aboutsummaryrefslogtreecommitdiffstats
path: root/kernel/hrtimer.c
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/hrtimer.c')
-rw-r--r--kernel/hrtimer.c824
1 files changed, 682 insertions, 142 deletions
diff --git a/kernel/hrtimer.c b/kernel/hrtimer.c
index f44e499e8fca..476cb0c0b4a4 100644
--- a/kernel/hrtimer.c
+++ b/kernel/hrtimer.c
@@ -1,8 +1,9 @@
1/* 1/*
2 * linux/kernel/hrtimer.c 2 * linux/kernel/hrtimer.c
3 * 3 *
4 * Copyright(C) 2005, Thomas Gleixner <tglx@linutronix.de> 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005, Red Hat, Inc., Ingo Molnar 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
6 * 7 *
7 * High-resolution kernel timers 8 * High-resolution kernel timers
8 * 9 *
@@ -31,12 +32,17 @@
31 */ 32 */
32 33
33#include <linux/cpu.h> 34#include <linux/cpu.h>
35#include <linux/irq.h>
34#include <linux/module.h> 36#include <linux/module.h>
35#include <linux/percpu.h> 37#include <linux/percpu.h>
36#include <linux/hrtimer.h> 38#include <linux/hrtimer.h>
37#include <linux/notifier.h> 39#include <linux/notifier.h>
38#include <linux/syscalls.h> 40#include <linux/syscalls.h>
41#include <linux/kallsyms.h>
39#include <linux/interrupt.h> 42#include <linux/interrupt.h>
43#include <linux/tick.h>
44#include <linux/seq_file.h>
45#include <linux/err.h>
40 46
41#include <asm/uaccess.h> 47#include <asm/uaccess.h>
42 48
@@ -45,7 +51,7 @@
45 * 51 *
46 * returns the time in ktime_t format 52 * returns the time in ktime_t format
47 */ 53 */
48static ktime_t ktime_get(void) 54ktime_t ktime_get(void)
49{ 55{
50 struct timespec now; 56 struct timespec now;
51 57
@@ -59,7 +65,7 @@ static ktime_t ktime_get(void)
59 * 65 *
60 * returns the time in ktime_t format 66 * returns the time in ktime_t format
61 */ 67 */
62static ktime_t ktime_get_real(void) 68ktime_t ktime_get_real(void)
63{ 69{
64 struct timespec now; 70 struct timespec now;
65 71
@@ -79,21 +85,22 @@ EXPORT_SYMBOL_GPL(ktime_get_real);
79 * This ensures that we capture erroneous accesses to these clock ids 85 * This ensures that we capture erroneous accesses to these clock ids
80 * rather than moving them into the range of valid clock id's. 86 * rather than moving them into the range of valid clock id's.
81 */ 87 */
82 88DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
83#define MAX_HRTIMER_BASES 2
84
85static DEFINE_PER_CPU(struct hrtimer_base, hrtimer_bases[MAX_HRTIMER_BASES]) =
86{ 89{
90
91 .clock_base =
87 { 92 {
88 .index = CLOCK_REALTIME, 93 {
89 .get_time = &ktime_get_real, 94 .index = CLOCK_REALTIME,
90 .resolution = KTIME_REALTIME_RES, 95 .get_time = &ktime_get_real,
91 }, 96 .resolution = KTIME_LOW_RES,
92 { 97 },
93 .index = CLOCK_MONOTONIC, 98 {
94 .get_time = &ktime_get, 99 .index = CLOCK_MONOTONIC,
95 .resolution = KTIME_MONOTONIC_RES, 100 .get_time = &ktime_get,
96 }, 101 .resolution = KTIME_LOW_RES,
102 },
103 }
97}; 104};
98 105
99/** 106/**
@@ -125,20 +132,35 @@ EXPORT_SYMBOL_GPL(ktime_get_ts);
125 * Get the coarse grained time at the softirq based on xtime and 132 * Get the coarse grained time at the softirq based on xtime and
126 * wall_to_monotonic. 133 * wall_to_monotonic.
127 */ 134 */
128static void hrtimer_get_softirq_time(struct hrtimer_base *base) 135static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
129{ 136{
130 ktime_t xtim, tomono; 137 ktime_t xtim, tomono;
138 struct timespec xts;
131 unsigned long seq; 139 unsigned long seq;
132 140
133 do { 141 do {
134 seq = read_seqbegin(&xtime_lock); 142 seq = read_seqbegin(&xtime_lock);
135 xtim = timespec_to_ktime(xtime); 143#ifdef CONFIG_NO_HZ
136 tomono = timespec_to_ktime(wall_to_monotonic); 144 getnstimeofday(&xts);
137 145#else
146 xts = xtime;
147#endif
138 } while (read_seqretry(&xtime_lock, seq)); 148 } while (read_seqretry(&xtime_lock, seq));
139 149
140 base[CLOCK_REALTIME].softirq_time = xtim; 150 xtim = timespec_to_ktime(xts);
141 base[CLOCK_MONOTONIC].softirq_time = ktime_add(xtim, tomono); 151 tomono = timespec_to_ktime(wall_to_monotonic);
152 base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
153 base->clock_base[CLOCK_MONOTONIC].softirq_time =
154 ktime_add(xtim, tomono);
155}
156
157/*
158 * Helper function to check, whether the timer is running the callback
159 * function
160 */
161static inline int hrtimer_callback_running(struct hrtimer *timer)
162{
163 return timer->state & HRTIMER_STATE_CALLBACK;
142} 164}
143 165
144/* 166/*
@@ -147,8 +169,6 @@ static void hrtimer_get_softirq_time(struct hrtimer_base *base)
147 */ 169 */
148#ifdef CONFIG_SMP 170#ifdef CONFIG_SMP
149 171
150#define set_curr_timer(b, t) do { (b)->curr_timer = (t); } while (0)
151
152/* 172/*
153 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock 173 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
154 * means that all timers which are tied to this base via timer->base are 174 * means that all timers which are tied to this base via timer->base are
@@ -161,19 +181,20 @@ static void hrtimer_get_softirq_time(struct hrtimer_base *base)
161 * possible to set timer->base = NULL and drop the lock: the timer remains 181 * possible to set timer->base = NULL and drop the lock: the timer remains
162 * locked. 182 * locked.
