diff options
Diffstat (limited to 'kernel/hrtimer.c')
| -rw-r--r-- | kernel/hrtimer.c | 825 |
1 files changed, 825 insertions, 0 deletions
diff --git a/kernel/hrtimer.c b/kernel/hrtimer.c new file mode 100644 index 000000000000..04ccab099e84 --- /dev/null +++ b/kernel/hrtimer.c | |||
| @@ -0,0 +1,825 @@ | |||
| 1 | /* | ||
| 2 | * linux/kernel/hrtimer.c | ||
| 3 | * | ||
| 4 | * Copyright(C) 2005, Thomas Gleixner <tglx@linutronix.de> | ||
| 5 | * Copyright(C) 2005, Red Hat, Inc., Ingo Molnar | ||
| 6 | * | ||
| 7 | * High-resolution kernel timers | ||
| 8 | * | ||
| 9 | * In contrast to the low-resolution timeout API implemented in | ||
| 10 | * kernel/timer.c, hrtimers provide finer resolution and accuracy | ||
| 11 | * depending on system configuration and capabilities. | ||
| 12 | * | ||
| 13 | * These timers are currently used for: | ||
| 14 | * - itimers | ||
| 15 | * - POSIX timers | ||
| 16 | * - nanosleep | ||
| 17 | * - precise in-kernel timing | ||
| 18 | * | ||
| 19 | * Started by: Thomas Gleixner and Ingo Molnar | ||
| 20 | * | ||
| 21 | * Credits: | ||
| 22 | * based on kernel/timer.c | ||
| 23 | * | ||
| 24 | * For licencing details see kernel-base/COPYING | ||
| 25 | */ | ||
| 26 | |||
| 27 | #include <linux/cpu.h> | ||
| 28 | #include <linux/module.h> | ||
| 29 | #include <linux/percpu.h> | ||
| 30 | #include <linux/hrtimer.h> | ||
| 31 | #include <linux/notifier.h> | ||
| 32 | #include <linux/syscalls.h> | ||
| 33 | #include <linux/interrupt.h> | ||
| 34 | |||
| 35 | #include <asm/uaccess.h> | ||
| 36 | |||
| 37 | /** | ||
| 38 | * ktime_get - get the monotonic time in ktime_t format | ||
| 39 | * | ||
| 40 | * returns the time in ktime_t format | ||
| 41 | */ | ||
| 42 | static ktime_t ktime_get(void) | ||
| 43 | { | ||
| 44 | struct timespec now; | ||
| 45 | |||
| 46 | ktime_get_ts(&now); | ||
| 47 | |||
| 48 | return timespec_to_ktime(now); | ||
| 49 | } | ||
| 50 | |||
| 51 | /** | ||
| 52 | * ktime_get_real - get the real (wall-) time in ktime_t format | ||
| 53 | * | ||
| 54 | * returns the time in ktime_t format | ||
| 55 | */ | ||
| 56 | static ktime_t ktime_get_real(void) | ||
| 57 | { | ||
| 58 | struct timespec now; | ||
| 59 | |||
| 60 | getnstimeofday(&now); | ||
| 61 | |||
| 62 | return timespec_to_ktime(now); | ||
| 63 | } | ||
| 64 | |||
| 65 | EXPORT_SYMBOL_GPL(ktime_get_real); | ||
| 66 | |||
| 67 | /* | ||
| 68 | * The timer bases: | ||
| 69 | */ | ||
| 70 | |||
| 71 | #define MAX_HRTIMER_BASES 2 | ||
| 72 | |||
| 73 | static DEFINE_PER_CPU(struct hrtimer_base, hrtimer_bases[MAX_HRTIMER_BASES]) = | ||
| 74 | { | ||
| 75 | { | ||
| 76 | .index = CLOCK_REALTIME, | ||
| 77 | .get_time = &ktime_get_real, | ||
| 78 | .resolution = KTIME_REALTIME_RES, | ||
| 79 | }, | ||
| 80 | { | ||
| 81 | .index = CLOCK_MONOTONIC, | ||
| 82 | .get_time = &ktime_get, | ||
| 83 | .resolution = KTIME_MONOTONIC_RES, | ||
| 84 | }, | ||
| 85 | }; | ||
| 86 | |||
| 87 | /** | ||
| 88 | * ktime_get_ts - get the monotonic clock in timespec format | ||
| 89 | * | ||
| 90 | * @ts: pointer to timespec variable | ||
| 91 | * | ||
| 92 | * The function calculates the monotonic clock from the realtime | ||
| 93 | * clock and the wall_to_monotonic offset and stores the result | ||
| 94 | * in normalized timespec format in the variable pointed to by ts. | ||
| 95 | */ | ||
| 96 | void ktime_get_ts(struct timespec *ts) | ||
| 97 | { | ||
| 98 | struct timespec tomono; | ||
| 99 | unsigned long seq; | ||
| 100 | |||
| 101 | do { | ||
| 102 | seq = read_seqbegin(&xtime_lock); | ||
