aboutsummaryrefslogtreecommitdiffstats
path: root/kernel/srcu.c
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/srcu.c')
-rw-r--r--kernel/srcu.c548
1 files changed, 435 insertions, 113 deletions
diff --git a/kernel/srcu.c b/kernel/srcu.c
index ba35f3a4a1f4..2095be3318d5 100644
--- a/kernel/srcu.c
+++ b/kernel/srcu.c
@@ -34,10 +34,77 @@
34#include <linux/delay.h> 34#include <linux/delay.h>
35#include <linux/srcu.h> 35#include <linux/srcu.h>
36 36
37/*
38 * Initialize an rcu_batch structure to empty.
39 */
40static inline void rcu_batch_init(struct rcu_batch *b)
41{
42 b->head = NULL;
43 b->tail = &b->head;
44}
45
46/*
47 * Enqueue a callback onto the tail of the specified rcu_batch structure.
48 */
49static inline void rcu_batch_queue(struct rcu_batch *b, struct rcu_head *head)
50{
51 *b->tail = head;
52 b->tail = &head->next;
53}
54
55/*
56 * Is the specified rcu_batch structure empty?
57 */
58static inline bool rcu_batch_empty(struct rcu_batch *b)
59{
60 return b->tail == &b->head;
61}
62
63/*
64 * Remove the callback at the head of the specified rcu_batch structure
65 * and return a pointer to it, or return NULL if the structure is empty.
66 */
67static inline struct rcu_head *rcu_batch_dequeue(struct rcu_batch *b)
68{
69 struct rcu_head *head;
70
71 if (rcu_batch_empty(b))
72 return NULL;
73
74 head = b->head;
75 b->head = head->next;
76 if (b->tail == &head->next)
77 rcu_batch_init(b);
78
79 return head;
80}
81
82/*
83 * Move all callbacks from the rcu_batch structure specified by "from" to
84 * the structure specified by "to".
85 */
86static inline void rcu_batch_move(struct rcu_batch *to, struct rcu_batch *from)
87{
88 if (!rcu_batch_empty(from)) {
89 *to->tail = from->head;
90 to->tail = from->tail;
91 rcu_batch_init(from);
92 }
93}
94
95/* single-thread state-machine */
96static void process_srcu(struct work_struct *work);
97
37static int init_srcu_struct_fields(struct srcu_struct *sp) 98static int init_srcu_struct_fields(struct srcu_struct *sp)
38{ 99{
39 sp->completed = 0; 100 sp->completed = 0;
40 mutex_init(&sp->mutex); 101 spin_lock_init(&sp->queue_lock);
102 sp->running = false;
103 rcu_batch_init(&sp->batch_queue);
104 rcu_batch_init(&sp->batch_check0);
105 rcu_batch_init(&sp->batch_check1);
106 rcu_batch_init(&sp->batch_done);
107 INIT_DELAYED_WORK(&sp->work, process_srcu);
41 sp->per_cpu_ref = alloc_percpu(struct srcu_struct_array); 108 sp->per_cpu_ref = alloc_percpu(struct srcu_struct_array);
42 return sp->per_cpu_ref ? 0 : -ENOMEM; 109 return sp->per_cpu_ref ? 0 : -ENOMEM;
43} 110}
@@ -73,21 +140,116 @@ EXPORT_SYMBOL_GPL(init_srcu_struct);
73#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 140#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
74 141
75/* 142/*
76 * srcu_readers_active_idx -- returns approximate number of readers 143 * Returns approximate total of the readers' ->seq[] values for the
77 * active on the specified rank of per-CPU counters. 144 * rank of per-CPU counters specified by idx.
78 */ 145 */
146static unsigned long srcu_readers_seq_idx(struct srcu_struct *sp, int idx)
147{
148 int cpu;
149 unsigned long sum = 0;
150 unsigned long t;
79 151
80static int srcu_readers_active_idx(struct srcu_struct *sp, int idx) 152 for_each_possible_cpu(cpu) {
153 t = ACCESS_ONCE(per_cpu_ptr(sp->per_cpu_ref, cpu)->seq[idx]);
154 sum += t;
155 }
156 return sum;
157}
158
159/*
160 * Returns approximate number of readers active on the specified rank
161 * of the per-CPU ->c[] counters.
