diff options
Diffstat (limited to 'kernel/sched/sched.h')
-rw-r--r-- | kernel/sched/sched.h | 1064 |
1 files changed, 1064 insertions, 0 deletions
diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h new file mode 100644 index 000000000000..c2e780234c31 --- /dev/null +++ b/kernel/sched/sched.h | |||
@@ -0,0 +1,1064 @@ | |||
1 | |||
2 | #include <linux/sched.h> | ||
3 | #include <linux/mutex.h> | ||
4 | #include <linux/spinlock.h> | ||
5 | #include <linux/stop_machine.h> | ||
6 | |||
7 | #include "cpupri.h" | ||
8 | |||
9 | extern __read_mostly int scheduler_running; | ||
10 | |||
11 | /* | ||
12 | * Convert user-nice values [ -20 ... 0 ... 19 ] | ||
13 | * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ], | ||
14 | * and back. | ||
15 | */ | ||
16 | #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20) | ||
17 | #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20) | ||
18 | #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio) | ||
19 | |||
20 | /* | ||
21 | * 'User priority' is the nice value converted to something we | ||
22 | * can work with better when scaling various scheduler parameters, | ||
23 | * it's a [ 0 ... 39 ] range. | ||
24 | */ | ||
25 | #define USER_PRIO(p) ((p)-MAX_RT_PRIO) | ||
26 | #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio) | ||
27 | #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO)) | ||
28 | |||
29 | /* | ||
30 | * Helpers for converting nanosecond timing to jiffy resolution | ||
31 | */ | ||
32 | #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ)) | ||
33 | |||
34 | #define NICE_0_LOAD SCHED_LOAD_SCALE | ||
35 | #define NICE_0_SHIFT SCHED_LOAD_SHIFT | ||
36 | |||
37 | /* | ||
38 | * These are the 'tuning knobs' of the scheduler: | ||
39 | * | ||
40 | * default timeslice is 100 msecs (used only for SCHED_RR tasks). | ||
41 | * Timeslices get refilled after they expire. | ||
42 | */ | ||
43 | #define DEF_TIMESLICE (100 * HZ / 1000) | ||
44 | |||
45 | /* | ||
46 | * single value that denotes runtime == period, ie unlimited time. | ||
47 | */ | ||
48 | #define RUNTIME_INF ((u64)~0ULL) | ||
49 | |||
50 | static inline int rt_policy(int policy) | ||
51 | { | ||
52 | if (policy == SCHED_FIFO || policy == SCHED_RR) | ||
53 | return 1; | ||
54 | return 0; | ||
55 | } | ||
56 | |||
57 | static inline int task_has_rt_policy(struct task_struct *p) | ||
58 | { | ||
59 | return rt_policy(p->policy); | ||
60 | } | ||
61 | |||
62 | /* | ||
63 | * This is the priority-queue data structure of the RT scheduling class: | ||
64 | */ | ||
65 | struct rt_prio_array { | ||
66 | DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ | ||
67 | struct list_head queue[MAX_RT_PRIO]; | ||
68 | }; | ||
69 | |||
70 | struct rt_bandwidth { | ||
71 | /* nests inside the rq lock: */ | ||
72 | raw_spinlock_t rt_runtime_lock; | ||
73 | ktime_t rt_period; | ||
74 | u64 rt_runtime; | ||
75 | struct hrtimer rt_period_timer; | ||
76 | }; | ||
77 | |||
78 | extern struct mutex sched_domains_mutex; | ||
79 | |||
80 | #ifdef CONFIG_CGROUP_SCHED | ||
81 | |||
82 | #include <linux/cgroup.h> | ||
83 | |||
84 | struct cfs_rq; | ||
85 | struct rt_rq; | ||
86 | |||
87 | static LIST_HEAD(task_groups); | ||
88 | |||
89 | struct cfs_bandwidth { | ||
90 | #ifdef CONFIG_CFS_BANDWIDTH | ||
91 | raw_spinlock_t lock; | ||
92 | ktime_t period; | ||
93 | u64 quota, runtime; | ||
94 | s64 hierarchal_quota; | ||
95 | u64 runtime_expires; | ||
96 | |||
97 | int idle, timer_active; | ||
98 | struct hrtimer period_timer, slack_timer; | ||
99 | struct list_head throttled_cfs_rq; | ||
100 | |||
101 | /* statistics */ | ||
102 | int nr_periods, nr_throttled; | ||
103 | u64 throttled_time; | ||
104 | #endif | ||
105 | }; | ||
106 | |||
107 | /* task group related information */ | ||
108 | struct task_group { | ||
109 | struct cgroup_subsys_state css; | ||
110 | |||
111 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
112 | /* schedulable entities of this group on each cpu */ | ||
113 | struct sched_entity **se; | ||
114 | /* runqueue "owned" by this group on each cpu */ | ||
115 | struct cfs_rq **cfs_rq; | ||
116 | unsigned long shares; | ||
117 | |||
118 | atomic_t load_weight; | ||
119 | #endif | ||
120 | |||
121 | #ifdef CONFIG_RT_GROUP_SCHED | ||
122 | struct sched_rt_entity **rt_se; | ||
123 | struct rt_rq **rt_rq; | ||
124 | |||
125 | struct rt_bandwidth rt_bandwidth; | ||
126 | #endif | ||
127 | |||
128 | struct rcu_head rcu; | ||
129 | struct list_head list; | ||
130 | |||
131 | struct task_group *parent; | ||
132 | struct list_head siblings; | ||
133 | struct list_head children; | ||
134 | |||
135 | #ifdef CONFIG_SCHED_AUTOGROUP | ||
136 | struct autogroup *autogroup; | ||
137 | #endif | ||
138 | |||
139 | struct cfs_bandwidth cfs_bandwidth; | ||
140 | }; | ||
141 | |||
