 | { | ||
443 | if (cpu != WORK_CPU_UNBOUND) | ||
444 | return per_cpu(cpu_std_worker_pools, cpu); | ||
445 | else | ||
446 | return unbound_std_worker_pools; | ||
447 | } | ||
448 | |||
449 | static int std_worker_pool_pri(struct worker_pool *pool) | ||
450 | { | ||
451 | return pool - std_worker_pools(pool->cpu); | ||
452 | } | ||
453 | |||
454 | /* allocate ID and assign it to @pool */ | 507 | /* allocate ID and assign it to @pool */ |
455 | static int worker_pool_assign_id(struct worker_pool *pool) | 508 | static int worker_pool_assign_id(struct worker_pool *pool) |
456 | { | 509 | { |
457 | int ret; | 510 | int ret; |
458 | 511 | ||
459 | mutex_lock(&worker_pool_idr_mutex); | 512 | lockdep_assert_held(&wq_pool_mutex); |
513 | |||
460 | ret = idr_alloc(&worker_pool_idr, pool, 0, 0, GFP_KERNEL); | 514 | ret = idr_alloc(&worker_pool_idr, pool, 0, 0, GFP_KERNEL); |
461 | if (ret >= 0) | 515 | if (ret >= 0) { |
462 | pool->id = ret; | 516 | pool->id = ret; |
463 | mutex_unlock(&worker_pool_idr_mutex); | 517 | return 0; |
464 | 518 | } | |
465 | return ret < 0 ? ret : 0; | 519 | return ret; |
466 | } | 520 | } |
467 | 521 | ||
468 | /* | 522 | /** |
469 | * Lookup worker_pool by id. The idr currently is built during boot and | 523 | * unbound_pwq_by_node - return the unbound pool_workqueue for the given node |
470 | * never modified. Don't worry about locking for now. | 524 | * @wq: the target workqueue |
525 | * @node: the node ID | ||
526 | * | ||
527 | * This must be called either with pwq_lock held or sched RCU read locked. | ||
528 | * If the pwq needs to be used beyond the locking in effect, the caller is | ||
529 | * responsible for guaranteeing that the pwq stays online. | ||
471 | */ | 530 | */ |
472 | static struct worker_pool *worker_pool_by_id(int pool_id) | 531 | static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq, |
532 | int node) | ||
473 | { | 533 | { |
474 | return idr_find(&worker_pool_idr, pool_id); | 534 | assert_rcu_or_wq_mutex(wq); |
475 | } | 535 | return rcu_dereference_raw(wq->numa_pwq_tbl[node]); |
476 | |||
477 | static struct worker_pool *get_std_worker_pool(int cpu, bool highpri) | ||
478 | { | ||
479 | struct worker_pool *pools = std_worker_pools(cpu); | ||
480 | |||
481 | return &pools[highpri]; | ||
482 | } | ||
483 | |||
484 | static struct pool_workqueue *get_pwq(unsigned int cpu, | ||
485 | struct workqueue_struct *wq) | ||
486 | { | ||
487 | if (!(wq->flags & WQ_UNBOUND)) { | ||
488 | if (likely(cpu < nr_cpu_ids)) | ||
489 | return per_cpu_ptr(wq->pool_wq.pcpu, cpu); | ||
490 | } else if (likely(cpu == WORK_CPU_UNBOUND)) | ||
491 | return wq->pool_wq.single; | ||
492 | return NULL; | ||
493 | } | 536 | } |
494 | 537 | ||
495 | static unsigned int work_color_to_flags(int color) | 538 | static unsigned int work_color_to_flags(int color) |
@@ -531,7 +574,7 @@ static int work_next_color(int color) | |||
531 | static inline void set_work_data(struct work_struct *work, unsigned long data, | 574 | static inline void set_work_data(struct work_struct *work, unsigned long data, |
532 | unsigned long flags) | 575 | unsigned long flags) |
533 | { | 576 | { |
534 | BUG_ON(!work_pending(work)); | 577 | WARN_ON_ONCE(!work_pending(work)); |
535 | atomic_long_set(&work->data, data | flags | work_static(work)); | 578 | atomic_long_set(&work->data, data | flags | work_static(work)); |
536 | } | 579 | } |
537 | 580 | ||
@@ -583,13 +626,23 @@ static struct pool_workqueue *get_work_pwq(struct work_struct *work) | |||
583 | * @work: the work item of interest | 626 | * @work: the work item of interest |
584 | * | 627 | * |
585 | * Return the worker_pool @work was last associated with. %NULL if none. | 628 | * Return the worker_pool @work was last associated with. %NULL if none. |
629 | * | ||
630 | * Pools are created and destroyed under wq_pool_mutex, and allows read | ||
631 | * access under sched-RCU read lock. As such, this function should be | ||
632 | * called under wq_pool_mutex or with preemption disabled. | ||
633 | * | ||
634 | * All fields of the returned pool are accessible as long as the above | ||
635 | * mentioned locking is in effect. If the returned pool needs to be used | ||
636 | * beyond the critical section, the caller is responsible for ensuring the | ||
637 | * returned pool is and stays online. | ||
586 | */ | 638 | */ |
587 | static struct worker_pool *get_work_pool(struct work_struct *work) | 639 | static struct worker_pool *get_work_pool(struct work_struct *work) |
588 | { | 640 | { |
589 | unsigned long data = atomic_long_read(&work->data); | 641 | unsigned long data = atomic_long_read(&work->data); |
590 | struct worker_pool *pool; | ||
591 | int pool_id; | 642 | int pool_id; |
592 | 643 | ||
644 | assert_rcu_or_pool_mutex(); | ||
645 | |||
593 | if (data & WORK_STRUCT_PWQ) | 646 | if (data & WORK_STRUCT_PWQ) |
594 | return ((struct pool_workqueue *) | 647 | return ((struct pool_workqueue *) |
595 | (data & WORK_STRUCT_WQ_DATA_MASK))->pool; | 648 | (data & WORK_STRUCT_WQ_DATA_MASK))->pool; |
@@ -598,9 +651,7 @@ static struct worker_pool *get_work_pool(struct work_struct *work) | |||
598 | if (pool_id == WORK_OFFQ_POOL_NONE) | 651 | if (pool_id == WORK_OFFQ_POOL_NONE) |
599 | return NULL; | 652 | return NULL; |
600 | 653 | ||
601 | pool = worker_pool_by_id(pool_id); | 654 | return idr_find(&worker_pool_idr, pool_id); |
602 | WARN_ON_ONCE(!pool); | ||
603 | return pool; | ||
604 | } | 655 | } |
605 | 656 | ||
606 | /** | 657 | /** |
@@ -689,7 +740,7 @@ static bool need_to_manage_workers(struct worker_pool *pool) | |||
689 | /* Do we have too many workers and should some go away? */ | 740 | /* Do we have too many workers and should some go away? */ |
690 | static bool too_many_workers(struct worker_pool *pool) | 741 | static bool too_many_workers(struct worker_pool *pool) |
691 | { | 742 | { |
692 | bool managing = pool->flags & POOL_MANAGING_WORKERS; | 743 | bool managing = mutex_is_locked(&pool->manager_arb); |
693 | int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ | 744 | int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ |
694 | int nr_busy = pool->nr_workers - nr_idle; | 745 | int nr_busy = pool->nr_workers - nr_idle; |
695 | 746 | ||
@@ -744,7 +795,7 @@ static void wake_up_worker(struct worker_pool *pool) | |||
744 | * CONTEXT: | 795 | * CONTEXT: |
745 | * spin_lock_irq(rq->lock) | 796 | * spin_lock_irq(rq->lock) |
746 | */ | 797 | */ |
747 | void wq_worker_waking_up(struct task_struct *task, unsigned int cpu) | 798 | void wq_worker_waking_up(struct task_struct *task, int cpu) |
748 | { | 799 | { |
749 | struct worker *worker = kthread_data(task); | 800 | struct worker *worker = kthread_data(task); |
750 | 801 | ||
@@ -769,8 +820,7 @@ void wq_worker_waking_up(struct task_struct *task, unsigned int cpu) | |||
769 | * RETURNS: | 820 | * RETURNS: |
770 | * Worker task on @cpu to wake up, %NULL if none. | 821 | * Worker task on @cpu to wake up, %NULL if none. |
771 | */ | 822 | */ |
772 | struct task_struct *wq_worker_sleeping(struct task_struct *task, | 823 | struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu) |
773 | unsigned int cpu) | ||
774 | { | 824 | { |
775 | struct worker *worker = kthread_data(task), *to_wakeup = NULL; | 825 | struct worker *worker = kthread_data(task), *to_wakeup = NULL; |
776 | struct worker_pool *pool; | 826 | struct worker_pool *pool; |
@@ -786,7 +836,8 @@ struct task_struct *wq_worker_sleeping(struct task_struct *task, | |||
786 | pool = worker->pool; | 836 | pool = worker->pool; |
787 | 837 | ||
788 | /* this can only happen on the local cpu */ | 838 | /* this can only happen on the local cpu */ |
789 | BUG_ON(cpu != raw_smp_processor_id()); | 839 | if (WARN_ON_ONCE(cpu != raw_smp_processor_id())) |
840 | return NULL; | ||
790 | 841 | ||
791 | /* | 842 | /* |
792 | * The counterpart of the following dec_and_test, implied mb, | 843 | * The counterpart of the following dec_and_test, implied mb, |
@@ -891,13 +942,12 @@ static inline void worker_clr_flags(struct worker *worker, unsigned int flags) | |||
891 | * recycled work item as currently executing and make it wait until the | 942 | * recycled work item as currently executing and make it wait until the |
892 | * current execution finishes, introducing an unwanted dependency. | 943 | * current execution finishes, introducing an unwanted dependency. |
893 | * | 944 | * |
894 | * This function checks the work item address, work function and workqueue | 945 | * This function checks the work item address and work function to avoid |
895 | * to avoid false positives. Note that this isn't complete as one may | 946 | * false positives. Note that this isn't complete as one may construct a |
896 | * construct a work function which can introduce dependency onto itself | 947 | * work function which can introduce dependency onto itself through a |
897 | * through a recycled work item. Well, if somebody wants to shoot oneself | 948 | * recycled work item. Well, if somebody wants to shoot oneself in the |
898 | * in the foot that badly, there's only so much we can do, and if such | 949 | * foot that badly, there's only so much we can do, and if such deadlock |
899 | * deadlock actually occurs, it should be easy to locate the culprit work | 950 | * actually occurs, it should be easy to locate the culprit work function. |
900 | * function. | ||
901 | * | 951 | * |
902 | * CONTEXT: | 952 | * CONTEXT: |
903 | * spin_lock_irq(pool->lock). | 953 | * spin_lock_irq(pool->lock). |
@@ -961,6 +1011,64 @@ static void move_linked_works(struct work_struct *work, struct list_head *head, | |||
961 | *nextp = n; | 1011 | *nextp = n; |
962 | } | 1012 | } |
963 | 1013 | ||
1014 | /** | ||
1015 | * get_pwq - get an extra reference on the specified pool_workqueue | ||
1016 | * @pwq: pool_workqueue to get | ||
1017 | * | ||
1018 | * Obtain an extra reference on @pwq. The caller should guarantee that | ||
1019 | * @pwq has positive refcnt and be holding the matching pool->lock. | ||
1020 | */ | ||
1021 | static void get_pwq(struct pool_workqueue *pwq) | ||
1022 | { | ||
1023 | lockdep_assert_held(&pwq->pool->lock); | ||
1024 | WARN_ON_ONCE(pwq->refcnt <= 0); | ||
1025 | pwq->refcnt++; | ||
1026 | } | ||
1027 | |||
1028 | /** | ||
1029 | * put_pwq - put a pool_workqueue reference | ||
1030 | * @pwq: pool_workqueue to put | ||
1031 | * | ||
1032 | * Drop a reference of @pwq. If its refcnt reaches zero, schedule its | ||
1033 | * destruction. The caller should be holding the matching pool->lock. | ||
1034 | */ | ||
1035 | static void put_pwq(struct pool_workqueue *pwq) | ||
1036 | { | ||
1037 | lockdep_assert_held(&pwq->pool->lock); | ||
1038 | if (likely(--pwq->refcnt)) | ||
1039 | return; | ||
1040 | if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND))) | ||
1041 | return; | ||
1042 | /* | ||
1043 | * @pwq can't be released under pool->lock, bounce to | ||
1044 | * pwq_unbound_release_workfn(). This never recurses on the same | ||
1045 | * pool->lock as this path is taken only for unbound workqueues and | ||
1046 | * the release work item is scheduled on a per-cpu workqueue. To | ||
1047 | * avoid lockdep warning, unbound pool->locks are given lockdep | ||
1048 | * subclass of 1 in get_unbound_pool(). | ||
1049 | */ | ||
1050 | schedule_work(&pwq->unbound_release_work); | ||
1051 | } | ||
1052 | |||
1053 | /** | ||
1054 | * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock | ||
1055 | * @pwq: pool_workqueue to put (can be %NULL) | ||
1056 | * | ||
1057 | * put_pwq() with locking. This function also allows %NULL @pwq. | ||
1058 | */ | ||
1059 | static void put_pwq_unlocked(struct pool_workqueue *pwq) | ||
1060 | { | ||
1061 | if (pwq) { | ||
1062 | /* | ||
1063 | * As both pwqs and pools are sched-RCU protected, the | ||
1064 | * following lock operations are safe. | ||
1065 | */ | ||
1066 | spin_lock_irq(&pwq->pool->lock); | ||
1067 | put_pwq(pwq); | ||
1068 | spin_unlock_irq(&pwq->pool->lock); | ||
1069 | } | ||
1070 | } | ||
1071 | |||
964 | static void pwq_activate_delayed_work(struct work_struct *work) | 1072 | static void pwq_activate_delayed_work(struct work_struct *work) |
965 | { | 1073 | { |
966 | struct pool_workqueue *pwq = get_work_pwq(work); | 1074 | struct pool_workqueue *pwq = get_work_pwq(work); |
@@ -992,9 +1100,9 @@ static void pwq_activate_first_delayed(struct pool_workqueue *pwq) | |||
992 | */ | 1100 | */ |
993 | static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color) | 1101 | static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color) |
994 | { | 1102 | { |
995 | /* ignore uncolored works */ | 1103 | /* uncolored work items don't participate in flushing or nr_active */ |
996 | if (color == WORK_NO_COLOR) | 1104 | if (color == WORK_NO_COLOR) |
997 | return; | 1105 | goto out_put; |
998 | 1106 | ||
999 | pwq->nr_in_flight[color]--; | 1107 | pwq->nr_in_flight[color]--; |
1000 | 1108 | ||
@@ -1007,11 +1115,11 @@ static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color) | |||
1007 | 1115 | ||
1008 | /* is flush in progress and are we at the flushing tip? */ | 1116 | /* is flush in progress and are we at the flushing tip? */ |
1009 | if (likely(pwq->flush_color != color)) | 1117 | if (likely(pwq->flush_color != color)) |
1010 | return; | 1118 | goto out_put; |
1011 | 1119 | ||
1012 | /* are there still in-flight works? */ | 1120 | /* are there still in-flight works? */ |
1013 | if (pwq->nr_in_flight[color]) | 1121 | if (pwq->nr_in_flight[color]) |
1014 | return; | 1122 | goto out_put; |
1015 | 1123 | ||
1016 | /* this pwq is done, clear flush_color */ | 1124 | /* this pwq is done, clear flush_color */ |
1017 | pwq->flush_color = -1; | 1125 | pwq->flush_color = -1; |
@@ -1022,6 +1130,8 @@ static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color) | |||
1022 | */ | 1130 | */ |
1023 | if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush)) | 1131 | if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush)) |
1024 | complete(&pwq->wq->first_flusher->done); | 1132 | complete(&pwq->wq->first_flusher->done); |
1133 | out_put: | ||
1134 | put_pwq(pwq); | ||
1025 | } | 1135 | } |
1026 | 1136 | ||
1027 | /** | 1137 | /** |
@@ -1144,11 +1254,12 @@ static void insert_work(struct pool_workqueue *pwq, struct work_struct *work, | |||
1144 | /* we own @work, set data and link */ | 1254 | /* we own @work, set data and link */ |
1145 | set_work_pwq(work, pwq, extra_flags); | 1255 | set_work_pwq(work, pwq, extra_flags); |
1146 | list_add_tail(&work->entry, head); | 1256 | list_add_tail(&work->entry, head); |
1257 | get_pwq(pwq); | ||
1147 | 1258 | ||
1148 | /* | 1259 | /* |
1149 | * Ensure either worker_sched_deactivated() sees the above | 1260 | * Ensure either wq_worker_sleeping() sees the above |
1150 | * list_add_tail() or we see zero nr_running to avoid workers | 1261 | * list_add_tail() or we see zero nr_running to avoid workers lying |
1151 | * lying around lazily while there are works to be processed. | 1262 | * around lazily while there are works to be processed. |
1152 | */ | 1263 | */ |
1153 | smp_mb(); | 1264 | smp_mb(); |
1154 | 1265 | ||
@@ -1172,10 +1283,11 @@ static bool is_chained_work(struct workqueue_struct *wq) | |||
1172 | return worker && worker->current_pwq->wq == wq; | 1283 | return worker && worker->current_pwq->wq == wq; |
1173 | } | 1284 | } |
1174 | 1285 | ||
1175 | static void __queue_work(unsigned int cpu, struct workqueue_struct *wq, | 1286 | static void __queue_work(int cpu, struct workqueue_struct *wq, |
1176 | struct work_struct *work) | 1287 | struct work_struct *work) |
1177 | { | 1288 | { |
1178 | struct pool_workqueue *pwq; | 1289 | struct pool_workqueue *pwq; |
1290 | struct worker_pool *last_pool; | ||
1179 | struct list_head *worklist; | 1291 | struct list_head *worklist; |
1180 | unsigned int work_flags; | 1292 | unsigned int work_flags; |
1181 | unsigned int req_cpu = cpu; | 1293 | unsigned int req_cpu = cpu; |
@@ -1191,48 +1303,62 @@ static void __queue_work(unsigned int cpu, struct workqueue_struct *wq, | |||
1191 | debug_work_activate(work); | 1303 | debug_work_activate(work); |
1192 | 1304 | ||
1193 | /* if dying, only works from the same workqueue are allowed */ | 1305 | /* if dying, only works from the same workqueue are allowed */ |
1194 | if (unlikely(wq->flags & WQ_DRAINING) && | 1306 | if (unlikely(wq->flags & __WQ_DRAINING) && |
1195 | WARN_ON_ONCE(!is_chained_work(wq))) | 1307 | WARN_ON_ONCE(!is_chained_work(wq))) |
1196 | return; | 1308 | return; |
1309 | retry: | ||
1310 | if (req_cpu == WORK_CPU_UNBOUND) | ||
1311 | cpu = raw_smp_processor_id(); | ||
1197 | 1312 | ||
1198 | /* determine the pwq to use */ | 1313 | /* pwq which will be used unless @work is executing elsewhere */ |
1199 | if (!(wq->flags & WQ_UNBOUND)) { | 1314 | if (!(wq->flags & WQ_UNBOUND)) |
1200 | struct worker_pool *last_pool; | 1315 | pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); |
1201 | 1316 | else | |
1202 | if (cpu == WORK_CPU_UNBOUND) | 1317 | pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); |
1203 | cpu = raw_smp_processor_id(); | ||
1204 | |||
1205 | /* | ||
1206 | * It's multi cpu. If @work was previously on a different | ||
1207 | * cpu, it might still be running there, in which case the | ||
1208 | * work needs to be queued on that cpu to guarantee | ||
1209 | * non-reentrancy. | ||
1210 | */ | ||
1211 | pwq = get_pwq(cpu, wq); | ||
1212 | last_pool = get_work_pool(work); | ||
1213 | 1318 | ||
1214 | if (last_pool && last_pool != pwq->pool) { | 1319 | /* |
1215 | struct worker *worker; | 1320 | * If @work was previously on a different pool, it might still be |
1321 | * running there, in which case the work needs to be queued on that | ||
1322 | * pool to guarantee non-reentrancy. | ||
1323 | */ | ||
1324 | last_pool = get_work_pool(work); | ||
1325 | if (last_pool && last_pool != pwq->pool) { | ||
1326 | struct worker *worker; | ||
1216 | 1327 | ||
1217 | spin_lock(&last_pool->lock); | 1328 | spin_lock(&last_pool->lock); |
1218 | 1329 | ||
1219 | worker = find_worker_executing_work(last_pool, work); | 1330 | worker = find_worker_executing_work(last_pool, work); |
1220 | 1331 | ||
1221 | if (worker && worker->current_pwq->wq == wq) { | 1332 | if (worker && worker->current_pwq->wq == wq) { |
1222 | pwq = get_pwq(last_pool->cpu, wq); | 1333 | pwq = worker->current_pwq; |
1223 | } else { | ||
1224 | /* meh... not running there, queue here */ | ||
1225 | spin_unlock(&last_pool->lock); | ||
1226 | spin_lock(&pwq->pool->lock); | ||
1227 | } | ||
1228 | } else { | 1334 | } else { |
1335 | /* meh... not running there, queue here */ | ||
1336 | spin_unlock(&last_pool->lock); | ||
1229 | spin_lock(&pwq->pool->lock); | 1337 | spin_lock(&pwq->pool->lock); |
1230 | } | 1338 | } |
1231 | } else { | 1339 | } else { |
1232 | pwq = get_pwq(WORK_CPU_UNBOUND, wq); | ||
1233 | spin_lock(&pwq->pool->lock); | 1340 | spin_lock(&pwq->pool->lock); |
1234 | } | 1341 | } |
1235 | 1342 | ||
1343 | /* | ||
1344 | * pwq is determined and locked. For unbound pools, we could have | ||
1345 | * raced with pwq release and it could already be dead. If its | ||
1346 | * refcnt is zero, repeat pwq selection. Note that pwqs never die | ||
1347 | * without another pwq replacing it in the numa_pwq_tbl or while | ||
1348 | * work items are executing on it, so the retrying is guaranteed to | ||
1349 | * make forward-progress. | ||
1350 | */ | ||
1351 | if (unlikely(!pwq->refcnt)) { | ||
1352 | if (wq->flags & WQ_UNBOUND) { | ||
1353 | spin_unlock(&pwq->pool->lock); | ||
1354 | cpu_relax(); | ||
1355 | goto retry; | ||
1356 | } | ||
1357 | /* oops */ | ||
1358 | WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt", | ||
1359 | wq->name, cpu); | ||
1360 | } | ||
1361 | |||
1236 | /* pwq determined, queue */ | 1362 | /* pwq determined, queue */ |
