diff options
Diffstat (limited to 'fs/f2fs/node.c')
-rw-r--r-- | fs/f2fs/node.c | 1764 |
1 files changed, 1764 insertions, 0 deletions
diff --git a/fs/f2fs/node.c b/fs/f2fs/node.c new file mode 100644 index 000000000000..19870361497e --- /dev/null +++ b/fs/f2fs/node.c | |||
@@ -0,0 +1,1764 @@ | |||
1 | /* | ||
2 | * fs/f2fs/node.c | ||
3 | * | ||
4 | * Copyright (c) 2012 Samsung Electronics Co., Ltd. | ||
5 | * http://www.samsung.com/ | ||
6 | * | ||
7 | * This program is free software; you can redistribute it and/or modify | ||
8 | * it under the terms of the GNU General Public License version 2 as | ||
9 | * published by the Free Software Foundation. | ||
10 | */ | ||
11 | #include <linux/fs.h> | ||
12 | #include <linux/f2fs_fs.h> | ||
13 | #include <linux/mpage.h> | ||
14 | #include <linux/backing-dev.h> | ||
15 | #include <linux/blkdev.h> | ||
16 | #include <linux/pagevec.h> | ||
17 | #include <linux/swap.h> | ||
18 | |||
19 | #include "f2fs.h" | ||
20 | #include "node.h" | ||
21 | #include "segment.h" | ||
22 | |||
23 | static struct kmem_cache *nat_entry_slab; | ||
24 | static struct kmem_cache *free_nid_slab; | ||
25 | |||
26 | static void clear_node_page_dirty(struct page *page) | ||
27 | { | ||
28 | struct address_space *mapping = page->mapping; | ||
29 | struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb); | ||
30 | unsigned int long flags; | ||
31 | |||
32 | if (PageDirty(page)) { | ||
33 | spin_lock_irqsave(&mapping->tree_lock, flags); | ||
34 | radix_tree_tag_clear(&mapping->page_tree, | ||
35 | page_index(page), | ||
36 | PAGECACHE_TAG_DIRTY); | ||
37 | spin_unlock_irqrestore(&mapping->tree_lock, flags); | ||
38 | |||
39 | clear_page_dirty_for_io(page); | ||
40 | dec_page_count(sbi, F2FS_DIRTY_NODES); | ||
41 | } | ||
42 | ClearPageUptodate(page); | ||
43 | } | ||
44 | |||
45 | static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid) | ||
46 | { | ||
47 | pgoff_t index = current_nat_addr(sbi, nid); | ||
48 | return get_meta_page(sbi, index); | ||
49 | } | ||
50 | |||
51 | static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid) | ||
52 | { | ||
53 | struct page *src_page; | ||
54 | struct page *dst_page; | ||
55 | pgoff_t src_off; | ||
56 | pgoff_t dst_off; | ||
57 | void *src_addr; | ||
58 | void *dst_addr; | ||
59 | struct f2fs_nm_info *nm_i = NM_I(sbi); | ||
60 | |||
61 | src_off = current_nat_addr(sbi, nid); | ||
62 | dst_off = next_nat_addr(sbi, src_off); | ||
63 | |||
64 | /* get current nat block page with lock */ | ||
65 | src_page = get_meta_page(sbi, src_off); | ||
66 | |||
67 | /* Dirty src_page means that it is already the new target NAT page. */ | ||
68 | if (PageDirty(src_page)) | ||
69 | return src_page; | ||
70 | |||
71 | dst_page = grab_meta_page(sbi, dst_off); | ||
72 | |||
73 | src_addr = page_address(src_page); | ||
74 | dst_addr = page_address(dst_page); | ||
75 | memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE); | ||
76 | set_page_dirty(dst_page); | ||
77 | f2fs_put_page(src_page, 1); | ||
78 | |||
79 | set_to_next_nat(nm_i, nid); | ||
80 | |||
81 | return dst_page; | ||
82 | } | ||
83 | |||
84 | /* | ||
85 | * Readahead NAT pages | ||
86 | */ | ||
87 | static void ra_nat_pages(struct f2fs_sb_info *sbi, int nid) | ||
88 | { | ||
89 | struct address_space *mapping = sbi->meta_inode->i_mapping; | ||
90 | struct f2fs_nm_info *nm_i = NM_I(sbi); | ||
91 | struct page *page; | ||
92 | pgoff_t index; | ||
93 | int i; | ||
94 | |||
95 | for (i = 0; i < FREE_NID_PAGES; i++, nid += NAT_ENTRY_PER_BLOCK) { | ||
96 | if (nid >= nm_i->max_nid) | ||
97 | nid = 0; | ||
98 | index = current_nat_addr(sbi, nid); | ||
99 | |||
100 | page = grab_cache_page(mapping, index); | ||
101 | if (!page) | ||
102 | continue; | ||
103 | if (f2fs_readpage(sbi, page, index, READ)) { | ||
104 | f2fs_put_page(page, 1); | ||
105 | continue; | ||
106 | } | ||
107 | page_cache_release(page); | ||
108 | } | ||
109 | } | ||
110 | |||
111 | static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n) | ||
112 | { | ||
113 | return radix_tree_lookup(&nm_i->nat_root, n); | ||
114 | } | ||
115 | |||
116 | static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i, | ||
117 | nid_t start, unsigned int nr, struct nat_entry **ep) | ||
118 | { | ||
119 | return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr); | ||
120 | } | ||
121 | |||
122 | static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e) | ||
123 | { | ||
124 | list_del(&e->list); | ||
125 | radix_tree_delete(&nm_i->nat_root, nat_get_nid(e)); | ||
126 | nm_i->nat_cnt--; | ||
127 | kmem_cache_free(nat_entry_slab, e); | ||
128 | } | ||
129 | |||
130 | int is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid) | ||
131 | { | ||
132 | struct f2fs_nm_info *nm_i = NM_I(sbi); | ||
133 | struct nat_entry *e; | ||
134 | int is_cp = 1; | ||
135 | |||
136 | read_lock(&nm_i->nat_tree_lock); | ||
137 | e = __lookup_nat_cache(nm_i, nid); | ||
138 | if (e && !e->checkpointed) | ||
139 | is_cp = 0; | ||
140 | read_unlock(&nm_i->nat_tree_lock); | ||
141 | return is_cp; | ||
142 | } | ||
143 | |||
144 | static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid) | ||
145 | { | ||
146 | struct nat_entry *new; | ||
147 | |||
148 | new = kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC); | ||
149 | if (!new) | ||
150 | return NULL; | ||
151 | if (radix_tree_insert(&nm_i->nat_root, nid, new)) { | ||
152 | kmem_cache_free(nat_entry_slab, new); | ||
153 | return NULL; | ||
154 | } | ||
155 | memset(new, 0, sizeof(struct nat_entry)); | ||
156 | nat_set_nid(new, nid); | ||
157 | list_add_tail(&new->list, &nm_i->nat_entries); | ||
158 | nm_i->nat_cnt++; | ||
159 | return new; | ||
160 | } | ||
161 | |||
162 | static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid, | ||
163 | struct f2fs_nat_entry *ne) | ||
164 | { | ||
165 | struct nat_entry *e; | ||
166 | retry: | ||
167 | write_lock(&nm_i->nat_tree_lock); | ||
168 | e = __lookup_nat_cache(nm_i, nid); | ||
169 | if (!e) { | ||
170 | e = grab_nat_entry(nm_i, nid); | ||
171 | if (!e) { | ||
172 | write_unlock(&nm_i->nat_tree_lock); | ||
173 | goto retry; | ||
174 | } | ||
175 | nat_set_blkaddr(e, le32_to_cpu(ne->block_addr)); | ||
176 | nat_set_ino(e, le32_to_cpu(ne->ino)); | ||
177 | nat_set_version(e, ne->version); | ||
178 | e->checkpointed = true; | ||
179 | } | ||
180 | write_unlock(&nm_i->nat_tree_lock); | ||
181 | } | ||
182 | |||
183 | static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni, | ||
184 | block_t new_blkaddr) | ||
185 | { | ||
186 | struct f2fs_nm_info *nm_i = NM_I(sbi); | ||
187 | struct nat_entry *e; | ||
188 | retry: | ||
189 | write_lock(&nm_i->nat_tree_lock); | ||
190 | e = __lookup_nat_cache(nm_i, ni->nid); | ||
191 | if (!e) { | ||
192 | e = grab_nat_entry(nm_i, ni->nid); | ||
193 | if (!e) { | ||
194 | write_unlock(&nm_i->nat_tree_lock); | ||
195 | goto retry; | ||
196 | } | ||
197 | e->ni = *ni; | ||
198 | e->checkpointed = true; | ||
199 | BUG_ON(ni->blk_addr == NEW_ADDR); | ||
200 | } else if (new_blkaddr == NEW_ADDR) { | ||
201 | /* | ||
202 | * when nid is reallocated, | ||
203 | * previous nat entry can be remained in nat cache. | ||
204 | * So, reinitialize it with new information. | ||
205 | */ | ||
206 | e->ni = *ni; | ||
207 | BUG_ON(ni->blk_addr != NULL_ADDR); | ||
208 | } | ||
209 | |||
210 | if (new_blkaddr == NEW_ADDR) | ||
211 | e->checkpointed = false; | ||
212 | |||
213 | /* sanity check */ | ||