162 */
163static unsigned long srcu_readers_active_idx(struct srcu_struct *sp, int idx)
81{ 164{
82 int cpu; 165 int cpu;
83 int sum; 166 unsigned long sum = 0;
167 unsigned long t;
84 168
85 sum = 0; 169 for_each_possible_cpu(cpu) {
86 for_each_possible_cpu(cpu) 170 t = ACCESS_ONCE(per_cpu_ptr(sp->per_cpu_ref, cpu)->c[idx]);
87 sum += per_cpu_ptr(sp->per_cpu_ref, cpu)->c[idx]; 171 sum += t;
172 }
88 return sum; 173 return sum;
89} 174}
90 175
176/*
177 * Return true if the number of pre-existing readers is determined to
178 * be stably zero. An example unstable zero can occur if the call
179 * to srcu_readers_active_idx() misses an __srcu_read_lock() increment,
180 * but due to task migration, sees the corresponding __srcu_read_unlock()
181 * decrement. This can happen because srcu_readers_active_idx() takes
182 * time to sum the array, and might in fact be interrupted or preempted
183 * partway through the summation.
184 */
185static bool srcu_readers_active_idx_check(struct srcu_struct *sp, int idx)
186{
187 unsigned long seq;
188
189 seq = srcu_readers_seq_idx(sp, idx);
190
191 /*
192 * The following smp_mb() A pairs with the smp_mb() B located in
193 * __srcu_read_lock(). This pairing ensures that if an
194 * __srcu_read_lock() increments its counter after the summation
195 * in srcu_readers_active_idx(), then the corresponding SRCU read-side
196 * critical section will see any changes made prior to the start
197 * of the current SRCU grace period.
198 *
199 * Also, if the above call to srcu_readers_seq_idx() saw the
200 * increment of ->seq[], then the call to srcu_readers_active_idx()
201 * must see the increment of ->c[].
202 */
203 smp_mb(); /* A */
204
205 /*
206 * Note that srcu_readers_active_idx() can incorrectly return
207 * zero even though there is a pre-existing reader throughout.
208 * To see this, suppose that task A is in a very long SRCU
209 * read-side critical section that started on CPU 0, and that
210 * no other reader exists, so that the sum of the counters
211 * is equal to one. Then suppose that task B starts executing
212 * srcu_readers_active_idx(), summing up to CPU 1, and then that
213 * task C starts reading on CPU 0, so that its increment is not
214 * summed, but finishes reading on CPU 2, so that its decrement
215 * -is- summed. Then when task B completes its sum, it will
216 * incorrectly get zero, despite the fact that task A has been
217 * in its SRCU read-side critical section the whole time.
218 *
219 * We therefore do a validation step should srcu_readers_active_idx()
220 * return zero.
221 */
222 if (srcu_readers_active_idx(sp, idx) != 0)
223 return false;
224
225 /*
226 * The remainder of this function is the validation step.
227 * The following smp_mb() D pairs with the smp_mb() C in
228 * __srcu_read_unlock(). If the __srcu_read_unlock() was seen
229 * by srcu_readers_active_idx() above, then any destructive
230 * operation performed after the grace period will happen after
231 * the corresponding SRCU read-side critical section.
232 *
233 * Note that there can be at most NR_CPUS worth of readers using
234 * the old index, which is not enough to overflow even a 32-bit
235 * integer. (Yes, this does mean that systems having more than
236 * a billion or so CPUs need to be 64-bit systems.) Therefore,
237 * the sum of the ->seq[] counters cannot possibly overflow.
238 * Therefore, the only way that the return values of the two
239 * calls to srcu_readers_seq_idx() can be equal is if there were
240 * no increments of the corresponding rank of ->seq[] counts
241 * in the interim. But the missed-increment scenario laid out
242 * above includes an increment of the ->seq[] counter by
243 * the corresponding __srcu_read_lock(). Therefore, if this
244 * scenario occurs, the return values from the two calls to
245 * srcu_readers_seq_idx() will differ, and thus the validation
246 * step below suffices.