1237 | trace_workqueue_queue_work(req_cpu, pwq, work); | 1363 | trace_workqueue_queue_work(req_cpu, pwq, work); |
1238 | 1364 | ||
@@ -1285,23 +1411,7 @@ bool queue_work_on(int cpu, struct workqueue_struct *wq, | |||
1285 | local_irq_restore(flags); | 1411 | local_irq_restore(flags); |
1286 | return ret; | 1412 | return ret; |
1287 | } | 1413 | } |
1288 | EXPORT_SYMBOL_GPL(queue_work_on); | 1414 | EXPORT_SYMBOL(queue_work_on); |
1289 | |||
1290 | /** | ||
1291 | * queue_work - queue work on a workqueue | ||
1292 | * @wq: workqueue to use | ||
1293 | * @work: work to queue | ||
1294 | * | ||
1295 | * Returns %false if @work was already on a queue, %true otherwise. | ||
1296 | * | ||
1297 | * We queue the work to the CPU on which it was submitted, but if the CPU dies | ||
1298 | * it can be processed by another CPU. | ||
1299 | */ | ||
1300 | bool queue_work(struct workqueue_struct *wq, struct work_struct *work) | ||
1301 | { | ||
1302 | return queue_work_on(WORK_CPU_UNBOUND, wq, work); | ||
1303 | } | ||
1304 | EXPORT_SYMBOL_GPL(queue_work); | ||
1305 | 1415 | ||
1306 | void delayed_work_timer_fn(unsigned long __data) | 1416 | void delayed_work_timer_fn(unsigned long __data) |
1307 | { | 1417 | { |
@@ -1375,22 +1485,7 @@ bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, | |||
1375 | local_irq_restore(flags); | 1485 | local_irq_restore(flags); |
1376 | return ret; | 1486 | return ret; |
1377 | } | 1487 | } |
1378 | EXPORT_SYMBOL_GPL(queue_delayed_work_on); | 1488 | EXPORT_SYMBOL(queue_delayed_work_on); |
1379 | |||
1380 | /** | ||
1381 | * queue_delayed_work - queue work on a workqueue after delay | ||
1382 | * @wq: workqueue to use | ||
1383 | * @dwork: delayable work to queue | ||
1384 | * @delay: number of jiffies to wait before queueing | ||
1385 | * | ||
1386 | * Equivalent to queue_delayed_work_on() but tries to use the local CPU. | ||
1387 | */ | ||
1388 | bool queue_delayed_work(struct workqueue_struct *wq, | ||
1389 | struct delayed_work *dwork, unsigned long delay) | ||
1390 | { | ||
1391 | return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay); | ||
1392 | } | ||
1393 | EXPORT_SYMBOL_GPL(queue_delayed_work); | ||
1394 | 1489 | ||
1395 | /** | 1490 | /** |
1396 | * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU | 1491 | * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU |
@@ -1431,21 +1526,6 @@ bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, | |||
1431 | EXPORT_SYMBOL_GPL(mod_delayed_work_on); | 1526 | EXPORT_SYMBOL_GPL(mod_delayed_work_on); |
1432 | 1527 | ||
1433 | /** | 1528 | /** |
1434 | * mod_delayed_work - modify delay of or queue a delayed work | ||
1435 | * @wq: workqueue to use | ||
1436 | * @dwork: work to queue | ||
1437 | * @delay: number of jiffies to wait before queueing | ||
1438 | * | ||
1439 | * mod_delayed_work_on() on local CPU. | ||
1440 | */ | ||
1441 | bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork, | ||
1442 | unsigned long delay) | ||
1443 | { | ||
1444 | return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay); | ||
1445 | } | ||
1446 | EXPORT_SYMBOL_GPL(mod_delayed_work); | ||
1447 | |||
1448 | /** | ||
1449 | * worker_enter_idle - enter idle state | 1529 | * worker_enter_idle - enter idle state |
1450 | * @worker: worker which is entering idle state | 1530 | * @worker: worker which is entering idle state |
1451 | * | 1531 | * |
@@ -1459,9 +1539,10 @@ static void worker_enter_idle(struct worker *worker) | |||
1459 | { | 1539 | { |
1460 | struct worker_pool *pool = worker->pool; | 1540 | struct worker_pool *pool = worker->pool; |
1461 | 1541 | ||
1462 | BUG_ON(worker->flags & WORKER_IDLE); | 1542 | if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) || |
1463 | BUG_ON(!list_empty(&worker->entry) && | 1543 | WARN_ON_ONCE(!list_empty(&worker->entry) && |
1464 | (worker->hentry.next || worker->hentry.pprev)); | 1544 | (worker->hentry.next || worker->hentry.pprev))) |
1545 | return; | ||
1465 | 1546 | ||
1466 | /* can't use worker_set_flags(), also called from start_worker() */ | 1547 | /* can't use worker_set_flags(), also called from start_worker() */ |
1467 | worker->flags |= WORKER_IDLE; | 1548 | worker->flags |= WORKER_IDLE; |
@@ -1498,22 +1579,25 @@ static void worker_leave_idle(struct worker *worker) | |||
1498 | { | 1579 | { |
1499 | struct worker_pool *pool = worker->pool; | 1580 | struct worker_pool *pool = worker->pool; |
1500 | 1581 | ||
1501 | BUG_ON(!(worker->flags & WORKER_IDLE)); | 1582 | if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE))) |
1583 | return; | ||
1502 | worker_clr_flags(worker, WORKER_IDLE); | 1584 | worker_clr_flags(worker, WORKER_IDLE); |
1503 | pool->nr_idle--; | 1585 | pool->nr_idle--; |
1504 | list_del_init(&worker->entry); | 1586 | list_del_init(&worker->entry); |
1505 | } | 1587 | } |
1506 | 1588 | ||
1507 | /** | 1589 | /** |
1508 | * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock pool | 1590 | * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it |
1509 | * @worker: self | 1591 | * @pool: target worker_pool |
1592 | * | ||
1593 | * Bind %current to the cpu of @pool if it is associated and lock @pool. | ||
1510 | * | 1594 | * |
1511 | * Works which are scheduled while the cpu is online must at least be | 1595 | * Works which are scheduled while the cpu is online must at least be |
1512 | * scheduled to a worker which is bound to the cpu so that if they are | 1596 | * scheduled to a worker which is bound to the cpu so that if they are |
1513 | * flushed from cpu callbacks while cpu is going down, they are | 1597 | * flushed from cpu callbacks while cpu is going down, they are |
1514 | * guaranteed to execute on the cpu. | 1598 | * guaranteed to execute on the cpu. |
1515 | * | 1599 | * |
1516 | * This function is to be used by rogue workers and rescuers to bind | 1600 | * This function is to be used by unbound workers and rescuers to bind |
1517 | * themselves to the target cpu and may race with cpu going down or | 1601 | * themselves to the target cpu and may race with cpu going down or |
1518 | * coming online. kthread_bind() can't be used because it may put the | 1602 | * coming online. kthread_bind() can't be used because it may put the |
1519 | * worker to already dead cpu and set_cpus_allowed_ptr() can't be used | 1603 | * worker to already dead cpu and set_cpus_allowed_ptr() can't be used |
@@ -1534,12 +1618,9 @@ static void worker_leave_idle(struct worker *worker) | |||
1534 | * %true if the associated pool is online (@worker is successfully | 1618 | * %true if the associated pool is online (@worker is successfully |
1535 | * bound), %false if offline. | 1619 | * bound), %false if offline. |
1536 | */ | 1620 | */ |
1537 | static bool worker_maybe_bind_and_lock(struct worker *worker) | 1621 | static bool worker_maybe_bind_and_lock(struct worker_pool *pool) |
1538 | __acquires(&pool->lock) | 1622 | __acquires(&pool->lock) |
1539 | { | 1623 | { |
1540 | struct worker_pool *pool = worker->pool; | ||
1541 | struct task_struct *task = worker->task; | ||
1542 | |||
1543 | while (true) { | 1624 | while (true) { |
1544 | /* | 1625 | /* |
1545 | * The following call may fail, succeed or succeed | 1626 | * The following call may fail, succeed or succeed |
@@ -1548,14 +1629,13 @@ __acquires(&pool->lock) | |||
1548 | * against POOL_DISASSOCIATED. | 1629 | * against POOL_DISASSOCIATED. |
1549 | */ | 1630 | */ |
1550 | if (!(pool->flags & POOL_DISASSOCIATED)) | 1631 | if (!(pool->flags & POOL_DISASSOCIATED)) |
1551 | set_cpus_allowed_ptr(task, get_cpu_mask(pool->cpu)); | 1632 | set_cpus_allowed_ptr(current, pool->attrs->cpumask); |
1552 | 1633 | ||
1553 | spin_lock_irq(&pool->lock); | 1634 | spin_lock_irq(&pool->lock); |
1554 | if (pool->flags & POOL_DISASSOCIATED) | 1635 | if (pool->flags & POOL_DISASSOCIATED) |
1555 | return false; | 1636 | return false; |
1556 | if (task_cpu(task) == pool->cpu && | 1637 | if (task_cpu(current) == pool->cpu && |
1557 | cpumask_equal(¤t->cpus_allowed, | 1638 | cpumask_equal(¤t->cpus_allowed, pool->attrs->cpumask)) |
1558 | get_cpu_mask(pool->cpu))) | ||
1559 | return true; | 1639 | return true; |
1560 | spin_unlock_irq(&pool->lock); | 1640 | spin_unlock_irq(&pool->lock); |
1561 | 1641 | ||
@@ -1570,108 +1650,6 @@ __acquires(&pool->lock) | |||
1570 | } | 1650 | } |
1571 | } | 1651 | } |
1572 | 1652 | ||
1573 | /* | ||
1574 | * Rebind an idle @worker to its CPU. worker_thread() will test | ||
1575 | * list_empty(@worker->entry) before leaving idle and call this function. | ||
1576 | */ | ||
1577 | static void idle_worker_rebind(struct worker *worker) | ||
1578 | { | ||
1579 | /* CPU may go down again inbetween, clear UNBOUND only on success */ | ||
1580 | if (worker_maybe_bind_and_lock(worker)) | ||
1581 | worker_clr_flags(worker, WORKER_UNBOUND); | ||
1582 | |||
1583 | /* rebind complete, become available again */ | ||
1584 | list_add(&worker->entry, &worker->pool->idle_list); | ||
1585 | spin_unlock_irq(&worker->pool->lock); | ||
1586 | } | ||
1587 | |||
1588 | /* | ||
1589 | * Function for @worker->rebind.work used to rebind unbound busy workers to | ||
1590 | * the associated cpu which is coming back online. This is scheduled by | ||
1591 | * cpu up but can race with other cpu hotplug operations and may be | ||
1592 | * executed twice without intervening cpu down. | ||
1593 | */ | ||
1594 | static void busy_worker_rebind_fn(struct work_struct *work) | ||
1595 | { | ||
1596 | struct worker *worker = container_of(work, struct worker, rebind_work); | ||
1597 | |||
1598 | if (worker_maybe_bind_and_lock(worker)) | ||
1599 | worker_clr_flags(worker, WORKER_UNBOUND); | ||
1600 | |||
1601 | spin_unlock_irq(&worker->pool->lock); | ||
1602 | } | ||
1603 | |||
1604 | /** | ||
1605 | * rebind_workers - rebind all workers of a pool to the associated CPU | ||
1606 | * @pool: pool of interest | ||
1607 | * | ||
1608 | * @pool->cpu is coming online. Rebind all workers to the CPU. Rebinding | ||
1609 | * is different for idle and busy ones. | ||
1610 | * | ||
1611 | * Idle ones will be removed from the idle_list and woken up. They will | ||
1612 | * add themselves back after completing rebind. This ensures that the | ||
1613 | * idle_list doesn't contain any unbound workers when re-bound busy workers | ||
1614 | * try to perform local wake-ups for concurrency management. | ||
1615 | * | ||
1616 | * Busy workers can rebind after they finish their current work items. | ||
1617 | * Queueing the rebind work item at the head of the scheduled list is | ||
1618 | * enough. Note that nr_running will be properly bumped as busy workers | ||
1619 | * rebind. | ||
1620 | * | ||
1621 | * On return, all non-manager workers are scheduled for rebind - see | ||
1622 | * manage_workers() for the manager special case. Any idle worker | ||
1623 | * including the manager will not appear on @idle_list until rebind is | ||
1624 | * complete, making local wake-ups safe. | ||
1625 | */ | ||
1626 | static void rebind_workers(struct worker_pool *pool) | ||
1627 | { | ||
1628 | struct worker *worker, *n; | ||
1629 | int i; | ||
1630 | |||
1631 | lockdep_assert_held(&pool->assoc_mutex); | ||
1632 | lockdep_assert_held(&pool->lock); | ||
1633 | |||
1634 | /* dequeue and kick idle ones */ | ||
1635 | list_for_each_entry_safe(worker, n, &pool->idle_list, entry) { | ||
1636 | /* | ||
1637 | * idle workers should be off @pool->idle_list until rebind | ||
1638 | * is complete to avoid receiving premature local wake-ups. | ||
1639 | */ | ||
1640 | list_del_init(&worker->entry); | ||
1641 | |||
1642 | /* | ||
1643 | * worker_thread() will see the above dequeuing and call | ||
1644 | * idle_worker_rebind(). | ||
1645 | */ | ||
1646 | wake_up_process(worker->task); | ||
1647 | } | ||
1648 | |||
1649 | /* rebind busy workers */ | ||
1650 | for_each_busy_worker(worker, i, pool) { | ||
1651 | struct work_struct *rebind_work = &worker->rebind_work; | ||
1652 | struct workqueue_struct *wq; | ||
1653 | |||
1654 | if (test_and_set_bit(WORK_STRUCT_PENDING_BIT, | ||
1655 | work_data_bits(rebind_work))) | ||
1656 | continue; | ||
1657 | |||
1658 | debug_work_activate(rebind_work); | ||
1659 | |||
1660 | /* | ||
1661 | * wq doesn't really matter but let's keep @worker->pool | ||
1662 | * and @pwq->pool consistent for sanity. | ||
1663 | */ | ||
1664 | if (std_worker_pool_pri(worker->pool)) | ||
1665 | wq = system_highpri_wq; | ||
1666 | else | ||
1667 | wq = system_wq; | ||
1668 | |||
1669 | insert_work(get_pwq(pool->cpu, wq), rebind_work, | ||
1670 | worker->scheduled.next, | ||
1671 | work_color_to_flags(WORK_NO_COLOR)); | ||
1672 | } | ||
1673 | } | ||
1674 | |||
1675 | static struct worker *alloc_worker(void) | 1653 | static struct worker *alloc_worker(void) |
1676 | { | 1654 | { |
1677 | struct worker *worker; | 1655 | struct worker *worker; |
@@ -1680,7 +1658,6 @@ static struct worker *alloc_worker(void) | |||
1680 | if (worker) { | 1658 | if (worker) { |
1681 | INIT_LIST_HEAD(&worker->entry); | 1659 | INIT_LIST_HEAD(&worker->entry); |
1682 | INIT_LIST_HEAD(&worker->scheduled); | 1660 | INIT_LIST_HEAD(&worker->scheduled); |
1683 | INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn); | ||
1684 | /* on creation a worker is in !idle && prep state */ | 1661 | /* on creation a worker is in !idle && prep state */ |
1685 | worker->flags = WORKER_PREP; | 1662 | worker->flags = WORKER_PREP; |
1686 | } | 1663 | } |
@@ -1703,18 +1680,25 @@ static struct worker *alloc_worker(void) | |||
1703 | */ | 1680 | */ |
1704 | static struct worker *create_worker(struct worker_pool *pool) | 1681 | static struct worker *create_worker(struct worker_pool *pool) |
1705 | { | 1682 | { |
1706 | const char *pri = std_worker_pool_pri(pool) ? "H" : ""; | ||
1707 | struct worker *worker = NULL; | 1683 | struct worker *worker = NULL; |
1708 | int id = -1; | 1684 | int id = -1; |
1685 | char id_buf[16]; | ||
1686 | |||
1687 | lockdep_assert_held(&pool->manager_mutex); | ||
1709 | 1688 | ||
1689 | /* | ||
1690 | * ID is needed to determine kthread name. Allocate ID first | ||
1691 | * without installing the pointer. | ||
1692 | */ | ||
1693 | idr_preload(GFP_KERNEL); | ||
1710 | spin_lock_irq(&pool->lock); | 1694 | spin_lock_irq(&pool->lock); |
1711 | while (ida_get_new(&pool->worker_ida, &id)) { | 1695 | |
1712 | spin_unlock_irq(&pool->lock); | 1696 | id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_NOWAIT); |
1713 | if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL)) | 1697 | |
1714 | goto fail; | ||
1715 | spin_lock_irq(&pool->lock); | ||
1716 | } | ||
1717 | spin_unlock_irq(&pool->lock); | 1698 | spin_unlock_irq(&pool->lock); |
1699 | idr_preload_end(); | ||
1700 | if (id < 0) | ||
1701 | goto fail; | ||
1718 | 1702 | ||
1719 | worker = alloc_worker(); | 1703 | worker = alloc_worker(); |
1720 | if (!worker) | 1704 | if (!worker) |
@@ -1723,40 +1707,46 @@ static struct worker *create_worker(struct worker_pool *pool) | |||
1723 | worker->pool = pool; | 1707 | worker->pool = pool; |
1724 | worker->id = id; | 1708 | worker->id = id; |
1725 | 1709 | ||
1726 | if (pool->cpu != WORK_CPU_UNBOUND) | 1710 | if (pool->cpu >= 0) |
1727 | worker->task = kthread_create_on_node(worker_thread, | 1711 | snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id, |
1728 | worker, cpu_to_node(pool->cpu), | 1712 | pool->attrs->nice < 0 ? "H" : ""); |
1729 | "kworker/%u:%d%s", pool->cpu, id, pri); | ||
1730 | else | 1713 | else |
1731 | worker->task = kthread_create(worker_thread, worker, | 1714 | snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id); |
1732 | "kworker/u:%d%s", id, pri); | 1715 | |
1716 | worker->task = kthread_create_on_node(worker_thread, worker, pool->node, | ||
1717 | "kworker/%s", id_buf); | ||
1733 | if (IS_ERR(worker->task)) | 1718 | if (IS_ERR(worker->task)) |
1734 | goto fail; | 1719 | goto fail; |
1735 | 1720 | ||
1736 | if (std_worker_pool_pri(pool)) | 1721 | /* |
1737 | set_user_nice(worker->task, HIGHPRI_NICE_LEVEL); | 1722 | * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any |
1723 | * online CPUs. It'll be re-applied when any of the CPUs come up. | ||
1724 | */ | ||
1725 | set_user_nice(worker->task, pool->attrs->nice); | ||
1726 | set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask); | ||
1727 | |||
1728 | /* prevent userland from meddling with cpumask of workqueue workers */ | ||
1729 | worker->task->flags |= PF_NO_SETAFFINITY; | ||
1738 | 1730 | ||
1739 | /* | 1731 | /* |
1740 | * Determine CPU binding of the new worker depending on | 1732 | * The caller is responsible for ensuring %POOL_DISASSOCIATED |
1741 | * %POOL_DISASSOCIATED. The caller is responsible for ensuring the | 1733 | * remains stable across this function. See the comments above the |
1742 | * flag remains stable across this function. See the comments | 1734 | * flag definition for details. |
1743 | * above the flag definition for details. | ||
1744 | * | ||
1745 | * As an unbound worker may later become a regular one if CPU comes | ||
1746 | * online, make sure every worker has %PF_THREAD_BOUND set. | ||
1747 | */ | 1735 | */ |
1748 | if (!(pool->flags & POOL_DISASSOCIATED)) { | 1736 | if (pool->flags & POOL_DISASSOCIATED) |
1749 | kthread_bind(worker->task, pool->cpu); | ||
1750 | } else { | ||
1751 | worker->task->flags |= PF_THREAD_BOUND; | ||
1752 | worker->flags |= WORKER_UNBOUND; | 1737 | worker->flags |= WORKER_UNBOUND; |
1753 | } | 1738 | |
1739 | /* successful, commit the pointer to idr */ | ||
1740 | spin_lock_irq(&pool->lock); | ||
1741 | idr_replace(&pool->worker_idr, worker, worker->id); | ||
1742 | spin_unlock_irq(&pool->lock); | ||
1754 | 1743 | ||
1755 | return worker; | 1744 | return worker; |
1745 | |||
1756 | fail: | 1746 | fail: |
1757 | if (id >= 0) { | 1747 | if (id >= 0) { |
1758 | spin_lock_irq(&pool->lock); | 1748 | spin_lock_irq(&pool->lock); |
1759 | ida_remove(&pool->worker_ida, id); | 1749 | idr_remove(&pool->worker_idr, id); |
1760 | spin_unlock_irq(&pool->lock); | 1750 | spin_unlock_irq(&pool->lock); |
1761 | } | 1751 | } |
1762 | kfree(worker); | 1752 | kfree(worker); |
@@ -1781,6 +1771,30 @@ static void start_worker(struct worker *worker) | |||
1781 | } | 1771 | } |
1782 | 1772 | ||
1783 | /** | 1773 | /** |
1774 | * create_and_start_worker - create and start a worker for a pool | ||
1775 | * @pool: the target pool | ||
1776 | * | ||
1777 | * Grab the managership of @pool and create and start a new worker for it. | ||
1778 | */ | ||
1779 | static int create_and_start_worker(struct worker_pool *pool) | ||
1780 | { | ||
1781 | struct worker *worker; | ||
1782 | |||
1783 | mutex_lock(&pool->manager_mutex); | ||
1784 | |||
1785 | worker = create_worker(pool); | ||
1786 | if (worker) { | ||
1787 | spin_lock_irq(&pool->lock); | ||
1788 | start_worker(worker); | ||
1789 | spin_unlock_irq(&pool->lock); | ||
1790 | } | ||
1791 | |||
1792 | mutex_unlock(&pool->manager_mutex); | ||
1793 | |||
1794 | return worker ? 0 : -ENOMEM; | ||
1795 | } | ||
1796 | |||
1797 | /** | ||
1784 | * destroy_worker - destroy a workqueue worker | 1798 | * destroy_worker - destroy a workqueue worker |
1785 | * @worker: worker to be destroyed | 1799 | * @worker: worker to be destroyed |
1786 | * | 1800 | * |
@@ -1792,11 +1806,14 @@ static void start_worker(struct worker *worker) | |||
1792 | static void destroy_worker(struct worker *worker) | 1806 | static void destroy_worker(struct worker *worker) |
1793 | { | 1807 | { |
1794 | struct worker_pool *pool = worker->pool; | 1808 | struct worker_pool *pool = worker->pool; |
1795 | int id = worker->id; | 1809 | |
1810 | lockdep_assert_held(&pool->manager_mutex); | ||
1811 | lockdep_assert_held(&pool->lock); | ||
1796 | 1812 | ||
1797 | /* sanity check frenzy */ | 1813 | /* sanity check frenzy */ |
1798 | BUG_ON(worker->current_work); | 1814 | if (WARN_ON(worker->current_work) || |
1799 | BUG_ON(!list_empty(&worker->scheduled)); | 1815 | WARN_ON(!list_empty(&worker->scheduled))) |