142 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
143 | #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD | ||
144 | |||
145 | /* | ||
146 | * A weight of 0 or 1 can cause arithmetics problems. | ||
147 | * A weight of a cfs_rq is the sum of weights of which entities | ||
148 | * are queued on this cfs_rq, so a weight of a entity should not be | ||
149 | * too large, so as the shares value of a task group. | ||
150 | * (The default weight is 1024 - so there's no practical | ||
151 | * limitation from this.) | ||
152 | */ | ||
153 | #define MIN_SHARES (1UL << 1) | ||
154 | #define MAX_SHARES (1UL << 18) | ||
155 | #endif | ||
156 | |||
157 | /* Default task group. | ||
158 | * Every task in system belong to this group at bootup. | ||
159 | */ | ||
160 | extern struct task_group root_task_group; | ||
161 | |||
162 | typedef int (*tg_visitor)(struct task_group *, void *); | ||
163 | |||
164 | extern int walk_tg_tree_from(struct task_group *from, | ||
165 | tg_visitor down, tg_visitor up, void *data); | ||
166 | |||
167 | /* | ||
168 | * Iterate the full tree, calling @down when first entering a node and @up when | ||
169 | * leaving it for the final time. | ||
170 | * | ||
171 | * Caller must hold rcu_lock or sufficient equivalent. | ||
172 | */ | ||
173 | static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) | ||
174 | { | ||
175 | return walk_tg_tree_from(&root_task_group, down, up, data); | ||
176 | } | ||
177 | |||
178 | extern int tg_nop(struct task_group *tg, void *data); | ||
179 | |||
180 | extern void free_fair_sched_group(struct task_group *tg); | ||
181 | extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent); | ||
182 | extern void unregister_fair_sched_group(struct task_group *tg, int cpu); | ||
183 | extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, | ||
184 | struct sched_entity *se, int cpu, | ||
185 | struct sched_entity *parent); | ||
186 | extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b); | ||
187 | extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); | ||
188 | |||
189 | extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b); | ||
190 | extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b); | ||
191 | extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq); | ||
192 | |||
193 | extern void free_rt_sched_group(struct task_group *tg); | ||
194 | extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent); | ||
195 | extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, | ||
196 | struct sched_rt_entity *rt_se, int cpu, | ||
197 | struct sched_rt_entity *parent); | ||
198 | |||
199 | #else /* CONFIG_CGROUP_SCHED */ | ||
200 | |||
201 | struct cfs_bandwidth { }; | ||
202 | |||
203 | #endif /* CONFIG_CGROUP_SCHED */ | ||
204 | |||
205 | /* CFS-related fields in a runqueue */ | ||
206 | struct cfs_rq { | ||
207 | struct load_weight load; | ||
208 | unsigned long nr_running, h_nr_running; | ||
209 | |||
210 | u64 exec_clock; | ||
211 | u64 min_vruntime; | ||
212 | #ifndef CONFIG_64BIT | ||
213 | u64 min_vruntime_copy; | ||
214 | #endif | ||
215 | |||
216 | struct rb_root tasks_timeline; | ||
217 | struct rb_node *rb_leftmost; | ||
218 | |||
219 | struct list_head tasks; | ||
220 | struct list_head *balance_iterator; | ||
221 | |||
222 | /* | ||
223 | * 'curr' points to currently running entity on this cfs_rq. | ||
224 | * It is set to NULL otherwise (i.e when none are currently running). | ||
225 | */ | ||
226 | struct sched_entity *curr, *next, *last, *skip; | ||
227 | |||
228 | #ifdef CONFIG_SCHED_DEBUG | ||
229 | unsigned int nr_spread_over; | ||
230 | #endif | ||
231 | |||
232 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
233 | struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */ | ||
234 | |||
235 | /* | ||
236 | * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in | ||
237 | * a hierarchy). Non-leaf lrqs hold other higher schedulable entities | ||
238 | * (like users, containers etc.) | ||
239 | * | ||
240 | * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This | ||
241 | * list is used during load balance. | ||
242 | */ | ||
243 | int on_list; | ||
244 | struct list_head leaf_cfs_rq_list; | ||
245 | struct task_group *tg; /* group that "owns" this runqueue */ | ||
246 | |||
247 | #ifdef CONFIG_SMP | ||
248 | /* | ||
249 | * the part of load.weight contributed by tasks | ||
250 | */ | ||
251 | unsigned long task_weight; | ||
252 | |||
253 | /* | ||
254 | * h_load = weight * f(tg) | ||
255 | * | ||
256 | * Where f(tg) is the recursive weight fraction assigned to | ||
257 | * this group. | ||
258 | */ | ||
259 | unsigned long h_load; | ||
260 | |||
261 | /* | ||
262 | * Maintaining per-cpu shares distribution for group scheduling | ||
263 | * | ||
