aboutsummaryrefslogtreecommitdiffstats
path: root/include/asm-powerpc/ppc_asm.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/asm-powerpc/ppc_asm.h')
-rw-r--r--include/asm-powerpc/ppc_asm.h689
1 files changed, 0 insertions, 689 deletions
diff --git a/include/asm-powerpc/ppc_asm.h b/include/asm-powerpc/ppc_asm.h
deleted file mode 100644
index 0966899d974b..000000000000
--- a/include/asm-powerpc/ppc_asm.h
+++ /dev/null
@@ -1,689 +0,0 @@
1/*
2 * Copyright (C) 1995-1999 Gary Thomas, Paul Mackerras, Cort Dougan.
3 */
4#ifndef _ASM_POWERPC_PPC_ASM_H
5#define _ASM_POWERPC_PPC_ASM_H
6
7#include <linux/stringify.h>
8#include <asm/asm-compat.h>
9#include <asm/processor.h>
10
11#ifndef __ASSEMBLY__
12#error __FILE__ should only be used in assembler files
13#else
14
15#define SZL (BITS_PER_LONG/8)
16
17/*
18 * Stuff for accurate CPU time accounting.
19 * These macros handle transitions between user and system state
20 * in exception entry and exit and accumulate time to the
21 * user_time and system_time fields in the paca.
22 */
23
24#ifndef CONFIG_VIRT_CPU_ACCOUNTING
25#define ACCOUNT_CPU_USER_ENTRY(ra, rb)
26#define ACCOUNT_CPU_USER_EXIT(ra, rb)
27#else
28#define ACCOUNT_CPU_USER_ENTRY(ra, rb) \
29 beq 2f; /* if from kernel mode */ \
30BEGIN_FTR_SECTION; \
31 mfspr ra,SPRN_PURR; /* get processor util. reg */ \
32END_FTR_SECTION_IFSET(CPU_FTR_PURR); \
33BEGIN_FTR_SECTION; \
34 MFTB(ra); /* or get TB if no PURR */ \
35END_FTR_SECTION_IFCLR(CPU_FTR_PURR); \
36 ld rb,PACA_STARTPURR(r13); \
37 std ra,PACA_STARTPURR(r13); \
38 subf rb,rb,ra; /* subtract start value */ \
39 ld ra,PACA_USER_TIME(r13); \
40 add ra,ra,rb; /* add on to user time */ \
41 std ra,PACA_USER_TIME(r13); \
422:
43
44#define ACCOUNT_CPU_USER_EXIT(ra, rb) \
45BEGIN_FTR_SECTION; \
46 mfspr ra,SPRN_PURR; /* get processor util. reg */ \
47END_FTR_SECTION_IFSET(CPU_FTR_PURR); \
48BEGIN_FTR_SECTION; \
49 MFTB(ra); /* or get TB if no PURR */ \
50END_FTR_SECTION_IFCLR(CPU_FTR_PURR); \
51 ld rb,PACA_STARTPURR(r13); \
52 std ra,PACA_STARTPURR(r13); \
53 subf rb,rb,ra; /* subtract start value */ \
54 ld ra,PACA_SYSTEM_TIME(r13); \
55 add ra,ra,rb; /* add on to user time */ \
56 std ra,PACA_SYSTEM_TIME(r13);
57#endif
58
59/*
60 * Macros for storing registers into and loading registers from
61 * exception frames.
62 */
63#ifdef __powerpc64__
64#define SAVE_GPR(n, base) std n,GPR0+8*(n)(base)
65#define REST_GPR(n, base) ld n,GPR0+8*(n)(base)
66#define SAVE_NVGPRS(base) SAVE_8GPRS(14, base); SAVE_10GPRS(22, base)
67#define REST_NVGPRS(base) REST_8GPRS(14, base); REST_10GPRS(22, base)
68#else
69#define SAVE_GPR(n, base) stw n,GPR0+4*(n)(base)
70#define REST_GPR(n, base) lwz n,GPR0+4*(n)(base)
71#define SAVE_NVGPRS(base) SAVE_GPR(13, base); SAVE_8GPRS(14, base); \
72 SAVE_10GPRS(22, base)
73#define REST_NVGPRS(base) REST_GPR(13, base); REST_8GPRS(14, base); \
74 REST_10GPRS(22, base)
75#endif
76
77/*
78 * Define what the VSX XX1 form instructions will look like, then add
79 * the 128 bit load store instructions based on that.