163 */ 183 */
164static struct hrtimer_base *lock_hrtimer_base(const struct hrtimer *timer, 184static
165 unsigned long *flags) 185struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
186 unsigned long *flags)
166{ 187{
167 struct hrtimer_base *base; 188 struct hrtimer_clock_base *base;
168 189
169 for (;;) { 190 for (;;) {
170 base = timer->base; 191 base = timer->base;
171 if (likely(base != NULL)) { 192 if (likely(base != NULL)) {
172 spin_lock_irqsave(&base->lock, *flags); 193 spin_lock_irqsave(&base->cpu_base->lock, *flags);
173 if (likely(base == timer->base)) 194 if (likely(base == timer->base))
174 return base; 195 return base;
175 /* The timer has migrated to another CPU: */ 196 /* The timer has migrated to another CPU: */
176 spin_unlock_irqrestore(&base->lock, *flags); 197 spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
177 } 198 }
178 cpu_relax(); 199 cpu_relax();
179 } 200 }
@@ -182,12 +203,14 @@ static struct hrtimer_base *lock_hrtimer_base(const struct hrtimer *timer,
182/* 203/*
183 * Switch the timer base to the current CPU when possible. 204 * Switch the timer base to the current CPU when possible.
184 */ 205 */
185static inline struct hrtimer_base * 206static inline struct hrtimer_clock_base *
186switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_base *base) 207switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base)
187{ 208{
188 struct hrtimer_base *new_base; 209 struct hrtimer_clock_base *new_base;
210 struct hrtimer_cpu_base *new_cpu_base;
189 211
190 new_base = &__get_cpu_var(hrtimer_bases)[base->index]; 212 new_cpu_base = &__get_cpu_var(hrtimer_bases);
213 new_base = &new_cpu_base->clock_base[base->index];
191 214
192 if (base != new_base) { 215 if (base != new_base) {
193 /* 216 /*
@@ -199,13 +222,13 @@ switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_base *base)
199 * completed. There is no conflict as we hold the lock until 222 * completed. There is no conflict as we hold the lock until
200 * the timer is enqueued. 223 * the timer is enqueued.
201 */ 224 */
202 if (unlikely(base->curr_timer == timer)) 225 if (unlikely(hrtimer_callback_running(timer)))
203 return base; 226 return base;
204 227
205 /* See the comment in lock_timer_base() */ 228 /* See the comment in lock_timer_base() */
206 timer->base = NULL; 229 timer->base = NULL;
207 spin_unlock(&base->lock); 230 spin_unlock(&base->cpu_base->lock);
208 spin_lock(&new_base->lock); 231 spin_lock(&new_base->cpu_base->lock);
209 timer->base = new_base; 232 timer->base = new_base;
210 } 233 }
211 return new_base; 234 return new_base;
@@ -213,19 +236,17 @@ switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_base *base)
213 236
214#else /* CONFIG_SMP */ 237#else /* CONFIG_SMP */
215 238
216#define set_curr_timer(b, t) do { } while (0) 239static inline struct hrtimer_clock_base *
217
218static inline struct hrtimer_base *
219lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) 240lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
220{ 241{
221 struct hrtimer_base *base = timer->base; 242 struct hrtimer_clock_base *base = timer->base;
222 243
223 spin_lock_irqsave(&base->lock, *flags); 244 spin_lock_irqsave(&base->cpu_base->lock, *flags);
224 245
225 return base; 246 return base;
226} 247}
227 248
228#define switch_hrtimer_base(t, b) (b) 249# define switch_hrtimer_base(t, b) (b)
229 250
230#endif /* !CONFIG_SMP */ 251#endif /* !CONFIG_SMP */
231 252
@@ -256,15 +277,12 @@ ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
256 277
257 return ktime_add(kt, tmp); 278 return ktime_add(kt, tmp);
258} 279}
259
260#else /* CONFIG_KTIME_SCALAR */
261
262# endif /* !CONFIG_KTIME_SCALAR */ 280# endif /* !CONFIG_KTIME_SCALAR */
263 281
264/* 282/*
265 * Divide a ktime value by a nanosecond value 283 * Divide a ktime value by a nanosecond value
266 */ 284 */
267static unsigned long ktime_divns(const ktime_t kt, s64 div) 285unsigned long ktime_divns(const ktime_t kt, s64 div)
268{ 286{
269 u64 dclc, inc, dns; 287 u64 dclc, inc, dns;
270 int sft = 0; 288 int sft = 0;
@@ -281,18 +299,311 @@ static unsigned long ktime_divns(const ktime_t kt, s64 div)
281 299
282 return (unsigned long) dclc; 300 return (unsigned long) dclc;
283} 301}
284
285#else /* BITS_PER_LONG < 64 */
286# define ktime_divns(kt, div) (unsigned long)((kt).tv64 / (div))
287#endif /* BITS_PER_LONG >= 64 */ 302#endif /* BITS_PER_LONG >= 64 */
288 303
304/* High resolution timer related functions */
305#ifdef CONFIG_HIGH_RES_TIMERS
306
307/*
308 * High resolution timer enabled ?
309 */
310static int hrtimer_hres_enabled __read_mostly = 1;
311
312/*
313 * Enable / Disable high resolution mode
314 */
315static int __init setup_hrtimer_hres(char *str)
316{
317 if (!strcmp(str, "off"))
318 hrtimer_hres_enabled = 0;
319 else if (!strcmp(str, "on"))
320 hrtimer_hres_enabled = 1;
321 else
322 return 0;
323 return 1;
324}
325
326__setup("highres=", setup_hrtimer_hres);
327
328/*
329 * hrtimer_high_res_enabled - query, if the highres mode is enabled
330 */
331static inline int hrtimer_is_hres_enabled(void)
332{
333 return hrtimer_hres_enabled;
334}
335
336/*
337 * Is the high resolution mode active ?