214 | BUG_ON(nat_get_blkaddr(e) != ni->blk_addr); | ||
215 | BUG_ON(nat_get_blkaddr(e) == NULL_ADDR && | ||
216 | new_blkaddr == NULL_ADDR); | ||
217 | BUG_ON(nat_get_blkaddr(e) == NEW_ADDR && | ||
218 | new_blkaddr == NEW_ADDR); | ||
219 | BUG_ON(nat_get_blkaddr(e) != NEW_ADDR && | ||
220 | nat_get_blkaddr(e) != NULL_ADDR && | ||
221 | new_blkaddr == NEW_ADDR); | ||
222 | |||
223 | /* increament version no as node is removed */ | ||
224 | if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) { | ||
225 | unsigned char version = nat_get_version(e); | ||
226 | nat_set_version(e, inc_node_version(version)); | ||
227 | } | ||
228 | |||
229 | /* change address */ | ||
230 | nat_set_blkaddr(e, new_blkaddr); | ||
231 | __set_nat_cache_dirty(nm_i, e); | ||
232 | write_unlock(&nm_i->nat_tree_lock); | ||
233 | } | ||
234 | |||
235 | static int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink) | ||
236 | { | ||
237 | struct f2fs_nm_info *nm_i = NM_I(sbi); | ||
238 | |||
239 | if (nm_i->nat_cnt < 2 * NM_WOUT_THRESHOLD) | ||
240 | return 0; | ||
241 | |||
242 | write_lock(&nm_i->nat_tree_lock); | ||
243 | while (nr_shrink && !list_empty(&nm_i->nat_entries)) { | ||
244 | struct nat_entry *ne; | ||
245 | ne = list_first_entry(&nm_i->nat_entries, | ||
246 | struct nat_entry, list); | ||
247 | __del_from_nat_cache(nm_i, ne); | ||
248 | nr_shrink--; | ||
249 | } | ||
250 | write_unlock(&nm_i->nat_tree_lock); | ||
251 | return nr_shrink; | ||
252 | } | ||
253 | |||
254 | /* | ||
255 | * This function returns always success | ||
256 | */ | ||
257 | void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni) | ||
258 | { | ||
259 | struct f2fs_nm_info *nm_i = NM_I(sbi); | ||
260 | struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); | ||
261 | struct f2fs_summary_block *sum = curseg->sum_blk; | ||
262 | nid_t start_nid = START_NID(nid); | ||
263 | struct f2fs_nat_block *nat_blk; | ||
264 | struct page *page = NULL; | ||
265 | struct f2fs_nat_entry ne; | ||
266 | struct nat_entry *e; | ||
267 | int i; | ||
268 | |||
269 | memset(&ne, 0, sizeof(struct f2fs_nat_entry)); | ||
270 | ni->nid = nid; | ||
271 | |||
272 | /* Check nat cache */ | ||
273 | read_lock(&nm_i->nat_tree_lock); | ||
274 | e = __lookup_nat_cache(nm_i, nid); | ||
275 | if (e) { | ||
276 | ni->ino = nat_get_ino(e); | ||
277 | ni->blk_addr = nat_get_blkaddr(e); | ||
278 | ni->version = nat_get_version(e); | ||
279 | } | ||
280 | read_unlock(&nm_i->nat_tree_lock); | ||
281 | if (e) | ||
282 | return; | ||
283 | |||
284 | /* Check current segment summary */ | ||
285 | mutex_lock(&curseg->curseg_mutex); | ||
286 | i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0); | ||
287 | if (i >= 0) { | ||
288 | ne = nat_in_journal(sum, i); | ||
289 | node_info_from_raw_nat(ni, &ne); | ||
290 | } | ||
291 | mutex_unlock(&curseg->curseg_mutex); | ||
292 | if (i >= 0) | ||
293 | goto cache; | ||
294 | |||
295 | /* Fill node_info from nat page */ | ||
296 | page = get_current_nat_page(sbi, start_nid); | ||
297 | nat_blk = (struct f2fs_nat_block *)page_address(page); | ||
298 | ne = nat_blk->entries[nid - start_nid]; | ||
299 | node_info_from_raw_nat(ni, &ne); | ||
300 | f2fs_put_page(page, 1); | ||
301 | cache: | ||
302 | /* cache nat entry */ | ||
303 | cache_nat_entry(NM_I(sbi), nid, &ne); | ||
304 | } | ||
305 | |||
306 | /* | ||
307 | * The maximum depth is four. | ||
308 | * Offset[0] will have raw inode offset. | ||
309 | */ | ||
310 | static int get_node_path(long block, int offset[4], unsigned int noffset[4]) | ||
311 | { | ||
312 | const long direct_index = ADDRS_PER_INODE; | ||
313 | const long direct_blks = ADDRS_PER_BLOCK; | ||
314 | const long dptrs_per_blk = NIDS_PER_BLOCK; | ||
315 | const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK; | ||
316 | const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK; | ||
317 | int n = 0; | ||
318 | int level = 0; | ||
319 | |||
320 | noffset[0] = 0; | ||
321 | |||
322 | if (block < direct_index) { | ||
323 | offset[n++] = block; | ||
324 | level = 0; | ||
325 | goto got; | ||
326 | } | ||
327 | block -= direct_index; | ||
328 | if (block < direct_blks) { | ||
329 | offset[n++] = NODE_DIR1_BLOCK; | ||
330 | noffset[n] = 1; | ||
331 | offset[n++] = block; | ||
332 | level = 1; | ||
333 | goto got; | ||
334 | } | ||
335 | block -= direct_blks; | ||
336 | if (block < direct_blks) { | ||
337 | offset[n++] = NODE_DIR2_BLOCK; | ||
338 | noffset[n] = 2; | ||
339 | offset[n++] = block; | ||
340 | level = 1; | ||
341 | goto got; | ||
342 | } | ||
343 | block -= direct_blks; | ||
344 | if (block < indirect_blks) { | ||
345 | offset[n++] = NODE_IND1_BLOCK; | ||
346 | noffset[n] = 3; | ||
347 | offset[n++] = block / direct_blks; | ||
348 | noffset[n] = 4 + offset[n - 1]; | ||
349 | offset[n++] = block % direct_blks; | ||
350 | level = 2; | ||
351 | goto got; | ||
352 | } | ||
353 | block -= indirect_blks; | ||
354 | if (block < indirect_blks) { | ||
355 | offset[n++] = NODE_IND2_BLOCK; | ||
356 | noffset[n] = 4 + dptrs_per_blk; | ||
357 | offset[n++] = block / direct_blks; | ||
358 | noffset[n] = 5 + dptrs_per_blk + offset[n - 1]; | ||
359 | offset[n++] = block % direct_blks; | ||
360 | level = 2; | ||
361 | goto got; | ||
362 | } | ||
363 | block -= indirect_blks; | ||
364 | if (block < dindirect_blks) { | ||
365 | offset[n++] = NODE_DIND_BLOCK; | ||
366 | noffset[n] = 5 + (dptrs_per_blk * 2); | ||
367 | offset[n++] = block / indirect_blks; | ||
368 | noffset[n] = 6 + (dptrs_per_blk * 2) + | ||
369 | offset[n - 1] * (dptrs_per_blk + 1); | ||
370 | offset[n++] = (block / direct_blks) % dptrs_per_blk; | ||
371 | noffset[n] = 7 + (dptrs_per_blk * 2) + | ||
372 | offset[n - 2] * (dptrs_per_blk + 1) + | ||
373 | offset[n - 1]; | ||
374 | offset[n++] = block % direct_blks; | ||
375 | level = 3; | ||
376 | goto got; | ||
377 | } else { | ||
378 | BUG(); | ||
379 | } | ||
380 | got: | ||
381 | return level; | ||
382 | } | ||
383 | |||
384 | /* | ||
385 | * Caller should call f2fs_put_dnode(dn). | ||
386 | */ | ||
387 | int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int ro) | ||
388 | { | ||
389 | struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); | ||
390 | struct page *npage[4]; | ||
391 | struct page *parent; | ||
392 | int offset[4]; | ||
393 | unsigned int noffset[4]; | ||
394 | nid_t nids[4]; | ||
395 | int level, i; | ||
396 | int err = 0; | ||
397 | |||
398 | level = get_node_path(index, offset, noffset); | ||
399 | |||
400 | nids[0] = dn->inode->i_ino; | ||
401 | npage[0] = get_node_page(sbi, nids[0]); | ||
402 | if (IS_ERR(npage[0])) | ||
403 | return PTR_ERR(npage[0]); | ||
404 | |||
405 | parent = npage[0]; | ||
406 | nids[1] = get_nid(parent, offset[0], true); | ||
407 | dn->inode_page = npage[0]; | ||
408 | dn->inode_page_locked = true; | ||
409 | |||
410 | /* get indirect or direct nodes */ | ||
411 | for (i = 1; i <= level; i++) { | ||
412 | bool done = false; | ||
413 | |||
414 | if (!nids[i] && !ro) { | ||
415 | mutex_lock_op(sbi, NODE_NEW); | ||
416 | |||
417 | /* alloc new node */ | ||
418 | if (!alloc_nid(sbi, &(nids[i]))) { | ||
419 | mutex_unlock_op(sbi, NODE_NEW); | ||
420 | err = -ENOSPC; | ||
421 | goto release_pages; | ||
422 | } | ||
423 | |||
424 | dn->nid = nids[i]; | ||
425 | npage[i] = new_node_page(dn, noffset[i]); | ||
426 | if (IS_ERR(npage[i])) { | ||
427 | alloc_nid_failed(sbi, nids[i]); | ||
428 | mutex_unlock_op(sbi, NODE_NEW); | ||
429 | err = PTR_ERR(npage[i]); | ||