80 */
81#define VSX_XX1(xs, ra, rb) (((xs) & 0x1f) << 21 | ((ra) << 16) | \
82 ((rb) << 11) | (((xs) >> 5)))
83
84#define STXVD2X(xs, ra, rb) .long (0x7c000798 | VSX_XX1((xs), (ra), (rb)))
85#define LXVD2X(xs, ra, rb) .long (0x7c000698 | VSX_XX1((xs), (ra), (rb)))
86
87#define SAVE_2GPRS(n, base) SAVE_GPR(n, base); SAVE_GPR(n+1, base)
88#define SAVE_4GPRS(n, base) SAVE_2GPRS(n, base); SAVE_2GPRS(n+2, base)
89#define SAVE_8GPRS(n, base) SAVE_4GPRS(n, base); SAVE_4GPRS(n+4, base)
90#define SAVE_10GPRS(n, base) SAVE_8GPRS(n, base); SAVE_2GPRS(n+8, base)
91#define REST_2GPRS(n, base) REST_GPR(n, base); REST_GPR(n+1, base)
92#define REST_4GPRS(n, base) REST_2GPRS(n, base); REST_2GPRS(n+2, base)
93#define REST_8GPRS(n, base) REST_4GPRS(n, base); REST_4GPRS(n+4, base)
94#define REST_10GPRS(n, base) REST_8GPRS(n, base); REST_2GPRS(n+8, base)
95
96#define SAVE_FPR(n, base) stfd n,THREAD_FPR0+8*TS_FPRWIDTH*(n)(base)
97#define SAVE_2FPRS(n, base) SAVE_FPR(n, base); SAVE_FPR(n+1, base)
98#define SAVE_4FPRS(n, base) SAVE_2FPRS(n, base); SAVE_2FPRS(n+2, base)
99#define SAVE_8FPRS(n, base) SAVE_4FPRS(n, base); SAVE_4FPRS(n+4, base)
100#define SAVE_16FPRS(n, base) SAVE_8FPRS(n, base); SAVE_8FPRS(n+8, base)
101#define SAVE_32FPRS(n, base) SAVE_16FPRS(n, base); SAVE_16FPRS(n+16, base)
102#define REST_FPR(n, base) lfd n,THREAD_FPR0+8*TS_FPRWIDTH*(n)(base)
103#define REST_2FPRS(n, base) REST_FPR(n, base); REST_FPR(n+1, base)
104#define REST_4FPRS(n, base) REST_2FPRS(n, base); REST_2FPRS(n+2, base)
105#define REST_8FPRS(n, base) REST_4FPRS(n, base); REST_4FPRS(n+4, base)
106#define REST_16FPRS(n, base) REST_8FPRS(n, base); REST_8FPRS(n+8, base)
107#define REST_32FPRS(n, base) REST_16FPRS(n, base); REST_16FPRS(n+16, base)
108
109#define SAVE_VR(n,b,base) li b,THREAD_VR0+(16*(n)); stvx n,b,base
110#define SAVE_2VRS(n,b,base) SAVE_VR(n,b,base); SAVE_VR(n+1,b,base)
111#define SAVE_4VRS(n,b,base) SAVE_2VRS(n,b,base); SAVE_2VRS(n+2,b,base)
112#define SAVE_8VRS(n,b,base) SAVE_4VRS(n,b,base); SAVE_4VRS(n+4,b,base)
113#define SAVE_16VRS(n,b,base) SAVE_8VRS(n,b,base); SAVE_8VRS(n+8,b,base)
114#define SAVE_32VRS(n,b,base) SAVE_16VRS(n,b,base); SAVE_16VRS(n+16,b,base)
115#define REST_VR(n,b,base) li b,THREAD_VR0+(16*(n)); lvx n,b,base
116#define REST_2VRS(n,b,base) REST_VR(n,b,base); REST_VR(n+1,b,base)
117#define REST_4VRS(n,b,base) REST_2VRS(n,b,base); REST_2VRS(n+2,b,base)
118#define REST_8VRS(n,b,base) REST_4VRS(n,b,base); REST_4VRS(n+4,b,base)
119#define REST_16VRS(n,b,base) REST_8VRS(n,b,base); REST_8VRS(n+8,b,base)
120#define REST_32VRS(n,b,base) REST_16VRS(n,b,base); REST_16VRS(n+16,b,base)
121
122/* Save the lower 32 VSRs in the thread VSR region */
123#define SAVE_VSR(n,b,base) li b,THREAD_VSR0+(16*(n)); STXVD2X(n,b,base)
