aboutsummaryrefslogtreecommitdiffstats
path: root/fs/ext4/fsync.c
diff options
context:
space:
mode:
Diffstat (limited to 'fs/ext4/fsync.c')
-rw-r--r--fs/ext4/fsync.c142
1 files changed, 115 insertions, 27 deletions
diff --git a/fs/ext4/fsync.c b/fs/ext4/fsync.c
index 592adf2e546e..ce66d2fe826c 100644
--- a/fs/ext4/fsync.c
+++ b/fs/ext4/fsync.c
@@ -34,6 +34,89 @@
34 34
35#include <trace/events/ext4.h> 35#include <trace/events/ext4.h>
36 36
37static void dump_completed_IO(struct inode * inode)
38{
39#ifdef EXT4FS_DEBUG
40 struct list_head *cur, *before, *after;
41 ext4_io_end_t *io, *io0, *io1;
42 unsigned long flags;
43
44 if (list_empty(&EXT4_I(inode)->i_completed_io_list)){
45 ext4_debug("inode %lu completed_io list is empty\n", inode->i_ino);
46 return;
47 }
48
49 ext4_debug("Dump inode %lu completed_io list \n", inode->i_ino);
50 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
51 list_for_each_entry(io, &EXT4_I(inode)->i_completed_io_list, list){
52 cur = &io->list;
53 before = cur->prev;
54 io0 = container_of(before, ext4_io_end_t, list);
55 after = cur->next;
56 io1 = container_of(after, ext4_io_end_t, list);
57
58 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
59 io, inode->i_ino, io0, io1);
60 }
61 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
62#endif
63}
64
65/*
66 * This function is called from ext4_sync_file().
67 *
68 * When IO is completed, the work to convert unwritten extents to
69 * written is queued on workqueue but may not get immediately
70 * scheduled. When fsync is called, we need to ensure the
71 * conversion is complete before fsync returns.
72 * The inode keeps track of a list of pending/completed IO that
73 * might needs to do the conversion. This function walks through
74 * the list and convert the related unwritten extents for completed IO
75 * to written.
76 * The function return the number of pending IOs on success.
77 */
78extern int ext4_flush_completed_IO(struct inode *inode)
79{
80 ext4_io_end_t *io;
81 struct ext4_inode_info *ei = EXT4_I(inode);
82 unsigned long flags;
83 int ret = 0;
84 int ret2 = 0;
85
86 if (list_empty(&ei->i_completed_io_list))
87 return ret;
88
89 dump_completed_IO(inode);
90 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
91 while (!list_empty(&ei->i_completed_io_list)){
92 io = list_entry(ei->i_completed_io_list.next,
93 ext4_io_end_t, list);
94 /*
95 * Calling ext4_end_io_nolock() to convert completed
96 * IO to written.
97 *
98 * When ext4_sync_file() is called, run_queue() may already
99 * about to flush the work corresponding to this io structure.
100 * It will be upset if it founds the io structure related
101 * to the work-to-be schedule is freed.
102 *
103 * Thus we need to keep the io structure still valid here after
104 * conversion finished. The io structure has a flag to
105 * avoid double converting from both fsync and background work
106 * queue work.
107 */
108 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
109 ret = ext4_end_io_nolock(io);
110 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
111 if (ret < 0)
112 ret2 = ret;
113 else
114 list_del_init(&io->list);
115 }
116 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
117 return (ret2 < 0) ? ret2 : 0;
118}
119
37/* 120/*
38 * If we're not journaling and this is a just-created file, we have to 121 * If we're not journaling and this is a just-created file, we have to
39 * sync our parent directory (if it was freshly created) since 122 * sync our parent directory (if it was freshly created) since
@@ -42,9 +125,11 @@
42 * the parent directory's parent as well, and so on recursively, if 125 * the parent directory's parent as well, and so on recursively, if
43 * they are also freshly created. 126 * they are also freshly created.