1816 | return; | ||
1800 | 1817 | ||
1801 | if (worker->flags & WORKER_STARTED) | 1818 | if (worker->flags & WORKER_STARTED) |
1802 | pool->nr_workers--; | 1819 | pool->nr_workers--; |
@@ -1806,13 +1823,14 @@ static void destroy_worker(struct worker *worker) | |||
1806 | list_del_init(&worker->entry); | 1823 | list_del_init(&worker->entry); |
1807 | worker->flags |= WORKER_DIE; | 1824 | worker->flags |= WORKER_DIE; |
1808 | 1825 | ||
1826 | idr_remove(&pool->worker_idr, worker->id); | ||
1827 | |||
1809 | spin_unlock_irq(&pool->lock); | 1828 | spin_unlock_irq(&pool->lock); |
1810 | 1829 | ||
1811 | kthread_stop(worker->task); | 1830 | kthread_stop(worker->task); |
1812 | kfree(worker); | 1831 | kfree(worker); |
1813 | 1832 | ||
1814 | spin_lock_irq(&pool->lock); | 1833 | spin_lock_irq(&pool->lock); |
1815 | ida_remove(&pool->worker_ida, id); | ||
1816 | } | 1834 | } |
1817 | 1835 | ||
1818 | static void idle_worker_timeout(unsigned long __pool) | 1836 | static void idle_worker_timeout(unsigned long __pool) |
@@ -1841,23 +1859,21 @@ static void idle_worker_timeout(unsigned long __pool) | |||
1841 | spin_unlock_irq(&pool->lock); | 1859 | spin_unlock_irq(&pool->lock); |
1842 | } | 1860 | } |
1843 | 1861 | ||
1844 | static bool send_mayday(struct work_struct *work) | 1862 | static void send_mayday(struct work_struct *work) |
1845 | { | 1863 | { |
1846 | struct pool_workqueue *pwq = get_work_pwq(work); | 1864 | struct pool_workqueue *pwq = get_work_pwq(work); |
1847 | struct workqueue_struct *wq = pwq->wq; | 1865 | struct workqueue_struct *wq = pwq->wq; |
1848 | unsigned int cpu; | ||
1849 | 1866 | ||
1850 | if (!(wq->flags & WQ_RESCUER)) | 1867 | lockdep_assert_held(&wq_mayday_lock); |
1851 | return false; | 1868 | |
1869 | if (!wq->rescuer) | ||
1870 | return; | ||
1852 | 1871 | ||
1853 | /* mayday mayday mayday */ | 1872 | /* mayday mayday mayday */ |
1854 | cpu = pwq->pool->cpu; | 1873 | if (list_empty(&pwq->mayday_node)) { |
1855 | /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */ | 1874 | list_add_tail(&pwq->mayday_node, &wq->maydays); |
1856 | if (cpu == WORK_CPU_UNBOUND) | ||
1857 | cpu = 0; | ||
1858 | if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask)) | ||
1859 | wake_up_process(wq->rescuer->task); | 1875 | wake_up_process(wq->rescuer->task); |
1860 | return true; | 1876 | } |
1861 | } | 1877 | } |
1862 | 1878 | ||
1863 | static void pool_mayday_timeout(unsigned long __pool) | 1879 | static void pool_mayday_timeout(unsigned long __pool) |
@@ -1865,7 +1881,8 @@ static void pool_mayday_timeout(unsigned long __pool) | |||
1865 | struct worker_pool *pool = (void *)__pool; | 1881 | struct worker_pool *pool = (void *)__pool; |
1866 | struct work_struct *work; | 1882 | struct work_struct *work; |
1867 | 1883 | ||
1868 | spin_lock_irq(&pool->lock); | 1884 | spin_lock_irq(&wq_mayday_lock); /* for wq->maydays */ |
1885 | spin_lock(&pool->lock); | ||
1869 | 1886 | ||
1870 | if (need_to_create_worker(pool)) { | 1887 | if (need_to_create_worker(pool)) { |
1871 | /* | 1888 | /* |
@@ -1878,7 +1895,8 @@ static void pool_mayday_timeout(unsigned long __pool) | |||
1878 | send_mayday(work); | 1895 | send_mayday(work); |
1879 | } | 1896 | } |
1880 | 1897 | ||
1881 | spin_unlock_irq(&pool->lock); | 1898 | spin_unlock(&pool->lock); |
1899 | spin_unlock_irq(&wq_mayday_lock); | ||
1882 | 1900 | ||
1883 | mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL); | 1901 | mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL); |
1884 | } | 1902 | } |
@@ -1893,8 +1911,8 @@ static void pool_mayday_timeout(unsigned long __pool) | |||
1893 | * sent to all rescuers with works scheduled on @pool to resolve | 1911 | * sent to all rescuers with works scheduled on @pool to resolve |
1894 | * possible allocation deadlock. | 1912 | * possible allocation deadlock. |
1895 | * | 1913 | * |
1896 | * On return, need_to_create_worker() is guaranteed to be false and | 1914 | * On return, need_to_create_worker() is guaranteed to be %false and |
1897 | * may_start_working() true. | 1915 | * may_start_working() %true. |
1898 | * | 1916 | * |
1899 | * LOCKING: | 1917 | * LOCKING: |
1900 | * spin_lock_irq(pool->lock) which may be released and regrabbed | 1918 | * spin_lock_irq(pool->lock) which may be released and regrabbed |
@@ -1902,7 +1920,7 @@ static void pool_mayday_timeout(unsigned long __pool) | |||
1902 | * manager. | 1920 | * manager. |
1903 | * | 1921 | * |
1904 | * RETURNS: | 1922 | * RETURNS: |
1905 | * false if no action was taken and pool->lock stayed locked, true | 1923 | * %false if no action was taken and pool->lock stayed locked, %true |
1906 | * otherwise. | 1924 | * otherwise. |
1907 | */ | 1925 | */ |
1908 | static bool maybe_create_worker(struct worker_pool *pool) | 1926 | static bool maybe_create_worker(struct worker_pool *pool) |
@@ -1925,7 +1943,8 @@ restart: | |||
1925 | del_timer_sync(&pool->mayday_timer); | 1943 | del_timer_sync(&pool->mayday_timer); |
1926 | spin_lock_irq(&pool->lock); | 1944 | spin_lock_irq(&pool->lock); |
1927 | start_worker(worker); | 1945 | start_worker(worker); |
1928 | BUG_ON(need_to_create_worker(pool)); | 1946 | if (WARN_ON_ONCE(need_to_create_worker(pool))) |
1947 | goto restart; | ||
1929 | return true; | 1948 | return true; |
1930 | } | 1949 | } |
1931 | 1950 | ||
@@ -1958,7 +1977,7 @@ restart: | |||
1958 | * multiple times. Called only from manager. | 1977 | * multiple times. Called only from manager. |
1959 | * | 1978 | * |
1960 | * RETURNS: | 1979 | * RETURNS: |
1961 | * false if no action was taken and pool->lock stayed locked, true | 1980 | * %false if no action was taken and pool->lock stayed locked, %true |
1962 | * otherwise. | 1981 | * otherwise. |
1963 | */ | 1982 | */ |
1964 | static bool maybe_destroy_workers(struct worker_pool *pool) | 1983 | static bool maybe_destroy_workers(struct worker_pool *pool) |
@@ -2009,42 +2028,38 @@ static bool manage_workers(struct worker *worker) | |||
2009 | struct worker_pool *pool = worker->pool; | 2028 | struct worker_pool *pool = worker->pool; |
2010 | bool ret = false; | 2029 | bool ret = false; |
2011 | 2030 | ||
2012 | if (pool->flags & POOL_MANAGING_WORKERS) | 2031 | /* |
2032 | * Managership is governed by two mutexes - manager_arb and | ||
2033 | * manager_mutex. manager_arb handles arbitration of manager role. | ||
2034 | * Anyone who successfully grabs manager_arb wins the arbitration | ||
2035 | * and becomes the manager. mutex_trylock() on pool->manager_arb | ||
2036 | * failure while holding pool->lock reliably indicates that someone | ||
2037 | * else is managing the pool and the worker which failed trylock | ||
2038 | * can proceed to executing work items. This means that anyone | ||
2039 | * grabbing manager_arb is responsible for actually performing | ||
2040 | * manager duties. If manager_arb is grabbed and released without | ||
2041 | * actual management, the pool may stall indefinitely. | ||
2042 | * | ||
2043 | * manager_mutex is used for exclusion of actual management | ||
2044 | * operations. The holder of manager_mutex can be sure that none | ||
2045 | * of management operations, including creation and destruction of | ||
2046 | * workers, won't take place until the mutex is released. Because | ||
2047 | * manager_mutex doesn't interfere with manager role arbitration, | ||
2048 | * it is guaranteed that the pool's management, while may be | ||
2049 | * delayed, won't be disturbed by someone else grabbing | ||
2050 | * manager_mutex. | ||
2051 | */ | ||
2052 | if (!mutex_trylock(&pool->manager_arb)) | ||
2013 | return ret; | 2053 | return ret; |
2014 | 2054 | ||
2015 | pool->flags |= POOL_MANAGING_WORKERS; | ||
2016 | |||
2017 | /* | 2055 | /* |
2018 | * To simplify both worker management and CPU hotplug, hold off | 2056 | * With manager arbitration won, manager_mutex would be free in |
2019 | * management while hotplug is in progress. CPU hotplug path can't | 2057 | * most cases. trylock first without dropping @pool->lock. |
2020 | * grab %POOL_MANAGING_WORKERS to achieve this because that can | ||
2021 | * lead to idle worker depletion (all become busy thinking someone | ||
2022 | * else is managing) which in turn can result in deadlock under | ||
2023 | * extreme circumstances. Use @pool->assoc_mutex to synchronize | ||
2024 | * manager against CPU hotplug. | ||
2025 | * | ||
2026 | * assoc_mutex would always be free unless CPU hotplug is in | ||
2027 | * progress. trylock first without dropping @pool->lock. | ||
2028 | */ | 2058 | */ |
2029 | if (unlikely(!mutex_trylock(&pool->assoc_mutex))) { | 2059 | if (unlikely(!mutex_trylock(&pool->manager_mutex))) { |
2030 | spin_unlock_irq(&pool->lock); | 2060 | spin_unlock_irq(&pool->lock); |
2031 | mutex_lock(&pool->assoc_mutex); | 2061 | mutex_lock(&pool->manager_mutex); |
2032 | /* | 2062 | spin_lock_irq(&pool->lock); |
2033 | * CPU hotplug could have happened while we were waiting | ||
2034 | * for assoc_mutex. Hotplug itself can't handle us | ||
2035 | * because manager isn't either on idle or busy list, and | ||
2036 | * @pool's state and ours could have deviated. | ||
2037 | * | ||
2038 | * As hotplug is now excluded via assoc_mutex, we can | ||
2039 | * simply try to bind. It will succeed or fail depending | ||
2040 | * on @pool's current state. Try it and adjust | ||
2041 | * %WORKER_UNBOUND accordingly. | ||
2042 | */ | ||
2043 | if (worker_maybe_bind_and_lock(worker)) | ||
2044 | worker->flags &= ~WORKER_UNBOUND; | ||
2045 | else | ||
2046 | worker->flags |= WORKER_UNBOUND; | ||
2047 | |||
2048 | ret = true; | 2063 | ret = true; |
2049 | } | 2064 | } |
2050 | 2065 | ||
@@ -2057,8 +2072,8 @@ static bool manage_workers(struct worker *worker) | |||
2057 | ret |= maybe_destroy_workers(pool); | 2072 | ret |= maybe_destroy_workers(pool); |
2058 | ret |= maybe_create_worker(pool); | 2073 | ret |= maybe_create_worker(pool); |
2059 | 2074 | ||
2060 | pool->flags &= ~POOL_MANAGING_WORKERS; | 2075 | mutex_unlock(&pool->manager_mutex); |
2061 | mutex_unlock(&pool->assoc_mutex); | 2076 | mutex_unlock(&pool->manager_arb); |
2062 | return ret; | 2077 | return ret; |
2063 | } | 2078 | } |
2064 | 2079 | ||
@@ -2184,6 +2199,7 @@ __acquires(&pool->lock) | |||
2184 | worker->current_work = NULL; | 2199 | worker->current_work = NULL; |
2185 | worker->current_func = NULL; | 2200 | worker->current_func = NULL; |
2186 | worker->current_pwq = NULL; | 2201 | worker->current_pwq = NULL; |
2202 | worker->desc_valid = false; | ||
2187 | pwq_dec_nr_in_flight(pwq, work_color); | 2203 | pwq_dec_nr_in_flight(pwq, work_color); |
2188 | } | 2204 | } |
2189 | 2205 | ||
@@ -2212,11 +2228,11 @@ static void process_scheduled_works(struct worker *worker) | |||
2212 | * worker_thread - the worker thread function | 2228 | * worker_thread - the worker thread function |
2213 | * @__worker: self | 2229 | * @__worker: self |
2214 | * | 2230 | * |
2215 | * The worker thread function. There are NR_CPU_WORKER_POOLS dynamic pools | 2231 | * The worker thread function. All workers belong to a worker_pool - |
2216 | * of these per each cpu. These workers process all works regardless of | 2232 | * either a per-cpu one or dynamic unbound one. These workers process all |
2217 | * their specific target workqueue. The only exception is works which | 2233 | * work items regardless of their specific target workqueue. The only |
2218 | * belong to workqueues with a rescuer which will be explained in | 2234 | * exception is work items which belong to workqueues with a rescuer which |
2219 | * rescuer_thread(). | 2235 | * will be explained in rescuer_thread(). |
2220 | */ | 2236 | */ |
2221 | static int worker_thread(void *__worker) | 2237 | static int worker_thread(void *__worker) |
2222 | { | 2238 | { |
@@ -2228,19 +2244,12 @@ static int worker_thread(void *__worker) | |||
2228 | woke_up: | 2244 | woke_up: |
2229 | spin_lock_irq(&pool->lock); | 2245 | spin_lock_irq(&pool->lock); |
2230 | 2246 | ||
2231 | /* we are off idle list if destruction or rebind is requested */ | 2247 | /* am I supposed to die? */ |
2232 | if (unlikely(list_empty(&worker->entry))) { | 2248 | if (unlikely(worker->flags & WORKER_DIE)) { |
2233 | spin_unlock_irq(&pool->lock); | 2249 | spin_unlock_irq(&pool->lock); |
2234 | 2250 | WARN_ON_ONCE(!list_empty(&worker->entry)); | |
2235 | /* if DIE is set, destruction is requested */ | 2251 | worker->task->flags &= ~PF_WQ_WORKER; |
2236 | if (worker->flags & WORKER_DIE) { | 2252 | return 0; |
2237 | worker->task->flags &= ~PF_WQ_WORKER; | ||
2238 | return 0; | ||
2239 | } | ||
2240 | |||
2241 | /* otherwise, rebind */ | ||
2242 | idle_worker_rebind(worker); | ||
2243 | goto woke_up; | ||
2244 | } | 2253 | } |
2245 | 2254 | ||
2246 | worker_leave_idle(worker); | 2255 | worker_leave_idle(worker); |
@@ -2258,14 +2267,16 @@ recheck: | |||
2258 | * preparing to process a work or actually processing it. | 2267 | * preparing to process a work or actually processing it. |
2259 | * Make sure nobody diddled with it while I was sleeping. | 2268 | * Make sure nobody diddled with it while I was sleeping. |
2260 | */ | 2269 | */ |
2261 | BUG_ON(!list_empty(&worker->scheduled)); | 2270 | WARN_ON_ONCE(!list_empty(&worker->scheduled)); |
2262 | 2271 | ||
2263 | /* | 2272 | /* |
2264 | * When control reaches this point, we're guaranteed to have | 2273 | * Finish PREP stage. We're guaranteed to have at least one idle |
2265 | * at least one idle worker or that someone else has already | 2274 | * worker or that someone else has already assumed the manager |
2266 | * assumed the manager role. | 2275 | * role. This is where @worker starts participating in concurrency |
2276 | * management if applicable and concurrency management is restored | ||
2277 | * after being rebound. See rebind_workers() for details. | ||
2267 | */ | 2278 | */ |
2268 | worker_clr_flags(worker, WORKER_PREP); | 2279 | worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); |
2269 | 2280 | ||
2270 | do { | 2281 | do { |
2271 | struct work_struct *work = | 2282 | struct work_struct *work = |
@@ -2307,7 +2318,7 @@ sleep: | |||
2307 | * @__rescuer: self | 2318 | * @__rescuer: self |
2308 | * | 2319 | * |
2309 | * Workqueue rescuer thread function. There's one rescuer for each | 2320 | * Workqueue rescuer thread function. There's one rescuer for each |
2310 | * workqueue which has WQ_RESCUER set. | 2321 | * workqueue which has WQ_MEM_RECLAIM set. |
2311 | * | 2322 | * |
2312 | * Regular work processing on a pool may block trying to create a new | 2323 | * Regular work processing on a pool may block trying to create a new |
2313 | * worker which uses GFP_KERNEL allocation which has slight chance of | 2324 | * worker which uses GFP_KERNEL allocation which has slight chance of |
@@ -2326,8 +2337,6 @@ static int rescuer_thread(void *__rescuer) | |||
2326 | struct worker *rescuer = __rescuer; | 2337 | struct worker *rescuer = __rescuer; |
2327 | struct workqueue_struct *wq = rescuer->rescue_wq; | 2338 | struct workqueue_struct *wq = rescuer->rescue_wq; |
2328 | struct list_head *scheduled = &rescuer->scheduled; | 2339 | struct list_head *scheduled = &rescuer->scheduled; |
2329 | bool is_unbound = wq->flags & WQ_UNBOUND; | ||
2330 | unsigned int cpu; | ||
2331 | 2340 | ||
2332 | set_user_nice(current, RESCUER_NICE_LEVEL); | 2341 | set_user_nice(current, RESCUER_NICE_LEVEL); |
2333 | 2342 | ||
@@ -2345,28 +2354,29 @@ repeat: | |||
2345 | return 0; | 2354 | return 0; |
2346 | } | 2355 | } |
2347 | 2356 | ||
2348 | /* | 2357 | /* see whether any pwq is asking for help */ |
2349 | * See whether any cpu is asking for help. Unbounded | 2358 | spin_lock_irq(&wq_mayday_lock); |
2350 | * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND. | 2359 | |
2351 | */ | 2360 | while (!list_empty(&wq->maydays)) { |
2352 | for_each_mayday_cpu(cpu, wq->mayday_mask) { | 2361 | struct pool_workqueue *pwq = list_first_entry(&wq->maydays, |
2353 | unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu; | 2362 | struct pool_workqueue, mayday_node); |
2354 | struct pool_workqueue *pwq = get_pwq(tcpu, wq); | ||
2355 | struct worker_pool *pool = pwq->pool; | 2363 | struct worker_pool *pool = pwq->pool; |
2356 | struct work_struct *work, *n; | 2364 | struct work_struct *work, *n; |
2357 | 2365 | ||
2358 | __set_current_state(TASK_RUNNING); | 2366 | __set_current_state(TASK_RUNNING); |
2359 | mayday_clear_cpu(cpu, wq->mayday_mask); | 2367 | list_del_init(&pwq->mayday_node); |
2368 | |||
2369 | spin_unlock_irq(&wq_mayday_lock); | ||
2360 | 2370 | ||
2361 | /* migrate to the target cpu if possible */ | 2371 | /* migrate to the target cpu if possible */ |
2372 | worker_maybe_bind_and_lock(pool); | ||
2362 | rescuer->pool = pool; | 2373 | rescuer->pool = pool; |
2363 | worker_maybe_bind_and_lock(rescuer); | ||
2364 | 2374 | ||
2365 | /* | 2375 | /* |
2366 | * Slurp in all works issued via this workqueue and | 2376 | * Slurp in all works issued via this workqueue and |
2367 | * process'em. | 2377 | * process'em. |
2368 | */ | 2378 | */ |
2369 | BUG_ON(!list_empty(&rescuer->scheduled)); | 2379 | WARN_ON_ONCE(!list_empty(&rescuer->scheduled)); |
2370 | list_for_each_entry_safe(work, n, &pool->worklist, entry) | 2380 | list_for_each_entry_safe(work, n, &pool->worklist, entry) |
2371 | if (get_work_pwq(work) == pwq) | 2381 | if (get_work_pwq(work) == pwq) |
2372 | move_linked_works(work, scheduled, &n); | 2382 | move_linked_works(work, scheduled, &n); |
@@ -2381,9 +2391,13 @@ repeat: | |||
2381 | if (keep_working(pool)) | 2391 | if (keep_working(pool)) |
2382 | wake_up_worker(pool); | 2392 | wake_up_worker(pool); |
2383 | 2393 | ||
2384 | spin_unlock_irq(&pool->lock); | 2394 | rescuer->pool = NULL; |
2395 | spin_unlock(&pool->lock); | ||
2396 | spin_lock(&wq_mayday_lock); | ||
2385 | } | 2397 | } |
2386 | 2398 | ||
2399 | spin_unlock_irq(&wq_mayday_lock); | ||
2400 | |||
2387 | /* rescuers should never participate in concurrency management */ | 2401 | /* rescuers should never participate in concurrency management */ |
2388 | WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING)); | 2402 | WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING)); |
2389 | schedule(); | 2403 | schedule(); |
@@ -2487,7 +2501,7 @@ static void insert_wq_barrier(struct pool_workqueue *pwq, | |||
2487 | * advanced to @work_color. | 2501 | * advanced to @work_color. |
2488 | * | 2502 | * |
2489 | * CONTEXT: | 2503 | * CONTEXT: |
2490 | * mutex_lock(wq->flush_mutex). | 2504 | * mutex_lock(wq->mutex). |
2491 | * | 2505 | * |
2492 | * RETURNS: | 2506 | * RETURNS: |
2493 | * %true if @flush_color >= 0 and there's something to flush. %false | 2507 | * %true if @flush_color >= 0 and there's something to flush. %false |
@@ -2497,21 +2511,20 @@ static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq, | |||
2497 | int flush_color, int work_color) | 2511 | int flush_color, int work_color) |
2498 | { | 2512 | { |
2499 | bool wait = false; | 2513 | bool wait = false; |
2500 | unsigned int cpu; | 2514 | struct pool_workqueue *pwq; |
2501 | 2515 | ||
2502 | if (flush_color >= 0) { | 2516 | if (flush_color >= 0) { |
2503 | BUG_ON(atomic_read(&wq->nr_pwqs_to_flush)); | 2517 | WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush)); |
2504 | atomic_set(&wq->nr_pwqs_to_flush, 1); | 2518 | atomic_set(&wq->nr_pwqs_to_flush, 1); |
2505 | } | 2519 | } |
2506 | 2520 | ||
2507 | for_each_pwq_cpu(cpu, wq) { | 2521 | for_each_pwq(pwq, wq) { |
2508 | struct pool_workqueue *pwq = get_pwq(cpu, wq); | ||
2509 | struct worker_pool *pool = pwq->pool; | 2522 | struct worker_pool *pool = pwq->pool; |
2510 | 2523 | ||
2511 | spin_lock_irq(&pool->lock); | 2524 | spin_lock_irq(&pool->lock); |
2512 | 2525 | ||
2513 | if (flush_color >= 0) { | 2526 | if (flush_color >= 0) { |
2514 | BUG_ON(pwq->flush_color != -1); | 2527 | WARN_ON_ONCE(pwq->flush_color != -1); |
2515 | 2528 | ||