124#define SAVE_2VSRS(n,b,base) SAVE_VSR(n,b,base); SAVE_VSR(n+1,b,base)
125#define SAVE_4VSRS(n,b,base) SAVE_2VSRS(n,b,base); SAVE_2VSRS(n+2,b,base)
126#define SAVE_8VSRS(n,b,base) SAVE_4VSRS(n,b,base); SAVE_4VSRS(n+4,b,base)
127#define SAVE_16VSRS(n,b,base) SAVE_8VSRS(n,b,base); SAVE_8VSRS(n+8,b,base)
128#define SAVE_32VSRS(n,b,base) SAVE_16VSRS(n,b,base); SAVE_16VSRS(n+16,b,base)
129#define REST_VSR(n,b,base) li b,THREAD_VSR0+(16*(n)); LXVD2X(n,b,base)
130#define REST_2VSRS(n,b,base) REST_VSR(n,b,base); REST_VSR(n+1,b,base)
131#define REST_4VSRS(n,b,base) REST_2VSRS(n,b,base); REST_2VSRS(n+2,b,base)
132#define REST_8VSRS(n,b,base) REST_4VSRS(n,b,base); REST_4VSRS(n+4,b,base)
133#define REST_16VSRS(n,b,base) REST_8VSRS(n,b,base); REST_8VSRS(n+8,b,base)
134#define REST_32VSRS(n,b,base) REST_16VSRS(n,b,base); REST_16VSRS(n+16,b,base)
135/* Save the upper 32 VSRs (32-63) in the thread VSX region (0-31) */
136#define SAVE_VSRU(n,b,base) li b,THREAD_VR0+(16*(n)); STXVD2X(n+32,b,base)
137#define SAVE_2VSRSU(n,b,base) SAVE_VSRU(n,b,base); SAVE_VSRU(n+1,b,base)
138#define SAVE_4VSRSU(n,b,base) SAVE_2VSRSU(n,b,base); SAVE_2VSRSU(n+2,b,base)
139#define SAVE_8VSRSU(n,b,base) SAVE_4VSRSU(n,b,base); SAVE_4VSRSU(n+4,b,base)
140#define SAVE_16VSRSU(n,b,base) SAVE_8VSRSU(n,b,base); SAVE_8VSRSU(n+8,b,base)
141#define SAVE_32VSRSU(n,b,base) SAVE_16VSRSU(n,b,base); SAVE_16VSRSU(n+16,b,base)
142#define REST_VSRU(n,b,base) li b,THREAD_VR0+(16*(n)); LXVD2X(n+32,b,base)
143#define REST_2VSRSU(n,b,base) REST_VSRU(n,b,base); REST_VSRU(n+1,b,base)
144#define REST_4VSRSU(n,b,base) REST_2VSRSU(n,b,base); REST_2VSRSU(n+2,b,base)
145#define REST_8VSRSU(n,b,base) REST_4VSRSU(n,b,base); REST_4VSRSU(n+4,b,base)
146#define REST_16VSRSU(n,b,base) REST_8VSRSU(n,b,base); REST_8VSRSU(n+8,b,base)
147#define REST_32VSRSU(n,b,base) REST_16VSRSU(n,b,base); REST_16VSRSU(n+16,b,base)
148
149#define SAVE_EVR(n,s,base) evmergehi s,s,n; stw s,THREAD_EVR0+4*(n)(base)
150#define SAVE_2EVRS(n,s,base) SAVE_EVR(n,s,base); SAVE_EVR(n+1,s,base)
151#define SAVE_4EVRS(n,s,base) SAVE_2EVRS(n,s,base); SAVE_2EVRS(n+2,s,base)
152#define SAVE_8EVRS(n,s,base) SAVE_4EVRS(n,s,base); SAVE_4EVRS(n+4,s,base)
153#define SAVE_16EVRS(n,s,base) SAVE_8EVRS(n,s,base); SAVE_8EVRS(n+8,s,base)
154#define SAVE_32EVRS(n,s,base) SAVE_16EVRS(n,s,base); SAVE_16EVRS(n+16,s,base)
155#define REST_EVR(n,s,base) lwz s,THREAD_EVR0+4*(n)(base); evmergelo n,s,n
156#define REST_2EVRS(n,s,base) REST_EVR(n,s,base); REST_EVR(n+1,s,base)
157#define REST_4EVRS(n,s,base) REST_2EVRS(n,s,base); REST_2EVRS(n+2,s,base)
158#define REST_8EVRS(n,s,base) REST_4EVRS(n,s,base); REST_4EVRS(n+4,s,base)
159#define REST_16EVRS(n,s,base) REST_8EVRS(n,s,base); REST_8EVRS(n+8,s,base)