338 */
339static inline int hrtimer_hres_active(void)
340{
341 return __get_cpu_var(hrtimer_bases).hres_active;
342}
343
344/*
345 * Reprogram the event source with checking both queues for the
346 * next event
347 * Called with interrupts disabled and base->lock held
348 */
349static void hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base)
350{
351 int i;
352 struct hrtimer_clock_base *base = cpu_base->clock_base;
353 ktime_t expires;
354
355 cpu_base->expires_next.tv64 = KTIME_MAX;
356
357 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
358 struct hrtimer *timer;
359
360 if (!base->first)
361 continue;
362 timer = rb_entry(base->first, struct hrtimer, node);
363 expires = ktime_sub(timer->expires, base->offset);
364 if (expires.tv64 < cpu_base->expires_next.tv64)
365 cpu_base->expires_next = expires;
366 }
367
368 if (cpu_base->expires_next.tv64 != KTIME_MAX)
369 tick_program_event(cpu_base->expires_next, 1);
370}
371
372/*
373 * Shared reprogramming for clock_realtime and clock_monotonic
374 *
375 * When a timer is enqueued and expires earlier than the already enqueued
376 * timers, we have to check, whether it expires earlier than the timer for
377 * which the clock event device was armed.
378 *
379 * Called with interrupts disabled and base->cpu_base.lock held
380 */
381static int hrtimer_reprogram(struct hrtimer *timer,
382 struct hrtimer_clock_base *base)
383{
384 ktime_t *expires_next = &__get_cpu_var(hrtimer_bases).expires_next;
385 ktime_t expires = ktime_sub(timer->expires, base->offset);
386 int res;
387
388 /*
389 * When the callback is running, we do not reprogram the clock event
390 * device. The timer callback is either running on a different CPU or
391 * the callback is executed in the hrtimer_interupt context. The
392 * reprogramming is handled either by the softirq, which called the
393 * callback or at the end of the hrtimer_interrupt.
394 */
395 if (hrtimer_callback_running(timer))
396 return 0;
397
398 if (expires.tv64 >= expires_next->tv64)
399 return 0;
400
401 /*
402 * Clockevents returns -ETIME, when the event was in the past.
403 */
404 res = tick_program_event(expires, 0);
405 if (!IS_ERR_VALUE(res))
406 *expires_next = expires;
407 return res;
408}
409
410
411/*
412 * Retrigger next event is called after clock was set
413 *
414 * Called with interrupts disabled via on_each_cpu()
415 */
416static void retrigger_next_event(void *arg)
417{
418 struct hrtimer_cpu_base *base;
419 struct timespec realtime_offset;
420 unsigned long seq;
421
422 if (!hrtimer_hres_active())
423 return;
424
425 do {
426 seq = read_seqbegin(&xtime_lock);
427 set_normalized_timespec(&realtime_offset,
428 -wall_to_monotonic.tv_sec,
429 -wall_to_monotonic.tv_nsec);
430 } while (read_seqretry(&xtime_lock, seq));
431
432 base = &__get_cpu_var(hrtimer_bases);
433
434 /* Adjust CLOCK_REALTIME offset */
435 spin_lock(&base->lock);
436 base->clock_base[CLOCK_REALTIME].offset =
437 timespec_to_ktime(realtime_offset);
438
439 hrtimer_force_reprogram(base);
440 spin_unlock(&base->lock);
441}
442
443/*
444 * Clock realtime was set
445 *
446 * Change the offset of the realtime clock vs. the monotonic
447 * clock.
448 *
449 * We might have to reprogram the high resolution timer interrupt. On
450 * SMP we call the architecture specific code to retrigger _all_ high
451 * resolution timer interrupts. On UP we just disable interrupts and
452 * call the high resolution interrupt code.
453 */
454void clock_was_set(void)
455{
456 /* Retrigger the CPU local events everywhere */
457 on_each_cpu(retrigger_next_event, NULL, 0, 1);
458}
459
460/*
461 * Check, whether the timer is on the callback pending list
462 */
463static inline int hrtimer_cb_pending(const struct hrtimer *timer)
464{
465 return timer->state & HRTIMER_STATE_PENDING;
466}
467
468/*
469 * Remove a timer from the callback pending list
470 */
471static inline void hrtimer_remove_cb_pending(struct hrtimer *timer)
472{
473 list_del_init(&timer->cb_entry);
474}
475
476/*
477 * Initialize the high resolution related parts of cpu_base
478 */
479static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
480{
481 base->expires_next.tv64 = KTIME_MAX;
482 base->hres_active = 0;
483 INIT_LIST_HEAD(&base->cb_pending);
484}
485
486/*
487 * Initialize the high resolution related parts of a hrtimer
488 */
489static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
490{
491 INIT_LIST_HEAD(&timer->cb_entry);
492}
493
494/*
495 * When High resolution timers are active, try to reprogram. Note, that in case
496 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
497 * check happens. The timer gets enqueued into the rbtree. The reprogramming
498 * and expiry check is done in the hrtimer_interrupt or in the softirq.
499 */
500static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
501 struct hrtimer_clock_base *base)
502{
503 if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
504
505 /* Timer is expired, act upon the callback mode */
506 switch(timer->cb_mode) {
507 case HRTIMER_CB_IRQSAFE_NO_RESTART:
508 /*
509 * We can call the callback from here. No restart
510 * happens, so no danger of recursion
511 */
512 BUG_ON(timer->function(timer) != HRTIMER_NORESTART);
513 return 1;
514 case HRTIMER_CB_IRQSAFE_NO_SOFTIRQ:
515 /*
516 * This is solely for the sched tick emulation with
517 * dynamic tick support to ensure that we do not
518 * restart the tick right on the edge and end up with
519 * the tick timer in the softirq ! The calling site
520 * takes care of this.
521 */
522 return 1;
523 case HRTIMER_CB_IRQSAFE:
524 case HRTIMER_CB_SOFTIRQ:
525 /*
526 * Move everything else into the softirq pending list !