| 103 | getnstimeofday(ts); | ||
| 104 | tomono = wall_to_monotonic; | ||
| 105 | |||
| 106 | } while (read_seqretry(&xtime_lock, seq)); | ||
| 107 | |||
| 108 | set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec, | ||
| 109 | ts->tv_nsec + tomono.tv_nsec); | ||
| 110 | } | ||
| 111 | EXPORT_SYMBOL_GPL(ktime_get_ts); | ||
| 112 | |||
| 113 | /* | ||
| 114 | * Functions and macros which are different for UP/SMP systems are kept in a | ||
| 115 | * single place | ||
| 116 | */ | ||
| 117 | #ifdef CONFIG_SMP | ||
| 118 | |||
| 119 | #define set_curr_timer(b, t) do { (b)->curr_timer = (t); } while (0) | ||
| 120 | |||
| 121 | /* | ||
| 122 | * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock | ||
| 123 | * means that all timers which are tied to this base via timer->base are | ||
| 124 | * locked, and the base itself is locked too. | ||
| 125 | * | ||
| 126 | * So __run_timers/migrate_timers can safely modify all timers which could | ||
| 127 | * be found on the lists/queues. | ||
| 128 | * | ||
| 129 | * When the timer's base is locked, and the timer removed from list, it is | ||
| 130 | * possible to set timer->base = NULL and drop the lock: the timer remains | ||
| 131 | * locked. | ||
| 132 | */ | ||
| 133 | static struct hrtimer_base *lock_hrtimer_base(const struct hrtimer *timer, | ||
| 134 | unsigned long *flags) | ||
| 135 | { | ||
| 136 | struct hrtimer_base *base; | ||
| 137 | |||
| 138 | for (;;) { | ||
| 139 | base = timer->base; | ||
| 140 | if (likely(base != NULL)) { | ||
| 141 | spin_lock_irqsave(&base->lock, *flags); | ||
| 142 | if (likely(base == timer->base)) | ||
| 143 | return base; | ||
| 144 | /* The timer has migrated to another CPU: */ | ||
| 145 | spin_unlock_irqrestore(&base->lock, *flags); | ||
| 146 | } | ||
| 147 | cpu_relax(); | ||
| 148 | } | ||
| 149 | } | ||
| 150 | |||
| 151 | /* | ||
| 152 | * Switch the timer base to the current CPU when possible. | ||
| 153 | */ | ||
| 154 | static inline struct hrtimer_base * | ||
| 155 | switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_base *base) | ||
| 156 | { | ||
| 157 | struct hrtimer_base *new_base; | ||
| 158 | |||
| 159 | new_base = &__get_cpu_var(hrtimer_bases[base->index]); | ||
| 160 | |||
| 161 | if (base != new_base) { | ||
| 162 | /* | ||
| 163 | * We are trying to schedule the timer on the local CPU. | ||
| 164 | * However we can't change timer's base while it is running, | ||
| 165 | * so we keep it on the same CPU. No hassle vs. reprogramming | ||
| 166 | * the event source in the high resolution case. The softirq | ||
| 167 | * code will take care of this when the timer function has | ||
| 168 | * completed. There is no conflict as we hold the lock until | ||
| 169 | * the timer is enqueued. | ||
| 170 | */ | ||
| 171 | if (unlikely(base->curr_timer == timer)) | ||
| 172 | return base; | ||
| 173 | |||
| 174 | /* See the comment in lock_timer_base() */ | ||
| 175 | timer->base = NULL; | ||
| 176 | spin_unlock(&base->lock); | ||
| 177 | spin_lock(&new_base->lock); | ||
| 178 | timer->base = new_base; | ||
| 179 | } | ||
| 180 | return new_base; | ||
| 181 | } | ||
| 182 | |||
| 183 | #else /* CONFIG_SMP */ | ||
| 184 | |||
| 185 | #define set_curr_timer(b, t) do { } while (0) | ||
| 186 | |||
| 187 | static inline struct hrtimer_base * | ||
| 188 | lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) | ||
| 189 | { | ||
| 190 | struct hrtimer_base *base = timer->base; | ||
| 191 | |||
| 192 | spin_lock_irqsave(&base->lock, *flags); | ||
| 193 | |||
| 194 | return base; | ||
