aboutsummaryrefslogtreecommitdiffstats
path: root/include/asm-powerpc/io.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/asm-powerpc/io.h')
-rw-r--r--include/asm-powerpc/io.h641
1 files changed, 377 insertions, 264 deletions
diff --git a/include/asm-powerpc/io.h b/include/asm-powerpc/io.h
index c2c5f14b5f5f..03e843fc1437 100644
--- a/include/asm-powerpc/io.h
+++ b/include/asm-powerpc/io.h
@@ -31,57 +31,122 @@ extern int check_legacy_ioport(unsigned long base_port);
31 31
32#define SLOW_DOWN_IO 32#define SLOW_DOWN_IO
33 33
34/*
35 *
36 * Low level MMIO accessors
37 *
38 * This provides the non-bus specific accessors to MMIO. Those are PowerPC
39 * specific and thus shouldn't be used in generic code. The accessors
40 * provided here are:
41 *
42 * in_8, in_le16, in_be16, in_le32, in_be32, in_le64, in_be64
43 * out_8, out_le16, out_be16, out_le32, out_be32, out_le64, out_be64
44 * _insb, _insw_ns, _insl_ns, _outsb, _outsw_ns, _outsl_ns
45 *
46 * Those operate directly on a kernel virtual address. Note that the prototype
47 * for the out_* accessors has the arguments in opposite order from the usual
48 * linux PCI accessors. Unlike those, they take the address first and the value
49 * next.
50 *
51 * Note: I might drop the _ns suffix on the stream operations soon as it is
52 * simply normal for stream operations to not swap in the first place.
53 *
54 */
55
56#define IO_SET_SYNC_FLAG() do { get_paca()->io_sync = 1; } while(0)
57
58#define DEF_MMIO_IN(name, type, insn) \
59static inline type name(const volatile type __iomem *addr) \
60{ \
61 type ret; \
62 __asm__ __volatile__("sync;" insn ";twi 0,%0,0;isync" \
63 : "=r" (ret) : "r" (addr), "m" (*addr)); \
64 return ret; \
65}
66
67#define DEF_MMIO_OUT(name, type, insn) \
68static inline void name(volatile type __iomem *addr, type val) \
69{ \
70 __asm__ __volatile__("sync;" insn \
71 : "=m" (*addr) : "r" (val), "r" (addr)); \
72 IO_SET_SYNC_FLAG(); \
73}
74
75
76#define DEF_MMIO_IN_BE(name, size, insn) \
77 DEF_MMIO_IN(name, u##size, __stringify(insn)"%U2%X2 %0,%2")
78#define DEF_MMIO_IN_LE(name, size, insn) \
79 DEF_MMIO_IN(name, u##size, __stringify(insn)" %0,0,%1")
80
81#define DEF_MMIO_OUT_BE(name, size, insn) \
82 DEF_MMIO_OUT(name, u##size, __stringify(insn)"%U0%X0 %1,%0")
83#define DEF_MMIO_OUT_LE(name, size, insn) \
84 DEF_MMIO_OUT(name, u##size, __stringify(insn)" %1,0,%2")
85
86DEF_MMIO_IN_BE(in_8, 8, lbz);
87DEF_MMIO_IN_BE(in_be16, 16, lhz);
88DEF_MMIO_IN_BE(in_be32, 32, lwz);
89DEF_MMIO_IN_BE(in_be64, 64, ld);
90DEF_MMIO_IN_LE(in_le16, 16, lhbrx);
91DEF_MMIO_IN_LE(in_le32, 32, lwbrx);
92
93DEF_MMIO_OUT_BE(out_8, 8, stb);
94DEF_MMIO_OUT_BE(out_be16, 16, sth);
95DEF_MMIO_OUT_BE(out_be32, 32, stw);
96DEF_MMIO_OUT_BE(out_be64, 64, std);
97DEF_MMIO_OUT_LE(out_le16, 16, sthbrx);
98DEF_MMIO_OUT_LE(out_le32, 32, stwbrx);
99
100/* There is no asm instructions for 64 bits reverse loads and stores */
101static inline u64 in_le64(const volatile u64 __iomem *addr)
102{
103 return le64_to_cpu(in_be64(addr));
104}
105
106static inline void out_le64(volatile u64 __iomem *addr, u64 val)
107{
108 out_be64(addr, cpu_to_le64(val));
109}
110
111/*
112 * Low level IO stream instructions are defined out of line for now
113 */
114extern void _insb(const volatile u8 __iomem *addr, void *buf, long count);
115extern void _outsb(volatile u8 __iomem *addr,const void *buf,long count);
116extern void _insw_ns(const volatile u16 __iomem *addr, void *buf, long count);