430 | goto release_pages; | ||
431 | } | ||
432 | |||
433 | set_nid(parent, offset[i - 1], nids[i], i == 1); | ||
434 | alloc_nid_done(sbi, nids[i]); | ||
435 | mutex_unlock_op(sbi, NODE_NEW); | ||
436 | done = true; | ||
437 | } else if (ro && i == level && level > 1) { | ||
438 | npage[i] = get_node_page_ra(parent, offset[i - 1]); | ||
439 | if (IS_ERR(npage[i])) { | ||
440 | err = PTR_ERR(npage[i]); | ||
441 | goto release_pages; | ||
442 | } | ||
443 | done = true; | ||
444 | } | ||
445 | if (i == 1) { | ||
446 | dn->inode_page_locked = false; | ||
447 | unlock_page(parent); | ||
448 | } else { | ||
449 | f2fs_put_page(parent, 1); | ||
450 | } | ||
451 | |||
452 | if (!done) { | ||
453 | npage[i] = get_node_page(sbi, nids[i]); | ||
454 | if (IS_ERR(npage[i])) { | ||
455 | err = PTR_ERR(npage[i]); | ||
456 | f2fs_put_page(npage[0], 0); | ||
457 | goto release_out; | ||
458 | } | ||
459 | } | ||
460 | if (i < level) { | ||
461 | parent = npage[i]; | ||
462 | nids[i + 1] = get_nid(parent, offset[i], false); | ||
463 | } | ||
464 | } | ||
465 | dn->nid = nids[level]; | ||
466 | dn->ofs_in_node = offset[level]; | ||
467 | dn->node_page = npage[level]; | ||
468 | dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node); | ||
469 | return 0; | ||
470 | |||
471 | release_pages: | ||
472 | f2fs_put_page(parent, 1); | ||
473 | if (i > 1) | ||
474 | f2fs_put_page(npage[0], 0); | ||
475 | release_out: | ||
476 | dn->inode_page = NULL; | ||
477 | dn->node_page = NULL; | ||
478 | return err; | ||
479 | } | ||
480 | |||
481 | static void truncate_node(struct dnode_of_data *dn) | ||
482 | { | ||
483 | struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); | ||
484 | struct node_info ni; | ||
485 | |||
486 | get_node_info(sbi, dn->nid, &ni); | ||
487 | BUG_ON(ni.blk_addr == NULL_ADDR); | ||
488 | |||
489 | if (ni.blk_addr != NULL_ADDR) | ||
490 | invalidate_blocks(sbi, ni.blk_addr); | ||
491 | |||
492 | /* Deallocate node address */ | ||
493 | dec_valid_node_count(sbi, dn->inode, 1); | ||
494 | set_node_addr(sbi, &ni, NULL_ADDR); | ||
495 | |||
496 | if (dn->nid == dn->inode->i_ino) { | ||
497 | remove_orphan_inode(sbi, dn->nid); | ||
498 | dec_valid_inode_count(sbi); | ||
499 | } else { | ||
500 | sync_inode_page(dn); | ||
501 | } | ||
502 | |||
503 | clear_node_page_dirty(dn->node_page); | ||
504 | F2FS_SET_SB_DIRT(sbi); | ||
505 | |||
506 | f2fs_put_page(dn->node_page, 1); | ||
507 | dn->node_page = NULL; | ||
508 | } | ||
509 | |||
510 | static int truncate_dnode(struct dnode_of_data *dn) | ||
511 | { | ||
512 | struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); | ||
513 | struct page *page; | ||
514 | |||
515 | if (dn->nid == 0) | ||
516 | return 1; | ||
517 | |||
518 | /* get direct node */ | ||
519 | page = get_node_page(sbi, dn->nid); | ||
520 | if (IS_ERR(page) && PTR_ERR(page) == -ENOENT) | ||
521 | return 1; | ||
522 | else if (IS_ERR(page)) | ||
523 | return PTR_ERR(page); | ||
524 | |||
525 | /* Make dnode_of_data for parameter */ | ||
526 | dn->node_page = page; | ||
527 | dn->ofs_in_node = 0; | ||
528 | truncate_data_blocks(dn); | ||
529 | truncate_node(dn); | ||
530 | return 1; | ||
531 | } | ||
532 | |||
533 | static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs, | ||
534 | int ofs, int depth) | ||
535 | { | ||
536 | struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); | ||
537 | struct dnode_of_data rdn = *dn; | ||
538 | struct page *page; | ||
539 | struct f2fs_node *rn; | ||
540 | nid_t child_nid; | ||
541 | unsigned int child_nofs; | ||
542 | int freed = 0; | ||
543 | int i, ret; | ||
544 | |||
545 | if (dn->nid == 0) | ||
546 | return NIDS_PER_BLOCK + 1; | ||
547 | |||
548 | page = get_node_page(sbi, dn->nid); | ||
549 | if (IS_ERR(page)) | ||
550 | return PTR_ERR(page); | ||
551 | |||
552 | rn = (struct f2fs_node *)page_address(page); | ||
553 | if (depth < 3) { | ||
554 | for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) { | ||
555 | child_nid = le32_to_cpu(rn->in.nid[i]); | ||
556 | if (child_nid == 0) | ||
557 | continue; | ||
558 | rdn.nid = child_nid; | ||
559 | ret = truncate_dnode(&rdn); | ||
560 | if (ret < 0) | ||
561 | goto out_err; | ||
562 | set_nid(page, i, 0, false); | ||
563 | } | ||
564 | } else { | ||
565 | child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1; | ||
566 | for (i = ofs; i < NIDS_PER_BLOCK; i++) { | ||
567 | child_nid = le32_to_cpu(rn->in.nid[i]); | ||
568 | if (child_nid == 0) { | ||
569 | child_nofs += NIDS_PER_BLOCK + 1; | ||
570 | continue; | ||
571 | } | ||
572 | rdn.nid = child_nid; | ||
573 | ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1); | ||
574 | if (ret == (NIDS_PER_BLOCK + 1)) { | ||
575 | set_nid(page, i, 0, false); | ||
576 | child_nofs += ret; | ||
577 | } else if (ret < 0 && ret != -ENOENT) { | ||
578 | goto out_err; | ||
579 | } | ||
580 | } | ||
581 | freed = child_nofs; | ||
582 | } | ||
583 | |||
584 | if (!ofs) { | ||
585 | /* remove current indirect node */ | ||
586 | dn->node_page = page; | ||
587 | truncate_node(dn); | ||
588 | freed++; | ||
589 | } else { | ||
590 | f2fs_put_page(page, 1); | ||
591 | } | ||
592 | return freed; | ||
593 | |||
594 | out_err: | ||
595 | f2fs_put_page(page, 1); | ||
596 | return ret; | ||
597 | } | ||
598 | |||
599 | static int truncate_partial_nodes(struct dnode_of_data *dn, | ||
600 | struct f2fs_inode *ri, int *offset, int depth) | ||
601 | { | ||
602 | struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); | ||
603 | struct page *pages[2]; | ||
604 | nid_t nid[3]; | ||
605 | nid_t child_nid; | ||
606 | int err = 0; | ||
607 | int i; | ||
608 | int idx = depth - 2; | ||
609 | |||
610 | nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); | ||
611 | if (!nid[0]) | ||
612 | return 0; | ||
613 | |||
614 | /* get indirect nodes in the path */ | ||
615 | for (i = 0; i < depth - 1; i++) { | ||
616 | /* refernece count'll be increased */ | ||
617 | pages[i] = get_node_page(sbi, nid[i]); | ||
618 | if (IS_ERR(pages[i])) { | ||
619 | depth = i + 1; | ||
620 | err = PTR_ERR(pages[i]); | ||
621 | goto fail; | ||
622 | } | ||
623 | nid[i + 1] = get_nid(pages[i], offset[i + 1], false); | ||
624 | } | ||
625 | |||
626 | /* free direct nodes linked to a partial indirect node */ | ||
627 | for (i = offset[depth - 1]; i < NIDS_PER_BLOCK; i++) { | ||
628 | child_nid = get_nid(pages[idx], i, false); | ||
629 | if (!child_nid) | ||
630 | continue; | ||
631 | dn->nid = child_nid; | ||
632 | err = truncate_dnode(dn); | ||
633 | if (err < 0) | ||
634 | goto fail; | ||
635 | set_nid(pages[idx], i, 0, false); | ||
636 | } | ||
637 | |||
638 | if (offset[depth - 1] == 0) { | ||
639 | dn->node_page = pages[idx]; | ||
640 | dn->nid = nid[idx]; | ||
641 | truncate_node(dn); | ||
642 | } else { | ||
643 | f2fs_put_page(pages[idx], 1); | ||
644 | } | ||
645 | offset[idx]++; | ||
646 | offset[depth - 1] = 0; | ||
647 | fail: | ||
648 | for (i = depth - 3; i >= 0; i--) | ||
649 | f2fs_put_page(pages[i], 1); | ||
650 | return err; | ||
651 | } | ||
652 | |||
653 | /* | ||
654 | * All the block addresses of data and nodes should be nullified. | ||
655 | */ | ||
656 | int truncate_inode_blocks(struct inode *inode, pgoff_t from) | ||
657 | { | ||
658 | struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); | ||
659 | int err = 0, cont = 1; | ||
660 | int level, offset[4], noffset[4]; | ||
661 | unsigned int nofs; | ||
662 | struct f2fs_node *rn; | ||