2516 | if (pwq->nr_in_flight[flush_color]) { | 2529 | if (pwq->nr_in_flight[flush_color]) { |
2517 | pwq->flush_color = flush_color; | 2530 | pwq->flush_color = flush_color; |
@@ -2521,7 +2534,7 @@ static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq, | |||
2521 | } | 2534 | } |
2522 | 2535 | ||
2523 | if (work_color >= 0) { | 2536 | if (work_color >= 0) { |
2524 | BUG_ON(work_color != work_next_color(pwq->work_color)); | 2537 | WARN_ON_ONCE(work_color != work_next_color(pwq->work_color)); |
2525 | pwq->work_color = work_color; | 2538 | pwq->work_color = work_color; |
2526 | } | 2539 | } |
2527 | 2540 | ||
@@ -2538,11 +2551,8 @@ static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq, | |||
2538 | * flush_workqueue - ensure that any scheduled work has run to completion. | 2551 | * flush_workqueue - ensure that any scheduled work has run to completion. |
2539 | * @wq: workqueue to flush | 2552 | * @wq: workqueue to flush |
2540 | * | 2553 | * |
2541 | * Forces execution of the workqueue and blocks until its completion. | 2554 | * This function sleeps until all work items which were queued on entry |
2542 | * This is typically used in driver shutdown handlers. | 2555 | * have finished execution, but it is not livelocked by new incoming ones. |
2543 | * | ||
2544 | * We sleep until all works which were queued on entry have been handled, | ||
2545 | * but we are not livelocked by new incoming ones. | ||
2546 | */ | 2556 | */ |
2547 | void flush_workqueue(struct workqueue_struct *wq) | 2557 | void flush_workqueue(struct workqueue_struct *wq) |
2548 | { | 2558 | { |
@@ -2556,7 +2566,7 @@ void flush_workqueue(struct workqueue_struct *wq) | |||
2556 | lock_map_acquire(&wq->lockdep_map); | 2566 | lock_map_acquire(&wq->lockdep_map); |
2557 | lock_map_release(&wq->lockdep_map); | 2567 | lock_map_release(&wq->lockdep_map); |
2558 | 2568 | ||
2559 | mutex_lock(&wq->flush_mutex); | 2569 | mutex_lock(&wq->mutex); |
2560 | 2570 | ||
2561 | /* | 2571 | /* |
2562 | * Start-to-wait phase | 2572 | * Start-to-wait phase |
@@ -2569,13 +2579,13 @@ void flush_workqueue(struct workqueue_struct *wq) | |||
2569 | * becomes our flush_color and work_color is advanced | 2579 | * becomes our flush_color and work_color is advanced |
2570 | * by one. | 2580 | * by one. |
2571 | */ | 2581 | */ |
2572 | BUG_ON(!list_empty(&wq->flusher_overflow)); | 2582 | WARN_ON_ONCE(!list_empty(&wq->flusher_overflow)); |
2573 | this_flusher.flush_color = wq->work_color; | 2583 | this_flusher.flush_color = wq->work_color; |
2574 | wq->work_color = next_color; | 2584 | wq->work_color = next_color; |
2575 | 2585 | ||
2576 | if (!wq->first_flusher) { | 2586 | if (!wq->first_flusher) { |
2577 | /* no flush in progress, become the first flusher */ | 2587 | /* no flush in progress, become the first flusher */ |
2578 | BUG_ON(wq->flush_color != this_flusher.flush_color); | 2588 | WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); |
2579 | 2589 | ||
2580 | wq->first_flusher = &this_flusher; | 2590 | wq->first_flusher = &this_flusher; |
2581 | 2591 | ||
@@ -2588,7 +2598,7 @@ void flush_workqueue(struct workqueue_struct *wq) | |||
2588 | } | 2598 | } |
2589 | } else { | 2599 | } else { |
2590 | /* wait in queue */ | 2600 | /* wait in queue */ |
2591 | BUG_ON(wq->flush_color == this_flusher.flush_color); | 2601 | WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color); |
2592 | list_add_tail(&this_flusher.list, &wq->flusher_queue); | 2602 | list_add_tail(&this_flusher.list, &wq->flusher_queue); |
2593 | flush_workqueue_prep_pwqs(wq, -1, wq->work_color); | 2603 | flush_workqueue_prep_pwqs(wq, -1, wq->work_color); |
2594 | } | 2604 | } |
@@ -2601,7 +2611,7 @@ void flush_workqueue(struct workqueue_struct *wq) | |||
2601 | list_add_tail(&this_flusher.list, &wq->flusher_overflow); | 2611 | list_add_tail(&this_flusher.list, &wq->flusher_overflow); |
2602 | } | 2612 | } |
2603 | 2613 | ||
2604 | mutex_unlock(&wq->flush_mutex); | 2614 | mutex_unlock(&wq->mutex); |
2605 | 2615 | ||
2606 | wait_for_completion(&this_flusher.done); | 2616 | wait_for_completion(&this_flusher.done); |
2607 | 2617 | ||
@@ -2614,7 +2624,7 @@ void flush_workqueue(struct workqueue_struct *wq) | |||
2614 | if (wq->first_flusher != &this_flusher) | 2624 | if (wq->first_flusher != &this_flusher) |
2615 | return; | 2625 | return; |
2616 | 2626 | ||
2617 | mutex_lock(&wq->flush_mutex); | 2627 | mutex_lock(&wq->mutex); |
2618 | 2628 | ||
2619 | /* we might have raced, check again with mutex held */ | 2629 | /* we might have raced, check again with mutex held */ |
2620 | if (wq->first_flusher != &this_flusher) | 2630 | if (wq->first_flusher != &this_flusher) |
@@ -2622,8 +2632,8 @@ void flush_workqueue(struct workqueue_struct *wq) | |||
2622 | 2632 | ||
2623 | wq->first_flusher = NULL; | 2633 | wq->first_flusher = NULL; |
2624 | 2634 | ||
2625 | BUG_ON(!list_empty(&this_flusher.list)); | 2635 | WARN_ON_ONCE(!list_empty(&this_flusher.list)); |
2626 | BUG_ON(wq->flush_color != this_flusher.flush_color); | 2636 | WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); |
2627 | 2637 | ||
2628 | while (true) { | 2638 | while (true) { |
2629 | struct wq_flusher *next, *tmp; | 2639 | struct wq_flusher *next, *tmp; |
@@ -2636,8 +2646,8 @@ void flush_workqueue(struct workqueue_struct *wq) | |||
2636 | complete(&next->done); | 2646 | complete(&next->done); |
2637 | } | 2647 | } |
2638 | 2648 | ||
2639 | BUG_ON(!list_empty(&wq->flusher_overflow) && | 2649 | WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) && |
2640 | wq->flush_color != work_next_color(wq->work_color)); | 2650 | wq->flush_color != work_next_color(wq->work_color)); |
2641 | 2651 | ||
2642 | /* this flush_color is finished, advance by one */ | 2652 | /* this flush_color is finished, advance by one */ |
2643 | wq->flush_color = work_next_color(wq->flush_color); | 2653 | wq->flush_color = work_next_color(wq->flush_color); |
@@ -2661,7 +2671,7 @@ void flush_workqueue(struct workqueue_struct *wq) | |||
2661 | } | 2671 | } |
2662 | 2672 | ||
2663 | if (list_empty(&wq->flusher_queue)) { | 2673 | if (list_empty(&wq->flusher_queue)) { |
2664 | BUG_ON(wq->flush_color != wq->work_color); | 2674 | WARN_ON_ONCE(wq->flush_color != wq->work_color); |
2665 | break; | 2675 | break; |
2666 | } | 2676 | } |
2667 | 2677 | ||
@@ -2669,8 +2679,8 @@ void flush_workqueue(struct workqueue_struct *wq) | |||
2669 | * Need to flush more colors. Make the next flusher | 2679 | * Need to flush more colors. Make the next flusher |
2670 | * the new first flusher and arm pwqs. | 2680 | * the new first flusher and arm pwqs. |
2671 | */ | 2681 | */ |
2672 | BUG_ON(wq->flush_color == wq->work_color); | 2682 | WARN_ON_ONCE(wq->flush_color == wq->work_color); |
2673 | BUG_ON(wq->flush_color != next->flush_color); | 2683 | WARN_ON_ONCE(wq->flush_color != next->flush_color); |
2674 | 2684 | ||
2675 | list_del_init(&next->list); | 2685 | list_del_init(&next->list); |
2676 | wq->first_flusher = next; | 2686 | wq->first_flusher = next; |
@@ -2686,7 +2696,7 @@ void flush_workqueue(struct workqueue_struct *wq) | |||
2686 | } | 2696 | } |
2687 | 2697 | ||
2688 | out_unlock: | 2698 | out_unlock: |
2689 | mutex_unlock(&wq->flush_mutex); | 2699 | mutex_unlock(&wq->mutex); |
2690 | } | 2700 | } |
2691 | EXPORT_SYMBOL_GPL(flush_workqueue); | 2701 | EXPORT_SYMBOL_GPL(flush_workqueue); |
2692 | 2702 | ||
@@ -2704,22 +2714,23 @@ EXPORT_SYMBOL_GPL(flush_workqueue); | |||
2704 | void drain_workqueue(struct workqueue_struct *wq) | 2714 | void drain_workqueue(struct workqueue_struct *wq) |
2705 | { | 2715 | { |
2706 | unsigned int flush_cnt = 0; | 2716 | unsigned int flush_cnt = 0; |
2707 | unsigned int cpu; | 2717 | struct pool_workqueue *pwq; |
2708 | 2718 | ||
2709 | /* | 2719 | /* |
2710 | * __queue_work() needs to test whether there are drainers, is much | 2720 | * __queue_work() needs to test whether there are drainers, is much |
2711 | * hotter than drain_workqueue() and already looks at @wq->flags. | 2721 | * hotter than drain_workqueue() and already looks at @wq->flags. |
2712 | * Use WQ_DRAINING so that queue doesn't have to check nr_drainers. | 2722 | * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers. |
2713 | */ | 2723 | */ |
2714 | spin_lock(&workqueue_lock); | 2724 | mutex_lock(&wq->mutex); |
2715 | if (!wq->nr_drainers++) | 2725 | if (!wq->nr_drainers++) |
2716 | wq->flags |= WQ_DRAINING; | 2726 | wq->flags |= __WQ_DRAINING; |
2717 | spin_unlock(&workqueue_lock); | 2727 | mutex_unlock(&wq->mutex); |
2718 | reflush: | 2728 | reflush: |
2719 | flush_workqueue(wq); | 2729 | flush_workqueue(wq); |
2720 | 2730 | ||
2721 | for_each_pwq_cpu(cpu, wq) { | 2731 | mutex_lock(&wq->mutex); |
2722 | struct pool_workqueue *pwq = get_pwq(cpu, wq); | 2732 | |
2733 | for_each_pwq(pwq, wq) { | ||
2723 | bool drained; | 2734 | bool drained; |
2724 | 2735 | ||
2725 | spin_lock_irq(&pwq->pool->lock); | 2736 | spin_lock_irq(&pwq->pool->lock); |
@@ -2731,15 +2742,16 @@ reflush: | |||
2731 | 2742 | ||
2732 | if (++flush_cnt == 10 || | 2743 | if (++flush_cnt == 10 || |
2733 | (flush_cnt % 100 == 0 && flush_cnt <= 1000)) | 2744 | (flush_cnt % 100 == 0 && flush_cnt <= 1000)) |
2734 | pr_warn("workqueue %s: flush on destruction isn't complete after %u tries\n", | 2745 | pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n", |
2735 | wq->name, flush_cnt); | 2746 | wq->name, flush_cnt); |
2747 | |||
2748 | mutex_unlock(&wq->mutex); | ||
2736 | goto reflush; | 2749 | goto reflush; |
2737 | } | 2750 | } |
2738 | 2751 | ||
2739 | spin_lock(&workqueue_lock); | ||
2740 | if (!--wq->nr_drainers) | 2752 | if (!--wq->nr_drainers) |
2741 | wq->flags &= ~WQ_DRAINING; | 2753 | wq->flags &= ~__WQ_DRAINING; |
2742 | spin_unlock(&workqueue_lock); | 2754 | mutex_unlock(&wq->mutex); |
2743 | } | 2755 | } |
2744 | EXPORT_SYMBOL_GPL(drain_workqueue); | 2756 | EXPORT_SYMBOL_GPL(drain_workqueue); |
2745 | 2757 | ||
@@ -2750,11 +2762,15 @@ static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr) | |||
2750 | struct pool_workqueue *pwq; | 2762 | struct pool_workqueue *pwq; |
2751 | 2763 | ||
2752 | might_sleep(); | 2764 | might_sleep(); |
2765 | |||
2766 | local_irq_disable(); | ||
2753 | pool = get_work_pool(work); | 2767 | pool = get_work_pool(work); |
2754 | if (!pool) | 2768 | if (!pool) { |
2769 | local_irq_enable(); | ||
2755 | return false; | 2770 | return false; |
2771 | } | ||
2756 | 2772 | ||
2757 | spin_lock_irq(&pool->lock); | 2773 | spin_lock(&pool->lock); |
2758 | /* see the comment in try_to_grab_pending() with the same code */ | 2774 | /* see the comment in try_to_grab_pending() with the same code */ |
2759 | pwq = get_work_pwq(work); | 2775 | pwq = get_work_pwq(work); |
2760 | if (pwq) { | 2776 | if (pwq) { |
@@ -2776,7 +2792,7 @@ static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr) | |||
2776 | * flusher is not running on the same workqueue by verifying write | 2792 | * flusher is not running on the same workqueue by verifying write |
2777 | * access. | 2793 | * access. |
2778 | */ | 2794 | */ |
2779 | if (pwq->wq->saved_max_active == 1 || pwq->wq->flags & WQ_RESCUER) | 2795 | if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer) |
2780 | lock_map_acquire(&pwq->wq->lockdep_map); | 2796 | lock_map_acquire(&pwq->wq->lockdep_map); |
2781 | else | 2797 | else |
2782 | lock_map_acquire_read(&pwq->wq->lockdep_map); | 2798 | lock_map_acquire_read(&pwq->wq->lockdep_map); |
@@ -2933,66 +2949,6 @@ bool cancel_delayed_work_sync(struct delayed_work *dwork) | |||
2933 | EXPORT_SYMBOL(cancel_delayed_work_sync); | 2949 | EXPORT_SYMBOL(cancel_delayed_work_sync); |
2934 | 2950 | ||
2935 | /** | 2951 | /** |
2936 | * schedule_work_on - put work task on a specific cpu | ||
2937 | * @cpu: cpu to put the work task on | ||
2938 | * @work: job to be done | ||
2939 | * | ||
2940 | * This puts a job on a specific cpu | ||
2941 | */ | ||
2942 | bool schedule_work_on(int cpu, struct work_struct *work) | ||
2943 | { | ||
2944 | return queue_work_on(cpu, system_wq, work); | ||
2945 | } | ||
2946 | EXPORT_SYMBOL(schedule_work_on); | ||
2947 | |||
2948 | /** | ||
2949 | * schedule_work - put work task in global workqueue | ||
2950 | * @work: job to be done | ||
2951 | * | ||
2952 | * Returns %false if @work was already on the kernel-global workqueue and | ||
2953 | * %true otherwise. | ||
2954 | * | ||
2955 | * This puts a job in the kernel-global workqueue if it was not already | ||
2956 | * queued and leaves it in the same position on the kernel-global | ||
2957 | * workqueue otherwise. | ||
2958 | */ | ||
2959 | bool schedule_work(struct work_struct *work) | ||
2960 | { | ||
2961 | return queue_work(system_wq, work); | ||
2962 | } | ||
2963 | EXPORT_SYMBOL(schedule_work); | ||
2964 | |||
2965 | /** | ||
2966 | * schedule_delayed_work_on - queue work in global workqueue on CPU after delay | ||
2967 | * @cpu: cpu to use | ||
2968 | * @dwork: job to be done | ||
2969 | * @delay: number of jiffies to wait | ||
2970 | * | ||
2971 | * After waiting for a given time this puts a job in the kernel-global | ||
2972 | * workqueue on the specified CPU. | ||
2973 | */ | ||
2974 | bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork, | ||
2975 | unsigned long delay) | ||
2976 | { | ||
2977 | return queue_delayed_work_on(cpu, system_wq, dwork, delay); | ||
2978 | } | ||
2979 | EXPORT_SYMBOL(schedule_delayed_work_on); | ||
2980 | |||
2981 | /** | ||
2982 | * schedule_delayed_work - put work task in global workqueue after delay | ||
2983 | * @dwork: job to be done | ||
2984 | * @delay: number of jiffies to wait or 0 for immediate execution | ||
2985 | * | ||
2986 | * After waiting for a given time this puts a job in the kernel-global | ||
2987 | * workqueue. | ||
2988 | */ | ||
2989 | bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay) | ||
2990 | { | ||
2991 | return queue_delayed_work(system_wq, dwork, delay); | ||
2992 | } | ||
2993 | EXPORT_SYMBOL(schedule_delayed_work); | ||
2994 | |||
2995 | /** | ||
2996 | * schedule_on_each_cpu - execute a function synchronously on each online CPU | 2952 | * schedule_on_each_cpu - execute a function synchronously on each online CPU |
2997 | * @func: the function to call | 2953 | * @func: the function to call |
2998 | * | 2954 | * |
@@ -3085,51 +3041,1025 @@ int execute_in_process_context(work_func_t fn, struct execute_work *ew) | |||
3085 | } | 3041 | } |
3086 | EXPORT_SYMBOL_GPL(execute_in_process_context); | 3042 | EXPORT_SYMBOL_GPL(execute_in_process_context); |
3087 | 3043 | ||
3088 | int keventd_up(void) | 3044 | #ifdef CONFIG_SYSFS |
3045 | /* | ||
3046 | * Workqueues with WQ_SYSFS flag set is visible to userland via | ||
3047 | * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the | ||
3048 | * following attributes. | ||
3049 | * | ||
3050 | * per_cpu RO bool : whether the workqueue is per-cpu or unbound | ||
3051 | * max_active RW int : maximum number of in-flight work items | ||
3052 | * | ||
3053 | * Unbound workqueues have the following extra attributes. | ||
3054 | * | ||
3055 | * id RO int : the associated pool ID | ||
3056 | * nice RW int : nice value of the workers | ||
3057 | * cpumask RW mask : bitmask of allowed CPUs for the workers | ||
3058 | */ | ||
3059 | struct wq_device { | ||
3060 | struct workqueue_struct *wq; | ||
3061 | struct device dev; | ||
3062 | }; | ||
3063 | |||
3064 | static struct workqueue_struct *dev_to_wq(struct device *dev) | ||
3065 | { | ||
3066 | struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); | ||
3067 | |||
3068 | return wq_dev->wq; | ||
3069 | } | ||
3070 | |||
3071 | static ssize_t wq_per_cpu_show(struct device *dev, | ||
3072 | struct device_attribute *attr, char *buf) | ||
3073 | { | ||
3074 | struct workqueue_struct *wq = dev_to_wq(dev); | ||
3075 | |||
3076 | return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND)); | ||
3077 | } | ||
3078 | |||
3079 | static ssize_t wq_max_active_show(struct device *dev, | ||
3080 | struct device_attribute *attr, char *buf) | ||
3089 | { | 3081 | { |
3090 | return system_wq != NULL; | 3082 | struct workqueue_struct *wq = dev_to_wq(dev); |
3083 | |||
3084 | return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active); | ||
3091 | } | 3085 | } |
3092 | 3086 | ||
3093 | static int alloc_pwqs(struct workqueue_struct *wq) | 3087 | static ssize_t wq_max_active_store(struct device *dev, |
3088 | struct device_attribute *attr, | ||
3089 | const char *buf, size_t count) | ||
3094 | { | 3090 | { |
3091 | struct workqueue_struct *wq = dev_to_wq(dev); | ||
3092 | int val; | ||
3093 | |||
3094 | if (sscanf(buf, "%d", &val) != 1 || val <= 0) | ||
3095 | return -EINVAL; | ||
3096 | |||
3097 | workqueue_set_max_active(wq, val); | ||
3098 | return count; | ||
3099 | } | ||
3100 | |||
3101 | static struct device_attribute wq_sysfs_attrs[] = { | ||
3102 | __ATTR(per_cpu, 0444, wq_per_cpu_show, NULL), | ||
3103 | __ATTR(max_active, 0644, wq_max_active_show, wq_max_active_store), | ||
3104 | __ATTR_NULL, | ||
3105 | }; | ||
3106 | |||
3107 | static ssize_t wq_pool_ids_show(struct device *dev, | ||
3108 | struct device_attribute *attr, char *buf) | ||
3109 | { | ||
3110 | struct workqueue_struct *wq = dev_to_wq(dev); | ||
3111 | const char *delim = ""; | ||
3112 | int node, written = 0; | ||
3113 | |||
3114 | rcu_read_lock_sched(); | ||
3115 | for_each_node(node) { | ||
3116 | written += scnprintf(buf + written, PAGE_SIZE - written, | ||
3117 | "%s%d:%d", delim, node, | ||
3118 | unbound_pwq_by_node(wq, node)->pool->id); | ||
3119 | delim = " "; | ||
3120 | } | ||
3121 | written += scnprintf(buf + written, PAGE_SIZE - written, "\n"); | ||
3122 | rcu_read_unlock_sched(); | ||
3123 | |||
3124 | return written; | ||
3125 | } | ||
3126 | |||
3127 | static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr, | ||
3128 | char *buf) | ||
3129 | { | ||
3130 | struct workqueue_struct *wq = dev_to_wq(dev); | ||
3131 | int written; | ||
3132 | |||
3133 | mutex_lock(&wq->mutex); | ||
3134 | written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice); | ||
3135 | mutex_unlock(&wq->mutex); | ||
3136 | |||
3137 | return written; | ||
3138 | } | ||
3139 | |||
3140 | /* prepare workqueue_attrs for sysfs store operations */ | ||
3141 | static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq) | ||
3142 | { | ||
3143 | struct workqueue_attrs *attrs; | ||
3144 | |||
3145 | attrs = alloc_workqueue_attrs(GFP_KERNEL); | ||
3146 | if (!attrs) | ||
3147 | return NULL; | ||
3148 | |||
3149 | mutex_lock(&wq->mutex); | ||
3150 | copy_workqueue_attrs(attrs, wq->unbound_attrs); | ||
3151 | mutex_unlock(&wq->mutex); | ||
3152 | return attrs; | ||
3153 | } | ||
3154 | |||
3155 | static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr, | ||
3156 | const char *buf, size_t count) | ||
3157 | { | ||
3158 | struct workqueue_struct *wq = dev_to_wq(dev); | ||
3159 | struct workqueue_attrs *attrs; | ||
3160 | int ret; | ||
3161 | |||
3162 | attrs = wq_sysfs_prep_attrs(wq); | ||
3163 | if (!attrs) | ||
3164 | return -ENOMEM; | ||
3165 | |||
3166 | if (sscanf(buf, "%d", &attrs->nice) == 1 && | ||
3167 | attrs->nice >= -20 && attrs->nice <= 19) | ||
3168 | ret = apply_workqueue_attrs(wq, attrs); | ||
3169 | else | ||
3170 | ret = -EINVAL; | ||
3171 | |||
3172 | free_workqueue_attrs(attrs); | ||
3173 | return ret ?: count; | ||
3174 | } | ||
3175 | |||
3176 | static ssize_t wq_cpumask_show(struct device *dev, | ||
3177 | struct device_attribute *attr, char *buf) | ||
3178 | { | ||
3179 | struct workqueue_struct *wq = dev_to_wq(dev); | ||
3180 | int written; | ||
3181 | |||
3182 | mutex_lock(&wq->mutex); | ||
3183 | written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask); | ||
3184 | mutex_unlock(&wq->mutex); | ||
3185 | |||
3186 | written += scnprintf(buf + written, PAGE_SIZE - written, "\n"); | ||
3187 | return written; | ||
3188 | } | ||
3189 | |||
3190 | static ssize_t wq_cpumask_store(struct device *dev, | ||