117extern void _outsw_ns(volatile u16 __iomem *addr, const void *buf, long count);
118extern void _insl_ns(const volatile u32 __iomem *addr, void *buf, long count);
119extern void _outsl_ns(volatile u32 __iomem *addr, const void *buf, long count);
120
121/* The _ns naming is historical and will be removed. For now, just #define
122 * the non _ns equivalent names
123 */
124#define _insw _insw_ns
125#define _insl _insl_ns
126#define _outsw _outsw_ns
127#define _outsl _outsl_ns
128
129/*
130 *
131 * PCI and standard ISA accessors
132 *
133 * Those are globally defined linux accessors for devices on PCI or ISA
134 * busses. They follow the Linux defined semantics. The current implementation
135 * for PowerPC is as close as possible to the x86 version of these, and thus
136 * provides fairly heavy weight barriers for the non-raw versions
137 *
138 * In addition, they support a hook mechanism when CONFIG_PPC_INDIRECT_IO
139 * allowing the platform to provide its own implementation of some or all
140 * of the accessors.
141 */
142
34extern unsigned long isa_io_base; 143extern unsigned long isa_io_base;
35extern unsigned long pci_io_base; 144extern unsigned long pci_io_base;
36 145
37#ifdef CONFIG_PPC_ISERIES 146
38 147/*
39extern int in_8(const volatile unsigned char __iomem *addr); 148 * Non ordered and non-swapping "raw" accessors
40extern void out_8(volatile unsigned char __iomem *addr, int val); 149 */
41extern int in_le16(const volatile unsigned short __iomem *addr);
42extern int in_be16(const volatile unsigned short __iomem *addr);
43extern void out_le16(volatile unsigned short __iomem *addr, int val);
44extern void out_be16(volatile unsigned short __iomem *addr, int val);
45extern unsigned in_le32(const volatile unsigned __iomem *addr);
46extern unsigned in_be32(const volatile unsigned __iomem *addr);
47extern void out_le32(volatile unsigned __iomem *addr, int val);
48extern void out_be32(volatile unsigned __iomem *addr, int val);
49extern unsigned long in_le64(const volatile unsigned long __iomem *addr);
50extern unsigned long in_be64(const volatile unsigned long __iomem *addr);
51extern void out_le64(volatile unsigned long __iomem *addr, unsigned long val);
52extern void out_be64(volatile unsigned long __iomem *addr, unsigned long val);
53
54extern unsigned char __raw_readb(const volatile void __iomem *addr);
55extern unsigned short __raw_readw(const volatile void __iomem *addr);
56extern unsigned int __raw_readl(const volatile void __iomem *addr);
57extern unsigned long __raw_readq(const volatile void __iomem *addr);
58extern void __raw_writeb(unsigned char v, volatile void __iomem *addr);
59extern void __raw_writew(unsigned short v, volatile void __iomem *addr);
60extern void __raw_writel(unsigned int v, volatile void __iomem *addr);
61extern void __raw_writeq(unsigned long v, volatile void __iomem *addr);
62
63extern void memset_io(volatile void __iomem *addr, int c, unsigned long n);
64extern void memcpy_fromio(void *dest, const volatile void __iomem *src,
65 unsigned long n);
66extern void memcpy_toio(volatile void __iomem *dest, const void *src,
67 unsigned long n);
68
69#else /* CONFIG_PPC_ISERIES */
70
71#define in_8(addr) __in_8((addr))
72#define out_8(addr, val) __out_8((addr), (val))
73#define in_le16(addr) __in_le16((addr))
74#define in_be16(addr) __in_be16((addr))
75#define out_le16(addr, val) __out_le16((addr), (val))
76#define out_be16(addr, val) __out_be16((addr), (val))
77#define in_le32(addr) __in_le32((addr))