| 195 | } | ||
| 196 | |||
| 197 | #define switch_hrtimer_base(t, b) (b) | ||
| 198 | |||
| 199 | #endif /* !CONFIG_SMP */ | ||
| 200 | |||
| 201 | /* | ||
| 202 | * Functions for the union type storage format of ktime_t which are | ||
| 203 | * too large for inlining: | ||
| 204 | */ | ||
| 205 | #if BITS_PER_LONG < 64 | ||
| 206 | # ifndef CONFIG_KTIME_SCALAR | ||
| 207 | /** | ||
| 208 | * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable | ||
| 209 | * | ||
| 210 | * @kt: addend | ||
| 211 | * @nsec: the scalar nsec value to add | ||
| 212 | * | ||
| 213 | * Returns the sum of kt and nsec in ktime_t format | ||
| 214 | */ | ||
| 215 | ktime_t ktime_add_ns(const ktime_t kt, u64 nsec) | ||
| 216 | { | ||
| 217 | ktime_t tmp; | ||
| 218 | |||
| 219 | if (likely(nsec < NSEC_PER_SEC)) { | ||
| 220 | tmp.tv64 = nsec; | ||
| 221 | } else { | ||
| 222 | unsigned long rem = do_div(nsec, NSEC_PER_SEC); | ||
| 223 | |||
| 224 | tmp = ktime_set((long)nsec, rem); | ||
| 225 | } | ||
| 226 | |||
| 227 | return ktime_add(kt, tmp); | ||
| 228 | } | ||
| 229 | |||
| 230 | #else /* CONFIG_KTIME_SCALAR */ | ||
| 231 | |||
| 232 | # endif /* !CONFIG_KTIME_SCALAR */ | ||
| 233 | |||
| 234 | /* | ||
| 235 | * Divide a ktime value by a nanosecond value | ||
| 236 | */ | ||
| 237 | static unsigned long ktime_divns(const ktime_t kt, nsec_t div) | ||
| 238 | { | ||
| 239 | u64 dclc, inc, dns; | ||
| 240 | int sft = 0; | ||
| 241 | |||
| 242 | dclc = dns = ktime_to_ns(kt); | ||
| 243 | inc = div; | ||
| 244 | /* Make sure the divisor is less than 2^32: */ | ||
| 245 | while (div >> 32) { | ||
| 246 | sft++; | ||
| 247 | div >>= 1; | ||
| 248 | } | ||
| 249 | dclc >>= sft; | ||
| 250 | do_div(dclc, (unsigned long) div); | ||
| 251 | |||
| 252 | return (unsigned long) dclc; | ||
| 253 | } | ||
| 254 | |||
| 255 | #else /* BITS_PER_LONG < 64 */ | ||
| 256 | # define ktime_divns(kt, div) (unsigned long)((kt).tv64 / (div)) | ||
| 257 | #endif /* BITS_PER_LONG >= 64 */ | ||
| 258 | |||
| 259 | /* | ||
| 260 | * Counterpart to lock_timer_base above: | ||
| 261 | */ | ||
| 262 | static inline | ||
| 263 | void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) | ||
| 264 | { | ||
| 265 | spin_unlock_irqrestore(&timer->base->lock, *flags); | ||
| 266 | } | ||
| 267 | |||
| 268 | /** | ||
| 269 | * hrtimer_forward - forward the timer expiry | ||
| 270 | * | ||
| 271 | * @timer: hrtimer to forward | ||
| 272 | * @interval: the interval to forward | ||
| 273 | * | ||
| 274 | * Forward the timer expiry so it will expire in the future. | ||
| 275 | * The number of overruns is added to the overrun field. | ||
| 276 | */ | ||
| 277 | unsigned long | ||
| 278 | hrtimer_forward(struct hrtimer *timer, ktime_t interval) | ||
| 279 | { | ||
| 280 | unsigned long orun = 1; | ||
| 281 | ktime_t delta, now; | ||
| 282 | |||
| 283 | now = timer->base->get_time(); | ||
| 284 | |||
| 285 | delta = ktime_sub(now, timer->expires); | ||
| 286 | |||
| 287 | if (delta.tv64 < 0) | ||
| 288 | return 0; | ||
| 289 | |||
| 290 | if (interval.tv64 < timer->base->resolution.tv64) | ||
| 291 | interval.tv64 = timer->base->resolution.tv64; | ||
| 292 | |||
| 293 | if (unlikely(delta.tv64 >= interval.tv64)) { | ||
| 294 | nsec_t incr = ktime_to_ns(interval); | ||
| 295 | |||
| 296 | orun = ktime_divns(delta, incr); | ||
| 297 | timer->expires = ktime_add_ns(timer->expires, incr * orun); | ||
| 298 | if (timer->expires.tv64 > now.tv64) | ||
| 299 | return orun; | ||
| 300 | /* | ||
| 301 | * This (and the ktime_add() below) is the | ||