264 | * load_stamp is the last time we updated the load average | ||
265 | * load_last is the last time we updated the load average and saw load | ||
266 | * load_unacc_exec_time is currently unaccounted execution time | ||
267 | */ | ||
268 | u64 load_avg; | ||
269 | u64 load_period; | ||
270 | u64 load_stamp, load_last, load_unacc_exec_time; | ||
271 | |||
272 | unsigned long load_contribution; | ||
273 | #endif /* CONFIG_SMP */ | ||
274 | #ifdef CONFIG_CFS_BANDWIDTH | ||
275 | int runtime_enabled; | ||
276 | u64 runtime_expires; | ||
277 | s64 runtime_remaining; | ||
278 | |||
279 | u64 throttled_timestamp; | ||
280 | int throttled, throttle_count; | ||
281 | struct list_head throttled_list; | ||
282 | #endif /* CONFIG_CFS_BANDWIDTH */ | ||
283 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | ||
284 | }; | ||
285 | |||
286 | static inline int rt_bandwidth_enabled(void) | ||
287 | { | ||
288 | return sysctl_sched_rt_runtime >= 0; | ||
289 | } | ||
290 | |||
291 | /* Real-Time classes' related field in a runqueue: */ | ||
292 | struct rt_rq { | ||
293 | struct rt_prio_array active; | ||
294 | unsigned long rt_nr_running; | ||
295 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED | ||
296 | struct { | ||
297 | int curr; /* highest queued rt task prio */ | ||
298 | #ifdef CONFIG_SMP | ||
299 | int next; /* next highest */ | ||
300 | #endif | ||
301 | } highest_prio; | ||
302 | #endif | ||
303 | #ifdef CONFIG_SMP | ||
304 | unsigned long rt_nr_migratory; | ||
305 | unsigned long rt_nr_total; | ||
306 | int overloaded; | ||
307 | struct plist_head pushable_tasks; | ||
308 | #endif | ||
309 | int rt_throttled; | ||
310 | u64 rt_time; | ||
311 | u64 rt_runtime; | ||
312 | /* Nests inside the rq lock: */ | ||
313 | raw_spinlock_t rt_runtime_lock; | ||
314 | |||
315 | #ifdef CONFIG_RT_GROUP_SCHED | ||
316 | unsigned long rt_nr_boosted; | ||
317 | |||
318 | struct rq *rq; | ||
319 | struct list_head leaf_rt_rq_list; | ||
320 | struct task_group *tg; | ||
321 | #endif | ||
322 | }; | ||
323 | |||
324 | #ifdef CONFIG_SMP | ||
325 | |||
326 | /* | ||
327 | * We add the notion of a root-domain which will be used to define per-domain | ||
328 | * variables. Each exclusive cpuset essentially defines an island domain by | ||
329 | * fully partitioning the member cpus from any other cpuset. Whenever a new | ||
330 | * exclusive cpuset is created, we also create and attach a new root-domain | ||
331 | * object. | ||
332 | * | ||
333 | */ | ||
334 | struct root_domain { | ||
335 | atomic_t refcount; | ||
336 | atomic_t rto_count; | ||
337 | struct rcu_head rcu; | ||
338 | cpumask_var_t span; | ||
339 | cpumask_var_t online; | ||
340 | |||
341 | /* | ||
342 | * The "RT overload" flag: it gets set if a CPU has more than | ||
343 | * one runnable RT task. | ||
344 | */ | ||
345 | cpumask_var_t rto_mask; | ||
346 | struct cpupri cpupri; | ||
347 | }; | ||
348 | |||
349 | extern struct root_domain def_root_domain; | ||
350 | |||
351 | #endif /* CONFIG_SMP */ | ||
352 | |||
353 | /* | ||
354 | * This is the main, per-CPU runqueue data structure. | ||
355 | * | ||
356 | * Locking rule: those places that want to lock multiple runqueues | ||
357 | * (such as the load balancing or the thread migration code), lock | ||
358 | * acquire operations must be ordered by ascending &runqueue. | ||
359 | */ | ||
360 | struct rq { | ||
361 | /* runqueue lock: */ | ||
362 | raw_spinlock_t lock; | ||
363 | |||
364 | /* | ||
365 | * nr_running and cpu_load should be in the same cacheline because | ||
366 | * remote CPUs use both these fields when doing load calculation. | ||
367 | */ | ||
368 | unsigned long nr_running; | ||
369 | #define CPU_LOAD_IDX_MAX 5 | ||
370 | unsigned long cpu_load[CPU_LOAD_IDX_MAX]; | ||
371 | unsigned long last_load_update_tick; | ||
372 | #ifdef CONFIG_NO_HZ | ||
373 | u64 nohz_stamp; | ||
374 | unsigned char nohz_balance_kick; | ||
375 | #endif | ||
376 | int skip_clock_update; | ||
377 | |||
378 | /* capture load from *all* tasks on this cpu: */ | ||
379 | struct load_weight load; | ||
380 | unsigned long nr_load_updates; | ||
381 | u64 nr_switches; | ||
382 | |||
383 | struct cfs_rq cfs; | ||
384 | struct rt_rq rt; | ||
385 | |||
386 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
387 | /* list of leaf cfs_rq on this cpu: */ | ||
388 | struct list_head leaf_cfs_rq_list; | ||
389 | #endif | ||
390 | #ifdef CONFIG_RT_GROUP_SCHED | ||
391 | struct list_head leaf_rt_rq_list; | ||
392 | #endif | ||
393 | |||
394 | /* | ||
395 | * This is part of a global counter where only the total sum | ||
396 | * over all CPUs matters. A task can increase this counter on | ||
397 | * one CPU and if it got migrated afterwards it may decrease | ||
398 | * it on another CPU. Always updated under the runqueue lock: | ||
399 | */ | ||