160#define REST_32EVRS(n,s,base) REST_16EVRS(n,s,base); REST_16EVRS(n+16,s,base)
161
162/* Macros to adjust thread priority for hardware multithreading */
163#define HMT_VERY_LOW or 31,31,31 # very low priority
164#define HMT_LOW or 1,1,1
165#define HMT_MEDIUM_LOW or 6,6,6 # medium low priority
166#define HMT_MEDIUM or 2,2,2
167#define HMT_MEDIUM_HIGH or 5,5,5 # medium high priority
168#define HMT_HIGH or 3,3,3
169
170/* handle instructions that older assemblers may not know */
171#define RFCI .long 0x4c000066 /* rfci instruction */
172#define RFDI .long 0x4c00004e /* rfdi instruction */
173#define RFMCI .long 0x4c00004c /* rfmci instruction */
174
175#ifdef __KERNEL__
176#ifdef CONFIG_PPC64
177
178#define XGLUE(a,b) a##b
179#define GLUE(a,b) XGLUE(a,b)
180
181#define _GLOBAL(name) \
182 .section ".text"; \
183 .align 2 ; \
184 .globl name; \
185 .globl GLUE(.,name); \
186 .section ".opd","aw"; \
187name: \
188 .quad GLUE(.,name); \
189 .quad .TOC.@tocbase; \
190 .quad 0; \
191 .previous; \
192 .type GLUE(.,name),@function; \
193GLUE(.,name):
194
195#define _INIT_GLOBAL(name) \
196 .section ".text.init.refok"; \
197 .align 2 ; \
198 .globl name; \
199 .globl GLUE(.,name); \
200 .section ".opd","aw"; \
201name: \
202 .quad GLUE(.,name); \
203 .quad .TOC.@tocbase; \
204 .quad 0; \
205 .previous; \
206 .type GLUE(.,name),@function; \
207GLUE(.,name):
208
209#define _KPROBE(name) \
210 .section ".kprobes.text","a"; \
211 .align 2 ; \
212 .globl name; \
213 .globl GLUE(.,name); \
214 .section ".opd","aw"; \
215name: \
216 .quad GLUE(.,name); \
217 .quad .TOC.@tocbase; \
218 .quad 0; \
219 .previous; \
220 .type GLUE(.,name),@function; \
221GLUE(.,name):
222
223#define _STATIC(name) \
224 .section ".text"; \
225 .align 2 ; \
226 .section ".opd","aw"; \
227name: \
228 .quad GLUE(.,name); \
229 .quad .TOC.@tocbase; \
230 .quad 0; \
231 .previous; \
232 .type GLUE(.,name),@function; \
233GLUE(.,name):
234
235#define _INIT_STATIC(name) \
236 .section ".text.init.refok"; \
237 .align 2 ; \
238 .section ".opd","aw"; \
239name: \
240 .quad GLUE(.,name); \
241 .quad .TOC.@tocbase; \
242 .quad 0; \
243 .previous; \
244 .type GLUE(.,name),@function; \
245GLUE(.,name):
246
247#else /* 32-bit */
248
249#define _ENTRY(n) \
250 .globl n; \
251n:
252
253#define _GLOBAL(n) \
254 .text; \
255 .stabs __stringify(n:F-1),N_FUN,0,0,n;\
256 .globl n; \
257n:
258
259#define _KPROBE(n) \
260 .section ".kprobes.text","a"; \
261 .globl n; \
262n:
263
264#endif
265
266/*
267 * LOAD_REG_IMMEDIATE(rn, expr)
268 * Loads the value of the constant expression 'expr' into register 'rn'
269 * using immediate instructions only. Use this when it's important not
270 * to reference other data (i.e. on ppc64 when the TOC pointer is not
271 * valid).