3191 | struct device_attribute *attr, | ||
3192 | const char *buf, size_t count) | ||
3193 | { | ||
3194 | struct workqueue_struct *wq = dev_to_wq(dev); | ||
3195 | struct workqueue_attrs *attrs; | ||
3196 | int ret; | ||
3197 | |||
3198 | attrs = wq_sysfs_prep_attrs(wq); | ||
3199 | if (!attrs) | ||
3200 | return -ENOMEM; | ||
3201 | |||
3202 | ret = cpumask_parse(buf, attrs->cpumask); | ||
3203 | if (!ret) | ||
3204 | ret = apply_workqueue_attrs(wq, attrs); | ||
3205 | |||
3206 | free_workqueue_attrs(attrs); | ||
3207 | return ret ?: count; | ||
3208 | } | ||
3209 | |||
3210 | static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr, | ||
3211 | char *buf) | ||
3212 | { | ||
3213 | struct workqueue_struct *wq = dev_to_wq(dev); | ||
3214 | int written; | ||
3215 | |||
3216 | mutex_lock(&wq->mutex); | ||
3217 | written = scnprintf(buf, PAGE_SIZE, "%d\n", | ||
3218 | !wq->unbound_attrs->no_numa); | ||
3219 | mutex_unlock(&wq->mutex); | ||
3220 | |||
3221 | return written; | ||
3222 | } | ||
3223 | |||
3224 | static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr, | ||
3225 | const char *buf, size_t count) | ||
3226 | { | ||
3227 | struct workqueue_struct *wq = dev_to_wq(dev); | ||
3228 | struct workqueue_attrs *attrs; | ||
3229 | int v, ret; | ||
3230 | |||
3231 | attrs = wq_sysfs_prep_attrs(wq); | ||
3232 | if (!attrs) | ||
3233 | return -ENOMEM; | ||
3234 | |||
3235 | ret = -EINVAL; | ||
3236 | if (sscanf(buf, "%d", &v) == 1) { | ||
3237 | attrs->no_numa = !v; | ||
3238 | ret = apply_workqueue_attrs(wq, attrs); | ||
3239 | } | ||
3240 | |||
3241 | free_workqueue_attrs(attrs); | ||
3242 | return ret ?: count; | ||
3243 | } | ||
3244 | |||
3245 | static struct device_attribute wq_sysfs_unbound_attrs[] = { | ||
3246 | __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL), | ||
3247 | __ATTR(nice, 0644, wq_nice_show, wq_nice_store), | ||
3248 | __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store), | ||
3249 | __ATTR(numa, 0644, wq_numa_show, wq_numa_store), | ||
3250 | __ATTR_NULL, | ||
3251 | }; | ||
3252 | |||
3253 | static struct bus_type wq_subsys = { | ||
3254 | .name = "workqueue", | ||
3255 | .dev_attrs = wq_sysfs_attrs, | ||
3256 | }; | ||
3257 | |||
3258 | static int __init wq_sysfs_init(void) | ||
3259 | { | ||
3260 | return subsys_virtual_register(&wq_subsys, NULL); | ||
3261 | } | ||
3262 | core_initcall(wq_sysfs_init); | ||
3263 | |||
3264 | static void wq_device_release(struct device *dev) | ||
3265 | { | ||
3266 | struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); | ||
3267 | |||
3268 | kfree(wq_dev); | ||
3269 | } | ||
3270 | |||
3271 | /** | ||
3272 | * workqueue_sysfs_register - make a workqueue visible in sysfs | ||
3273 | * @wq: the workqueue to register | ||
3274 | * | ||
3275 | * Expose @wq in sysfs under /sys/bus/workqueue/devices. | ||
3276 | * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set | ||
3277 | * which is the preferred method. | ||
3278 | * | ||
3279 | * Workqueue user should use this function directly iff it wants to apply | ||
3280 | * workqueue_attrs before making the workqueue visible in sysfs; otherwise, | ||
3281 | * apply_workqueue_attrs() may race against userland updating the | ||
3282 | * attributes. | ||
3283 | * | ||
3284 | * Returns 0 on success, -errno on failure. | ||
3285 | */ | ||
3286 | int workqueue_sysfs_register(struct workqueue_struct *wq) | ||
3287 | { | ||
3288 | struct wq_device *wq_dev; | ||
3289 | int ret; | ||
3290 | |||
3095 | /* | 3291 | /* |
3096 | * pwqs are forced aligned according to WORK_STRUCT_FLAG_BITS. | 3292 | * Adjusting max_active or creating new pwqs by applyting |
3097 | * Make sure that the alignment isn't lower than that of | 3293 | * attributes breaks ordering guarantee. Disallow exposing ordered |
3098 | * unsigned long long. | 3294 | * workqueues. |
3099 | */ | 3295 | */ |
3100 | const size_t size = sizeof(struct pool_workqueue); | 3296 | if (WARN_ON(wq->flags & __WQ_ORDERED)) |
3101 | const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS, | 3297 | return -EINVAL; |
3102 | __alignof__(unsigned long long)); | ||
3103 | 3298 | ||
3104 | if (!(wq->flags & WQ_UNBOUND)) | 3299 | wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL); |
3105 | wq->pool_wq.pcpu = __alloc_percpu(size, align); | 3300 | if (!wq_dev) |
3106 | else { | 3301 | return -ENOMEM; |
3107 | void *ptr; | 3302 | |
3303 | wq_dev->wq = wq; | ||
3304 | wq_dev->dev.bus = &wq_subsys; | ||
3305 | wq_dev->dev.init_name = wq->name; | ||
3306 | wq_dev->dev.release = wq_device_release; | ||
3307 | |||
3308 | /* | ||
3309 | * unbound_attrs are created separately. Suppress uevent until | ||
3310 | * everything is ready. | ||
3311 | */ | ||
3312 | dev_set_uevent_suppress(&wq_dev->dev, true); | ||
3313 | |||
3314 | ret = device_register(&wq_dev->dev); | ||
3315 | if (ret) { | ||
3316 | kfree(wq_dev); | ||
3317 | wq->wq_dev = NULL; | ||
3318 | return ret; | ||
3319 | } | ||
3320 | |||
3321 | if (wq->flags & WQ_UNBOUND) { | ||
3322 | struct device_attribute *attr; | ||
3323 | |||
3324 | for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) { | ||
3325 | ret = device_create_file(&wq_dev->dev, attr); | ||
3326 | if (ret) { | ||
3327 | device_unregister(&wq_dev->dev); | ||
3328 | wq->wq_dev = NULL; | ||
3329 | return ret; | ||
3330 | } | ||
3331 | } | ||
3332 | } | ||
3333 | |||
3334 | kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD); | ||
3335 | return 0; | ||
3336 | } | ||
3337 | |||
3338 | /** | ||
3339 | * workqueue_sysfs_unregister - undo workqueue_sysfs_register() | ||
3340 | * @wq: the workqueue to unregister | ||
3341 | * | ||
3342 | * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister. | ||
3343 | */ | ||
3344 | static void workqueue_sysfs_unregister(struct workqueue_struct *wq) | ||
3345 | { | ||
3346 | struct wq_device *wq_dev = wq->wq_dev; | ||
3347 | |||
3348 | if (!wq->wq_dev) | ||
3349 | return; | ||
3350 | |||
3351 | wq->wq_dev = NULL; | ||
3352 | device_unregister(&wq_dev->dev); | ||
3353 | } | ||
3354 | #else /* CONFIG_SYSFS */ | ||
3355 | static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { } | ||
3356 | #endif /* CONFIG_SYSFS */ | ||
3357 | |||
3358 | /** | ||
3359 | * free_workqueue_attrs - free a workqueue_attrs | ||
3360 | * @attrs: workqueue_attrs to free | ||
3361 | * | ||
3362 | * Undo alloc_workqueue_attrs(). | ||
3363 | */ | ||
3364 | void free_workqueue_attrs(struct workqueue_attrs *attrs) | ||
3365 | { | ||
3366 | if (attrs) { | ||
3367 | free_cpumask_var(attrs->cpumask); | ||
3368 | kfree(attrs); | ||
3369 | } | ||
3370 | } | ||
3371 | |||
3372 | /** | ||
3373 | * alloc_workqueue_attrs - allocate a workqueue_attrs | ||
3374 | * @gfp_mask: allocation mask to use | ||
3375 | * | ||
3376 | * Allocate a new workqueue_attrs, initialize with default settings and | ||
3377 | * return it. Returns NULL on failure. | ||
3378 | */ | ||
3379 | struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask) | ||
3380 | { | ||
3381 | struct workqueue_attrs *attrs; | ||
3382 | |||
3383 | attrs = kzalloc(sizeof(*attrs), gfp_mask); | ||
3384 | if (!attrs) | ||
3385 | goto fail; | ||
3386 | if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask)) | ||
3387 | goto fail; | ||
3388 | |||
3389 | cpumask_copy(attrs->cpumask, cpu_possible_mask); | ||
3390 | return attrs; | ||
3391 | fail: | ||
3392 | free_workqueue_attrs(attrs); | ||
3393 | return NULL; | ||
3394 | } | ||
3395 | |||
3396 | static void copy_workqueue_attrs(struct workqueue_attrs *to, | ||
3397 | const struct workqueue_attrs *from) | ||
3398 | { | ||
3399 | to->nice = from->nice; | ||
3400 | cpumask_copy(to->cpumask, from->cpumask); | ||
3401 | } | ||
3402 | |||
3403 | /* hash value of the content of @attr */ | ||
3404 | static u32 wqattrs_hash(const struct workqueue_attrs *attrs) | ||
3405 | { | ||
3406 | u32 hash = 0; | ||
3407 | |||
3408 | hash = jhash_1word(attrs->nice, hash); | ||
3409 | hash = jhash(cpumask_bits(attrs->cpumask), | ||
3410 | BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); | ||
3411 | return hash; | ||
3412 | } | ||
3413 | |||
3414 | /* content equality test */ | ||
3415 | static bool wqattrs_equal(const struct workqueue_attrs *a, | ||
3416 | const struct workqueue_attrs *b) | ||
3417 | { | ||
3418 | if (a->nice != b->nice) | ||
3419 | return false; | ||
3420 | if (!cpumask_equal(a->cpumask, b->cpumask)) | ||
3421 | return false; | ||
3422 | return true; | ||
3423 | } | ||
3424 | |||
3425 | /** | ||
3426 | * init_worker_pool - initialize a newly zalloc'd worker_pool | ||
3427 | * @pool: worker_pool to initialize | ||
3428 | * | ||
3429 | * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs. | ||
3430 | * Returns 0 on success, -errno on failure. Even on failure, all fields | ||
3431 | * inside @pool proper are initialized and put_unbound_pool() can be called | ||
3432 | * on @pool safely to release it. | ||
3433 | */ | ||
3434 | static int init_worker_pool(struct worker_pool *pool) | ||
3435 | { | ||
3436 | spin_lock_init(&pool->lock); | ||
3437 | pool->id = -1; | ||
3438 | pool->cpu = -1; | ||
3439 | pool->node = NUMA_NO_NODE; | ||
3440 | pool->flags |= POOL_DISASSOCIATED; | ||
3441 | INIT_LIST_HEAD(&pool->worklist); | ||
3442 | INIT_LIST_HEAD(&pool->idle_list); | ||
3443 | hash_init(pool->busy_hash); | ||
3444 | |||
3445 | init_timer_deferrable(&pool->idle_timer); | ||
3446 | pool->idle_timer.function = idle_worker_timeout; | ||
3447 | pool->idle_timer.data = (unsigned long)pool; | ||
3448 | |||
3449 | setup_timer(&pool->mayday_timer, pool_mayday_timeout, | ||
3450 | (unsigned long)pool); | ||
3451 | |||
3452 | mutex_init(&pool->manager_arb); | ||
3453 | mutex_init(&pool->manager_mutex); | ||
3454 | idr_init(&pool->worker_idr); | ||
3455 | |||
3456 | INIT_HLIST_NODE(&pool->hash_node); | ||
3457 | pool->refcnt = 1; | ||
3458 | |||
3459 | /* shouldn't fail above this point */ | ||
3460 | pool->attrs = alloc_workqueue_attrs(GFP_KERNEL); | ||
3461 | if (!pool->attrs) | ||
3462 | return -ENOMEM; | ||
3463 | return 0; | ||
3464 | } | ||
3465 | |||
3466 | static void rcu_free_pool(struct rcu_head *rcu) | ||
3467 | { | ||
3468 | struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu); | ||
3469 | |||
3470 | idr_destroy(&pool->worker_idr); | ||
3471 | free_workqueue_attrs(pool->attrs); | ||
3472 | kfree(pool); | ||
3473 | } | ||
3474 | |||
3475 | /** | ||
3476 | * put_unbound_pool - put a worker_pool | ||
3477 | * @pool: worker_pool to put | ||
3478 | * | ||
3479 | * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU | ||
3480 | * safe manner. get_unbound_pool() calls this function on its failure path | ||
3481 | * and this function should be able to release pools which went through, | ||
3482 | * successfully or not, init_worker_pool(). | ||
3483 | * | ||
3484 | * Should be called with wq_pool_mutex held. | ||
3485 | */ | ||
3486 | static void put_unbound_pool(struct worker_pool *pool) | ||
3487 | { | ||
3488 | struct worker *worker; | ||
3489 | |||
3490 | lockdep_assert_held(&wq_pool_mutex); | ||
3491 | |||
3492 | if (--pool->refcnt) | ||
3493 | return; | ||
3494 | |||
3495 | /* sanity checks */ | ||
3496 | if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) || | ||
3497 | WARN_ON(!list_empty(&pool->worklist))) | ||
3498 | return; | ||
3499 | |||
3500 | /* release id and unhash */ | ||
3501 | if (pool->id >= 0) | ||
3502 | idr_remove(&worker_pool_idr, pool->id); | ||
3503 | hash_del(&pool->hash_node); | ||
3504 | |||
3505 | /* | ||
3506 | * Become the manager and destroy all workers. Grabbing | ||
3507 | * manager_arb prevents @pool's workers from blocking on | ||
3508 | * manager_mutex. | ||
3509 | */ | ||
3510 | mutex_lock(&pool->manager_arb); | ||
3511 | mutex_lock(&pool->manager_mutex); | ||
3512 | spin_lock_irq(&pool->lock); | ||
3513 | |||
3514 | while ((worker = first_worker(pool))) | ||
3515 | destroy_worker(worker); | ||
3516 | WARN_ON(pool->nr_workers || pool->nr_idle); | ||
3517 | |||
3518 | spin_unlock_irq(&pool->lock); | ||
3519 | mutex_unlock(&pool->manager_mutex); | ||
3520 | mutex_unlock(&pool->manager_arb); | ||
3521 | |||
3522 | /* shut down the timers */ | ||
3523 | del_timer_sync(&pool->idle_timer); | ||
3524 | del_timer_sync(&pool->mayday_timer); | ||
3525 | |||
3526 | /* sched-RCU protected to allow dereferences from get_work_pool() */ | ||
3527 | call_rcu_sched(&pool->rcu, rcu_free_pool); | ||
3528 | } | ||
3529 | |||
3530 | /** | ||
3531 | * get_unbound_pool - get a worker_pool with the specified attributes | ||
3532 | * @attrs: the attributes of the worker_pool to get | ||
3533 | * | ||
3534 | * Obtain a worker_pool which has the same attributes as @attrs, bump the | ||
3535 | * reference count and return it. If there already is a matching | ||
3536 | * worker_pool, it will be used; otherwise, this function attempts to | ||
3537 | * create a new one. On failure, returns NULL. | ||
3538 | * | ||
3539 | * Should be called with wq_pool_mutex held. | ||
3540 | */ | ||
3541 | static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs) | ||
3542 | { | ||
3543 | u32 hash = wqattrs_hash(attrs); | ||
3544 | struct worker_pool *pool; | ||
3545 | int node; | ||
3546 | |||
3547 | lockdep_assert_held(&wq_pool_mutex); | ||
3548 | |||
3549 | /* do we already have a matching pool? */ | ||
3550 | hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) { | ||
3551 | if (wqattrs_equal(pool->attrs, attrs)) { | ||
3552 | pool->refcnt++; | ||
3553 | goto out_unlock; | ||
3554 | } | ||
3555 | } | ||
3556 | |||
3557 | /* nope, create a new one */ | ||
3558 | pool = kzalloc(sizeof(*pool), GFP_KERNEL); | ||
3559 | if (!pool || init_worker_pool(pool) < 0) | ||
3560 | goto fail; | ||
3561 | |||
3562 | if (workqueue_freezing) | ||
3563 | pool->flags |= POOL_FREEZING; | ||
3564 | |||
3565 | lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */ | ||
3566 | copy_workqueue_attrs(pool->attrs, attrs); | ||
3567 | |||
3568 | /* if cpumask is contained inside a NUMA node, we belong to that node */ | ||
3569 | if (wq_numa_enabled) { | ||
3570 | for_each_node(node) { | ||
3571 | if (cpumask_subset(pool->attrs->cpumask, | ||
3572 | wq_numa_possible_cpumask[node])) { | ||
3573 | pool->node = node; | ||
3574 | break; | ||
3575 | } | ||
3576 | } | ||
3577 | } | ||
3578 | |||
3579 | if (worker_pool_assign_id(pool) < 0) | ||
3580 | goto fail; | ||
3581 | |||
3582 | /* create and start the initial worker */ | ||
3583 | if (create_and_start_worker(pool) < 0) | ||
3584 | goto fail; | ||
3585 | |||
3586 | /* install */ | ||
3587 | hash_add(unbound_pool_hash, &pool->hash_node, hash); | ||
3588 | out_unlock: | ||
3589 | return pool; | ||
3590 | fail: | ||
3591 | if (pool) | ||
3592 | put_unbound_pool(pool); | ||
3593 | return NULL; | ||
3594 | } | ||
3595 | |||
3596 | static void rcu_free_pwq(struct rcu_head *rcu) | ||
3597 | { | ||
3598 | kmem_cache_free(pwq_cache, | ||
3599 | container_of(rcu, struct pool_workqueue, rcu)); | ||
3600 | } | ||
3601 | |||
3602 | /* | ||
3603 | * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt | ||
3604 | * and needs to be destroyed. | ||
3605 | */ | ||
3606 | static void pwq_unbound_release_workfn(struct work_struct *work) | ||
3607 | { | ||
3608 | struct pool_workqueue *pwq = container_of(work, struct pool_workqueue, | ||
3609 | unbound_release_work); | ||
3610 | struct workqueue_struct *wq = pwq->wq; | ||
3611 | struct worker_pool *pool = pwq->pool; | ||
3612 | bool is_last; | ||
3613 | |||
3614 | if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND))) | ||
3615 | return; | ||
3616 | |||
3617 | /* | ||
3618 | * Unlink @pwq. Synchronization against wq->mutex isn't strictly | ||
3619 | * necessary on release but do it anyway. It's easier to verify | ||
3620 | * and consistent with the linking path. | ||
3621 | */ | ||
3622 | mutex_lock(&wq->mutex); | ||
3623 | list_del_rcu(&pwq->pwqs_node); | ||
3624 | is_last = list_empty(&wq->pwqs); | ||
3625 | mutex_unlock(&wq->mutex); | ||
3626 | |||
3627 | mutex_lock(&wq_pool_mutex); | ||
3628 | put_unbound_pool(pool); | ||
3629 | mutex_unlock(&wq_pool_mutex); | ||
3630 | |||
3631 | call_rcu_sched(&pwq->rcu, rcu_free_pwq); | ||
3632 | |||
3633 | /* | ||
3634 | * If we're the last pwq going away, @wq is already dead and no one | ||
3635 | * is gonna access it anymore. Free it. | ||
3636 | */ | ||
3637 | if (is_last) { | ||
3638 | free_workqueue_attrs(wq->unbound_attrs); | ||
3639 | kfree(wq); | ||
3640 | } | ||
3641 | } | ||
3642 | |||
3643 | /** | ||
3644 | * pwq_adjust_max_active - update a pwq's max_active to the current setting | ||
3645 | * @pwq: target pool_workqueue | ||
3646 | * | ||
3647 | * If @pwq isn't freezing, set @pwq->max_active to the associated | ||
3648 | * workqueue's saved_max_active and activate delayed work items | ||
3649 | * accordingly. If @pwq is freezing, clear @pwq->max_active to zero. | ||
3650 | */ | ||
3651 | static void pwq_adjust_max_active(struct pool_workqueue *pwq) | ||
3652 | { | ||
3653 | struct workqueue_struct *wq = pwq->wq; | ||
3654 | bool freezable = wq->flags & WQ_FREEZABLE; | ||
3655 | |||
3656 | /* for @wq->saved_max_active */ | ||
3657 | lockdep_assert_held(&wq->mutex); | ||
3658 | |||
3659 | /* fast exit for non-freezable wqs */ | ||
3660 | if (!freezable && pwq->max_active == wq->saved_max_active) | ||
3661 | return; | ||
3662 | |||
3663 | spin_lock_irq(&pwq->pool->lock); | ||
3664 | |||
3665 | if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) { | ||
3666 | pwq->max_active = wq->saved_max_active; | ||
3667 | |||
3668 | while (!list_empty(&pwq->delayed_works) && | ||
3669 | pwq->nr_active < pwq->max_active) | ||
3670 | pwq_activate_first_delayed(pwq); | ||
3108 | 3671 | ||
3109 | /* | 3672 | /* |
3110 | * Allocate enough room to align pwq and put an extra | 3673 | * Need to kick a worker after thawed or an unbound wq's |
3111 | * pointer at the end pointing back to the originally | 3674 | * max_active is bumped. It's a slow path. Do it always. |
3112 | * allocated pointer which will be used for free. | ||
3113 | */ | 3675 | */ |
3114 | ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL); | 3676 | wake_up_worker(pwq->pool); |
3115 | if (ptr) { | 3677 | } else { |
3116 | wq->pool_wq.single = PTR_ALIGN(ptr, align); | 3678 | pwq->max_active = 0; |
3117 | *(void **)(wq->pool_wq.single + 1) = ptr; | 3679 | } |
3680 | |||
3681 | spin_unlock_irq(&pwq->pool->lock); | ||
3682 | } | ||
3683 | |||
3684 | /* initialize newly alloced @pwq which is associated with @wq and @pool */ | ||
3685 | static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq, | ||
3686 | struct worker_pool *pool) | ||
3687 | { | ||
3688 | BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK); | ||
3689 | |||
3690 | memset(pwq, 0, sizeof(*pwq)); | ||
3691 | |||
3692 | pwq->pool = pool; | ||
3693 | pwq->wq = wq; | ||
3694 | pwq->flush_color = -1; | ||
3695 | pwq->refcnt = 1; | ||
3696 | INIT_LIST_HEAD(&pwq->delayed_works); | ||
3697 | INIT_LIST_HEAD(&pwq->pwqs_node); | ||
3698 | INIT_LIST_HEAD(&pwq->mayday_node); | ||
3699 | INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn); | ||
3700 | } | ||
3701 | |||
3702 | /* sync @pwq with the current state of its associated wq and link it */ | ||
3703 | static void link_pwq(struct pool_workqueue *pwq) | ||
3704 | { | ||
3705 | struct workqueue_struct *wq = pwq->wq; | ||
3706 | |||
3707 | lockdep_assert_held(&wq->mutex); | ||
3708 | |||
3709 | /* may be called multiple times, ignore if already linked */ | ||
3710 | if (!list_empty(&pwq->pwqs_node)) | ||
3711 | return; | ||
3712 | |||
3713 | /* | ||
3714 | * Set the matching work_color. This is synchronized with | ||
3715 | * wq->mutex to avoid confusing flush_workqueue(). | ||
3716 | */ | ||
3717 | pwq->work_color = wq->work_color; | ||
3718 | |||
3719 | /* sync max_active to the current setting */ | ||
3720 | pwq_adjust_max_active(pwq); | ||
3721 | |||