78#define in_be32(addr) __in_be32((addr))
79#define out_le32(addr, val) __out_le32((addr), (val))
80#define out_be32(addr, val) __out_be32((addr), (val))
81#define in_le64(addr) __in_le64((addr))
82#define in_be64(addr) __in_be64((addr))
83#define out_le64(addr, val) __out_le64((addr), (val))
84#define out_be64(addr, val) __out_be64((addr), (val))
85 150
86static inline unsigned char __raw_readb(const volatile void __iomem *addr) 151static inline unsigned char __raw_readb(const volatile void __iomem *addr)
87{ 152{
@@ -115,52 +180,203 @@ static inline void __raw_writeq(unsigned long v, volatile void __iomem *addr)
115{ 180{
116 *(volatile unsigned long __force *)addr = v; 181 *(volatile unsigned long __force *)addr = v;
117} 182}
118#define memset_io(a,b,c) eeh_memset_io((a),(b),(c))
119#define memcpy_fromio(a,b,c) eeh_memcpy_fromio((a),(b),(c))
120#define memcpy_toio(a,b,c) eeh_memcpy_toio((a),(b),(c))
121 183
122#endif /* CONFIG_PPC_ISERIES */
123 184
124/* 185/*
125 * The insw/outsw/insl/outsl macros don't do byte-swapping. 186 *
126 * They are only used in practice for transferring buffers which 187 * PCI PIO and MMIO accessors.
127 * are arrays of bytes, and byte-swapping is not appropriate in 188 *
128 * that case. - paulus */ 189 */
129#define insb(port, buf, ns) eeh_insb((port), (buf), (ns)) 190
130#define insw(port, buf, ns) eeh_insw_ns((port), (buf), (ns)) 191#include <asm/eeh.h>
131#define insl(port, buf, nl) eeh_insl_ns((port), (buf), (nl)) 192
132 193/* Shortcut to the MMIO argument pointer */
133#define outsb(port, buf, ns) _outsb((u8 __iomem *)((port)+pci_io_base), (buf), (ns)) 194#define PCI_IO_ADDR volatile void __iomem *
134#define outsw(port, buf, ns) _outsw_ns((u16 __iomem *)((port)+pci_io_base), (buf), (ns)) 195
135#define outsl(port, buf, nl) _outsl_ns((u32 __iomem *)((port)+pci_io_base), (buf), (nl)) 196/* Indirect IO address tokens:
136 197 *
137#define readb(addr) eeh_readb(addr) 198 * When CONFIG_PPC_INDIRECT_IO is set, the platform can provide hooks
138#define readw(addr) eeh_readw(addr) 199 * on all IOs.
139#define readl(addr) eeh_readl(addr) 200 *
140#define readq(addr) eeh_readq(addr) 201 * To help platforms who may need to differenciate MMIO addresses in
141#define writeb(data, addr) eeh_writeb((data), (addr)) 202 * their hooks, a bitfield is reserved for use by the platform near the
142#define writew(data, addr) eeh_writew((data), (addr)) 203 * top of MMIO addresses (not PIO, those have to cope the hard way).
143#define writel(data, addr) eeh_writel((data), (addr)) 204 *
144#define writeq(data, addr) eeh_writeq((data), (addr)) 205 * This bit field is 12 bits and is at the top of the IO virtual
145#define inb(port) eeh_inb((unsigned long)port) 206 * addresses PCI_IO_INDIRECT_TOKEN_MASK.
146#define outb(val, port) eeh_outb(val, (unsigned long)port) 207 *
147#define inw(port) eeh_inw((unsigned long)port) 208 * The kernel virtual space is thus:
148#define outw(val, port) eeh_outw(val, (unsigned long)port) 209 *
149#define inl(port) eeh_inl((unsigned long)port) 210 * 0xD000000000000000 : vmalloc
150#define outl(val, port) eeh_outl(val, (unsigned long)port) 211 * 0xD000080000000000 : PCI PHB IO space
212 * 0xD000080080000000 : ioremap
213 * 0xD0000fffffffffff : end of ioremap region
214 *
215 * Since the top 4 bits are reserved as the region ID, we use thus
216 * the next 12 bits and keep 4 bits available for the future if the
217 * virtual address space is ever to be extended.