272 *
273 * LOAD_REG_ADDR(rn, name)
274 * Loads the address of label 'name' into register 'rn'. Use this when
275 * you don't particularly need immediate instructions only, but you need
276 * the whole address in one register (e.g. it's a structure address and
277 * you want to access various offsets within it). On ppc32 this is
278 * identical to LOAD_REG_IMMEDIATE.
279 *
280 * LOAD_REG_ADDRBASE(rn, name)
281 * ADDROFF(name)
282 * LOAD_REG_ADDRBASE loads part of the address of label 'name' into
283 * register 'rn'. ADDROFF(name) returns the remainder of the address as
284 * a constant expression. ADDROFF(name) is a signed expression < 16 bits
285 * in size, so is suitable for use directly as an offset in load and store
286 * instructions. Use this when loading/storing a single word or less as:
287 * LOAD_REG_ADDRBASE(rX, name)
288 * ld rY,ADDROFF(name)(rX)
289 */
290#ifdef __powerpc64__
291#define LOAD_REG_IMMEDIATE(reg,expr) \
292 lis (reg),(expr)@highest; \
293 ori (reg),(reg),(expr)@higher; \
294 rldicr (reg),(reg),32,31; \
295 oris (reg),(reg),(expr)@h; \
296 ori (reg),(reg),(expr)@l;
297
298#define LOAD_REG_ADDR(reg,name) \
299 ld (reg),name@got(r2)
300
301#define LOAD_REG_ADDRBASE(reg,name) LOAD_REG_ADDR(reg,name)
302#define ADDROFF(name) 0
303
304/* offsets for stack frame layout */
305#define LRSAVE 16
306
307#else /* 32-bit */
308
309#define LOAD_REG_IMMEDIATE(reg,expr) \
310 lis (reg),(expr)@ha; \
311 addi (reg),(reg),(expr)@l;
312
313#define LOAD_REG_ADDR(reg,name) LOAD_REG_IMMEDIATE(reg, name)
314
315#define LOAD_REG_ADDRBASE(reg, name) lis (reg),name@ha
316#define ADDROFF(name) name@l
317
318/* offsets for stack frame layout */
319#define LRSAVE 4
320
321#endif
322
323/* various errata or part fixups */
324#ifdef CONFIG_PPC601_SYNC_FIX
325#define SYNC \
326BEGIN_FTR_SECTION \
327 sync; \
328 isync; \
329END_FTR_SECTION_IFSET(CPU_FTR_601)
330#define SYNC_601 \
331BEGIN_FTR_SECTION \
332 sync; \
333END_FTR_SECTION_IFSET(CPU_FTR_601)
334#define ISYNC_601 \
335BEGIN_FTR_SECTION \
336 isync; \
337END_FTR_SECTION_IFSET(CPU_FTR_601)
338#else
339#define SYNC
340#define SYNC_601
341#define ISYNC_601
342#endif
343
344#ifdef CONFIG_PPC_CELL
345#define MFTB(dest) \
34690: mftb dest; \
347BEGIN_FTR_SECTION_NESTED(96); \
348 cmpwi dest,0; \
349 beq- 90b; \
350END_FTR_SECTION_NESTED(CPU_FTR_CELL_TB_BUG, CPU_FTR_CELL_TB_BUG, 96)
351#else
352#define MFTB(dest) mftb dest
353#endif
354
355#ifndef CONFIG_SMP
356#define TLBSYNC
357#else /* CONFIG_SMP */
358/* tlbsync is not implemented on 601 */
359#define TLBSYNC \
360BEGIN_FTR_SECTION \
361 tlbsync; \
362 sync; \
363END_FTR_SECTION_IFCLR(CPU_FTR_601)
364#endif
365
366
367/*
368 * This instruction is not implemented on the PPC 603 or 601; however, on
369 * the 403GCX and 405GP tlbia IS defined and tlbie is not.