663 | struct dnode_of_data dn; | ||
664 | struct page *page; | ||
665 | |||
666 | level = get_node_path(from, offset, noffset); | ||
667 | |||
668 | page = get_node_page(sbi, inode->i_ino); | ||
669 | if (IS_ERR(page)) | ||
670 | return PTR_ERR(page); | ||
671 | |||
672 | set_new_dnode(&dn, inode, page, NULL, 0); | ||
673 | unlock_page(page); | ||
674 | |||
675 | rn = page_address(page); | ||
676 | switch (level) { | ||
677 | case 0: | ||
678 | case 1: | ||
679 | nofs = noffset[1]; | ||
680 | break; | ||
681 | case 2: | ||
682 | nofs = noffset[1]; | ||
683 | if (!offset[level - 1]) | ||
684 | goto skip_partial; | ||
685 | err = truncate_partial_nodes(&dn, &rn->i, offset, level); | ||
686 | if (err < 0 && err != -ENOENT) | ||
687 | goto fail; | ||
688 | nofs += 1 + NIDS_PER_BLOCK; | ||
689 | break; | ||
690 | case 3: | ||
691 | nofs = 5 + 2 * NIDS_PER_BLOCK; | ||
692 | if (!offset[level - 1]) | ||
693 | goto skip_partial; | ||
694 | err = truncate_partial_nodes(&dn, &rn->i, offset, level); | ||
695 | if (err < 0 && err != -ENOENT) | ||
696 | goto fail; | ||
697 | break; | ||
698 | default: | ||
699 | BUG(); | ||
700 | } | ||
701 | |||
702 | skip_partial: | ||
703 | while (cont) { | ||
704 | dn.nid = le32_to_cpu(rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]); | ||
705 | switch (offset[0]) { | ||
706 | case NODE_DIR1_BLOCK: | ||
707 | case NODE_DIR2_BLOCK: | ||
708 | err = truncate_dnode(&dn); | ||
709 | break; | ||
710 | |||
711 | case NODE_IND1_BLOCK: | ||
712 | case NODE_IND2_BLOCK: | ||
713 | err = truncate_nodes(&dn, nofs, offset[1], 2); | ||
714 | break; | ||
715 | |||
716 | case NODE_DIND_BLOCK: | ||
717 | err = truncate_nodes(&dn, nofs, offset[1], 3); | ||
718 | cont = 0; | ||
719 | break; | ||
720 | |||
721 | default: | ||
722 | BUG(); | ||
723 | } | ||
724 | if (err < 0 && err != -ENOENT) | ||
725 | goto fail; | ||
726 | if (offset[1] == 0 && | ||
727 | rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]) { | ||
728 | lock_page(page); | ||
729 | wait_on_page_writeback(page); | ||
730 | rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK] = 0; | ||
731 | set_page_dirty(page); | ||
732 | unlock_page(page); | ||
733 | } | ||
734 | offset[1] = 0; | ||
735 | offset[0]++; | ||
736 | nofs += err; | ||
737 | } | ||
738 | fail: | ||
739 | f2fs_put_page(page, 0); | ||
740 | return err > 0 ? 0 : err; | ||
741 | } | ||
742 | |||
743 | int remove_inode_page(struct inode *inode) | ||
744 | { | ||
745 | struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); | ||
746 | struct page *page; | ||
747 | nid_t ino = inode->i_ino; | ||
748 | struct dnode_of_data dn; | ||
749 | |||
750 | mutex_lock_op(sbi, NODE_TRUNC); | ||
751 | page = get_node_page(sbi, ino); | ||
752 | if (IS_ERR(page)) { | ||
753 | mutex_unlock_op(sbi, NODE_TRUNC); | ||
754 | return PTR_ERR(page); | ||
755 | } | ||
756 | |||
757 | if (F2FS_I(inode)->i_xattr_nid) { | ||
758 | nid_t nid = F2FS_I(inode)->i_xattr_nid; | ||
759 | struct page *npage = get_node_page(sbi, nid); | ||
760 | |||
761 | if (IS_ERR(npage)) { | ||
762 | mutex_unlock_op(sbi, NODE_TRUNC); | ||
763 | return PTR_ERR(npage); | ||
764 | } | ||
765 | |||
766 | F2FS_I(inode)->i_xattr_nid = 0; | ||
767 | set_new_dnode(&dn, inode, page, npage, nid); | ||
768 | dn.inode_page_locked = 1; | ||
769 | truncate_node(&dn); | ||
770 | } | ||
771 | if (inode->i_blocks == 1) { | ||
772 | /* inernally call f2fs_put_page() */ | ||
773 | set_new_dnode(&dn, inode, page, page, ino); | ||
774 | truncate_node(&dn); | ||
775 | } else if (inode->i_blocks == 0) { | ||
776 | struct node_info ni; | ||
777 | get_node_info(sbi, inode->i_ino, &ni); | ||
778 | |||
779 | /* called after f2fs_new_inode() is failed */ | ||
780 | BUG_ON(ni.blk_addr != NULL_ADDR); | ||
781 | f2fs_put_page(page, 1); | ||
782 | } else { | ||
783 | BUG(); | ||
784 | } | ||
785 | mutex_unlock_op(sbi, NODE_TRUNC); | ||
786 | return 0; | ||
787 | } | ||
788 | |||
789 | int new_inode_page(struct inode *inode, struct dentry *dentry) | ||
790 | { | ||
791 | struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); | ||
792 | struct page *page; | ||
793 | struct dnode_of_data dn; | ||
794 | |||
795 | /* allocate inode page for new inode */ | ||
796 | set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); | ||
797 | mutex_lock_op(sbi, NODE_NEW); | ||
798 | page = new_node_page(&dn, 0); | ||
799 | init_dent_inode(dentry, page); | ||
800 | mutex_unlock_op(sbi, NODE_NEW); | ||
801 | if (IS_ERR(page)) | ||
802 | return PTR_ERR(page); | ||
803 | f2fs_put_page(page, 1); | ||
804 | return 0; | ||
805 | } | ||
806 | |||
807 | struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs) | ||
808 | { | ||
809 | struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); | ||
810 | struct address_space *mapping = sbi->node_inode->i_mapping; | ||
811 | struct node_info old_ni, new_ni; | ||
812 | struct page *page; | ||
813 | int err; | ||
814 | |||
815 | if (is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)) | ||
816 | return ERR_PTR(-EPERM); | ||
817 | |||
818 | page = grab_cache_page(mapping, dn->nid); | ||
819 | if (!page) | ||
820 | return ERR_PTR(-ENOMEM); | ||
821 | |||
822 | get_node_info(sbi, dn->nid, &old_ni); | ||
823 | |||
824 | SetPageUptodate(page); | ||
825 | fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true); | ||
826 | |||
827 | /* Reinitialize old_ni with new node page */ | ||
828 | BUG_ON(old_ni.blk_addr != NULL_ADDR); | ||
829 | new_ni = old_ni; | ||
830 | new_ni.ino = dn->inode->i_ino; | ||
831 | |||
832 | if (!inc_valid_node_count(sbi, dn->inode, 1)) { | ||
833 | err = -ENOSPC; | ||
834 | goto fail; | ||
835 | } | ||
836 | set_node_addr(sbi, &new_ni, NEW_ADDR); | ||
837 | |||
838 | dn->node_page = page; | ||
839 | sync_inode_page(dn); | ||
840 | set_page_dirty(page); | ||
841 | set_cold_node(dn->inode, page); | ||
842 | if (ofs == 0) | ||
843 | inc_valid_inode_count(sbi); | ||
844 | |||
845 | return page; | ||
846 | |||
847 | fail: | ||
848 | f2fs_put_page(page, 1); | ||
849 | return ERR_PTR(err); | ||
850 | } | ||
851 | |||
852 | static int read_node_page(struct page *page, int type) | ||
853 | { | ||
854 | struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb); | ||
855 | struct node_info ni; | ||
856 | |||
857 | get_node_info(sbi, page->index, &ni); | ||
858 | |||
859 | if (ni.blk_addr == NULL_ADDR) | ||
860 | return -ENOENT; | ||
861 | return f2fs_readpage(sbi, page, ni.blk_addr, type); | ||
862 | } | ||
863 | |||
864 | /* | ||
865 | * Readahead a node page | ||
866 | */ | ||
867 | void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid) | ||
868 | { | ||
869 | struct address_space *mapping = sbi->node_inode->i_mapping; | ||
870 | struct page *apage; | ||
871 | |||
872 | apage = find_get_page(mapping, nid); | ||
873 | if (apage && PageUptodate(apage)) | ||
874 | goto release_out; | ||
875 | f2fs_put_page(apage, 0); | ||
876 | |||
877 | apage = grab_cache_page(mapping, nid); | ||
878 | if (!apage) | ||
879 | return; | ||
880 | |||
881 | if (read_node_page(apage, READA)) | ||
882 | goto unlock_out; | ||
883 | |||
884 | page_cache_release(apage); | ||
885 | return; | ||
886 | |||
887 | unlock_out: | ||
888 | unlock_page(apage); | ||
889 | release_out: | ||
890 | page_cache_release(apage); | ||
891 | } | ||
892 | |||
893 | struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid) | ||
894 | { | ||
895 | int err; | ||
896 | struct page *page; | ||