218 *
219 * The direct IO mapping operations will then mask off those bits
220 * before doing the actual access, though that only happen when
221 * CONFIG_PPC_INDIRECT_IO is set, thus be careful when you use that
222 * mechanism
223 */
224
225#ifdef CONFIG_PPC_INDIRECT_IO
226#define PCI_IO_IND_TOKEN_MASK 0x0fff000000000000ul
227#define PCI_IO_IND_TOKEN_SHIFT 48
228#define PCI_FIX_ADDR(addr) \
229 ((PCI_IO_ADDR)(((unsigned long)(addr)) & ~PCI_IO_IND_TOKEN_MASK))
230#define PCI_GET_ADDR_TOKEN(addr) \
231 (((unsigned long)(addr) & PCI_IO_IND_TOKEN_MASK) >> \
232 PCI_IO_IND_TOKEN_SHIFT)
233#define PCI_SET_ADDR_TOKEN(addr, token) \
234do { \
235 unsigned long __a = (unsigned long)(addr); \
236 __a &= ~PCI_IO_IND_TOKEN_MASK; \
237 __a |= ((unsigned long)(token)) << PCI_IO_IND_TOKEN_SHIFT; \
238 (addr) = (void __iomem *)__a; \
239} while(0)
240#else
241#define PCI_FIX_ADDR(addr) (addr)
242#endif
243
244/* The "__do_*" operations below provide the actual "base" implementation
245 * for each of the defined acccessor. Some of them use the out_* functions
246 * directly, some of them still use EEH, though we might change that in the
247 * future. Those macros below provide the necessary argument swapping and
248 * handling of the IO base for PIO.
249 *
250 * They are themselves used by the macros that define the actual accessors
251 * and can be used by the hooks if any.
252 *
253 * Note that PIO operations are always defined in terms of their corresonding
254 * MMIO operations. That allows platforms like iSeries who want to modify the
255 * behaviour of both to only hook on the MMIO version and get both. It's also
256 * possible to hook directly at the toplevel PIO operation if they have to
257 * be handled differently
258 */
259#define __do_writeb(val, addr) out_8(PCI_FIX_ADDR(addr), val)
260#define __do_writew(val, addr) out_le16(PCI_FIX_ADDR(addr), val)
261#define __do_writel(val, addr) out_le32(PCI_FIX_ADDR(addr), val)
262#define __do_writeq(val, addr) out_le64(PCI_FIX_ADDR(addr), val)
263#define __do_writew_be(val, addr) out_be16(PCI_FIX_ADDR(addr), val)
264#define __do_writel_be(val, addr) out_be32(PCI_FIX_ADDR(addr), val)
265#define __do_writeq_be(val, addr) out_be64(PCI_FIX_ADDR(addr), val)
266#define __do_readb(addr) eeh_readb(PCI_FIX_ADDR(addr))
267#define __do_readw(addr) eeh_readw(PCI_FIX_ADDR(addr))
268#define __do_readl(addr) eeh_readl(PCI_FIX_ADDR(addr))
269#define __do_readq(addr) eeh_readq(PCI_FIX_ADDR(addr))
270#define __do_readw_be(addr) eeh_readw_be(PCI_FIX_ADDR(addr))
271#define __do_readl_be(addr) eeh_readl_be(PCI_FIX_ADDR(addr))
272#define __do_readq_be(addr) eeh_readq_be(PCI_FIX_ADDR(addr))
273
274#define __do_outb(val, port) writeb(val,(PCI_IO_ADDR)pci_io_base+port);
275#define __do_outw(val, port) writew(val,(PCI_IO_ADDR)pci_io_base+port);
276#define __do_outl(val, port) writel(val,(PCI_IO_ADDR)pci_io_base+port);
277#define __do_inb(port) readb((PCI_IO_ADDR)pci_io_base + port);
278#define __do_inw(port) readw((PCI_IO_ADDR)pci_io_base + port);
279#define __do_inl(port) readl((PCI_IO_ADDR)pci_io_base + port);
280
281#define __do_readsb(a, b, n) eeh_readsb(PCI_FIX_ADDR(a), (b), (n))
282#define __do_readsw(a, b, n) eeh_readsw(PCI_FIX_ADDR(a), (b), (n))
283#define __do_readsl(a, b, n) eeh_readsl(PCI_FIX_ADDR(a), (b), (n))
284#define __do_writesb(a, b, n) _outsb(PCI_FIX_ADDR(a),(b),(n))
285#define __do_writesw(a, b, n) _outsw(PCI_FIX_ADDR(a),(b),(n))
286#define __do_writesl(a, b, n) _outsl(PCI_FIX_ADDR(a),(b),(n))
287
288#define __do_insb(p, b, n) readsb((PCI_IO_ADDR)pci_io_base+(p), (b), (n))
289#define __do_insw(p, b, n) readsw((PCI_IO_ADDR)pci_io_base+(p), (b), (n))