400 | unsigned long nr_uninterruptible; | ||
401 | |||
402 | struct task_struct *curr, *idle, *stop; | ||
403 | unsigned long next_balance; | ||
404 | struct mm_struct *prev_mm; | ||
405 | |||
406 | u64 clock; | ||
407 | u64 clock_task; | ||
408 | |||
409 | atomic_t nr_iowait; | ||
410 | |||
411 | #ifdef CONFIG_SMP | ||
412 | struct root_domain *rd; | ||
413 | struct sched_domain *sd; | ||
414 | |||
415 | unsigned long cpu_power; | ||
416 | |||
417 | unsigned char idle_balance; | ||
418 | /* For active balancing */ | ||
419 | int post_schedule; | ||
420 | int active_balance; | ||
421 | int push_cpu; | ||
422 | struct cpu_stop_work active_balance_work; | ||
423 | /* cpu of this runqueue: */ | ||
424 | int cpu; | ||
425 | int online; | ||
426 | |||
427 | u64 rt_avg; | ||
428 | u64 age_stamp; | ||
429 | u64 idle_stamp; | ||
430 | u64 avg_idle; | ||
431 | #endif | ||
432 | |||
433 | #ifdef CONFIG_IRQ_TIME_ACCOUNTING | ||
434 | u64 prev_irq_time; | ||
435 | #endif | ||
436 | #ifdef CONFIG_PARAVIRT | ||
437 | u64 prev_steal_time; | ||
438 | #endif | ||
439 | #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING | ||
440 | u64 prev_steal_time_rq; | ||
441 | #endif | ||
442 | |||
443 | /* calc_load related fields */ | ||
444 | unsigned long calc_load_update; | ||
445 | long calc_load_active; | ||
446 | |||
447 | #ifdef CONFIG_SCHED_HRTICK | ||
448 | #ifdef CONFIG_SMP | ||
449 | int hrtick_csd_pending; | ||
450 | struct call_single_data hrtick_csd; | ||
451 | #endif | ||
452 | struct hrtimer hrtick_timer; | ||
453 | #endif | ||
454 | |||
455 | #ifdef CONFIG_SCHEDSTATS | ||
456 | /* latency stats */ | ||
457 | struct sched_info rq_sched_info; | ||
458 | unsigned long long rq_cpu_time; | ||
459 | /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ | ||
460 | |||
461 | /* sys_sched_yield() stats */ | ||
462 | unsigned int yld_count; | ||
463 | |||
464 | /* schedule() stats */ | ||
465 | unsigned int sched_switch; | ||
466 | unsigned int sched_count; | ||
467 | unsigned int sched_goidle; | ||
468 | |||
469 | /* try_to_wake_up() stats */ | ||
470 | unsigned int ttwu_count; | ||
471 | unsigned int ttwu_local; | ||
472 | #endif | ||
473 | |||
474 | #ifdef CONFIG_SMP | ||
475 | struct llist_head wake_list; | ||
476 | #endif | ||
477 | }; | ||
478 | |||
479 | static inline int cpu_of(struct rq *rq) | ||
480 | { | ||
481 | #ifdef CONFIG_SMP | ||
482 | return rq->cpu; | ||
483 | #else | ||
484 | return 0; | ||
485 | #endif | ||
486 | } | ||
487 | |||
488 | DECLARE_PER_CPU(struct rq, runqueues); | ||
489 | |||
490 | #define rcu_dereference_check_sched_domain(p) \ | ||
491 | rcu_dereference_check((p), \ | ||
492 | lockdep_is_held(&sched_domains_mutex)) | ||
493 | |||
494 | /* | ||
495 | * The domain tree (rq->sd) is protected by RCU's quiescent state transition. | ||
496 | * See detach_destroy_domains: synchronize_sched for details. | ||
497 | * | ||
498 | * The domain tree of any CPU may only be accessed from within | ||
499 | * preempt-disabled sections. | ||
500 | */ | ||
501 | #define for_each_domain(cpu, __sd) \ | ||
502 | for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent) | ||
503 | |||
504 | #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) | ||
505 | #define this_rq() (&__get_cpu_var(runqueues)) | ||
506 | #define task_rq(p) cpu_rq(task_cpu(p)) | ||
507 | #define cpu_curr(cpu) (cpu_rq(cpu)->curr) | ||
508 | #define raw_rq() (&__raw_get_cpu_var(runqueues)) | ||
509 | |||
510 | #include "stats.h" | ||
511 | #include "auto_group.h" | ||
512 | |||
513 | #ifdef CONFIG_CGROUP_SCHED | ||
514 | |||
515 | /* | ||
516 | * Return the group to which this tasks belongs. | ||
517 | * | ||
518 | * We use task_subsys_state_check() and extend the RCU verification with | ||
519 | * pi->lock and rq->lock because cpu_cgroup_attach() holds those locks for each | ||
520 | * task it moves into the cgroup. Therefore by holding either of those locks, | ||
521 | * we pin the task to the current cgroup. | ||
522 | */ | ||
523 | static inline struct task_group *task_group(struct task_struct *p) | ||
524 | { | ||
525 | struct task_group *tg; | ||
526 | struct cgroup_subsys_state *css; | ||
527 | |||
528 | css = task_subsys_state_check(p, cpu_cgroup_subsys_id, | ||
529 | lockdep_is_held(&p->pi_lock) || | ||
530 | lockdep_is_held(&task_rq(p)->lock)); | ||
531 | tg = container_of(css, struct task_group, css); | ||
532 | |||
533 | return autogroup_task_group(p, tg); | ||
534 | } | ||
535 | |||
536 | /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ | ||
537 | static inline void set_task_rq(struct task_struct *p, unsigned int cpu) | ||
538 | { | ||
539 | #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED) | ||
540 | struct task_group *tg = task_group(p); | ||
541 | #endif | ||
542 | |||