527 */
528 list_add_tail(&timer->cb_entry,
529 &base->cpu_base->cb_pending);
530 timer->state = HRTIMER_STATE_PENDING;
531 raise_softirq(HRTIMER_SOFTIRQ);
532 return 1;
533 default:
534 BUG();
535 }
536 }
537 return 0;
538}
539
540/*
541 * Switch to high resolution mode
542 */
543static void hrtimer_switch_to_hres(void)
544{
545 struct hrtimer_cpu_base *base = &__get_cpu_var(hrtimer_bases);
546 unsigned long flags;
547
548 if (base->hres_active)
549 return;
550
551 local_irq_save(flags);
552
553 if (tick_init_highres()) {
554 local_irq_restore(flags);
555 return;
556 }
557 base->hres_active = 1;
558 base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
559 base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;
560
561 tick_setup_sched_timer();
562
563 /* "Retrigger" the interrupt to get things going */
564 retrigger_next_event(NULL);
565 local_irq_restore(flags);
566 printk(KERN_INFO "Switched to high resolution mode on CPU %d\n",
567 smp_processor_id());
568}
569
570#else
571
572static inline int hrtimer_hres_active(void) { return 0; }
573static inline int hrtimer_is_hres_enabled(void) { return 0; }
574static inline void hrtimer_switch_to_hres(void) { }
575static inline void hrtimer_force_reprogram(struct hrtimer_cpu_base *base) { }
576static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
577 struct hrtimer_clock_base *base)
578{
579 return 0;
580}
581static inline int hrtimer_cb_pending(struct hrtimer *timer) { return 0; }
582static inline void hrtimer_remove_cb_pending(struct hrtimer *timer) { }
583static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
584static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }
585
586#endif /* CONFIG_HIGH_RES_TIMERS */
587
588#ifdef CONFIG_TIMER_STATS
589void __timer_stats_hrtimer_set_start_info(struct hrtimer *timer, void *addr)
590{
591 if (timer->start_site)
592 return;
593
594 timer->start_site = addr;
595 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
596 timer->start_pid = current->pid;
597}
598#endif
599
289/* 600/*
290 * Counterpart to lock_timer_base above: 601 * Counterpart to lock_timer_base above:
291 */ 602 */
292static inline 603static inline
293void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) 604void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
294{ 605{
295 spin_unlock_irqrestore(&timer->base->lock, *flags); 606 spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
296} 607}
297 608
298/** 609/**
@@ -342,7 +653,8 @@ hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
342 * The timer is inserted in expiry order. Insertion into the 653 * The timer is inserted in expiry order. Insertion into the
343 * red black tree is O(log(n)). Must hold the base lock. 654 * red black tree is O(log(n)). Must hold the base lock.
344 */ 655 */
345static void enqueue_hrtimer(struct hrtimer *timer, struct hrtimer_base *base) 656static void enqueue_hrtimer(struct hrtimer *timer,
657 struct hrtimer_clock_base *base, int reprogram)
346{ 658{
347 struct rb_node **link = &base->active.rb_node; 659 struct rb_node **link = &base->active.rb_node;
348 struct rb_node *parent = NULL; 660 struct rb_node *parent = NULL;
@@ -368,39 +680,85 @@ static void enqueue_hrtimer(struct hrtimer *timer, struct hrtimer_base *base)
368 * Insert the timer to the rbtree and check whether it 680 * Insert the timer to the rbtree and check whether it
369 * replaces the first pending timer 681 * replaces the first pending timer
370 */ 682 */
371 rb_link_node(&timer->node, parent, link);
372 rb_insert_color(&timer->node, &base->active);
373
374 if (!base->first || timer->expires.tv64 < 683 if (!base->first || timer->expires.tv64 <
375 rb_entry(base->first, struct hrtimer, node)->expires.tv64) 684 rb_entry(base->first, struct hrtimer, node)->expires.tv64) {
685 /*
686 * Reprogram the clock event device. When the timer is already
687 * expired hrtimer_enqueue_reprogram has either called the
688 * callback or added it to the pending list and raised the
689 * softirq.
690 *
691 * This is a NOP for !HIGHRES
692 */
693 if (reprogram && hrtimer_enqueue_reprogram(timer, base))
694 return;
695
376 base->first = &timer->node; 696 base->first = &timer->node;
697 }
698
699 rb_link_node(&timer->node, parent, link);
700 rb_insert_color(&timer->node, &base->active);
701 /*
702 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
703 * state of a possibly running callback.
704 */
705 timer->state |= HRTIMER_STATE_ENQUEUED;
377} 706}
378 707
379/* 708/*
380 * __remove_hrtimer - internal function to remove a timer 709 * __remove_hrtimer - internal function to remove a timer
381 * 710 *
382 * Caller must hold the base lock. 711 * Caller must hold the base lock.
712 *
713 * High resolution timer mode reprograms the clock event device when the
714 * timer is the one which expires next. The caller can disable this by setting
715 * reprogram to zero. This is useful, when the context does a reprogramming
716 * anyway (e.g. timer interrupt)
383 */ 717 */
384static void __remove_hrtimer(struct hrtimer *timer, struct hrtimer_base *base) 718static void __remove_hrtimer(struct hrtimer *timer,
719 struct hrtimer_clock_base *base,
720 unsigned long newstate, int reprogram)
385{ 721{
386 /* 722 /* High res. callback list. NOP for !HIGHRES */
387 * Remove the timer from the rbtree and replace the 723 if (hrtimer_cb_pending(timer))
388 * first entry pointer if necessary. 724 hrtimer_remove_cb_pending(timer);
389 */ 725 else {
390 if (base->first == &timer->node) 726 /*
391 base->first = rb_next(&timer->node); 727 * Remove the timer from the rbtree and replace the
392 rb_erase(&timer->node, &base->active); 728 * first entry pointer if necessary.
393 rb_set_parent(&timer->node, &timer->node); 729 */
730 if (base->first == &timer->node) {
731 base->first = rb_next(&timer->node);
732 /* Reprogram the clock event device. if enabled */
733 if (reprogram && hrtimer_hres_active())
734 hrtimer_force_reprogram(base->cpu_base);
735 }
736 rb_erase(&timer->node, &base->active);
737 }
738 timer->state = newstate;
394} 739}
395 740
396/* 741/*
397 * remove hrtimer, called with base lock held 742 * remove hrtimer, called with base lock held
398 */ 743 */
399static inline int 744static inline int
400remove_hrtimer(struct hrtimer *timer, struct hrtimer_base *base) 745remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
401{ 746{
402 if (hrtimer_active(timer)) { 747 if (hrtimer_is_queued(timer)) {
403 __remove_hrtimer(timer, base); 748 int reprogram;
749
750 /*
751 * Remove the timer and force reprogramming when high
752 * resolution mode is active and the timer is on the current
753 * CPU. If we remove a timer on another CPU, reprogramming is
754 * skipped. The interrupt event on this CPU is fired and
755 * reprogramming happens in the interrupt handler. This is a
756 * rare case and less expensive than a smp call.