| 302 | * correction for exact: | ||
| 303 | */ | ||
| 304 | orun++; | ||
| 305 | } | ||
| 306 | timer->expires = ktime_add(timer->expires, interval); | ||
| 307 | |||
| 308 | return orun; | ||
| 309 | } | ||
| 310 | |||
| 311 | /* | ||
| 312 | * enqueue_hrtimer - internal function to (re)start a timer | ||
| 313 | * | ||
| 314 | * The timer is inserted in expiry order. Insertion into the | ||
| 315 | * red black tree is O(log(n)). Must hold the base lock. | ||
| 316 | */ | ||
| 317 | static void enqueue_hrtimer(struct hrtimer *timer, struct hrtimer_base *base) | ||
| 318 | { | ||
| 319 | struct rb_node **link = &base->active.rb_node; | ||
| 320 | struct rb_node *parent = NULL; | ||
| 321 | struct hrtimer *entry; | ||
| 322 | |||
| 323 | /* | ||
| 324 | * Find the right place in the rbtree: | ||
| 325 | */ | ||
| 326 | while (*link) { | ||
| 327 | parent = *link; | ||
| 328 | entry = rb_entry(parent, struct hrtimer, node); | ||
| 329 | /* | ||
| 330 | * We dont care about collisions. Nodes with | ||
| 331 | * the same expiry time stay together. | ||
| 332 | */ | ||
| 333 | if (timer->expires.tv64 < entry->expires.tv64) | ||
| 334 | link = &(*link)->rb_left; | ||
| 335 | else | ||
| 336 | link = &(*link)->rb_right; | ||
| 337 | } | ||
| 338 | |||
| 339 | /* | ||
| 340 | * Insert the timer to the rbtree and check whether it | ||
| 341 | * replaces the first pending timer | ||
| 342 | */ | ||
| 343 | rb_link_node(&timer->node, parent, link); | ||
| 344 | rb_insert_color(&timer->node, &base->active); | ||
| 345 | |||
| 346 | timer->state = HRTIMER_PENDING; | ||
| 347 | |||
| 348 | if (!base->first || timer->expires.tv64 < | ||
| 349 | rb_entry(base->first, struct hrtimer, node)->expires.tv64) | ||
| 350 | base->first = &timer->node; | ||
| 351 | } | ||
| 352 | |||
| 353 | /* | ||
| 354 | * __remove_hrtimer - internal function to remove a timer | ||
| 355 | * | ||
| 356 | * Caller must hold the base lock. | ||
| 357 | */ | ||
| 358 | static void __remove_hrtimer(struct hrtimer *timer, struct hrtimer_base *base) | ||
| 359 | { | ||
| 360 | /* | ||
| 361 | * Remove the timer from the rbtree and replace the | ||
| 362 | * first entry pointer if necessary. | ||
| 363 | */ | ||
| 364 | if (base->first == &timer->node) | ||
| 365 | base->first = rb_next(&timer->node); | ||
| 366 | rb_erase(&timer->node, &base->active); | ||
| 367 | } | ||
| 368 | |||
| 369 | /* | ||
| 370 | * remove hrtimer, called with base lock held | ||
| 371 | */ | ||
| 372 | static inline int | ||
| 373 | remove_hrtimer(struct hrtimer *timer, struct hrtimer_base *base) | ||
| 374 | { | ||
| 375 | if (hrtimer_active(timer)) { | ||
| 376 | __remove_hrtimer(timer, base); | ||
| 377 | timer->state = HRTIMER_INACTIVE; | ||
| 378 | return 1; | ||
| 379 | } | ||
| 380 | return 0; | ||
| 381 | } | ||
| 382 | |||
| 383 | /** | ||
| 384 | * hrtimer_start - (re)start an relative timer on the current CPU | ||
| 385 | * | ||
| 386 | * @timer: the timer to be added | ||
| 387 | * @tim: expiry time | ||
| 388 | * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL) | ||
| 389 | * | ||
| 390 | * Returns: | ||
| 391 | * 0 on success | ||
| 392 | * 1 when the timer was active | ||
| 393 | */ | ||
| 394 | int | ||
| 395 | hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode) | ||
| 396 | { | ||
| 397 | struct hrtimer_base *base, *new_base; | ||
| 398 | unsigned long flags; | ||
| 399 | int ret; | ||
| 400 | |||
| 401 | base = lock_hrtimer_base(timer, &flags); | ||
| 402 | |||
| 403 | /* Remove an active timer from the queue: */ | ||