290#define __do_insl(p, b, n) readsl((PCI_IO_ADDR)pci_io_base+(p), (b), (n))
291#define __do_outsb(p, b, n) writesb((PCI_IO_ADDR)pci_io_base+(p),(b),(n))
292#define __do_outsw(p, b, n) writesw((PCI_IO_ADDR)pci_io_base+(p),(b),(n))
293#define __do_outsl(p, b, n) writesl((PCI_IO_ADDR)pci_io_base+(p),(b),(n))
294
295#define __do_memset_io(addr, c, n) eeh_memset_io(PCI_FIX_ADDR(addr), c, n)
296#define __do_memcpy_fromio(dst, src, n) eeh_memcpy_fromio(dst, \
297 PCI_FIX_ADDR(src), n)
298#define __do_memcpy_toio(dst, src, n) eeh_memcpy_toio(PCI_FIX_ADDR(dst), \
299 src, n)
300
301#ifdef CONFIG_PPC_INDIRECT_IO
302#define DEF_PCI_HOOK(x) x
303#else
304#define DEF_PCI_HOOK(x) NULL
305#endif
306
307/* Structure containing all the hooks */
308extern struct ppc_pci_io {
309
310#define DEF_PCI_AC_RET(name, ret, at, al) ret (*name) at;
311#define DEF_PCI_AC_NORET(name, at, al) void (*name) at;
312
313#include <asm/io-defs.h>
314
315#undef DEF_PCI_AC_RET
316#undef DEF_PCI_AC_NORET
317
318} ppc_pci_io;
319
320/* The inline wrappers */
321#define DEF_PCI_AC_RET(name, ret, at, al) \
322static inline ret name at \
323{ \
324 if (DEF_PCI_HOOK(ppc_pci_io.name) != NULL) \
325 return ppc_pci_io.name al; \
326 return __do_##name al; \
327}
328
329#define DEF_PCI_AC_NORET(name, at, al) \
330static inline void name at \
331{ \
332 if (DEF_PCI_HOOK(ppc_pci_io.name) != NULL) \
333 ppc_pci_io.name al; \
334 else \
335 __do_##name al; \
336}
337
338#include <asm/io-defs.h>
339
340#undef DEF_PCI_AC_RET
341#undef DEF_PCI_AC_NORET
342
343/* Some drivers check for the presence of readq & writeq with
344 * a #ifdef, so we make them happy here.
345 */
346#define readq readq
347#define writeq writeq
348
349/* Nothing to do for cache stuff x*/
350
351#define dma_cache_inv(_start,_size) do { } while (0)
352#define dma_cache_wback(_start,_size) do { } while (0)
353#define dma_cache_wback_inv(_start,_size) do { } while (0)
354
355
356/*
357 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
358 * access
359 */
360#define xlate_dev_mem_ptr(p) __va(p)
361
362/*
363 * Convert a virtual cached pointer to an uncached pointer
364 */
365#define xlate_dev_kmem_ptr(p) p
151 366
367/*
368 * We don't do relaxed operations yet, at least not with this semantic
369 */
152#define readb_relaxed(addr) readb(addr) 370#define readb_relaxed(addr) readb(addr)
153#define readw_relaxed(addr) readw(addr) 371#define readw_relaxed(addr) readw(addr)
154#define readl_relaxed(addr) readl(addr) 372#define readl_relaxed(addr) readl(addr)
155#define readq_relaxed(addr) readq(addr) 373#define readq_relaxed(addr) readq(addr)
156 374
157extern void _insb(volatile u8 __iomem *port, void *buf, long count); 375/*
158extern void _outsb(volatile u8 __iomem *port, const void *buf, long count); 376 * Enforce synchronisation of stores vs. spin_unlock
159extern void _insw_ns(volatile u16 __iomem *port, void *buf, long count); 377 * (this does it explicitely, though our implementation of spin_unlock
160extern void _outsw_ns(volatile u16 __iomem *port, const void *buf, long count); 378 * does it implicitely too)
161extern void _insl_ns(volatile u32 __iomem *port, void *buf, long count); 379 */
162extern void _outsl_ns(volatile u32 __iomem *port, const void *buf, long count);
163
164static inline void mmiowb(void) 380static inline void mmiowb(void)
165{ 381{
166 unsigned long tmp; 382 unsigned long tmp;
@@ -170,6 +386,23 @@ static inline void mmiowb(void)
170 : "memory"); 386 : "memory");
171} 387}
172 388
389static inline void iosync(void)
390{
391 __asm__ __volatile__ ("sync" : : : "memory");
392}
393
394/* Enforce in-order execution of data I/O.