247 */
248 smp_mb(); /* D */
249
250 return srcu_readers_seq_idx(sp, idx) == seq;
251}
252
91/** 253/**
92 * srcu_readers_active - returns approximate number of readers. 254 * srcu_readers_active - returns approximate number of readers.
93 * @sp: which srcu_struct to count active readers (holding srcu_read_lock). 255 * @sp: which srcu_struct to count active readers (holding srcu_read_lock).
@@ -98,7 +260,14 @@ static int srcu_readers_active_idx(struct srcu_struct *sp, int idx)
98 */ 260 */
99static int srcu_readers_active(struct srcu_struct *sp) 261static int srcu_readers_active(struct srcu_struct *sp)
100{ 262{
101 return srcu_readers_active_idx(sp, 0) + srcu_readers_active_idx(sp, 1); 263 int cpu;
264 unsigned long sum = 0;
265
266 for_each_possible_cpu(cpu) {
267 sum += ACCESS_ONCE(per_cpu_ptr(sp->per_cpu_ref, cpu)->c[0]);
268 sum += ACCESS_ONCE(per_cpu_ptr(sp->per_cpu_ref, cpu)->c[1]);
269 }
270 return sum;
102} 271}
103 272
104/** 273/**
@@ -131,10 +300,11 @@ int __srcu_read_lock(struct srcu_struct *sp)
131 int idx; 300 int idx;
132 301
133 preempt_disable(); 302 preempt_disable();
134 idx = sp->completed & 0x1; 303 idx = rcu_dereference_index_check(sp->completed,
135 barrier(); /* ensure compiler looks -once- at sp->completed. */ 304 rcu_read_lock_sched_held()) & 0x1;
136 per_cpu_ptr(sp->per_cpu_ref, smp_processor_id())->c[idx]++; 305 ACCESS_ONCE(this_cpu_ptr(sp->per_cpu_ref)->c[idx]) += 1;
137 srcu_barrier(); /* ensure compiler won't misorder critical section. */ 306 smp_mb(); /* B */ /* Avoid leaking the critical section. */
307 ACCESS_ONCE(this_cpu_ptr(sp->per_cpu_ref)->seq[idx]) += 1;
138 preempt_enable(); 308 preempt_enable();
139 return idx; 309 return idx;
140} 310}
@@ -149,8 +319,8 @@ EXPORT_SYMBOL_GPL(__srcu_read_lock);
149void __srcu_read_unlock(struct srcu_struct *sp, int idx) 319void __srcu_read_unlock(struct srcu_struct *sp, int idx)
150{ 320{
151 preempt_disable(); 321 preempt_disable();
152 srcu_barrier(); /* ensure compiler won't misorder critical section. */ 322 smp_mb(); /* C */ /* Avoid leaking the critical section. */
153 per_cpu_ptr(sp->per_cpu_ref, smp_processor_id())->c[idx]--; 323 ACCESS_ONCE(this_cpu_ptr(sp->per_cpu_ref)->c[idx]) -= 1;
154 preempt_enable(); 324 preempt_enable();
155} 325}
156EXPORT_SYMBOL_GPL(__srcu_read_unlock); 326EXPORT_SYMBOL_GPL(__srcu_read_unlock);
@@ -163,106 +333,119 @@ EXPORT_SYMBOL_GPL(__srcu_read_unlock);
163 * we repeatedly block for 1-millisecond time periods. This approach 333 * we repeatedly block for 1-millisecond time periods. This approach
164 * has done well in testing, so there is no need for a config parameter. 334 * has done well in testing, so there is no need for a config parameter.
165 */ 335 */
166#define SYNCHRONIZE_SRCU_READER_DELAY 10 336#define SRCU_RETRY_CHECK_DELAY 5
337#define SYNCHRONIZE_SRCU_TRYCOUNT 2
338#define SYNCHRONIZE_SRCU_EXP_TRYCOUNT 12
167 339
168/* 340/*
169 * Helper function for synchronize_srcu() and synchronize_srcu_expedited(). 341 * @@@ Wait until all pre-existing readers complete. Such readers
342 * will have used the index specified by "idx".