543 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
544 | p->se.cfs_rq = tg->cfs_rq[cpu]; | ||
545 | p->se.parent = tg->se[cpu]; | ||
546 | #endif | ||
547 | |||
548 | #ifdef CONFIG_RT_GROUP_SCHED | ||
549 | p->rt.rt_rq = tg->rt_rq[cpu]; | ||
550 | p->rt.parent = tg->rt_se[cpu]; | ||
551 | #endif | ||
552 | } | ||
553 | |||
554 | #else /* CONFIG_CGROUP_SCHED */ | ||
555 | |||
556 | static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } | ||
557 | static inline struct task_group *task_group(struct task_struct *p) | ||
558 | { | ||
559 | return NULL; | ||
560 | } | ||
561 | |||
562 | #endif /* CONFIG_CGROUP_SCHED */ | ||
563 | |||
564 | static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) | ||
565 | { | ||
566 | set_task_rq(p, cpu); | ||
567 | #ifdef CONFIG_SMP | ||
568 | /* | ||
569 | * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be | ||
570 | * successfuly executed on another CPU. We must ensure that updates of | ||
571 | * per-task data have been completed by this moment. | ||
572 | */ | ||
573 | smp_wmb(); | ||
574 | task_thread_info(p)->cpu = cpu; | ||
575 | #endif | ||
576 | } | ||
577 | |||
578 | /* | ||
579 | * Tunables that become constants when CONFIG_SCHED_DEBUG is off: | ||
580 | */ | ||
581 | #ifdef CONFIG_SCHED_DEBUG | ||
582 | # define const_debug __read_mostly | ||
583 | #else | ||
584 | # define const_debug const | ||
585 | #endif | ||
586 | |||
587 | extern const_debug unsigned int sysctl_sched_features; | ||
588 | |||
589 | #define SCHED_FEAT(name, enabled) \ | ||
590 | __SCHED_FEAT_##name , | ||
591 | |||
592 | enum { | ||
593 | #include "features.h" | ||
594 | }; | ||
595 | |||
596 | #undef SCHED_FEAT | ||
597 | |||
598 | #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) | ||
599 | |||
600 | static inline u64 global_rt_period(void) | ||
601 | { | ||
602 | return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; | ||
603 | } | ||
604 | |||
605 | static inline u64 global_rt_runtime(void) | ||
606 | { | ||
607 | if (sysctl_sched_rt_runtime < 0) | ||
608 | return RUNTIME_INF; | ||
609 | |||
610 | return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; | ||
611 | } | ||
612 | |||
613 | |||
614 | |||
615 | static inline int task_current(struct rq *rq, struct task_struct *p) | ||
616 | { | ||
617 | return rq->curr == p; | ||
618 | } | ||
619 | |||
620 | static inline int task_running(struct rq *rq, struct task_struct *p) | ||
621 | { | ||
622 | #ifdef CONFIG_SMP | ||
623 | return p->on_cpu; | ||
624 | #else | ||
625 | return task_current(rq, p); | ||
626 | #endif | ||
627 | } | ||
628 | |||
629 | |||
630 | #ifndef prepare_arch_switch | ||
631 | # define prepare_arch_switch(next) do { } while (0) | ||
632 | #endif | ||
633 | #ifndef finish_arch_switch | ||
634 | # define finish_arch_switch(prev) do { } while (0) | ||
635 | #endif | ||
636 | |||
637 | #ifndef __ARCH_WANT_UNLOCKED_CTXSW | ||
638 | static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) | ||
639 | { | ||
640 | #ifdef CONFIG_SMP | ||
641 | /* | ||
642 | * We can optimise this out completely for !SMP, because the | ||
643 | * SMP rebalancing from interrupt is the only thing that cares | ||
644 | * here. | ||
645 | */ | ||
646 | next->on_cpu = 1; | ||
647 | #endif | ||
648 | } | ||
649 | |||
650 | static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) | ||
651 | { | ||
652 | #ifdef CONFIG_SMP | ||
653 | /* | ||
654 | * After ->on_cpu is cleared, the task can be moved to a different CPU. | ||
655 | * We must ensure this doesn't happen until the switch is completely | ||
656 | * finished. | ||
657 | */ | ||
658 | smp_wmb(); | ||
659 | prev->on_cpu = 0; | ||
660 | #endif | ||
661 | #ifdef CONFIG_DEBUG_SPINLOCK | ||
662 | /* this is a valid case when another task releases the spinlock */ | ||
663 | rq->lock.owner = current; | ||
664 | #endif | ||
665 | /* | ||
666 | * If we are tracking spinlock dependencies then we have to | ||
667 | * fix up the runqueue lock - which gets 'carried over' from | ||
668 | * prev into current: | ||
669 | */ | ||
670 | spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); | ||
671 | |||
672 | raw_spin_unlock_irq(&rq->lock); | ||
673 | } | ||
674 | |||
675 | #else /* __ARCH_WANT_UNLOCKED_CTXSW */ | ||
676 | static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) | ||
677 | { | ||
678 | #ifdef CONFIG_SMP | ||
679 | /* | ||
680 | * We can optimise this out completely for !SMP, because the | ||
681 | * SMP rebalancing from interrupt is the only thing that cares | ||
682 | * here. | ||
683 | */ | ||
684 | next->on_cpu = 1; | ||
685 | #endif | ||
686 | #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW | ||
687 | raw_spin_unlock_irq(&rq->lock); | ||
688 | #else | ||
689 | raw_spin_unlock(&rq->lock); | ||
690 | #endif | ||
691 | } | ||