395 * No distinction between read/write on PPC; use eieio for all three.
396 * Those are fairly week though. They don't provide a barrier between
397 * MMIO and cacheable storage nor do they provide a barrier vs. locks,
398 * they only provide barriers between 2 __raw MMIO operations and
399 * possibly break write combining.
400 */
401#define iobarrier_rw() eieio()
402#define iobarrier_r() eieio()
403#define iobarrier_w() eieio()
404
405
173/* 406/*
174 * output pause versions need a delay at least for the 407 * output pause versions need a delay at least for the
175 * w83c105 ide controller in a p610. 408 * w83c105 ide controller in a p610.
@@ -185,11 +418,6 @@ static inline void mmiowb(void)
185#define IO_SPACE_LIMIT ~(0UL) 418#define IO_SPACE_LIMIT ~(0UL)
186 419
187 420
188extern int __ioremap_explicit(unsigned long p_addr, unsigned long v_addr,
189 unsigned long size, unsigned long flags);
190extern void __iomem *__ioremap(unsigned long address, unsigned long size,
191 unsigned long flags);
192
193/** 421/**
194 * ioremap - map bus memory into CPU space 422 * ioremap - map bus memory into CPU space
195 * @address: bus address of the memory 423 * @address: bus address of the memory
@@ -200,14 +428,70 @@ extern void __iomem *__ioremap(unsigned long address, unsigned long size,
200 * writew/writel functions and the other mmio helpers. The returned 428 * writew/writel functions and the other mmio helpers. The returned
201 * address is not guaranteed to be usable directly as a virtual 429 * address is not guaranteed to be usable directly as a virtual
202 * address. 430 * address.
431 *
432 * We provide a few variations of it:
433 *
434 * * ioremap is the standard one and provides non-cacheable guarded mappings
435 * and can be hooked by the platform via ppc_md
436 *
437 * * ioremap_flags allows to specify the page flags as an argument and can
438 * also be hooked by the platform via ppc_md
439 *
440 * * ioremap_nocache is identical to ioremap
441 *
442 * * iounmap undoes such a mapping and can be hooked
443 *
444 * * __ioremap_explicit (and the pending __iounmap_explicit) are low level
445 * functions to create hand-made mappings for use only by the PCI code
446 * and cannot currently be hooked.