757 */
758 timer_stats_hrtimer_clear_start_info(timer);
759 reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
760 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE,
761 reprogram);
404 return 1; 762 return 1;
405 } 763 }
406 return 0; 764 return 0;
@@ -419,7 +777,7 @@ remove_hrtimer(struct hrtimer *timer, struct hrtimer_base *base)
419int 777int
420hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode) 778hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
421{ 779{
422 struct hrtimer_base *base, *new_base; 780 struct hrtimer_clock_base *base, *new_base;
423 unsigned long flags; 781 unsigned long flags;
424 int ret; 782 int ret;
425 783
@@ -431,7 +789,7 @@ hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
431 /* Switch the timer base, if necessary: */ 789 /* Switch the timer base, if necessary: */
432 new_base = switch_hrtimer_base(timer, base); 790 new_base = switch_hrtimer_base(timer, base);
433 791
434 if (mode == HRTIMER_REL) { 792 if (mode == HRTIMER_MODE_REL) {
435 tim = ktime_add(tim, new_base->get_time()); 793 tim = ktime_add(tim, new_base->get_time());
436 /* 794 /*
437 * CONFIG_TIME_LOW_RES is a temporary way for architectures 795 * CONFIG_TIME_LOW_RES is a temporary way for architectures
@@ -446,7 +804,9 @@ hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
446 } 804 }
447 timer->expires = tim; 805 timer->expires = tim;
448 806
449 enqueue_hrtimer(timer, new_base); 807 timer_stats_hrtimer_set_start_info(timer);
808
809 enqueue_hrtimer(timer, new_base, base == new_base);
450 810
451 unlock_hrtimer_base(timer, &flags); 811 unlock_hrtimer_base(timer, &flags);
452 812
@@ -466,13 +826,13 @@ EXPORT_SYMBOL_GPL(hrtimer_start);
466 */ 826 */
467int hrtimer_try_to_cancel(struct hrtimer *timer) 827int hrtimer_try_to_cancel(struct hrtimer *timer)
468{ 828{
469 struct hrtimer_base *base; 829 struct hrtimer_clock_base *base;
470 unsigned long flags; 830 unsigned long flags;
471 int ret = -1; 831 int ret = -1;
472 832
473 base = lock_hrtimer_base(timer, &flags); 833 base = lock_hrtimer_base(timer, &flags);
474 834
475 if (base->curr_timer != timer) 835 if (!hrtimer_callback_running(timer))
476 ret = remove_hrtimer(timer, base); 836 ret = remove_hrtimer(timer, base);
477 837
478 unlock_hrtimer_base(timer, &flags); 838 unlock_hrtimer_base(timer, &flags);
@@ -508,19 +868,19 @@ EXPORT_SYMBOL_GPL(hrtimer_cancel);
508 */ 868 */
509ktime_t hrtimer_get_remaining(const struct hrtimer *timer) 869ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
510{ 870{
511 struct hrtimer_base *base; 871 struct hrtimer_clock_base *base;
512 unsigned long flags; 872 unsigned long flags;
513 ktime_t rem; 873 ktime_t rem;
514 874
515 base = lock_hrtimer_base(timer, &flags); 875 base = lock_hrtimer_base(timer, &flags);
516 rem = ktime_sub(timer->expires, timer->base->get_time()); 876 rem = ktime_sub(timer->expires, base->get_time());
517 unlock_hrtimer_base(timer, &flags); 877 unlock_hrtimer_base(timer, &flags);
518 878
519 return rem; 879 return rem;
520} 880}
521EXPORT_SYMBOL_GPL(hrtimer_get_remaining); 881EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
522 882
523#ifdef CONFIG_NO_IDLE_HZ 883#if defined(CONFIG_NO_IDLE_HZ) || defined(CONFIG_NO_HZ)
524/** 884/**
525 * hrtimer_get_next_event - get the time until next expiry event 885 * hrtimer_get_next_event - get the time until next expiry event
526 * 886 *
@@ -529,26 +889,31 @@ EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
529 */ 889 */
530ktime_t hrtimer_get_next_event(void) 890ktime_t hrtimer_get_next_event(void)
531{ 891{
532 struct hrtimer_base *base = __get_cpu_var(hrtimer_bases); 892 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
893 struct hrtimer_clock_base *base = cpu_base->clock_base;
533 ktime_t delta, mindelta = { .tv64 = KTIME_MAX }; 894 ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
534 unsigned long flags; 895 unsigned long flags;
535 int i; 896 int i;
536 897
537 for (i = 0; i < MAX_HRTIMER_BASES; i++, base++) { 898 spin_lock_irqsave(&cpu_base->lock, flags);
538 struct hrtimer *timer;
539 899
540 spin_lock_irqsave(&base->lock, flags); 900 if (!hrtimer_hres_active()) {
541 if (!base->first) { 901 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
542 spin_unlock_irqrestore(&base->lock, flags); 902 struct hrtimer *timer;
543 continue; 903
904 if (!base->first)
905 continue;
906
907 timer = rb_entry(base->first, struct hrtimer, node);
908 delta.tv64 = timer->expires.tv64;
909 delta = ktime_sub(delta, base->get_time());
910 if (delta.tv64 < mindelta.tv64)
911 mindelta.tv64 = delta.tv64;
544 } 912 }
545 timer = rb_entry(base->first, struct hrtimer, node);
546 delta.tv64 = timer->expires.tv64;
547 spin_unlock_irqrestore(&base->lock, flags);
548 delta = ktime_sub(delta, base->get_time());
549 if (delta.tv64 < mindelta.tv64)
550 mindelta.tv64 = delta.tv64;
551 } 913 }
914
915 spin_unlock_irqrestore(&cpu_base->lock, flags);
916
552 if (mindelta.tv64 < 0) 917 if (mindelta.tv64 < 0)
553 mindelta.tv64 = 0; 918 mindelta.tv64 = 0;
554 return mindelta; 919 return mindelta;
@@ -564,17 +929,23 @@ ktime_t hrtimer_get_next_event(void)