343 * the caller should ensures the ->completed is not changed while checking
344 * and idx = (->completed & 1) ^ 1
170 */ 345 */
171static void __synchronize_srcu(struct srcu_struct *sp, void (*sync_func)(void)) 346static bool try_check_zero(struct srcu_struct *sp, int idx, int trycount)
172{ 347{
173 int idx; 348 for (;;) {
174 349 if (srcu_readers_active_idx_check(sp, idx))
175 rcu_lockdep_assert(!lock_is_held(&sp->dep_map) && 350 return true;
176 !lock_is_held(&rcu_bh_lock_map) && 351 if (--trycount <= 0)
177 !lock_is_held(&rcu_lock_map) && 352 return false;
178 !lock_is_held(&rcu_sched_lock_map), 353 udelay(SRCU_RETRY_CHECK_DELAY);
179 "Illegal synchronize_srcu() in same-type SRCU (or RCU) read-side critical section"); 354 }
180 355}
181 idx = sp->completed;
182 mutex_lock(&sp->mutex);
183 356
184 /* 357/*
185 * Check to see if someone else did the work for us while we were 358 * Increment the ->completed counter so that future SRCU readers will
186 * waiting to acquire the lock. We need -two- advances of 359 * use the other rank of the ->c[] and ->seq[] arrays. This allows
187 * the counter, not just one. If there was but one, we might have 360 * us to wait for pre-existing readers in a starvation-free manner.
188 * shown up -after- our helper's first synchronize_sched(), thus 361 */
189 * having failed to prevent CPU-reordering races with concurrent 362static void srcu_flip(struct srcu_struct *sp)
190 * srcu_read_unlock()s on other CPUs (see comment below). So we 363{
191 * either (1) wait for two or (2) supply the second ourselves. 364 sp->completed++;
192 */ 365}
193 366
194 if ((sp->completed - idx) >= 2) { 367/*
195 mutex_unlock(&sp->mutex); 368 * Enqueue an SRCU callback on the specified srcu_struct structure,
196 return; 369 * initiating grace-period processing if it is not already running.
370 */
371void call_srcu(struct srcu_struct *sp, struct rcu_head *head,
372 void (*func)(struct rcu_head *head))
373{
374 unsigned long flags;
375
376 head->next = NULL;
377 head->func = func;
378 spin_lock_irqsave(&sp->queue_lock, flags);
379 rcu_batch_queue(&sp->batch_queue, head);
380 if (!sp->running) {
381 sp->running = true;
382 queue_delayed_work(system_nrt_wq, &sp->work, 0);
197 } 383 }
384 spin_unlock_irqrestore(&sp->queue_lock, flags);
385}
386EXPORT_SYMBOL_GPL(call_srcu);
198 387
199 sync_func(); /* Force memory barrier on all CPUs. */ 388struct rcu_synchronize {
389 struct rcu_head head;
390 struct completion completion;
391};
200 392
201 /* 393/*
202 * The preceding synchronize_sched() ensures that any CPU that 394 * Awaken the corresponding synchronize_srcu() instance now that a
203 * sees the new value of sp->completed will also see any preceding 395 * grace period has elapsed.
204 * changes to data structures made by this CPU. This prevents 396 */
205 * some other CPU from reordering the accesses in its SRCU 397static void wakeme_after_rcu(struct rcu_head *head)
206 * read-side critical section to precede the corresponding 398{
207 * srcu_read_lock() -- ensuring that such references will in 399 struct rcu_synchronize *rcu;
208 * fact be protected.
209 *
210 * So it is now safe to do the flip.
211 */
212 400
213 idx = sp->completed & 0x1; 401 rcu = container_of(head, struct rcu_synchronize, head);
214 sp->completed++; 402 complete(&rcu->completion);
403}
215 404
216 sync_func(); /* Force memory barrier on all CPUs. */ 405static void srcu_advance_batches(struct srcu_struct *sp, int trycount);
406static void srcu_reschedule(struct srcu_struct *sp);
217 407
218 /* 408/*
219 * At this point, because of the preceding synchronize_sched(), 409 * Helper function for synchronize_srcu() and synchronize_srcu_expedited().