447 *
448 * * __ioremap is the low level implementation used by ioremap and
449 * ioremap_flags and cannot be hooked (but can be used by a hook on one
450 * of the previous ones)
451 *
452 * * __iounmap, is the low level implementation used by iounmap and cannot
453 * be hooked (but can be used by a hook on iounmap)
454 *
203 */ 455 */
204extern void __iomem *ioremap(unsigned long address, unsigned long size); 456extern void __iomem *ioremap(unsigned long address, unsigned long size);
205 457extern void __iomem *ioremap_flags(unsigned long address, unsigned long size,
458 unsigned long flags);
206#define ioremap_nocache(addr, size) ioremap((addr), (size)) 459#define ioremap_nocache(addr, size) ioremap((addr), (size))
207extern int iounmap_explicit(volatile void __iomem *addr, unsigned long size); 460extern void iounmap(void __iomem *addr);
208extern void iounmap(volatile void __iomem *addr); 461
462extern void __iomem *__ioremap(unsigned long address, unsigned long size,
463 unsigned long flags);
464extern void __iounmap(void __iomem *addr);
465
466extern int __ioremap_explicit(unsigned long p_addr, unsigned long v_addr,
467 unsigned long size, unsigned long flags);
468extern int __iounmap_explicit(void __iomem *start, unsigned long size);
469
209extern void __iomem * reserve_phb_iospace(unsigned long size); 470extern void __iomem * reserve_phb_iospace(unsigned long size);
210 471
472
473/*
474 * When CONFIG_PPC_INDIRECT_IO is set, we use the generic iomap implementation
475 * which needs some additional definitions here. They basically allow PIO
476 * space overall to be 1GB. This will work as long as we never try to use
477 * iomap to map MMIO below 1GB which should be fine on ppc64
478 */
479#define HAVE_ARCH_PIO_SIZE 1
480#define PIO_OFFSET 0x00000000UL
481#define PIO_MASK 0x3fffffffUL
482#define PIO_RESERVED 0x40000000UL
483
484#define mmio_read16be(addr) readw_be(addr)
485#define mmio_read32be(addr) readl_be(addr)
486#define mmio_write16be(val, addr) writew_be(val, addr)
487#define mmio_write32be(val, addr) writel_be(val, addr)
488#define mmio_insb(addr, dst, count) readsb(addr, dst, count)
489#define mmio_insw(addr, dst, count) readsw(addr, dst, count)
490#define mmio_insl(addr, dst, count) readsl(addr, dst, count)
491#define mmio_outsb(addr, src, count) writesb(addr, src, count)
492#define mmio_outsw(addr, src, count) writesw(addr, src, count)
493#define mmio_outsl(addr, src, count) writesl(addr, src, count)
494
211/** 495/**
212 * virt_to_phys - map virtual addresses to physical 496 * virt_to_phys - map virtual addresses to physical
213 * @address: address to remap 497 * @address: address to remap
@@ -254,177 +538,6 @@ static inline void * phys_to_virt(unsigned long address)
254 */ 538 */
255#define BIO_VMERGE_BOUNDARY 0 539#define BIO_VMERGE_BOUNDARY 0
256 540
257static inline void iosync(void)
258{
259 __asm__ __volatile__ ("sync" : : : "memory");
260}
261
262/* Enforce in-order execution of data I/O.
263 * No distinction between read/write on PPC; use eieio for all three.
264 */
265#define iobarrier_rw() eieio()
266#define iobarrier_r() eieio()
267#define iobarrier_w() eieio()
268
269/*
270 * 8, 16 and 32 bit, big and little endian I/O operations, with barrier.
271 * These routines do not perform EEH-related I/O address translation,
272 * and should not be used directly by device drivers. Use inb/readb
273 * instead.
274 */
275static inline int __in_8(const volatile unsigned char __iomem *addr)
276{
277 int ret;
278
279 __asm__ __volatile__("sync; lbz%U1%X1 %0,%1; twi 0,%0,0; isync"
280 : "=r" (ret) : "m" (*addr));
281 return ret;
282}
283
284static inline void __out_8(volatile unsigned char __iomem *addr, int val)
285{
286 __asm__ __volatile__("sync; stb%U0%X0 %1,%0"
287 : "=m" (*addr) : "r" (val));
288 get_paca()->io_sync = 1;