692 | |||
693 | static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) | ||
694 | { | ||
695 | #ifdef CONFIG_SMP | ||
696 | /* | ||
697 | * After ->on_cpu is cleared, the task can be moved to a different CPU. | ||
698 | * We must ensure this doesn't happen until the switch is completely | ||
699 | * finished. | ||
700 | */ | ||
701 | smp_wmb(); | ||
702 | prev->on_cpu = 0; | ||
703 | #endif | ||
704 | #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW | ||
705 | local_irq_enable(); | ||
706 | #endif | ||
707 | } | ||
708 | #endif /* __ARCH_WANT_UNLOCKED_CTXSW */ | ||
709 | |||
710 | |||
711 | static inline void update_load_add(struct load_weight *lw, unsigned long inc) | ||
712 | { | ||
713 | lw->weight += inc; | ||
714 | lw->inv_weight = 0; | ||
715 | } | ||
716 | |||
717 | static inline void update_load_sub(struct load_weight *lw, unsigned long dec) | ||
718 | { | ||
719 | lw->weight -= dec; | ||
720 | lw->inv_weight = 0; | ||
721 | } | ||
722 | |||
723 | static inline void update_load_set(struct load_weight *lw, unsigned long w) | ||
724 | { | ||
725 | lw->weight = w; | ||
726 | lw->inv_weight = 0; | ||
727 | } | ||
728 | |||
729 | /* | ||
730 | * To aid in avoiding the subversion of "niceness" due to uneven distribution | ||
731 | * of tasks with abnormal "nice" values across CPUs the contribution that | ||
732 | * each task makes to its run queue's load is weighted according to its | ||
733 | * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a | ||
734 | * scaled version of the new time slice allocation that they receive on time | ||
735 | * slice expiry etc. | ||
736 | */ | ||
737 | |||
738 | #define WEIGHT_IDLEPRIO 3 | ||
739 | #define WMULT_IDLEPRIO 1431655765 | ||
740 | |||
741 | /* | ||
742 | * Nice levels are multiplicative, with a gentle 10% change for every | ||
743 | * nice level changed. I.e. when a CPU-bound task goes from nice 0 to | ||
744 | * nice 1, it will get ~10% less CPU time than another CPU-bound task | ||
745 | * that remained on nice 0. | ||
746 | * | ||
747 | * The "10% effect" is relative and cumulative: from _any_ nice level, | ||
748 | * if you go up 1 level, it's -10% CPU usage, if you go down 1 level | ||
749 | * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. | ||
750 | * If a task goes up by ~10% and another task goes down by ~10% then | ||
751 | * the relative distance between them is ~25%.) | ||
752 | */ | ||
753 | static const int prio_to_weight[40] = { | ||
754 | /* -20 */ 88761, 71755, 56483, 46273, 36291, | ||
755 | /* -15 */ 29154, 23254, 18705, 14949, 11916, | ||
756 | /* -10 */ 9548, 7620, 6100, 4904, 3906, | ||
757 | /* -5 */ 3121, 2501, 1991, 1586, 1277, | ||
758 | /* 0 */ 1024, 820, 655, 526, 423, | ||
759 | /* 5 */ 335, 272, 215, 172, 137, | ||
760 | /* 10 */ 110, 87, 70, 56, 45, | ||
761 | /* 15 */ 36, 29, 23, 18, 15, | ||
762 | }; | ||
763 | |||
764 | /* | ||
765 | * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated. | ||
766 | * | ||
767 | * In cases where the weight does not change often, we can use the | ||
768 | * precalculated inverse to speed up arithmetics by turning divisions | ||
769 | * into multiplications: | ||
770 | */ | ||
771 | static const u32 prio_to_wmult[40] = { | ||
772 | /* -20 */ 48388, 59856, 76040, 92818, 118348, | ||
773 | /* -15 */ 147320, 184698, 229616, 287308, 360437, | ||
774 | /* -10 */ 449829, 563644, 704093, 875809, 1099582, | ||
775 | /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, | ||
776 | /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, | ||
777 | /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, | ||
778 | /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, | ||
779 | /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, | ||
780 | }; | ||
781 | |||
782 | /* Time spent by the tasks of the cpu accounting group executing in ... */ | ||
783 | enum cpuacct_stat_index { | ||
784 | CPUACCT_STAT_USER, /* ... user mode */ | ||
785 | CPUACCT_STAT_SYSTEM, /* ... kernel mode */ | ||
786 | |||
787 | CPUACCT_STAT_NSTATS, | ||
788 | }; | ||
789 | |||
790 | |||
791 | #define sched_class_highest (&stop_sched_class) | ||
792 | #define for_each_class(class) \ | ||
793 | for (class = sched_class_highest; class; class = class->next) | ||
794 | |||
795 | extern const struct sched_class stop_sched_class; | ||
796 | extern const struct sched_class rt_sched_class; | ||
797 | extern const struct sched_class fair_sched_class; | ||
798 | extern const struct sched_class idle_sched_class; | ||
799 | |||
800 | |||
801 | #ifdef CONFIG_SMP | ||
802 | |||
803 | extern void trigger_load_balance(struct rq *rq, int cpu); | ||
804 | extern void idle_balance(int this_cpu, struct rq *this_rq); | ||
805 | |||
806 | #else /* CONFIG_SMP */ | ||
807 | |||