564void hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 929void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
565 enum hrtimer_mode mode) 930 enum hrtimer_mode mode)
566{ 931{
567 struct hrtimer_base *bases; 932 struct hrtimer_cpu_base *cpu_base;
568 933
569 memset(timer, 0, sizeof(struct hrtimer)); 934 memset(timer, 0, sizeof(struct hrtimer));
570 935
571 bases = __raw_get_cpu_var(hrtimer_bases); 936 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
572 937
573 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_ABS) 938 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
574 clock_id = CLOCK_MONOTONIC; 939 clock_id = CLOCK_MONOTONIC;
575 940
576 timer->base = &bases[clock_id]; 941 timer->base = &cpu_base->clock_base[clock_id];
577 rb_set_parent(&timer->node, &timer->node); 942 hrtimer_init_timer_hres(timer);
943
944#ifdef CONFIG_TIMER_STATS
945 timer->start_site = NULL;
946 timer->start_pid = -1;
947 memset(timer->start_comm, 0, TASK_COMM_LEN);
948#endif
578} 949}
579EXPORT_SYMBOL_GPL(hrtimer_init); 950EXPORT_SYMBOL_GPL(hrtimer_init);
580 951
@@ -588,21 +959,159 @@ EXPORT_SYMBOL_GPL(hrtimer_init);
588 */ 959 */
589int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp) 960int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
590{ 961{
591 struct hrtimer_base *bases; 962 struct hrtimer_cpu_base *cpu_base;
592 963
593 bases = __raw_get_cpu_var(hrtimer_bases); 964 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
594 *tp = ktime_to_timespec(bases[which_clock].resolution); 965 *tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
595 966
596 return 0; 967 return 0;
597} 968}
598EXPORT_SYMBOL_GPL(hrtimer_get_res); 969EXPORT_SYMBOL_GPL(hrtimer_get_res);
599 970
971#ifdef CONFIG_HIGH_RES_TIMERS
972
973/*
974 * High resolution timer interrupt
975 * Called with interrupts disabled
976 */
977void hrtimer_interrupt(struct clock_event_device *dev)
978{
979 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
980 struct hrtimer_clock_base *base;
981 ktime_t expires_next, now;
982 int i, raise = 0;
983
984 BUG_ON(!cpu_base->hres_active);
985 cpu_base->nr_events++;
986 dev->next_event.tv64 = KTIME_MAX;
987
988 retry:
989 now = ktime_get();
990
991 expires_next.tv64 = KTIME_MAX;
992
993 base = cpu_base->clock_base;
994
995 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
996 ktime_t basenow;
997 struct rb_node *node;
998
999 spin_lock(&cpu_base->lock);
1000
1001 basenow = ktime_add(now, base->offset);
1002
1003 while ((node = base->first)) {
1004 struct hrtimer *timer;
1005
1006 timer = rb_entry(node, struct hrtimer, node);
1007
1008 if (basenow.tv64 < timer->expires.tv64) {
1009 ktime_t expires;
1010
1011 expires = ktime_sub(timer->expires,
1012 base->offset);
1013 if (expires.tv64 < expires_next.tv64)
1014 expires_next = expires;
1015 break;
1016 }
1017
1018 /* Move softirq callbacks to the pending list */
1019 if (timer->cb_mode == HRTIMER_CB_SOFTIRQ) {
1020 __remove_hrtimer(timer, base,
1021 HRTIMER_STATE_PENDING, 0);
1022 list_add_tail(&timer->cb_entry,
1023 &base->cpu_base->cb_pending);
1024 raise = 1;
1025 continue;
1026 }
1027
1028 __remove_hrtimer(timer, base,
1029 HRTIMER_STATE_CALLBACK, 0);
1030 timer_stats_account_hrtimer(timer);
1031
1032 /*
1033 * Note: We clear the CALLBACK bit after
1034 * enqueue_hrtimer to avoid reprogramming of
1035 * the event hardware. This happens at the end
1036 * of this function anyway.
1037 */
1038 if (timer->function(timer) != HRTIMER_NORESTART) {
1039 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1040 enqueue_hrtimer(timer, base, 0);
1041 }
1042 timer->state &= ~HRTIMER_STATE_CALLBACK;
1043 }
1044 spin_unlock(&cpu_base->lock);
1045 base++;
1046 }
1047
1048 cpu_base->expires_next = expires_next;
1049
1050 /* Reprogramming necessary ? */
1051 if (expires_next.tv64 != KTIME_MAX) {
1052 if (tick_program_event(expires_next, 0))
1053 goto retry;
1054 }
1055
1056 /* Raise softirq ? */
1057 if (raise)
1058 raise_softirq(HRTIMER_SOFTIRQ);
1059}
1060
1061static void run_hrtimer_softirq(struct softirq_action *h)
1062{
1063 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1064
1065 spin_lock_irq(&cpu_base->lock);
1066
1067 while (!list_empty(&cpu_base->cb_pending)) {
1068 enum hrtimer_restart (*fn)(struct hrtimer *);
1069 struct hrtimer *timer;
1070 int restart;
1071
1072 timer = list_entry(cpu_base->cb_pending.next,
1073 struct hrtimer, cb_entry);
1074
1075 timer_stats_account_hrtimer(timer);
1076
1077 fn = timer->function;
1078 __remove_hrtimer(timer, timer->base, HRTIMER_STATE_CALLBACK, 0);
1079 spin_unlock_irq(&cpu_base->lock);
1080
1081 restart = fn(timer);
1082
1083 spin_lock_irq(&cpu_base->lock);
1084
1085 timer->state &= ~HRTIMER_STATE_CALLBACK;
1086 if (restart == HRTIMER_RESTART) {
1087 BUG_ON(hrtimer_active(timer));
1088 /*
1089 * Enqueue the timer, allow reprogramming of the event
1090 * device
1091 */
1092 enqueue_hrtimer(timer, timer->base, 1);
1093 } else if (hrtimer_active(timer)) {
1094 /*
1095 * If the timer was rearmed on another CPU, reprogram
1096 * the event device.