897 | struct address_space *mapping = sbi->node_inode->i_mapping; | ||
898 | |||
899 | page = grab_cache_page(mapping, nid); | ||
900 | if (!page) | ||
901 | return ERR_PTR(-ENOMEM); | ||
902 | |||
903 | err = read_node_page(page, READ_SYNC); | ||
904 | if (err) { | ||
905 | f2fs_put_page(page, 1); | ||
906 | return ERR_PTR(err); | ||
907 | } | ||
908 | |||
909 | BUG_ON(nid != nid_of_node(page)); | ||
910 | mark_page_accessed(page); | ||
911 | return page; | ||
912 | } | ||
913 | |||
914 | /* | ||
915 | * Return a locked page for the desired node page. | ||
916 | * And, readahead MAX_RA_NODE number of node pages. | ||
917 | */ | ||
918 | struct page *get_node_page_ra(struct page *parent, int start) | ||
919 | { | ||
920 | struct f2fs_sb_info *sbi = F2FS_SB(parent->mapping->host->i_sb); | ||
921 | struct address_space *mapping = sbi->node_inode->i_mapping; | ||
922 | int i, end; | ||
923 | int err = 0; | ||
924 | nid_t nid; | ||
925 | struct page *page; | ||
926 | |||
927 | /* First, try getting the desired direct node. */ | ||
928 | nid = get_nid(parent, start, false); | ||
929 | if (!nid) | ||
930 | return ERR_PTR(-ENOENT); | ||
931 | |||
932 | page = find_get_page(mapping, nid); | ||
933 | if (page && PageUptodate(page)) | ||
934 | goto page_hit; | ||
935 | f2fs_put_page(page, 0); | ||
936 | |||
937 | repeat: | ||
938 | page = grab_cache_page(mapping, nid); | ||
939 | if (!page) | ||
940 | return ERR_PTR(-ENOMEM); | ||
941 | |||
942 | err = read_node_page(page, READA); | ||
943 | if (err) { | ||
944 | f2fs_put_page(page, 1); | ||
945 | return ERR_PTR(err); | ||
946 | } | ||
947 | |||
948 | /* Then, try readahead for siblings of the desired node */ | ||
949 | end = start + MAX_RA_NODE; | ||
950 | end = min(end, NIDS_PER_BLOCK); | ||
951 | for (i = start + 1; i < end; i++) { | ||
952 | nid = get_nid(parent, i, false); | ||
953 | if (!nid) | ||
954 | continue; | ||
955 | ra_node_page(sbi, nid); | ||
956 | } | ||
957 | |||
958 | page_hit: | ||
959 | lock_page(page); | ||
960 | if (PageError(page)) { | ||
961 | f2fs_put_page(page, 1); | ||
962 | return ERR_PTR(-EIO); | ||
963 | } | ||
964 | |||
965 | /* Has the page been truncated? */ | ||
966 | if (page->mapping != mapping) { | ||
967 | f2fs_put_page(page, 1); | ||
968 | goto repeat; | ||
969 | } | ||
970 | return page; | ||
971 | } | ||
972 | |||
973 | void sync_inode_page(struct dnode_of_data *dn) | ||
974 | { | ||
975 | if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) { | ||
976 | update_inode(dn->inode, dn->node_page); | ||
977 | } else if (dn->inode_page) { | ||
978 | if (!dn->inode_page_locked) | ||
979 | lock_page(dn->inode_page); | ||
980 | update_inode(dn->inode, dn->inode_page); | ||
981 | if (!dn->inode_page_locked) | ||
982 | unlock_page(dn->inode_page); | ||
983 | } else { | ||
984 | f2fs_write_inode(dn->inode, NULL); | ||
985 | } | ||
986 | } | ||
987 | |||
988 | int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino, | ||
989 | struct writeback_control *wbc) | ||
990 | { | ||
991 | struct address_space *mapping = sbi->node_inode->i_mapping; | ||
992 | pgoff_t index, end; | ||
993 | struct pagevec pvec; | ||
994 | int step = ino ? 2 : 0; | ||
995 | int nwritten = 0, wrote = 0; | ||
996 | |||
997 | pagevec_init(&pvec, 0); | ||
998 | |||
999 | next_step: | ||
1000 | index = 0; | ||
1001 | end = LONG_MAX; | ||
1002 | |||
1003 | while (index <= end) { | ||
1004 | int i, nr_pages; | ||
1005 | nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, | ||
1006 | PAGECACHE_TAG_DIRTY, | ||
1007 | min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); | ||
1008 | if (nr_pages == 0) | ||
1009 | break; | ||
1010 | |||
1011 | for (i = 0; i < nr_pages; i++) { | ||
1012 | struct page *page = pvec.pages[i]; | ||
1013 | |||
1014 | /* | ||
1015 | * flushing sequence with step: | ||
1016 | * 0. indirect nodes | ||
1017 | * 1. dentry dnodes | ||
1018 | * 2. file dnodes | ||
1019 | */ | ||
1020 | if (step == 0 && IS_DNODE(page)) | ||
1021 | continue; | ||
1022 | if (step == 1 && (!IS_DNODE(page) || | ||
1023 | is_cold_node(page))) | ||
1024 | continue; | ||
1025 | if (step == 2 && (!IS_DNODE(page) || | ||
1026 | !is_cold_node(page))) | ||
1027 | continue; | ||
1028 | |||
1029 | /* | ||
1030 | * If an fsync mode, | ||
1031 | * we should not skip writing node pages. | ||
1032 | */ | ||
1033 | if (ino && ino_of_node(page) == ino) | ||
1034 | lock_page(page); | ||
1035 | else if (!trylock_page(page)) | ||
1036 | continue; | ||
1037 | |||
1038 | if (unlikely(page->mapping != mapping)) { | ||
1039 | continue_unlock: | ||
1040 | unlock_page(page); | ||
1041 | continue; | ||
1042 | } | ||
1043 | if (ino && ino_of_node(page) != ino) | ||
1044 | goto continue_unlock; | ||
1045 | |||
1046 | if (!PageDirty(page)) { | ||
1047 | /* someone wrote it for us */ | ||
1048 | goto continue_unlock; | ||
1049 | } | ||
1050 | |||
1051 | if (!clear_page_dirty_for_io(page)) | ||
1052 | goto continue_unlock; | ||
1053 | |||
1054 | /* called by fsync() */ | ||
1055 | if (ino && IS_DNODE(page)) { | ||
1056 | int mark = !is_checkpointed_node(sbi, ino); | ||
1057 | set_fsync_mark(page, 1); | ||
1058 | if (IS_INODE(page)) | ||
1059 | set_dentry_mark(page, mark); | ||
1060 | nwritten++; | ||
1061 | } else { | ||
1062 | set_fsync_mark(page, 0); | ||
1063 | set_dentry_mark(page, 0); | ||
1064 | } | ||
1065 | mapping->a_ops->writepage(page, wbc); | ||
1066 | wrote++; | ||
1067 | |||
1068 | if (--wbc->nr_to_write == 0) | ||
1069 | break; | ||
1070 | } | ||
1071 | pagevec_release(&pvec); | ||
1072 | cond_resched(); | ||
1073 | |||
1074 | if (wbc->nr_to_write == 0) { | ||
1075 | step = 2; | ||
1076 | break; | ||
1077 | } | ||
1078 | } | ||
1079 | |||
1080 | if (step < 2) { | ||
1081 | step++; | ||
1082 | goto next_step; | ||
1083 | } | ||
1084 | |||
1085 | if (wrote) | ||
1086 | f2fs_submit_bio(sbi, NODE, wbc->sync_mode == WB_SYNC_ALL); | ||
1087 | |||
1088 | return nwritten; | ||
1089 | } | ||
1090 | |||
1091 | static int f2fs_write_node_page(struct page *page, | ||
1092 | struct writeback_control *wbc) | ||
1093 | { | ||
1094 | struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb); | ||
1095 | nid_t nid; | ||
1096 | unsigned int nofs; | ||
1097 | block_t new_addr; | ||
1098 | struct node_info ni; | ||
1099 | |||
1100 | if (wbc->for_reclaim) { | ||
1101 | dec_page_count(sbi, F2FS_DIRTY_NODES); | ||
1102 | wbc->pages_skipped++; | ||
1103 | set_page_dirty(page); | ||
1104 | return AOP_WRITEPAGE_ACTIVATE; | ||
1105 | } | ||
1106 | |||
1107 | wait_on_page_writeback(page); | ||
1108 | |||
1109 | mutex_lock_op(sbi, NODE_WRITE); | ||
1110 | |||
1111 | /* get old block addr of this node page */ | ||
1112 | nid = nid_of_node(page); | ||
1113 | nofs = ofs_of_node(page); | ||
1114 | BUG_ON(page->index != nid); | ||
1115 | |||
1116 | get_node_info(sbi, nid, &ni); | ||
1117 | |||
1118 | /* This page is already truncated */ | ||
1119 | if (ni.blk_addr == NULL_ADDR) | ||
1120 | return 0; | ||
1121 | |||
1122 | set_page_writeback(page); | ||
1123 | |||
1124 | /* insert node offset */ | ||
1125 | write_node_page(sbi, page, nid, ni.blk_addr, &new_addr); | ||
1126 | set_node_addr(sbi, &ni, new_addr); | ||
1127 | dec_page_count(sbi, F2FS_DIRTY_NODES); | ||
1128 | |||
1129 | mutex_unlock_op(sbi, NODE_WRITE); | ||
1130 | unlock_page(page); | ||
1131 | return 0; | ||
1132 | } | ||
1133 | |||
1134 | static int f2fs_write_node_pages(struct address_space *mapping, | ||
1135 | struct writeback_control *wbc) | ||
1136 | { | ||