| 404 | ret = remove_hrtimer(timer, base); | ||
| 405 | |||
| 406 | /* Switch the timer base, if necessary: */ | ||
| 407 | new_base = switch_hrtimer_base(timer, base); | ||
| 408 | |||
| 409 | if (mode == HRTIMER_REL) | ||
| 410 | tim = ktime_add(tim, new_base->get_time()); | ||
| 411 | timer->expires = tim; | ||
| 412 | |||
| 413 | enqueue_hrtimer(timer, new_base); | ||
| 414 | |||
| 415 | unlock_hrtimer_base(timer, &flags); | ||
| 416 | |||
| 417 | return ret; | ||
| 418 | } | ||
| 419 | |||
| 420 | /** | ||
| 421 | * hrtimer_try_to_cancel - try to deactivate a timer | ||
| 422 | * | ||
| 423 | * @timer: hrtimer to stop | ||
| 424 | * | ||
| 425 | * Returns: | ||
| 426 | * 0 when the timer was not active | ||
| 427 | * 1 when the timer was active | ||
| 428 | * -1 when the timer is currently excuting the callback function and | ||
| 429 | * can not be stopped | ||
| 430 | */ | ||
| 431 | int hrtimer_try_to_cancel(struct hrtimer *timer) | ||
| 432 | { | ||
| 433 | struct hrtimer_base *base; | ||
| 434 | unsigned long flags; | ||
| 435 | int ret = -1; | ||
| 436 | |||
| 437 | base = lock_hrtimer_base(timer, &flags); | ||
| 438 | |||
| 439 | if (base->curr_timer != timer) | ||
| 440 | ret = remove_hrtimer(timer, base); | ||
| 441 | |||
| 442 | unlock_hrtimer_base(timer, &flags); | ||
| 443 | |||
| 444 | return ret; | ||
| 445 | |||
| 446 | } | ||
| 447 | |||
| 448 | /** | ||
| 449 | * hrtimer_cancel - cancel a timer and wait for the handler to finish. | ||
| 450 | * | ||
| 451 | * @timer: the timer to be cancelled | ||
| 452 | * | ||
| 453 | * Returns: | ||
| 454 | * 0 when the timer was not active | ||
| 455 | * 1 when the timer was active | ||
| 456 | */ | ||
| 457 | int hrtimer_cancel(struct hrtimer *timer) | ||
| 458 | { | ||
| 459 | for (;;) { | ||
| 460 | int ret = hrtimer_try_to_cancel(timer); | ||
| 461 | |||
| 462 | if (ret >= 0) | ||
| 463 | return ret; | ||
| 464 | } | ||
| 465 | } | ||
| 466 | |||
| 467 | /** | ||
| 468 | * hrtimer_get_remaining - get remaining time for the timer | ||
| 469 | * | ||
| 470 | * @timer: the timer to read | ||
| 471 | */ | ||
| 472 | ktime_t hrtimer_get_remaining(const struct hrtimer *timer) | ||
| 473 | { | ||
| 474 | struct hrtimer_base *base; | ||
| 475 | unsigned long flags; | ||
| 476 | ktime_t rem; | ||
| 477 | |||
| 478 | base = lock_hrtimer_base(timer, &flags); | ||
| 479 | rem = ktime_sub(timer->expires, timer->base->get_time()); | ||
| 480 | unlock_hrtimer_base(timer, &flags); | ||
| 481 | |||
| 482 | return rem; | ||
| 483 | } | ||
| 484 | |||
| 485 | /** | ||
| 486 | * hrtimer_rebase - rebase an initialized hrtimer to a different base | ||
| 487 | * | ||
| 488 | * @timer: the timer to be rebased | ||
| 489 | * @clock_id: the clock to be used | ||
| 490 | */ | ||
| 491 | void hrtimer_rebase(struct hrtimer *timer, const clockid_t clock_id) | ||
| 492 | { | ||
| 493 | struct hrtimer_base *bases; | ||
| 494 | |||
| 495 | bases = per_cpu(hrtimer_bases, raw_smp_processor_id()); | ||
| 496 | timer->base = &bases[clock_id]; | ||
| 497 | } | ||
| 498 | |||
| 499 | /** | ||
| 500 | * hrtimer_init - initialize a timer to the given clock | ||
| 501 | * | ||
| 502 | * @timer: the timer to be initialized | ||
| 503 | * @clock_id: the clock to be used | ||
| 504 | */ | ||
| 505 | void hrtimer_init(struct hrtimer *timer, const clockid_t clock_id) | ||
| 506 | { | ||
| 507 | memset(timer, 0, sizeof(struct hrtimer)); | ||
| 508 | hrtimer_rebase(timer, clock_id); | ||
| 509 | } | ||
| 510 | |||
| 511 | /** | ||
| 512 | * hrtimer_get_res - get the timer resolution for a clock | ||