3722 | /* link in @pwq */ | ||
3723 | list_add_rcu(&pwq->pwqs_node, &wq->pwqs); | ||
3724 | } | ||
3725 | |||
3726 | /* obtain a pool matching @attr and create a pwq associating the pool and @wq */ | ||
3727 | static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq, | ||
3728 | const struct workqueue_attrs *attrs) | ||
3729 | { | ||
3730 | struct worker_pool *pool; | ||
3731 | struct pool_workqueue *pwq; | ||
3732 | |||
3733 | lockdep_assert_held(&wq_pool_mutex); | ||
3734 | |||
3735 | pool = get_unbound_pool(attrs); | ||
3736 | if (!pool) | ||
3737 | return NULL; | ||
3738 | |||
3739 | pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node); | ||
3740 | if (!pwq) { | ||
3741 | put_unbound_pool(pool); | ||
3742 | return NULL; | ||
3743 | } | ||
3744 | |||
3745 | init_pwq(pwq, wq, pool); | ||
3746 | return pwq; | ||
3747 | } | ||
3748 | |||
3749 | /* undo alloc_unbound_pwq(), used only in the error path */ | ||
3750 | static void free_unbound_pwq(struct pool_workqueue *pwq) | ||
3751 | { | ||
3752 | lockdep_assert_held(&wq_pool_mutex); | ||
3753 | |||
3754 | if (pwq) { | ||
3755 | put_unbound_pool(pwq->pool); | ||
3756 | kmem_cache_free(pwq_cache, pwq); | ||
3757 | } | ||
3758 | } | ||
3759 | |||
3760 | /** | ||
3761 | * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node | ||
3762 | * @attrs: the wq_attrs of interest | ||
3763 | * @node: the target NUMA node | ||
3764 | * @cpu_going_down: if >= 0, the CPU to consider as offline | ||
3765 | * @cpumask: outarg, the resulting cpumask | ||
3766 | * | ||
3767 | * Calculate the cpumask a workqueue with @attrs should use on @node. If | ||
3768 | * @cpu_going_down is >= 0, that cpu is considered offline during | ||
3769 | * calculation. The result is stored in @cpumask. This function returns | ||
3770 | * %true if the resulting @cpumask is different from @attrs->cpumask, | ||
3771 | * %false if equal. | ||
3772 | * | ||
3773 | * If NUMA affinity is not enabled, @attrs->cpumask is always used. If | ||
3774 | * enabled and @node has online CPUs requested by @attrs, the returned | ||
3775 | * cpumask is the intersection of the possible CPUs of @node and | ||
3776 | * @attrs->cpumask. | ||
3777 | * | ||
3778 | * The caller is responsible for ensuring that the cpumask of @node stays | ||
3779 | * stable. | ||
3780 | */ | ||
3781 | static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node, | ||
3782 | int cpu_going_down, cpumask_t *cpumask) | ||
3783 | { | ||
3784 | if (!wq_numa_enabled || attrs->no_numa) | ||
3785 | goto use_dfl; | ||
3786 | |||
3787 | /* does @node have any online CPUs @attrs wants? */ | ||
3788 | cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask); | ||
3789 | if (cpu_going_down >= 0) | ||
3790 | cpumask_clear_cpu(cpu_going_down, cpumask); | ||
3791 | |||
3792 | if (cpumask_empty(cpumask)) | ||
3793 | goto use_dfl; | ||
3794 | |||
3795 | /* yeap, return possible CPUs in @node that @attrs wants */ | ||
3796 | cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]); | ||
3797 | return !cpumask_equal(cpumask, attrs->cpumask); | ||
3798 | |||
3799 | use_dfl: | ||
3800 | cpumask_copy(cpumask, attrs->cpumask); | ||
3801 | return false; | ||
3802 | } | ||
3803 | |||
3804 | /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */ | ||
3805 | static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq, | ||
3806 | int node, | ||
3807 | struct pool_workqueue *pwq) | ||
3808 | { | ||
3809 | struct pool_workqueue *old_pwq; | ||
3810 | |||
3811 | lockdep_assert_held(&wq->mutex); | ||
3812 | |||
3813 | /* link_pwq() can handle duplicate calls */ | ||
3814 | link_pwq(pwq); | ||
3815 | |||
3816 | old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); | ||
3817 | rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq); | ||
3818 | return old_pwq; | ||
3819 | } | ||
3820 | |||
3821 | /** | ||
3822 | * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue | ||
3823 | * @wq: the target workqueue | ||
3824 | * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs() | ||
3825 | * | ||
3826 | * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA | ||
3827 | * machines, this function maps a separate pwq to each NUMA node with | ||
3828 | * possibles CPUs in @attrs->cpumask so that work items are affine to the | ||
3829 | * NUMA node it was issued on. Older pwqs are released as in-flight work | ||
3830 | * items finish. Note that a work item which repeatedly requeues itself | ||
3831 | * back-to-back will stay on its current pwq. | ||
3832 | * | ||
3833 | * Performs GFP_KERNEL allocations. Returns 0 on success and -errno on | ||
3834 | * failure. | ||
3835 | */ | ||
3836 | int apply_workqueue_attrs(struct workqueue_struct *wq, | ||
3837 | const struct workqueue_attrs *attrs) | ||
3838 | { | ||
3839 | struct workqueue_attrs *new_attrs, *tmp_attrs; | ||
3840 | struct pool_workqueue **pwq_tbl, *dfl_pwq; | ||
3841 | int node, ret; | ||
3842 | |||
3843 | /* only unbound workqueues can change attributes */ | ||
3844 | if (WARN_ON(!(wq->flags & WQ_UNBOUND))) | ||
3845 | return -EINVAL; | ||
3846 | |||
3847 | /* creating multiple pwqs breaks ordering guarantee */ | ||
3848 | if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs))) | ||
3849 | return -EINVAL; | ||
3850 | |||
3851 | pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL); | ||
3852 | new_attrs = alloc_workqueue_attrs(GFP_KERNEL); | ||
3853 | tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL); | ||
3854 | if (!pwq_tbl || !new_attrs || !tmp_attrs) | ||
3855 | goto enomem; | ||
3856 | |||
3857 | /* make a copy of @attrs and sanitize it */ | ||
3858 | copy_workqueue_attrs(new_attrs, attrs); | ||
3859 | cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask); | ||
3860 | |||
3861 | /* | ||
3862 | * We may create multiple pwqs with differing cpumasks. Make a | ||
3863 | * copy of @new_attrs which will be modified and used to obtain | ||
3864 | * pools. | ||
3865 | */ | ||
3866 | copy_workqueue_attrs(tmp_attrs, new_attrs); | ||
3867 | |||
3868 | /* | ||
3869 | * CPUs should stay stable across pwq creations and installations. | ||
3870 | * Pin CPUs, determine the target cpumask for each node and create | ||
3871 | * pwqs accordingly. | ||
3872 | */ | ||
3873 | get_online_cpus(); | ||
3874 | |||
3875 | mutex_lock(&wq_pool_mutex); | ||
3876 | |||
3877 | /* | ||
3878 | * If something goes wrong during CPU up/down, we'll fall back to | ||
3879 | * the default pwq covering whole @attrs->cpumask. Always create | ||
3880 | * it even if we don't use it immediately. | ||
3881 | */ | ||
3882 | dfl_pwq = alloc_unbound_pwq(wq, new_attrs); | ||
3883 | if (!dfl_pwq) | ||
3884 | goto enomem_pwq; | ||
3885 | |||
3886 | for_each_node(node) { | ||
3887 | if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) { | ||
3888 | pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs); | ||
3889 | if (!pwq_tbl[node]) | ||
3890 | goto enomem_pwq; | ||
3891 | } else { | ||
3892 | dfl_pwq->refcnt++; | ||
3893 | pwq_tbl[node] = dfl_pwq; | ||
3118 | } | 3894 | } |
3119 | } | 3895 | } |
3120 | 3896 | ||
3121 | /* just in case, make sure it's actually aligned */ | 3897 | mutex_unlock(&wq_pool_mutex); |
3122 | BUG_ON(!IS_ALIGNED(wq->pool_wq.v, align)); | 3898 | |
3123 | return wq->pool_wq.v ? 0 : -ENOMEM; | 3899 | /* all pwqs have been created successfully, let's install'em */ |
3900 | mutex_lock(&wq->mutex); | ||
3901 | |||
3902 | copy_workqueue_attrs(wq->unbound_attrs, new_attrs); | ||
3903 | |||
3904 | /* save the previous pwq and install the new one */ | ||
3905 | for_each_node(node) | ||
3906 | pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]); | ||
3907 | |||
3908 | /* @dfl_pwq might not have been used, ensure it's linked */ | ||
3909 | link_pwq(dfl_pwq); | ||
3910 | swap(wq->dfl_pwq, dfl_pwq); | ||
3911 | |||
3912 | mutex_unlock(&wq->mutex); | ||
3913 | |||
3914 | /* put the old pwqs */ | ||
3915 | for_each_node(node) | ||
3916 | put_pwq_unlocked(pwq_tbl[node]); | ||
3917 | put_pwq_unlocked(dfl_pwq); | ||
3918 | |||
3919 | put_online_cpus(); | ||
3920 | ret = 0; | ||
3921 | /* fall through */ | ||
3922 | out_free: | ||
3923 | free_workqueue_attrs(tmp_attrs); | ||
3924 | free_workqueue_attrs(new_attrs); | ||
3925 | kfree(pwq_tbl); | ||
3926 | return ret; | ||
3927 | |||
3928 | enomem_pwq: | ||
3929 | free_unbound_pwq(dfl_pwq); | ||
3930 | for_each_node(node) | ||
3931 | if (pwq_tbl && pwq_tbl[node] != dfl_pwq) | ||
3932 | free_unbound_pwq(pwq_tbl[node]); | ||
3933 | mutex_unlock(&wq_pool_mutex); | ||
3934 | put_online_cpus(); | ||
3935 | enomem: | ||
3936 | ret = -ENOMEM; | ||
3937 | goto out_free; | ||
3124 | } | 3938 | } |
3125 | 3939 | ||
3126 | static void free_pwqs(struct workqueue_struct *wq) | 3940 | /** |
3941 | * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug | ||
3942 | * @wq: the target workqueue | ||
3943 | * @cpu: the CPU coming up or going down | ||
3944 | * @online: whether @cpu is coming up or going down | ||
3945 | * | ||
3946 | * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and | ||
3947 | * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of | ||
3948 | * @wq accordingly. | ||
3949 | * | ||
3950 | * If NUMA affinity can't be adjusted due to memory allocation failure, it | ||
3951 | * falls back to @wq->dfl_pwq which may not be optimal but is always | ||
3952 | * correct. | ||
3953 | * | ||
3954 | * Note that when the last allowed CPU of a NUMA node goes offline for a | ||
3955 | * workqueue with a cpumask spanning multiple nodes, the workers which were | ||
3956 | * already executing the work items for the workqueue will lose their CPU | ||
3957 | * affinity and may execute on any CPU. This is similar to how per-cpu | ||
3958 | * workqueues behave on CPU_DOWN. If a workqueue user wants strict | ||
3959 | * affinity, it's the user's responsibility to flush the work item from | ||
3960 | * CPU_DOWN_PREPARE. | ||
3961 | */ | ||
3962 | static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu, | ||
3963 | bool online) | ||
3127 | { | 3964 | { |
3128 | if (!(wq->flags & WQ_UNBOUND)) | 3965 | int node = cpu_to_node(cpu); |
3129 | free_percpu(wq->pool_wq.pcpu); | 3966 | int cpu_off = online ? -1 : cpu; |
3130 | else if (wq->pool_wq.single) { | 3967 | struct pool_workqueue *old_pwq = NULL, *pwq; |
3131 | /* the pointer to free is stored right after the pwq */ | 3968 | struct workqueue_attrs *target_attrs; |
3132 | kfree(*(void **)(wq->pool_wq.single + 1)); | 3969 | cpumask_t *cpumask; |
3970 | |||
3971 | lockdep_assert_held(&wq_pool_mutex); | ||
3972 | |||
3973 | if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND)) | ||
3974 | return; | ||
3975 | |||
3976 | /* | ||
3977 | * We don't wanna alloc/free wq_attrs for each wq for each CPU. | ||
3978 | * Let's use a preallocated one. The following buf is protected by | ||
3979 | * CPU hotplug exclusion. | ||
3980 | */ | ||
3981 | target_attrs = wq_update_unbound_numa_attrs_buf; | ||
3982 | cpumask = target_attrs->cpumask; | ||
3983 | |||
3984 | mutex_lock(&wq->mutex); | ||
3985 | if (wq->unbound_attrs->no_numa) | ||
3986 | goto out_unlock; | ||
3987 | |||
3988 | copy_workqueue_attrs(target_attrs, wq->unbound_attrs); | ||
3989 | pwq = unbound_pwq_by_node(wq, node); | ||
3990 | |||
3991 | /* | ||
3992 | * Let's determine what needs to be done. If the target cpumask is | ||
3993 | * different from wq's, we need to compare it to @pwq's and create | ||
3994 | * a new one if they don't match. If the target cpumask equals | ||
3995 | * wq's, the default pwq should be used. If @pwq is already the | ||
3996 | * default one, nothing to do; otherwise, install the default one. | ||
3997 | */ | ||
3998 | if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) { | ||
3999 | if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask)) | ||
4000 | goto out_unlock; | ||
4001 | } else { | ||
4002 | if (pwq == wq->dfl_pwq) | ||
4003 | goto out_unlock; | ||
4004 | else | ||
4005 | goto use_dfl_pwq; | ||
4006 | } | ||
4007 | |||
4008 | mutex_unlock(&wq->mutex); | ||
4009 | |||
4010 | /* create a new pwq */ | ||
4011 | pwq = alloc_unbound_pwq(wq, target_attrs); | ||
4012 | if (!pwq) { | ||
4013 | pr_warning("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n", | ||
4014 | wq->name); | ||
4015 | goto out_unlock; | ||
4016 | } | ||
4017 | |||
4018 | /* | ||
4019 | * Install the new pwq. As this function is called only from CPU | ||
4020 | * hotplug callbacks and applying a new attrs is wrapped with | ||
4021 | * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed | ||
4022 | * inbetween. | ||
4023 | */ | ||
4024 | mutex_lock(&wq->mutex); | ||
4025 | old_pwq = numa_pwq_tbl_install(wq, node, pwq); | ||
4026 | goto out_unlock; | ||
4027 | |||
4028 | use_dfl_pwq: | ||
4029 | spin_lock_irq(&wq->dfl_pwq->pool->lock); | ||
4030 | get_pwq(wq->dfl_pwq); | ||
4031 | spin_unlock_irq(&wq->dfl_pwq->pool->lock); | ||
4032 | old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq); | ||
4033 | out_unlock: | ||
4034 | mutex_unlock(&wq->mutex); | ||
4035 | put_pwq_unlocked(old_pwq); | ||
4036 | } | ||
4037 | |||
4038 | static int alloc_and_link_pwqs(struct workqueue_struct *wq) | ||
4039 | { | ||
4040 | bool highpri = wq->flags & WQ_HIGHPRI; | ||
4041 | int cpu; | ||
4042 | |||
4043 | if (!(wq->flags & WQ_UNBOUND)) { | ||
4044 | wq->cpu_pwqs = alloc_percpu(struct pool_workqueue); | ||
4045 | if (!wq->cpu_pwqs) | ||
4046 | return -ENOMEM; | ||
4047 | |||
4048 | for_each_possible_cpu(cpu) { | ||
4049 | struct pool_workqueue *pwq = | ||
4050 | per_cpu_ptr(wq->cpu_pwqs, cpu); | ||
4051 | struct worker_pool *cpu_pools = | ||
4052 | per_cpu(cpu_worker_pools, cpu); | ||
4053 | |||
4054 | init_pwq(pwq, wq, &cpu_pools[highpri]); | ||
4055 | |||
4056 | mutex_lock(&wq->mutex); | ||
4057 | link_pwq(pwq); | ||
4058 | mutex_unlock(&wq->mutex); | ||
4059 | } | ||
4060 | return 0; | ||
4061 | } else { | ||
4062 | return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]); | ||
3133 | } | 4063 | } |
3134 | } | 4064 | } |
3135 | 4065 | ||
@@ -3151,30 +4081,28 @@ struct workqueue_struct *__alloc_workqueue_key(const char *fmt, | |||
3151 | struct lock_class_key *key, | 4081 | struct lock_class_key *key, |
3152 | const char *lock_name, ...) | 4082 | const char *lock_name, ...) |
3153 | { | 4083 | { |
3154 | va_list args, args1; | 4084 | size_t tbl_size = 0; |
4085 | va_list args; | ||
3155 | struct workqueue_struct *wq; | 4086 | struct workqueue_struct *wq; |
3156 | unsigned int cpu; | 4087 | struct pool_workqueue *pwq; |
3157 | size_t namelen; | ||
3158 | 4088 | ||
3159 | /* determine namelen, allocate wq and format name */ | 4089 | /* allocate wq and format name */ |
3160 | va_start(args, lock_name); | 4090 | if (flags & WQ_UNBOUND) |
3161 | va_copy(args1, args); | 4091 | tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]); |
3162 | namelen = vsnprintf(NULL, 0, fmt, args) + 1; | ||
3163 | 4092 | ||
3164 | wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL); | 4093 | wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL); |
3165 | if (!wq) | 4094 | if (!wq) |
3166 | goto err; | 4095 | return NULL; |
3167 | 4096 | ||
3168 | vsnprintf(wq->name, namelen, fmt, args1); | 4097 | if (flags & WQ_UNBOUND) { |
3169 | va_end(args); | 4098 | wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL); |
3170 | va_end(args1); | 4099 | if (!wq->unbound_attrs) |
4100 | goto err_free_wq; | ||
4101 | } | ||
3171 | 4102 | ||
3172 | /* | 4103 | va_start(args, lock_name); |
3173 | * Workqueues which may be used during memory reclaim should | 4104 | vsnprintf(wq->name, sizeof(wq->name), fmt, args); |
3174 | * have a rescuer to guarantee forward progress. | 4105 | va_end(args); |
3175 | */ | ||
3176 | if (flags & WQ_MEM_RECLAIM) | ||
3177 | flags |= WQ_RESCUER; | ||
3178 | 4106 | ||
3179 | max_active = max_active ?: WQ_DFL_ACTIVE; | 4107 | max_active = max_active ?: WQ_DFL_ACTIVE; |
3180 | max_active = wq_clamp_max_active(max_active, flags, wq->name); | 4108 | max_active = wq_clamp_max_active(max_active, flags, wq->name); |
@@ -3182,71 +4110,70 @@ struct workqueue_struct *__alloc_workqueue_key(const char *fmt, | |||
3182 | /* init wq */ | 4110 | /* init wq */ |
3183 | wq->flags = flags; | 4111 | wq->flags = flags; |
3184 | wq->saved_max_active = max_active; | 4112 | wq->saved_max_active = max_active; |
3185 | mutex_init(&wq->flush_mutex); | 4113 | mutex_init(&wq->mutex); |
3186 | atomic_set(&wq->nr_pwqs_to_flush, 0); | 4114 | atomic_set(&wq->nr_pwqs_to_flush, 0); |
4115 | INIT_LIST_HEAD(&wq->pwqs); | ||
3187 | INIT_LIST_HEAD(&wq->flusher_queue); | 4116 | INIT_LIST_HEAD(&wq->flusher_queue); |
3188 | INIT_LIST_HEAD(&wq->flusher_overflow); | 4117 | INIT_LIST_HEAD(&wq->flusher_overflow); |
4118 | INIT_LIST_HEAD(&wq->maydays); | ||
3189 | 4119 | ||
3190 | lockdep_init_map(&wq->lockdep_map, lock_name, key, 0); | 4120 | lockdep_init_map(&wq->lockdep_map, lock_name, key, 0); |
3191 | INIT_LIST_HEAD(&wq->list); | 4121 | INIT_LIST_HEAD(&wq->list); |
3192 | 4122 | ||
3193 | if (alloc_pwqs(wq) < 0) | 4123 | if (alloc_and_link_pwqs(wq) < 0) |
3194 | goto err; | 4124 | goto err_free_wq; |
3195 | |||
3196 | for_each_pwq_cpu(cpu, wq) { | ||
3197 | struct pool_workqueue *pwq = get_pwq(cpu, wq); | ||
3198 | |||
3199 | BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK); | ||
3200 | pwq->pool = get_std_worker_pool(cpu, flags & WQ_HIGHPRI); | ||
3201 | pwq->wq = wq; | ||
3202 | pwq->flush_color = -1; | ||
3203 | pwq->max_active = max_active; | ||
3204 | INIT_LIST_HEAD(&pwq->delayed_works); | ||
3205 | } | ||
3206 | 4125 | ||
3207 | if (flags & WQ_RESCUER) { | 4126 | /* |
4127 | * Workqueues which may be used during memory reclaim should | ||
4128 | * have a rescuer to guarantee forward progress. | ||
4129 | */ | ||
4130 | if (flags & WQ_MEM_RECLAIM) { | ||
3208 | struct worker *rescuer; | 4131 | struct worker *rescuer; |
3209 | 4132 | ||
3210 | if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL)) | 4133 | rescuer = alloc_worker(); |
3211 | goto err; | ||
3212 | |||
3213 | wq->rescuer = rescuer = alloc_worker(); | ||
3214 | if (!rescuer) | 4134 | if (!rescuer) |
3215 | goto err; | 4135 | goto err_destroy; |
3216 | 4136 | ||
3217 | rescuer->rescue_wq = wq; | 4137 | rescuer->rescue_wq = wq; |
3218 | rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", | 4138 | rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", |
3219 | wq->name); | 4139 | wq->name); |
3220 | if (IS_ERR(rescuer->task)) | 4140 | if (IS_ERR(rescuer->task)) { |
3221 | goto err; | 4141 | kfree(rescuer); |
4142 | goto err_destroy; | ||
4143 | } | ||
3222 | 4144 | ||
3223 | rescuer->task->flags |= PF_THREAD_BOUND; | 4145 | wq->rescuer = rescuer; |
4146 | rescuer->task->flags |= PF_NO_SETAFFINITY; | ||
3224 | wake_up_process(rescuer->task); | 4147 | wake_up_process(rescuer->task); |
3225 | } | 4148 | } |
3226 | 4149 | ||
4150 | if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq)) | ||
4151 | goto err_destroy; | ||
4152 | |||
3227 | /* | 4153 | /* |
3228 | * workqueue_lock protects global freeze state and workqueues | 4154 | * wq_pool_mutex protects global freeze state and workqueues list. |
3229 | * list. Grab it, set max_active accordingly and add the new | 4155 | * Grab it, adjust max_active and add the new @wq to workqueues |
3230 | * workqueue to workqueues list. | 4156 | * list. |
3231 | */ | 4157 | */ |
3232 | spin_lock(&workqueue_lock); | 4158 | mutex_lock(&wq_pool_mutex); |
3233 | 4159 | ||
3234 | if (workqueue_freezing && wq->flags & WQ_FREEZABLE) | 4160 | mutex_lock(&wq->mutex); |
3235 | for_each_pwq_cpu(cpu, wq) | 4161 | for_each_pwq(pwq, wq) |
3236 | get_pwq(cpu, wq)->max_active = 0; | 4162 | pwq_adjust_max_active(pwq); |
4163 | mutex_unlock(&wq->mutex); | ||
3237 | 4164 | ||
3238 | list_add(&wq->list, &workqueues); | 4165 | list_add(&wq->list, &workqueues); |
3239 | 4166 | ||
3240 | spin_unlock(&workqueue_lock); | 4167 | mutex_unlock(&wq_pool_mutex); |
3241 | 4168 | ||