808 | static inline void idle_balance(int cpu, struct rq *rq) | ||
809 | { | ||
810 | } | ||
811 | |||
812 | #endif | ||
813 | |||
814 | extern void sysrq_sched_debug_show(void); | ||
815 | extern void sched_init_granularity(void); | ||
816 | extern void update_max_interval(void); | ||
817 | extern void update_group_power(struct sched_domain *sd, int cpu); | ||
818 | extern int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu); | ||
819 | extern void init_sched_rt_class(void); | ||
820 | extern void init_sched_fair_class(void); | ||
821 | |||
822 | extern void resched_task(struct task_struct *p); | ||
823 | extern void resched_cpu(int cpu); | ||
824 | |||
825 | extern struct rt_bandwidth def_rt_bandwidth; | ||
826 | extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime); | ||
827 | |||
828 | extern void update_cpu_load(struct rq *this_rq); | ||
829 | |||
830 | #ifdef CONFIG_CGROUP_CPUACCT | ||
831 | extern void cpuacct_charge(struct task_struct *tsk, u64 cputime); | ||
832 | extern void cpuacct_update_stats(struct task_struct *tsk, | ||
833 | enum cpuacct_stat_index idx, cputime_t val); | ||
834 | #else | ||
835 | static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {} | ||
836 | static inline void cpuacct_update_stats(struct task_struct *tsk, | ||
837 | enum cpuacct_stat_index idx, cputime_t val) {} | ||
838 | #endif | ||
839 | |||
840 | static inline void inc_nr_running(struct rq *rq) | ||
841 | { | ||
842 | rq->nr_running++; | ||
843 | } | ||
844 | |||
845 | static inline void dec_nr_running(struct rq *rq) | ||
846 | { | ||
847 | rq->nr_running--; | ||
848 | } | ||
849 | |||
850 | extern void update_rq_clock(struct rq *rq); | ||
851 | |||
852 | extern void activate_task(struct rq *rq, struct task_struct *p, int flags); | ||
853 | extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags); | ||
854 | |||
855 | extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags); | ||
856 | |||
857 | extern const_debug unsigned int sysctl_sched_time_avg; | ||
858 | extern const_debug unsigned int sysctl_sched_nr_migrate; | ||
859 | extern const_debug unsigned int sysctl_sched_migration_cost; | ||
860 | |||
861 | static inline u64 sched_avg_period(void) | ||
862 | { | ||
863 | return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2; | ||
864 | } | ||
865 | |||
866 | void calc_load_account_idle(struct rq *this_rq); | ||
867 | |||
868 | #ifdef CONFIG_SCHED_HRTICK | ||
869 | |||
870 | /* | ||
871 | * Use hrtick when: | ||
872 | * - enabled by features | ||
873 | * - hrtimer is actually high res | ||
874 | */ | ||
875 | static inline int hrtick_enabled(struct rq *rq) | ||
876 | { | ||
877 | if (!sched_feat(HRTICK)) | ||
878 | return 0; | ||
879 | if (!cpu_active(cpu_of(rq))) | ||
880 | return 0; | ||
881 | return hrtimer_is_hres_active(&rq->hrtick_timer); | ||
882 | } | ||
883 | |||
884 | void hrtick_start(struct rq *rq, u64 delay); | ||
885 | |||
886 | #endif /* CONFIG_SCHED_HRTICK */ | ||
887 | |||
888 | #ifdef CONFIG_SMP | ||
889 | extern void sched_avg_update(struct rq *rq); | ||
890 | static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) | ||
891 | { | ||
892 | rq->rt_avg += rt_delta; | ||
893 | sched_avg_update(rq); | ||
894 | } | ||
895 | #else | ||
896 | static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { } | ||
897 | static inline void sched_avg_update(struct rq *rq) { } | ||
898 | #endif | ||
899 | |||
900 | extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period); | ||
901 | |||
902 | #ifdef CONFIG_SMP | ||
903 | #ifdef CONFIG_PREEMPT | ||
904 | |||
905 | static inline void double_rq_lock(struct rq *rq1, struct rq *rq2); | ||
906 | |||
907 | /* | ||
908 | * fair double_lock_balance: Safely acquires both rq->locks in a fair | ||
909 | * way at the expense of forcing extra atomic operations in all | ||
910 | * invocations. This assures that the double_lock is acquired using the | ||
911 | * same underlying policy as the spinlock_t on this architecture, which | ||
912 | * reduces latency compared to the unfair variant below. However, it | ||
913 | * also adds more overhead and therefore may reduce throughput. | ||
914 | */ | ||
915 | static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) | ||
916 | __releases(this_rq->lock) | ||
917 | __acquires(busiest->lock) | ||
918 | __acquires(this_rq->lock) | ||
919 | { | ||
920 | raw_spin_unlock(&this_rq->lock); | ||
921 | double_rq_lock(this_rq, busiest); | ||
922 | |||
923 | return 1; | ||
924 | } | ||
925 | |||
926 | #else | ||
927 | /* | ||
928 | * Unfair double_lock_balance: Optimizes throughput at the expense of | ||
929 | * latency by eliminating extra atomic operations when the locks are | ||
930 | * already in proper order on entry. This favors lower cpu-ids and will | ||
931 | * grant the double lock to lower cpus over higher ids under contention, | ||