370 * All of these instructions exist in the 8xx, they have magical powers,
371 * and they must be used.
372 */
373
374#if !defined(CONFIG_4xx) && !defined(CONFIG_8xx)
375#define tlbia \
376 li r4,1024; \
377 mtctr r4; \
378 lis r4,KERNELBASE@h; \
3790: tlbie r4; \
380 addi r4,r4,0x1000; \
381 bdnz 0b
382#endif
383
384
385#ifdef CONFIG_IBM440EP_ERR42
386#define PPC440EP_ERR42 isync
387#else
388#define PPC440EP_ERR42
389#endif
390
391
392#if defined(CONFIG_BOOKE)
393#define toreal(rd)
394#define fromreal(rd)
395
396/*
397 * We use addis to ensure compatibility with the "classic" ppc versions of
398 * these macros, which use rs = 0 to get the tophys offset in rd, rather than
399 * converting the address in r0, and so this version has to do that too
400 * (i.e. set register rd to 0 when rs == 0).
401 */
402#define tophys(rd,rs) \
403 addis rd,rs,0
404
405#define tovirt(rd,rs) \
406 addis rd,rs,0
407
408#elif defined(CONFIG_PPC64)
409#define toreal(rd) /* we can access c000... in real mode */
410#define fromreal(rd)
411
412#define tophys(rd,rs) \
413 clrldi rd,rs,2
414
415#define tovirt(rd,rs) \
416 rotldi rd,rs,16; \
417 ori rd,rd,((KERNELBASE>>48)&0xFFFF);\
418 rotldi rd,rd,48
419#else
420/*
421 * On APUS (Amiga PowerPC cpu upgrade board), we don't know the
422 * physical base address of RAM at compile time.
423 */
424#define toreal(rd) tophys(rd,rd)
425#define fromreal(rd) tovirt(rd,rd)
426
427#define tophys(rd,rs) \
4280: addis rd,rs,-KERNELBASE@h; \
429 .section ".vtop_fixup","aw"; \
430 .align 1; \
431 .long 0b; \
432 .previous
433
434#define tovirt(rd,rs) \
4350: addis rd,rs,KERNELBASE@h; \
436 .section ".ptov_fixup","aw"; \
437 .align 1; \
438 .long 0b; \
439 .previous
440#endif
441
442#ifdef CONFIG_PPC64
443#define RFI rfid
444#define MTMSRD(r) mtmsrd r
445
446#else
447#define FIX_SRR1(ra, rb)
448#ifndef CONFIG_40x
449#define RFI rfi
450#else
451#define RFI rfi; b . /* Prevent prefetch past rfi */
452#endif
453#define MTMSRD(r) mtmsr r
454#define CLR_TOP32(r)
455#endif
456
457#endif /* __KERNEL__ */
458
459/* The boring bits... */
460
461/* Condition Register Bit Fields */
462
463#define cr0 0
464#define cr1 1
465#define cr2 2
466#define cr3 3
467#define cr4 4
468#define cr5 5
469#define cr6 6
470#define cr7 7
471
472
473/* General Purpose Registers (GPRs) */
474
475#define r0 0
476#define r1 1
477#define r2 2
478#define r3 3
479#define r4 4
480#define r5 5
481#define r6 6
482#define r7 7
483#define r8 8
484#define r9 9
485#define r10 10
486#define r11 11
487#define r12 12
488#define r13 13
489#define r14 14
490#define r15 15
491#define r16 16
492#define r17 17
493#define r18 18
494#define r19 19
495#define r20 20
496#define r21 21
497#define r22 22
498#define r23 23
499#define r24 24
500#define r25 25
501#define r26 26
502#define r27 27
503#define r28 28
504#define r29 29
505#define r30 30
506#define r31 31
507
508
509/* Floating Point Registers (FPRs) */
510
511#define fr0 0
512#define fr1 1
513#define fr2 2
514#define fr3 3
515#define fr4 4
516#define fr5 5
517#define fr6 6
518#define fr7 7
519#define fr8 8
520#define fr9 9
521#define fr10 10
522#define fr11 11
523#define fr12 12