1137 | struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb); | ||
1138 | struct block_device *bdev = sbi->sb->s_bdev; | ||
1139 | long nr_to_write = wbc->nr_to_write; | ||
1140 | |||
1141 | if (wbc->for_kupdate) | ||
1142 | return 0; | ||
1143 | |||
1144 | if (get_pages(sbi, F2FS_DIRTY_NODES) == 0) | ||
1145 | return 0; | ||
1146 | |||
1147 | if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK)) { | ||
1148 | write_checkpoint(sbi, false, false); | ||
1149 | return 0; | ||
1150 | } | ||
1151 | |||
1152 | /* if mounting is failed, skip writing node pages */ | ||
1153 | wbc->nr_to_write = bio_get_nr_vecs(bdev); | ||
1154 | sync_node_pages(sbi, 0, wbc); | ||
1155 | wbc->nr_to_write = nr_to_write - | ||
1156 | (bio_get_nr_vecs(bdev) - wbc->nr_to_write); | ||
1157 | return 0; | ||
1158 | } | ||
1159 | |||
1160 | static int f2fs_set_node_page_dirty(struct page *page) | ||
1161 | { | ||
1162 | struct address_space *mapping = page->mapping; | ||
1163 | struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb); | ||
1164 | |||
1165 | SetPageUptodate(page); | ||
1166 | if (!PageDirty(page)) { | ||
1167 | __set_page_dirty_nobuffers(page); | ||
1168 | inc_page_count(sbi, F2FS_DIRTY_NODES); | ||
1169 | SetPagePrivate(page); | ||
1170 | return 1; | ||
1171 | } | ||
1172 | return 0; | ||
1173 | } | ||
1174 | |||
1175 | static void f2fs_invalidate_node_page(struct page *page, unsigned long offset) | ||
1176 | { | ||
1177 | struct inode *inode = page->mapping->host; | ||
1178 | struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); | ||
1179 | if (PageDirty(page)) | ||
1180 | dec_page_count(sbi, F2FS_DIRTY_NODES); | ||
1181 | ClearPagePrivate(page); | ||
1182 | } | ||
1183 | |||
1184 | static int f2fs_release_node_page(struct page *page, gfp_t wait) | ||
1185 | { | ||
1186 | ClearPagePrivate(page); | ||
1187 | return 0; | ||
1188 | } | ||
1189 | |||
1190 | /* | ||
1191 | * Structure of the f2fs node operations | ||
1192 | */ | ||
1193 | const struct address_space_operations f2fs_node_aops = { | ||
1194 | .writepage = f2fs_write_node_page, | ||
1195 | .writepages = f2fs_write_node_pages, | ||
1196 | .set_page_dirty = f2fs_set_node_page_dirty, | ||
1197 | .invalidatepage = f2fs_invalidate_node_page, | ||
1198 | .releasepage = f2fs_release_node_page, | ||
1199 | }; | ||
1200 | |||
1201 | static struct free_nid *__lookup_free_nid_list(nid_t n, struct list_head *head) | ||
1202 | { | ||
1203 | struct list_head *this; | ||
1204 | struct free_nid *i = NULL; | ||
1205 | list_for_each(this, head) { | ||
1206 | i = list_entry(this, struct free_nid, list); | ||
1207 | if (i->nid == n) | ||
1208 | break; | ||
1209 | i = NULL; | ||
1210 | } | ||
1211 | return i; | ||
1212 | } | ||
1213 | |||
1214 | static void __del_from_free_nid_list(struct free_nid *i) | ||
1215 | { | ||
1216 | list_del(&i->list); | ||
1217 | kmem_cache_free(free_nid_slab, i); | ||
1218 | } | ||
1219 | |||
1220 | static int add_free_nid(struct f2fs_nm_info *nm_i, nid_t nid) | ||
1221 | { | ||
1222 | struct free_nid *i; | ||
1223 | |||
1224 | if (nm_i->fcnt > 2 * MAX_FREE_NIDS) | ||
1225 | return 0; | ||
1226 | retry: | ||
1227 | i = kmem_cache_alloc(free_nid_slab, GFP_NOFS); | ||
1228 | if (!i) { | ||
1229 | cond_resched(); | ||
1230 | goto retry; | ||
1231 | } | ||
1232 | i->nid = nid; | ||
1233 | i->state = NID_NEW; | ||
1234 | |||
1235 | spin_lock(&nm_i->free_nid_list_lock); | ||
1236 | if (__lookup_free_nid_list(nid, &nm_i->free_nid_list)) { | ||
1237 | spin_unlock(&nm_i->free_nid_list_lock); | ||
1238 | kmem_cache_free(free_nid_slab, i); | ||
1239 | return 0; | ||
1240 | } | ||
1241 | list_add_tail(&i->list, &nm_i->free_nid_list); | ||
1242 | nm_i->fcnt++; | ||
1243 | spin_unlock(&nm_i->free_nid_list_lock); | ||
1244 | return 1; | ||
1245 | } | ||
1246 | |||
1247 | static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid) | ||
1248 | { | ||
1249 | struct free_nid *i; | ||
1250 | spin_lock(&nm_i->free_nid_list_lock); | ||
1251 | i = __lookup_free_nid_list(nid, &nm_i->free_nid_list); | ||
1252 | if (i && i->state == NID_NEW) { | ||
1253 | __del_from_free_nid_list(i); | ||
1254 | nm_i->fcnt--; | ||
1255 | } | ||
1256 | spin_unlock(&nm_i->free_nid_list_lock); | ||
1257 | } | ||
1258 | |||
1259 | static int scan_nat_page(struct f2fs_nm_info *nm_i, | ||
1260 | struct page *nat_page, nid_t start_nid) | ||
1261 | { | ||
1262 | struct f2fs_nat_block *nat_blk = page_address(nat_page); | ||
1263 | block_t blk_addr; | ||
1264 | int fcnt = 0; | ||
1265 | int i; | ||
1266 | |||
1267 | /* 0 nid should not be used */ | ||
1268 | if (start_nid == 0) | ||
1269 | ++start_nid; | ||
1270 | |||
1271 | i = start_nid % NAT_ENTRY_PER_BLOCK; | ||
1272 | |||
1273 | for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) { | ||
1274 | blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr); | ||
1275 | BUG_ON(blk_addr == NEW_ADDR); | ||
1276 | if (blk_addr == NULL_ADDR) | ||
1277 | fcnt += add_free_nid(nm_i, start_nid); | ||
1278 | } | ||
1279 | return fcnt; | ||
1280 | } | ||
1281 | |||
1282 | static void build_free_nids(struct f2fs_sb_info *sbi) | ||
1283 | { | ||
1284 | struct free_nid *fnid, *next_fnid; | ||
1285 | struct f2fs_nm_info *nm_i = NM_I(sbi); | ||
1286 | struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); | ||
1287 | struct f2fs_summary_block *sum = curseg->sum_blk; | ||
1288 | nid_t nid = 0; | ||
1289 | bool is_cycled = false; | ||
1290 | int fcnt = 0; | ||
1291 | int i; | ||
1292 | |||
1293 | nid = nm_i->next_scan_nid; | ||
1294 | nm_i->init_scan_nid = nid; | ||
1295 | |||
1296 | ra_nat_pages(sbi, nid); | ||
1297 | |||
1298 | while (1) { | ||
1299 | struct page *page = get_current_nat_page(sbi, nid); | ||
1300 | |||
1301 | fcnt += scan_nat_page(nm_i, page, nid); | ||
1302 | f2fs_put_page(page, 1); | ||
1303 | |||
1304 | nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK)); | ||
1305 | |||
1306 | if (nid >= nm_i->max_nid) { | ||
1307 | nid = 0; | ||
1308 | is_cycled = true; | ||
1309 | } | ||
1310 | if (fcnt > MAX_FREE_NIDS) | ||
1311 | break; | ||
1312 | if (is_cycled && nm_i->init_scan_nid <= nid) | ||
1313 | break; | ||
1314 | } | ||
1315 | |||
1316 | nm_i->next_scan_nid = nid; | ||
1317 | |||
1318 | /* find free nids from current sum_pages */ | ||
1319 | mutex_lock(&curseg->curseg_mutex); | ||
1320 | for (i = 0; i < nats_in_cursum(sum); i++) { | ||
1321 | block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr); | ||
1322 | nid = le32_to_cpu(nid_in_journal(sum, i)); | ||
1323 | if (addr == NULL_ADDR) | ||
1324 | add_free_nid(nm_i, nid); | ||
1325 | else | ||
1326 | remove_free_nid(nm_i, nid); | ||
1327 | } | ||
1328 | mutex_unlock(&curseg->curseg_mutex); | ||
1329 | |||
1330 | /* remove the free nids from current allocated nids */ | ||
1331 | list_for_each_entry_safe(fnid, next_fnid, &nm_i->free_nid_list, list) { | ||
1332 | struct nat_entry *ne; | ||
1333 | |||
1334 | read_lock(&nm_i->nat_tree_lock); | ||
1335 | ne = __lookup_nat_cache(nm_i, fnid->nid); | ||
1336 | if (ne && nat_get_blkaddr(ne) != NULL_ADDR) | ||
1337 | remove_free_nid(nm_i, fnid->nid); | ||
1338 | read_unlock(&nm_i->nat_tree_lock); | ||
1339 | } | ||
1340 | } | ||
1341 | |||
1342 | /* | ||
1343 | * If this function returns success, caller can obtain a new nid | ||
1344 | * from second parameter of this function. | ||
1345 | * The returned nid could be used ino as well as nid when inode is created. | ||
1346 | */ | ||