| 513 | * | ||
| 514 | * @which_clock: which clock to query | ||
| 515 | * @tp: pointer to timespec variable to store the resolution | ||
| 516 | * | ||
| 517 | * Store the resolution of the clock selected by which_clock in the | ||
| 518 | * variable pointed to by tp. | ||
| 519 | */ | ||
| 520 | int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp) | ||
| 521 | { | ||
| 522 | struct hrtimer_base *bases; | ||
| 523 | |||
| 524 | bases = per_cpu(hrtimer_bases, raw_smp_processor_id()); | ||
| 525 | *tp = ktime_to_timespec(bases[which_clock].resolution); | ||
| 526 | |||
| 527 | return 0; | ||
| 528 | } | ||
| 529 | |||
| 530 | /* | ||
| 531 | * Expire the per base hrtimer-queue: | ||
| 532 | */ | ||
| 533 | static inline void run_hrtimer_queue(struct hrtimer_base *base) | ||
| 534 | { | ||
| 535 | ktime_t now = base->get_time(); | ||
| 536 | struct rb_node *node; | ||
| 537 | |||
| 538 | spin_lock_irq(&base->lock); | ||
| 539 | |||
| 540 | while ((node = base->first)) { | ||
| 541 | struct hrtimer *timer; | ||
| 542 | int (*fn)(void *); | ||
| 543 | int restart; | ||
| 544 | void *data; | ||
| 545 | |||
| 546 | timer = rb_entry(node, struct hrtimer, node); | ||
| 547 | if (now.tv64 <= timer->expires.tv64) | ||
| 548 | break; | ||
| 549 | |||
| 550 | fn = timer->function; | ||
| 551 | data = timer->data; | ||
| 552 | set_curr_timer(base, timer); | ||
| 553 | __remove_hrtimer(timer, base); | ||
| 554 | spin_unlock_irq(&base->lock); | ||
| 555 | |||
| 556 | /* | ||
| 557 | * fn == NULL is special case for the simplest timer | ||
| 558 | * variant - wake up process and do not restart: | ||
| 559 | */ | ||
| 560 | if (!fn) { | ||
| 561 | wake_up_process(data); | ||
| 562 | restart = HRTIMER_NORESTART; | ||
| 563 | } else | ||
| 564 | restart = fn(data); | ||
| 565 | |||
| 566 | spin_lock_irq(&base->lock); | ||
| 567 | |||
| 568 | if (restart == HRTIMER_RESTART) | ||
| 569 | enqueue_hrtimer(timer, base); | ||
| 570 | else | ||
| 571 | timer->state = HRTIMER_EXPIRED; | ||
| 572 | } | ||
| 573 | set_curr_timer(base, NULL); | ||
| 574 | spin_unlock_irq(&base->lock); | ||
| 575 | } | ||
| 576 | |||
| 577 | /* | ||
| 578 | * Called from timer softirq every jiffy, expire hrtimers: | ||
| 579 | */ | ||
| 580 | void hrtimer_run_queues(void) | ||
| 581 | { | ||
| 582 | struct hrtimer_base *base = __get_cpu_var(hrtimer_bases); | ||
| 583 | int i; | ||
| 584 | |||
| 585 | for (i = 0; i < MAX_HRTIMER_BASES; i++) | ||
| 586 | run_hrtimer_queue(&base[i]); | ||
| 587 | } | ||
| 588 | |||
| 589 | /* | ||
| 590 | * Sleep related functions: | ||
| 591 | */ | ||
| 592 | |||
| 593 | /** | ||
| 594 | * schedule_hrtimer - sleep until timeout | ||
| 595 | * | ||
| 596 | * @timer: hrtimer variable initialized with the correct clock base | ||
| 597 | * @mode: timeout value is abs/rel | ||
| 598 | * | ||
| 599 | * Make the current task sleep until @timeout is | ||
| 600 | * elapsed. | ||
| 601 | * | ||
| 602 | * You can set the task state as follows - | ||
| 603 | * | ||
| 604 | * %TASK_UNINTERRUPTIBLE - at least @timeout is guaranteed to | ||
| 605 | * pass before the routine returns. The routine will return 0 | ||
| 606 | * | ||
| 607 | * %TASK_INTERRUPTIBLE - the routine may return early if a signal is | ||
| 608 | * delivered to the current task. In this case the remaining time | ||
| 609 | * will be returned | ||
| 610 | * | ||
| 611 | * The current task state is guaranteed to be TASK_RUNNING when this | ||
| 612 | * routine returns. | ||
| 613 | */ | ||
| 614 | static ktime_t __sched | ||