1097 */
1098 if (timer->base->first == &timer->node)
1099 hrtimer_reprogram(timer, timer->base);
1100 }
1101 }
1102 spin_unlock_irq(&cpu_base->lock);
1103}
1104
1105#endif /* CONFIG_HIGH_RES_TIMERS */
1106
600/* 1107/*
601 * Expire the per base hrtimer-queue: 1108 * Expire the per base hrtimer-queue:
602 */ 1109 */
603static inline void run_hrtimer_queue(struct hrtimer_base *base) 1110static inline void run_hrtimer_queue(struct hrtimer_cpu_base *cpu_base,
1111 int index)
604{ 1112{
605 struct rb_node *node; 1113 struct rb_node *node;
1114 struct hrtimer_clock_base *base = &cpu_base->clock_base[index];
606 1115
607 if (!base->first) 1116 if (!base->first)
608 return; 1117 return;
@@ -610,53 +1119,72 @@ static inline void run_hrtimer_queue(struct hrtimer_base *base)
610 if (base->get_softirq_time) 1119 if (base->get_softirq_time)
611 base->softirq_time = base->get_softirq_time(); 1120 base->softirq_time = base->get_softirq_time();
612 1121
613 spin_lock_irq(&base->lock); 1122 spin_lock_irq(&cpu_base->lock);
614 1123
615 while ((node = base->first)) { 1124 while ((node = base->first)) {
616 struct hrtimer *timer; 1125 struct hrtimer *timer;
617 int (*fn)(struct hrtimer *); 1126 enum hrtimer_restart (*fn)(struct hrtimer *);
618 int restart; 1127 int restart;
619 1128
620 timer = rb_entry(node, struct hrtimer, node); 1129 timer = rb_entry(node, struct hrtimer, node);
621 if (base->softirq_time.tv64 <= timer->expires.tv64) 1130 if (base->softirq_time.tv64 <= timer->expires.tv64)
622 break; 1131 break;
623 1132
1133 timer_stats_account_hrtimer(timer);
1134
624 fn = timer->function; 1135 fn = timer->function;
625 set_curr_timer(base, timer); 1136 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
626 __remove_hrtimer(timer, base); 1137 spin_unlock_irq(&cpu_base->lock);
627 spin_unlock_irq(&base->lock);
628 1138
629 restart = fn(timer); 1139 restart = fn(timer);
630 1140
631 spin_lock_irq(&base->lock); 1141 spin_lock_irq(&cpu_base->lock);
632 1142
1143 timer->state &= ~HRTIMER_STATE_CALLBACK;
633 if (restart != HRTIMER_NORESTART) { 1144 if (restart != HRTIMER_NORESTART) {
634 BUG_ON(hrtimer_active(timer)); 1145 BUG_ON(hrtimer_active(timer));
635 enqueue_hrtimer(timer, base); 1146 enqueue_hrtimer(timer, base, 0);
636 } 1147 }
637 } 1148 }
638 set_curr_timer(base, NULL); 1149 spin_unlock_irq(&cpu_base->lock);
639 spin_unlock_irq(&base->lock);
640} 1150}
641 1151
642/* 1152/*
643 * Called from timer softirq every jiffy, expire hrtimers: 1153 * Called from timer softirq every jiffy, expire hrtimers:
1154 *
1155 * For HRT its the fall back code to run the softirq in the timer
1156 * softirq context in case the hrtimer initialization failed or has
1157 * not been done yet.
644 */ 1158 */
645void hrtimer_run_queues(void) 1159void hrtimer_run_queues(void)
646{ 1160{
647 struct hrtimer_base *base = __get_cpu_var(hrtimer_bases); 1161 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
648 int i; 1162 int i;
649 1163
650 hrtimer_get_softirq_time(base); 1164 if (hrtimer_hres_active())
1165 return;
1166
1167 /*
1168 * This _is_ ugly: We have to check in the softirq context,
1169 * whether we can switch to highres and / or nohz mode. The
1170 * clocksource switch happens in the timer interrupt with
1171 * xtime_lock held. Notification from there only sets the
1172 * check bit in the tick_oneshot code, otherwise we might
1173 * deadlock vs. xtime_lock.
1174 */
1175 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1176 hrtimer_switch_to_hres();
651 1177
652 for (i = 0; i < MAX_HRTIMER_BASES; i++) 1178 hrtimer_get_softirq_time(cpu_base);
653 run_hrtimer_queue(&base[i]); 1179
1180 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
1181 run_hrtimer_queue(cpu_base, i);
654} 1182}
655 1183
656/* 1184/*
657 * Sleep related functions: 1185 * Sleep related functions:
658 */ 1186 */
659static int hrtimer_wakeup(struct hrtimer *timer) 1187static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
660{ 1188{
661 struct hrtimer_sleeper *t = 1189 struct hrtimer_sleeper *t =
662 container_of(timer, struct hrtimer_sleeper, timer); 1190 container_of(timer, struct hrtimer_sleeper, timer);
@@ -673,6 +1201,9 @@ void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
673{ 1201{
674 sl->timer.function = hrtimer_wakeup; 1202 sl->timer.function = hrtimer_wakeup;
675 sl->task = task; 1203 sl->task = task;
1204#ifdef CONFIG_HIGH_RES_TIMERS
1205 sl->timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_RESTART;
1206#endif
676} 1207}
677 1208
678static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode) 1209static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
@@ -683,10 +1214,11 @@ static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mod
683 set_current_state(TASK_INTERRUPTIBLE); 1214 set_current_state(TASK_INTERRUPTIBLE);
684 hrtimer_start(&t->timer, t->timer.expires, mode); 1215 hrtimer_start(&t->timer, t->timer.expires, mode);
685 1216
686 schedule(); 1217 if (likely(t->task))
1218 schedule();
687 1219
688 hrtimer_cancel(&t->timer); 1220 hrtimer_cancel(&t->timer);
689 mode = HRTIMER_ABS; 1221 mode = HRTIMER_MODE_ABS;
690 1222
691 } while (t->task && !signal_pending(current)); 1223 } while (t->task && !signal_pending(current));
692 1224
@@ -702,10 +1234,10 @@ long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
702 1234