1347 | bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid) | ||
1348 | { | ||
1349 | struct f2fs_nm_info *nm_i = NM_I(sbi); | ||
1350 | struct free_nid *i = NULL; | ||
1351 | struct list_head *this; | ||
1352 | retry: | ||
1353 | mutex_lock(&nm_i->build_lock); | ||
1354 | if (!nm_i->fcnt) { | ||
1355 | /* scan NAT in order to build free nid list */ | ||
1356 | build_free_nids(sbi); | ||
1357 | if (!nm_i->fcnt) { | ||
1358 | mutex_unlock(&nm_i->build_lock); | ||
1359 | return false; | ||
1360 | } | ||
1361 | } | ||
1362 | mutex_unlock(&nm_i->build_lock); | ||
1363 | |||
1364 | /* | ||
1365 | * We check fcnt again since previous check is racy as | ||
1366 | * we didn't hold free_nid_list_lock. So other thread | ||
1367 | * could consume all of free nids. | ||
1368 | */ | ||
1369 | spin_lock(&nm_i->free_nid_list_lock); | ||
1370 | if (!nm_i->fcnt) { | ||
1371 | spin_unlock(&nm_i->free_nid_list_lock); | ||
1372 | goto retry; | ||
1373 | } | ||
1374 | |||
1375 | BUG_ON(list_empty(&nm_i->free_nid_list)); | ||
1376 | list_for_each(this, &nm_i->free_nid_list) { | ||
1377 | i = list_entry(this, struct free_nid, list); | ||
1378 | if (i->state == NID_NEW) | ||
1379 | break; | ||
1380 | } | ||
1381 | |||
1382 | BUG_ON(i->state != NID_NEW); | ||
1383 | *nid = i->nid; | ||
1384 | i->state = NID_ALLOC; | ||
1385 | nm_i->fcnt--; | ||
1386 | spin_unlock(&nm_i->free_nid_list_lock); | ||
1387 | return true; | ||
1388 | } | ||
1389 | |||
1390 | /* | ||
1391 | * alloc_nid() should be called prior to this function. | ||
1392 | */ | ||
1393 | void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid) | ||
1394 | { | ||
1395 | struct f2fs_nm_info *nm_i = NM_I(sbi); | ||
1396 | struct free_nid *i; | ||
1397 | |||
1398 | spin_lock(&nm_i->free_nid_list_lock); | ||
1399 | i = __lookup_free_nid_list(nid, &nm_i->free_nid_list); | ||
1400 | if (i) { | ||
1401 | BUG_ON(i->state != NID_ALLOC); | ||
1402 | __del_from_free_nid_list(i); | ||
1403 | } | ||
1404 | spin_unlock(&nm_i->free_nid_list_lock); | ||
1405 | } | ||
1406 | |||
1407 | /* | ||
1408 | * alloc_nid() should be called prior to this function. | ||
1409 | */ | ||
1410 | void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid) | ||
1411 | { | ||
1412 | alloc_nid_done(sbi, nid); | ||
1413 | add_free_nid(NM_I(sbi), nid); | ||
1414 | } | ||
1415 | |||
1416 | void recover_node_page(struct f2fs_sb_info *sbi, struct page *page, | ||
1417 | struct f2fs_summary *sum, struct node_info *ni, | ||
1418 | block_t new_blkaddr) | ||
1419 | { | ||
1420 | rewrite_node_page(sbi, page, sum, ni->blk_addr, new_blkaddr); | ||
1421 | set_node_addr(sbi, ni, new_blkaddr); | ||
1422 | clear_node_page_dirty(page); | ||
1423 | } | ||
1424 | |||
1425 | int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page) | ||
1426 | { | ||
1427 | struct address_space *mapping = sbi->node_inode->i_mapping; | ||
1428 | struct f2fs_node *src, *dst; | ||
1429 | nid_t ino = ino_of_node(page); | ||
1430 | struct node_info old_ni, new_ni; | ||
1431 | struct page *ipage; | ||
1432 | |||
1433 | ipage = grab_cache_page(mapping, ino); | ||
1434 | if (!ipage) | ||
1435 | return -ENOMEM; | ||
1436 | |||
1437 | /* Should not use this inode from free nid list */ | ||
1438 | remove_free_nid(NM_I(sbi), ino); | ||
1439 | |||
1440 | get_node_info(sbi, ino, &old_ni); | ||
1441 | SetPageUptodate(ipage); | ||
1442 | fill_node_footer(ipage, ino, ino, 0, true); | ||
1443 | |||
1444 | src = (struct f2fs_node *)page_address(page); | ||
1445 | dst = (struct f2fs_node *)page_address(ipage); | ||
1446 | |||
1447 | memcpy(dst, src, (unsigned long)&src->i.i_ext - (unsigned long)&src->i); | ||
1448 | dst->i.i_size = 0; | ||
1449 | dst->i.i_blocks = cpu_to_le64(1); | ||
1450 | dst->i.i_links = cpu_to_le32(1); | ||
1451 | dst->i.i_xattr_nid = 0; | ||
1452 | |||
1453 | new_ni = old_ni; | ||
1454 | new_ni.ino = ino; | ||
1455 | |||
1456 | set_node_addr(sbi, &new_ni, NEW_ADDR); | ||
1457 | inc_valid_inode_count(sbi); | ||
1458 | |||
1459 | f2fs_put_page(ipage, 1); | ||
1460 | return 0; | ||
1461 | } | ||
1462 | |||
1463 | int restore_node_summary(struct f2fs_sb_info *sbi, | ||
1464 | unsigned int segno, struct f2fs_summary_block *sum) | ||
1465 | { | ||
1466 | struct f2fs_node *rn; | ||
1467 | struct f2fs_summary *sum_entry; | ||
1468 | struct page *page; | ||
1469 | block_t addr; | ||
1470 | int i, last_offset; | ||
1471 | |||
1472 | /* alloc temporal page for read node */ | ||
1473 | page = alloc_page(GFP_NOFS | __GFP_ZERO); | ||
1474 | if (IS_ERR(page)) | ||
1475 | return PTR_ERR(page); | ||
1476 | lock_page(page); | ||
1477 | |||
1478 | /* scan the node segment */ | ||
1479 | last_offset = sbi->blocks_per_seg; | ||
1480 | addr = START_BLOCK(sbi, segno); | ||
1481 | sum_entry = &sum->entries[0]; | ||
1482 | |||
1483 | for (i = 0; i < last_offset; i++, sum_entry++) { | ||
1484 | if (f2fs_readpage(sbi, page, addr, READ_SYNC)) | ||
1485 | goto out; | ||
1486 | |||
1487 | rn = (struct f2fs_node *)page_address(page); | ||
1488 | sum_entry->nid = rn->footer.nid; | ||
1489 | sum_entry->version = 0; | ||
1490 | sum_entry->ofs_in_node = 0; | ||
1491 | addr++; | ||
1492 | |||
1493 | /* | ||
1494 | * In order to read next node page, | ||
1495 | * we must clear PageUptodate flag. | ||
1496 | */ | ||
1497 | ClearPageUptodate(page); | ||
1498 | } | ||
1499 | out: | ||
1500 | unlock_page(page); | ||
1501 | __free_pages(page, 0); | ||
1502 | return 0; | ||
1503 | } | ||
1504 | |||
1505 | static bool flush_nats_in_journal(struct f2fs_sb_info *sbi) | ||
1506 | { | ||
1507 | struct f2fs_nm_info *nm_i = NM_I(sbi); | ||
1508 | struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); | ||
1509 | struct f2fs_summary_block *sum = curseg->sum_blk; | ||
1510 | int i; | ||
1511 | |||
1512 | mutex_lock(&curseg->curseg_mutex); | ||
1513 | |||
1514 | if (nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES) { | ||
1515 | mutex_unlock(&curseg->curseg_mutex); | ||
1516 | return false; | ||
1517 | } | ||
1518 | |||
1519 | for (i = 0; i < nats_in_cursum(sum); i++) { | ||
1520 | struct nat_entry *ne; | ||
1521 | struct f2fs_nat_entry raw_ne; | ||
1522 | nid_t nid = le32_to_cpu(nid_in_journal(sum, i)); | ||
1523 | |||
1524 | raw_ne = nat_in_journal(sum, i); | ||
1525 | retry: | ||
1526 | write_lock(&nm_i->nat_tree_lock); | ||
1527 | ne = __lookup_nat_cache(nm_i, nid); | ||
1528 | if (ne) { | ||
1529 | __set_nat_cache_dirty(nm_i, ne); | ||
1530 | write_unlock(&nm_i->nat_tree_lock); | ||
1531 | continue; | ||
1532 | } | ||
1533 | ne = grab_nat_entry(nm_i, nid); | ||
1534 | if (!ne) { | ||
1535 | write_unlock(&nm_i->nat_tree_lock); | ||
1536 | goto retry; | ||
1537 | } | ||
1538 | nat_set_blkaddr(ne, le32_to_cpu(raw_ne.block_addr)); | ||
1539 | nat_set_ino(ne, le32_to_cpu(raw_ne.ino)); | ||
1540 | nat_set_version(ne, raw_ne.version); | ||
1541 | __set_nat_cache_dirty(nm_i, ne); | ||
1542 | write_unlock(&nm_i->nat_tree_lock); | ||
1543 | } | ||
1544 | update_nats_in_cursum(sum, -i); | ||
1545 | mutex_unlock(&curseg->curseg_mutex); | ||
1546 | return true; | ||
1547 | } | ||
1548 | |||
1549 | /* | ||
1550 | * This function is called during the checkpointing process. | ||
1551 | */ | ||
1552 | void flush_nat_entries(struct f2fs_sb_info *sbi) | ||
1553 | { | ||
1554 | struct f2fs_nm_info *nm_i = NM_I(sbi); | ||
1555 | struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); | ||
1556 | struct f2fs_summary_block *sum = curseg->sum_blk; | ||
1557 | struct list_head *cur, *n; | ||