289}
290
291static inline int __in_le16(const volatile unsigned short __iomem *addr)
292{
293 int ret;
294
295 __asm__ __volatile__("sync; lhbrx %0,0,%1; twi 0,%0,0; isync"
296 : "=r" (ret) : "r" (addr), "m" (*addr));
297 return ret;
298}
299
300static inline int __in_be16(const volatile unsigned short __iomem *addr)
301{
302 int ret;
303
304 __asm__ __volatile__("sync; lhz%U1%X1 %0,%1; twi 0,%0,0; isync"
305 : "=r" (ret) : "m" (*addr));
306 return ret;
307}
308
309static inline void __out_le16(volatile unsigned short __iomem *addr, int val)
310{
311 __asm__ __volatile__("sync; sthbrx %1,0,%2"
312 : "=m" (*addr) : "r" (val), "r" (addr));
313 get_paca()->io_sync = 1;
314}
315
316static inline void __out_be16(volatile unsigned short __iomem *addr, int val)
317{
318 __asm__ __volatile__("sync; sth%U0%X0 %1,%0"
319 : "=m" (*addr) : "r" (val));
320 get_paca()->io_sync = 1;
321}
322
323static inline unsigned __in_le32(const volatile unsigned __iomem *addr)
324{
325 unsigned ret;
326
327 __asm__ __volatile__("sync; lwbrx %0,0,%1; twi 0,%0,0; isync"
328 : "=r" (ret) : "r" (addr), "m" (*addr));
329 return ret;
330}
331
332static inline unsigned __in_be32(const volatile unsigned __iomem *addr)
333{
334 unsigned ret;
335
336 __asm__ __volatile__("sync; lwz%U1%X1 %0,%1; twi 0,%0,0; isync"
337 : "=r" (ret) : "m" (*addr));
338 return ret;
339}
340
341static inline void __out_le32(volatile unsigned __iomem *addr, int val)
342{
343 __asm__ __volatile__("sync; stwbrx %1,0,%2" : "=m" (*addr)
344 : "r" (val), "r" (addr));
345 get_paca()->io_sync = 1;
346}
347
348static inline void __out_be32(volatile unsigned __iomem *addr, int val)
349{
350 __asm__ __volatile__("sync; stw%U0%X0 %1,%0"
351 : "=m" (*addr) : "r" (val));
352 get_paca()->io_sync = 1;
353}
354
355static inline unsigned long __in_le64(const volatile unsigned long __iomem *addr)
356{
357 unsigned long tmp, ret;
358
359 __asm__ __volatile__(
360 "sync\n"
361 "ld %1,0(%2)\n"
362 "twi 0,%1,0\n"
363 "isync\n"
364 "rldimi %0,%1,5*8,1*8\n"
365 "rldimi %0,%1,3*8,2*8\n"
366 "rldimi %0,%1,1*8,3*8\n"
367 "rldimi %0,%1,7*8,4*8\n"
368 "rldicl %1,%1,32,0\n"
369 "rlwimi %0,%1,8,8,31\n"
370 "rlwimi %0,%1,24,16,23\n"
371 : "=r" (ret) , "=r" (tmp) : "b" (addr) , "m" (*addr));
372 return ret;
373}
374
375static inline unsigned long __in_be64(const volatile unsigned long __iomem *addr)
376{
377 unsigned long ret;
378
379 __asm__ __volatile__("sync; ld%U1%X1 %0,%1; twi 0,%0,0; isync"
380 : "=r" (ret) : "m" (*addr));
381 return ret;
382}
383
384static inline void __out_le64(volatile unsigned long __iomem *addr, unsigned long val)
385{
386 unsigned long tmp;
387
388 __asm__ __volatile__(
389 "rldimi %0,%1,5*8,1*8\n"
390 "rldimi %0,%1,3*8,2*8\n"
391 "rldimi %0,%1,1*8,3*8\n"
392 "rldimi %0,%1,7*8,4*8\n"
393 "rldicl %1,%1,32,0\n"
394 "rlwimi %0,%1,8,8,31\n"
395 "rlwimi %0,%1,24,16,23\n"
396 "sync\n"
397 "std %0,0(%3)"
398 : "=&r" (tmp) , "=&r" (val) : "1" (val) , "b" (addr) , "m" (*addr));
399 get_paca()->io_sync = 1;
400}
401
402static inline void __out_be64(volatile unsigned long __iomem *addr, unsigned long val)
403{
404 __asm__ __volatile__("sync; std%U0%X0 %1,%0" : "=m" (*addr) : "r" (val));
405 get_paca()->io_sync = 1;
406}
407
408#include <asm/eeh.h>
409
410/* Nothing to do */
411
412#define dma_cache_inv(_start,_size) do { } while (0)
413#define dma_cache_wback(_start,_size) do { } while (0)
414#define dma_cache_wback_inv(_start,_size) do { } while (0)
415
416
417/*
418 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
419 * access
420 */
421#define xlate_dev_mem_ptr(p) __va(p)
422
423/*
424 * Convert a virtual cached pointer to an uncached pointer
425 */
426#define xlate_dev_kmem_ptr(p) p
427
428#endif /* __KERNEL__ */ 541#endif /* __KERNEL__ */
429 542
430#endif /* CONFIG_PPC64 */ 543#endif /* CONFIG_PPC64 */