220 * all srcu_read_lock() calls using the old counters have completed. 410 */
221 * Their corresponding critical sections might well be still 411static void __synchronize_srcu(struct srcu_struct *sp, int trycount)
222 * executing, but the srcu_read_lock() primitives themselves 412{
223 * will have finished executing. We initially give readers 413 struct rcu_synchronize rcu;
224 * an arbitrarily chosen 10 microseconds to get out of their 414 struct rcu_head *head = &rcu.head;
225 * SRCU read-side critical sections, then loop waiting 1/HZ 415 bool done = false;
226 * seconds per iteration. The 10-microsecond value has done
227 * very well in testing.
228 */
229
230 if (srcu_readers_active_idx(sp, idx))
231 udelay(SYNCHRONIZE_SRCU_READER_DELAY);
232 while (srcu_readers_active_idx(sp, idx))
233 schedule_timeout_interruptible(1);
234 416
235 sync_func(); /* Force memory barrier on all CPUs. */ 417 rcu_lockdep_assert(!lock_is_held(&sp->dep_map) &&
418 !lock_is_held(&rcu_bh_lock_map) &&
419 !lock_is_held(&rcu_lock_map) &&
420 !lock_is_held(&rcu_sched_lock_map),
421 "Illegal synchronize_srcu() in same-type SRCU (or RCU) read-side critical section");
236 422
237 /* 423 init_completion(&rcu.completion);
238 * The preceding synchronize_sched() forces all srcu_read_unlock() 424
239 * primitives that were executing concurrently with the preceding 425 head->next = NULL;
240 * for_each_possible_cpu() loop to have completed by this point. 426 head->func = wakeme_after_rcu;
241 * More importantly, it also forces the corresponding SRCU read-side 427 spin_lock_irq(&sp->queue_lock);
242 * critical sections to have also completed, and the corresponding 428 if (!sp->running) {
243 * references to SRCU-protected data items to be dropped. 429 /* steal the processing owner */
244 * 430 sp->running = true;
245 * Note: 431 rcu_batch_queue(&sp->batch_check0, head);
246 * 432 spin_unlock_irq(&sp->queue_lock);
247 * Despite what you might think at first glance, the 433
248 * preceding synchronize_sched() -must- be within the 434 srcu_advance_batches(sp, trycount);
249 * critical section ended by the following mutex_unlock(). 435 if (!rcu_batch_empty(&sp->batch_done)) {
250 * Otherwise, a task taking the early exit can race 436 BUG_ON(sp->batch_done.head != head);
251 * with a srcu_read_unlock(), which might have executed 437 rcu_batch_dequeue(&sp->batch_done);
252 * just before the preceding srcu_readers_active() check, 438 done = true;
253 * and whose CPU might have reordered the srcu_read_unlock() 439 }
254 * with the preceding critical section. In this case, there 440 /* give the processing owner to work_struct */
255 * is nothing preventing the synchronize_sched() task that is 441 srcu_reschedule(sp);
256 * taking the early exit from freeing a data structure that 442 } else {
257 * is still being referenced (out of order) by the task 443 rcu_batch_queue(&sp->batch_queue, head);
258 * doing the srcu_read_unlock(). 444 spin_unlock_irq(&sp->queue_lock);
259 * 445 }
260 * Alternatively, the comparison with "2" on the early exit
261 * could be changed to "3", but this increases synchronize_srcu()
262 * latency for bulk loads. So the current code is preferred.
263 */
264 446
265 mutex_unlock(&sp->mutex); 447 if (!done)
448 wait_for_completion(&rcu.completion);
266} 449}
267 450
268/** 451/**
@@ -281,7 +464,7 @@ static void __synchronize_srcu(struct srcu_struct *sp, void (*sync_func)(void))
281 */ 464 */
282void synchronize_srcu(struct srcu_struct *sp) 465void synchronize_srcu(struct srcu_struct *sp)
283{ 466{
284 __synchronize_srcu(sp, synchronize_sched); 467 __synchronize_srcu(sp, SYNCHRONIZE_SRCU_TRYCOUNT);
285} 468}
286EXPORT_SYMBOL_GPL(synchronize_srcu); 469EXPORT_SYMBOL_GPL(synchronize_srcu);
287 470
@@ -289,18 +472,11 @@ EXPORT_SYMBOL_GPL(synchronize_srcu);
289 * synchronize_srcu_expedited - Brute-force SRCU grace period 472 * synchronize_srcu_expedited - Brute-force SRCU grace period
290 * @sp: srcu_struct with which to synchronize. 473 * @sp: srcu_struct with which to synchronize.