44 */ 127 */
45static void ext4_sync_parent(struct inode *inode) 128static int ext4_sync_parent(struct inode *inode)
46{ 129{
130 struct writeback_control wbc;
47 struct dentry *dentry = NULL; 131 struct dentry *dentry = NULL;
132 int ret = 0;
48 133
49 while (inode && ext4_test_inode_state(inode, EXT4_STATE_NEWENTRY)) { 134 while (inode && ext4_test_inode_state(inode, EXT4_STATE_NEWENTRY)) {
50 ext4_clear_inode_state(inode, EXT4_STATE_NEWENTRY); 135 ext4_clear_inode_state(inode, EXT4_STATE_NEWENTRY);
@@ -53,8 +138,17 @@ static void ext4_sync_parent(struct inode *inode)
53 if (!dentry || !dentry->d_parent || !dentry->d_parent->d_inode) 138 if (!dentry || !dentry->d_parent || !dentry->d_parent->d_inode)
54 break; 139 break;
55 inode = dentry->d_parent->d_inode; 140 inode = dentry->d_parent->d_inode;
56 sync_mapping_buffers(inode->i_mapping); 141 ret = sync_mapping_buffers(inode->i_mapping);
142 if (ret)
143 break;
144 memset(&wbc, 0, sizeof(wbc));
145 wbc.sync_mode = WB_SYNC_ALL;
146 wbc.nr_to_write = 0; /* only write out the inode */
147 ret = sync_inode(inode, &wbc);
148 if (ret)
149 break;
57 } 150 }
151 return ret;
58} 152}
59 153
60/* 154/*
@@ -78,23 +172,24 @@ int ext4_sync_file(struct file *file, int datasync)
78 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 172 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
79 int ret; 173 int ret;
80 tid_t commit_tid; 174 tid_t commit_tid;
175 bool needs_barrier = false;
81 176
82 J_ASSERT(ext4_journal_current_handle() == NULL); 177 J_ASSERT(ext4_journal_current_handle() == NULL);
83 178
84 trace_ext4_sync_file(file, datasync); 179 trace_ext4_sync_file_enter(file, datasync);
85 180
86 if (inode->i_sb->s_flags & MS_RDONLY) 181 if (inode->i_sb->s_flags & MS_RDONLY)
87 return 0; 182 return 0;
88 183
89 ret = flush_completed_IO(inode); 184 ret = ext4_flush_completed_IO(inode);
90 if (ret < 0) 185 if (ret < 0)
91 return ret; 186 goto out;
92 187
93 if (!journal) { 188 if (!journal) {
94 ret = generic_file_fsync(file, datasync); 189 ret = generic_file_fsync(file, datasync);
95 if (!ret && !list_empty(&inode->i_dentry)) 190 if (!ret && !list_empty(&inode->i_dentry))
96 ext4_sync_parent(inode); 191 ret = ext4_sync_parent(inode);
97 return ret; 192 goto out;
98 } 193 }
99 194
100 /* 195 /*
@@ -111,27 +206,20 @@ int ext4_sync_file(struct file *file, int datasync)
111 * (they were dirtied by commit). But that's OK - the blocks are 206 * (they were dirtied by commit). But that's OK - the blocks are
112 * safe in-journal, which is all fsync() needs to ensure. 207 * safe in-journal, which is all fsync() needs to ensure.
113 */ 208 */
114 if (ext4_should_journal_data(inode)) 209 if (ext4_should_journal_data(inode)) {
115 return ext4_force_commit(inode->i_sb); 210 ret = ext4_force_commit(inode->i_sb);
211 goto out;
212 }
116 213
117 commit_tid = datasync ? ei->i_datasync_tid : ei->i_sync_tid; 214 commit_tid = datasync ? ei->i_datasync_tid : ei->i_sync_tid;
118 if (jbd2_log_start_commit(journal, commit_tid)) { 215 if (journal->j_flags & JBD2_BARRIER &&
119 /* 216 !jbd2_trans_will_send_data_barrier(journal, commit_tid))
120 * When the journal is on a different device than the 217 needs_barrier = true;
121 * fs data disk, we need to issue the barrier in 218 jbd2_log_start_commit(journal, commit_tid);
122 * writeback mode. (In ordered mode, the jbd2 layer 219 ret = jbd2_log_wait_commit(journal, commit_tid);
123 * will take care of issuing the barrier. In 220 if (needs_barrier)
124 * data=journal, all of the data blocks are written to 221 blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
125 * the journal device.) 222 out:
126 */ 223 trace_ext4_sync_file_exit(inode, ret);
127 if (ext4_should_writeback_data(inode) &&
128 (journal->j_fs_dev != journal->j_dev) &&
129 (journal->j_flags & JBD2_BARRIER))
130 blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL,
131 NULL, BLKDEV_IFL_WAIT);
132 ret = jbd2_log_wait_commit(journal, commit_tid);
133 } else if (journal->j_flags & JBD2_BARRIER)
134 blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL,
135 BLKDEV_IFL_WAIT);
136 return ret; 224 return ret;
137} 225}