3242 | return wq; | 4169 | return wq; |
3243 | err: | 4170 | |
3244 | if (wq) { | 4171 | err_free_wq: |
3245 | free_pwqs(wq); | 4172 | free_workqueue_attrs(wq->unbound_attrs); |
3246 | free_mayday_mask(wq->mayday_mask); | 4173 | kfree(wq); |
3247 | kfree(wq->rescuer); | 4174 | return NULL; |
3248 | kfree(wq); | 4175 | err_destroy: |
3249 | } | 4176 | destroy_workqueue(wq); |
3250 | return NULL; | 4177 | return NULL; |
3251 | } | 4178 | } |
3252 | EXPORT_SYMBOL_GPL(__alloc_workqueue_key); | 4179 | EXPORT_SYMBOL_GPL(__alloc_workqueue_key); |
@@ -3259,60 +4186,78 @@ EXPORT_SYMBOL_GPL(__alloc_workqueue_key); | |||
3259 | */ | 4186 | */ |
3260 | void destroy_workqueue(struct workqueue_struct *wq) | 4187 | void destroy_workqueue(struct workqueue_struct *wq) |
3261 | { | 4188 | { |
3262 | unsigned int cpu; | 4189 | struct pool_workqueue *pwq; |
4190 | int node; | ||
3263 | 4191 | ||
3264 | /* drain it before proceeding with destruction */ | 4192 | /* drain it before proceeding with destruction */ |
3265 | drain_workqueue(wq); | 4193 | drain_workqueue(wq); |
3266 | 4194 | ||
4195 | /* sanity checks */ | ||
4196 | mutex_lock(&wq->mutex); | ||
4197 | for_each_pwq(pwq, wq) { | ||
4198 | int i; | ||
4199 | |||
4200 | for (i = 0; i < WORK_NR_COLORS; i++) { | ||
4201 | if (WARN_ON(pwq->nr_in_flight[i])) { | ||
4202 | mutex_unlock(&wq->mutex); | ||
4203 | return; | ||
4204 | } | ||
4205 | } | ||
4206 | |||
4207 | if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) || | ||
4208 | WARN_ON(pwq->nr_active) || | ||
4209 | WARN_ON(!list_empty(&pwq->delayed_works))) { | ||
4210 | mutex_unlock(&wq->mutex); | ||
4211 | return; | ||
4212 | } | ||
4213 | } | ||
4214 | mutex_unlock(&wq->mutex); | ||
4215 | |||
3267 | /* | 4216 | /* |
3268 | * wq list is used to freeze wq, remove from list after | 4217 | * wq list is used to freeze wq, remove from list after |
3269 | * flushing is complete in case freeze races us. | 4218 | * flushing is complete in case freeze races us. |
3270 | */ | 4219 | */ |
3271 | spin_lock(&workqueue_lock); | 4220 | mutex_lock(&wq_pool_mutex); |
3272 | list_del(&wq->list); | 4221 | list_del_init(&wq->list); |
3273 | spin_unlock(&workqueue_lock); | 4222 | mutex_unlock(&wq_pool_mutex); |
3274 | 4223 | ||
3275 | /* sanity check */ | 4224 | workqueue_sysfs_unregister(wq); |
3276 | for_each_pwq_cpu(cpu, wq) { | ||
3277 | struct pool_workqueue *pwq = get_pwq(cpu, wq); | ||
3278 | int i; | ||
3279 | 4225 | ||
3280 | for (i = 0; i < WORK_NR_COLORS; i++) | 4226 | if (wq->rescuer) { |
3281 | BUG_ON(pwq->nr_in_flight[i]); | ||
3282 | BUG_ON(pwq->nr_active); | ||
3283 | BUG_ON(!list_empty(&pwq->delayed_works)); | ||
3284 | } | ||
3285 | |||
3286 | if (wq->flags & WQ_RESCUER) { | ||
3287 | kthread_stop(wq->rescuer->task); | 4227 | kthread_stop(wq->rescuer->task); |
3288 | free_mayday_mask(wq->mayday_mask); | ||
3289 | kfree(wq->rescuer); | 4228 | kfree(wq->rescuer); |
4229 | wq->rescuer = NULL; | ||
3290 | } | 4230 | } |
3291 | 4231 | ||
3292 | free_pwqs(wq); | 4232 | if (!(wq->flags & WQ_UNBOUND)) { |
3293 | kfree(wq); | 4233 | /* |
3294 | } | 4234 | * The base ref is never dropped on per-cpu pwqs. Directly |
3295 | EXPORT_SYMBOL_GPL(destroy_workqueue); | 4235 | * free the pwqs and wq. |
3296 | 4236 | */ | |
3297 | /** | 4237 | free_percpu(wq->cpu_pwqs); |
3298 | * pwq_set_max_active - adjust max_active of a pwq | 4238 | kfree(wq); |
3299 | * @pwq: target pool_workqueue | 4239 | } else { |
3300 | * @max_active: new max_active value. | 4240 | /* |
3301 | * | 4241 | * We're the sole accessor of @wq at this point. Directly |
3302 | * Set @pwq->max_active to @max_active and activate delayed works if | 4242 | * access numa_pwq_tbl[] and dfl_pwq to put the base refs. |
3303 | * increased. | 4243 | * @wq will be freed when the last pwq is released. |
3304 | * | 4244 | */ |
3305 | * CONTEXT: | 4245 | for_each_node(node) { |
3306 | * spin_lock_irq(pool->lock). | 4246 | pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); |
3307 | */ | 4247 | RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL); |
3308 | static void pwq_set_max_active(struct pool_workqueue *pwq, int max_active) | 4248 | put_pwq_unlocked(pwq); |
3309 | { | 4249 | } |
3310 | pwq->max_active = max_active; | ||
3311 | 4250 | ||
3312 | while (!list_empty(&pwq->delayed_works) && | 4251 | /* |
3313 | pwq->nr_active < pwq->max_active) | 4252 | * Put dfl_pwq. @wq may be freed any time after dfl_pwq is |
3314 | pwq_activate_first_delayed(pwq); | 4253 | * put. Don't access it afterwards. |
4254 | */ | ||
4255 | pwq = wq->dfl_pwq; | ||
4256 | wq->dfl_pwq = NULL; | ||
4257 | put_pwq_unlocked(pwq); | ||
4258 | } | ||
3315 | } | 4259 | } |
4260 | EXPORT_SYMBOL_GPL(destroy_workqueue); | ||
3316 | 4261 | ||
3317 | /** | 4262 | /** |
3318 | * workqueue_set_max_active - adjust max_active of a workqueue | 4263 | * workqueue_set_max_active - adjust max_active of a workqueue |
@@ -3326,30 +4271,37 @@ static void pwq_set_max_active(struct pool_workqueue *pwq, int max_active) | |||
3326 | */ | 4271 | */ |
3327 | void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) | 4272 | void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) |
3328 | { | 4273 | { |
3329 | unsigned int cpu; | 4274 | struct pool_workqueue *pwq; |
4275 | |||
4276 | /* disallow meddling with max_active for ordered workqueues */ | ||
4277 | if (WARN_ON(wq->flags & __WQ_ORDERED)) | ||
4278 | return; | ||
3330 | 4279 | ||
3331 | max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); | 4280 | max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); |
3332 | 4281 | ||
3333 | spin_lock(&workqueue_lock); | 4282 | mutex_lock(&wq->mutex); |
3334 | 4283 | ||
3335 | wq->saved_max_active = max_active; | 4284 | wq->saved_max_active = max_active; |
3336 | 4285 | ||
3337 | for_each_pwq_cpu(cpu, wq) { | 4286 | for_each_pwq(pwq, wq) |
3338 | struct pool_workqueue *pwq = get_pwq(cpu, wq); | 4287 | pwq_adjust_max_active(pwq); |
3339 | struct worker_pool *pool = pwq->pool; | ||
3340 | |||
3341 | spin_lock_irq(&pool->lock); | ||
3342 | 4288 | ||
3343 | if (!(wq->flags & WQ_FREEZABLE) || | 4289 | mutex_unlock(&wq->mutex); |
3344 | !(pool->flags & POOL_FREEZING)) | 4290 | } |
3345 | pwq_set_max_active(pwq, max_active); | 4291 | EXPORT_SYMBOL_GPL(workqueue_set_max_active); |
3346 | 4292 | ||
3347 | spin_unlock_irq(&pool->lock); | 4293 | /** |
3348 | } | 4294 | * current_is_workqueue_rescuer - is %current workqueue rescuer? |
4295 | * | ||
4296 | * Determine whether %current is a workqueue rescuer. Can be used from | ||
4297 | * work functions to determine whether it's being run off the rescuer task. | ||
4298 | */ | ||
4299 | bool current_is_workqueue_rescuer(void) | ||
4300 | { | ||
4301 | struct worker *worker = current_wq_worker(); | ||
3349 | 4302 | ||
3350 | spin_unlock(&workqueue_lock); | 4303 | return worker && worker->rescue_wq; |
3351 | } | 4304 | } |
3352 | EXPORT_SYMBOL_GPL(workqueue_set_max_active); | ||
3353 | 4305 | ||
3354 | /** | 4306 | /** |
3355 | * workqueue_congested - test whether a workqueue is congested | 4307 | * workqueue_congested - test whether a workqueue is congested |
@@ -3360,14 +4312,34 @@ EXPORT_SYMBOL_GPL(workqueue_set_max_active); | |||
3360 | * no synchronization around this function and the test result is | 4312 | * no synchronization around this function and the test result is |
3361 | * unreliable and only useful as advisory hints or for debugging. | 4313 | * unreliable and only useful as advisory hints or for debugging. |
3362 | * | 4314 | * |
4315 | * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU. | ||
4316 | * Note that both per-cpu and unbound workqueues may be associated with | ||
4317 | * multiple pool_workqueues which have separate congested states. A | ||
4318 | * workqueue being congested on one CPU doesn't mean the workqueue is also | ||
4319 | * contested on other CPUs / NUMA nodes. | ||
4320 | * | ||
3363 | * RETURNS: | 4321 | * RETURNS: |
3364 | * %true if congested, %false otherwise. | 4322 | * %true if congested, %false otherwise. |
3365 | */ | 4323 | */ |
3366 | bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq) | 4324 | bool workqueue_congested(int cpu, struct workqueue_struct *wq) |
3367 | { | 4325 | { |
3368 | struct pool_workqueue *pwq = get_pwq(cpu, wq); | 4326 | struct pool_workqueue *pwq; |
4327 | bool ret; | ||
4328 | |||
4329 | rcu_read_lock_sched(); | ||
4330 | |||
4331 | if (cpu == WORK_CPU_UNBOUND) | ||
4332 | cpu = smp_processor_id(); | ||
4333 | |||
4334 | if (!(wq->flags & WQ_UNBOUND)) | ||
4335 | pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); | ||
4336 | else | ||
4337 | pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); | ||
3369 | 4338 | ||
3370 | return !list_empty(&pwq->delayed_works); | 4339 | ret = !list_empty(&pwq->delayed_works); |
4340 | rcu_read_unlock_sched(); | ||
4341 | |||
4342 | return ret; | ||
3371 | } | 4343 | } |
3372 | EXPORT_SYMBOL_GPL(workqueue_congested); | 4344 | EXPORT_SYMBOL_GPL(workqueue_congested); |
3373 | 4345 | ||
@@ -3384,24 +4356,104 @@ EXPORT_SYMBOL_GPL(workqueue_congested); | |||
3384 | */ | 4356 | */ |
3385 | unsigned int work_busy(struct work_struct *work) | 4357 | unsigned int work_busy(struct work_struct *work) |
3386 | { | 4358 | { |
3387 | struct worker_pool *pool = get_work_pool(work); | 4359 | struct worker_pool *pool; |
3388 | unsigned long flags; | 4360 | unsigned long flags; |
3389 | unsigned int ret = 0; | 4361 | unsigned int ret = 0; |
3390 | 4362 | ||
3391 | if (work_pending(work)) | 4363 | if (work_pending(work)) |
3392 | ret |= WORK_BUSY_PENDING; | 4364 | ret |= WORK_BUSY_PENDING; |
3393 | 4365 | ||
4366 | local_irq_save(flags); | ||
4367 | pool = get_work_pool(work); | ||
3394 | if (pool) { | 4368 | if (pool) { |
3395 | spin_lock_irqsave(&pool->lock, flags); | 4369 | spin_lock(&pool->lock); |
3396 | if (find_worker_executing_work(pool, work)) | 4370 | if (find_worker_executing_work(pool, work)) |
3397 | ret |= WORK_BUSY_RUNNING; | 4371 | ret |= WORK_BUSY_RUNNING; |
3398 | spin_unlock_irqrestore(&pool->lock, flags); | 4372 | spin_unlock(&pool->lock); |
3399 | } | 4373 | } |
4374 | local_irq_restore(flags); | ||
3400 | 4375 | ||
3401 | return ret; | 4376 | return ret; |
3402 | } | 4377 | } |
3403 | EXPORT_SYMBOL_GPL(work_busy); | 4378 | EXPORT_SYMBOL_GPL(work_busy); |
3404 | 4379 | ||
4380 | /** | ||
4381 | * set_worker_desc - set description for the current work item | ||
4382 | * @fmt: printf-style format string | ||
4383 | * @...: arguments for the format string | ||
4384 | * | ||
4385 | * This function can be called by a running work function to describe what | ||
4386 | * the work item is about. If the worker task gets dumped, this | ||
4387 | * information will be printed out together to help debugging. The | ||
4388 | * description can be at most WORKER_DESC_LEN including the trailing '\0'. | ||
4389 | */ | ||
4390 | void set_worker_desc(const char *fmt, ...) | ||
4391 | { | ||
4392 | struct worker *worker = current_wq_worker(); | ||
4393 | va_list args; | ||
4394 | |||
4395 | if (worker) { | ||
4396 | va_start(args, fmt); | ||
4397 | vsnprintf(worker->desc, sizeof(worker->desc), fmt, args); | ||
4398 | va_end(args); | ||
4399 | worker->desc_valid = true; | ||
4400 | } | ||
4401 | } | ||
4402 | |||
4403 | /** | ||
4404 | * print_worker_info - print out worker information and description | ||
4405 | * @log_lvl: the log level to use when printing | ||
4406 | * @task: target task | ||
4407 | * | ||
4408 | * If @task is a worker and currently executing a work item, print out the | ||
4409 | * name of the workqueue being serviced and worker description set with | ||
4410 | * set_worker_desc() by the currently executing work item. | ||
4411 | * | ||
4412 | * This function can be safely called on any task as long as the | ||
4413 | * task_struct itself is accessible. While safe, this function isn't | ||
4414 | * synchronized and may print out mixups or garbages of limited length. | ||
4415 | */ | ||
4416 | void print_worker_info(const char *log_lvl, struct task_struct *task) | ||
4417 | { | ||
4418 | work_func_t *fn = NULL; | ||
4419 | char name[WQ_NAME_LEN] = { }; | ||
4420 | char desc[WORKER_DESC_LEN] = { }; | ||
4421 | struct pool_workqueue *pwq = NULL; | ||
4422 | struct workqueue_struct *wq = NULL; | ||
4423 | bool desc_valid = false; | ||
4424 | struct worker *worker; | ||
4425 | |||
4426 | if (!(task->flags & PF_WQ_WORKER)) | ||
4427 | return; | ||
4428 | |||
4429 | /* | ||
4430 | * This function is called without any synchronization and @task | ||
4431 | * could be in any state. Be careful with dereferences. | ||
4432 | */ | ||
4433 | worker = probe_kthread_data(task); | ||
4434 | |||
4435 | /* | ||
4436 | * Carefully copy the associated workqueue's workfn and name. Keep | ||
4437 | * the original last '\0' in case the original contains garbage. | ||
4438 | */ | ||
4439 | probe_kernel_read(&fn, &worker->current_func, sizeof(fn)); | ||
4440 | probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq)); | ||
4441 | probe_kernel_read(&wq, &pwq->wq, sizeof(wq)); | ||
4442 | probe_kernel_read(name, wq->name, sizeof(name) - 1); | ||
4443 | |||
4444 | /* copy worker description */ | ||
4445 | probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid)); | ||
4446 | if (desc_valid) | ||
4447 | probe_kernel_read(desc, worker->desc, sizeof(desc) - 1); | ||
4448 | |||
4449 | if (fn || name[0] || desc[0]) { | ||
4450 | printk("%sWorkqueue: %s %pf", log_lvl, name, fn); | ||
4451 | if (desc[0]) | ||
4452 | pr_cont(" (%s)", desc); | ||
4453 | pr_cont("\n"); | ||
4454 | } | ||
4455 | } | ||
4456 | |||
3405 | /* | 4457 | /* |
3406 | * CPU hotplug. | 4458 | * CPU hotplug. |
3407 | * | 4459 | * |
@@ -3422,53 +4474,153 @@ static void wq_unbind_fn(struct work_struct *work) | |||
3422 | int cpu = smp_processor_id(); | 4474 | int cpu = smp_processor_id(); |
3423 | struct worker_pool *pool; | 4475 | struct worker_pool *pool; |
3424 | struct worker *worker; | 4476 | struct worker *worker; |
3425 | int i; | 4477 | int wi; |
3426 | 4478 | ||
3427 | for_each_std_worker_pool(pool, cpu) { | 4479 | for_each_cpu_worker_pool(pool, cpu) { |
3428 | BUG_ON(cpu != smp_processor_id()); | 4480 | WARN_ON_ONCE(cpu != smp_processor_id()); |
3429 | 4481 | ||
3430 | mutex_lock(&pool->assoc_mutex); | 4482 | mutex_lock(&pool->manager_mutex); |
3431 | spin_lock_irq(&pool->lock); | 4483 | spin_lock_irq(&pool->lock); |
3432 | 4484 | ||
3433 | /* | 4485 | /* |
3434 | * We've claimed all manager positions. Make all workers | 4486 | * We've blocked all manager operations. Make all workers |
3435 | * unbound and set DISASSOCIATED. Before this, all workers | 4487 | * unbound and set DISASSOCIATED. Before this, all workers |
3436 | * except for the ones which are still executing works from | 4488 | * except for the ones which are still executing works from |
3437 | * before the last CPU down must be on the cpu. After | 4489 | * before the last CPU down must be on the cpu. After |
3438 | * this, they may become diasporas. | 4490 | * this, they may become diasporas. |
3439 | */ | 4491 | */ |
3440 | list_for_each_entry(worker, &pool->idle_list, entry) | 4492 | for_each_pool_worker(worker, wi, pool) |
3441 | worker->flags |= WORKER_UNBOUND; | ||
3442 | |||
3443 | for_each_busy_worker(worker, i, pool) | ||
3444 | worker->flags |= WORKER_UNBOUND; | 4493 | worker->flags |= WORKER_UNBOUND; |
3445 | 4494 | ||
3446 | pool->flags |= POOL_DISASSOCIATED; | 4495 | pool->flags |= POOL_DISASSOCIATED; |
3447 | 4496 | ||
3448 | spin_unlock_irq(&pool->lock); | 4497 | spin_unlock_irq(&pool->lock); |
3449 | mutex_unlock(&pool->assoc_mutex); | 4498 | mutex_unlock(&pool->manager_mutex); |
4499 | |||
4500 | /* | ||
4501 | * Call schedule() so that we cross rq->lock and thus can | ||
4502 | * guarantee sched callbacks see the %WORKER_UNBOUND flag. | ||
4503 | * This is necessary as scheduler callbacks may be invoked | ||
4504 | * from other cpus. | ||
4505 | */ | ||
4506 | schedule(); | ||
4507 | |||
4508 | /* | ||
4509 | * Sched callbacks are disabled now. Zap nr_running. | ||
4510 | * After this, nr_running stays zero and need_more_worker() | ||
4511 | * and keep_working() are always true as long as the | ||
4512 | * worklist is not empty. This pool now behaves as an | ||
4513 | * unbound (in terms of concurrency management) pool which | ||
4514 | * are served by workers tied to the pool. | ||
4515 | */ | ||
4516 | atomic_set(&pool->nr_running, 0); | ||
4517 | |||
4518 | /* | ||
4519 | * With concurrency management just turned off, a busy | ||
4520 | * worker blocking could lead to lengthy stalls. Kick off | ||
4521 | * unbound chain execution of currently pending work items. | ||
4522 | */ | ||
4523 | spin_lock_irq(&pool->lock); | ||
4524 | wake_up_worker(pool); | ||
4525 | spin_unlock_irq(&pool->lock); | ||
3450 | } | 4526 | } |
4527 | } | ||
3451 | 4528 | ||
3452 | /* | 4529 | /** |
3453 | * Call schedule() so that we cross rq->lock and thus can guarantee | 4530 | * rebind_workers - rebind all workers of a pool to the associated CPU |
3454 | * sched callbacks see the %WORKER_UNBOUND flag. This is necessary | 4531 | * @pool: pool of interest |
3455 | * as scheduler callbacks may be invoked from other cpus. | 4532 | * |
3456 | */ | 4533 | * @pool->cpu is coming online. Rebind all workers to the CPU. |
3457 | schedule(); | 4534 | */ |
4535 | static void rebind_workers(struct worker_pool *pool) | ||
4536 | { | ||
4537 | struct worker *worker; | ||
4538 | int wi; | ||
4539 | |||
4540 | lockdep_assert_held(&pool->manager_mutex); | ||
3458 | 4541 | ||
3459 | /* | 4542 | /* |
3460 | * Sched callbacks are disabled now. Zap nr_running. After this, | 4543 | * Restore CPU affinity of all workers. As all idle workers should |
3461 | * nr_running stays zero and need_more_worker() and keep_working() | 4544 | * be on the run-queue of the associated CPU before any local |
3462 | * are always true as long as the worklist is not empty. Pools on | 4545 | * wake-ups for concurrency management happen, restore CPU affinty |
3463 | * @cpu now behave as unbound (in terms of concurrency management) | 4546 | * of all workers first and then clear UNBOUND. As we're called |
3464 | * pools which are served by workers tied to the CPU. | 4547 | * from CPU_ONLINE, the following shouldn't fail. |
3465 | * | ||
3466 | * On return from this function, the current worker would trigger | ||
3467 | * unbound chain execution of pending work items if other workers | ||
3468 | * didn't already. | ||
3469 | */ | 4548 | */ |
3470 | for_each_std_worker_pool(pool, cpu) | 4549 | for_each_pool_worker(worker, wi, pool) |
3471 | atomic_set(&pool->nr_running, 0); | 4550 | WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, |
4551 | pool->attrs->cpumask) < 0); | ||
4552 | |||
4553 | spin_lock_irq(&pool->lock); | ||
4554 | |||
4555 | for_each_pool_worker(worker, wi, pool) { | ||
4556 | unsigned int worker_flags = worker->flags; | ||
4557 | |||
4558 | /* | ||
4559 | * A bound idle worker should actually be on the runqueue | ||
4560 | * of the associated CPU for local wake-ups targeting it to | ||
4561 | * work. Kick all idle workers so that they migrate to the | ||
4562 | * associated CPU. Doing this in the same loop as | ||
4563 | * replacing UNBOUND with REBOUND is safe as no worker will | ||
4564 | * be bound before @pool->lock is released. | ||
4565 | */ | ||
4566 | if (worker_flags & WORKER_IDLE) | ||
4567 | wake_up_process(worker->task); | ||
4568 | |||
4569 | /* | ||
4570 | * We want to clear UNBOUND but can't directly call | ||
4571 | * worker_clr_flags() or adjust nr_running. Atomically | ||
4572 | * replace UNBOUND with another NOT_RUNNING flag REBOUND. | ||
4573 | * @worker will clear REBOUND using worker_clr_flags() when | ||
4574 | * it initiates the next execution cycle thus restoring | ||
4575 | * concurrency management. Note that when or whether | ||