932 | * regardless of entry order into the function. | ||
933 | */ | ||
934 | static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) | ||
935 | __releases(this_rq->lock) | ||
936 | __acquires(busiest->lock) | ||
937 | __acquires(this_rq->lock) | ||
938 | { | ||
939 | int ret = 0; | ||
940 | |||
941 | if (unlikely(!raw_spin_trylock(&busiest->lock))) { | ||
942 | if (busiest < this_rq) { | ||
943 | raw_spin_unlock(&this_rq->lock); | ||
944 | raw_spin_lock(&busiest->lock); | ||
945 | raw_spin_lock_nested(&this_rq->lock, | ||
946 | SINGLE_DEPTH_NESTING); | ||
947 | ret = 1; | ||
948 | } else | ||
949 | raw_spin_lock_nested(&busiest->lock, | ||
950 | SINGLE_DEPTH_NESTING); | ||
951 | } | ||
952 | return ret; | ||
953 | } | ||
954 | |||
955 | #endif /* CONFIG_PREEMPT */ | ||
956 | |||
957 | /* | ||
958 | * double_lock_balance - lock the busiest runqueue, this_rq is locked already. | ||
959 | */ | ||
960 | static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest) | ||
961 | { | ||
962 | if (unlikely(!irqs_disabled())) { | ||
963 | /* printk() doesn't work good under rq->lock */ | ||
964 | raw_spin_unlock(&this_rq->lock); | ||
965 | BUG_ON(1); | ||
966 | } | ||
967 | |||
968 | return _double_lock_balance(this_rq, busiest); | ||
969 | } | ||
970 | |||
971 | static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) | ||
972 | __releases(busiest->lock) | ||
973 | { | ||
974 | raw_spin_unlock(&busiest->lock); | ||
975 | lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_); | ||
976 | } | ||
977 | |||
978 | /* | ||
979 | * double_rq_lock - safely lock two runqueues | ||
980 | * | ||
981 | * Note this does not disable interrupts like task_rq_lock, | ||
982 | * you need to do so manually before calling. | ||
983 | */ | ||
984 | static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) | ||
985 | __acquires(rq1->lock) | ||
986 | __acquires(rq2->lock) | ||
987 | { | ||
988 | BUG_ON(!irqs_disabled()); | ||
989 | if (rq1 == rq2) { | ||
990 | raw_spin_lock(&rq1->lock); | ||
991 | __acquire(rq2->lock); /* Fake it out ;) */ | ||
992 | } else { | ||
993 | if (rq1 < rq2) { | ||
994 | raw_spin_lock(&rq1->lock); | ||
995 | raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING); | ||
996 | } else { | ||
997 | raw_spin_lock(&rq2->lock); | ||
998 | raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING); | ||
999 | } | ||
1000 | } | ||
1001 | } | ||
1002 | |||
1003 | /* | ||
1004 | * double_rq_unlock - safely unlock two runqueues | ||
1005 | * | ||
1006 | * Note this does not restore interrupts like task_rq_unlock, | ||
1007 | * you need to do so manually after calling. | ||
1008 | */ | ||
1009 | static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) | ||
1010 | __releases(rq1->lock) | ||
1011 | __releases(rq2->lock) | ||
1012 | { | ||
1013 | raw_spin_unlock(&rq1->lock); | ||
1014 | if (rq1 != rq2) | ||
1015 | raw_spin_unlock(&rq2->lock); | ||
1016 | else | ||
1017 | __release(rq2->lock); | ||
1018 | } | ||
1019 | |||
1020 | #else /* CONFIG_SMP */ | ||
1021 | |||
1022 | /* | ||
1023 | * double_rq_lock - safely lock two runqueues | ||
1024 | * | ||
1025 | * Note this does not disable interrupts like task_rq_lock, | ||
1026 | * you need to do so manually before calling. | ||
1027 | */ | ||
1028 | static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) | ||
1029 | __acquires(rq1->lock) | ||
1030 | __acquires(rq2->lock) | ||
1031 | { | ||
1032 | BUG_ON(!irqs_disabled()); | ||
1033 | BUG_ON(rq1 != rq2); | ||
1034 | raw_spin_lock(&rq1->lock); | ||
1035 | __acquire(rq2->lock); /* Fake it out ;) */ | ||
1036 | } | ||
1037 | |||
1038 | /* | ||
1039 | * double_rq_unlock - safely unlock two runqueues | ||
1040 | * | ||
1041 | * Note this does not restore interrupts like task_rq_unlock, | ||
1042 | * you need to do so manually after calling. | ||
1043 | */ | ||
1044 | static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) | ||
1045 | __releases(rq1->lock) | ||
1046 | __releases(rq2->lock) | ||
1047 | { | ||
1048 | BUG_ON(rq1 != rq2); | ||
1049 | raw_spin_unlock(&rq1->lock); | ||
1050 | __release(rq2->lock); | ||
1051 | } | ||
1052 | |||
1053 | #endif | ||
1054 | |||
1055 | extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq); | ||
1056 | extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq); | ||
1057 | extern void print_cfs_stats(struct seq_file *m, int cpu); | ||
1058 | extern void print_rt_stats(struct seq_file *m, int cpu); | ||
1059 | |||
1060 | extern void init_cfs_rq(struct cfs_rq *cfs_rq); | ||
1061 | extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq); | ||
1062 | extern void unthrottle_offline_cfs_rqs(struct rq *rq); | ||
1063 | |||
1064 | extern void account_cfs_bandwidth_used(int enabled, int was_enabled); | ||