703 restart->fn = do_no_restart_syscall; 1235 restart->fn = do_no_restart_syscall;
704 1236
705 hrtimer_init(&t.timer, restart->arg0, HRTIMER_ABS); 1237 hrtimer_init(&t.timer, restart->arg0, HRTIMER_MODE_ABS);
706 t.timer.expires.tv64 = ((u64)restart->arg3 << 32) | (u64) restart->arg2; 1238 t.timer.expires.tv64 = ((u64)restart->arg3 << 32) | (u64) restart->arg2;
707 1239
708 if (do_nanosleep(&t, HRTIMER_ABS)) 1240 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
709 return 0; 1241 return 0;
710 1242
711 rmtp = (struct timespec __user *) restart->arg1; 1243 rmtp = (struct timespec __user *) restart->arg1;
@@ -738,7 +1270,7 @@ long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
738 return 0; 1270 return 0;
739 1271
740 /* Absolute timers do not update the rmtp value and restart: */ 1272 /* Absolute timers do not update the rmtp value and restart: */
741 if (mode == HRTIMER_ABS) 1273 if (mode == HRTIMER_MODE_ABS)
742 return -ERESTARTNOHAND; 1274 return -ERESTARTNOHAND;
743 1275
744 if (rmtp) { 1276 if (rmtp) {
@@ -771,7 +1303,7 @@ sys_nanosleep(struct timespec __user *rqtp, struct timespec __user *rmtp)
771 if (!timespec_valid(&tu)) 1303 if (!timespec_valid(&tu))
772 return -EINVAL; 1304 return -EINVAL;
773 1305
774 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_REL, CLOCK_MONOTONIC); 1306 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
775} 1307}
776 1308
777/* 1309/*
@@ -779,56 +1311,60 @@ sys_nanosleep(struct timespec __user *rqtp, struct timespec __user *rmtp)
779 */ 1311 */
780static void __devinit init_hrtimers_cpu(int cpu) 1312static void __devinit init_hrtimers_cpu(int cpu)
781{ 1313{
782 struct hrtimer_base *base = per_cpu(hrtimer_bases, cpu); 1314 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
783 int i; 1315 int i;
784 1316
785 for (i = 0; i < MAX_HRTIMER_BASES; i++, base++) { 1317 spin_lock_init(&cpu_base->lock);
786 spin_lock_init(&base->lock); 1318 lockdep_set_class(&cpu_base->lock, &cpu_base->lock_key);
787 lockdep_set_class(&base->lock, &base->lock_key); 1319
788 } 1320 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
1321 cpu_base->clock_base[i].cpu_base = cpu_base;
1322
1323 hrtimer_init_hres(cpu_base);
789} 1324}
790 1325
791#ifdef CONFIG_HOTPLUG_CPU 1326#ifdef CONFIG_HOTPLUG_CPU
792 1327
793static void migrate_hrtimer_list(struct hrtimer_base *old_base, 1328static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
794 struct hrtimer_base *new_base) 1329 struct hrtimer_clock_base *new_base)
795{ 1330{
796 struct hrtimer *timer; 1331 struct hrtimer *timer;
797 struct rb_node *node; 1332 struct rb_node *node;
798 1333
799 while ((node = rb_first(&old_base->active))) { 1334 while ((node = rb_first(&old_base->active))) {
800 timer = rb_entry(node, struct hrtimer, node); 1335 timer = rb_entry(node, struct hrtimer, node);
801 __remove_hrtimer(timer, old_base); 1336 BUG_ON(hrtimer_callback_running(timer));
1337 __remove_hrtimer(timer, old_base, HRTIMER_STATE_INACTIVE, 0);
802 timer->base = new_base; 1338 timer->base = new_base;
803 enqueue_hrtimer(timer, new_base); 1339 /*
1340 * Enqueue the timer. Allow reprogramming of the event device
1341 */
1342 enqueue_hrtimer(timer, new_base, 1);
804 } 1343 }
805} 1344}
806 1345
807static void migrate_hrtimers(int cpu) 1346static void migrate_hrtimers(int cpu)
808{ 1347{
809 struct hrtimer_base *old_base, *new_base; 1348 struct hrtimer_cpu_base *old_base, *new_base;
810 int i; 1349 int i;
811 1350
812 BUG_ON(cpu_online(cpu)); 1351 BUG_ON(cpu_online(cpu));
813 old_base = per_cpu(hrtimer_bases, cpu); 1352 old_base = &per_cpu(hrtimer_bases, cpu);
814 new_base = get_cpu_var(hrtimer_bases); 1353 new_base = &get_cpu_var(hrtimer_bases);
815
816 local_irq_disable();
817 1354
818 for (i = 0; i < MAX_HRTIMER_BASES; i++) { 1355 tick_cancel_sched_timer(cpu);
819 1356
820 spin_lock(&new_base->lock); 1357 local_irq_disable();
821 spin_lock(&old_base->lock);
822
823 BUG_ON(old_base->curr_timer);
824 1358
825 migrate_hrtimer_list(old_base, new_base); 1359 spin_lock(&new_base->lock);
1360 spin_lock(&old_base->lock);
826 1361
827 spin_unlock(&old_base->lock); 1362 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
828 spin_unlock(&new_base->lock); 1363 migrate_hrtimer_list(&old_base->clock_base[i],
829 old_base++; 1364 &new_base->clock_base[i]);
830 new_base++;
831 } 1365 }
1366 spin_unlock(&old_base->lock);
1367 spin_unlock(&new_base->lock);
832 1368
833 local_irq_enable(); 1369 local_irq_enable();
834 put_cpu_var(hrtimer_bases); 1370 put_cpu_var(hrtimer_bases);
@@ -848,6 +1384,7 @@ static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
848 1384
849#ifdef CONFIG_HOTPLUG_CPU 1385#ifdef CONFIG_HOTPLUG_CPU
850 case CPU_DEAD: 1386 case CPU_DEAD:
1387 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &cpu);
851 migrate_hrtimers(cpu); 1388 migrate_hrtimers(cpu);
852 break; 1389 break;
853#endif 1390#endif
@@ -868,5 +1405,8 @@ void __init hrtimers_init(void)
868 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE, 1405 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
869 (void *)(long)smp_processor_id()); 1406 (void *)(long)smp_processor_id());
870 register_cpu_notifier(&hrtimers_nb); 1407 register_cpu_notifier(&hrtimers_nb);
1408#ifdef CONFIG_HIGH_RES_TIMERS
1409 open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq, NULL);
1410#endif
871} 1411}
872 1412