4576 | * @worker clears REBOUND doesn't affect correctness. | ||
4577 | * | ||
4578 | * ACCESS_ONCE() is necessary because @worker->flags may be | ||
4579 | * tested without holding any lock in | ||
4580 | * wq_worker_waking_up(). Without it, NOT_RUNNING test may | ||
4581 | * fail incorrectly leading to premature concurrency | ||
4582 | * management operations. | ||
4583 | */ | ||
4584 | WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND)); | ||
4585 | worker_flags |= WORKER_REBOUND; | ||
4586 | worker_flags &= ~WORKER_UNBOUND; | ||
4587 | ACCESS_ONCE(worker->flags) = worker_flags; | ||
4588 | } | ||
4589 | |||
4590 | spin_unlock_irq(&pool->lock); | ||
4591 | } | ||
4592 | |||
4593 | /** | ||
4594 | * restore_unbound_workers_cpumask - restore cpumask of unbound workers | ||
4595 | * @pool: unbound pool of interest | ||
4596 | * @cpu: the CPU which is coming up | ||
4597 | * | ||
4598 | * An unbound pool may end up with a cpumask which doesn't have any online | ||
4599 | * CPUs. When a worker of such pool get scheduled, the scheduler resets | ||
4600 | * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any | ||
4601 | * online CPU before, cpus_allowed of all its workers should be restored. | ||
4602 | */ | ||
4603 | static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu) | ||
4604 | { | ||
4605 | static cpumask_t cpumask; | ||
4606 | struct worker *worker; | ||
4607 | int wi; | ||
4608 | |||
4609 | lockdep_assert_held(&pool->manager_mutex); | ||
4610 | |||
4611 | /* is @cpu allowed for @pool? */ | ||
4612 | if (!cpumask_test_cpu(cpu, pool->attrs->cpumask)) | ||
4613 | return; | ||
4614 | |||
4615 | /* is @cpu the only online CPU? */ | ||
4616 | cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask); | ||
4617 | if (cpumask_weight(&cpumask) != 1) | ||
4618 | return; | ||
4619 | |||
4620 | /* as we're called from CPU_ONLINE, the following shouldn't fail */ | ||
4621 | for_each_pool_worker(worker, wi, pool) | ||
4622 | WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, | ||
4623 | pool->attrs->cpumask) < 0); | ||
3472 | } | 4624 | } |
3473 | 4625 | ||
3474 | /* | 4626 | /* |
@@ -3479,39 +4631,46 @@ static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb, | |||
3479 | unsigned long action, | 4631 | unsigned long action, |
3480 | void *hcpu) | 4632 | void *hcpu) |
3481 | { | 4633 | { |
3482 | unsigned int cpu = (unsigned long)hcpu; | 4634 | int cpu = (unsigned long)hcpu; |
3483 | struct worker_pool *pool; | 4635 | struct worker_pool *pool; |
4636 | struct workqueue_struct *wq; | ||
4637 | int pi; | ||
3484 | 4638 | ||
3485 | switch (action & ~CPU_TASKS_FROZEN) { | 4639 | switch (action & ~CPU_TASKS_FROZEN) { |
3486 | case CPU_UP_PREPARE: | 4640 | case CPU_UP_PREPARE: |
3487 | for_each_std_worker_pool(pool, cpu) { | 4641 | for_each_cpu_worker_pool(pool, cpu) { |
3488 | struct worker *worker; | ||
3489 | |||
3490 | if (pool->nr_workers) | 4642 | if (pool->nr_workers) |
3491 | continue; | 4643 | continue; |
3492 | 4644 | if (create_and_start_worker(pool) < 0) | |
3493 | worker = create_worker(pool); | ||
3494 | if (!worker) | ||
3495 | return NOTIFY_BAD; | 4645 | return NOTIFY_BAD; |
3496 | |||
3497 | spin_lock_irq(&pool->lock); | ||
3498 | start_worker(worker); | ||
3499 | spin_unlock_irq(&pool->lock); | ||
3500 | } | 4646 | } |
3501 | break; | 4647 | break; |
3502 | 4648 | ||
3503 | case CPU_DOWN_FAILED: | 4649 | case CPU_DOWN_FAILED: |
3504 | case CPU_ONLINE: | 4650 | case CPU_ONLINE: |
3505 | for_each_std_worker_pool(pool, cpu) { | 4651 | mutex_lock(&wq_pool_mutex); |
3506 | mutex_lock(&pool->assoc_mutex); | ||
3507 | spin_lock_irq(&pool->lock); | ||
3508 | 4652 | ||
3509 | pool->flags &= ~POOL_DISASSOCIATED; | 4653 | for_each_pool(pool, pi) { |
3510 | rebind_workers(pool); | 4654 | mutex_lock(&pool->manager_mutex); |
3511 | 4655 | ||
3512 | spin_unlock_irq(&pool->lock); | 4656 | if (pool->cpu == cpu) { |
3513 | mutex_unlock(&pool->assoc_mutex); | 4657 | spin_lock_irq(&pool->lock); |
4658 | pool->flags &= ~POOL_DISASSOCIATED; | ||
4659 | spin_unlock_irq(&pool->lock); | ||
4660 | |||
4661 | rebind_workers(pool); | ||
4662 | } else if (pool->cpu < 0) { | ||
4663 | restore_unbound_workers_cpumask(pool, cpu); | ||
4664 | } | ||
4665 | |||
4666 | mutex_unlock(&pool->manager_mutex); | ||
3514 | } | 4667 | } |
4668 | |||
4669 | /* update NUMA affinity of unbound workqueues */ | ||
4670 | list_for_each_entry(wq, &workqueues, list) | ||
4671 | wq_update_unbound_numa(wq, cpu, true); | ||
4672 | |||
4673 | mutex_unlock(&wq_pool_mutex); | ||
3515 | break; | 4674 | break; |
3516 | } | 4675 | } |
3517 | return NOTIFY_OK; | 4676 | return NOTIFY_OK; |
@@ -3525,14 +4684,23 @@ static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb, | |||
3525 | unsigned long action, | 4684 | unsigned long action, |
3526 | void *hcpu) | 4685 | void *hcpu) |
3527 | { | 4686 | { |
3528 | unsigned int cpu = (unsigned long)hcpu; | 4687 | int cpu = (unsigned long)hcpu; |
3529 | struct work_struct unbind_work; | 4688 | struct work_struct unbind_work; |
4689 | struct workqueue_struct *wq; | ||
3530 | 4690 | ||
3531 | switch (action & ~CPU_TASKS_FROZEN) { | 4691 | switch (action & ~CPU_TASKS_FROZEN) { |
3532 | case CPU_DOWN_PREPARE: | 4692 | case CPU_DOWN_PREPARE: |
3533 | /* unbinding should happen on the local CPU */ | 4693 | /* unbinding per-cpu workers should happen on the local CPU */ |
3534 | INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn); | 4694 | INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn); |
3535 | queue_work_on(cpu, system_highpri_wq, &unbind_work); | 4695 | queue_work_on(cpu, system_highpri_wq, &unbind_work); |
4696 | |||
4697 | /* update NUMA affinity of unbound workqueues */ | ||
4698 | mutex_lock(&wq_pool_mutex); | ||
4699 | list_for_each_entry(wq, &workqueues, list) | ||
4700 | wq_update_unbound_numa(wq, cpu, false); | ||
4701 | mutex_unlock(&wq_pool_mutex); | ||
4702 | |||
4703 | /* wait for per-cpu unbinding to finish */ | ||
3536 | flush_work(&unbind_work); | 4704 | flush_work(&unbind_work); |
3537 | break; | 4705 | break; |
3538 | } | 4706 | } |
@@ -3565,7 +4733,7 @@ static void work_for_cpu_fn(struct work_struct *work) | |||
3565 | * It is up to the caller to ensure that the cpu doesn't go offline. | 4733 | * It is up to the caller to ensure that the cpu doesn't go offline. |
3566 | * The caller must not hold any locks which would prevent @fn from completing. | 4734 | * The caller must not hold any locks which would prevent @fn from completing. |
3567 | */ | 4735 | */ |
3568 | long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg) | 4736 | long work_on_cpu(int cpu, long (*fn)(void *), void *arg) |
3569 | { | 4737 | { |
3570 | struct work_for_cpu wfc = { .fn = fn, .arg = arg }; | 4738 | struct work_for_cpu wfc = { .fn = fn, .arg = arg }; |
3571 | 4739 | ||
@@ -3583,44 +4751,40 @@ EXPORT_SYMBOL_GPL(work_on_cpu); | |||
3583 | * freeze_workqueues_begin - begin freezing workqueues | 4751 | * freeze_workqueues_begin - begin freezing workqueues |
3584 | * | 4752 | * |
3585 | * Start freezing workqueues. After this function returns, all freezable | 4753 | * Start freezing workqueues. After this function returns, all freezable |
3586 | * workqueues will queue new works to their frozen_works list instead of | 4754 | * workqueues will queue new works to their delayed_works list instead of |
3587 | * pool->worklist. | 4755 | * pool->worklist. |
3588 | * | 4756 | * |
3589 | * CONTEXT: | 4757 | * CONTEXT: |
3590 | * Grabs and releases workqueue_lock and pool->lock's. | 4758 | * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. |
3591 | */ | 4759 | */ |
3592 | void freeze_workqueues_begin(void) | 4760 | void freeze_workqueues_begin(void) |
3593 | { | 4761 | { |
3594 | unsigned int cpu; | 4762 | struct worker_pool *pool; |
4763 | struct workqueue_struct *wq; | ||
4764 | struct pool_workqueue *pwq; | ||
4765 | int pi; | ||
3595 | 4766 | ||
3596 | spin_lock(&workqueue_lock); | 4767 | mutex_lock(&wq_pool_mutex); |
3597 | 4768 | ||
3598 | BUG_ON(workqueue_freezing); | 4769 | WARN_ON_ONCE(workqueue_freezing); |
3599 | workqueue_freezing = true; | 4770 | workqueue_freezing = true; |
3600 | 4771 | ||
3601 | for_each_wq_cpu(cpu) { | 4772 | /* set FREEZING */ |
3602 | struct worker_pool *pool; | 4773 | for_each_pool(pool, pi) { |
3603 | struct workqueue_struct *wq; | 4774 | spin_lock_irq(&pool->lock); |
3604 | 4775 | WARN_ON_ONCE(pool->flags & POOL_FREEZING); | |
3605 | for_each_std_worker_pool(pool, cpu) { | 4776 | pool->flags |= POOL_FREEZING; |
3606 | spin_lock_irq(&pool->lock); | 4777 | spin_unlock_irq(&pool->lock); |
3607 | 4778 | } | |
3608 | WARN_ON_ONCE(pool->flags & POOL_FREEZING); | ||
3609 | pool->flags |= POOL_FREEZING; | ||
3610 | |||
3611 | list_for_each_entry(wq, &workqueues, list) { | ||
3612 | struct pool_workqueue *pwq = get_pwq(cpu, wq); | ||
3613 | |||
3614 | if (pwq && pwq->pool == pool && | ||
3615 | (wq->flags & WQ_FREEZABLE)) | ||
3616 | pwq->max_active = 0; | ||
3617 | } | ||
3618 | 4779 | ||
3619 | spin_unlock_irq(&pool->lock); | 4780 | list_for_each_entry(wq, &workqueues, list) { |
3620 | } | 4781 | mutex_lock(&wq->mutex); |
4782 | for_each_pwq(pwq, wq) | ||
4783 | pwq_adjust_max_active(pwq); | ||
4784 | mutex_unlock(&wq->mutex); | ||
3621 | } | 4785 | } |
3622 | 4786 | ||
3623 | spin_unlock(&workqueue_lock); | 4787 | mutex_unlock(&wq_pool_mutex); |
3624 | } | 4788 | } |
3625 | 4789 | ||
3626 | /** | 4790 | /** |
@@ -3630,7 +4794,7 @@ void freeze_workqueues_begin(void) | |||
3630 | * between freeze_workqueues_begin() and thaw_workqueues(). | 4794 | * between freeze_workqueues_begin() and thaw_workqueues(). |
3631 | * | 4795 | * |
3632 | * CONTEXT: | 4796 | * CONTEXT: |
3633 | * Grabs and releases workqueue_lock. | 4797 | * Grabs and releases wq_pool_mutex. |
3634 | * | 4798 | * |
3635 | * RETURNS: | 4799 | * RETURNS: |
3636 | * %true if some freezable workqueues are still busy. %false if freezing | 4800 | * %true if some freezable workqueues are still busy. %false if freezing |
@@ -3638,34 +4802,34 @@ void freeze_workqueues_begin(void) | |||
3638 | */ | 4802 | */ |
3639 | bool freeze_workqueues_busy(void) | 4803 | bool freeze_workqueues_busy(void) |
3640 | { | 4804 | { |
3641 | unsigned int cpu; | ||
3642 | bool busy = false; | 4805 | bool busy = false; |
4806 | struct workqueue_struct *wq; | ||
4807 | struct pool_workqueue *pwq; | ||
3643 | 4808 | ||
3644 | spin_lock(&workqueue_lock); | 4809 | mutex_lock(&wq_pool_mutex); |
3645 | 4810 | ||
3646 | BUG_ON(!workqueue_freezing); | 4811 | WARN_ON_ONCE(!workqueue_freezing); |
3647 | 4812 | ||
3648 | for_each_wq_cpu(cpu) { | 4813 | list_for_each_entry(wq, &workqueues, list) { |
3649 | struct workqueue_struct *wq; | 4814 | if (!(wq->flags & WQ_FREEZABLE)) |
4815 | continue; | ||
3650 | /* | 4816 | /* |
3651 | * nr_active is monotonically decreasing. It's safe | 4817 | * nr_active is monotonically decreasing. It's safe |
3652 | * to peek without lock. | 4818 | * to peek without lock. |
3653 | */ | 4819 | */ |
3654 | list_for_each_entry(wq, &workqueues, list) { | 4820 | rcu_read_lock_sched(); |
3655 | struct pool_workqueue *pwq = get_pwq(cpu, wq); | 4821 | for_each_pwq(pwq, wq) { |
3656 | 4822 | WARN_ON_ONCE(pwq->nr_active < 0); | |
3657 | if (!pwq || !(wq->flags & WQ_FREEZABLE)) | ||
3658 | continue; | ||
3659 | |||
3660 | BUG_ON(pwq->nr_active < 0); | ||
3661 | if (pwq->nr_active) { | 4823 | if (pwq->nr_active) { |
3662 | busy = true; | 4824 | busy = true; |
4825 | rcu_read_unlock_sched(); | ||
3663 | goto out_unlock; | 4826 | goto out_unlock; |
3664 | } | 4827 | } |
3665 | } | 4828 | } |
4829 | rcu_read_unlock_sched(); | ||
3666 | } | 4830 | } |
3667 | out_unlock: | 4831 | out_unlock: |
3668 | spin_unlock(&workqueue_lock); | 4832 | mutex_unlock(&wq_pool_mutex); |
3669 | return busy; | 4833 | return busy; |
3670 | } | 4834 | } |
3671 | 4835 | ||
@@ -3676,104 +4840,142 @@ out_unlock: | |||
3676 | * frozen works are transferred to their respective pool worklists. | 4840 | * frozen works are transferred to their respective pool worklists. |
3677 | * | 4841 | * |
3678 | * CONTEXT: | 4842 | * CONTEXT: |
3679 | * Grabs and releases workqueue_lock and pool->lock's. | 4843 | * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. |
3680 | */ | 4844 | */ |
3681 | void thaw_workqueues(void) | 4845 | void thaw_workqueues(void) |
3682 | { | 4846 | { |
3683 | unsigned int cpu; | 4847 | struct workqueue_struct *wq; |
4848 | struct pool_workqueue *pwq; | ||
4849 | struct worker_pool *pool; | ||
4850 | int pi; | ||
3684 | 4851 | ||
3685 | spin_lock(&workqueue_lock); | 4852 | mutex_lock(&wq_pool_mutex); |
3686 | 4853 | ||
3687 | if (!workqueue_freezing) | 4854 | if (!workqueue_freezing) |
3688 | goto out_unlock; | 4855 | goto out_unlock; |
3689 | 4856 | ||
3690 | for_each_wq_cpu(cpu) { | 4857 | /* clear FREEZING */ |
3691 | struct worker_pool *pool; | 4858 | for_each_pool(pool, pi) { |
3692 | struct workqueue_struct *wq; | 4859 | spin_lock_irq(&pool->lock); |
4860 | WARN_ON_ONCE(!(pool->flags & POOL_FREEZING)); | ||
4861 | pool->flags &= ~POOL_FREEZING; | ||
4862 | spin_unlock_irq(&pool->lock); | ||
4863 | } | ||
3693 | 4864 | ||
3694 | for_each_std_worker_pool(pool, cpu) { | 4865 | /* restore max_active and repopulate worklist */ |
3695 | spin_lock_irq(&pool->lock); | 4866 | list_for_each_entry(wq, &workqueues, list) { |
4867 | mutex_lock(&wq->mutex); | ||
4868 | for_each_pwq(pwq, wq) | ||
4869 | pwq_adjust_max_active(pwq); | ||
4870 | mutex_unlock(&wq->mutex); | ||
4871 | } | ||
3696 | 4872 | ||
3697 | WARN_ON_ONCE(!(pool->flags & POOL_FREEZING)); | 4873 | workqueue_freezing = false; |
3698 | pool->flags &= ~POOL_FREEZING; | 4874 | out_unlock: |
4875 | mutex_unlock(&wq_pool_mutex); | ||
4876 | } | ||
4877 | #endif /* CONFIG_FREEZER */ | ||
3699 | 4878 | ||
3700 | list_for_each_entry(wq, &workqueues, list) { | 4879 | static void __init wq_numa_init(void) |
3701 | struct pool_workqueue *pwq = get_pwq(cpu, wq); | 4880 | { |
4881 | cpumask_var_t *tbl; | ||
4882 | int node, cpu; | ||
3702 | 4883 | ||
3703 | if (!pwq || pwq->pool != pool || | 4884 | /* determine NUMA pwq table len - highest node id + 1 */ |
3704 | !(wq->flags & WQ_FREEZABLE)) | 4885 | for_each_node(node) |
3705 | continue; | 4886 | wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1); |
3706 | 4887 | ||
3707 | /* restore max_active and repopulate worklist */ | 4888 | if (num_possible_nodes() <= 1) |
3708 | pwq_set_max_active(pwq, wq->saved_max_active); | 4889 | return; |
3709 | } | ||
3710 | 4890 | ||
3711 | wake_up_worker(pool); | 4891 | if (wq_disable_numa) { |
4892 | pr_info("workqueue: NUMA affinity support disabled\n"); | ||
4893 | return; | ||
4894 | } | ||
3712 | 4895 | ||
3713 | spin_unlock_irq(&pool->lock); | 4896 | wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL); |
4897 | BUG_ON(!wq_update_unbound_numa_attrs_buf); | ||
4898 | |||
4899 | /* | ||
4900 | * We want masks of possible CPUs of each node which isn't readily | ||
4901 | * available. Build one from cpu_to_node() which should have been | ||
4902 | * fully initialized by now. | ||
4903 | */ | ||
4904 | tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL); | ||
4905 | BUG_ON(!tbl); | ||
4906 | |||
4907 | for_each_node(node) | ||
4908 | BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL, | ||
4909 | node_online(node) ? node : NUMA_NO_NODE)); | ||
4910 | |||
4911 | for_each_possible_cpu(cpu) { | ||
4912 | node = cpu_to_node(cpu); | ||
4913 | if (WARN_ON(node == NUMA_NO_NODE)) { | ||
4914 | pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu); | ||
4915 | /* happens iff arch is bonkers, let's just proceed */ | ||
4916 | return; | ||
3714 | } | 4917 | } |
4918 | cpumask_set_cpu(cpu, tbl[node]); | ||
3715 | } | 4919 | } |
3716 | 4920 | ||
3717 | workqueue_freezing = false; | 4921 | wq_numa_possible_cpumask = tbl; |
3718 | out_unlock: | 4922 | wq_numa_enabled = true; |
3719 | spin_unlock(&workqueue_lock); | ||
3720 | } | 4923 | } |
3721 | #endif /* CONFIG_FREEZER */ | ||
3722 | 4924 | ||
3723 | static int __init init_workqueues(void) | 4925 | static int __init init_workqueues(void) |
3724 | { | 4926 | { |
3725 | unsigned int cpu; | 4927 | int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL }; |
4928 | int i, cpu; | ||
3726 | 4929 | ||
3727 | /* make sure we have enough bits for OFFQ pool ID */ | 4930 | /* make sure we have enough bits for OFFQ pool ID */ |
3728 | BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) < | 4931 | BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) < |
3729 | WORK_CPU_END * NR_STD_WORKER_POOLS); | 4932 | WORK_CPU_END * NR_STD_WORKER_POOLS); |
3730 | 4933 | ||
4934 | WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long)); | ||
4935 | |||
4936 | pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC); | ||
4937 | |||
3731 | cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP); | 4938 | cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP); |
3732 | hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN); | 4939 | hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN); |
3733 | 4940 | ||
4941 | wq_numa_init(); | ||
4942 | |||
3734 | /* initialize CPU pools */ | 4943 | /* initialize CPU pools */ |
3735 | for_each_wq_cpu(cpu) { | 4944 | for_each_possible_cpu(cpu) { |
3736 | struct worker_pool *pool; | 4945 | struct worker_pool *pool; |
3737 | 4946 | ||
3738 | for_each_std_worker_pool(pool, cpu) { | 4947 | i = 0; |
3739 | spin_lock_init(&pool->lock); | 4948 | for_each_cpu_worker_pool(pool, cpu) { |
4949 | BUG_ON(init_worker_pool(pool)); | ||
3740 | pool->cpu = cpu; | 4950 | pool->cpu = cpu; |
3741 | pool->flags |= POOL_DISASSOCIATED; | 4951 | cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu)); |
3742 | INIT_LIST_HEAD(&pool->worklist); | 4952 | pool->attrs->nice = std_nice[i++]; |
3743 | INIT_LIST_HEAD(&pool->idle_list); | 4953 | pool->node = cpu_to_node(cpu); |
3744 | hash_init(pool->busy_hash); | ||
3745 | |||
3746 | init_timer_deferrable(&pool->idle_timer); | ||
3747 | pool->idle_timer.function = idle_worker_timeout; | ||
3748 | pool->idle_timer.data = (unsigned long)pool; | ||
3749 | |||
3750 | setup_timer(&pool->mayday_timer, pool_mayday_timeout, | ||
3751 | (unsigned long)pool); | ||
3752 | |||
3753 | mutex_init(&pool->assoc_mutex); | ||
3754 | ida_init(&pool->worker_ida); | ||
3755 | 4954 | ||
3756 | /* alloc pool ID */ | 4955 | /* alloc pool ID */ |
4956 | mutex_lock(&wq_pool_mutex); | ||
3757 | BUG_ON(worker_pool_assign_id(pool)); | 4957 | BUG_ON(worker_pool_assign_id(pool)); |
4958 | mutex_unlock(&wq_pool_mutex); | ||
3758 | } | 4959 | } |
3759 | } | 4960 | } |
3760 | 4961 | ||
3761 | /* create the initial worker */ | 4962 | /* create the initial worker */ |
3762 | for_each_online_wq_cpu(cpu) { | 4963 | for_each_online_cpu(cpu) { |
3763 | struct worker_pool *pool; | 4964 | struct worker_pool *pool; |
3764 | 4965 | ||
3765 | for_each_std_worker_pool(pool, cpu) { | 4966 | for_each_cpu_worker_pool(pool, cpu) { |
3766 | struct worker *worker; | 4967 | pool->flags &= ~POOL_DISASSOCIATED; |
4968 | BUG_ON(create_and_start_worker(pool) < 0); | ||
4969 | } | ||
4970 | } | ||
3767 | 4971 | ||
3768 | if (cpu != WORK_CPU_UNBOUND) | 4972 | /* create default unbound wq attrs */ |
3769 | pool->flags &= ~POOL_DISASSOCIATED; | 4973 | for (i = 0; i < NR_STD_WORKER_POOLS; i++) { |
4974 | struct workqueue_attrs *attrs; | ||
3770 | 4975 | ||
3771 | worker = create_worker(pool); | 4976 | BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL))); |
3772 | BUG_ON(!worker); | 4977 | attrs->nice = std_nice[i]; |
3773 | spin_lock_irq(&pool->lock); | 4978 | unbound_std_wq_attrs[i] = attrs; |
3774 | start_worker(worker); | ||
3775 | spin_unlock_irq(&pool->lock); | ||
3776 | } | ||
3777 | } | 4979 | } |
3778 | 4980 | ||
3779 | system_wq = alloc_workqueue("events", 0, 0); | 4981 | system_wq = alloc_workqueue("events", 0, 0); |