291 * 474 *
292 * Wait for an SRCU grace period to elapse, but use a "big hammer" 475 * Wait for an SRCU grace period to elapse, but be more aggressive about
293 * approach to force the grace period to end quickly. This consumes 476 * spinning rather than blocking when waiting.
294 * significant time on all CPUs and is unfriendly to real-time workloads,
295 * so is thus not recommended for any sort of common-case code. In fact,
296 * if you are using synchronize_srcu_expedited() in a loop, please
297 * restructure your code to batch your updates, and then use a single
298 * synchronize_srcu() instead.
299 * 477 *
300 * Note that it is illegal to call this function while holding any lock 478 * Note that it is illegal to call this function while holding any lock
301 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal 479 * that is acquired by a CPU-hotplug notifier. It is also illegal to call
302 * to call this function from a CPU-hotplug notifier. Failing to observe
303 * these restriction will result in deadlock. It is also illegal to call
304 * synchronize_srcu_expedited() from the corresponding SRCU read-side 480 * synchronize_srcu_expedited() from the corresponding SRCU read-side
305 * critical section; doing so will result in deadlock. However, it is 481 * critical section; doing so will result in deadlock. However, it is
306 * perfectly legal to call synchronize_srcu_expedited() on one srcu_struct 482 * perfectly legal to call synchronize_srcu_expedited() on one srcu_struct
@@ -309,20 +485,166 @@ EXPORT_SYMBOL_GPL(synchronize_srcu);
309 */ 485 */
310void synchronize_srcu_expedited(struct srcu_struct *sp) 486void synchronize_srcu_expedited(struct srcu_struct *sp)
311{ 487{
312 __synchronize_srcu(sp, synchronize_sched_expedited); 488 __synchronize_srcu(sp, SYNCHRONIZE_SRCU_EXP_TRYCOUNT);
313} 489}
314EXPORT_SYMBOL_GPL(synchronize_srcu_expedited); 490EXPORT_SYMBOL_GPL(synchronize_srcu_expedited);
315 491
316/** 492/**
493 * srcu_barrier - Wait until all in-flight call_srcu() callbacks complete.
494 */
495void srcu_barrier(struct srcu_struct *sp)
496{
497 synchronize_srcu(sp);
498}
499EXPORT_SYMBOL_GPL(srcu_barrier);
500
501/**
317 * srcu_batches_completed - return batches completed. 502 * srcu_batches_completed - return batches completed.
318 * @sp: srcu_struct on which to report batch completion. 503 * @sp: srcu_struct on which to report batch completion.
319 * 504 *
320 * Report the number of batches, correlated with, but not necessarily 505 * Report the number of batches, correlated with, but not necessarily
321 * precisely the same as, the number of grace periods that have elapsed. 506 * precisely the same as, the number of grace periods that have elapsed.
322 */ 507 */
323
324long srcu_batches_completed(struct srcu_struct *sp) 508long srcu_batches_completed(struct srcu_struct *sp)
325{ 509{
326 return sp->completed; 510 return sp->completed;
327} 511}
328EXPORT_SYMBOL_GPL(srcu_batches_completed); 512EXPORT_SYMBOL_GPL(srcu_batches_completed);
513
514#define SRCU_CALLBACK_BATCH 10
515#define SRCU_INTERVAL 1
516
517/*
518 * Move any new SRCU callbacks to the first stage of the SRCU grace
519 * period pipeline.
520 */
521static void srcu_collect_new(struct srcu_struct *sp)
522{
523 if (!rcu_batch_empty(&sp->batch_queue)) {
524 spin_lock_irq(&sp->queue_lock);
525 rcu_batch_move(&sp->batch_check0, &sp->batch_queue);
526 spin_unlock_irq(&sp->queue_lock);
527 }
528}
529
530/*
531 * Core SRCU state machine. Advance callbacks from ->batch_check0 to
532 * ->batch_check1 and then to ->batch_done as readers drain.