524#define fr13 13
525#define fr14 14
526#define fr15 15
527#define fr16 16
528#define fr17 17
529#define fr18 18
530#define fr19 19
531#define fr20 20
532#define fr21 21
533#define fr22 22
534#define fr23 23
535#define fr24 24
536#define fr25 25
537#define fr26 26
538#define fr27 27
539#define fr28 28
540#define fr29 29
541#define fr30 30
542#define fr31 31
543
544/* AltiVec Registers (VPRs) */
545
546#define vr0 0
547#define vr1 1
548#define vr2 2
549#define vr3 3
550#define vr4 4
551#define vr5 5
552#define vr6 6
553#define vr7 7
554#define vr8 8
555#define vr9 9
556#define vr10 10
557#define vr11 11
558#define vr12 12
559#define vr13 13
560#define vr14 14
561#define vr15 15
562#define vr16 16
563#define vr17 17
564#define vr18 18
565#define vr19 19
566#define vr20 20
567#define vr21 21
568#define vr22 22
569#define vr23 23
570#define vr24 24
571#define vr25 25
572#define vr26 26
573#define vr27 27
574#define vr28 28
575#define vr29 29
576#define vr30 30
577#define vr31 31
578
579/* VSX Registers (VSRs) */
580
581#define vsr0 0
582#define vsr1 1
583#define vsr2 2
584#define vsr3 3
585#define vsr4 4
586#define vsr5 5
587#define vsr6 6
588#define vsr7 7
589#define vsr8 8
590#define vsr9 9
591#define vsr10 10
592#define vsr11 11
593#define vsr12 12
594#define vsr13 13
595#define vsr14 14
596#define vsr15 15
597#define vsr16 16
598#define vsr17 17
599#define vsr18 18
600#define vsr19 19
601#define vsr20 20
602#define vsr21 21
603#define vsr22 22
604#define vsr23 23
605#define vsr24 24
606#define vsr25 25
607#define vsr26 26
608#define vsr27 27
609#define vsr28 28
610#define vsr29 29
611#define vsr30 30
612#define vsr31 31
613#define vsr32 32
614#define vsr33 33
615#define vsr34 34
616#define vsr35 35
617#define vsr36 36
618#define vsr37 37
619#define vsr38 38
620#define vsr39 39
621#define vsr40 40
622#define vsr41 41
623#define vsr42 42
624#define vsr43 43
625#define vsr44 44
626#define vsr45 45
627#define vsr46 46
628#define vsr47 47
629#define vsr48 48
630#define vsr49 49
631#define vsr50 50
632#define vsr51 51
633#define vsr52 52
634#define vsr53 53
635#define vsr54 54
636#define vsr55 55
637#define vsr56 56
638#define vsr57 57
639#define vsr58 58
640#define vsr59 59
641#define vsr60 60
642#define vsr61 61
643#define vsr62 62
644#define vsr63 63
645
646/* SPE Registers (EVPRs) */
647
648#define evr0 0
649#define evr1 1
650#define evr2 2
651#define evr3 3
652#define evr4 4
653#define evr5 5
654#define evr6 6
655#define evr7 7
656#define evr8 8
657#define evr9 9
658#define evr10 10
659#define evr11 11
660#define evr12 12
661#define evr13 13
662#define evr14 14
663#define evr15 15
664#define evr16 16
665#define evr17 17
666#define evr18 18
667#define evr19 19
668#define evr20 20
669#define evr21 21
670#define evr22 22
671#define evr23 23
672#define evr24 24
673#define evr25 25
674#define evr26 26
675#define evr27 27
676#define evr28 28
677#define evr29 29
678#define evr30 30
679#define evr31 31
680
681/* some stab codes */
682#define N_FUN 36
683#define N_RSYM 64
684#define N_SLINE 68
685#define N_SO 100
686
687#endif /* __ASSEMBLY__ */
688
689#endif /* _ASM_POWERPC_PPC_ASM_H */