| 615 | schedule_hrtimer(struct hrtimer *timer, const enum hrtimer_mode mode) | ||
| 616 | { | ||
| 617 | /* fn stays NULL, meaning single-shot wakeup: */ | ||
| 618 | timer->data = current; | ||
| 619 | |||
| 620 | hrtimer_start(timer, timer->expires, mode); | ||
| 621 | |||
| 622 | schedule(); | ||
| 623 | hrtimer_cancel(timer); | ||
| 624 | |||
| 625 | /* Return the remaining time: */ | ||
| 626 | if (timer->state != HRTIMER_EXPIRED) | ||
| 627 | return ktime_sub(timer->expires, timer->base->get_time()); | ||
| 628 | else | ||
| 629 | return (ktime_t) {.tv64 = 0 }; | ||
| 630 | } | ||
| 631 | |||
| 632 | static inline ktime_t __sched | ||
| 633 | schedule_hrtimer_interruptible(struct hrtimer *timer, | ||
| 634 | const enum hrtimer_mode mode) | ||
| 635 | { | ||
| 636 | set_current_state(TASK_INTERRUPTIBLE); | ||
| 637 | |||
| 638 | return schedule_hrtimer(timer, mode); | ||
| 639 | } | ||
| 640 | |||
| 641 | static long __sched | ||
| 642 | nanosleep_restart(struct restart_block *restart, clockid_t clockid) | ||
| 643 | { | ||
| 644 | struct timespec __user *rmtp, tu; | ||
| 645 | void *rfn_save = restart->fn; | ||
| 646 | struct hrtimer timer; | ||
| 647 | ktime_t rem; | ||
| 648 | |||
| 649 | restart->fn = do_no_restart_syscall; | ||
| 650 | |||
| 651 | hrtimer_init(&timer, clockid); | ||
| 652 | |||
| 653 | timer.expires.tv64 = ((u64)restart->arg1 << 32) | (u64) restart->arg0; | ||
| 654 | |||
| 655 | rem = schedule_hrtimer_interruptible(&timer, HRTIMER_ABS); | ||
| 656 | |||
| 657 | if (rem.tv64 <= 0) | ||
| 658 | return 0; | ||
| 659 | |||
| 660 | rmtp = (struct timespec __user *) restart->arg2; | ||
| 661 | tu = ktime_to_timespec(rem); | ||
| 662 | if (rmtp && copy_to_user(rmtp, &tu, sizeof(tu))) | ||
| 663 | return -EFAULT; | ||
| 664 | |||
| 665 | restart->fn = rfn_save; | ||
| 666 | |||
| 667 | /* The other values in restart are already filled in */ | ||
| 668 | return -ERESTART_RESTARTBLOCK; | ||
| 669 | } | ||
| 670 | |||
| 671 | static long __sched nanosleep_restart_mono(struct restart_block *restart) | ||
| 672 | { | ||
| 673 | return nanosleep_restart(restart, CLOCK_MONOTONIC); | ||
| 674 | } | ||
| 675 | |||
| 676 | static long __sched nanosleep_restart_real(struct restart_block *restart) | ||
| 677 | { | ||
| 678 | return nanosleep_restart(restart, CLOCK_REALTIME); | ||
| 679 | } | ||
| 680 | |||
| 681 | long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp, | ||
| 682 | const enum hrtimer_mode mode, const clockid_t clockid) | ||
| 683 | { | ||
| 684 | struct restart_block *restart; | ||
| 685 | struct hrtimer timer; | ||
| 686 | struct timespec tu; | ||
| 687 | ktime_t rem; | ||
| 688 | |||
| 689 | hrtimer_init(&timer, clockid); | ||
| 690 | |||
| 691 | timer.expires = timespec_to_ktime(*rqtp); | ||
| 692 | |||
| 693 | rem = schedule_hrtimer_interruptible(&timer, mode); | ||
| 694 | if (rem.tv64 <= 0) | ||
| 695 | return 0; | ||
| 696 | |||
| 697 | /* Absolute timers do not update the rmtp value: */ | ||
| 698 | if (mode == HRTIMER_ABS) | ||
| 699 | return -ERESTARTNOHAND; | ||
| 700 | |||
| 701 | tu = ktime_to_timespec(rem); | ||
| 702 | |||
| 703 | if (rmtp && copy_to_user(rmtp, &tu, sizeof(tu))) | ||
| 704 | return -EFAULT; | ||
| 705 | |||
| 706 | restart = ¤t_thread_info()->restart_block; | ||
| 707 | restart->fn = (clockid == CLOCK_MONOTONIC) ? | ||
| 708 | nanosleep_restart_mono : nanosleep_restart_real; | ||
| 709 | restart->arg0 = timer.expires.tv64 & 0xFFFFFFFF; | ||
| 710 | restart->arg1 = timer.expires.tv64 >> 32; | ||