533 */
534static void srcu_advance_batches(struct srcu_struct *sp, int trycount)
535{
536 int idx = 1 ^ (sp->completed & 1);
537
538 /*
539 * Because readers might be delayed for an extended period after
540 * fetching ->completed for their index, at any point in time there
541 * might well be readers using both idx=0 and idx=1. We therefore
542 * need to wait for readers to clear from both index values before
543 * invoking a callback.
544 */
545
546 if (rcu_batch_empty(&sp->batch_check0) &&
547 rcu_batch_empty(&sp->batch_check1))
548 return; /* no callbacks need to be advanced */
549
550 if (!try_check_zero(sp, idx, trycount))
551 return; /* failed to advance, will try after SRCU_INTERVAL */
552
553 /*
554 * The callbacks in ->batch_check1 have already done with their
555 * first zero check and flip back when they were enqueued on
556 * ->batch_check0 in a previous invocation of srcu_advance_batches().
557 * (Presumably try_check_zero() returned false during that
558 * invocation, leaving the callbacks stranded on ->batch_check1.)
559 * They are therefore ready to invoke, so move them to ->batch_done.
560 */
561 rcu_batch_move(&sp->batch_done, &sp->batch_check1);
562
563 if (rcu_batch_empty(&sp->batch_check0))
564 return; /* no callbacks need to be advanced */
565 srcu_flip(sp);
566
567 /*
568 * The callbacks in ->batch_check0 just finished their
569 * first check zero and flip, so move them to ->batch_check1
570 * for future checking on the other idx.
571 */
572 rcu_batch_move(&sp->batch_check1, &sp->batch_check0);
573
574 /*
575 * SRCU read-side critical sections are normally short, so check
576 * at least twice in quick succession after a flip.
577 */
578 trycount = trycount < 2 ? 2 : trycount;
579 if (!try_check_zero(sp, idx^1, trycount))
580 return; /* failed to advance, will try after SRCU_INTERVAL */
581
582 /*
583 * The callbacks in ->batch_check1 have now waited for all
584 * pre-existing readers using both idx values. They are therefore
585 * ready to invoke, so move them to ->batch_done.
586 */
587 rcu_batch_move(&sp->batch_done, &sp->batch_check1);
588}
589
590/*
591 * Invoke a limited number of SRCU callbacks that have passed through
592 * their grace period. If there are more to do, SRCU will reschedule
593 * the workqueue.
594 */
595static void srcu_invoke_callbacks(struct srcu_struct *sp)
596{
597 int i;
598 struct rcu_head *head;
599
600 for (i = 0; i < SRCU_CALLBACK_BATCH; i++) {
601 head = rcu_batch_dequeue(&sp->batch_done);
602 if (!head)
603 break;
604 local_bh_disable();
605 head->func(head);
606 local_bh_enable();
607 }
608}
609
610/*
611 * Finished one round of SRCU grace period. Start another if there are
612 * more SRCU callbacks queued, otherwise put SRCU into not-running state.
613 */
614static void srcu_reschedule(struct srcu_struct *sp)
615{
616 bool pending = true;
617
618 if (rcu_batch_empty(&sp->batch_done) &&
619 rcu_batch_empty(&sp->batch_check1) &&
620 rcu_batch_empty(&sp->batch_check0) &&
621 rcu_batch_empty(&sp->batch_queue)) {
622 spin_lock_irq(&sp->queue_lock);
623 if (rcu_batch_empty(&sp->batch_done) &&
624 rcu_batch_empty(&sp->batch_check1) &&
625 rcu_batch_empty(&sp->batch_check0) &&
626 rcu_batch_empty(&sp->batch_queue)) {
627 sp->running = false;
628 pending = false;
629 }
630 spin_unlock_irq(&sp->queue_lock);
631 }
632
633 if (pending)
634 queue_delayed_work(system_nrt_wq, &sp->work, SRCU_INTERVAL);
635}
636
637/*
638 * This is the work-queue function that handles SRCU grace periods.
639 */
640static void process_srcu(struct work_struct *work)
641{
642 struct srcu_struct *sp;
643
644 sp = container_of(work, struct srcu_struct, work.work);
645
646 srcu_collect_new(sp);
647 srcu_advance_batches(sp, 1);
648 srcu_invoke_callbacks(sp);
649 srcu_reschedule(sp);
650}