1558 | struct page *page = NULL; | ||
1559 | struct f2fs_nat_block *nat_blk = NULL; | ||
1560 | nid_t start_nid = 0, end_nid = 0; | ||
1561 | bool flushed; | ||
1562 | |||
1563 | flushed = flush_nats_in_journal(sbi); | ||
1564 | |||
1565 | if (!flushed) | ||
1566 | mutex_lock(&curseg->curseg_mutex); | ||
1567 | |||
1568 | /* 1) flush dirty nat caches */ | ||
1569 | list_for_each_safe(cur, n, &nm_i->dirty_nat_entries) { | ||
1570 | struct nat_entry *ne; | ||
1571 | nid_t nid; | ||
1572 | struct f2fs_nat_entry raw_ne; | ||
1573 | int offset = -1; | ||
1574 | block_t old_blkaddr, new_blkaddr; | ||
1575 | |||
1576 | ne = list_entry(cur, struct nat_entry, list); | ||
1577 | nid = nat_get_nid(ne); | ||
1578 | |||
1579 | if (nat_get_blkaddr(ne) == NEW_ADDR) | ||
1580 | continue; | ||
1581 | if (flushed) | ||
1582 | goto to_nat_page; | ||
1583 | |||
1584 | /* if there is room for nat enries in curseg->sumpage */ | ||
1585 | offset = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 1); | ||
1586 | if (offset >= 0) { | ||
1587 | raw_ne = nat_in_journal(sum, offset); | ||
1588 | old_blkaddr = le32_to_cpu(raw_ne.block_addr); | ||
1589 | goto flush_now; | ||
1590 | } | ||
1591 | to_nat_page: | ||
1592 | if (!page || (start_nid > nid || nid > end_nid)) { | ||
1593 | if (page) { | ||
1594 | f2fs_put_page(page, 1); | ||
1595 | page = NULL; | ||
1596 | } | ||
1597 | start_nid = START_NID(nid); | ||
1598 | end_nid = start_nid + NAT_ENTRY_PER_BLOCK - 1; | ||
1599 | |||
1600 | /* | ||
1601 | * get nat block with dirty flag, increased reference | ||
1602 | * count, mapped and lock | ||
1603 | */ | ||
1604 | page = get_next_nat_page(sbi, start_nid); | ||
1605 | nat_blk = page_address(page); | ||
1606 | } | ||
1607 | |||
1608 | BUG_ON(!nat_blk); | ||
1609 | raw_ne = nat_blk->entries[nid - start_nid]; | ||
1610 | old_blkaddr = le32_to_cpu(raw_ne.block_addr); | ||
1611 | flush_now: | ||
1612 | new_blkaddr = nat_get_blkaddr(ne); | ||
1613 | |||
1614 | raw_ne.ino = cpu_to_le32(nat_get_ino(ne)); | ||
1615 | raw_ne.block_addr = cpu_to_le32(new_blkaddr); | ||
1616 | raw_ne.version = nat_get_version(ne); | ||
1617 | |||
1618 | if (offset < 0) { | ||
1619 | nat_blk->entries[nid - start_nid] = raw_ne; | ||
1620 | } else { | ||
1621 | nat_in_journal(sum, offset) = raw_ne; | ||
1622 | nid_in_journal(sum, offset) = cpu_to_le32(nid); | ||
1623 | } | ||
1624 | |||
1625 | if (nat_get_blkaddr(ne) == NULL_ADDR) { | ||
1626 | write_lock(&nm_i->nat_tree_lock); | ||
1627 | __del_from_nat_cache(nm_i, ne); | ||
1628 | write_unlock(&nm_i->nat_tree_lock); | ||
1629 | |||
1630 | /* We can reuse this freed nid at this point */ | ||
1631 | add_free_nid(NM_I(sbi), nid); | ||
1632 | } else { | ||
1633 | write_lock(&nm_i->nat_tree_lock); | ||
1634 | __clear_nat_cache_dirty(nm_i, ne); | ||
1635 | ne->checkpointed = true; | ||
1636 | write_unlock(&nm_i->nat_tree_lock); | ||
1637 | } | ||
1638 | } | ||
1639 | if (!flushed) | ||
1640 | mutex_unlock(&curseg->curseg_mutex); | ||
1641 | f2fs_put_page(page, 1); | ||
1642 | |||
1643 | /* 2) shrink nat caches if necessary */ | ||
1644 | try_to_free_nats(sbi, nm_i->nat_cnt - NM_WOUT_THRESHOLD); | ||
1645 | } | ||
1646 | |||
1647 | static int init_node_manager(struct f2fs_sb_info *sbi) | ||
1648 | { | ||
1649 | struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi); | ||
1650 | struct f2fs_nm_info *nm_i = NM_I(sbi); | ||
1651 | unsigned char *version_bitmap; | ||
1652 | unsigned int nat_segs, nat_blocks; | ||
1653 | |||
1654 | nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr); | ||
1655 | |||
1656 | /* segment_count_nat includes pair segment so divide to 2. */ | ||
1657 | nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1; | ||
1658 | nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg); | ||
1659 | nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks; | ||
1660 | nm_i->fcnt = 0; | ||
1661 | nm_i->nat_cnt = 0; | ||
1662 | |||
1663 | INIT_LIST_HEAD(&nm_i->free_nid_list); | ||
1664 | INIT_RADIX_TREE(&nm_i->nat_root, GFP_ATOMIC); | ||
1665 | INIT_LIST_HEAD(&nm_i->nat_entries); | ||
1666 | INIT_LIST_HEAD(&nm_i->dirty_nat_entries); | ||
1667 | |||
1668 | mutex_init(&nm_i->build_lock); | ||
1669 | spin_lock_init(&nm_i->free_nid_list_lock); | ||
1670 | rwlock_init(&nm_i->nat_tree_lock); | ||
1671 | |||
1672 | nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP); | ||
1673 | nm_i->init_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid); | ||
1674 | nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid); | ||
1675 | |||
1676 | nm_i->nat_bitmap = kzalloc(nm_i->bitmap_size, GFP_KERNEL); | ||
1677 | if (!nm_i->nat_bitmap) | ||
1678 | return -ENOMEM; | ||
1679 | version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP); | ||
1680 | if (!version_bitmap) | ||
1681 | return -EFAULT; | ||
1682 | |||
1683 | /* copy version bitmap */ | ||
1684 | memcpy(nm_i->nat_bitmap, version_bitmap, nm_i->bitmap_size); | ||
1685 | return 0; | ||
1686 | } | ||
1687 | |||
1688 | int build_node_manager(struct f2fs_sb_info *sbi) | ||
1689 | { | ||
1690 | int err; | ||
1691 | |||
1692 | sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL); | ||
1693 | if (!sbi->nm_info) | ||
1694 | return -ENOMEM; | ||
1695 | |||
1696 | err = init_node_manager(sbi); | ||
1697 | if (err) | ||
1698 | return err; | ||
1699 | |||
1700 | build_free_nids(sbi); | ||
1701 | return 0; | ||
1702 | } | ||
1703 | |||
1704 | void destroy_node_manager(struct f2fs_sb_info *sbi) | ||
1705 | { | ||
1706 | struct f2fs_nm_info *nm_i = NM_I(sbi); | ||
1707 | struct free_nid *i, *next_i; | ||
1708 | struct nat_entry *natvec[NATVEC_SIZE]; | ||
1709 | nid_t nid = 0; | ||
1710 | unsigned int found; | ||
1711 | |||
1712 | if (!nm_i) | ||
1713 | return; | ||
1714 | |||
1715 | /* destroy free nid list */ | ||
1716 | spin_lock(&nm_i->free_nid_list_lock); | ||
1717 | list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) { | ||
1718 | BUG_ON(i->state == NID_ALLOC); | ||
1719 | __del_from_free_nid_list(i); | ||
1720 | nm_i->fcnt--; | ||
1721 | } | ||
1722 | BUG_ON(nm_i->fcnt); | ||
1723 | spin_unlock(&nm_i->free_nid_list_lock); | ||
1724 | |||
1725 | /* destroy nat cache */ | ||
1726 | write_lock(&nm_i->nat_tree_lock); | ||
1727 | while ((found = __gang_lookup_nat_cache(nm_i, | ||
1728 | nid, NATVEC_SIZE, natvec))) { | ||
1729 | unsigned idx; | ||
1730 | for (idx = 0; idx < found; idx++) { | ||
1731 | struct nat_entry *e = natvec[idx]; | ||
1732 | nid = nat_get_nid(e) + 1; | ||
1733 | __del_from_nat_cache(nm_i, e); | ||
1734 | } | ||
1735 | } | ||
1736 | BUG_ON(nm_i->nat_cnt); | ||
1737 | write_unlock(&nm_i->nat_tree_lock); | ||
1738 | |||
1739 | kfree(nm_i->nat_bitmap); | ||
1740 | sbi->nm_info = NULL; | ||
1741 | kfree(nm_i); | ||
1742 | } | ||
1743 | |||
1744 | int create_node_manager_caches(void) | ||
1745 | { | ||
1746 | nat_entry_slab = f2fs_kmem_cache_create("nat_entry", | ||
1747 | sizeof(struct nat_entry), NULL); | ||
1748 | if (!nat_entry_slab) | ||
1749 | return -ENOMEM; | ||
1750 | |||
1751 | free_nid_slab = f2fs_kmem_cache_create("free_nid", | ||
1752 | sizeof(struct free_nid), NULL); | ||
1753 | if (!free_nid_slab) { | ||
1754 | kmem_cache_destroy(nat_entry_slab); | ||
1755 | return -ENOMEM; | ||
1756 | } | ||
1757 | return 0; | ||
1758 | } | ||
1759 | |||
1760 | void destroy_node_manager_caches(void) | ||
1761 | { | ||
1762 | kmem_cache_destroy(free_nid_slab); | ||
1763 | kmem_cache_destroy(nat_entry_slab); | ||
1764 | } | ||