| 711 | restart->arg2 = (unsigned long) rmtp; | ||
| 712 | |||
| 713 | return -ERESTART_RESTARTBLOCK; | ||
| 714 | } | ||
| 715 | |||
| 716 | asmlinkage long | ||
| 717 | sys_nanosleep(struct timespec __user *rqtp, struct timespec __user *rmtp) | ||
| 718 | { | ||
| 719 | struct timespec tu; | ||
| 720 | |||
| 721 | if (copy_from_user(&tu, rqtp, sizeof(tu))) | ||
| 722 | return -EFAULT; | ||
| 723 | |||
| 724 | if (!timespec_valid(&tu)) | ||
| 725 | return -EINVAL; | ||
| 726 | |||
| 727 | return hrtimer_nanosleep(&tu, rmtp, HRTIMER_REL, CLOCK_MONOTONIC); | ||
| 728 | } | ||
| 729 | |||
| 730 | /* | ||
| 731 | * Functions related to boot-time initialization: | ||
| 732 | */ | ||
| 733 | static void __devinit init_hrtimers_cpu(int cpu) | ||
| 734 | { | ||
| 735 | struct hrtimer_base *base = per_cpu(hrtimer_bases, cpu); | ||
| 736 | int i; | ||
| 737 | |||
| 738 | for (i = 0; i < MAX_HRTIMER_BASES; i++) { | ||
| 739 | spin_lock_init(&base->lock); | ||
| 740 | base++; | ||
| 741 | } | ||
| 742 | } | ||
| 743 | |||
| 744 | #ifdef CONFIG_HOTPLUG_CPU | ||
| 745 | |||
| 746 | static void migrate_hrtimer_list(struct hrtimer_base *old_base, | ||
| 747 | struct hrtimer_base *new_base) | ||
| 748 | { | ||
| 749 | struct hrtimer *timer; | ||
| 750 | struct rb_node *node; | ||
| 751 | |||
| 752 | while ((node = rb_first(&old_base->active))) { | ||
| 753 | timer = rb_entry(node, struct hrtimer, node); | ||
| 754 | __remove_hrtimer(timer, old_base); | ||
| 755 | timer->base = new_base; | ||
| 756 | enqueue_hrtimer(timer, new_base); | ||
| 757 | } | ||
| 758 | } | ||
| 759 | |||
| 760 | static void migrate_hrtimers(int cpu) | ||
| 761 | { | ||
| 762 | struct hrtimer_base *old_base, *new_base; | ||
| 763 | int i; | ||
| 764 | |||
| 765 | BUG_ON(cpu_online(cpu)); | ||
| 766 | old_base = per_cpu(hrtimer_bases, cpu); | ||
| 767 | new_base = get_cpu_var(hrtimer_bases); | ||
| 768 | |||
| 769 | local_irq_disable(); | ||
| 770 | |||
| 771 | for (i = 0; i < MAX_HRTIMER_BASES; i++) { | ||
| 772 | |||
| 773 | spin_lock(&new_base->lock); | ||
| 774 | spin_lock(&old_base->lock); | ||
| 775 | |||
| 776 | BUG_ON(old_base->curr_timer); | ||
| 777 | |||
| 778 | migrate_hrtimer_list(old_base, new_base); | ||
| 779 | |||
| 780 | spin_unlock(&old_base->lock); | ||
| 781 | spin_unlock(&new_base->lock); | ||
| 782 | old_base++; | ||
| 783 | new_base++; | ||
| 784 | } | ||
| 785 | |||
| 786 | local_irq_enable(); | ||
| 787 | put_cpu_var(hrtimer_bases); | ||
| 788 | } | ||
| 789 | #endif /* CONFIG_HOTPLUG_CPU */ | ||
| 790 | |||
| 791 | static int __devinit hrtimer_cpu_notify(struct notifier_block *self, | ||
| 792 | unsigned long action, void *hcpu) | ||
| 793 | { | ||
| 794 | long cpu = (long)hcpu; | ||
| 795 | |||
| 796 | switch (action) { | ||
| 797 | |||
| 798 | case CPU_UP_PREPARE: | ||
| 799 | init_hrtimers_cpu(cpu); | ||
| 800 | break; | ||
| 801 | |||
| 802 | #ifdef CONFIG_HOTPLUG_CPU | ||
| 803 | case CPU_DEAD: | ||
| 804 | migrate_hrtimers(cpu); | ||
| 805 | break; | ||
| 806 | #endif | ||
| 807 | |||
| 808 | default: | ||
| 809 | break; | ||
| 810 | } | ||
| 811 | |||
| 812 | return NOTIFY_OK; | ||
| 813 | } | ||
| 814 | |||
| 815 | static struct notifier_block __devinitdata hrtimers_nb = { | ||
| 816 | .notifier_call = hrtimer_cpu_notify, | ||
| 817 | }; | ||
| 818 | |||
| 819 | void __init hrtimers_init(void) | ||
| 820 | { | ||
| 821 | hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE, | ||
| 822 | (void *)(long)smp_processor_id()); | ||
| 823 | register_cpu_notifier(&hrtimers_nb); | ||
| 824 | } | ||
| 825 | |||
